
1  

Insights into the structure and nanomechanics of the 

Quatsome membrane by force spectroscopy 

measurements and molecular simulations 

Berta Gumí-Audenis1,2,3,¶, Silvia Illa-Tuset4, Natascia Grimaldi4,5, Laia Pasquina-Lemonche1,4,†, 

Lidia Ferrer-Tasies5, Fausto Sanz2,3,1, Jaume Veciana3,4, Imma Ratera3,4, Jordi Faraudo4,* Nora 

Ventosa3,4* and Marina I. Giannotti3,2,1* 

1 Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and 

Technology (BIST), Barcelona, Spain 

2 Departament de Ciència dels Materials i Química Física, Universitat de Barcelona, Barcelona, 

Spain 

3 Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain 

4 Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Cerdanyola del 

Vallès, Spain 

 5 Nanomol Technologies SL, Mòdul de Recerca B, Campus Universitari de Bellaterra, 08193, 

Cerdanyola del Vallès, Spain  

 



2  

KEYWORDS. Quatsome; membrane; AFM; force spectroscopy; nanomechanics; molecular 

dynamics; atomistic simulation; bilayer structure; nanovesicles 

ABSTRACT 

Quatsomes (QSs) are unilamellar nanovesicles constituted by quaternary ammonium surfactants 

and sterols in defined molar ratios. Unlike conventional liposomes, QS are stable upon long 

storage such as for several years, they show outstanding vesicle to vesicle homogeneity 

regarding size and lamellarity, and they have the structural and physicochemical requirements to 

be a potential platform for site specific delivery of hydrophilic and lipophilic molecules. 

Knowing in detail the structure and mechanical properties of the QS membrane is of great 

importance for the design of deformable and flexible nanovesicles alternatives, highly pursued in 

nanomedicine applications like the transdermal administration route. In this work, we report the 

first study on the detailed structure of the Cholesterol:CTAB QS membrane at the nanoscale, 

using atomic force microscopy (AFM) and spectroscopy (AFM-FS) under controlled liquid 

environment (ionic medium and temperature) to assess the topography of supported QS 

membranes (SQMs) and to evaluate the local membrane mechanics. We further perform 

molecular dynamics (MD) simulations to provide an atomistic interpretation of the obtained 

results. Our results are direct evidence of the bilayer nature of the QS membrane, with 

characteristics of a fluid-like membrane, compact and homogeneous in composition, and which 

structural and mechanical properties depend on the surrounding environment. We show how ions 

alter the lateral packing, modifying the membrane mechanics. We observe that according to the 

ionic environment and temperature, different domains may coexist in the QS membranes, 

ascribed to variations in molecular tilt angles. Our results indicate that QS membrane properties 
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may be easily tuned by altering the lateral interactions either with different environmental ions or 

counterions.  

1. INTRODUCTION 

The field of nanomedicine has grown rapidly in the recent years. Great efforts have been 

addressed towards new drug delivery systems that may improve the administration of drugs in a 

more effective and safe manner, increasing their solubility and stability, overcoming the 

anatomical and physiological barriers by targeting specific organs/tissues, reducing their quick 

clearance from the body and therefore, their side effects.1, 2 Different types of nanoparticles are 

explored, including metal, organic and polymeric nanoparticles and liposomes.3-6 Liposomes are 

molecular self-assembled lipid-based nanovesicles, undoubtedly one of the most promising 

supramolecular assemblies for nanomedicine due to their great versatility with respect to size, 

composition, surface characteristics and capacity for integrating and encapsulating bioactive 

molecules, both hydrophobic and/or hydrophilic. Their membranes can be efficiently 

functionalized with ligands with different hydrophobicity, and different targeting units like 

peptides, antibodies, etc. Moreover, liposomes are well recognized as pharmaceutical carriers 

because of their biocompatibility, biodegradability and low toxicity.7, 8  

The physicochemical and mechanical properties of the nanoparticles are key as they may affect 

the interaction with cells and tissues, the endocytic pathway,9 the drug permeability, and the 

deformability, which is essential for some applications, like skin penetration.10 In lipid 

nanovesicles, the deformability and mechanical properties of the vesicles is directly related to the 

membrane structure and rigidity.11, 12 The mechanical properties of the liposome membrane can 

be tuned by adjusting the membrane composition, including phospholipids in fluid or gel phase, 
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incorporating sterols, or adding sphingolipids or ceramide derivatives.13-21 Among several 

attempts in this direction, are the novel generations of lipid vesicles, mainly flexible or elastic 

vesicles (transferosomes) and ultradeformable liposomes, that incorporate surfactants like edge 

activators to increase the elasticity of liposomes and lower their transition temperature (Tm).8, 22-26  

Still, one of the major problems limiting the widespread use of liposomes is their poor stability, 

both physical (colloidal), including aggregation or fusion of vesicles to form larger and 

heterogeneous particles, and chemical, i.e. hydrolysis of ester groups and oxidation of 

unsaturated chains.27 Liposomes with higher stability generally comprise gel phospholipids, and 

therefore deformability is compromised. The need for alternative vesicular systems with 

enhanced properties compared to liposomes, especially when vesicles’ mechanical properties are 

a critical issue, has led to the design of alternative lipid nanovesicles, like the Quatsomes (QS). 

QS are unilamellar nanovesicles constituted by quaternary ammonium surfactants and sterols in 

defined molar ratios.8, 28, 29 Unlike conventional liposomes, QS are stable upon long storage such 

as for several years, and they show outstanding vesicle to vesicle homogeneity regarding size 

and lamellarity.29, 30 QS fulfill the structural and physicochemical requirements to be a potential 

encapsulation platform for site specific delivery of both hydrophilic and lipophilic molecules.31-34 

QS-like structures have been prepared using different quaternary ammonium surfactants such as 

cetrimonium bromide (CTAB), myristalkonium chloride (MKC) and cetylpyridinium chloride 

(CPC) and different sterols such as cholesterol (Chol) and b-sitosterol.28, 29 

Using molecular dynamic (MD) simulations, it has been demonstrated that, in an aqueous 

environment, the synergy between the cetyltrymethyl ammonium (CTA+) of CTAB and Chol 

molecules makes them self-assemble into bimolecular amphiphiles (synthon) and then into 

bilayers, with a similar structure of those formed by double-tailed unimolecular amphiphiles, like 
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phospholipids.29 However, a detailed characterization on the structure and mechanical properties 

of the QS membrane has not been performed. Local characterization of these membrane 

properties can be widely explored with techniques that allow working at nanometric resolution 

and preserving the physiological membrane environment. In this context, atomic force 

microscopy (AFM),35 AFM-based force spectroscopy (AFM-FS)14, 36 and force clamp (AFM-

