

Macroevolutionary patterns of habitat transitions in aquatic Coleoptera

Adrián Villastrigo Carbajo

Aquesta tesi doctoral està subjecta a la llicència <u>Reconeixement- NoComercial –</u> <u>SenseObraDerivada 4.0. Espanya de Creative Commons.</u>

Esta tesis doctoral está sujeta a la licencia <u>Reconocimiento - NoComercial – SinObraDerivada</u> <u>4.0. España de Creative Commons.</u>

This doctoral thesis is licensed under the <u>Creative Commons Attribution-NonCommercial-NoDerivs 4.0. Spain License.</u>

Adrián Villastrigo Carbajo

Macroevolutionary patterns of habitat transitions in aquatic Coleoptera

Adrián Villastrigo Carbajo

Macroevolutionary patterns of habitat transitions in aquatic Coleoptera

OCHTHEBIUS Next 10 rockpools

> Doctoral Thesis 2019

Facultad de Biología Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales Programa de Doctorado: Biodiversidad

Macroevolutionary patterns of habitat transitions in aquatic Coleoptera

Memoria presentada por Adrián Villastrigo Carbajo para optar al grado de doctor por la Universidad de Barcelona

Trabajo realizado en el Instituto de Biología Evolutiva (CSIC-UPF) Barcelona, junio del 2019

Doctorando

Adrián Villastrigo Carbajo

Director

Codirector

Tutor

Ignacio Ribera Galán Investigador Científico Instituto de Biología Andrés Millán Sánchez Profesor titular Universidad de Murcia Carles Ribera Almerje Profesor titular Universidad de Barcelona

"...ignorance more frequently begets confidence than does knowledge: it is those who know little, and not who know much, who so positively assert that this or that problem will never be solved by science"

Darwin, C. (1871) *The descent of man, and selection in relation to sex*. John Murray.

Recommended citation:

Villastrigo, A. (2019). Macroevolutionary patterns of habitat transitions in aquatic Coleoptera (PhD thesis). Universitat de Barcelona, Barcelona, Spain.

Cover desing by PeloPantón (www.pelopanton.com)

Contents

Abstract	1
Resumen de la tesis	5
General Introduction	9
General Objectives	27
Advisors' report	31
Chapters	35
Chapter 1. A new classification of the tribe Hygrotini Portevin, 1929 (Coleoptera: Dytiscidae: Hydroporinae)	37
Chapter 2. Evolution of salinity tolerance in the diving beetle tribe Hygrotini (Coleop- tera, Dytiscidae)	83
Chapter 3. A molecular phylogeny of the tribe Ochthebiini (Coleoptera, Hydraenidae, Ochthebiinae)	113
Chapter 4. A new species of <i>Micragasma</i> J. Sahlberg, 1900 (Coleoptera: Hydraenidae) from Crete	179
Chapter 5. Irreversible habitat specialisation does not constraint diversification in hy- persaline water beetles	195
Chapter 6. Habitat preferences, body size and diversification in a speciose lineage of diving beetles	229
General Discussion	299
Conclusions	307
References	313
Supplements	327
Paper 1. Villastrigo, A., Ribera, I., Manuel, M., Millán, A., and Fery, H. (2017). A new classification of the tribe Hygrotini Portevin, 1929 (Coleoptera: Dytiscidae: Hydrae- nidae). <i>Zootaxa</i> , 4317(3) , 499-529.	329
Paper 2. Villastrigo, A., Fery, H., Manuel, M., Millán, A., and Ribera, I. (2018). Evolu- tion of salinity tolerance in the diving beetle tribe Hygrotini (Coleoptera: Dytiscidae). <i>Zoologica Scripta</i> , 47 , 63-71.	360
Paper 3. Villastrigo, A., Jäch, M.A., Cardoso, A., Valladares, L.F., and Ribera I. (2019). A molecular phylogeny of the tribe Ochthebiini (Coleoptera, Hydraenidae, Ochthebiinae). Systematic Entomology, 44(2) , 273-288	378
Paper 4. Hernando, C., Villastrigo, A., and Ribera, I. (2017) A new species of <i>Micra-gasma</i> J. Sahlberg, 1900 (Coleoptera: Hydraenidae) from Crete. <i>Aquatic Insects</i> , 38 , 185-196.	421
Biosketch	433

Abstract

Understanding the evolutionary processes underlying extant biodiversity may help us to comprehend why species richness is not equally distributed between clades. One of the main causes to explain the disparity of species richness is the development of key innovations in particular clades, increasing or decreasing their capabilities to occupy new environments, to exploit novel resources or to cope with competition. The present thesis focuses on explaining the macroevolutionary consequences of two of the most common habitat transitions in aquatic environments: between environments with different degree of salinity, and between running and standing waters. Among inhabitants of aquatic environments aquatic Coleoptera are one of the most diverse, with representatives living in all kind of environments, including both running and standing waters and, not infrequently, saline environments. The most speciose aquatic Coleoptera families living in aquatic habitats are Hydrophilidae, Dytiscidae and Hydraenidae, but only the evolution of the ecological transitions of the former have been previously studied under a phylogenetic perspective. In this thesis, we assessed the evolutionary patterns of selected tribes belonging to the other two families. Despite aquatic Coleoptera being a relatively well-studied fauna, we needed to address several systematic modifications that revealed the true evolutionary history of the studied groups, describing a genus and three subgenera of Hygrotini, plus other modifications of both Hygrotini and Ochthebiini taxonomy (Chapters 1 and 3), setting the basis of this thesis.

Transitions between environments with different degree of saline waters was addressed for Hygrotini (Dytiscidae family, Chapter 2) and Ochthebiini (Hydraenidae family, Chapter 5). We detected multiple origins of tolerance to saline waters, with a gradual acquisition in almost all cases and only direct transitions to hypersaline waters in fairly isolated clades, mostly associated with coastal rockpools. Moreover, tolerance to hypersaline waters was found to be irreversible, but it did not follow an evolutionary dead-end pattern as lineages exhibiting this trait still maintain their diversification capabilities (as seen in *Cobalius* subgenus, Chapter 5). Additionally, our results seem to link the origin of lineages exhibiting tolerance to saline waters to periods of global aridification, in accordance with previous studies in Hydrophilidae. Transitions between running and standing waters were studied in Hydroporini (Dytiscidae family, Chapter 6). We unveiled that species living in lotic and lentic habitats display similar diversification patterns, but the habitat preference is affecting the body size of the species, with reduced body sizes in specialized environments (i.e. smaller species in running waters). Finally, the field sampling in saline habitats led to the discovery of a new species for science, described as *Ochthebius* (*Micragasma*) *minoicus* (Chapter 4).

Resumen de la tesis

Estudiar los procesos evolutivos que ocasionan la biodiversidad actual puede ayudarnos a comprender mejor como la riqueza de especies está distribuida de forma desigual en diferentes clados. Una de las causas principales para explicar este fenómeno es el desarrollo de innovaciones clave que modifican las capacidades de las especies para sobrevivir en nuevos ambientes, acceder a nuevos recursos, o para lidiar la competencia con otras especies.

Esta tesis se focaliza en explicar las consecuencias macroevolutivas de dos de las transiciones de hábitat más comunes en ecosistemas acuáticos: aquellas entre ecosistemas con diferente nivel de salinidad, y aquellas entre ecosistemas de aguas corrientes y aguas estancas. Entre los habitantes de ambientes acuáticos, los escarabajos son uno de los grupos más diversos, con especies capaces de vivir en todo tipo de ambientes, incluyendo aguas corrientes y estancas, y en ocasiones, ambientes salinos. Las familias más diversas de escarabajos acuáticos son Hydrophilidae, Dytiscidae e Hydraenidae, aunque solo la primera ha sido estudiada desde una perspectiva evolutiva. En esta tesis, evaluamos los patrones evolutivos de varias tribus pertenecientes a las otras 2 familias.

Los objetivos principales de la tesis incluyen comprender el origen y la forma en la que se originan estas transiciones entre ambientes, así como comprender que patrones desencaden. Secundariamente, la tesis trata de ampliar el conocimiento ligado a los ecosistemas salinos, mucho menos estudiados que los ecosistemas de agua dulce. La tesis se ha elaborado según el siguiente esquema:

Taxonomía (Capítulos 1 y 3)

A pesar de que los escarabajos acuáticos son un grupo bien estudiado en general, ha sido necesario realizar modificaciones en la clasificación de algunos grupos para reflejar su verdadera historia evolutiva, describiendo un nuevo género y tres subgéneros para la tribu Hygrotini, dividiéndose actualmente en dos géneros: *Clemnius* e *Hygrotus*, divididos a su vez en 2 y 4 géneros respectivamente (*Clemnius* subg. y *Cyplopius* para *Clemnius*; *Coelambus*, *Hygrotus* subg., *Hyphoporus* y *Leptolambus* para *Hygrotus*). Adicionalmente, se han realizado pequeñas modificaciones tanto en Hygrotini como en Ochthebiini, siendo la base sobre la que se han desarrollado los posteriores estudios filogenéticos de esta tesis.

Transiciones entre ambientes salinos (Capítulos 2 y 5)

Las transiciones entre ambientes con diferente nivel de salinidad han sido estudiadas para Hygrotini (familia Dytiscidae, Capítulo 2) y Ochthebiini (familia Hydraenidae, Capítulo 5). Se han detectado múltiples orígenes de la tolerancia a la salinidad, adquiriéndose esta característica de forma gradual en la mayoría de los casos. Los casos en los que se han descubierto transiciones directas de ambientes de agua dulce hacia ambientes hipersalinos, son clados aislados en la filogenia y asociados con ambientes de charcas costeras.

Además, la tolerancia de aguas hipersalinas ha demostrado ser una característica irreversible, aunque no por ello se trata de un *dead-end* evolutivo (callejón sin salida), ya que las especies que viven en estos ambientes conservan su capacidad de diversificación, llegando incluso a ser superior a la de otras especies (por ejemplo, el subgénero *Cobalius*, Capítulo 5). A si mismo, nuestros resultados relacionan el origen de linajes tolerantes a la salinidad con periodos de aridificación a escala global, un patrón que confirma el encontrado en la familia Hydrophilidae.

Transiciones entre ambientes de agua corriente y agua estanca (Capítulo 6)

En cuanto a las transiciones entre aguas corrientes y estancas estudiada en Hydroporini (familia Dytiscidae, Capítulo 6), hemos encontrado patrones similares en las especies que viven en ambos ambientes, aunque los análisis sugieren la posibilidad de una mayor tasa de diversificación en ambientes de aguas estancadas. Nuestros resultados han destacado una correlación entre la preferencia del hábitat de las especies con su tamaño corporal, de manera que las especies que se encuentran en ambientes más especializados (en aguas corrientes) son aquellas con menor tamaño. Adicionalmente, se ha demostrado que la transición entre ambientes no es *per se* un factor que afecta al tamaño corporal de las tesis.

Biodiversidad en ambientes salinos (Capítulo 4)

Finalmente, gracias a los numeros trabajos de campo realizados enfocados en los ambientes salinos, se ha podido detectar la presencia de numerosos linages crípticos (Capítulo 5), además de la descripción de la especie *Ochthebius (Micragasma) minoicus* (Capítulo 4), perteneciente a un subgénero poco conocido con tan sólo otras 2 especies descritas.

General Introduction

Evolution can be understood as a natural process of change over a period of time, which Darwin associated with gradual modifications, but other authors put forward the idea of rapid events (e.g. Eldredge and Gould, 1972). In any case, evolution should be considered at different scales, from microevolution (evolution at short temporal scale) to macroevolution (evolution at large temporal scale). Whereas microevolution usually refers to evolution at level of the individual, e.g. mating selection of giraffe weevils (LeGrice *et al.*, 2019), macroevolution works at the level of populations/species and over larger time periods, explaining the origin of new species and the hierarchy above them (Reznick & Ricklefs, 2009).

Research on macroevolution can enlighten us about the reasons for having such massive extant biodiversity, which Larsen *et al.* (2017) estimated from 1 to 6 billion species living on Earth, but of which only 1.5 million species are described – and more than 1 million are insects (Stork, 2018). But the species richness is not equally distributed between clades (groups of related animals). In fact, there is a huge variability in the number of species among them, e.g. within the described biodiversity, about 25% are represented by beetles, the most speciose group (Zhang *et al.*, 2011). Such differences may be mainly explained by two hypotheses (McPeek & Brown, 2007) - see Figure 1:

• Different diversification rates. Clades with differences in their species richness may be explained by the rate at which a particular clade accumulates species. This hypothesis explains how young clades can be as speciose as older clades.

• Different diversification times. Besides diversification rates, it seems obvious that older clades had a greater time to accumulate species than younger clades. Therefore, clades with similar evolutionary patterns and diversification rates should yield the same diversity over time, leading to a higher number of species in older clades.

Figure 1. Summary of the main hypotheses for explain contrasting biodiversity across lineages. Different diversification rates may explain why younger clades are as speciose as older clades - or even more speciose (A), whilst time may explain similar number of species of equally older clades (B).

Although both hypotheses are valid and non-exclusive, diversification rates are believed to assume most of the variation among major clades (Wiens, 2017). Recent studies (Henao-Díaz *et al.*, 2019; Li and Wiens, 2019) have demonstrated that clade age is the major explanation of extant species at regional scale, leaving open the answer to the question of *how species have diversified at global scale*. In the cases where clade age is not the main driver of diversification, other questions appear: What are the differences between clades that explain the disparity in extant species numbers? And how did those differences modify diversification rates? The most straightforward answer, but at the same time, not a simple one, is that organisms evolved key innovations (also called evolutionary novelties or traits) that reshaped their capabilities to diversify over time (Jablonski, 2008). Classic examples of key innovations include morphological novelties like the origin of flowers (Endress, 2011) and feathers (Prum & Brush, 2002), but other studies focus on functions like life-history strategy (Helmstetter *et al.*, 2016).

Traits are one of the main topics in evolutionary studies (Wagner and Lynch, 2010), and some traits demonstrated to be associated with an alteration of either extinction rates, e.g. self-fertilization in plants (Wright *et al.*, 2013), or speciation rates, e.g. immune system

in teleost fishes (Malmstrøm et al., 2016), or, in some cases, both (Rolland et al., 2014). Also, other factors can influence imbalance diversity of species across clades, like colonization of new areas, e.g. adaptive radiation (see Gavrilets and Losos, 2009), competition between species (Meyer and Kassen, 2007; Silvestro et al., 2015), habitat filtering (Rodrigues and Diniz-Filho, 2016) or ecological niche differentiation (Moen and Morlon, 2014). Other traits may promote specialization to extreme conditions, opening ecological opportunities that alter speciation and extinction rates. In most cases, these extreme specializations are thought to be irreversible (Kelley & Farrel, 1998), and almost negligible alterations of environmental settings can increase extinction rates in what is called an evolutionary dead-end (Figure 2). Recent studies have tried to understand the implications of evolutionary dead-ends, but it is not clear whether extreme ecological specialization will lead to an increase in extinction rates (Cieslak et al., 2014; Day et al.,

Figure 2. Adaptations to extreme environments, such the ones of animal living in caves, are thought to affect negatively the diversification rate, but recent researches question this prior belief. Picture of the stygobitic *Iberoporus pluto* (Modified from Ribera and Reboleira, 2019).

