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Abstract 9 

This work compares the removal of butylated hydroxyanisole (BHA), a ubiquitous 10 

antioxidant in food and pharmaceuticals, from water either by electrocoagulation (EC) with 11 

an Fe|Fe cell or H2O2-based electrochemical advanced oxidation processes like 12 

electrochemical oxidation (EO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF) 13 

with an air-diffusion cathode. BHA degradation by EC was very poor, whereas the dissolved 14 

organic carbon (DOC) was more effectively abated in urban wastewater. The effect of pH, 15 

number of Fe|Fe pairs and current on the EC performance was examined. The additive was 16 

also slowly degraded by EO-H2O2 with a RuO2-based or BDD anode in 50 mM Na2SO4 17 

solution. In the simulated matrix, BHA decay by EO-H2O2 was substantially enhanced owing 18 

to active chlorine generation from anodic oxidation of Cl−, whereas the ●OH-mediated 19 

oxidation at the BDD surface accounted for DOC decay. In EF and PEF, the ●OH produced in 20 

the bulk upgraded the mineralization, primordially using BDD. In rawurban wastewater at 21 

natural pH 7.9, the time course of BHA and DOC contents was affected by NOM oxidation, 22 

being accelerated in the order: EO-H2O2 < EF < PEF. The quickest decontamination of urban 23 

wastewater occurred in PEF at pH 3.0, because of the higher amounts of ●OH in the bulk 24 

along with UVA photolysis. 25 

Keywords: Butylated hydroxyanisole; Electrochemical advanced oxidation processes; 26 

Electrocoagulation; Industrial additives; Urban wastewater  27 
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1. Introduction 28 

 Butylated hydroxyanisole (BHA, C11H16O2, M = 180.2 g mol-1) is a synthetic phenolic 29 

antioxidant added to food, pharmaceuticals and cosmetics. It is widely used as industrial 30 

preservative since it delays or prevents the onset of lipid oxidation in such products, thereby 31 

ensuring their quantitative uptake into the body. BHA consists of a mixture of two liposoluble 32 

isomers, i.e., 2(3)-tert-butyl-4-hydroxyanisole [1,2], which can cause harmful effects on 33 

human health because of the potential formation of complexes with nucleic acids leading to 34 

DNA damage [2]. The Joint FAO/WHO Expert Committee on Food Additives (JECFA) 35 

limits the acceptable daily intake to 0.5 mg kg-1 [1,2]. In Europe, BHA is limited to 200 mg 36 

kg-1 on the fat content of products such as dehydrated soups and meat, gravies and bouillons 37 

[2]. Due to its frequent usage, it has been detected in rivers, groundwater and wastewater from 38 

various European and American countries, reaching up to 2 µg L-1 [1]. However, only some 39 

few works have reported the removal of BHA from water, focusing on UVC photoloysis [3] 40 

and its combination with ozone [3] or S2O8
2− [4], ozonation [3,5] and chlorination [6]. These 41 

treatments yield stable by-products like 3-tert-butyl-4,5-dihydroxyanisole, tert-butyl-1,4-42 

hydroquinone and hydroquinone [3,6], which should be completely destroyed because they 43 

are highly toxic. Investigation on other powerful advanced oxidation processes (AOPs), not 44 

tested for BHA so far, is thus needed. The oxidation ability of AOPs is based on the large 45 

production of reactive oxygen species (ROS) like hydroxyl radical (●OH), which reacts with 46 

most organics causing their mineralization [7-9]. 47 

 Several electrochemical methods (EAOPs) have been recently developed as an alternative 48 

to remove organic pollutants from water [10-15]. The leading EAOP is electrochemical 49 

oxidation (EO), which involves the generation of adsorbed hydroxyl radical (M(●OH)) at the 50 

surface of an anode M, as follows [10,14,16,17]: 51 

M  +  H2O  →  M(●OH)  + H+  +  e−         (1) 52 
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 The oxidation power of M(●OH) directly depends on the anode nature. It has been found 53 

that non-active boron-doped diamond (BDD) thin-films give rise to the most powerful oxidant 54 

(BDD(●OH)) in inert electrolytes, because of its large O2-evolution overpotential and quasi-55 

free interaction between ●OH and BDD surface [10,16,18]. In contrast, active electrodes like 56 

dimensionally stable anodes (DSA) accumulate much smaller amounts of M(●OH) since this 57 

is quickly oxidized to the weaker oxidant MO [19,20]. In the presence of chloride, other 58 

powerful oxidants such as active chlorine (Cl2/HClO/ClO−) are also formed from reactions 59 

(2)-(4), depending on pH, competing with M(●OH) to react with organics [21,22]. 60 

2 Cl−  →  Cl2(aq) + 2e−          (2) 61 

Cl2(aq)  +  H2O  →  HClO  +  Cl−  +  H+       (3) 62 

HClO    ClO−  +  H+  pKa = 7.54      (4) 63 

 Setups that include an undivided cell equipped with a cathode like carbon felt [23-25], 64 

graphite [26], carbon-polytetrafluoroethylene (PTFE) in gas-diffusion mode [22,27-29], 65 

reticulated vitreous carbon [30], carbon nanotubes [31], carbon fiber [30,32] or BDD [33] 66 

allow the co-generation of weaker ROS such as H2O2 from O2 reduction by reaction (5): 67 

