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Abstract   Solutions with 0.65 mM of the antituberculosis drug isoniazid (INH) in 

0.050 M Na2SO4 at pH 3.0 were treated by electro-Fenton (EF) and UVA photoelectro-

Fenton (PEF) processes using a cell with a BDD anode and a carbon-PTFE air-diffusion 

cathode. The influence of current density on degradation, mineralization rate and 

current efficiency has been thoroughly evaluated by EF. The effect of the metallic 

catalyst (Fe2+ or Fe3+) and the formation of products like short-chain linear aliphatic 

carboxylic acids were assessed by PEF. Two consecutive pseudo-first-order kinetic 

regions were found using Fe2+ as catalyst. In the first region, at short time, the drug was 

rapidly oxidized by ●OH, whereas in the second region, at longer time, a resulting 

Fe(III)-INH complex was much more slowly removed by oxidants. INH disappeared 

completely at 300 min by EF, attaining 88% and 94% mineralization at 66.6 and 100 

mA cm-2, respectively. Isonicotinamide and its hydroxylated derivative were identified 

as aromatic products of INH by GC-MS and oxalic, oxamic and formic acids were 

quantified by ion-exclusion HPLC. The PEF treatment of a real wastewater polluted 

with the drug led to slower INH and TOC abatements because of the parallel destruction 

of its natural organic matter content. 

Keywords: Electro-Fenton; Isoniazid; Oxidation products; Photoelectro-Fenton; Real 

wastewater; Water treatment 
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Introduction 

 The power and effectiveness of the electro-Fenton (EF) process regarding the 

mineralization of several classes of water organic pollutants make it an excellent 

alternative for ameliorating the existing water treatment systems. EF can be combined 

with conventional physicochemical and biological methods, giving rise to eco-friendly 

and easy-to-implement technologies (Brillas et al. 2009; Nidheesh and Gandhimathi 

2012; Sirés and Brillas 2012; Martínez-Huitle et al. 2015). 

 In EF, the catalytic decomposition of H2O2 by Fe2+ ion according to the classical 

Fenton´s reaction (1) promotes a large and quick production of hydroxyl radical (●OH, 

E○ = 2.8 V/SHE). This species attacks in non-selective mode the organic molecules 

contained in the medium with high rate constants, transforming them into more 

innocuous products (Brillas et al. 2009; Sirés and Brillas 2012). 

 

H2O2   +   Fe2+    →    Fe3+  +     OH•   +   OH−              (1) 

 

 In this process, the Fe2+ ion is regenerated from Fe3+ owing to its cathodic reduction 

following reaction (2). This ensures the formation of ●OH provided that H2O2 is 

continuously generated (Brillas et al. 2009; Sirés and Brillas 2012; Moreira et al. 2017). 

 

   Fe3+  + e−  →    Fe2+                                                              (2) 

 

 H2O2 is obtained by in situ electrogeneration from O2 reduction, according to 

reaction (3), which is particularly favored at carbonaceous substrates (Vasudevan and 

Oturan 2014; Nidheesh et al. 2018). The good performance of O2 reaction can be 
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ensured, for example, using hydrophobized, porous air-diffusion cathodes. Among the 

materials currently used for this purpose, carbon-polytetrafluoroethylene (PTFE) stands 

out because it presents properties such as mechanical, thermal and chemical resistance 

in acidic and alkaline media, along with a high catalytic ability to produce H2O2 (Brillas 

et al. 2000; Galia et al. 2016; Pérez et al. 2017). 

 

O2(g)   +    2H+   +    2e−    →    H2O2                           (3) 

 

 The performance of the EF process can be improved with the use of UVA radiation 

(315-400 nm), which is typical in photoelectro-Fenton (PEF) since it promotes: (i) the 

photoreduction reaction (4) from Fe(III) species formed by Fenton’s reaction (1), and 

(ii) the photodecomposition of Fe(III)-carboxylate complexes from reaction (5) (Brillas 

et al. 2009; Aguilar et al. 2017; Moreira et al. 2017). 

 

Fe(OH)2+   +    ℎν   →    Fe2+   +   OH•                              (4) 

Fe(OOCR)2+   +    ℎν  →    Fe2+   +    CO2   +   R•             (5) 

 

 Boron-doped diamond (BDD) anodes are preferred to upgrade the EF and PEF 

processes. These electrodes favor the oxidation of the water molecule, yielding poorly 

physisorbed BDD(●OH) on their surface by reaction (6), which in turn can attack 

organic molecules in competition with ●OH formed in the bulk upon maximization of 

mass transport toward the BDD surface (Kapałka et al. 2008, 2009; Brillas et al. 2009; 

Gozzi et al. 2012; Labiadh et al., 2016). 

 

BDD  +   H2O  →    BDD( OH• )   +    H+   +    e−                      (6) 
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 Chemical resistance and, above all, inertness (i.e., low adsorption of molecules that 

result in anode fouling) of the surface are other positive characteristics of BDD as an 

anode for the removal of organic pollutants from water (Brillas et al. 2009; Panizza and 

Cerisola 2009; Sirés and Brillas 2012). 