2016; Stern et al., 2017; Cyriac et al., 2018).

Studying species diversity

To study novel traits and diversification across lineages, researchers use evolutionary trees or phylogenies. A phylogeny, a term firstly used by Ernst Haeckel (1866), is a branching diagram that represents the biological diversity in a hierarchical way. Phylogenies are built to reconstruct the evolutionary history of extant taxa, showing patterns of diversification that can be used to compare relationship between clades.

Building phylogenies is a complex task that can be achieved with different types of information whenever that information keeps a track of the evolutionary history, like morphological characters (e.g. Alarie and Michat, 2007), fossil remains (e.g. Brusatte and Carr, 2016) or DNA sequences (e.g. Carle *et al.*, 2015). Each methodology has its own advantages and disadvantages, but this thesis was done using DNA sequences for several reasons:

• For comparing closely related organisms, morphology is likely a good choice. For comparing more distantly related organisms, it is likely that the chosen characters are not comparable or not informative between organisms. In the case of DNA, sequences rely in the same nucleotide language with homologous sequences, making comparison possible between all species.

• Some organisms show a high degree of morphological changes whilst others preserve almost the same morphology during long periods of time (e.g. morphological stasis in living fossils, like coelacanths or limulids). Also, morphological differenciation of cryptic species is not always possible (García-Porta *et al.*, 2017). As DNA is continuously changing, it is possible to track the evolutionary history of all organisms whether morphological differences give or not clues about their relations.

• Fossil remains provide direct evidence of extinct taxa, and can be used during the inference of phylogenies, e.g. for calibrating clade ages, (McKenna *et al.*, 2015). For lineages with a poor fossil record (Zhang *et al.*, 2018) DNA is the only chance to study their history.

However, there are also inconveniences of working with DNA. Different sources of DNA may lead to diverse outcomes because they may have distinctive evolutionary histories (Salichos and Rokas, 2013). Selecting the appropriate sequences that reflect the real evolutionary history of life is complex. Animals present two main sources of DNA: nuclear

and mitochondrial genomes. The nuclear genome contains molecular information about the species, and it is half paternally and maternally inherited. On the other side, mitochondrial genome is maternally inherited. These sources also have different evolutionary rates, with approximately 10-fold increased mutation rate in the mitochondrial genome compared to the nuclear one (Brown *et al.*, 1979; Haag-Liautard *et al.*, 2008). A higher mutation rate implies higher number of substitutions in the same nucleotide position of an alignment, saturating the DNA and erasing the track of evolution in the sequence (Philippe *et al.*, 2011). Owing to DNA saturation, comparison of highly modified sequences may show conflicting phylogenetic signals. As the mitochondrial DNA is in general more easily saturated than nuclear DNA, is less ideal for studying deeply divergent taxa.

Once selected and obtained the appropriate genetic markers, the next step is aligning the sequences from each of the markers. Nucleotide alignment for extant taxa is the starting point for reconstructing evolutionary history, and alignments need to consider how those sequences evolved and which substitution of nucleotides may have experienced. For that purpose, the nucleotide substitution model that correlates better with the sequences should be used. These models estimate the genetic divergence (amount of substitutions) between DNA sequences considering that those sequences shared a common ancestor. There are a large number of models with different assumptions that reflect different probabilities of occurring a particular substitution, from the simplest Jukes-Cantor model (Jukes and Cantor, 1969) considering only one parameter (changes between nucleotides are identical), to the most complex Generalized Time-Reversible model (Tavaré, 1986) with no prior assumptions and establishing a different parameter for each kind of substitution plus considering unequal base composition. Another complex model is HKY (Hasegawa et al., 1985), which estimates different parameters for transversions (substitution of a purine for a pyrimidine or vice versa) and transitions (substitution of a purine for another purine or a pyrimidine for another pyrimidine) and unequal nucleotide composition. Model selection has been considered a critical step prior to reconstruct phylogenies (Hoff et al., 2016), but a recent study suggests that using a complex model with fewer prior assumptions will lead to similar inferences than the best fitted model (Abadi et al., 2019).

There are different approaches to make a molecular phylogeny, most of them starting with a multiple alignment of DNA sequences. During the last years, the two most common approaches have been Maximum Likelihood (developed by Felsenstein, 1981) and Bayesian Inference, both exploring the phylogenetic space in order to find the best tree or set of trees by changing parameter values and calculating likelihood of the hypothesis (in phylogenetic inference, the tree in consideration is the hypothesis). Besides, both approaches need to apply an evolutionary model to reconstruct the phylogeny, Maximum

Likelihood finds the parameter values that maximize the probability of the alignment giving the tree, whilst Bayesian Inference calculates the probability of a true tree based on the alignment. Bayesian Inference also considers prior information about the expected outcomes to reduce the computational time, but as the result is influenced by this information, it is better to use ample priors that will not compromise the result (Wang and Yang, 2014).

Although the approach used to reconstruct a phylogeny may be correct, the resolution obtained may not be enough to get a good support of the topology. The resolution of a tree depends on the support values calculated during the inference, and can be increased with the use of additional molecular markers that track the evolutionary history of the studied species. But increasing the number of markers usually involves a considerable increment of cost and time. Next Generation Sequencing (NGS) technologies are becoming essential to obtain massive amounts of data at a reasonable price, opening new fields like metabarcoding (Taberlet *et al.*, 2012) or metagenomics (Quince *et al.*, 2017). The latter has lead to a series of papers about a new methodology called Mitochondrial Metagenomics (e.g. Crampton-Platt *et al.*, 2015; Andújar *et al.*, 2015; Linard *et al.*, 2018). It is used to build *de novo* mitochondrial genomes from a bulk DNA sample (Campton-Platt *et al.*, 2016). As chapters 5 and 6 have been done using this methodology, a more detailed explanation it is presented below.

Mitochondrial Metagenomics

The main objective of this methodology is to increase the number of sequences available to boost the support of phylogenetic reconstruction (see Figure 3 for a summary of a mitochondrial metagenomics pipeline). This approach relies on the use of Sanger sequences as a baits database to be able to identify the expected mitochondrial genomes - in our case, we selected cytochrome c oxidase subunit I and the large ribosomal RNA as baits because they are located at both sides of the control region of the mitochondrial genome. Pooled DNA samples have to be equimolar to assure a similar number of reads during sequencing. However, terminals closely related (less than ca. 5 % differences in their mitochondrial bait sequences) should not be pooled together to avoid the assembly of chimeras. The last laboratory procedure is to built NGS libraries with insert-size as large as possible, as it has proved to improve the quality of the assemblies, obtaining higher coverage and more complete mitogenomes (Chen, Y.C. *et al.*, 2018). As a general interpretation, each library can contain up to 60 terminals, and two libraries can share a low input MiSeq run.

Next procedures are performed with bioinformatic tools. Library processing starts by checking its integrity and quality, followed by the necessary steps to obtain high-quality data (i.e. remove adapters and sequences with poor quality values). The most useful programmes for this task are FastQC, Trimmomatic (Bolger *et al.*, 2014), PrinSEQ (Schmieder and Edwards, 2011) and fastp (Chen, S. *et al.*, 2018). For a better performance of the assembler software, short reads can be filtered based on their similarities with other mitochondrial genomes using BLAST (Madden *et al.*, 2009). Assemblies have to be performed with different software with alternative assembling approaches to validate the outputs; in our case, we used IDBA-UD (Peng *et al.*, 2012), RAY-meta (Boisvert *et al.*, 2012), WGS-assembler (Myers *et al.*, 2000) and SPAdes (Bankevich *et al.*, 2012). Each assembler will

Figure 3. Mitochondrial Metagenomics pipeline is divided in two main procedures, wet lab (A) and bioinformatics (B). Wet lab consist in preparing an equimolar pool of DNA and sequencing with Next-Generation Sequencing technologies. Bioinformatics consists in a series of filters where raw reads are assembled into contigs, and a posterior identification. provide a *fasta* file as output containing all the contigs found. For validating those *super-contigs* (contigs assembled with other contigs), assemblies of all outputs need to be done - to be considered a legitimate *supercontig* it needs the coincidence of at least 2 different assemblers. Identification of *supercontigs* is performed by blasting them against a custom baits database (obtained at the beginning of this methodology). The final step is the manual annotation of the mitochondrial genomes, using MITOS (Bernt *et al.*, 2013) annotations as a template and multiple references of published mitochondrial genomes (see Figure 4).

Figure 4. Mitochondrial genome of *Ochthebius* (*M*.) *minoicus*. A complete mitochondrial genome has 13 protein coding genes, 2 ribosomal genes and 22 tRNAs genes.

Calibrating trees

The relationship between the amount of molecular change across sequences and a measure of divergence time has become a key concept for reconstruction phylogenies and a crucial issue to understand the tempo and mode of evolutionary processes. The most basic approach relies on the assumption that the rate of molecular evolution is constant across lineages and time (strict molecular clock, Zuckerkandl and Pauling, 1965), but the rate of molecular evolution is influenced by several components, like the height of flowering plants (Lanfear *et al.*, 2013), the body size of primates (Steiper and Seiffert, 2012) or climate-niche evolution of amphibians (Kozak and Wiens, 2010). Owing to the heterogeneous rate of molecular evolution, more complex assumptions are necessary to quantify its pace, like that different rates are present across a phylogeny, but some branches may share the rate based on a common history (local clocks, Yoder and Yang, 2000) or even reduce the expected uniformity of rates (relaxed clock, Drummond, *et al.*, 2006). It is also possible to calibrate the rate of molecular substitution based on rates estimated by closely related lineages (e.g. the rates estimated for *Carabus* genus are a good approximation to measure the rate in the same family, Carabidae or in closely related ones, e.g. Dytiscidae, Andújar *et al.*, 2012).

Estimates of divergence times have usually broad confident intervals and imprecise dates, but a more complex approach can be use incorporating other sources of information that constrain the confident interval of particular nodes, such as fossil record or biogeographic events (minimum and maximum age constrains respectively). For example, fossil dating relies on the idea of the superposition of rock strata, enabling the dating of the occurrence of extinct taxa (Benton *et al.*, 2009). The quality of the fossil record is inversely correlated with age, and effective information can be recovered from fossils for at least the last 540 million years (Benton *et al.*, 2000). Morphological resemblance of fossils with extant taxa allow researchers to constrain node age on phylogenetic analyses, using the guidelines of Hennig (1965) to place a fossil as stem or crown information.

Calculating diversification rates

Diversification rates allow researchers to address questions about macroevolutionary patterns (Rabosky *et al.*, 2014). Diversification rate is modelled as the difference between two parameters: speciation rate and extinction rate. Unlike the estimates of extinction rates using phylogenies of extant taxa, that seem to be sensitive and error prone (May and Moore, 2016; Rabosky, 2009; Title and Rabosky, 2018), speciation rates can be inferred more precisely. Inferring diversification rates using phylogenies of extant taxa is intricate, but the patterns of internal nodes in time-calibrated phylogenies contain appropriate information about the pattern of diversification events (Ricklefs 2007). For that reason, comprehensive phylogenies are a requirement to not underestimate the number of speciation events (Barraclough and Nee, 2001). Underestimate the number of evolutionary lineages (i.e. cryptic species and undiscovered species) can mislead the outcome, thus, a sampling containing the whole number of described species does not imply a complete

phylogeny. Also, phylogenetic reconstruction will lead to the most likely set of trees among the sampling space, but not necessary displaying the true evolutionary history, affecting the estimates of speciation and extinction rates (Kubo and Iwasa, 2006).

During the last decades, different methodologies made possible to estimate diversification rates. Simpler models just calculate diversification rate using clade age and species richness under different extinction scenarios (Magallón and Sanderson, 2001). More complex models link diversification rates with traits, using a SSE model (State-dependent Speciation and Extinction model). These models test diversification shifts against a binary trait (BiSSE, Maddison *et al.*, 2007) or a multiple state trait (MuSSE, FitzJohn, 2012). Recently, SSE models have proved to produce false positives (see Caetano *et al.*, 2018), so the inclusion of a hidden state reports a reliable state-dependent diversification and legitimate the models; HiSSE (Beaulieu and O'Meara, 2016) or the more recent SecSSE (Herrera-Alsina *et al.*, 2019) are the most updated methods to account for rate heterogeneity using hidden states (applicable to binary traits or multiple state traits respectively).

In contrast with state-dependent models, state-independent diversification models can identify the position of a diversification shift (or shifts) in the phylogeny. This approach has become popular with the use of Bayesian Analysis of Macroevolutionary Mixtures (BAMM, Rabosky, 2014), which assumes rate heterogeneity through time and lineages. BAMM explores the number of shifts and their position using jump-reversible Markov Chain Monte Carlo methods, estimating those parameters from the posterior distribution. During the last years, a discussion about the use of BAMM arose (Moore *et al.*, 2016; Rabosky *et al.*, 2017; Meyer and Wiens, 2018; Rabosky, 2018; Meyer *et al.*, 2018; Rabosky, 2019), showing that BAMM estimates are moderately accurate even with incomplete taxon sampling (around 25 %) and clade size is a critical factor to accurate estimates (extreme variance - inverse function of clade size - mislead to estimate rates). The latter was also found by Kodandaramaiah and Murali (2018) using simulated data, being BAMM the less accurate methodology under small clade sizes.

Trait reconstruction

Understanding the origin of novel traits and how they evolved may shed light about macroevolutionary processes and the mechanisms underlying diversification. Traits can be classified based on the type of data they provide: some traits focus on the presence of a particular quality whilst others target a continuous degree of change. The former are called discrete characters and can display multiple states or categories for the same trait

(e.g. reconstruction the ancestral habitat of a genus with species living in both epigean and subterranean waters, Toussaint *et al.*, 2016), whereas the latter are called continuous characters (e.g. body size evolution, Désamoré *et al.*, 2018). Both types of traits use different evolutionary models to reconstruct the evolution of the character.

• Discrete traits: The simplest methodology to reconstruct the evolution of a discrete trait relies on the assumption that character evolution is relatively slow and species sharing the same character are likely to inherit it from a common ancestor. This idea that minimizing the number of changes across states will lead to the most likely reconstruction is called Parsimony (Hennig, 1965). However, more complex assumptions can be modelled, taking into account branch lengths: a slow rate of character evolution force closely related species to share the same character, whilst faster rates do not imply the same outcome. A Markov process is frequently used to estimate transition rates between characters using several assumptions and comparing their statistical power: (i) transitions between states have the same evolutionary rate; (ii) transition rates are symmetrical between states, but multiple states have different rates; and (iii) all transition rates are different.