O2(g)  +  2H+  +  2e−  →  H2O2        (5) 68 

 This EAOP is known as EO with electrogenerated H2O2 (EO-H2O2). Under these 69 

conditions, addition of Fe2+ to the solution gives rise to electro-Fenton (EF) process 70 

[11,12,34]. In EF, homogeneous ●OH are formed by Fenton’s reaction (6), whose optimum 71 

pH is ca. 3, and Fe2+ can be regenerated upon Fe3+ reduction at the cathode. Organic 72 

pollutants can then be simultaneously attacked by both, M(●OH) at the anode surface and 73 

●OH in the bulk. The photoelectro-Fenton (PEF) process involves the additional exposure of 74 

the solution to UV light [11-13,27]. The incident photons can photoreduce Fe(OH)2+, the 75 

predominant Fe(III) species in the bulk, via reaction (7), as well as photodecompose 76 
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photoactive intermediates like Fe(III) complexes with generated carboxylic acids according to 77 

the general reaction (8). 78 

H2O2  +  Fe2+  →  Fe3+  +  •OH  +  OH−        (6) 79 

Fe(OH)2+  +  hν  →  Fe2+  +  •OH         (7) 80 

Fe(OOCR)2+  +  hv  →  Fe2+  +  CO2  + R•        (8) 81 

 A more classical electrochemical technology for wastewater treatment, already 82 

implemented in some companies, is electrocoagulation (EC). Its most characteristic feature is 83 

the removal of colloidal and charged particles by adsorption onto the Fe(III) or Al(III) 84 

hydroxides originated from the dissolution of Fe or Al anodes [35,36]. In the case of Fe, the 85 

anode is oxidized to Fe2+ via reaction (9), which is further oxidized to insoluble Fe(OH)3 by 86 

O2 gas according to reaction (10). 87 

Fe  →  Fe2+  +  2 e−          (9) 88 

4 Fe2+  +  10 H2O  +  O2(g)  →  4 Fe(OH)3(s)  +  8 H+     (10) 89 

 Although EC is considered a phase separation method, earlier work has shown that 90 

neutral organic molecules can be attacked by active chlorine generated in the presence of Cl− 91 

from reactions (2)-(4) [37], eventually producing by-products that can also adsorb onto the 92 

flocs formed along the treatment. 93 

 In this work, the performance of EC and EAOPs like EO-H2O2, EF and PEF to remove 94 

BHA from different water matrices was compared. Main experiments were performed in 95 

urban wastewater using an Fe anode in EC and a BDD or RuO2-based one in EAOPs. The 96 

role of the generated flocs, oxidizing agents and/or UVA irradiation was clarified by using a 97 

50 mM Na2SO4 solution and a simulated matrix with similar ionic content to the urban 98 

wastewater. The effect of several experimental parameters on BHA and dissolved organic 99 

carbon (DOC) removals was examined for each treatment. 100 
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2. Materials and methods 101 

2.1. Reagents 102 

 BHA (99% purity) was supplied by Sigma-Aldrich as a mixture of two isomers, 10% of 103 

2-tert-butyl-4-hydroxyanisole and 90% of 3-tert-butyl-4-hydroxyanisole. The catalyst used for 104 

the EF and PEF runs was FeSO4•7H2O of analytical grade from J.T. Baker. Millipore Milli-Q 105 

water with resistivity > 18.2 MΩ cm was employed for the preparation of all synthetic 106 

solutions. The salts used as electrolytes and other chemicals used for analysis were of HPLC 107 

or analytical grade from Alfa Aesar, Panreac and Merck. 108 

2.2. Aqueous matrices employed to perform the electrochemical treatments 109 

 The trials were carried out in three different aqueous matrices: 110 

 (i) Real wastewater, which corresponded to secondary clarifier effluent from a municipal 111 

wastewater treatment plant located in Gavà-Viladecans (Barcelona, Spain). The sample was 112 

preserved at 4 ºC before use. Its main characteristics were: pH = 7.9±0.3; specific 113 

conductivity = 2.19±0.11 mS cm-1; DOC = 18.0±0.9 mg L-1; cations: 328 mg L-1 Na+
, 49 mg 114 

L-1 K+, 99 mg L-1 Ca2+, 36 mg L-1 Mg2+, 0.19 mg L-1 Fe2+ and 36.9 mg L-1 NH4
+; and anions: 115 

117 mg L-1 SO4
2−, 480 mg L-1 Cl−, 0.85 mg L-1 NO3− and 0.79 mg L-1 NO2−. 116 

 (ii) A simulated matrix that mimicked the main ionic content of the urban wastewater, but 117 

without its natural organic matter (NOM) components (primordially, soluble humic and fulvic 118 

acids). It was prepared in Milli-Q water by adding salts that accounted for 140 mg L-1 SO4
2−, 119 

405 mg L-1 Cl−, 309 mg L-1 Na+ and 52 mg L-1 K+.  The resulting pH was 5.9 and the specific 120 

conductivity was 1.79 mS cm-1. 121 

 (iii) A 50 mM Na2SO4 solution in Milli-Q water at pH 5.9, with specific conductivity of 122 