FC)37, 38 are essential tools to locally study the physical properties of supported membranes at the 

nanoscale with high spatial range sensitivity and versatility while giving the possibility to control 

the environmental conditions. Lateral interactions between the molecules can be directly 

evaluated with AFM-FS, by measuring the maximum vertical force a membrane is able to resist 

before its rupture, the breakthrough force Fb, when indented by the AFM tip. This parameter is 

significantly governed by the chemical structure of the membrane components39 as well as by the 

physicochemical environment, especially the presence of ions that can alter the molecular 

interactions within the membrane.40-42 Moreover, AFM-FS can differentiate subtle local 

variations in composition, leading to phase segregation, in terms of both the mechanical stability 

and membrane thickness associated to the observed topography.13-15, 26  

Here, we study for the first time the detailed structure of the QS membrane at the nanoscale, 

using AFM and AFM-FS under controlled liquid environment (ionic medium and temperature) 

to assess the topography of supported QS membranes (SQMs) and to evaluate the local 

membrane mechanics. We further perform MD simulations to provide an atomistic interpretation 

of the obtained results. Our results are direct evidence of the bilayer nature of the QS membrane, 

with characteristics of a fluid-like membrane, and which structural and mechanical properties 

depend on the surrounding environment. We demonstrate how ions alter the lateral packing, 

modifying the membrane mechanics. According to the ionic environment and temperature, we 
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show that different domains may coexist in the QS membranes, ascribed to variations in 

molecular tilt angles.   

2. RESULTS AND DISCUSSION 

2.1. Supported QS membrane structural characterization 

For the study at the nanoscale of Chol:CTAB QS bilayer and its mechanical properties, we 

prepared two different supported QS membranes (SQMs) on mica surfaces using the QS 

vesicular samples described in Table 1. The samples were prepared following the DELOS-susp 

procedure,31 a one-step methodology based on the use of compressed CO2 which permits the 

straightforward preparation of the nanoscopic QSs, without further steps of extrusion or thaw-

freezing. The mean size of QSs obtained were in the range between 90-150 nm in diameter. The 

vesicles structural characterization by dynamic light scattering (DLS) and Cryo-TEM are 

detailed in the SI (Table S1, Figure S1).  

Table 1. Composition of vesicles suspensions used to prepare the SQMs. 

   

   

   

 

QS vesicular sample Membrane components 

concentration 

Aqueous medium 

QS_H2O 7.3 mM CTAB, 7.3 mM Milli-Q (ultrapure) water  
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cholesterol 

QS_PBS 

7.3 mM CTAB, 7.3 mM 

cholesterol 

PBS/NaCl pH 7.4 (94 mM 

NaCl, 4 mM PBS) buffer 

solution 

 

When exposed to freshly cleaved mica surfaces, QS vesicles open and fuse onto the substrate 

forming SQMs. This procedure is equivalent to the liposome rupture method43 based on the 

formation of a supported lipid bilayer (SLB) by depositing a suspension of liposomes onto a flat 

surface. This allows for a detailed morphological and nanomechanical characterization at the 

nanoscale, using atomic force microscopy (AFM) and spectroscopy (AFM-FS), under controlled 

liquid environment. 

2.1.1 Topographical characterization 

As shown in Figure 1, QS_H2O and QS_PBS membranes spread all over the mica surface. At the 

initiation of the AFM experiment (t0), after depositing the QSs onto the mica surface for 30 min 

at room temperature (RT), coexistence of domains of different thickness was identified for 

SQMs in both liquid environments. The thickness of the different domains was determined from 

the force-separation curves (Figure S2) performed during the AFM-FS measurements: 4.7 ± 0.2 

nm and 4.1 ± 0.3 nm for the higher and lower domains for QS_H2O membranes, and 5.3 ± 0.4 

nm and 4.5 ± 0.4 nm for the higher and lower domains for QS_PBS membranes. SQM in 

PBS/NaCl are slightly thicker than in water. 
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Figure 1. Consecutive AFM AC mode topographical images for SQM on mica in ultrapure 

water (QS_H2O) and in PBS/NaCl pH 7.4 (QS_PBS) at RT.  

Series of consecutive images over the same area were acquired to study the membrane behavior 

with time. A steady topography was observed for QS_H2O (Figure 1, top) after several images (tf 

~ 45 min). Conversely, the QS_PBS membrane showed a dynamic behavior towards a 

homogeneous bilayer after 30 min (tf) (Figure 1, bottom). This effect was not a consequence of 

the imaging as it was verified when imaging different unexplored areas of the same sample after 

tf. The membrane at this state had a thickness of 4.9 ± 0.5 nm.  

2.1.2 Supported QS membrane nanomechanics 
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Lateral interactions between the molecules of 2D ordered structures like lipid bilayers can be 

explored by measuring the maximum force the membrane is able to withstand before its rupture, 

because of an applied external pressure. In an AFM-FS experiment, the AFM tip breaks through 

the membrane at a force (the breakthrough force Fb, see Figure S2)14, 15, 36, 44 that is characteristic 

of the lateral packing of the membrane of certain composition in a particular environment and at 

a specific tip velocity. 

Force-separation curves were performed over an area of the SQM previously imaged, and we 

clearly observed the breakthrough events as sharp discontinuities on the approach force-

separation curves (Figure S2 and Figure 2c). These sharp breakthroughs at a few nNs are 

generally characteristic of fluid-like lipid bilayers.42, 45, 46 We calculated the Fb values at each 

pixel and built the Fb maps directly correlating the AFM topography. The Fb value of each 

sample was determined by fitting the Fb distributions to a Gaussian model (Figure 2d). The 

reported mean Fb for each membrane corresponds to the average of Fb values of 10 samples ± 

SD (Figure 3).  

For QS_H2O, a bimodal Fb distribution (Figure 2d) is obtained, with mean values of 1.2 ± 0.5 nN 

and 1.9 ± 0.9 nN. Although the difference is not large, each value is associated to each of the 

domains, as evidenced in the correlation of the Fb map (Figure 2b) and the topography (Figure 

2a), with slightly higher Fb for the thicker domain than for the thinner one. In PBS/NaCl, the 

initial heterogeneous topography of QS_PBS SQM (Figure 2a, t0) was also revealed in the Fb 

map (Figure 2b) with a bimodal Fb distribution, with mean values of 2.5 ± 0.8 nN and 6.3 ± 2.5 

nN for the thinner and thicker domains, respectively (Figure 2b-d). Accordingly, at tf, when the 

QS_PBS membrane became homogeneous (Figure 2a, tf), a uniform Fb map (Figure 2b-d) with 

mean value of 6.2 ± 1.8 nN was obtained, comparable to the value of the thicker domain at t0. 
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These Fb values are summarized in Figure 3, and are slightly below the 8.5 ± 2.3 nN of a 

common lipid membrane: DOPC(1,2-dioleoyl-sn-glycero-3-phosphocholine):Chol (80:20) 

bilayer, prepared from liposomes obtained using the same methodology (Figure S3).  