Advanced methodologies incorporate cost matrixes denoting asymmetrical character evolution. An extreme example of these asymmetrical traits can be the habitat preference for insect clades with species living in caves: insects adapted to live inside caves, e.g. eyeless animals with thin cuticles (see Howarth, 2009), are not likely able to survive in epigean environments, so transition from cave to epigean environments can be blocked in these matrixes whereas epigean to cave can still be estimated.

• Continuous traits: Traits related with morphological measurements are continuous variables, such as the body size (LeGrice *et al.*, 2019). Continuous variables can be modelled using a simple Brownian motion evolutionary model (also called Random walk model), which accounts for an increase of variation in a trait over a period of time considering the pace of evolutionary change (Kaliontzopoulou and Adams, 2016). Again, more complex situations can be modelled based on our prior beliefs, like a Brownian Motion model assuming that the direction of trait evolution is not random, and optimum trait values influence evolutionary trends (known as Ornstein-Uhlenbeck model, Lande, 1976), or differential rate heterogeneity through time associated with fastest rates at the clade origin (Early-burst model, Harmon *et al.*, 2010).

Aquatic beetles and their habitats

Beetles are the most successful order of animals on Earth, with more species than any other (Bilton *et al.*, 2019). It is not surprising that such diversity results in a broad ecological and geographical distribution, with species capabilities allowing them to live in extreme habitats, such as caves (Polak, 2005) or arid environments (Parker and Lawrence, 2001). Beetles that live during some phase of their life in aquatic environments are called water beetles, and multiple independent transitions have led to radiations with more than 13.000 species in 30 beetle families (Short, 2018) - see Figure 5. The most remarkable trait that grant access to inhabit aquatic environments as adults is the capability to create a gas store under their elytra (Calosi *et al.*, 2007) to breath beneath the water. However, water beetles exhibit other impressive adaptations that enable them to live in all kind of aquatic environments, like stygobitic *Paroster* living in groundwater (Leys & Watts, 2008) or

Figure 5. Relative abundance of described water beetles by groups (edited from Short, 2018). The core diversity of water beetles can be found in Dytiscidae, Hydrophilidae and Hydraenidae families.

Ochthebius living in hypersaline waters (Abellán *et al.*, 2007; 2009). Extreme adaptations to those environments are found, for example, in *Paroster macrosturtensis* and *Ochthebius glaber*. The former retains negative phototactic behaviour from an ancestral interstitial species (Langille *et al.*, 2018), and the latter displays an extreme tolerance to hypersaline waters, reaching nearly 250 g/l - more than 7 times the ocean mean concentration (see Millán *et al.*, 2011).

Water beetles are distributed in all continents except Antarctica, with higher number of species in the Palaearctic region, followed by Neotropical, Afrotropical and Oriental regions, all of them outnumbering the Australian and Nearctic regions (Jäch & Balke, 2008). Species have different distribution ranges, being some species cosmopolitans whereas others are endemic for a particular region. That disparity is due to their distinct dispersal capabilities (for a detailed revision of fly capability see Jackson, 1952; also see Bilton *et al.*, 2001), but those species linked to unstable habitats (e.g. temporary standing waters) are more likely to disperse to new environments than others (e.g. those that live in permanent streams) - see below for detailed information about habitat transitions.

Habitats

Water beetles are found in all kind of aquatic environments, from standing waters to running waters, including groundwaters (Cooper *et al.*, 2002), intertidal rock crevices (Perkins, 2007), hygropetric and humicolous habitats (Perkins, 2006) - see Figure 6. This variety of habitats does not entail that species can live everywhere, because most of them are habitat specialists, like the species of *Ochthebius* subgenus *Calobius*, only found in intertidal rockpools (Villastrigo *et al.*, 2019, Chapter 3) or *Paroster* living in Western Australia groundwaters (Watts and Humphreys, 2006). Studying why species are able to live in one habitat but not in others, and why different related species have different habitat preferences, can shed light of the evolutionary patterns driving water beetle history. To understand these patterns, transitions between contrasting aquatic habitats should be compared. Focusing on habitat preference, we can highlight two main transitions: 1) freshwater vs saline waters, 2) standing waters vs running waters.

• Freshwater and saline waters: Inland saline water habitats are both temporary or permanent environments with salinities higher than 3 g/L and are found around the world (Williams, 2002; Millán *et al.*, 2011). Saline waters have a specific fauna, as their particular physiochemical characteristics may be a barrier for non-adapted species (Herbst, 2001). Although species deal with an energetic cost linked with

Figure 6. Water beetles can live in a broad range of habitats. Some examples are, from left to right and from top to bottom: salt lakes (Larnaca salt lake, Cyprus), mountain streams (Talassemtane National Park, Morocco), roadside pools (Plathiani Lagkada, Crete), rockpools (west from Qolla L-Bajda, Gozo) and salt pans (south from El Jadida, Morocoo).

stressful conditions, species may also benefit with lower costs due to avoiding competition and predation from other species (see Southwood, 1988 and Arribas *et al.*, 2018 for more details). All the most diverse families of water beetles - Dy-tiscidae, Hydrophilidae and Hydraenidae - have species living in saline waters (Millán *et al.*, 2011), but only Hydrophilidae (*Enochrus* genus) had been previously studied in an evolutionary framework (Arribas *et al.*, 2014; Pallarés *et al.*, 2017a). It has been shown that tolerance to saline waters has appeared multiple times independently during aridification periods (Arribas *et al.*, 2014), and those tolerant species diversified retaining that trait. However, saline water inhabitants have been

demonstrated to be generalist in their fundamental niches, with a similar fitness in freshwater habitats to closely related freshwater species (Arribas *et al.*, 2018), implying a preference for saline waters but not the impossibility to live in freshwater.

 Standing waters and running waters: Aquatic beetles are primary divided based on the habitats where they live, with a main division between species living in standing water and species living in running waters (Gioria et al., 2014). Both habitat types present differences based on their physical and chemical characteristics - in essential long-term habitat stability - leading to different ecological dynamics at geological scale (Ribera and Vogler, 2000). Even though running waters can be physically altered (e.g. modification of the river bed location or drying up temporarily), they are more stable at geological scale and remain linked to other aquatic habitats within a drainage network. Small standing water bodies - the ones where aquatic beetles are usually found - are generally disconnected from other aquatic habitats in time and space (Hutchinson, 1957), and are likely to be filled by sediments over small periods of time (Ribera et al., 2001). A much richer classification includes multiple habitats, but they can be linked to one of these two main types (e.g. rivers, streams, creeks or waterfalls are running waters whilst ponds, pools, salt-pans or rockpools are standing waters), although some of them may be not as straightforward as others (e.g. pools associated with river sides or lake margins with wave action - Nilsson and Holmen, 1995). In general, most of the species are associated with one habitat type, but some widespread generalist can live in both types (Ribera, 2008).

Some studies about the consequences of living in different habitats have been made. Ribera and Vogler (2000) tested whether species living in running or standing waters have different range sizes, and they found a correlation. Monaghan *et al.* (2005) and Hof *et al.* (2006) also found the same correlation for other aquatic insects (mayflies and dragon-flies respectively): species living in standing waters are forced to disperse when their habitat disappears, so those species have greater dispersal abilities that species living in running waters. Same result has been found for water beetles by Abellán and Ribera (2011), Millán *et al.* (2011) and Sánchez-Fernandez *et al.* (2012). Some of the hypothesized consequences of their different range sizes are an increased interpopulation gene flow in standing waters species, in contrast with a higher level of endemism (Ribera *et al.*, 2003) and higher turnover in running water environments (Ribera *et al.*, 2001; Abellán *et al.*, 2009).

This thesis is focused on two water beetle families, dytiscids (Dytiscidae, also called diving beetles) and hydraenids (Hydraenidae, also called minute moss beetles) - Figure 7. In addition to Hydrophilidae, they are the most speciose families among water

Figure 7. Draws of a diving beetle (A, *Nebrioporus canaliculatus*) and a hydraenid (B, *Ochthebius heydeni*). Draws by Carmen Victoria Romo Lanchas.

beetles (Jäch & Balke, 2008). They have species all around the world, including some species living in extreme latitude - e.g. some hydraenids occurring in subantarctic islands, like *Meropathus chuni* in Kerguelen (Bameul, 1989) or some diving beetles found in Greenland, like *Hydroporus morio* (Larson *et al.*, 2000). Each family belongs to different suborders of Coleoptera, displaying contrasting morphologies: diving beetles get their name for the capabilities to dive, that is the reason of presenting a streamlined body with long legs (Miller and Bergsten, 2016); on the other hand, hydraenids are not great diving animals and most walk on the bottom of their habitats (Valladares *et al.*, 2018). They also exhibit different body sizes, with hydraenids being small beetles between 0.8 to 3.4 mm long whilst diving beetles have a broad range of sizes, from the smallest *Limbodessus* around 0.9 mm long to the biggest *Megadytes* of 47 mm long. Both families have species able to live in all kind of environments, and due to their broad geographical distribution and an easy sampling, make them ideal models to study evolutionary questions.

General Objectives

Objectives and thesis outline

The main focus of this thesis is to obtain answers to some of the most frequent questions on evolutionary biology: what is the origin of novel traits and what are the evolutionary consequences of acquiring those traits; considering habitat transitions as novel traits. For answering these questions, new approaches needed to be developed combining different areas of knowledge. The two main objectives are:

• Determine the tempo and mode of evolution of the most common habitat transitions in aquatic Coleoptera: between environments with different degree of salinity, and from running water to standing waters and vice versa.

• Examine if habitat transitions have determined the evolutionary patterns of aquatic Coleoptera, more specifically on diversification rates.

More specific questions addressing the previous two objectives are:

• How supported are the current systematic status of Hygrotini, Ochthebiini and Hydroporini tribes? Is it necessary to perform any change? Is there any contradiction with the current classification, based largely on morphological characters?

- · How many times did tolerance to salinity evolve and how it originated?
- · Is the origin of tolerance to salinity linked to periods of aridification?
- Does extreme ecological specialization (i.e. tolerance to hypersaline waters) act as an evolutionary dead-end?

• Do diversification rates differ between species living in contrasting environments (i.e. between running and standing waters), and if so, do rates change during habitat transitions or along the evolution within each habitat?

• Does habitat specialization promote morphological specialization?, do specific habitats constrain the body size of species?

During the progress of this thesis, we needed to establish a framework to address both objectives and specific questions. The covered aspects were:

• Compilation of ecological information of habitats for each of the species in the studied tribes (Chapters 2, 5 and 6).

 Increase the knowledge of biodiversity associated with saline environments by effective field work, exploring undescribed taxa using molecular tools (Chapters 2, 4 and 5).

• Obtain robust phylogenies of Hydroporini, Hygrotini and Ochthebiini tribes, rearranging current taxonomy whenever was needed (Chapters 1, 3 and 6).

• Use a combination of classical plus Next Generation Sequencing tools to unveil the relationships of divergence taxa (Chapters 5 and 6).

This thesis is composed by six chapters, the first four chapters were published on international peer-review journals indexed in SCI while the last two chapters are in preparation to be submitted soon. Chapters are formatted as articles, presenting exactly the same content as those already published. Slight differences between chapters and articles refer only to reference style, abbreviations, the inclusion of references to chapters when self-citation was done and more readable figures of supplementary material. These six chapters are:

• Chapter 1. Villastrigo, A., Ribera, I., Manuel, M., Millán, A., and Fery, H. (2017) A new classification of the tribe Hygrotini Portevin, 1929 (Coleoptera: Dytiscidae: Hydraenidae). *Zootaxa*, **4317(3)**, 499-529.

• Chapter 2. Villastrigo, A., Fery, H., Manuel, M., Millán, A., and Ribera, I. (2018) Evolution of salinity tolerance in the diving beetle tribe Hygrotini (Coleoptera: Dytiscidae). *Zoologica Scripta*, **47**, 63-71.

• Chapter 3. Villastrigo, A., Jäch, M.A., Cardoso, A., Valladares, L.F., and Ribera I. (2019) A molecular phylogeny of the tribe Ochthebiini (Coleoptera, Hydraenidae, Ochthebiinae). *Systematic Entomology*, **44(2)**, 273-288.

• Chapter 4. Hernando, C., Villastrigo, A., and Ribera, I. (2017) A new species of *Micragasma* J. Sahlberg, 1900 (Coleoptera: Hydraenidae) from Crete. *Aquatic Insects*, **38**, 185-196.

• Chapter 5. Villastrigo, A., Arribas, P., Cardoso, A., and Ribera, I. (2019) Irreversible habitat specialisation does not constraint diversification in hypersaline water beetles. *Manuscript in preparation*.

• Chapter 6. Villastrigo, A., Abellán, P., Cardoso, A., and Ribera, I. (2019) Habitat preferences, body size and diversification in a speciose lineage of diving beetles. *Manuscript in preparation*.

Advisors' report

Dr. Ignacio Ribera Galán and Andrés Millán Sánchez, as advisors of the PhD Thesis of Adrián Villastrigo Carbajo entitled "Macroevolutionary patterns of habitat transitions in aquatic Coleoptera", report that the PhD Thesis is formed by six chapters consisting in 4 published papers and two complete manuscripts in preparation to be submitted.

Chapter 1. Villastrigo, A., Ribera, I., Manuel, M., Millán, A., and Fery, H. (2017) A new classification of the tribe Hygrotini Portevin, 1929 (Coleoptera: Dytiscidae: Hydraenidae). *Zootaxa*, **4317(3)**, 499-529.

Zootaxa had an impact factor in the lasted edition of the Journal of Citation Reports (2017) of 0.931. This journal is in the third quartile in the category "Zoology" (94th of 166).

Doctorate contributions: A. Villastrigo participated in the field sampling, laboratory work and data analyses, and contributed in the writing, discussion and editing of manuscript.

Co-authors contributions: I. Ribera, A. Millán and M. Manuel participated in the field sampling. I. Ribera contributed to the analyses of the data. H. Fery leadered the morphological analyses. I. Ribera and A. Millán led the experimental design and supervised the writing. All co-authors contributed in the discussion and edition of the manuscript.

Chapter 2. Villastrigo, A., Fery, H., Manuel, M., Millán, A., and Ribera, I. (2018) Evolution of salinity tolerance in the diving beetle tribe Hygrotini (Coleoptera: Dytiscidae). *Zoologica Scripta*, **47**, 63-71.

Zoologica Scripta had an impact factor in the latest edition of the Journal of Citation Reports (2017) of 3.057. This journal is in the first quartile in the category "Zoology" (10th of 166) and in the second quartile in the category "Evolutionary Biology" (21th of 48).