5.9 mS cm-1, which was used for a more thorough comparison. 123 

 124 
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2.3. Electrolytic systems 125 

 The electrolytic experiments were carried out in an open, undivided glass cell containing 126 

150 mL samples under vigorous stirring provided by a magnetic follower. The cell had a 127 

double jacket for circulation of thermostated water at 35 °C. 128 

 For the EC trials, the anode and cathode were iron plates of 2.75 cm × 1.5 cm, 0.25 cm 129 

thickness. One or two electrode pairs were placed alternately in parallel with 1.0 cm 130 

separation. Before each run, the electrodes were cleaned with a 20% (v/v) H2SO4/water 131 

mixture, rinsed with Milli-Q water and dried to constant weight. 132 

 For the EO-H2O2, EF and PEF treatments, the anode of 3 cm2 area was either a RuO2-133 

based plate (DSA-Cl2) purchased from NMT Electrodes (Pinetown, South Africa) or a BDD 134 

thin-film on a Si wafer purchased from NeoCoat (La Chaux-de-Fonds, Switzerland). The 135 

cathode was a 3 cm2 carbon-PTFE air-diffusion electrode supplied by E-TEK (Division of De 136 

Nora N.A., Inc.), mounted as reported before [20] and fed with air at 1 L min−1 to 137 

continuously produce H2O2 from reaction (5). The interelectrode gap was close to 1.0 cm. The 138 

electrodes were initially activated/cleaned under polarization in 50 mM Na2SO4 at 300 mA 139 

for 180 min. The EF and PEF trials were performed in the presence of 0.50 mM Fe2+, which is 140 

the optimum content found for these treatments under the present conditions. The PEF assays 141 

were ran by irradiation of the whole solution with a Philips TL/6W/08 fluorescent black light 142 

blue tube, placed at 7 cm above its surface and emitting UVA light (320–400 nm, λmax= 360 143 

nm) with irradiance of 5 W m-2, as detected with a Kipp & Zonen CUV 5 radiometer. 144 

2.4. Analytical methods 145 

 Constant current electrolyses were made with an Amel 2053 potentiostat-galvanostat. 146 

The electrical conductance was measured with a Metrohm 644 conductometer. The solution 147 

pH was determined with a Crison GLP 22 pH-meter. The active chlorine concentration was 148 

obtained by means of the N,N-diethyl-p-phenylenediamine colorimetric method using a 149 
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Shimadzu 1800 UV/Vis spectrophotometer at λ = 515 nm [38]. The concentration of anions 150 

and cations in the urban wastewater was obtained as described elsewhere [39]. 151 

 Samples withdrawn from the treated aqueous matrices were microfiltered with 0.45 μm 152 

PTFE filters from Whatman before analysis. The BHA concentration was measured by 153 

reversed-phase HPLC using a Waters system, as described elsewhere [39,40]. The photodiode 154 

array detector was set at λ = 290 nm. The injected aliquot was 10 μL and the mobile phase 155 

was a 70:30 (v/v) mixture of acetonitrile and 10 mM KH2PO4 (pH 3.0) eluted at 1 mL min-1. 156 

BHA appeared in the chromatograms at a retention time of 5.1 min. 157 

 The solution DOC was determined on a Shimadzu TOC-VCNS analyzer using the non-158 

purgeable organic carbon method. Considering the following theoretical total mineralization 159 

reaction for BHA with a number of carbon atoms (m) of 11 and a number of exchanged 160 

electrons (n) of 56: 161 

C11H16O2  +  20 H2O  →  11 CO2  +  56 H+  +  56 e−     (11) 162 

the mineralization current efficiency (MCE, in %) at each electrolysis time t (in h) was 163 

calculated from DOC decay ((DOC), in mg L-1) at given current I (in mA) by Eq. (12) [41]: 164 

% MCE =                                ×  100        (12) 165 

where F is the Faraday constant (96,485 C mol-1), V is the solution volume (in L), and 166 

4.32×107 is a conversion factor for units homogenization (3,600 s h-1 × 12,000 mg C mol-1). 167 

 Each experiment to determine BHA and DOC decays was made in triplicate and average 168 

values are given along with the corresponding error bars (95% confidence intervals).  169 

n F V (DOC) 

   4.32×107 m I t 
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3. Results and discussion 170 

3.1. Electrocoagulation of BHA in different aqueous matrices 171 

 Once the stability of the target pollutant in the whole pH range was verified, first assays 172 

were performed by treating 150 mL of 76 µM BHA. They were made in the simulated matrix 173 

or urban wastewater at their characteristic pH, applying 100 mA in an Fe|Fe cell for 60 min. 174 

In both cases, it was observed that the pH rose with electrolysis time up to a final value of 9.7 175 

due to the excess of OH− ions produced from cathodic water reduction, which occurred in 176 

concomitance with the Fe anode dissolution to Fe2+ via reaction (9). 177 

 Fig. 1a shows the change of the normalized BHA concentration during these experiments. 178 

As can be seen, the BHA content was finally reduced by 10.5% in the simulated matrix and 179 