 Among the various organic pollutants, pharmaceuticals have received great 

attention owing to their potential bioactivity (Kümmerer 2009; Martín et al. 2012; Sirés 

and Brillas 2012; Moreira et al. 2017). The main routes of entry of these compounds 

into the environment are uncontrolled discharge events from the pharmaceutical 

industry, hospitals and households (Verlicchi et al. 2012a, b; Barhoumi et al. 2015). 

Their ineffective removal in current wastewater treatment facilities causes the presence 

at micrograms per liter level in different water matrices (Kümmerer 2009; Verlicchi et 

al. 2012a, b; Brillas and Sirés 2015). 

 Isoniazid (INH, C6H7N3O, isonicotinic acid hydrazide) is a widely used antibiotic 

against tuberculosis, a disease that affects at least a third of the world's population 

(Scior et al. 2002) as well bovine herds (Leite et al. 2000). As occurs with many other 

drugs, up to 75% of the parent compound can be excreted unchanged from the body 

(Sasu et al. 2015), being able to enter into water bodies. An issue that suggests a need 

for closer attention to the INH residues is its ability to cause bacterial resistance, as 

confirmed for the strain Mycobacterium tuberculosis (Scior et al. 2002; Kümmerer 

2009), also being considered as biorefractory (Sasu et al. 2015). Only few works have 

reported the degradation of INH by advanced oxidation processes like photocatalysis 

(Guevara-Almaraz et al. 2015; Jo and Natarajan 2015a, b; Stets et al. 2018), as well as 

homogeneous and heterogeneous UVA photo-Fenton (Stets et al. 2018). However, no 

previous work about the INH removal from wastewater by electrochemical technologies 

has been reported in the literature. 
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 This paper aims to assess the degradation of the antituberculosis dyes INH by EF at 

different applied current densities (j) and PEF with Fe2+ or Fe3+ as catalyst using a 

BDD/air-diffusion cell. By-products evolution was monitored by gas chromatography-

mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC). 

The trials were mainly performed in ultrapure water and compared with real wastewater 

matrix. 

Experimental details 

Chemicals 

 Isoniazid (analytical standard, ≥ 99% purity) was purchased from Sigma-Aldrich. 

Analytical grade Na2SO4, FeSO4·7H2O and Fe(NO3)3·9H2O were supplied by Vetec 

Quimica Fina and Probus, respectively. HPLC grade acetonitrile and other analytical 

grade chemicals used for analysis, as well as analytical grade H2SO4 added to adjust the 

initial pH to 3.0, were purchased from Vetec Quimica Fina and Panreac. High-purity 

water (Millipore Milli-Q, resistivity >18.2 MΩ cm) was used to prepare all solutions. 

Real wastewater 

The real wastewater corresponds to a secondary effluent of a wastewater plant facility 

located in Gavà-Viladecans (Barcelona, Spain) that treats urban and selected industrial 

wastewater. The sample had a translucent yellowish color, with particles in suspension, 

pH = 7.3 and conductivity = 1.9 mS cm-1. After adjusting the pH to 3, the total organic 

carbon (TOC) was of 20.46 mg L-1 and the concentrations of anions increased as NO3− 

(0.85 mg L-1) < SO4
2− (141.3 mg L-1) < Cl− (318 mg L-1), whereas that of cations as Fe2+ 
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(0.19 mg L-1) < K+ (4 mg L-1) < Mg2+ (24 mg L-1) < NH4
+ (36.9 mg L-1) < Ca2+ (86 mg 

L-1) < Na+ (212 mg L-1). 

Electrolytic system 

 EF and PEF measurements were performed in an open, undivided electrochemical 

cell with capacity of 150 mL and jacketed for water recirculation at 25 ºC. The anode 

was a BDD thin-film electrode supplied by NeoCoat and the cathode was a carbon-

PTFE air-diffusion electrode supplied by E-TEK. The cathode was mounted as 

described in earlier work (Bañuelos et al. 2016). Compressed air at 1 L min-1 was 

pumped through its inner and dry face for continuous production of H2O2, whereas its 

outer face was in contact with the solution. Both electrodes, of 3 cm2 geometric area, 

were separated 1 cm. All the experiments were conducted at constant j supplied by an 

Instrutherm Fa-3003 or an Agilent N5765A DC power supply, and the treated solutions 

were vigorously stirred using a magnetic bar at 800 rpm. Solutions of 100 mL with 0.65 

mM INH and 0.050 M Na2SO4 were comparatively degraded by EF process using 0.50 

mM Fe2+ as catalyst. For the comparative PEF treatment with UVA light, a 6 W-

Satellite F6T5BLB black light tube lamp was positioned horizontally at 5 cm from the 

surface of the solution between the two electrodes. The UV intensity of the lamp was 5 

W m-2, as determined by a Kipp&Zonen CUV 5 radiometer. The effect of 0.50 mM Fe3+ 

as catalyst was also examined. 