Doctorate contributions: A. Villastrigo participated in the field sampling, laboratory work and data analyses, and contributed in the writing, discussion and editing of manuscript.

Co-authors contributions: I. Ribera, A. Millán and M. Manuel participated in the field sampling. I. Ribera contributed to the analyses of the data. I. Ribera and A. Millán led the experimental design and supervised the writing. All co-authors contributed in the discussion and edition of the manuscript.

Chapter 3. Villastrigo, A., Jäch, M.A., Cardoso, A., Valladares, L.F., and Ribera I. (2019) A molecular phylogeny of the tribe Ochthebiini (Coleoptera, Hydraenidae, Ochthebiinae). *Systematic Entomology*, **44(2)**, 273-288.

Systematic Entomology had an impact factor in the latest edition of the Journal of Citation Reports (2017) of 4.237. This journal is in the first quartile in the categories "Entomology" (3th of 96) and "Evolutionary Biology" (12th of 49).

Doctorate contributions: A. Villastrigo participated in the field sampling, laboratory work and data analyses, and contributed in the writing, discussion and editing of manuscript.

Co-authors contributions: A. Cardoso led the laboratory work. M. Jäch, I. Ribera and L.F. Valladares participated in the morphological analyses. M. Jäch, I. Ribera and L.F. Valladares contributed in the discussion and writing of the manuscript.

Chapter 4. Hernando, C., Villastrigo, A., and Ribera, I. (2017) A new species of *Micragasma* J. Sahlberg, 1900 (Coleoptera: Hydraenidae) from Crete. *Aquatic Insects*, **38**, 185-196.

Aquatic Insects had an impact factor in the latest edition of the Journal of Citation Reports (2017) of 0.583. This journal is in the fourth quartile in the categories "Entomology" (76th of 96).

Doctorate contributions: A. Villastrigo participated in the field sampling and contributed in the writing of manuscript.

Co-authors contributions: All co-authors participated in the field sampling and in the discussion and writing of the manuscript.

Chapter 5. Villastrigo, A., Arribas, P., Cardoso, A., and Ribera, I. (2019) Irreversible habitat specialisation does not constraint diversification in hypersaline water beetles. *Manuscript in preparation for submission*.

Doctorate contributions: A. Villastrigo participated in the experimental design, field sampling, laboratory work and data analyses, and contributed in the writing, discussion and editing of manuscript.

Co-authors contributions: I. Ribera and P. Arribas led the experimental design. A. Cardoso led the laboratory work. I. Ribera and P. Arribas contributed in the discussion and

writing of the manuscript.

Chapter 6. Villastrigo, A., Abellán, P., Cardoso, A., and Ribera, I. (2019) Habitat preferences, body size and diversification in a speciose lineage of diving beetles. *Manuscript in preparation for submission*.

Doctorate contributions: A. Villastrigo participated in the experimental design, field sampling, laboratory work and data analyses, and contributed in the discussion and writing of the manuscript.

Co-authors contributions: I. Ribera and P. Abellán participated in the experimental design. A. Cardoso led the laboratory work. I. Ribera and P. Abellán contributed in the discussion and writing of the manuscript.

Barcelona, 19th June 2019

Ignacio Ribera Galán

Andrés Millán Sánchez

Chapters

Chapter 1

A new classification of the tribe Hygrotini Portevin, 1929 (Coleoptera: Dytiscidae: Hydroporinae)

Edited version of: Adrián Villastrigo, Ignacio Ribera, Michaël Manuel, Andrés Millán and Hans Fery. Published on: *Zootaxa* (2017) **4317 (3)**: 499-529.

Abstract

The tribe Hygrotini Portevin, 1929 is currently composed of four genera, Heroceras Guignot, 1950, Herophydrus Sharp, 1880, Hygrotus Stephens, 1828 (with two subgenera, Coelambus Thomson, 1860, and Hygrotus s. str.), and Hyphoporus Sharp, 1880. A recent molecular phylogeny of the tribe with ca. 45% of the 137 described species of Hygrotini, including the type species of all genus-level taxa, revealed extended para- or polyphyly of the current genera and subgenera (Villastrigo et al., 2018, Chapter 2), for which reason a new classification of the tribe Hygrotini is proposed. Within Hygrotini only two genera are recognised: Clemnius n. gen. (with two subgenera: Clemnius s. str. with type species Hyphydrus decoratus Gyllenhal, 1810, and Cyclopius n. subgen. with type species Hydroporus acaroides LeConte, 1855) and Hygrotus (with four subgenera: Coelambus, Hygrotus s. str., Hyphoporus n. stat. and Leptolambus n. subgen. with type species Dytiscus impressopunctatus Schaller, 1783). Two genera are synonymised under Hygrotus s. str., Herophydrus n. syn. and Heroceras n. syn. The following 67 new combinations, for species thus far treated under the genera Heroceras, Herophydrus, Hygrotus and Hyphoporus, result from the new classification: Clemnius (s. str.) berneri (Young & Wolfe, 1984) n. comb., Clemnius (s. str.) decoratus (Gyllenhal, 1810) n. comb., Clemnius (s. str.) hydropicus (LeConte, 1852) n. comb., Clemnius (s. str.) laccophilinus (LeConte, 1878) n. comb., Clemnius (s. str.) sylvanus (Fall, 1917) n. comb., Clemnius (Cyclopius) acaroides (LeConte, 1855) n. comb., Clemnius (Cyclopius) farctus (LeConte, 1855) n. comb., Clemnius (Cyclopius) marginipennis (Blatchley, 1912) n. comb., Hygrotus (s. str.) assimilis (Régimbart, 1895) n. comb., H. (s. str.) bilardoi (Biström & Nilsson, 2002) n. comb., H. (s. str.) capensis (Régimbart, 1895) n. comb., H. (s. str.) confusus (Régimbart, 1895) n. comb., H. (s. str.) descarpentriesi (Peschet, 1923) n. comb., H. (s. str.) discrepatus (Guignot, 1954) n. comb., H. (s. str.) endroedyi (Biström & Nilsson, 2002) n. comb., H. (s. str.) gigantoides (Biström & Nilsson, 2002) n. comb., H. (s. str.) gigas (Régimbart, 1895) n. comb., H. (s. str.) goldschmidti (Pederzani & Rocchi, 2009) n. comb., H. (s. str.) gschwendtneri (Omer-Cooper, 1957) n. comb., H. (s. str.) hyphoporoides (Régimbart, 1895) n. comb., H. (s. str.) ignoratus (Gschwendtner, 1933) n. comb., H. (s. str.) inquinatus (Boheman, 1848) n. comb., H. (s. str.) janssensi (Guignot, 1952) n. comb., H. (s. str.) kalaharii (Gschwendtner, 1935) n. comb., H. (s. str.) morandi (Guignot, 1952) n. comb., H. (s. str.) muticus (Sharp, 1882) n. comb., H. (s. str.) natator (Biström & Nilsson, 2002) n. comb., H. (s. str.) nigrescens (Biström & Nilsson, 2002) n. comb., H. (s. str.) nodieri (Régimbart, 1895) n. comb., H. (s. str.) obscurus (Sharp, 1882) n. comb., H. (s. str.) obsoletus (Régimbart, 1895) n. comb., H. (s. str.) ovalis (Gschwendtner, 1932) n. comb., H. (s. str.) pallidus (Omer-Cooper, 1931) n. comb., H. (s. str.) pauliani (Guignot, 1950) n. comb., H. (s. str.) quadrilineatus (Régimbart, 1895) n. comb., H. (s. str.)

reticulatus (Pederzani & Rocchi, 2009) n. comb., H. (s. str.) ritsemae (Régimbart, 1889) n. comb., H. (s. str.) rohani (Peschet, 1924) n. comb., H. (s. str.) rufus (Clark, 1863) n. comb., H. (s. str.) sjostedti (Régimbart, 1908) n. comb., H. (s. str.) spadiceus (Sharp, 1882) n. comb., H. (s. str.) sudanensis (Guignot, 1952) n. comb., H. (s. str.) travniceki (Šťastný, 2012) n. comb., H. (s. str.) tribolus (Guignot, 1953) n. comb., H. (s. str.) variabilis secundus (Régimbart, 1906) n. comb., H. (s. str.) variabilis variabilis (Guignot, 1954) n. comb., H. (s. str.) verticalis (Sharp, 1882) n. comb., H. (s. str.) vittatus (Régimbart, 1895) n. comb., H. (s. str.) wewalkai (Biström & Nilsson, 2002) n. comb., Hygrotus (Hyphoporus) anitae (Vazirani, 1969) n. comb., H. (Hyphoporus) aper (Sharp, 1882) n. comb., H. (Hyphoporus) bengalensis (Severin, 1890) n. comb., H. (Hyphoporus) bertrandi (Vazirani, 1969) n. comb., H. (Hyphoporus) caliginosus (Régimbart, 1899) n. comb., H. (Hyphoporus) dehraduni (Vazirani, 1969) n. comb., H. (Hyphoporus) elevatus (Sharp, 1882) n. comb., H. (Hyphoporus) geetae (Vazirani, 1969) n. comb., H. (Hyphoporus) josephi (Vazirani, 1969) n. comb., H. (Hyphoporus) kempi (Gschwendtner, 1936) n. comb., H. (Hyphoporus) montanus (Régimbart, 1899) n. comb., H. (Hyphoporus) nilghiricus (Régimbart, 1903) n. comb., H. (Hyphoporus) oudomxai (Brancucci & Biström, 2013) n. comb., H. (Hyphoporus) pacistanus (Guignot, 1959) n. comb., H. (Hyphoporus) pugnator (Sharp, 1890) n. comb., H. (Hyphoporus) severini (Régimbart, 1892) n. comb., H. (Hyphoporus) subaequalis (Vazirani, 1969) n. comb., H. (Hyphoporus) tonkinensis (Régimbart, 1899) n. comb.

Introduction

The diving beetle tribe Hygrotini (Dytiscidae: Hydroporinae) is a relatively small and homogeneous lineage, with 137 species currently included in four genera: *Heroceras* Guignot, 1950, *Herophydrus* Sharp, 1880, *Hyphoporus* Sharp, 1880, and *Hygrotus* Stephens, 1828, the latter with two subgenera, *Hygrotus* s. str. and *Coelambus* Thomson, 1860 (Nilsson & Hájek, 2017a). They have a predominantly Holarctic and Ethiopian distribution, with some species reaching the Oriental and the north of the Neotropical regions (Nilsson & Hájek, 2017a).

The taxonomic history of Hygrotini has experienced several modifications since the original description of the tribe by Portevin (1929). Previous to this author, Sharp (1882: 389) listed Coelambus (in which he included species currently in Hygrotus and Herophydrus) as well as Herophydrus and Hyphoporus (both erected two years earlier) as the three first genera in his "Group Hydroporini". Portevin (1929: 180) excluded from Hydroporini the genera Oxynoptilus Schaum, 1867 (junior objective synonym of Hydrovatus Motschulsky, 1853), Hyphydrus Illiger, 1802, and Hygrotus, and erected for these three genera the tribe Hygrotini, based on the common presence of an oblique epipleural carina near the elytral shoulders which separates the smaller anterior part (the genicular area or fossa, which receives the front- and midleg knees when the legs are folded; cf. Sharp, 1882: 242) from the longer posterior part of the elytral epipleura. However, most authors continued to include *Hygrotus* and allied genera within the wider tribe Hydroporini as defined by Sharp (1882). Nilsson & Holmen (1995: 30) reinstated the tribe Hygrotini, excluding the genera Hyphydrus and Hydrovatus (which were already in their own tribes Hyphydrini and Hydrovatini respectively), but including the genus Pseudhydrovatus Peschet, 1924, which subsequently was shown to be a junior synonym of Hydrovatus (see Biström, 2002).

The generic concepts within Hygrotini also suffered multiple changes. Thomson (1860) realised that *Hygrotus* sensu Stephens (1828) comprised two different morphological groups according to the aspect of the anterior margin of clypeus, establishing the genus *Coelambus* for the species without clypeal rim. The status of both *Coelambus* and *Hygrotus* has generated controversy among different authors, as the character of the clypeal rim in fact shows considerable variation (see Falkenström, 1933; Balfour-Browne, 1934; Anderson, 1971; or Biström & Nilsson, 2002; and the Appendix for a detailed discussion). Sharp (1882) considered *Coelambus* as a genus divided into different groups according to the morphology of the anterior part of the head and the clypeus, with *Dytiscus inaequalis* Fabricius, 1777 (the type species of the genus *Hygrotus*) included in his Group I. Other authors followed his criterion (e.g. Fall, 1919), but Balfour-Browne (1940) and Hatch (1953) (among

others) considered again *Coelambus* as a subgenus of *Hygrotus*, a treatment that has prevailed since then (although Miller & Bergsten, 2016 recently re-established *Coelambus* as a valid genus, but without detailed discussion).

As for the other genera currently included in Hygrotini, Sharp (1880: cxlviii) erected within Hydroporini the new genus *Herophydrus* for what was known as *Hydroporus hyphy-droides* Perris, 1864 (= *Hyphydrus guineensis* Aubé, 1838), plus five undescribed species from Africa and Madagascar, and the new genus *Hyphoporus* for *Hydroporus solieri* Aubé, 1838, and two other undescribed species. Two years later, Sharp (1882: 997; nec Branden 1885: 39) synonymised *H. hyphydroides* with *H. guineensis* and described the species mentioned in Sharp (1880) as new, five in *Herophydrus* and two in *Hyphoporus*. It is notable that in Sharp (1882) the current *Herophydrus musicus* (Klug, 1834) was maintained in the genus *Coelambus*.

The identity of the genera of Hygrotini has been problematic ever since. Guignot (1950) was the first author who characterised *Hyphoporus* and *Herophydrus* by using as main character the morphology of the male genitalia, asymmetric in the first and symmetric in the second. Finally, *Heroceras* was erected by Guignot (1950) for a species from Madagascar (*Herophydrus descarpentriesi* Peschet, 1923) with some peculiar characters (such as e.g. dilated antennae, see below).

Until recently the internal phylogeny of Hygrotini has only been addressed as part of wider studies on the phylogeny of Dytiscidae, or the revision of particular genera. Remarkably, all published studies failed to recover the respective monophyly of *Hygrotus* and *Herophydrus*, either using molecular (Ribera *et al.*, 2002, 2008; Abellán *et al.*, 2013; Miller & Bergsten, 2014) or morphological data, both of larvae (Alarie & Michat, 2007) and adults (Miller, 2001; Biström & Nilsson, 2002). The phylogenetic position of the genera *Hyphoporus* and *Heroceras* has only been addressed using morphological data by Biström & Nilsson (2002), who found *Hyphoporus* as sister to the studied species of *Coelambus*, and *Heroceras* as sister to the species of *Herophydrus* plus *Hygrotus*.