From these data, it becomes clear that the ions in solution play a key role in the lateral packing of 

the CTA+ and Chol molecules, leading to an increase in the mechanical resistance of the SQM.  

 

Figura 2. AFM AC-mode topographical images (a) and AFM-FS results (Fb maps (b), force-

separation curves (c) and Fb distributions (d)) for representative samples of SQMs on mica in 

ultrapure water (QS_H2O) (top) and in PBS/NaCl pH 7.4 (QS_PBS) at t0 (middle) and tf 

(bottom), at RT. 
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Figure 3. Mean Fb values (± SD) for QS_H2O (in ultrapure water) and QS_PBS (in PBS/NaCl 

pH 7.4) SQMs on mica and at RT. 

2.2 Role of the ions on the QS membrane topography and nanomechanics 

From the topographical and nanomechanical characterization it is evident that the ions present in 

the liquid environment when the QS assembly takes place are affecting the membrane structure. 

Not only they may adsorb on the QS surface, but also affect the lateral packing, as the membrane 

in ionic media shows a higher resistance to break upon indentation. Ions alteration of the 

nanomechanics of lipid bilayers is a known effect; they have an important contribution to the 

membrane mechanical resistance, by enhancing the lateral packing, translated into a higher Fb.41, 

42, 46-49 

To better understand the effect of ions into SQMs, we assessed the topographical and mechanical 

properties of the QS_H2O membrane before and after replacing the liquid environment from 

water to PBS/NaCl. Figure 4 shows the topography, Fb maps and histograms for these two cases. 

From the QS_H2O membrane with coexisting domains and bimodal Fb distribution, after rinsing 
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several times with PBS/NaCl, the mechanical stability increases to Fb values close to those of 

QS_PBS membranes (3.4 ± 0.6 nN for QS_H2O + PBS, Figure 4). In addition, after PBS/NaCl 

has been added, the membrane topography and mechanics evolve in time (after ca. 50 min) to the 

one of the SQM from QS_PBS (Figure S4). This means that the ions of the buffer not only affect 

the membrane properties when QS are produced in PBS/NaCl medium. Ions can also enter and 

alter the membrane structure upon exposure to the ionic environment, providing a direct 

evidence that the ions are the direct responsible for the enhancement in lateral interaction and the 

changes in the membrane mechanics. This atomistic interpretation is confirmed by all-atomic 

MD simulations in section 2.4.  

 

Figure 4. AFM AC mode topographical images (a) and AFM-FS results (Fb maps (b) and 

distributions (c)) for SQMs on mica in ultrapure water (QS_H2O) (top) and after the in situ 

addition of PBS/NaCl pH 7.4 (QS_ H2O + PBS) (bottom) at RT. 
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2.3 Effect of the temperature on the SQMs structure 

From the sharp breakthrough event observed at low Fb values, AFM-FS for the SQMs suggests a 

typical behavior of a fluid membrane at RT. This type of breakthrough is characteristic of fluid 

state phospholipid bilayers.42 In addition, no thermal transition is detected for QS_H2O or 

QS_PBS by differential scanning calorimetry for temperatures above RT. This is consistent with 

previous MD simulations in which the QS components were found to diffuse with similar 

diffusion coefficient of typical fluid phospholipidic membranes.33 Still, to understand the origin 

of the coexisting domains observed in SQMs, we studied the morphology of QS_H2O and 

QS_PBS membranes by AFM at different temperatures. 

When imaging the SQM in PBS/NaCl, we let the system stabilize to the homogeneous phase at 

RT, knowing its dynamic behavior at this T. Unsurprisingly, further increase in T up to 45 ºC 

showed no changes in the QS_PBS membrane topography (Figure S5). Conversely, the QS_H2O 

membrane showed a gradual transition from a heterogeneous to a homogeneous topography upon 

rising T from RT up to 42.5 ºC (Figure 5a and b). Increasing the T stepwise and leaving the 

membrane at least during 30 min at each temperature, showed that SQMs in water turned into a 

homogeneous phase around T=30 ºC (Figure 5c and d). 
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Figure 5. AFM AC-mode topographical images for QS_H2O membrane supported on mica, in 

ultrapure water: a) while increasing the experimental temperature following the steps in (b) 

(blue: set T; black: measured T); c) while increasing the experimental temperature following the 

steps in (d). 

In Figure 6, we propose a molecular interpretation of the heterogeneous topography (phase 

coexistence) observed for the QS_H2O membrane. From the AFM measurements, the different 

domains are associated to different bilayer thickness and very similar, although discernible, 

nanomechanical resistance. We propose that in the QS_H2O bilayer the synthon made by CTA+ 

and Chol is tilted and that the tilt angle is different in the different regions or domains. Therefore, 

we propose that the heterogeneities observed are due to different tilt angles, rather than to 

different chemical compositions. 
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Figure 6. Molecular interpretation of the different topographical domains observed in supported 

QS_H2O membranes by AFM, as domains with different tilt for the CTA+-Chol bimolecular 

synthon. The CTA+ and Chol structures are shown in CPK representation. 

Regarding this interpretation, it is worth noting that pure CTAB adsorbed onto mica can form 

bilayers in which the molecules have a substantial tilt of 44° to the surface normal.50, 51 The 

bilayer with a well-defined tilt angle is difficult to observe at RT, since this temperature 

coincides with the Krafft temperature of CTAB (25ºC) and near the Krafft temperature the 

dynamics of CTA+ chains is very slow. Previous work shows that the formation of the CTA+ 

bilayers at 25ºC has very long equilibration times (6-24 h), and other metastable structures can 

be observed during equilibration.52 It has been also proposed that in lipid bilayers with small 
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Chol concentrations, where all Chol molecules interact independently with the lipid bilayer, Chol 

has a tilt angle of ∼10º and may influence the tilt of the other membrane components.53 In the 

QS_H2O, the bilayer is formed by CTA+ and Chol that are known to interact strongly forming a 

1:1 bimolecular synthon,29 so it seems possible a complex behaviour for the tilt angle of the 

components, responsible for the formation of the domains with different tilt proposed in Figure 

6. This interpretation is also consistent with the atomistic simulations discussed in the next 

section. 

2.4 Molecular Dynamics (MD) Simulations  

We performed all-atomic MD simulations to provide an atomistic interpretation of the 

experimental results, regarding both the possible penetration of the ions and the possible changes 

in tilt of the bilayer components. To this end, we have extended to larger simulation times our 

previous all-atomic MD simulations of QS_H2O bilayer at 25ºC.29 In these simulations, we 

considered a small bilayer patch (~15.7 nm2) with a 1:1 mixture of CTAB surfactant and Chol in 

water (there is no supporting surface in the simulations). All technical details of the simulation 

are the same as in our previous work,29 with the only difference that the simulation was extended 

for an additional time of 106 ns. In addition, we have also performed a second simulation in 

order to evaluate the effect of added salt. In this second simulation, we have added 100 mM of 

NaCl to our previous simulation of the QS_H2O bilayer at 25ºC (see methods for details). 