Instruments and analytical procedures 

 The pH of solutions was measured with a Crison 2000 or Crison GLP 22 pH 

meter. To determine the INH concentration in samples collected, they were 

immediately diluted with the same volume of acetonitrile to stop the degradation. 
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The concentration was measured by reversed-phase HPLC using a Thermo Scientific 

Finnigan Surveyor liquid chromatograph coupled to a photodiode array detector set 

at λ = 215 nm. Aliquots of 25 µL were injected into the liquid chromatograph upon 

elution with a (50:50) acetonitrile/water mixture at a flow rate of 0.6 mL min-1, 

circulating through an Agilent Technologies Zorbax Eclipse XDB-C-18 5 μm, 250 

mm × 4.6 mm, column. The peak of INH appeared at 9.5 min, having a limit of 

detection (LOD) = 1.31×10-5 mM and limit of quantification (LOQ) = 4.58×10-5 

mM. Ion-exclusion HPLC was utilized to quantify the generated carboxylic acids 

using the same equipment and procedure reported elsewhere (Gozzi et al. 2017). A 

Shimadzu 1800 UV/Vis spectrophotometer was used for the quantification of NH4
+ 

by indophenol method (APHA 2012). The mineralization of INH solutions was 

assessed by injecting 50 µL aliquots into a Shimadzu TOC-V CPN analyzer, with 

LOD = 0.2138 mg L-1 and LOQ = 0.7162 mg L-1. To do this analysis, the samples 

collected were immediately diluted with Milli-Q water (1:3), and then filtered with 

Whatman PTFE 0.22 μm filters prior to analysis. About ±1% reproducibility was 

found. 

 All the degradation and mineralization runs were made in duplicate and their 

average results are reported, with a standard deviation < 5%. In figures, the 

corresponding error bars are given. 

 From the INH concentration decay, the apparent rate constant (kapp) was 

obtained as the slope of the pseudo-first-order linear correlation: 

 

𝑘𝑘app =
ln �[INH]0

[INH]𝑡𝑡
�

𝑡𝑡                                                     (7) 
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where [INH]0 and [INH]t are the initial concentration and that at time t (in min) for 

isoniazid, respectively. 

 From the experimental TOC decay (Δ(TOC)exp, in mg L-1) after time t (in h) of a 

given EF or PEF treatment at current I (in A), the percentage of mineralization 

current efficiency (MCE) was estimated as follows (Brillas et al. 2009): 

 

MCE(%) =
𝑛𝑛𝑛𝑛𝑛𝑛Δ(TOC)exp
4.32x107𝑚𝑚𝑚𝑚𝑚𝑚 x100                                                      (8) 

 

where n is the number of electrons required for total mineralization, F is the Faraday 

constant, V is the solution volume (in L), 4.32×107 is a conversion factor (3,600 s h-1 

× 12,000 mg C mol-1 and m is the number of carbon atoms of INH (6 atoms). The n-

value was taken as 20, consiering the theoretical combustion reaction (9) with 

formation of CO2 and NH4
+ as the pre-eminent ion formed from the initial oxidation 

of N atoms: 

 

C6H7N3O  +    11H2O   →    6CO2   +  3NH4
+  +   17H+   +    20e−        (9) 

 

 The main and most stable INH degradation products formed during the EF 

treatment of 100 mL of a 1.30 mM INH solution with 0.050 M Na2SO4 were 

elucidated by GC-MS using a NIST05-MS database. The equipments and 

experimental conditions for this technique, using a non-polar Teknokro TR-450232 

Sapiens-X5MS column, have been reported in earlier work (Guelfi et al., 2017). 

 The concentration of cations in the real wastewater, except NH4
+, was obtained 
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by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and that of 

anions was determined by ion chromatography, as reported in Flores et al. (2018). 

Results and discussion 

Influence of current density on the EF treatment 

 The most important operation parameter in the EF process is the applied j, since it 

limits the quantity of oxidant ●OH originated under Fenton’s conditions and at the BDD 

surface (Sirés et al. 2014; Aguilar et al. 2017). The increase of this parameter promotes 

the formation of more H2O2 at the cathode from reaction (3), which gives rise to greater 

quantity of ●OH from Fenton’s reaction (1), as well as BDD(●OH) by accelerating 

reaction (6). Faster regeneration of Fe2+ from reaction (2) also occurs, additionally 

enhancing Fenton’s reaction (1) (Sirés et al. 2014). 

 The influence of j between 33 and 100 mA cm-2 was assessed by treating a 0.65 

mM (95 mg L-1) INH solution with 0.50 mM Fe2+ as catalyst and 0.050 M Na2SO4 as 

supporting electrolyte at pH 3.0 by EF using a BDD/air-diffusion cell. The INH removal 

along the electrolysis is depicted in Fig. 1a. As can be seen, complete disappearance 

was achieved after 300 min at the lowest j = 33.3 mA cm-2, whereas it occurred at about 

210 min operating at 66.6 and 100 mA cm-2 (see also Table 1). The faster INH removal 

up to j = 66.6 mA cm-2 is expected by the larger accumulation of ●OH and BDD(●OH) 

from reactions (1) and (6), respectively. However, the similar INH decay when rising up 

to 100 mA cm-2 suggests the existence of parasitic reactions or the quicker formation of 

Fe(III) complexes that are more difficultly oxidized by the above oxidants (Guelfi et al. 