In a previous work by the same authors (Villastrigo *et al.*, 2018, Chapter 2) we reconstructed the evolution of the tolerance to salinity within tribe Hygrotini, which includes some of the few diving beetles able to live at salt concentrations more than double that of seawater (e.g. *Hygrotus salinarius* (Wallis, 1924) or *H. pallidulus* (Aubé, 1850); Timms & Hammer, 1988;, Picazo *et al.*, 2010). With that purpose, a molecular phylogeny of the tribe was estimated, including ca. 45% of the described species. Results revealed that two of the four currently recognised genera of Hygrotini and one subgenus were para- or polyphyletic

(*Hygrotus*, *Herophydrus* and subgenus *Coelambus*), and the monotypic *Heroceras* was deeply nested within a clade of Madagascan *Herophydrus*. The need of a new classification of Hygrotini in order to reconcile the taxonomic ordination of the tribe with its phylogeny was clear, but it was considered more appropriate to present the corresponding taxonomic changes in a separate work.

Material and Methods

Phylogenetic data: We used the phylogeny of Hygrotini obtained in Villastrigo *et al.* (2018, Chapter 2), which included sequence data from 99 specimens of 61 species representing all four currently recognised genera of Hygrotini (Table 1). Most importantly, the phylogeny included the type species of all nine genus-group names within Hygrotini (Nilsson & Hájek , 2017a). Outgroups included a selection of species of Hydroporini, and trees were rooted on *Laccornis* Gozis, 1914, considered to be outside Hydroporini and Hygrotini and in a basal position within Hydroporinae (Ribera *et al.*, 2008; Miller & Bergsten, 2014).

For a detailed explanation of the methods used to obtain the molecular data and the phylogeny see Villastrigo *et al.* (2018, Chapter 2). In summary, the phylogeny was built using fragments of seven genes in six sequencing reactions, three mitochondrial: (1) 5' end of cytochrome c oxidase subunit 1 (COI-5, the "barcode" fragment, Hebert *et al.*, 2003), (2) 3' end of cytochrome c oxidase subunit 1 (COI-3), (3) 5' end of 16S RNA plus the Leucine tRNA plus 5' end of NADH dehydrogenase subunit I (16S); and three nuclear: (4) an internal fragment of the large ribosomal unit 28S RNA (28S), (5) an internal fragment of the small ribosomal unit, 18S RNA (18S) and (6) an internal fragment of Histone 3 (H3). Vouchers and DNA samples of all specimens used in the phylogeny are kept in the collections of the Institute of Evolutionary Biology (IBE, Barcelona) and Museo Nacional de Ciencias Naturales (MNCN, Madrid).

To reconstruct the phylogeny, sequences were aligned using the online version of MAFFT 7 with the G-INS-I algorithm (Katoh *et al.*, 2009) and a fast Maximum Likelihood (ML) heuristic algorithm in RAxML-HPC2 (Stamatakis, 2006) in the CIPRES Science Gateway (Miller *et al.*, 2010), using a partition by genes with a GTR+G evolutionary model independently estimated for each partition and assessing node support with 100 pseudoreplicas with a rapid bootstrapping algorithm (Stamatakis *et al.*, 2008).

Morphological data: Specimens were studied with an Olympus SZX16 stereomicroscope. For the figures, stacks of micrographs were made with a Canon EOS 650D camera attached to the stereomicroscope. These stacks were subsequently treated with the image stacking software Helicon Focus Pro version 6.4.1. For the SEM-micrographs, specimens were placed on stubs and coated with gold (Sputter Coater, Quorum Technologies Ltd., Ashford, England). Micrographs were taken with an ESEM XL30 (Philips, Amsterdam, The Netherlands) and Scandium FIVE software (Olympus, Münster, Germany) in the Phyle-tisches Museum (Jena, Germany). Adobe Photoshop CS5 software was used to retouch micrographs and ink drawings. Most ink drawings are reproduced from Fery (2003) with the permission of M.A. Jäch (Vienna, Austria); this is not mentioned in the legends of the figures.

To estimate the likely phylogenetic relationships of the species for which no molecular data could be obtained, and to complete the taxonomic rearrangement of the tribe Hygrotini (see below), we studied all described species of the subgenera *Hygrotus* and *Coelambus* with the only exceptions of *H*. (*Coelambus*) *artus* (Fall, 1919), known only from the holotype and considered to be possibly extinct (see Anderson, 1983), and *H*. (*Coelambus*) *femoratus* (Fall, 1901), which is likely a junior synonym of *H*. (*Coelambus*) *nubilus* (LeConte, 1855) (see Anderson, 1983). Additionally, we have studied a selection of species of *Herophydrus* and *Hyphoporus* (see Table 1 for the studied material).

Species for which no molecular data were available were considered to be closely related to those showing a high morphological similarity, based both on external characters and on the female and male genitalia. For species without obvious close relatives we identified diagnostic characters or character combinations for the main clades in the phylogeny, and placed these species according to the presence or absence of these characters. We used Mesquite v3.20 (Maddison & Maddison, 2017) to manually place all species in their estimated position in the phylogenetic tree (used as a backbone tree), and collapsed uncertain nodes to create polytomies.

Throughout the text of the present work, we follow the classification and nomenclature of Nilsson & Hájek (2017a, b) until we introduce our new classification. The following abbreviations are used in the text: TL (total length) and MW (maximum width); MNHN is used for "Muséum National d'Histoire Naturelle, Paris, France" and FSCA for "Florida State Collection of Arthropods, Gainesville, Florida, USA".

A new classification of the tribe Hygrotini

According to the phylogenetic results of Villastrigo *et al.* (2018, Chapter 2) the monophyly of Hygrotini is recovered with strong support, as well as the division of Hygrotini

into two clades (see Fig. 1; here the former generic and subgeneric names are still used): (A) three Nearctic and one Palaearctic species of subgenera *Hygrotus* and *Coelambus* and (B) the remaining species of the tribe. The latter was in turn divided into four further clades: (B1) a group of Palaearctic species of *Coelambus* including *Hygrotus* (*Coelambus*) *confluens* (Fabricius, 1787) (the type species of *Coelambus*), (B2) the two sampled species of *Hyphoporus* (including its type species, *H. solieri*), (B3) a large group of species including *Heroceras*, all sampled *Herophydrus* (including its type species *H. guineensis*) and most species of *Coelambus*, in turn divided into two sister clades, one with mostly Palaearctic species and a second with mostly Nearctic species. The internal phylogeny of the main clades was in general in good agreement with the recognised species groups among *Hygrotus* and *Coelambus* based on morphology (see e.g. Anderson, 1971, 1976, 1983; Fery 1992, 1995, 2003).

Given the para- or polyphyly of the genera *Hygrotus* and *Herophydrus* and of the subgenus *Coelambus* in their current concepts, we provide here a new classification of the tribe with the aim to avoid para- or polyphyletic genera and subgenera. This section includes brief descriptions of the principal diagnostic characters of the newly classified taxa, which were delimited according to the main clades of the phylogeny (see Table 1 for a complete checklist of the species of the tribe, and Fig. 2 for a dendrogram representing graphically the new classification).

Tribe Hygrotini Portevin, 1929: 180, as tribe of subfamily Hydroporinae.

Type genus: Hygrotus Stephens, 1828: 38.

Diagnosis: Within Hydroporinae, species of Hygrotini are usually characterised by the following combination of characters:

- metepisternum (metepiventrite in Miller & Bergsten, 2016: 139) reaching mesocoxal cavities, not separated by mesepimeron (in contrast to members of Vatellini);
- apices of elytra and last abdominal ventrite not acuminate (in contrast to members of Methlini);
- prosternal process elongate with apex narrowly pointed or rounded (in contrast to members of Hydrovatini);
- dorsal (anterior) margin of metafemur separated from metacoxal lobe by metatrochanter (in contrast to members of Laccornellini and Laccornini);

• humeral portion of epipleuron with oblique carina delimiting genicular fossa (character shared with members of Hydrovatini, Hyphydrini and genus *Rhithro-dytes* Bameul, 1989 in Hydroporini; cf. Fery, 2013, 2016; see Fig. 53 for *Rhithro-dytes agnus* Foster, 1992, and Figs 49–52 for some *Hygrotus* species).

• metatarsal claws equal in length, with exception of members of *C. sagina-tus*-group (see Fery, 1992, 1995, 2003) and in contrast to members of Hyphydrini and Pachydrini (see e.g. Pederzani, 1995; Miller & Bergsten, 2016).

None of these characters is, however, an unambiguous synapomorphy of the group. We introduce here a potentially unambiguous synapomorphy of tribe Hygrotini, recognised by one of us (H.F.). In many members of Hydroporinae the antennal cavities in the fronto-lateral part of the head are rather deep and more or less conical (much flatter e.g. in Hyphydrini), allowing the movement of the first antennomere (the scape). These cavities are delimited dorsally by the anterior border of the clypeus ("b" in Figs 3–6). Inside each cavity there is a capsule in which the base of the scape (the condyle) is articulated. This capsule is delimited by a distinct more or less circular carina ("a" in Figs 3–6). In all studied species of Hygrotini there is an additional - more or less semicircular - carina ("c" in Figs 4–6) which is closer to the border of the clypeus and surrounds in part the other carina. In the species of Hydroporini this additional carina is not present (see Fig. 3 for Hydroporus dorsalis (Fabricius, 1787) or fig. 33 in Fery & Bouzid 2016 for Tassilodytes parisii (Gridelli, 1939)). In a few species of Hygrotini the second carina is difficult to observe or is very narrow (as in e.g. Heroceras descarpentriesi and Hygrotus (Coelambus) salinarius), but is nevertheless clearly perceptible when the specimens are properly illuminated and orientated. However, in most specimens studied of *Hygrotus* (*Coelambus*) masculinus (Crotch, 1874), the second carina is reduced to a short piece near the mandible.

According to the phylogeny reconstructed in Villastrigo *et al.* (2018, Chapter 2) the tribe Hygrotini is divided into two well supported monophyletic lineages, which are considered here with generic rank. Each of these two lineages is in turn divided into generally well supported clades, which are treated as subgenera. In some cases these clades have lower support in the molecular phylogeny, and are also not well defined morphologically (see below and Appendix for a discussion on the clypeal bead, the main character used so far to differentiate genera and subgenera within Hygrotini), so we opted for a subgeneric rather than a generic rank.

Due to the new classification 67 species are for the first time included in the genus *Clemnius* **n. gen**. or in *Hygrotus*, thus their names becoming new combinations. We have listed all these species in Table 1 marked with "**n. comb.**" These changes have also gen-

erated some homonymies which will be resolved in a separate work (H. Fery, manuscript in preparation).

The genera and subgenera are treated below in the same order as in Fig. 2, starting from the lower part of the figure.

Genus Clemnius n. gen.

Type species: Hyphydrus decoratus Gyllenhal, 1810: XVI, by present designation

The new genus *Clemnius* **n. gen**. includes eight described species distributed in the Nearctic (including the north of Mexico, sometimes treated as Neotropical) and in the Palaearctic zoogeographical region (Fig. 2 and Table 1).

Diagnosis: In the new classification *Clemnius* **n. gen**. is one of two genera of the tribe Hygrotini. All species of this and the second genus *Hygrotus* have two carinae in each antennal cavity (see Figs 4–6), a unique character among the entire subfamily Hydroporinae. The new genus—which corresponds to clade A in Fig. 1—is a heterogeneous assembly of relatively small species with different morphological characters. It is subdivided into two sister-clades each treated as a subgenus: *Cyclopius* **n. subgen.** and *Clemnius* s. str. **n. subgen.** (see Fig. 2).

Subgenus Cyclopius n. subgen.

Type species: Hydroporus acaroides LeConte, 1855: 294, by present designation.

The subgenus *Cyclopius* **n. subgen.** contains three species of the former subgenus *Hygrotus* (see Fig. 2 and Table 1).

Diagnosis: Body shape subglobose (TL/MW ca. 1.35–1.6); body size small (TL 2.1–2.6 mm) (cf. Fig. 7 for *Clemnius (Cyclopius) acaroides*). Head with anterior clypeal margin truncate and slightly emarginated, border not produced forwards; bead broadly interrupted medially (*C. (Cyclopius) acaroides* and *C. (Cyclopius) marginipennis* (Blatchley, 1912)) or absent (*C. (Cyclopius) farctus* (LeConte, 1855)); antennomeres simple, not broadened. Elytra with margin in lateral view rather strongly ascending to shoulder (similar to Fig. 54); epipleuron comparably broad, broader than mesotibia distally; carina meeting inner margin of epipleuron forming a comparably small angle (< ca. 135°; similar to Fig. 49). Colour pattern of elytra variable, from yellowish with dark vittae to more or less uniformly dark brown-

ish or blackish; venter brownish to dark brownish, partly paler.

Males with last abdominal ventrite with deep medial depression, its anterior margin with two long spines projecting backwards and more posteriorly with two rather short ones directed perpendicular to surface (see fig. 24B in Larson *et al.*, 2000), a unique character in Hygrotini and also in Dytiscidae. Median lobe symmetric, robust in *C. (Cyclopius) acaroides* (Fig. 19) and *C. (Cyclopius) marginipennis*, but very thin in *C. (Cyclopius) farctus*. Parameres with condylar process short, forming an obtuse angle with distal part (see Fig. 29; cf. figs. 10–12 in Anderson 1971). Male metatarsal claws of equal length.

Etymology: From the Greek χύκλος (kyklos = circle), referring to the semicircular shape of the clypeus of the species of the subgenus. The gender of the name is masculine.

Distribution: Nearctic: Canada and USA.

Main habitat types: Species of this subgenus are typically known from lentic freshwater habitats; Blatchley (1912: 330) reported *C*. (*Cyclopius*) *marginipennis* from "shallow brack-ish ponds".

Subgenus Clemnius s. str. n. subgen.

Type species: *Hyphydrus decoratus* Gyllenhal, 1810: XVI, by present designation.

The subgenus *Clemnius* **n. subgen.** contains five species of the former genus *Hygrotus*, subgenera *Hygrotus* and *Coelambus* (see Fig. 2 and Table 1).