The simulations of the QS_H2O system show that Br- counterions are not only able to adsorb on 

top of the bilayer but also to penetrate in the hydrophilic region of the bilayer. In the case of the 

simulations with added salt (100 mM of NaCl) we also observe that both anions (Br- counterions 
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and the Cl- anions from added salt) penetrate in the hydrophilic region of the bilayer. The results 

for the organization of the anions in both simulations are summarized in Figure 7.   

As seen in Figure 7a, the anions that penetrate inside the bilayer are shared between the CTA+ 

headgroup and the –OH group from the Chol. In other words, anions not only interact strongly 

with cationic CTA+ surfactant but also with Chol. It is also worth noting that previous 

experimental and simulation work on pure Chol monolayers has shown a strong interaction 

between Cl- and Chol.49 Here the simulations indicate that the addition of NaCl produces not 

only an incorporation of Cl- inside the bilayer but also an incorporation of Br- inside the bilayer. 

In the simulations of the QS_H2O system (being the Br- counterions the only ions present), we 

observe that 10% of CTA+ molecules have a Br- ion adsorbed on top and a 72% of the CTA+ 

molecules have a Br- ion shared with cholesterol (Figure 7b). In the simulations with added 

NaCl, we observe that 8% of CTA+ molecules have a Br- adsorbed on top and 2% of CTA+ 

molecules have Cl- anions adsorbed on top, while a 66% Br- and 9% have Cl- ions are shared 

with Chol (hence a total of 75% of CTA+-Chol synthons share an anion). These simulations 

results are thus compatible with the experimentally observed increase in the Fb after the addition 

of ions (Figures 2, 3 and 4), which is interpreted as due to the penetration of ions into the 

hydrophilic region of the QS bilayer (the one occupied by the headgroups) and affect the bilayer 

structure, as generally seen in phospholipid bilayers.42, 46, 47, 54, 55  
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Figure 7. Interaction of anions with the QS components according to MD simulations at 25ºC. a) 

Radial correlation function g(r) computed between the anions (Br- or Cl-) and the polar 

headgroups (O atom of Chol or N atom of CTA+) calculated from simulations. b) Snapshots of 

molecular configurations extracted from MD simulations that contribute to the g(r) function 

shown in (a). CTA+ molecule is shown in blue, Chol molecule in yellow and ions as Van der 

Waals spheres (Cl- cyan, Br- brown). c) Cartoon showing schematically the ionic correlations 

found in the simulations. A full sphere indicates that the peak corresponds to adsorption of an 

anion inside the bilayer, shared between CTA+ and Chol and a dotted sphere indicates that the 

peak corresponds to an anion adsorbed on top of a CTA+ molecule, as indicated in (a).  

We have also analyzed the tilt angle of both CTA+ and Chol molecules in the bilayers. The 

results for the QS_H2O bilayer are shown in Figure 8 and the results for the simulation with 

added NaCl are shown in the SI, Figure S6. We show the results for the tilt angle of CTA+ and 

representative snapshots of the bilayer, showing the tilt of both CTA+ and Chol molecules. For 

Chol the tilt was always the same than the one reported for CTA+ (data not shown), so the tilt 
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angles in Figure 8 correspond to the tilt of the CTA+-Chol synthon. The first remarkable 

observation is that the symmetry within the bilayer is spontaneously broken, in the sense that the 

CTA+ surfactant molecules have different tilt in each leaflet of the bilayer. It is interesting to 

note that an analogous symmetry breaking has been previously observed in MD simulations of 

other stable vesicles (catanionic surfactant vesicles).56  

More importantly, not only the average tilt angle is different in each leaflet of the bilayer but also 

the behavior of the tilt angle as a function of time is different. In one of the leaflets, the CTA+ 

fluctuates around an average tilt of 10º (Figure 8). In the other leaflet, the CTA+ molecules jump 

between states with different tilt (∼13º and 15º), remaining in these states during times of 20-30 

ns, which are substantial at the scale of the simulated system. In the case of simulations with 

added NaCl (Figure S6 and S7), we observe again that CTA+ molecules from the two leaflets 

have different average tilt angles (10º and 14º respectively) but the ∼20 ns jumps observed in 

absence of salt are not observed in presence of added salt. In this case, the fluctuation between 

different orientations take place at much shorter time scales, of the order of the ns or less (Figure 

S6).  

Formation of heterogeneities (domains coexistence) is not observable by MD simulations due to 

the small size of the simulated systems (15.7 nm2). Besides, it is also important to consider that 

the underlying substrate on the AFM experiments may affect the lateral packing of the bilayer.15, 

57-60 Still, the existence of different orientations for the CTA+ (and Chol) molecule in the small 

simulated QS_H2O systems suggest the possibility of the existence of different nanoscale 

domains with different tilt angle for the molecules in the QS_H2O SQMs as proposed in Figure 6 

from AFM results. It is also interesting to note that according to the experimental results (Figure 
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2) the addition of salt suppresses the presence of heterogeneous domains. This is also consistent 

with the simulation results shown in Figure S6 (absence of long-lived different states with 

different tilt angle). 

 

Figure 8. Results obtained in MD simulations of a QS_H2O bilayer at 25 ºC (no added salt). The 

left plot shows the tilt angle for CTA+ molecules (averaged over a leaflet) vs. time during the 

MD simulations. The data for each leaflet of the bilayer is indicated in a different color. The 

residence time into different states with different tilt angles are indicated in the figure. Right: 

representative snapshots of the states indicated in grey in the left plot. For each case we show the 

full bilayer and to facilitate the visualization we also show partial views with only CTA+ or only 

Chol molecules. The molecules at each leaflet are colored different (blue or orange) in 

correspondence with the left plot. N atoms from the CTA+ headgroups are indicated as green 

spheres and Br- ions are shown as yellow spheres. The shadow region corresponds to the region 

occupied by water molecules.  
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3. CONCLUSIONS 

We characterized for the first time the topography and the nanomechanical properties of 

supported QS membranes in different liquid environment and T. We determined experimentally 

that the QS membrane behaves as a typical fluid-like phospholipid bilayer. A phase-segregated 

topography, stable with time, was observed by AFM in supported QS_H2O membranes, while in 

the presence of salts supported QS_PBS membranes showed a dynamic behavior from a 

heterogeneous topography turning into a homogeneous phase at RT.  

By means of AFM-FS, we showed that the membrane breaks upon indentation with the AFM tip, 

as observed for 2D ordered systems like lipid bilayers and we further determined the effect of the 

presence of ions into the liquid media over the nanomechanical resistance of the QS membrane. 

We observed by MD simulations that the anions from solution (both Br- and Cl-) not only adsorb 

onto the bilayer but also penetrate the hydrophilic region of the bilayer. As a result, an 

enhancement of the lateral interactions between the membrane molecules may be the responsible 

of the greater resistance to be indented by the AFM tip (higher Fb) in the presence of salts.  