2017, 2018). 
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 The inset panel of Fig. 1a depicts the pseudo-first-order profiles. Two consecutive 

kinetic regions can be distinguished. Table 1 collects the apparent rate constants for 

each region, kapp,1 and kapp,2, with the corresponding good R-squared (R1
2 and R2

2). A 

very fast INH concentration decay can be observed in the first region at short time, up to 

near 4 min, owing to the direct attack of ●OH in the bulk onto INH and, to smaller 

extent, of BDD(●OH) (Gozzi et al. 2017; Guelfi et al. 2017, 2018; Moreira et al. 2017). 

Table 1 evidences a strong drop in the kapp,1-value of the first region with increasing j, 

0.43- and 0.18-fold lower at 66.6 and 100 mA cm-2, respectively, compared to that 

found at 33.3 mA cm-2. This phenomenon can be accounted for by the progressive 

formation of another electroactive species, which can be a Fe(III) complex of INH that 

is more rapidly generated at higher j due to the quicker Fe3+ production from Fenton’s 

reaction (1). This causes a smaller oxidation of INH by ●OH before the production of its 

Fe(III) complex, leading to a lower kapp,1-value, which is in contrast to the greater 

production of oxidant. This behavior confirms similar results found by us for other N-

aromatics (Gozzi et al. 2017; Guelfi et al. 2017, 2018). 

 In contrast, Fig. 1a highlights that the INH concentration decayed much more 

slowly in the second kinetic region, observed at times from 5 to 30 min. The kapp,2-value 

was almost doubled when j changed from 33.3 to 66.6 mA cm-2, with no further 

enhancement. This suggests that the Fe(III)-INH complex is pre-eminently oxidized by 

BDD(●OH), since it has superior oxidation ability to remove Fe(III) species as 

compared to ●OH (Martínez-Huitle et al. 2015). The fact that the kapp,2-value did not 

increase at j > 66.6 mA cm-2 indicates that additional BDD(●OH) produced was not 

effective because it was mainly wasted in parasitic reactions. 

 Regarding the TOC removal of the above trials, Fig. 1b always shows a slow 

regular abatement with prolonging electrolysis because many intermediates are formed 
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and progressively destroyed. Increasing j accelerated largely the mineralization process 

up to j = 66.6 mA cm-2, leading to similar mineralization rate at j = 100 mA cm-2. Table 

1 highlights that after 540 min of EF treatment at the highest j, an almost overall 

mineralization with 94% TOC decay was achieved. At the end of this trial, 1.44 mM 

NH4
+ was determined, meaning that the initial N was pre-eminently transformed into 

this cation (75.3%), as stated in reaction (9). This ion is expected to remain stable in 

solution under the present experimental conditions, as also observed for other N-

compounds under similar degradation processes (Solano et al. 2015). Note that neither 

NO3− nor NO2− ions were detected by ion chromatography during this treatment. This 

means that the initial N not converted into NH4
+ ion was lost as volatile nitrogenated 

products, presumably N2 and NxOy, as proposed for other N-compounds treated by EF 

and PEF (Sirés et al. 2014; Gozzi t al. 2017; Guelfi et al. 2017). 

 The inset panel of Fig. 1b depicts a smaller MCE value at higher j, despite the 

greater production of oxidizing BDD(●OH) and ●OH. The average MCE values are 

listed in the last column of Table 1. This trend corroborates the parallel increase in rate 

of the parasitic non-oxidant reactions that decreases the concentration of both radicals 

with the consequent smaller participation in reactions with organics. These parasitic 

reactions involve, for example, the consumption of •OH by H2O2 and Fe2+ from 

reactions (10) and (11), respectively, and the oxidation of BDD(●OH) to O2 gas from 

reaction (12) (Panizza and Cerisola 2009; Sirés et al. 2014). Reactions (13) and (14) are 

related to the generation of ozone and peroxodisulfate ion at the BDD surface, 

respectively, which compete with BDD(●OH) production (Panizza and Cerisola 2009). 

 

H2O2   +    OH•    →    HO2
•   +    H2O                                   (10) 
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Fe2+   +   OH•    →    Fe3+   +    OH−                                   (11) 

2BDD( OH• )    →    2BDD  +    O2   +    2H+   +    2e−      (12) 

3H2O  →    O3   +    6H+   +   6e−                                        (13) 

2SO4
2−    →    S2O8

2−   +    2e−                                                  (14) 

INH degradation by PEF treatment. Effect of Fe2+ and Fe3+ as catalyst 

 The PEF process was studied by treating a 0.65 mM INH solution in 0.050 M 

Na2SO4 with 0.50 mM Fe2+ or 0.50 mM Fe3+ as catalyst at pH 3.0 and j = 33.3 mA cm-2 

under irradiation with a 6 W UVA lamp. Under these conditions, a very poor photolytic 

degradation of the drug is expected (Stets et al. 2018). 