Diagnosis: Body shape oval, either almost globose (TL/MW ca. 1.6) (see Fig. 10 for *C*. (s. str.) *decoratus*) or more elongated, "navicular" (TL/MW 1.7–1.8) (see Fig. 11 for *C*. (s. str.) *laccophilinus* (LeConte, 1878)), with MW short behind pronotum and distinctly before midlength (still somewhat more elongated in *C*. (s. str.) *berneri* Young & Wolfe, 1984, with TL/ MW ca. 2.05; see Fig. 12 for holotype and its labels; FSCA); body size small (TL 2.1–3.3 mm). *Clemnius* (s. str.) *decoratus* and *C*. (s. str.) *hydropicus* (LeConte, 1852) with anterior clypeal margin evenly and semicircularly rounded, with border produced forwards and bead complete as in subgenus *Hygrotus* s. str. In Contrast *Clemnius* (s. str.) *laccophilinus*, *C*. (s. str.) *berneri* and *C*. (s. str.) *sylvanus* (Fall, 1917) with anterior clypeal margin truncate and slightly emarginated, with border not produced forwards and bead absent. Antennomeres simple, not broadened. Elytra with margin in lateral view moderately ascending to shoulder (similar to Fig. 55); epipleuron comparably broad, broader than mesotibia distally; carina

meeting inner margin of epipleuron forming a comparably small angle (< ca. 135°; similar to Fig. 49). Elytra either dark, uniformly testaceous or with yellowish-brown dots, but not vittate; venter brown or testaceous. Last abdominal ventrite without deep depression.

Aedeagus with median lobe symmetric, robust in *C*. (s. str.) *decoratus* (Fig. 21) and *C*. (s. str.) *hydropicus* (cf. fig. 13 in Anderson 1971) or distally very narrow in *C*. (S. str.) *berneri* (Fig. 20), *C*. (s. str.) *laccophilinus* and *C*. (s. str.) *sylvanus* (cf. also figs 1A and 2A in Anderson 1976). Parameres with condylar process rather short and forming an obtuse angle with distal part (Figs 30 and 31; cf. also figs 1B and 2B in Anderson 1976). Male metatarsal claws of equal length.

Etymology: From the Greek $\chi\lambda\epsilon\mu\mu\omega\varsigma$ (klemmys = tortoise); referring to the almost hemispherical body shape of most species. The gender of the generic name is masculine.

Distribution: Palaearctic (Europe, Russia and Kazakhstan), Nearctic and Neotropical (northern part of Mexico).

Main habitat types: The subgenus includes species typical of lentic freshwater environments.

Notes: Within the subgenus there are two clear groups of species according to body shape and genital morphology, one formed by *C*. (s. str.) *decoratus* and *C*. (s. str.) *hydropicus* (body shape more globular, aedeagus robust with short medial lobe), and the other by *C*. (s. str.) *berneri*, *C*. (s. str.) *laccophilinus* and *C*. (s. str.) *sylvanus* (body shape more elongated, "navicular", aedeagus slender with elongated median lobe). The phylogenetic relationships of the species for which molecular data were available are poorly supported (Fig. 1), but in any case we never recovered these two groups as respectively monophyletic. We thus refrain from splitting *Clemnius* **n. subgen.** into two taxa corresponding to these two groups, at least until more evidence becomes available.

Genus Hygrotus Stephens, 1828

Type species: *Dytiscus inaequalis* Fabricius, 1777: 239, by subsequent designation of Curtis (1835: pl. 531).

Diagnosis: In the new classification *Hygrotus* is the second of two genera of the tribe Hygrotini. As in *Clemnius* **n. gen**. all species of the genus have two carinae in each antennal cavity (see Figs 4–6).

1 anote Lacenta, 155 Hydroca Control Hydroca H	<u>د</u>	species	authors	original genus	genus in this work	subgenus in this work	genus in Nilsson & Hájek 2017a	subgenus in Nilsson & Hájek 2017a	new combination	distribution	methods applied
2 anome Eislentur, 13.3 hygrus Hygrus Hygrus Filt propriori 3 anome Haye, Farb, Erman, 2005 Hygrus Hygrus 1 1 1 1 4 alone Haye, Farb, Erman, 2005 Hygrus Hygrus 1		acaroides	(LeConte, 1855)	Hydroporus	Clemnius	Cyclopius	Hygrotus	Hygrotus	n. comb	NA	morphological & molecular
3 americ High, Fay & Emm, 2005 Hypotocia Hypotocia Hypotocia Hypotocia Hypotocia Hypotocia 6 anise (Vazini, 1969) Hypotocia Hypotocia Hypotocia Hypotocia Hypotocia 6 anise (Stani, 1969) Hypotocia Hypotocia Hypotocia Hypotocia Hypotocia 7 anise (Stani, 1969) Hypotocia Hypotocia Hypotocia Hypotocia Hypotocia 8 anisotia (Stani, 1890) Hypotocia Hypotocia Hypotocia Hypotocia Hypotocia 1 barranico (Stani, 1890) Hypotocia Hypotocia Hypotocia Hypotocia Hypotocia 1 barranico (Stani, 1890) Hypotocia Hypotocia Hypotocia Hypotocia Hypotocia 1 barranico (Stani, 1890) Hypotocia Hypotocia <td>2</td> <td>aequalis</td> <td>Falkenström, 1932</td> <td>Hygrotus</td> <td>Hygrotus</td> <td>Hygrotus</td> <td>Hygrotus</td> <td>Hygrotus</td> <td></td> <td>PL</td> <td>morphological</td>	2	aequalis	Falkenström, 1932	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus		PL	morphological
4 atime (valution 166) Hphopous Hphopous <th< td=""><td>e</td><td>ahmeti</td><td>Hájek, Fery & Erman, 2005</td><td>Hygrotus</td><td>Hygrotus</td><td>Coelambus</td><td>Hygrotus</td><td>Coelambus</td><td>ı</td><td>PL</td><td>morphological & molecular</td></th<>	e	ahmeti	Hájek, Fery & Erman, 2005	Hygrotus	Hygrotus	Coelambus	Hygrotus	Coelambus	ı	PL	morphological & molecular
3 авет (Star, 182.) Чряполов Чряполов Арлисов Арлисов С.	4	anitae	(Vazirani, 1969)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus		n. comb	Ы	only literature
6 memenacus Calametria Calametria Hypotacia Lequiciametria Hypotacia Lequiciametria Hypotacia Lequiciametria Hypotacia	5	aper	(Sharp, 1882)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus		n. comb	OR, PL	only literature
	9	armeniacus	(Zaitzev, 1927)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		PL	morphological & molecular
8assirility(Regimbart, 1950)HerophyticusHygrousH	7	artus	(Fall, 1919)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	only literature
9bergelensisGenerin, 1300)Hyphopous	œ	assimilis	(Régimbart, 1895)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb	AF	morphological & molecular
10berrariYoung Wolle, 1984HypotusClemiusHypotus </td <td>o</td> <td>bengalensis</td> <td>(Severin, 1890)</td> <td>Hyphoporus</td> <td>Hygrotus</td> <td>Hyphoporus</td> <td>Hyphoporus</td> <td></td> <td>n. comb</td> <td>OR</td> <td>morphological</td>	o	bengalensis	(Severin, 1890)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus		n. comb	OR	morphological
11bertandi(vazinati, 1969)Hyptopous<	10	berneri	Young & Wolfe, 1984	Hygrotus	Clemnius	Clemnius	Hygrotus	Coelambus	n. comb	NA	morphological
12biardoi(Bitrin Milsson, 2002)HerophydrusHygrousHerophydrusi.combAFon/tireature13buesi(Fail, 123)ColambusHygrousLeptolambusHygrousLeptolambusHygrousColambusNoNo14alignosus(Fail, 123)ColambusHygrousLeptolambusHygrousLeptolambusHygrousNoNoNo15caperise(Rejimbar, 1889)HygrousHygrousHygrousHygrousNoNoNoNo16caperise(Rejimbar, 1889)HygrousHygrousHygrousHygrousNoNoNoNo16caperise(Rejimbar, 1889)HygrousHygrousHygrousHygrousHygrousNoNoNo17caperise(Rejimbar, 1882)HygrousHygrousHygrousHygrousHygrousNoNoNo18caperise(Rejimbar, 1882)HygrousHygrousLeptolambusHygrousHygrousNoNoNo19colambusHygrousLeptolambusHygrousLeptolambusHygrousHygrousNoNoNoNo10colambusHygrousLeptolambusHygrousLeptolambusHygrousHygrousNoNoNoNoNo10colambusHygrousLeptolambusHygrousLeptolambusHygrousHygrousNoNoNoNoNo10colambus<	11	bertrandi	(Vazirani, 1969)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus		n. comb	Ы	only literature
13 <i>buesis</i> (Fal, 1928)Coeianbus <i>HyptousLeptolambusHyptousLeptolambusNameName</i> 14 <i>caejanoss</i> (Réginbart, 1899) <i>HyptopousHyptopus</i>	12	bilardoi	(Biström & Nilsson, 2002)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb	AF	only literature
14calginosus(Rejinbart, 1890)Hyphopous <td>13</td> <td>bruesi</td> <td>(Fall, 1928)</td> <td>Coelambus</td> <td>Hygrotus</td> <td>Leptolambus</td> <td>Hygrotus</td> <td>Coelambus</td> <td></td> <td>NA</td> <td>morphological & molecular</td>	13	bruesi	(Fall, 1928)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological & molecular
15capensis(Régimbart, 1895)HerophydrusHyropusHyrophydrusHerophydrusAFno, combAFonly literature16caspius(Wehncke, 1875)HyrdporusHyropusHyropusHyropusHyropusPyrousPyrousPyrousPyrousPyrousPyrophydical17chinensis(Sharp, 1882)CoelambusHyropusHyropusHyropusHyropusPyrousPyrousPyrousPyrophydical18celopatae(Peryon, 1853)HyropusHyropusLeptolambusHyropusLeptolambusPyrousPyrousPyrophydical19colaus(Fall, 1919)CoelambusHyropusLeptolambusHyropusPyrousPyrousPyrousPyrous20conpart(Fall, 1919)CoelambusHyropusLeptolambusHyropusPyrousPyrousPyrous21confuent(Fall, 1919)CoelambusHyropusLeptolambusHyropusPyrousPyrousPyrous22confuent(Fall, 1919)DyriscusHyropusLeptolambusHyropusPyrousPyrousPyrophological23confuent(Regimbart, 1895)HyropusHyropusLeptolambusHyropusPyrousPyrousPyrophological24confuent(Regimbart, 1895)HyropusHyropusLeptolambusLeptolambusPyrousPyrousPyrousPyrous25confuents(Regimbart, 1895)HyropusHyropusLepto	14	caliginosus	(Régimbart, 1899)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus		n. comb	OR	only literature
16caspus(Wehncke, 1375)HydropousHydrousCoelambusHygrousCoelambusP.P.Monphological17chinensis(Sharp, 1882)CoelambusHygrousHygrousHygrousCoelambusP.P.monphological18cleopatae(Peyron, 1883)HydroprusHygrousLeptolambusHygrousCoelambusP.P.monphological19cleopatae(Fall, 1919)CoelambusHygrousLeptolambusHygrousCoelambusP.P.monphological20compar(Fall, 1919)CoelambusHygrousLeptolambusHygrousCoelambusP.NA21confuens(Fall, 1919)CoelambusHygrousLeptolambusHygrousCoelambusP.NA22confuens(Fall, 1915)DyfususHygrousHerophydrusHerophydrusP.NA23confuens(Fall, 1895)HerophydrusHygrousCoelambusP.NA24confuens(Fall, 1895)HerophydrusHygrousCoelambusP.NA25confuens(Fall, 1895)HygrousHygrousCoelambusP.NAMonphological &24confuens(Fall, 1895)HygrousHygrousCoelambusP.NAMonphological &24confuens(Fall, 1895)HygrousHygrousCoelambusP.NAMonphological &25confuens(Fall, 1895)Hygr	15	capensis	(Régimbart, 1895)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb	AF	only literature
17chinensis(Sharp, 1882)CoelambusHygrousLeptolambusHygrousLeptolambusHygrousCoelambusP.P.mophological18deopatrae(Peyron, 1853)HydropousHydropusHygrousHygrousP.P.mophological19collaus(Fall, 1919)CoelambusHygrousLeptolambusHygrousCoelambus-P.NAmophological20compar(Fall, 1919)CoelambusHygrousLeptolambusHygrousCoelambusP.NA21confuens(Fall, 1919)CoelambusHygrousLeptolambusHygrousCoelambusP.NA21confuens(Fall, 1919)DytiscusHygrousLeptolambusHygrousCoelambusNAMophological & Mopleular21confuens(Fall, 1915)DytiscusHygrousLeptolambusHygrousNAMophological & Mopleular22confuens(Fabricus, 1787)DytiscusHygrousHygrousNAMophological & Mopleular23confuentus(Fabricus, 1787)HydropusHygrousLeptolambusNAMophological & Mopleular24confuentus(Fabricus, 1787)HydropusHygrousLeptolambusNA-NAMophological & Mopleular25confuentus(Fabricus, 1787)Hydropu	16	caspius	(Wehncke, 1875)	Hydroporus	Hygrotus	Coelambus	Hygrotus	Coelambus		PL	morphological & molecular
18 <i>cleopatae</i> (Peyron, 1858) <i>HydropousHydrotusHerophydrus</i> PLDrDephological19 <i>collatus</i> (Fall, 1919) <i>CoelambusHygrotusLeptolambusHygrotusLeptolambusHygrotusCoelambusHygrotusNDephological</i> &20 <i>compar</i> (Fall, 1919) <i>CoelambusHygrotusLeptolambusHygrotusLeptolambusHygrotusCoelambusPDephological</i> &21 <i>confluens</i> (Fall, 1915) <i>DytiscusHygrotusLeptolambusHygrotusCoelambusPDephological</i> &22 <i>confluens</i> (Fall, 1895) <i>HorohydrusHygrotusHorohydrusLeptolambusHygrotusLeptolambusHygrotusLeptolambusHygrotusLeptolambusHygrotusLeptolambusHygrotusLeptolambusHygrotusLeptolambusHygrotusLeptolambusHygrotusLeptolambusHygrotusLeptolambusHygrotusLeptolambusHygrotusLeptolambusHygrotusLeptolambusHygrotusLeptolambusHygrotusLeptolambusLeptolambusHygrotusLeptolambusHygrotusLeptolambusHygrotusLeptolambusLeptolambusHygrotusLeptolambusLeptolambusLeptolambusLeptolambusLeptolambusLeptolambusHygrotusLeptolambusHygrotusLeptolambusLeptolambusLeptolambus</i>	17	chinensis	(Sharp, 1882)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		Ы	morphological
10collatus(Fall, 1919)CoelambusHygrotusLeptolambusHygrotusCoelambusNNMorphological20compart(Fall, 1919)CoelambusHygrotusLeptolambusHygrotusCoelambusPNMorphological &21confluens(Fall, 1919)DytiscusHygrotusLeptolambusHygrotusCoelambusHygrotusCoelambusPN21confluens(Fabricius, 1787)DytiscusHygrotusCoelambusHygrotusCoelambusPPMonphological &22confluens(Fabricius, 1787)HerophydrusHygrotusHerophydrus-n.combAFNMonphological &23confluentus(Schaum, 1864)HydroprusHygrotusLeptolambusHygrotusLeptolambus-NNMonphological &23corpulentusFery. Sadegui & Hostonis, 2005HygrotusHygrotusLeptolambusHygrotus-NPMonphological &24curvilobusFery. Sadegui & Hostonis, 2005HygrotusHygrotusLeptolambusCoelambus-PPMonphological &	18	cleopatrae	(Peyron, 1858)	Hydroporus	Hygrotus	Hygrotus	Herophydrus	ı		Ы	morphological
20compare(Fall, 1919)CoelambusHygrotusLeptolambusHygrotusCoelambus-NAMonobological &21confluens(Fabricius, 1787)DytiscusHygrotusHygrotusKygrotusCoelambus-PLmonobological &22confluens(Fabricius, 1785)HerophydrusHygrotusHygrotusHerophydrus-PLmonobological &23confluents(Schaum, 1864)HydroporusHygrotusLeptolambusHygrotusNgrotus-PLmonobological &24curvilobusFery, Sadegui & Hosseinie, 2005HygrotusHygrotusLeptolambusHygrotusYgrotus-PLmonobological &24curvilobusFery, Sadegui & Hosseinie, 2005HygrotusLeptolambusHygrotusCoelambus-PLmonobological &	19	collatus	(Fall, 1919)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological
21confluens(Fabricius, 1787)DyriscusHygrotusCoelambusHygrotusCoelambus-PLmonbological &22confusus(Régimbart, 1895)HerophydrusHygrotusHygrotusHerophydrus-n. combAFonly literature23corpulentus(Schaum, 1864)HydroporusHygrotusLeptolambusHygrotusCoelambus-PLmonbological &24curvilobusFery, Sadegui & Hosseinie, 2005HygrotusLeptolambusHygrotusCoelambus-PLmonbological &	20	compar	(Fall, 1919)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological & molecular
22 confusus (Régimbart, 1895) Herophydrus Hygrotus Herophydrus - n. comb AF only literature 23 corpulentus (Schaum, 1864) Hydroporus Hygrotus Leptolambus Hygrotus Coelambus - PL morphological & morphological	21	confluens	(Fabricius, 1787)	Dytiscus	Hygrotus	Coelambus	Hygrotus	Coelambus	,	Ы	morphological & molecular
23 <i>corpulentus</i> (Schaum, 1864) <i>Hydroporus Hygrotus Leptolambus Hygrotus</i> Coelambus - PL morphological & molecular 24 <i>curvilobus</i> Fery, Sadegui & Hosseinie, 2005 <i>Hygrotus Leptolambus Hygrotus</i> Coelambus - PL morphological morphological	22	confusus	(Régimbart, 1895)	Herophydrus	Hygrotus	Hygrotus	Herophydrus	ı	n. comb	AF	only literature
24 curvilobus Fery, Sadegui & Hosseinie, 2005 Hygrotus Hygrotus Leptolambus Hygrotus Coelambus - PL morphological	23	corpulentus	(Schaum, 1864)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus	ı	Ы	morphological & molecular
	24	curvilobus	Fery, Sadegui & Hosseinie, 200	15 Hygrotus	Hygrotus	Leptolambus	Hygrotus	Coelambus		РL	morphological