We demonstrate that the phase coexistence observed at RT in the QS_H2O SQM turns into a 

homogeneous structure when temperature is raised above 30ºC. All-atomic MD simulations of 

QS bilayer at 25ºC in absence of added salts showed that the symmetry within the bilayer is 

spontaneously broken, with different molecular tilt in each leaflet, one of the leaflets jumping 

within two possible orientations within 20-30 ns. The coexistence of different nanoscale domains 

may therefore be associated to different tilt angle for the molecules in the QS_H2O SQMs 

measured with AFM. 
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The nanomechanical behavior observed indicate that QS are formed by a bilayer membrane with 

a compact structure homogeneous in composition, and with comparable properties to fluid-like 

lipid bilayers, but with the benefit of a great colloidal stability. The variations observed with the 

incorporation of salts suggest that the membrane properties may be easily tuned by altering the 

lateral interactions, either with different environmental ions or counterions, or even by choosing 

a specific surfactant headgroup. These results place QS as very promising candidates for 

deformable and flexible nanovesicles alternatives, highly pursued in nanomedicine applications 

exploring the transdermal administration route.61  

4. METHODS 

4.1 Materials  

Cholesterol (Chol) 5-Cholesten-3β-ol from Panreac (Spain) and cetyltrimethylammonium 

bromide (CTAB) from Aldrich, were used without further purification. The experiments were 

performed in ultrapure water (Milli-Q reverse osmosis system, 18.2 mΩ·cm resistivity) or in 

PBS/NaCl buffer solution pH 7.4 (94 mM NaCl, 4 mM phosphate buffer saline (PBS)). For the 

AFM experiments the buffer solution was filtered through a 0.22 µm pore size inorganic 

membrane before use.  

4.2 Cholesterol:CTAB Quatsomes (QS) preparation 

Cholesterol:CTAB (1:1 molar ratio) QS were made by   DELOS-SUSP (depressurization of an 

expanded liquid organic solution-suspension) method as described in refs (Cabrera, I.; Elizondo, 

E.; Esteban, O.; Corchero, J. L.; Melgarejo, M.; Pulido, D.; Córdoba, A.; Moreno, E.; Unzueta, 

U.; Vazquez, E.; Abasolo, I.; Schwartz, S.; Villaverde, A.; Albericio, F.; Royo, M.; Garcia-
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Parajo, M. F.; Ventosa, N.; Veciana, J. Multifunc- tional Nanovesicle-Bioactive Conjugates 

Prepared by a One-Step Scalable Method Using CO2-Expanded Solvents. Nano Lett. 2013, 13, 

3766−3774) and (Grimaldi, N.; Andrade, F.; Segovia, N.; Ferrer-Tasies, L.; Sala, S.; Veciana, J.; 

Ventosa, N. Lipid-based Nanovesicles for Nano- medicine. Chem. Soc. Rev. 2016, 45, 

6520−6545.)  Briefly, a 7.5 mL high-pressure vessel was loaded with a solution of 76 mg of 

Chol in 2.88 mL of ethanol at atmospheric pressure and 35 °C. Then, the reactor vessel was 

pressurized with compressed CO2, producing a volumetric expanded liquid solution, at a pressure 

of 10 MPa, a CO2 molar fraction of XCO2 = 0.62 and a temperature of 35 °C. The system was 

kept at 35 °C and 10 MPa for 1 h. Finally, the CO2-expanded Chol solution was removed from 

the reactor through a depressurization valve and collected in 24 mL of aqueous solution, either 

ultrapure water or PBS/NaCl pH 7.4 (94 mM NaCl, 4 mM PBS) buffer depending on the 

formulation, with 72 mg of dissolved CTAB. In this final step, where the Chol:CTAB quatsomes 

are formed, a flow of N2 is used as a plunger to push down the CO2-expanded solution from the 

vessel and to maintain a constant pressure inside the vessel during depressurization. The molar 

ratio between the CTAB and the Chol in the final formulation was 1 to 1, which has been shown 

to be the correct proportion in order to have a pure vesicular phase (Ferrer-Tasies, L.; Moreno-

Calvo, E.; Cano-Sarabia, M.; Aguilella-Arzo, M.; Angelova, A.; Lesieur, S.; Ricart, S.; Faraudo, 

J.; Ventosa, N.; Veciana, J. Quatsomes: Vesicles Formed by Self-Assembly of Sterols and 

Quaternary Ammonium Surfactants. Langmuir 2013, 29, 6519−6528).  

.  

4.3 Supported membranes 
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SQMs were obtained by direct fusion onto freshly cleaved mica surfaces (mica discs, Ted Pella, 

Redding, CA) previously glued onto Teflon discs using epoxy-based mounting glue. 100 µL of 

QS suspension (2.75 mg ml-1) were deposited on to the mica for 30 min at RT. Afterwards, the 

samples were rinsed several times with water or PBS/NaCl buffer to remove unfused vesicles, 

keeping always the samples hydrated.  

4.4 Atomic force microscopy (AFM) and spectroscopy (AFM-FS) 

AFM images and force spectroscopy experiments were performed using an MFP-3D atomic 

force microscope (Asylum Research) using V-shaped Si3N4 cantilevers with Si3N4 tips and 

nominal spring constants of 0.35 N m-1 or 0.24 N m-1 (DNP, Bruker AFM Probes). The 

cantilever spring constants were individually calibrated using the equipartition theorem (thermal 

noise routine)62 in air conditions, after measuring the sensitivity (V m-1) on a silicon substrate. 

The same equipartition theorem was afterwards employed again to calculate the sensitivity on 

the required liquid environment. When required, temperature control was achieved with a T-

controlled sample stage (BioHeater, Asylum Research). 

AFM images over areas from 0.5 x 0.5 to 5 x 5 µm2 were acquired in AC mode at RT and under 

liquid conditions (Milli-Q water or PBS/NaCl buffer solution). After imaging the selected region, 

AFM-FS was performed by approaching and retracting the AFM tip to the sample at a constant 

velocity of 1 µm s-1. The force-separation curves were recorded by following an array of points 

from 20 x 20 to 30 x 30 (force map mode) over an imaged area. A home-made Python program 

based on ref.63 was used to analyze the force-separation curves from the grids and evaluate the 

breakthrough force (Fb) values. Mean Fb values are obtained from the gaussian fits and 

expressed ± SD. The membrane thickness was calculated from the force-separation curves, 
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taking the distance between the tip-membrane initial contact and the point at which tip and mica 

are in contact (Figure S2). 