 Fig. 2a illustrates that total disappearance of INH was achieved after 270 min of 

both PEF treatments, a time slightly shorter than 300 min required for EF under the 

same conditions. The slight superiority of PEF can be related to the additional oxidation 

of the Fe(III)-INH complex by the excess of ●OH induced from photolytic reaction (4), 

in competence with the preferential attack of BDD(●OH). This explains the quicker 

removal of the drug using PEF in the second kinetic region, as compared to EF (see the 

inset of Fig. 2a). In contrast, INH is more largely destroyed in the first kinetic region of 

EF, with a kapp,1-value 1.27-fold higher than that of PEF (see Table 1). This surprising 

behavior can be explained if ●OH photoinduced in PEF favors a faster generation of the 

Fe(III)-INH complex, with a slower decay of INH in the first region, as follows: 

  

Fe2+ +  2 OH + INH •  →   Fe(III) − INH + 2OH−                      (15) 
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 The existence of such complex was deduced from the fact that, in PEF with 0.50 

mM Fe3+ as catalyst, a single pseudo-first-order kinetic region was obtained (see the 

inset of Fig. 2a). This can be ascribed to the pre-eminent oxidation of the Fe(III)-INH 

complex with BDD(●OH), since it possesses a kapp-value of about 0.02 min-1 that is 

similar to the kapp,2-values found in EF and PEF with 0.50 mM Fe2+ (see Table 1). 

Hence, the second regions obtained for the two latter processes, as well as the single 

region for PEF with 0.50 mM Fe3+, plausibly correspond to the oxidation of the same 

electroactive species, the Fe(III)-INH complex. This is also indicative of its 

photostability under UVA irradiation. 

 Fig. 2b shows the TOC and MCE profiles obtained for the assays of Fig. 2a. It is 

noticeable that the INH solution was mineralized at similar rate by PEF, regardless the 

catalyst added, attaining 84%-88% of TOC reduction after 540 min of electrolysis (see 

Table 1). It can be also observed in Fig. 2b the slower TOC decay by EF under similar 

conditions, with a final mineralization of 74%. The analogous mineralization rate found 

for both PEF processes suggests that it is limited by a similar destruction of the same 

products, probably corresponding to Fe(III) complexes with final short-chain linear 

carboxylic acids that are either photodecomposed from reaction (5) or oxidized by 

BDD(●OH) (Brillas et al. 2009; Martínez-Huitle et al. 2015). Accordingly, the inset 

panel of Fig. 2b evidences the higher MCE values determined for PEF as compared to 

EF, being confirmed by the high average values for the former process given in Table 1. 

Identification of primary products 

 Table 2 summarizes the characteristics of INH and two primary products detected 

by GC-MS after 5 and 30 min of EF treatment of 100 mL of 1.39 mM of the drug at j =  

33.3 mA cm-2. These products were isonicotinamide found at 5 min and its 
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hydroxylated derivative identified at 30 min. Note that isonicotinamide has been 

previously reported as a product of INH when it was treated by TiO2 photocatalysis 

with UV radiation (Guevara-Almaraz et al. 2015). To corroborate if this product can 

also be formed from the photolysis of the parent molecule, some assays were made by 

illuminating 200 mL of 2.78 mM INH in a 0.050 M Na2SO4 solution at pH 3.0 with a 

potent lamp of 160 W. After 300 min, isonicotinamide was also identified by GC-MS, 

meaning that INH can be very slowly photolyzed by UVA light.  

 It is expected that the subsequent oxidation of products causes the cleavage of the 

pyridine ring originating short-chain linear carboxylic acids that are mainly present in 

the medium as Fe(III) species (Martínez-Huitle et al. 2014; Moreira et al. 2017). Oxalic, 

oxamic and formic acids were identified and quantified during the PEF treatments, with 

0.50 mM Fe2+ or 0.50 mM Fe3+, of a 0.65 mM INH solution at pH 3.0 and j = 33.3 mA 

cm-2. These three acids are final products since they are directly mineralized to CO2 

(Brillas et al. 2009). Fig. 3a and b illustrates the similar time course of these carboxylic 

acids for the two solutions tested. The main acid was formic, rapidly accumulated up to 

25-28 mg L-1 in only 60 min to rapidly disappear in 120-180 min, indicating a rapid 

photolysis of Fe(III)-formate complexes by UVA light. In contrast, oxalic and oxamic 

acids were accumulated to much lesser extent, and persisted largely until 300-360 min, 

despite the well known rapid photodecarboxylation of Fe(III)-oxalate species under 

UVA illumination (Brillas et al. 2009). This points to a more large production and 

accumulation of Fe(III)-oxalate and Fe(III)-oxamate species that are continuously 

oxidized with BDD(●OH) or photolyzed by UVA radiation. 