3.6% in urban wastewater. It is noticeable the faster removal during the first 5 min of 180 

electrolysis, which can be related to the quick adsorption of BHA onto the Fe(OH)3 flocs 181 

produced, being much more remarkable in real wastewater. After that time, the partial 182 

redissolution of adsorbed BHA explains the increasing soluble content until the 183 

adsorption/desorption equilibrium was attained at about 25-30 min. The initially greater 184 

removal in urban wastewater suggests a strong influence of NOM components. They 185 

contributed to the entrapment of BHA, resulting in a larger adsorption, but at longer time the 186 

progressive cleavage of such components promoted the adsorption of resulting by-products 187 

over BHA on the Fe(OH)3 flocs. As a result, the percentage of pollutant removal in real 188 

wastewater was lower. This explanation agrees with the normalized DOC decay in both 189 

media, as depicted in Fig. 1b. In the simulated matrix, the DOC profile was similar to BHA 190 

decay, with a final abatement of 10.2%. This suggests that BHA was the main organic 191 

adsorbed onto the hydroxides, with insignificant retention of its possible by-products such as 192 

those formed upon reaction with generated active chlorine [21]. The stability of these 193 

intermediates against coagulation justifies the appearance of a plateau. In contrast, in urban 194 
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wastewater, a more relevant DOC decay of 24.1% was achieved, which differs from 3.6% of 195 

BHA removal shown in Fig. 1a. This means that in the latter matrix the EC treatment mainly 196 

promoted the removal of NOM components, inhibiting that of BHA. 197 

 The adsorption of BHA was checked with another assay carried out with much higher 198 

pollutant content (1.50 mM) in the simulated matrix under comparable conditions. Fig. 1a and 199 

b evidences quite similar profiles for BHA and DOC decays with electrolysis time, being also 200 

analogous to those discussed above for 76 µM BHA. As the only difference, the minimum 201 

DOC content at 5 min was more pronounced at higher BHA concentration, which suggests 202 

that the amount of pollutant adsorbed onto Fe(OH)3 is regulated by its content in the matrix. 203 

 The effect of pH, number of Fe|Fe pairs and applied current on the performance of the EC 204 

treatment of 76 µM BHA spiked into urban wastewater was subsequently assessed. Fig. S1a 205 

shows a small substrate removal at all pH values tested using one Fe|Fe pair at 100 mA, 206 

slightly increasing in the order: natural pH 5.9 (3.6%) < pH 11.0 (8.8%) < pH 3.0 (11.2%). 207 

The larger disappearance at pH 3.0 can be accounted for by the attack of active chlorine 208 

(Cl2/HClO) [37], which causes the destruction of BHA. The potential contribution of 209 

adsorption on flocs can be practically discarded at pH 3.0, confirming the low content of 210 

Fe(OH)3 at pH < 3.5. The better removal at pH 11.0 could then be associated with its 211 

enhanced adsorption because of the larger formation of such flocs in alkaline medium, along 212 

with a poor destruction by ClO−, the weakest active chlorine species [21,37]. In contrast, at 213 

pH 5.9 the initial removal by adsorption was predominant, followed by greater desorption as 214 

compared to the other pH values. The same tendency can be observed in Fig. S1b for the 215 

corresponding normalized DOC content, being reduced by 24.1%, 27.8% and 33.1% at pH 216 

5.9, 11.0 and 3.0, respectively, owing to the increasing coagulation of NOM components. It 217 

can then be inferred that, despite the smaller formation of Fe(OH)3, pH 3.0 resulted optimal 218 

for the EC treatment of BHA due to the positive contribution of generated active chlorine. 219 
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However, all these results are indicative of a very poor BHA degradation during EC, since it 220 

can only be hardly destroyed by small amounts of active chlorine produced. 221 

 A system with two Fe|Fe pairs placed alternately in monopolar parallel connection was 222 

compared to the previous setup at natural pH 5.9 and 100 mA. Fig. S1a and b evidences larger 223 

BHA and DOC decays using four electrodes, achieving 10.5% and 30.2%, respectively. This 224 

can be related to the smaller current density applied to each anode since it: (i) increases the 225 

current efficiency by maximizing the Fe dissolution over the H2O oxidation, and (ii) allows a 226 

more controlled release of Fe2+, leading to a better formation and growth of hydroxides whose 227 

final size enhances the adsorption of BHA and NOM. 228 

 Based on this result, the influence of the applied current was examined between 50 and 229 

150 mA at natural pH using the two Fe|Fe pairs. Fig. 2a highlights a large enhancement of the 230 

initial BHA removal during the first 5 min upon current increase, as expected by the greater 231 

amounts of Fe(OH)3 flocs formed with ability to cause a larger adsorption. This was 232 

confirmed from the predominance of BHA adsorption over desorption at longer electrolysis 233 

time, finally yielding 7.4%, 10.5% and 19.2% removal at 50, 100 and 150 mA, respectively. 234 

The same tendency is shown in Fig. 2b, where DOC gradually disappears to attain removals 235 

of 26.8%, 30.2% and 36.4%. A smaller relative removal of NOM was then obtained as current 236 

was raised, due to the greater quantity of pollutants molecules adsorbed onto the more 237 

numerous flocs formed. 238 

 Since EC did not allow a significant decontamination of urban wastewater spiked with 239 