4.5 Molecular dynamics (MD) 

MD simulations consist of solving numerically the Newton equations of motion for a molecular 

system. In our simulations, we describe all chemical species (water, Chol, CTAB and ions) with 

full atomistic detail. The simulated system QS_H2O consists of two leaflets of 27 CTA+ and 27 

Chol molecules (equilibrium area ~15.7 nm2) each and 54 Br- ions immersed in 5443 TIP3P 

water molecules. The simulations were performed using the NPTγ ensemble maintaining the QS 

bilayer at 25ºC, 1 atm of pressure and zero tension to mimic a vesicle bilayer. The employed 

force field and all technical details of the simulation are the same as in our previous work,29 with 

the only difference that the simulation was extended for an additional time of 106 ns using the 

NAMD 2.11 software.64 An additional simulation with added salt was performed starting from 

the previous simulation QS_H2O (with no added salt). Starting from an equilibrated 

configuration of the QS_H2O, we added 10 Na+ and 10 Cl- ions (roughly corresponding to ∼100 

mM) using the ionize plugin of the VMD program. After equilibration and thermalization, we 

ran a simulation of 131 ns employing the same parameters and conditions as in the QS_H2O 

case. The analysis of both simulations (snapshots, radial correlation functions, …) was 

performed using VMD software.65  

ASSOCIATED CONTENT  

Supporting Information. QS vesicle structural characterization. Schematic figure on AFM-FS 

on lipid membranes. Mechanical properties of DOPC:Chol (80:20) membrane. Additional results 

on AFM characterization of SQMs from QS_H2O after changing to PBS/NaCl and SQMs from 



26  

QS_PBS with T. Additional results on MD simulations of a QS bilayer with added salt (NaCl) 

and tilt angles of CTA+ with water and with added salt. This material is available free of charge 

via the Internet at http://pubs.acs.org. 

AUTHOR INFORMATION 

Corresponding Author  

*E-mail: jfaraudo@icmab.es (Simulations) 

*E-mail: ventosa@icmab.es 

*E-mail: migiannotti@ibecbarcelona.eu 

Present Addresses  

¶Laboratory of Self-Organizing Soft Matter and Laboratory of Macromolecular and Organic 

Chemistry, Department of Chemical Engineering and Chemistry; Institute for Complex 

Molecular Systems, Eindhoven University of Technology, Eindhoven (The Netherlands). 

†Physics and Astronomy department, University of Sheffield, Sheffield (UK). 

Author Contributions  

The manuscript was written through contributions of all authors. All authors have given approval 

to the final version of the manuscript. 

Funding Sources 



27  

Generalitat de Catalunya (AGAUR, 2017 SGR 918 and 2017 SGR 1442), the Spanish Ministry 

of Economy and Competitiveness (MINECO), through the ‘‘Severo Ochoa’’ Programme for 

Centres of Excellence in R&D (Grant SEV-2015-0496), the MINECO and FEDER (CTQ2015-

66194-R and MAT2016-80826-R projects), the Instituto de Salud Carlos III, through “Acciones 

CIBER” and CIBER-BBN FlexQS-skin project, and the COST Action CA15126. 

ACKNOWLEDGMENT  

We acknowledge financial support from the Generalitat de Catalunya (AGAUR, 2017 SGR 918 

and 2017 SGR 1442), the Spanish Ministry of Economy and Competitiveness (MINECO), 

through the ‘‘Severo Ochoa’’ Programme for Centres of Excellence in R&D with Grant SEV-

2015-0496, the MINECO and FEDER for the CTQ2015-66194-R and MAT2016-80826-R 

projects, the Instituto de Salud Carlos III, through “Acciones CIBER” and CIBER-BBN FlexQS-

skin project, and the COST Action CA15126. We thank CESGA Supercomputing Center for 

technical support and the use of computational resources. The computer simulations reported in 

this work have been developed under the Material Science PhD program in the Barcelona 

Autonomous University (UAB).  

 

 

REFERENCES 

1. Allen, T. M.; Cullis, P. R., Drug Delivery Systems: Entering the Mainstream. Science 
2004, 303 (5665), 1818. 
2. Duncan, R.; Gaspar, R., Nanomedicine(s) under the Microscope. Molecular 
Pharmaceutics 2011, 8 (6), 2101-2141. 
3. Ahmad, M. Z.; Akhter, S.; Jain, G. K.; Rahman, M.; Pathan, S. A.; Ahmad, F. J.; Khar, 
R. K., Metallic nanoparticles: technology overview & drug delivery applications in oncology. 
Expert Opinion on Drug Delivery 2010, 7 (8), 927-942. 



28  

4. Duncan, R.; Vicent, M. J., Polymer therapeutics-prospects for 21st century: The end of 
the beginning. Advanced Drug Delivery Reviews 2013, 65 (1), 60-70. 
5. Torchilin, V. P., Recent advances with liposomes as pharmaceutical carriers. Nature 
Reviews Drug Discovery 2005, 4, 145. 
6. Goldberg, M.; Langer, R.; Jia, X., Nanostructured materials for applications in drug 
delivery and tissue engineering. Journal of biomaterials science. Polymer edition 2007, 18 (3), 
241-268. 
7. Sawant, R. R.; Torchilin, V. P., Liposomes as 'smart' pharmaceutical nanocarriers. Soft 
Matter 2010, 6 (17), 4026-4044. 
8. Grimaldi, N.; Andrade, F.; Segovia, N.; Ferrer-Tasies, L.; Sala, S.; Veciana, J.; Ventosa, 
N., Lipid-based nanovesicles for nanomedicine. Chemical Society Reviews 2016, 45 (23), 6520-
6545. 
9. Canton, I.; Battaglia, G., Endocytosis at the nanoscale. Chemical Society Reviews 2012, 
41 (7), 2718-2739. 
10. Zeb, A.; Qureshi, O. S.; Kim, H.-S.; Cha, J.-H.; Kim, H.-S.; Kim, J.-K., Improved skin 
permeation of methotrexate via nanosized ultradeformable liposomes. International Journal of 
Nanomedicine 2016, 11, 3813-3824. 
11. Dimova, R., Recent developments in the field of bending rigidity measurements on 
membranes. Advances in Colloid and Interface Science 2014, 208, 225-234. 
12. Vorselen, D.; MacKintosh, F. C.; Roos, W. H.; Wuite, G. J. L., Competition between 
Bending and Internal Pressure Governs the Mechanics of Fluid Nanovesicles. ACS Nano 2017, 
11 (3), 2628-2636. 
13. Gumi-Audenis, B.; Sanz, F.; Giannotti, M. I., Impact of galactosylceramides on the 
nanomechanical properties of lipid bilayer models: an AFM-force spectroscopy study. Soft 
Matter 2015, 11 (27), 5447-5454. 
14. Gumí-Audenis, B.; Costa, L.; Carlà, F.; Comin, F.; Sanz, F.; Giannotti, I. M., Structure 
and Nanomechanics of Model Membranes by Atomic Force Microscopy and Spectroscopy: 
Insights into the Role of Cholesterol and Sphingolipids. Membranes 2016, 6 (4), 58. 
15. Redondo-Morata, L.; Giannotti, M. I.; Sanz, F., Influence of cholesterol on the phase 
transition of lipid bilayers: a temperature-controlled force spectroscopy study. Langmuir 2012, 
28 (35), 12851-60. 
16. Bloom, M.; Evans, E.; Mouritsen, O. G., Physical properties of the fluid lipid-bilayer 
component of cell membranes: a perspective. Quarterly Reviews of Biophysics 1991, 24 (3), 293-
397. 
17. Needham, D.; Nunn, R. S., Elastic deformation and failure of lipid bilayer membranes 
containing cholesterol. Biophysical Journal 1990, 58 (4), 997-1009. 
18. Briuglia, M.-L.; Rotella, C.; McFarlane, A.; Lamprou, D. A., Influence of cholesterol on 
liposome stability and on in vitro drug release. Drug Delivery and Translational Research 2015, 
5 (3), 231-242. 
19. Hosta-Rigau, L.; Zhang, Y.; Teo, B. M.; Postma, A.; Stadler, B., Cholesterol - a 
biological compound as a building block in bionanotechnology. Nanoscale 2013, 5 (1), 89-109. 
20. Bozzuto, G.; Molinari, A., Liposomes as nanomedical devices. International Journal of 
Nanomedicine 2015, 10, 975-999. 
21. Vorselen, D.; Marchetti, M.; Lopez-Iglesias, C.; Peters, P. J.; Roos, W. H.; Wuite, G. J. 
L., Multilamellar nanovesicles show distinct mechanical properties depending on their degree of 
lamellarity. Nanoscale 2018, 10 (11), 5318-5324. 