 The inset panels of Fig. 3a and b depict a balance of the TOC coming from all 

carboxylic acids, INH and their sum, compared with TOC present in solution. As can be 

seen, the TOC related to carboxylic acids and INH tends to zero at long electrolysis time 
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due to the progress of mineralization, whereas it is always much lower than that 

experimentally determined. This indicates the presence of a large proportion of other 

undetected and more recalcitrant products that explain the slow mineralization process 

not only by PEF, but also by EF of the INH solutions. 

 Based on the aforementioned results, the route of Fig. 4 is proposed for the INH 

mineralization by EF and PEF. The main oxidant is expressed as ●OH, denoting 

BDD(●OH) formed at the anode surface and/or ●OH generated in the bulk. The process 

is initiated by the conversion of the parent molecule to isonicotinamide with loss of 

NH4
+ ion, which can take place: (i) very slowly by photolysis with UVA light, (ii) 

directly by the attack of ●OH onto INH, and (iii) the formation of the Fe(III)-INH 

complex, followed by its oxidation with BDD(●OH). Further attack of ●OH over 

isonicotinamide causes its hydroxylation, with generation of pyridine-4-carboxamide 

hydroxylated. The cleavage of the pyridine ring yields a mixture of carboxylic acids 

such as oxalic, oxamic and formic. These acids can be either mineralized by BDD(●OH) 

or form Fe(III)-carboxylated complexes that are photodecomposed by UVA light with 

Fe2+ regeneration from reaction (5) or directly oxidized by BDD(●OH). The pre-eminent 

formation of NH4
+ during mineralization is remarked as final product along with CO2. 

PEF treatment in a real wastewater matrix 

 The study of the PEF process was extended to a real wastewater adjusted to pH 3.0, 

in which 0.65 mM INH was spiked along with 0.50 mM of Fe2+. This solution was 

treated in a BDD/air-diffusion cell under UVA light (6 W lamp) at j = 33.3 mA cm-2. 

The initial TOC of the resulting solution was 70.5 mg L-1, the sum of 50 mg L-1 from 

INH and 20.5 mg L-1 from the real wastewater, which is due to the presence of natural 

organic matter (NOM) that includes humic and fulvic acids. 
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 Fig 5a shows the decay in INH concentration for the above assay compared to that 

obtained with the same INH concentration in 0.050 M Na2SO4. While in the latter 

conditions all the drug disappeared in 270 min, only about 70% of its concentration was 

reduced at 300 min. This behavior can be accounted for by the parallel attack of 

oxidizing agents onto NOM, diminishing the amount of them that can attack the INH 

molecule. Moreover, humic and fulvic acids can form complexes with Fe(II) and Fe(III) 

(Pullin and Cabaniss 2003), which causes a lower production of ●OH from Fenton’s 

reaction (1). Note that the high Cl− concentration of the wastewater (318 mg L-1) can 

lead to formation of active chlorine species (Cl2/HClO) from Cl− oxidation at the anode, 

which can attack organics competitively with BDD(●OH) and ●OH (Aguilar et al. 2017; 

Flores et al. 2018). 

 The inset of Fig. 5a reveals a slower drug decay in the first region in the real 

wastewater, with a kapp,1-value 0.59-fold lower than in 0.050 M Na2SO4 (see Table 1). 

This can be explained by a quicker formation of the Fe(III)-INH complex, probably due 

to the quicker production of Fe3+ from reaction (1) originated by the more rapid attack 

of ●OH on NOM. This phenomenon is even more evident for the very slow decay found 

in the second region, with a 6-fold decrease of kapp,2 (see Table 1), as expected by a low 

oxidation of the complex by BDD(●OH) since this radical attacks pre-eminently the 

NOM content. 

 Fig. 5b shows that the normalized TOC of the real wastewater matrix containing 

0.65 mM INH also decays more slowly as compared to 0.050 M Na2SO4, being reduced 

by 76% at 540 min. However, the inset of this figure evidences that greater MCE values 

were determined in the real wastewater matrix due to its higher TOC content, also 

reflected in the superior average value of 9.6% listed in the last column of Table 1. It 

should be noted that in the real wastewater matrix, TOC was rapidly reduced during the 
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first 60 min of PEF treatment, whereupon it was slightly inhibited. This can be due to 

the generation of recalcitrant chloroderivatives that are more slowly destroyed with the 

consequent loss of oxidation power of the electrolytic system. 

 Additional assays were made under more realistic conditions by treating a small 

concentration of 130 µg L-1 of INH by EF in both matrices. In 0.050 M Na2SO4 at pH 

3.0, the drug disappeared very rapidly, needing less than 2 min at j = 33.3 mA cm-2 and 

near 7 min at j = 3.3 mA cm-2. This demonstrates the high oxidation power of the 

hydroxyl radicals originated in the BDD/air-diffusion cell to destroy INH. When the 

real wastewater was spiked with 130 µg L-1 of this drug, a much longer time of ca. 20 

min was needed to remove the drug at j = 3.3 mA cm-2, as expected by the slower 

oxidation by generated hydroxyl radical due to their parallel attack onto NOM 

components. These findings show the viability of the Fenton-based processes to treat 

this drug in real systems. 