BHA, EAOPs were tested, as will be discussed in subsections below. 240 

3.2. Generation of active chlorine in synthetic aqueous media by EO 241 

 Prior to the treatment of BHA in synthetic solutions, the ability of EO to accumulate 242 

active chlorine in the bulk of electrolyzed solutions was analyzed. To do this, 150 mL of a 243 

synthetic solution with 10 mM NaCl + 10 mM Na2SO4 at pH 5.9 were electrolyzed using a 244 
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cell with a RuO2-based or BDD anode and an Al cathode at 150 mA for 300 min. This 245 

arrangement prevents the consumption of HClO by reaction with H2O2, which typically 246 

occurs when an air-diffusion cathode is utilized [21,37,39]. As can be seen in Fig. S2, Cl− ion 247 

abatement reached 88.5% with BDD and only 14.9% with the RuO2-based anode, since the 248 

former material favors reaction (3). Conversely, with BDD the active chlorine was only 249 

accumulated up to 0.56 mM at 90 min and disappeared at 300 min, whereas all the active 250 

chlorine generated at the RuO2-based anode remained stable, reaching a final concentration of 251 

about 1.5 mM that equated the Cl− content lost. The total removal of active chlorine using 252 

BDD can be accounted for by its well known conversion into ClO3− and ClO4− ions [42,43]. 253 

These findings indicate that, in the EAOPs, the competitive oxidation with active chlorine 254 

will be more remarkable using a RuO2-based anode. 255 

3.3. Degradation of BHA in 50 mM Na2SO4 solution and simulated matrix by EO-H2O2 256 

 First, 150 mL of 76 µM BHA in both media at natural pH 5.9 were treated by EO-H2O2 257 

using a RuO2-based or BDD anode, at 100 mA for 300 min. During these tests, the solution 258 

pH decreased slightly, probably due to the formation of acidic by-products [11-13]. 259 

 Fig. 3a depicts a very slow decay of the pollutant concentration in 50 mM Na2SO4 260 

solution, being degraded by 63.8% and 70.7% at the end of the treatment using the RuO2-261 

based and BDD anode, respectively. Under these conditions, BHA reacts with adsorbed 262 

M(●OH) originated from reaction (1) and thus, the superiority of BDD agrees with the 263 

expected higher oxidation power of BDD(●OH) as compared to RuO2(●OH) [10,16]. The 264 

concentration decays were analyzed using kinetic equations related to simple reaction orders, 265 

and excellent fits were obtained for a pseudo-first-order process, as shown in Fig. S3a. 266 

Alternatively, the very slow concentration decays in the EO-H2O2 processes could suggest the 267 

occurrence of a pseudo-zero-order kinetics. The apparent rate constants (k1) along with the 268 

squared linear regression coefficients (R2) are summarized in Table 1. This behavior can be 269 
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interpreted considering that a constant but small M(●OH) concentration attacks the pollutant 270 

once it arrives at the anode surface. 271 

 A very different trend can be observed in Fig. 3a in the simulated matrix, where the 272 

contaminant concentration fell very rapidly, practically independent of the anode nature, to be 273 

below the limit of quantification at about 30 min. From the good linear regressions (Fig. S3a), 274 

the k1-values in the simulated matrix were 18.4-fold and 14.6-fold higher than those 275 

determined in 50 mM Na2SO4 solution using RuO2-based and BDD anodes, respectively (see 276 

Table 1). The greater BHA decay in the simulated matrix can be accounted for by the attack 277 

of a low and constant active chlorine (HClO) concentration formed from reactions (3) and (4), 278 

whose action was much quicker than the simultaneous attack of M(●OH). 279 

 The mineralization role of generated oxidants was analyzed from the DOC abatement in 280 

each medium under the aforementioned conditions. Fig. 3b reveals a very small DOC 281 

abatement (< 5%) using a RuO2-based anode (see Table 1). This means that RuO2(●OH), 282 

alone in 50 mM Na2SO4 solution or in concomitance with active chlorine in the simulated 283 

matrix, is unable to destroy most of the intermediates (chlorinated and/or non-chlorinated) 284 

formed. In contrast, BDD(●OH) was much more powerful and thus, the use of BDD yielded 285 

32.0% and 38.8% DOC decay in such media, respectively. Consequently, this anode is 286 

preferable in EO-H2O2, although only a partial mineralization was achieved, being slightly 287 

superior in the presence of Cl− ion because BDD(●OH) is able to gradually mineralize 288 

chlorinated by-products. Accordingly, the MCE values determined for these experiments, 289 

illustrated in Fig. S4a, were below 0.15% using the RuO2-based anode and between 1.1% and 290 

1.3% with BDD, demonstrating the large recalcitrance of BHA by-products. 291 

3.4. Degradation of BHA in synthetic aqueous solutions by EF and PEF 292 

 Once assessed the oxidation power of M(●OH) and active chlorine with BHA and its by-293 

products as target molecules, the performance of ●OH formed in the bulk from Fenton’s 294 
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reaction (6) and UVA irradiation was analyzed under EF and PEF conditions in the presence 295 

of 0.50 mM Fe2+ as catalyst. Fig. 4a shows a similar BHA decay in all cases, with total 296 

removal in only 8 min. This is indicative of a very quick reaction of this pollutant with ●OH, 297 

much faster than the concomitant attack of M(●OH) and active chlorine (see Fig. 3a). The 298 

concentration decays of Fig. 4a obeyed to a pseudo-first-order reaction, as can be seen in Fig. 299 