29  

22. Romero, E.; Jose Morilla, M., Ultradeformable phospholipid vesicles as a drug delivery 
system: a review. 2015; p 55. 
23. Hussain, A.; Singh, S.; Sharma, D.; Webster, T. J.; Shafaat, K.; Faruk, A., Elastic 
liposomes as novel carriers: recent advances in drug delivery. International Journal of 
Nanomedicine 2017, 12, 5087-5108. 
24. Franzé, S.; Donadoni, G.; Podestà, A.; Procacci, P.; Orioli, M.; Carini, M.; Minghetti, P.; 
Cilurzo, F., Tuning the Extent and Depth of Penetration of Flexible Liposomes in Human Skin. 
Molecular Pharmaceutics 2017, 14 (6), 1998-2009. 
25. Elsayed, M. M. A.; Ibrahim, M. M.; Cevc, G., The effect of membrane softeners on 
rigidity of lipid vesicle bilayers: Derivation from vesicle size changes. Chemistry and Physics of 
Lipids 2018, 210, 98-108. 
26. Lima, L. M.; Giannotti, M. I.; Redondo-Morata, L.; Vale, M. L.; Marques, E. F.; Sanz, F., 
Morphological and nanomechanical behavior of supported lipid bilayers on addition of cationic 
surfactants. Langmuir 2013, 29 (30), 9352-61. 
27. Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S. W.; Zarghami, N.; 
Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K., Liposome: classification, 
preparation, and applications. Nanoscale Research Letters 2013, 8 (1), 102. 
28. Cano-Sarabia, M.; Angelova, A.; Ventosa, N.; Lesieur, S.; Veciana, J., Cholesterol 
induced CTAB micelle-to-vesicle phase transitions. Journal of Colloid and Interface Science 
2010, 350 (1), 10-15. 
29. Ferrer-Tasies, L.; Moreno-Calvo, E.; Cano-Sarabia, M.; Aguilella-Arzo, M.; Angelova, 
A.; Lesieur, S.; Ricart, S.; Faraudo, J.; Ventosa, N.; Veciana, J., Quatsomes: Vesicles Formed by 
Self-Assembly of Sterols and Quaternary Ammonium Surfactants. Langmuir 2013, 29 (22), 
6519-6528. 
30. Elizondo, E.; Larsen, J.; Hatzakis, N. S.; Cabrera, I.; Bjørnholm, T.; Veciana, J.; Stamou, 
D.; Ventosa, N., Influence of the Preparation Route on the Supramolecular Organization of 
Lipids in a Vesicular System. Journal of the American Chemical Society 2012, 134 (4), 1918-
1921. 
31. Cabrera, I.; Elizondo, E.; Esteban, O.; Corchero, J. L.; Melgarejo, M.; Pulido, D.; 
Córdoba, A.; Moreno, E.; Unzueta, U.; Vazquez, E.; Abasolo, I.; Schwartz, S.; Villaverde, A.; 
Albericio, F.; Royo, M.; García-Parajo, M. F.; Ventosa, N.; Veciana, J., Multifunctional 
Nanovesicle-Bioactive Conjugates Prepared by a One-Step Scalable Method Using CO2-
Expanded Solvents. Nano Letters 2013, 13 (8), 3766-3774. 
32. Liu, X.; Ardizzone, A.; Sui, B.; Anzola, M.; Ventosa, N.; Liu, T.; Veciana, J.; Belfield, 
K. D., Fluorenyl-Loaded Quatsome Nanostructured Fluorescent Probes. ACS Omega 2017, 2 (8), 
4112-4122. 
33. Ardizzone, A.; Kurhuzenkau, S.; Illa-Tuset, S.; Faraudo, J.; Bondar, M.; Hagan, D.; Van 
Stryland Eric, W.; Painelli, A.; Sissa, C.; Feiner, N.; Albertazzi, L.; Veciana, J.; Ventosa, N., 
Nanostructuring Lipophilic Dyes in Water Using Stable Vesicles, Quatsomes, as Scaffolds and 
Their Use as Probes for Bioimaging. Small 2018, 14 (16), 1703851. 
34. Santana, H.; Ventosa, N.; Martinez, E.; Berlanga, J. A.; Cabrera, I.; Veciana, J. Vesicles 
which include epidermal growth factor and compositions that contain same. WO2014/019555. 
35. Dufrêne, Y. F.; Ando, T.; Garcia, R.; Alsteens, D.; Martinez-Martin, D.; Engel, A.; 
Gerber, C.; Müller, D. J., Imaging modes of atomic force microscopy for application in 
molecular and cell biology. Nature Nanotechnology 2017, 12, 295. 