Chapter 1

Tabl	le 1. (Continued)									
_	species	authors	original genus	genus in this work	subgenus in this work	genus in Nilsson & Hájek 2017a	subgenus in Nilsson & Hájek 2017a	new combination	distribution	methods applied
25	curvipes	(Leech, 1938)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological
26	decoratus	(Gyllenhal, 1810)	Hyphydrus	Clemnius	Clemnius	Hygrotus	Hygrotus	n. comb.	PL	morphological & molecular
27	dehraduni	(Vazirani, 1969)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus	1	n. comb.	РL	only literature
28	descarpentriesi	(Peschet, 1923)	Herophydrus	Hygrotus	Hygrotus	Heroceras		n. comb.	AF	morphological & molecular
29	discrepatus	(Guignot, 1954)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	only literature
30	dissimilis	(Geminger & Harold, 1868)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological
31	diversipes	Leech, 1966	Hygrotus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological & molecular
32	elevatus	(Sharp, 1882)	Hydroporus	Hygrotus	Hyphoporus	Hyphoporus		n. comb.	OR, PL	morphological
33	endroedyi	(Biström & Nilsson, 2002)	Herophydurs	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	only literature
34	enneagrammus	(Ahrens, 1833)	Hydroporus	Hygrotus	Coelambus	Hygrotus	Coelambus		PL	morphological
35	falli	(Wallis, 1924)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological
36	farctus	(LeConte, 1855)	Hydroporus	Clemnius	Cyclopius	Hygrotus	Hygrotus	n. comb.	NA	morphological
37	femoratus	(Fall, 1901)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	only literature
38	flaviventris	(Motschulsky, 1860)	Hydroporus	Hygrotus	Coelambus	Hygrotus	Coelambus		PL	morphological & molecular
39	fontinalis	Leech, 1966	Hygrotus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological & molecular
40	fraternus	(LeConte, 1852)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA, NT	morphological
41	fresnedai	(Fery, 1992)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		PL	morphological & molecular
42	fumatus	(Sharp, 1882)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological & molecular
43	geetae	(Vazirani, 1969)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus		n. comb.	OR	only literature
44	gigantoides	(Biström & Nilsson, 2002)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	only literature
45	gigas	(Régimbart, 1895)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	morphological
46	goldschmidti	(Pederzani & Rocchi, 2009)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	only literature
47	gschwendtneri	(Omer-Cooper, 1957)	Herophydrus	Hygrotus	Hygrotus	Herophydrus	ı	n. comb.	AF	only literature
48	guineensis	(Aubé, 1838)	Hyphydrus	Hygrotus	Hygrotus	Herophydrus	·		AF, PL	morphological & molecular
49	heros	(Sharp, 1882)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		ı	AF	morphological
									continue	of an the part page

A new classification of the tribe Hygrotini Portevin, 1929

2										
۲	species	authors	original genus	genus in this work	subgenus in this work	genus in Nilsson & Hájek 2017a	subgenus in Nilsson & Hájek 2017a	new combination	distribution	methods applied
50	hydropicus	(LeConte, 1852)	Hydroporus	Clemnius	Clemnius	Hygrotus	Hygrotus	n. comb.	NA, NT	morphological & molecular
51	hyphoporoides	(Régimbart, 1895)	Herophydrus	Hygrotus	Hygrotus	Herophydrus	,	n. comb.	AF	only literature
52	ignoratus	(Gschwendtner, 1933)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	only literature
53	impressopunctatus	(Schaller, 1783)	Dytiscus	Hygrotus	Leptolambus	Hygrotus	Coelambus		Т	morphological & molecular
54	inaequalis	(Fabricius, 1777)	Dytiscus	Hygrotus	Hygrotus	Hygrotus	Hygrotus		PL	morphological & molecular
55	infuscatus	(Sharp, 1882)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological
56	inquinatus	(Boheman, 1848)	Hydroporus	Hygrotus	Hygrotus	Herophydrus	,	n. comb.	AF	morphological & molecular
57	inscriptus	(Sharp, 1882)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		PL	morphological
58	intermedius	(Fall, 1919)	Coelambus	Hygrotus	Hygrotus	Hygrotus	Hygrotus		NA	morphological
59	janssensi	(Guignot, 1952)	Herophydrus	Hygrotus	Hygrotus	Herophydrus	,	n. comb.	AF	only literature
60	josephi	(Vazirani, 1969)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus	,	n. comb.	OR	only literature
61	kalaharii	(Gschwendtner, 1935)	Herophydrus	Hygrotus	Hygrotus	Herophydrus	,	n. comb.	AF	only literature
62	kempi	(Gschwendtner, 1936)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus		n. comb.	OR, PL	only literature
63	laccophilinus	(LeConte, 1878)	Hydroporus	Clemnius	Clemnius	Hygrotus	Coelambus	n. comb.	NA	morphological & molecular
64	lagari	(Fery, 1992)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		PL	morphological & molecular
65	lernaeus	(Schaum, 1857)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus		PL	morphological & molecular
66	lutescens	(LeConte, 1852)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA, NT	morphological & molecular
67	marginipennis	(Blatchley, 1912)	Coelambus	Clemnius	Cyclopius	Hygrotus	Hygrotus	n. comb.	NA	morphological
68	marklini	(Gyllenhal, 1813)	Hyphydrus	Hygrotus	Leptolambus	Hygrotus	Coelambus		Т	morphological & molecular
69	masculinus	(Crotch, 1874)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological & molecular
20	montanus	(Régimbart, 1899)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus		n. comb.	OR	only literature
71	morandi	(Guignot, 1952)	Herophydrus	Hygrotus	Hygrotus	Herophydrus	1	n. comb.	OR	only literature
72	musicus	(Klug, 1834)	Hydroporus	Hygrotus	Hygrotus	Herophydrus	,		AF, OR, PL	morphological & molecular
73	muticus	(Sharp, 1882)	Coelambus	Hygrotus	Hygrotus	Herophydrus			AF	morphological & molecular
74	natator	(Biström & Nilsson, 2002)	Herophydrus	Hygrotus	Hygrotus	Herophydrus	ı	n. comb.	AF	only literature
									continue	ed on the next page

Chapter 1

Table	e 1. (Continued)									
۲	species	authors	original genus	genus in this work	subgenus in this work	genus in Nilsson & Hájek 2017a	subgenus in Nilsson & Hájek 2017a	new combination	distribution	methods applied
75	nigrescens	(Biström & Nilsson, 2002)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	morphological & molecular
76	nigrescens	(Fall, 1919)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological & molecular
77	nigrolineatus	(Steven, 1808)	Hyphydrus	Hygrotus	Coelambus	Hygrotus	Coelambus		PL	morphological & molecular
78	nilghiricus	(Régimbart, 1903)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus		n. comb.	OR, PL	only literature
79	nodieri	(Régimbart, 1895)	Coelambus	Hygrotus	Hygrotus	Herophydrus			AF	morphological & molecular
80	novemlineatus	(Steven, 1829)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	ı	т	morphological & molecular
81	nubilus	(LeConte, 1855)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA, NT [PC]	morphological
82	obscureplagiatus	(Fall, 1919)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological
83	opscnrus	(Sharp, 1882)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	morphological & molecular
84	obsoletus	(Régimbart, 1895)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	only literature
85	orthogrammus	(Sharp, 1882)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		Ы	morphological & molecular
86	oudomxai	(Brancucci & Biström, 2013)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus		n. comb.	OR	only literature
87	ovalis	(Gschwendtner, 1932)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	only literature
88	pacistanus	(Guignot, 1959)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus		n. comb.	PL	only literature
89	pallidulus	(Aubé, 1850)	Hydroporus	Hygrotus	Coelambus	Hygrotus	Coelambus	ı	Ы	morphological & molecular
06	pallidus	(Omer-Cooper, 1931)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	only literature
91	parallellogrammus	(Ahrens, 1812)	Dytiscus	Hygrotus	Leptolambus	Hygrotus	Coelambus		PL	morphological & molecular
92	patruelis	(LeConte, 1855)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus	ı	NA	morphological & molecular
93	pauliani	(Guignot, 1950)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	only literature
94	pectoralis	(Motschulsky, 1860)	Hydroporus	Hygrotus	Coelambus	Hygrotus	Coelambus		PL	morphological & molecular
95	pedalis	(Fall, 1901)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological & molecular
96	picatus	(Kirby, 1837)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus	ı	NA	morphological & molecular
97a	polonicus polonicus	(Aubé, 1842)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus		PL	morphological
97b	polonicus sahlbergi	(Sharp, 1882)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	,	PL	morphological
98	pugnator	(Sharp, 1890)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus	,	n. comb.	OR	only literature
									continue	ed on the next page

A new classification of the tribe Hygrotini Portevin, 1929

Tabl	e 1. (Continued)									
	species	authors	original genus	genus in this work	subgenus in this work	genus in Nilsson & Hájek 2017a	subgenus in Nilsson & Hájek 2017a	new combination	distribution	methods applied
66	punctilineatus	(Fall, 1919)	Coelambus	Hygrotus	Coelambus	Hygrotus	Coelambus		NA	morphological
100	quadrilineatus	(Régimbart, 1895)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	morphological
101	quinquelineatus	(Zetterstedt, 1828)	Hyphydrus	Hygrotus	Hygrotus	Hygrotus	Hygrotus		PL	morphological & molecular
102	reticulatus	(Pedernazi & Rocchi, 2009)	Herophydrus	Hygrotus	Hygrotus	Herophydrus	ı	n. comb.	AF	morphological & molecular
103	ritsemae	(Régimbart, 1889)	Herophydrus	Hygrotus	Hygrotus	Herophydrus	ı	n. comb.	AF	only literature
104	rohani	(Peschet, 1924)	Herophydrus	Hygrotus	Hygrotus	Herophydrus	ı	n. comb.	AF	molecular
105	rufus	(Clark, 1863)	Hyphydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	morphological
106	saginatus	(Schaum. 1857)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus		PL	morphological & molecular
107	salinarius	(Wallis, 1924)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological & molecular
108	sanfilippoi	(Fery, 1992)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		PL	morphological & molecular
109	sayi	J. Balfour-Browne, 1944	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus		NA	morphological & molecular
110	sellatus	(LeConte, 1866)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological
111	semenowi	(Jakovlev, 1899)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		PL	morphological
112	semivittatus	(Fall, 1919)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological & molecular
113	severini	(Régimbart, 1892)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus	ı	n. comb.	OR, PL	morphological
114	sjostedti	(Régimbart, 1908)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	only literature
115	solieri	(Aubé, 1838)	Hydroporus	Hygrotus	Hyphoporus	Hyphoporus	ı		PL	morphological & molecular
116	spadiceus	(Sharp, 1882)	Herophydrus	Hygrotus	Hygrotus	Herophydrus	ı	n. comb.	AF	molecular
117	stefanschoedli	Fery, Sadegui & Hosseinie, 2005	Hygrotus	Hygrotus	Leptolambus	Hygrotus	Coelambus		ΡL	morphological
118	subaequalis	(Vazirani, 1969)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus	ı	n. comb.	OR	only literature
119	sudanensis	(Guignot, 1952)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	only literature
120	suturalis	(LeConte, 1850)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological & molecular
121	sylvanus	(Fall, 1917)	Coelambus	Clemnius	Clemnius	Hygrotus	Coelambus	n. comb.	NA	morphological
122	thermarum	(Darlington, 1928)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morphological
123	tonkinensis	(Régimbart, 1899)	Hyphoporus	Hygrotus	Hyphoporus	Hyphoporus		n. comb.	OR	morphological & molecular
		-							continue	ed on the next page

Chapter 1

Table	I. (Continued)									
<u>د</u>	species	authors	original genus	genus in this work	subgenus in this work	genus in Nilsson & Hájek 2017a	subgenus in Nilsson & Hájek 2017a	new combination	distribution	methods a
124	travniceki	(Šťastný, 2012)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	morphol
125	tribolus	(Guignot, 1953)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	morpholog molec
126	tumidiventris	(Fall, 1919)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morpholog
127	turbidus	(LeConte, 1855)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus		NA	morpholog
128	unguicularis	(Crotch, 1874)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus		т	morpholog
129	urgensis	(Jakovlev, 1899)	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	ı	PL	morpholog molec
130a	variabilis secundus	(Régimbart, 1906)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	only lite
130b	variabilis variabilis	(Guignot, 1954)	Herophydrus	Hygrotus	Hygrotus	Herophydrus	ı	n. comb.	AF	only lite
131	vaziranii	(Nilsson, 1999)	Hygrotus	Hygrotus	Hygrotus	Herophydrus			PL	only lite
132	versicolor	(Schaller, 1783)	Dytiscus	Hygrotus	Hygrotus	Hygrotus	Hygrotus		PL	morpholog
133	verticalis	(Sharp, 1882)	Herophydrus	Hygrotus	Hygrotus	Herophydrus	ı	n. comb.	AF	morpholog moleo
134	vittatus	(Régimbart, 1895)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	only lite
135	wardii	(Clar, _i k, 1862)	Hydroporus	Hygrotus	Leptolambus	Hygrotus	Coelambus	ı	NA, NT	morpho
136	we walkai	(Biström & Nilsson, 2002)	Herophydrus	Hygrotus	Hygrotus	Herophydrus		n. comb.	AF	only lite
137	zigetangco	Fery, 2003	Hygrotus	Hygrotus	Leptolambus	Hygrotus	Coelambus		Ы	morphol

A new classification of the tribe Hygrotini Portevin, 1929

Figure 1. Phylogeny of Hygrotini, modified from Villastrigo et al. (2018, Chapter 2). Numbers above nodes are bootstrap support values. Note that here the former generic and subgeneric names are still used.