S3b, which means that BHA is removed by small and constant amounts of mixed oxidants, 300 

i.e., RuO2(●OH) or BDD(●OH), ●OH as the prevalent one, and active chlorine when Cl− is 301 

present. A look to Table 1 allows inferring that the k1-values in EF and PEF were 4.1-4.7-fold 302 

and 5.9-6.2-fold higher than those found in EO-H2O2, respectively, regardless of the anode 303 

employed. The slightly faster BHA decay in PEF can be related to its oxidation by the 304 

additional ●OH amount induced by photoreduction reaction (7). 305 

 A surprising result was obtained for the mineralization by EF process with the RuO2-306 

based anode in the simulated matrix, as can be observed in Fig. 4b. DOC was abated by less 307 

than 6%, meaning that most of the by-products cannot be transformed into CO2 upon 308 

combined action of RuO2(●OH), active chlorine and ●OH. In contrast, the analogous treatment 309 

under PEF conditions yielded 51.3% DOC removal at 300 min (see Fig. 4b and Table 1), as 310 

expected if a large quantity of photoactive by-products were generated and mineralized by 311 

UVA radiation. Using BDD anode, Fig. 4b shows a gradual drop of DOC in EF and PEF, 312 

achieving 66.5% and 81.2% removal (see Table 1). This confirms the very effective oxidation 313 

of by-products by BDD(●OH) in EF. In turn, this yields photoactive by-products that can be 314 

more quickly photolyzed by UVA photons. Nevertheless, low MCE were determined in all 315 

these Fenton-based treatments (see Fig. S4b), with a final value of 2.8% for the most powerful 316 

treatment, i.e., PEF with BDD. 317 

 The final low MCE values in all the EAOPs are not surprising, because it is well known 318 

that their efficiency diminishes largely as the organic load becomes smaller [10-15]. To show 319 
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this feature for BHA removal in the simulated matrix, an additional trial was performed by 320 

treating 150 mL of a highly concentrated solution (1.50 mM BHA) with 0.50 mM Fe2+ by 321 

PEF using a BDD/air-diffusion cell at 100 mA. A fast DOC abatement under these conditions 322 

can be seen in Fig. 5a, where 88.2% mineralization is reached at 360 min. Fig. 5b illustrates 323 

the MCE-time plot for this assay. An initial rise up to a 164.2% at 60 min can be observed, 324 

whereupon it dropped drastically down to 50.1%. This means that increasing contents of easy-325 

to-mineralize by-products are formed at the beginning of PEF, whereas the generation of 326 

more recalcitrant molecules along with the reduction of the organic matter content cause the 327 

progressive MCE decay at long time [10]. Note that theoretical MCE values greater than 328 

100% are feasible in this system, since oxidants are generated not only at the anode but also 329 

from H2O2 produced at the cathode. 330 

3.5. Degradation of BHA in urban wastewater by EAOPs 331 

 The study of BHA removal by EAOPs was extended to urban wastewater as matrix by 332 

spiking this compound at 76 µM. First, 150 mL of the prepared solutions were treated at 333 

natural pH 7.9 at 100 mA for 300 min, with addition of Fe2+ as catalyst in EF and PEF. Fig. 334 

6a illustrates the occurrence of a rapid BHA concentration abatement in all the EAOPs, with 335 

total removal at about 30 min. Hence, the disappearance in EO-H2O2 was somewhat slower to 336 

that described in the simulated matrix (see Fig. 3a), but much more difficult in the case of EF 337 

and PEF (see Fig. 4a). This slower decay in urban wastewater can be accounted for by the 338 

parallel attack of generated oxidants onto NOM components. The k1-values for these trials are 339 

collected in Table 1, as determined from the kinetic analysis depicted in Fig. S3c. They 340 

highlight an increasing relative oxidation in the order: EO-H2O2 < EF < PEF, always being 341 

superior for the BDD anode. This trend is expected because BDD(●OH) has higher oxidation 342 

power than RuO2(●OH). The attack of these species and active chlorine onto BHA in EO-343 

H2O2 is reinforced by ●OH formed from Fenton’s reaction (6) in EF and, to a larger extent, by 344 
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additional ●OH produced from photolytic reaction (7) in PEF. Note that the k1-values for EO-345 

H2O2 in urban wastewater were halved as compared to the simulated matrix (see Table 1), as 346 

expected if some of the M(●OH) and active chlorine react with NOM. In contrast, the data of 347 

Table 1 reveal a significant decrease of k1 between 4.4-fold and 6.0-fold for the EF and PEF 348 

treatments in urban wastewater. This can be due to the smaller ●OH production at its natural 349 

pH 7.9, if compared to the simulated matrix at pH 5.9 [11-13], along with the consumption of 350 

part of this radical by reaction with NOM. 351 

 Fig. 6b shows surprising profiles for DOC decays during the above experiments when a 352 

RuO2-based anode was employed. As can be seen, the urban wastewater contaminated with 353 

BHA was very poorly decontaminated, attaining 10.4% as maximal (PEF process, see Table 354 

1). This differs from the PEF behavior found in the simulated matrix, where DOC was 355 

reduced by 51.3% under comparable conditions (see Fig. 4b and Table 1). This agrees with 356 

the low ●OH production at pH 7.9, inhibiting to a large extent the generation of photoactive 357 

intermediates that could have been removed by UVA light. This fact was confirmed from the 358 