30  

36. Redondo-Morata, L.; Giannotti, M. I.; Sanz, F., Stability of Lipid Bilayers as Model 
Membranes: Atomic Force Microscopy and Spectroscopy Approach. In Atomic force microscopy 
in Liquid: Biological Applications, First Edition ed.; Baró, A. M.; Reifenberger, R. G., Eds. 
Wiley-VCH Verlag & Co. KGaA: Weinheim, Germany, 2012; pp 259-284. 
37. Redondo-Morata, L.; Giannotti, M. I.; Sanz, F., AFM-based force-clamp monitors lipid 
bilayer failure kinetics. Langmuir 2012, 28 (15), 6403-10. 
38. Relat-Goberna, J.; Beedle Amy, E. M.; Garcia-Manyes, S., The Nanomechanics of Lipid 
Multibilayer Stacks Exhibits Complex Dynamics. Small 2017, 13 (24), 1700147. 
39. Garcia-Manyes, S.; Redondo-Morata, L.; Oncins, G.; Sanz, F., Nanomechanics of Lipid 
Bilayers: Heads or Tails? Journal of the American Chemical Society 2010, 132 (37), 12874-
12886. 
40. Garcia-Manyes, S.; Oncins, G.; Sanz, F., Effect of temperature on the nanomechanics of 
lipid bilayers studied by force spectroscopy. Biophysical Journal 2005, 89 (6), 4261-4274. 
41. Garcia-Manyes, S.; Oncins, G.; Sanz, F., Effect of pH and ionic strength on phospholipid 
nanomechanics and on deposition process onto hydrophilic surfaces measured by AFM. 
Electrochimica Acta 2006, 51 (24), 5029-5036. 
42. Redondo-Morata, L.; Giannotti, M. I.; Sanz, F., Structural impact of cations on lipid 
bilayer models: Nanomechanical properties by AFM-force spectroscopy. Molecular Membrane 
Biology 2014, 31 (1), 17-28. 
43. Mingeot-Leclercq, M. P.; Deleu, M.; Brasseur, R.; Dufrene, Y. F., Atomic force 
microscopy of supported lipid bilayers. Nature Protocols 2008, 3 (10), 1654-1659. 
44. Dufrêne, Y. F.; Lee, G. U., Advances in the characterization of supported lipid films with 
the atomic force microscope. Biochimica et Biophysica Acta (BBA) - Biomembranes 2000, 1509 
(1), 14-41. 
45. Garcia-Manyes, S.; Sanz, F., Nanomechanics of lipid bilayers by force spectroscopy with 
AFM: A perspective. Biochimica Et Biophysica Acta-Biomembranes 2010, 1798 (4), 741-749. 
46. Redondo-Morata, L.; Oncins, G.; Sanz, F., Force Spectroscopy Reveals the Effect of 
Different Ions in the Nanomechanical Behavior of Phospholipid Model Membranes: The Case of 
Potassium Cation. Biophysical Journal 2012, 102 (1), 66-74. 
47. Garcia-Manyes, S.; Oncins, G.; Sanz, F., Effect of ion-binding and chemical 
phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy. 
Biophysical Journal 2005, 89, 1812-1826. 
48. Faraudo, J.; Travesset, A., Phosphatidic Acid Domains in Membranes: Effect of Divalent 
Counterions. Biophysical Journal 2007, 92 (8), 2806-2818. 
49. Del Castillo-Santaella, T.; Maldonado-Valderrama, J.; Faraudo, J.; Martín-Molina, A., 
Specific Ion Effects in Cholesterol Monolayers. Materials 2016, 9 (5), 340. 
50. Griffin, L. R.; Browning, K. L.; Truscott, C. L.; Clifton, L. A.; Clarke, S. M., Complete 
Bilayer Adsorption of C16TAB on the Surface of Mica Using Neutron Reflection. The Journal 
of Physical Chemistry B 2015, 119 (21), 6457-6461. 
51. Speranza, F.; Pilkington, G. A.; Dane, T. G.; Cresswell, P. T.; Li, P.; Jacobs, R. M. J.; 
Arnold, T.; Bouchenoire, L.; Thomas, R. K.; Briscoe, W. H., Quiescent bilayers at the mica-
water interface. Soft Matter 2013, 9 (29), 7028-7041. 
52. Lamont, R. E.; Ducker, W. A., Surface-Induced Transformations for Surfactant 
Aggregates. Journal of the American Chemical Society 1998, 120 (30), 7602-7607. 
53. Kessel, A.; Ben-Tal, N.; May, S., Interactions of Cholesterol with Lipid Bilayers: The 
Preferred Configuration and Fluctuations. Biophysical Journal 2001, 81 (2), 643-658. 



31  

54. Martín-Molina, A.; Rodríguez-Beas, C.; Faraudo, J., Effect of Calcium and Magnesium 
on Phosphatidylserine Membranes: Experiments and All-Atomic Simulations. Biophysical 
Journal 2012, 102 (9), 2095-2103. 
55. Martín-Molina, A.; Rodríguez-Beas, C.; Faraudo, J., Charge Reversal in Anionic 
Liposomes: Experimental Demonstration and Molecular Origin. Physical Review Letters 2010, 
104 (16), 168103. 
56. Chen, C.-h.; Tian, C.-a.; Chiu, C.-c., The Effects of Alkyl Chain Combinations on the 
Structural and Mechanical Properties of Biomimetic Ion Pair Amphiphile Bilayers. 
Bioengineering 2017, 4 (4). 
57. Yang, J.; Appleyard, J., The Main Phase Transition of Mica-Supported 
Phosphatidylcholine Membranes. The Journal of Physical Chemistry B 2000, 104 (34), 8097-
8100. 
58. Leonenko, Z. V.; Finot, E.; Ma, H.; Dahms, T. E. S.; Cramb, D. T., Investigation of 
temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using 
temperature-controlled scanning force microscopy. Biophysical Journal 2004, 86 (6), 3783-
3793. 
59. Seeger, H. M.; Cerbo, A. D.; Alessandrini, A.; Facci, P., Supported Lipid Bilayers on 
Mica and Silicon Oxide: Comparison of the Main Phase Transition Behavior. The Journal of 
Physical Chemistry B 2010, 114 (27), 8926-8933. 
60. Gumí-Audenis, B.; Costa, L.; Ferrer-Tasies, L.; Ratera, I.; Ventosa, N.; Sanz, F.; 
Giannotti, M. I., Pulling lipid tubes from supported bilayers unveils the underlying substrate 
contribution to the membrane mechanics. Nanoscale 2018. 
61. Cevc, G.; Vierl, U., Nanotechnology and the transdermal route: A state of the art review 
and critical appraisal. Journal of Controlled Release 2010, 141 (3), 277-299. 
62. Proksch, R.; Schaffer, T. E.; Cleveland, J. P.; Callahan, R. C.; Viani, M. B., Finite optical 
spot size and position corrections in thermal spring constant calibration. Nanotechnology 2004, 
15 (9), 1344-1350. 
63. Li, J. K.; Sullan, R. M. A.; Zou, S., Atomic Force Microscopy Force Mapping in the 
Study of Supported Lipid Bilayers. Langmuir 2011, 27 (4), 1308-1313. 
64. Phillips James, C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, 
C.; Skeel Robert, D.; Kalé, L.; Schulten, K., Scalable molecular dynamics with NAMD. Journal 
of Computational Chemistry 2005, 26 (16), 1781-1802. 
65. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. Journal of 
Molecular Graphics 1996, 14 (1), 33-38. 

 

 

 

TOC 



32  

 