Conclusions 

 The degradation of INH by EF and PEF with 0.50 mM Fe2+ shows the existence of 

two consecutive kinetic regions, at shorter and longer times, respectively. The pseudo-

first-order profiles of the first region revealed a decrease in kapp,1–value with raising j, 

related to the oxidation of the parent drug with ●OH. In contrast, a much smaller kapp,2-

value was found for the second region, with a little influence of j, ascribed to the 

destruction of a Fe(III)-INH complex by BDD(●OH). TOC decreased regularly, more 

rapidly at higher j, attaining an almost total mineralization with a maximum abatement 

of 94% after 540 min of electrolysis at j = 100 mA cm-2. Increasing j caused a drop in 

MCE due to the acceleration of parasitic reactions of hydroxyl radicals. PEF with 0.50 
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mM Fe3+ as catalyst yielded a single pseudo-first-order decay of the drug, confirming its 

complexation with Fe3+ ion. A similar TOC abatement was found using PEF with either 

0.50 mM Fe2+ or 0.50 mM Fe3+ as catalyst, being greater than that observed in EF. This 

suggests that it was limited by the destruction of products or their Fe(III) complexes 

with BDD(●OH) and UVA light. Two primary intermediates were identified by GC-MS, 

and oxalic, oxamic and formic acids were quantified by ion-exclusion HPLC. A 

reaction scheme involving all these products is proposed for INH mineralization. A final 

PEF study considering INH spiked into a real wastewaster matrix revealed a slower 

degradation and TOC removal, but with higher MCE. 
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Figure captions 

Fig. 1 Degradation curves (a) and TOC decay (b) obtained for the EF treatment of 100 

mL of a 0.65 mM INH (TOC 50 mg L-1) solution with 0.050 M Na2SO4 and 0.50 mM 

Fe2+ using an open and undivided cell with a 3 cm2 BDD anode and 3 cm2 carbon-PTFE 

air-diffusion cathode at pH 3.0, 25 ºC and different current densities (j): () 33.3 mA 

cm-2, () 66.6 mA cm-2 and () 100 mA cm-2. The inset panels depict the pseudo-first-

order kinetics for INH (a) and the mineralization current efficiency (b). 

 

Fig. 2 Degradation curves (a) and TOC decay (b) for the treatment of 100 mL of 0.65 

mM INH solutions under the same conditions of Fig. 1 at j = 33.3 mA cm-2 by () EF 

with 0.50 mM Fe2+ and PEF with a 6 W UVA lamp using () 0.50 mM Fe2+ and () 

0.50 mM Fe3+. The inset panels present the corresponding pseudo-first-order reaction 

for INH decay (a) and the mineralization current efficiency (b). 

 

Fig. 3 Time course of the concentration of oxalic (), oxamic () and formic () 

acids during the PEF treatment shown in Fig. 2, using 0.50 mM Fe2+ (a) and 0.50 mM 

Fe3+ (b). The inset panels show the behavior of TOC arising from: all carboxylic acids 

(), INH (), the sum of carboxylic acids and INH () and remaining TOC (). 

 

Fig. 4 Scheme for the main mineralization route of INH proposed for EF and PEF 

treatments, where ●OH denotes the hydroxyl radical formed at the BDD surface from 

water oxidation or in the bulk from Fenton’s reaction. 

 

Fig. 5 Degradation curves (a) and normalized TOC decay (b) obtained for the PEF 

treatment of 100 mL of 0.65 mM INH in 0.050 M Na2SO4 solution () or tertiary 
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wastewater (), both with 0.50 mM Fe2+ at j = 33.3 mA cm-2, 25 ºC and pH ~ 3.0. The 

inset panels present the pseudo-first-order kinetics for INH (a) and the mineralization 

current efficiency (b). 

 



28 

 

0

20

40

60

80

100

0 60 120 180 240 300 360

[I
N

H
] /

 m
g 

L-1

Time / min

a

 

0

10

20

30

40

50

60

0 60 120 180 240 300 360 420 480 540 600

TO
C

 / 
m

g 
L-1

Time / min

b

 

 

Fig. 1 

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0 5 10 15 20 25 30 35

ln
 ([

IN
H

] 0/[I
N

H
] t)

Time / min

0

1

2

3

4

5
6

0 120 240 360 480 600

%
 M

CE

Time / min



29 

 

0

20

40

60

80

100

0 60 120 180 240 300 360
Time / min

[I
N

H
] /

 m
g 

L-1

a

 

0

10

20

30

40

50

60

0 60 120 180 240 300 360 420 480 540 600

TO
C

 / 
m

g 
L-1

Time / min

b

 

 

 