DOC abatement using the BDD anode. Fig. 6b depicts a quite similar mineralization rate 359 

using this anode in all processes, slightly increasing as EO-H2O2 < EF < PEF (see also Table 360 

1). This means that the main oxidant of BHA by-products and NOM is BDD(●OH) in all these 361 

treatments, with much smaller participation of ●OH, active chlorine and UVA light. 362 

Comparison of Fig. 4b and 6b, as well as data of Table 1, allows inferring that the percentage 363 

of DOC decay was greater in urban wastewater for EO-H2O2, but superior in the simulated 364 

matrix for EF and PEF. However, since the initial DOC was much greater in urban 365 

wastewater (28 mg C L-1 vs. 10 mg C L-1), a larger amount of organic carbon was always 366 

removed from the real matrix. This informs about the excellent ability of the EAOPs with a 367 

BDD anode to mineralize the NOM of urban wastewater at natural pH. 368 
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 To better understand the oxidative role of ●OH in EF and PEF, the comparative 369 

treatments of 76 µM BHA in urban wastewater with 0.50 mM Fe2+ were carried out at pH 3.0, 370 

where the rate of Fenton’s reaction (6) becomes optimal [11-13]. Operating at 100 mA, Fig. 371 

7a highlights a very fast removal of the pollutant, which disappeared in 4-6 min in all cases. 372 

These decays were much more rapid than in the analogous EF and PEF performed in the 373 

simulated matrix at pH 5.9 (see Fig. 4a), which corroborates the quick reaction of BHA with 374 

generated ●OH in the bulk. When DOC removal was determined, a very poor mineralization 375 

was obtained again using the RuO2-based anode (see Fig. 7b), although superior to that found 376 

at natural pH 7.9. Thus, for the powerful PEF, DOC was reduced by 23.7% at pH 3.0 vs. 377 

10.4% at pH 7.9 (see Table 1). This suggests that the oxidation of BHA and NOM by ●OH 378 

enhances the formation of photoactive intermediates that can be destroyed by UVA light. Fig. 379 

7b also shows the beneficial use of BDD anode due to the pre-eminent attack of BDD(●OH), 380 

since 47.8% and 65.8% DOC abatements were obtained after 300 min of EF and PEF, 381 

respectively. The latter photoassisted Fenton-based method with BDD is then the best EAOP 382 

for BHA and/or NOM mineralization in a simulated matrix and urban wastewater within all 383 

the range. 384 

 To end, the high oxidation power of the above PEF process with BDD at pH 3.0 was 385 

assessed by prolonging the electrolysis time until almost total mineralization was achieved. 386 

Fig. 8 evidences that 97.0% of DOC removal was attained after 660 min of this treatment at 387 

100 mA, as expected if the simultaneous action of BDD(●OH), active chlorine, ●OH and UVA 388 

radiation can effectively destroy all the organic molecules contained in urban wastewater. 389 

4. Conclusions 390 

 EC is not a convenient technology to remove BHA from water, as demonstrated with an 391 

Fe|Fe cell from the poor pollutant and DOC abatements in different aqueous media. The 392 
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adsorption of BHA onto Fe(OH)3 flocs was relatively high within the first minutes, but at 393 

longer time it underwent a progressive redissolution. The best results were obtained at pH 3.0 394 

due to the simultaneous oxidation with generated active chlorine. The use of several Fe|Fe 395 

pairs and higher current promoted a larger coagulation. The treatment of BHA in a 50 mM 396 

Na2SO4 solution by EO-H2O2 revealed a slow pollutant abatement using RuO2-based and 397 

BDD anodes, but with much greater mineralization rate using the latter anode due to the 398 

higher oxidation power of BDD(●OH). In a simulated matrix, the oxidation of BHA by active 399 

chlorine enhanced its removal in EO-H2O2, but BDD(●OH) had the pre-eminent role during 400 

DOC abatement. The same effect was found during EF and PEF treatments in the simulated 401 

matrix, where the production of ●OH favored the BHA decay and, to a smaller extent, its 402 

mineralization, always being BDD the most suitable anode. The degradation profiles in urban 403 

wastewater at natural pH 7.9 spiked with BHA confirmed the superiority of PEF with BDD, 404 

since the RuO2-based anode was unable to mineralize BHA, NOM and all by-products. The 405 

quicker removals in urban wastewater at pH 3.0 confirmed the important role of ●OH in the 406 

bulk, favoring the formation of photoactive intermediates that were more rapidly 407 

photodecomposed by UVA photons. Almost total mineralization with 97.0% DOC removal 408 

was achieved at pH 3.0 in PEF with BDD after 660 min at 100 mA. 409 
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Fig. 1. Time course of the normalized (a) pollutant concentration and (b) dissolved organic 

carbon (DOC) for the electrocoagulation (EC) of 150 mL of () 200 mg C L-1 (1.50 mM 