Fig. 2 

0

2

4

6

8

10

0 120 240 360 480 600

%
 M

C
E 

Time / min

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 5 10 15 20 25 30 35

ln
([

IN
H

] 0/[I
N

H
] t)

Time / min



30 

 

0

5

10

15

20

25

30

0 60 120 180 240 300 360 420

[C
ar

bo
xy

lic
 a

ci
d]

 / 
m

g 
L-1

Time / min

a

 

0

5

10

15

20

25

30

0 60 120 180 240 300 360 420

[C
ar

bo
xy

lic
 a

ci
d]

 / 
m

g 
L-1

Time / min

b

 

 

 

 

 

Fig. 3 

  

0

10

20

30

40

50

0 60 120 180 240 300 360 420

TO
C 

/ m
g 

L-1

Time / min

0

10

20

30

40

50

0 60 120 180 240 300 360 420

TO
C

 / 
m

g 
L-1

Time / min



31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 

m/z: 137
isoniazid

m/z: 122
isonicotinamide

m/z: 138
pyridine-

4-carboxamide hydroxylade

O

HO

OH

O

O

H2N

OH

O
H

OH

O

NH4
+

oxalic acidoxamic acidformic acid

N

O
H
N

NH2

N

O NH2

N

O NH2

OH

Fe(III)-carboxylate
complexes

CO2 + NH4
+

+ +

OHhv

OH

OH

OH

hv

Fe3+

OH

-Fe2+

Fe(III)-complexes

NH4
+

OH

Fe3+



32 

 

0

20

40

60

80

100

0 60 120 180 240 300 360

[IN
H

] /
 m

g 
L-1

Time / min

a

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 60 120 180 240 300 360 420 480 540 600

TO
C 

/ T
O

C
0

Time / min

b

 

 

Fig. 5 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25 30 35

ln
([

IN
H

] 0/[I
N

H
] t)

Time / min

0

5

10

15

20

25

0 120 240 360 480 600

%
 M

C
E

Time / min



33 

 

Table 1 Conditions and results for the degradation of 100 mL of solutions containing isoniazid (INH) at pH 3.0 and 25 ºC by EF and PEF using 

an open and undivided cell with a 3 cm2 BDD anode and 3 cm2 carbon-PTFE air-diffusion cathode. 

 
 

Method 

 
[INH]0 
(mM) 

  
 
Matrix 

 
[Fe2+] 
(mM) 

 
Conductivity 

(mS cm-1) 

  
 j a 
(mA cm-2) 

% INH 
removal 

(t in min) 

 
kapp,1 b 

(min-1) 

 
 

R1
2 

 
kapp,2 c 

(min-1) 

 
 

R2
2 

 
% TOC removal 

(at 540 min) 

 
% MCE 
(average) 

EF 0.65 0.050 M 

Na2SO4 

0.50 6.8 33.3 100 (300) 0.2106 0.995 0.0172 0.999 74 3.4 

 0.65 0.050 M 

Na2SO4 

0.50 6.8 66.6 100 (210) 0.0904 0.970 0.0374 0.998 88 2.9 

 0.65 0.050 M 

Na2SO4 

0.50 6.8 100 100 (210) 0.0375 0.982 0.0355 0.998 94 1.8 

PEF 0.65 0.050 M 

Na2SO4 

0.50 6.8 33.3 100 (270) 0.1659 0.994 0.0209 0.989 84 6.2 

 0.65 0.050 M 

Na2SO4 

0.50d 6.8 33.3 100 (270) 0.0205 0.989 - - 88 5.8 

 0.65 RWWf 0.50 2.5 33.3 70 (300) 0.0986 0.978 0.0033 0.946 76 9.6 
a Current density 
b kapp,1: apparent rate constant of single (PEF with Fe3+) or first (in EF and PEF) region. 
c kapp,2: apparent rate constant of second region. 
d Fe3+ instead of Fe2+ 
f RWW: real wastewater 
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Table 2 Products identified by GC-MS after 5 and 30 min of EF degradation of 100 mL of a 

1.39 mM isoniazid solution in 0.050 M Na2SO4 with 0.50 mM Fe2+ at pH 3.0 using a stirred 

BDD/air-diffusion cell at 33.3 mA cm-2, or after 300 min of photolysis of 200 mL of 2.78 mM 

of INH in 0.050 M Na2SO4 at pH 3.0 using a 160 W UVA lamp. 

Compound Molecular 
structure 

Retention time 
(min) 

m/z Fragments 
(leaving group) 

Isoniazid O
NH2

NH

N  

25.5 
 

137 
 

106 (–NHNH2)  
78 (=CO) 

51 (=NCH) 

Isonicotinamide O NH2

N  

26.2 122 106 (–NH2) 
78 (=CO) 

51 (=NCH) 

Pyridine-4-carboxamide 
hydroxylated 

O NH2

N

OH

 

8.98 
 

138 
 

122 (–NH2 or =O) 
107 (–OH and –N=, or, 

–OH and –NH2) 
77 (–CONH2 and –OH) 

 

 

 


	Real wastewater