BHA) and (,) 10 mg C L-1 (76 µM BHA) in (,) simulated matrix at natural pH 5.9 

and () urban wastewater at natural pH 7.9, at 35 ºC using an Fe|Fe pair at 100 mA. 
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Fig. 2. Variation of normalized (a) pollutant concentration and (b) DOC with electrolysis time 

for the EC of 150 mL of solutions containing 10 mg C L-1 (76 µM BHA) in urban wastewater 

at natural pH 7.9 and 35 ºC using two Fe|Fe pairs at a current of: () 50 mA, () 100 mA 

and () 150 mA. 
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Fig. 3. Normalized (a) pollutant concentration and (b) DOC decays vs. electrolysis time for 

EO-H2O2 treatment of 150 mL of solutions containing 10 mg C L-1 (76 µM BHA) at pH 5.9 

and 35 ºC using a cell with a 3 cm2 air-diffusion cathode. Aqueous matrix: (,) 50 mM 

Na2SO4 and (,) simulated matrix. Anode: 3 cm2 (,) RuO2-based and (,) BDD. 

Applied current: 100 mA. 
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Fig. 4. Change of normalized (a) pollutant concentration and (b) DOC with electrolysis time 

for the treatment of 150 mL of 10 mg C L-1 (76 µM BHA) in a simulated matrix with 0.50 

mM Fe2+ at pH 5.9 and 35 ºC using a cell with an air-diffusion cathode. Method: (,) 

Electro-Fenton (EF) and (,) photoelectro-Fenton (PEF) under UVA irradiation with a 6 

W lamp. Anode: (,) RuO2-based and (,) BDD. Applied current: 100 mA. 
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Fig. 5. Time course of the (a) normalized DOC and (b) mineralization current efficiency for 

the PEF degradation of 150 mL of 200 mg C L-1 (1.50 mM BHA) in a simulated matrix with 

0.50 mM Fe2+ at pH 5.9 and 35 ºC using a BDD/air-diffusion cell at 100 mA. 
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Fig. 6. Normalized (a) pollutant concentration and (b) DOC decays vs. electrolysis time for 

the treatment of 150 mL of 76 µM BHA, spiked into urban wastewater (total DOC of 28 mg 

L-1) at natural pH 7.9 and 35 ºC using a cell with an air-diffusion cathode. Method: (,) 

EO-H2O2, (,) EF with 0.50 mM Fe2+ and (,) PEF with 0.50 mM Fe2+ and 6-W UVA 

lamp. Anode: (,,) RuO2-based and (,,) BDD. Applied current: 100 mA. 

  

0.0

0.2

0.4

0.6

0.8

1.0

0 60 120 180 240 300 360

Time / min

D
O

C
 / 

D
O

C
0

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35

Time / min

[B
H

A
] /

 [B
H

A
] 0

a 

b 



31 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Variation of normalized (a) pollutant concentration and (b) DOC with electrolysis time 

for the degradation of 150 mL of 76 µM BHA, spiked into urban wastewater (total DOC of 28 

mg L-1) with 0.50 mM Fe2+ at natural pH 3.0 and 35 ºC using a cell with an air-diffusion 

cathode by applying 100 mA. Method: (,) EF and (,) PEF. Anode: (,) RuO2-

based and (,) BDD. 
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Fig. 8. Change of normalized DOC with electrolysis time for the PEF treatment of 150 mL of 

10 mg C L-1 (76 µM BHA), spiked into urban wastewater with 0.50 mM Fe2+ at pH 3.0 and 

35 ºC using a BDD/air-diffusion cell at 100 mA. 
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Table 1. Pseudo-first-order rate constant for BHA degradation along with the corresponding 

R-square and selected percentage of DOC removal, as determined for the degradation of 150 

mL of 10 mg C L-1 (76 µM BHA) in different water matrices and pH values at 35 ºC by 

various EAOPs using a cell with an air-diffusion cathode at 100 mA. 

 

 
Method 

 
Anode 

 
pH 

 
k1 (min-1) 

 
R2 

% DOC removal  
at 300 min 

50 mM Na2SO4 solution 

EO-H2O2 RuO2-based 5.9 7.6×10-3 0.987 4.6 

 BDD 5.9 9.6×10-3 0.992 32.0 

Simulated matrix 

EO-H2O2 RuO2-based 5.9 0.14 0.997 3.3 

 BDD 5.9 0.14 0.996 38.8 

EFa RuO2-based 5.9 0.66 0.984 5.0 

 BDD 5.9 0.57 0.985 66.5 

PEFa,b RuO2-based 5.9 0.82 0.995 51.3 

 BDD 5.9 0.87 0.986 81.2 

Urban wastewaterc 

EO-H2O2 RuO2-based 7.9 7.2×10-2 0.993 5.9 

 BDD 7.9 8.5×10-2 0.998 45.5 

EFa RuO2-based 3.0 0.34d - 13.8 

 BDD 3.0 0.44d - 57.1 

 RuO2-based 7.9 0.11 0.993 9.2 

 BDD 7.9 0.13 0.995 47.8 

PEFa,b RuO2-based 3.0 0.53d - 23.7 

 BDD 3.0 0.61d - 65.8 

 RuO2-based 7.9 0.16 0.993 10.4 

 BDD 7.9 0.19 0.994 51.0 
a With 0.50 mM Fe2+ as catalyst 
b Under UVA irradiation 
c Total initial DOC: 28 mg C L-1 
d Estimated as average value within the first 2 min of electrolysis 
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