Figure 2. Dendrogram showing the new classification of Hygrotini. A number of species without molecular data (no voucher number) have been inserted near morphologically similar species with molecular data. Acronyms refer to biogeographical regions.

Figures 3-4. Antennal cavities of: (3) *Hydroporus dorsalis* (Hydroporini) and (4) *Hygrotus* (*Leptolambus*) *lagari* (Fery, 1992) (a: carina delimiting capsule for scape; b: fronto-lateral border of clypeus; c: second carina).

Figures 5-6. SEM micrographs with details of head and antennal cavities of: (5) *Hygrotus (Leptolambus) impressopunctatus* (frontal view) and (6) *Hygrotus* (s. str.) *inaequalis* (oblique ventral view) (a, b and c as in Figs 3-4: d: clypeal stripe; e: labrum).

According to the two main clades in the phylogeny of Hygrotini and several morphological characters, the genus (which corresponds to Clade B in Fig. 1) is subdivided into four clades corresponding to the following four subgenera: clade B1 = subgenus *Coelambus*, clade B2 = subgenus *Hyphoporus*, clade B3 = subgenus *Hygrotus* s. str. and clade B4 = *Leptolambus* **n. subgen**.

Subgenus Coelambus Thomson, 1860

Type species: *Dytiscus confluens* Fabricius, 1787: 193, by subsequent designation of Zaitzev (1953: 129).

The subgenus *Coelambus* contains eight Palaearctic and one Nearctic species (*Hygrotus* (*C.*) *punctilineatus* (Fall, 1919)).

Diagnosis: Body shape moderately to elongate oval (TL/MW ca. 1.7–2.0); small to medium sized species (TL 3.0–4.5 mm) (see Fig. 9 for *H. (Coelambus) confluens*). Head with anterior clypeal margin truncate and slightly emarginated, border not produced forwards; bead absent. Antennomeres simple, not broadened. Elytra with margin in lateral view strongly ascending to shoulder (see Fig. 54 for *H. (Coelambus) caspius* (Wehncke, 1875)); epipleuron comparably narrow, narrower than mesotibia distally; carina meeting inner margin of epipleuron forming a comparably wide angle (< ca. 150°; similar to Fig. 51). Elytra light yellowish (more yellowish brown in *H. (Coelambus) ahmeti* Hájek, Fery & Erman, 2005), distinctly vittate (in some species/individuals vittae strongly reduced in anterior half). Venter usually black, but females of some species (e.g. *H. (Coelambus) pallidulus*) with abdomen at least in part yellow or brownish. Last abdominal ventrite without deep depression.

Aedeagus with median lobe elongate, very slender (distal half very thin in lateral view), symmetric or almost symmetric (e.g. in *H. (Coelambus) enneagrammus* (Ahrens, 1833), and *H. (Coelambus) confluens*; see Figs 23 and 24). Parameres with condylar process rather long and forming an almost right angle with distal part (Figs. 37 and 38 for *H. (Coelambus) enneagrammus* and *H. (Coelambus) confluens*, respectively). Male metatarsal claws of equal length.

Distribution: Mainly Palaearctic, with one species in Canada and northern USA (*Hygrotus* (*Coelambus*) *punctilineatus*).

Main habitat types: The subgenus includes species typical of both lentic and lotic habitats, with varied salinity tolerance going from freshwater to hypersaline.

Figures 7-12. Habitus of: (7) *Clemnius (Cyclopius) acaroides,* (8) *Hygrotus* (s. str.) *inaequalis,* (9) *Hygrotus (Coelambus) confluens,* (10) *Clemnius* (s. str.) *decoratus,* (11) *Clemnius* (s. str.) *laccophilinus* and (12) *Clemnius* (s. str.) *berneri* (male holotype and labels).

The genus *Hygrotus* as here defined includes 129 described species (two of them bitypic) distributed in the Nearctic (including the north of Mexico), Palaearctic, Afrotropical and Oriental zoogeographical regions (Fig. 2 and Table 1). One Nearctic species was introduced to Hawaii (see below), which belongs to the Pacific region.

Figures 13-18. Habitus of: (13) *Hygrotus (Leptolambus) impresopunctatus,* (14) *H. (Leptolambus) orthogrammus,* (15) *H. (Leptolambus) obscureplagiatus,* (16) *H. (s. str.) guineensis,* (17) *H. (s. str.) descarpentriesi* (male syntype and labels) and (18) *H. (Hyphoporus) solieri* (Figs 14 and 18 are reproduced from Fery *et al.,* 2012 with the permission of F. Gusenleitner, Linz, Austria).

Figures 19-28. Median lbe in ventral and lateral view of: (19) *Clemnius (Cyclopius) acaroides,* (20) *Clemnius* (s. str.) *berneri,* (21) *Clemnius* (s. str.) *decoratus,* (22) *Hygrotus* (s. str.) *inaequalis,* (23) *H.* (*Coelambus) enneagrammus,* (24) *H.* (*Coelambus) confluens,* (25) *H.* (*Leptolambus) parallellogrammus,* (26) *H.* (*Leptolambus) impressopunctatus,* (27) *H.* (s. str.) *guineensis* and (28) *H.* (*Hyphoporus) tonkinensis* (Fig. 28 is a modified reproduction of figs 3 and 4 in Brancucci & Biström, 2013).

Subgenus Hyphoporus Sharp, 1880 n. stat.

Type species: Hydroporus solieri Aubé, 1838: 554, by monotypy.

The subgenus *Hyphoporus* contains 19 species distributed in the Oriental and Palaearctic regions (see Fig. 2 and Table 1).

Diagnosis: Body shape short oval (TL/MW ca. 1.6-1.7), rather globose; small to medium

Figures 29-40. Left paramere of: (29) *Clemnius (Cyclopius) acaroides,* (30) *Clemnius* (s. str.) *berneri,* (31) *Clemnius* (s. str.) *decoratus,* (32) *Hygrotus* (s. str.) *inaequalis,* (33) *H. (Leptolambus) fresnedai,* (34) *H. (Leptolambus) impressopunctatus,* (35) *H. (Leptolambus) parallellogrammus,* (36) *H. (Leptolambus) nubilus,* (37) *H. (Coelambus) enneagrammu,* (38) *H. (Coelambus) confluens,* (39) *H. (s. str.) guineensis* and (40) *H. (Leptolambus) tonkinensis* (Fig. 40 is a modified reproduction of fig 5 in Brancucci & Biström, 2013).

sized species (TL 3.5–5.6 mm) (see Fig. 18 for *H. (Hyphoporus) solieri*). Head with anterior clypeal margin truncate, straight or slightly emarginated, border not produced forwards; bead continuous, middle part narrowed in most species (see Fig. 42 for *H. (Hyphoporus) solieri*); (except *H. (Hyphoporus) bengalensis* (Severin, 1890) with continuous bead). Antennomeres simple, not broadened. Elytra with margin in lateral view moderately ascending to shoulder (similar to Fig. 55); epipleuron comparably broad, broader than mesotibia distally; carina meeting inner margin of epipleuron forming a comparably small angle (< ca. 135°;

Figures 41-48. Head with details of clypeal rim of: (41) *Hygrotus (Leptolambus) impressopunctatus,* (42) *H. (Hyphoporus) solieri,* (43) *H.* (s. str.) *guineensis,* (44) *H.* (s. str.) *inaequalis,* (45) idem in lateral view, (46) *H. (Coelambus) confluens* (the lighter area before the anterior border of the clypeus is the "clypeal stripe"; see Appendix), (47) *H. (Leptolambus) masculinus* and (48) idem in lateral view.
similar to Fig. 50). Elytra with interrupted vittae or dotted (in some species very darkened); venter black or brown. Last abdominal ventrite without deep depression.

Aedeagus with median lobe robust, asymmetric (see Fig. 28 for *Hygrotus (Hyphoporus) tonkinensis* (Régimbart, 1899); in *H. bengalensis* median lobe more or less symmetric; see Vazirani 1969 for several further figures); parameres with condylar process of diverse length, forming an obtuse angle with distal part (see Fig. 40 for *H. (Hyphoporus) tonkinensis*). Male metatarsal claws of equal length.

Distribution: Palaearctic and Oriental, from Iran to India and south-east Asia; one species - *H.* (*Hyphoporus*) solieri - from Iran to the Arabian Peninsula and Egypt.

Main habitat types: There is no information on the habitat of most of the species of the subgenus, although they are likely to be mostly associated with freshwater environments. However, it shall be mentioned that Hájek (2006: 48) illustrated a rest-pool in a wadi (Pir Sohrab, Iran) where he has collected *H. (Hyphoporus) aper* (Sharp, 1882) together with *Neptosternus circumductus* Régimbart, 1899.

Subgenus Hygrotus Stephens, 1828

Type species: *Dytiscus inaequalis* Fabricius, 1777: 239, by subsequent designation of Curtis (1835: pl. 531).

Herophydrus Sharp, 1880: cxlviii; type species: *Hydroporus hyphydroides* Perris, 1864: 277 (= *Herophydrus guineensis* (Aubé 1838: 455)), by monotypy. **n. syn.**

Dryephorus Guignot, 1950: 150; type species: *Coelambus nodieri* Régimbart, 1895: 37, by original designation of Guignot (1950: 150). **n. syn.**

Heroceras Guignot, 1950: 150; type species: *Herophydrus descarpentriesi* Peschet, 1923: 176, by original designation of Guignot (1950: 150). **n. syn.**

The newly defined subgenus *Hygrotus* s. str. includes six species previously included in the former subgenus *Hygrotus* s. str., the single species of former genus *Heroceras* (*H. descarpentriesi*) and all 44 species (one of them bitypic) of the former genus *Herophydrus* (see Fig. 2 and Table 1).

Diagnosis: Body shape short oval to moderately elongate oval (TL/MW ca. 1.7–1.8); species of former *Hygrotus* s. str. and *Heroceras* small (TL 2.8–3.6 mm) (see Fig. 8 for *H.* (s.

str.) *inaequalis* and Fig. 17 for *H*. (s. str.) *descarpentriesi*) and species of former *Herophydrus* small to large (TL 2.6–7.4 mm) (see Fig. 16 for *H*. (s. str.) *guineensis*). Head of species of former *Hygrotus* with anterior clypeal margin evenly and semicircularly rounded, border produced forwards and with complete bead (see Figs 44 and 45 for *H*. (s. str.) *inaequalis*); species of former *Herophydrus* and *Heroceras* with anterior clypeal margin truncate, straight or slightly emarginated, border not produced forwards; bead present, but in many species narrowed in medial part (see Fig. 43 for *H*. (s. str.) *guineensis*), in others medially obsolete or widely reduced except before eyes (cf. Appendix). Antennomeres simple, not broadened except in *H*. (s. str.) *descarpentriesi*, with antennomeres of both sexes, but especially males, strongly dilated (Fig. 17). Elytra with margin in lateral view rather strongly ascending to shoulder (similar to Fig. 54); epipleuron comparably broad, broader than mesotibia distally; carina meeting inner margin of epipleuron forming a comparably small angle (< ca. 135°; similar to Fig. 49). Elytral pattern diverse (vittate, dotted or uniform); venter black or brown. Last abdominal ventrite without deep depression.

Figures 49-55. (49-53): Epipleuron with oblique epipleural carina and genicular fossa of: (49) *Clemnius* (s. str.) *berneri*, (50) *Hygrotus* (*Leptolambus*) *polonicus polonicus*, (51) *H*. (*Coelambus*) *caspius*, (52) *H.* (*Leptolambus*) *impressopunctatus* and (53) *Rhithrodytes agnus*; epipleural carina (c) and inner margin of epipleuron (m) including angle mentioned in diagnoses of subgenera. **(54-55)**: Elytral margin in lateral view of: (54) *H.* (*Coelambus*) *caspius* (strongly ascending to shoulder) and (55) *Clemnius* (s. str.) *berneri* (moderately ascending to shoulder) (Figs 52 and 53 are reproduced from Fery, 2013 and from Fery, 2016 with the permissions of F. Gusenleitner, Linz, Austria, and G. Foster, Ayr, UK, respectively.

Aedeagus with median lobe robust, distal part very diverse in ventral view, more or less symmetric (see Figs 22 and 27 for *H.* (s. str.) *inaequalis* and *H.* (s. str.) *guineensis*) or at most slightly asymmetric in some former *Herophydrus* (see figures in Biström & Nilsson 2002); parameres with condylar process generally short, forming an obtuse angle with distal part (see Fig. 32 and 39 for *H.* (s. str.) *inaequalis* and *H.* (s. str.) *guineensis*). Male metatarsal claws of equal length.

Distribution: Palaearctic, Nearctic, Ethiopian and Oriental. Species of the former subgenus *Hygrotus* (the *H. (Hygrotus) inaequalis*-group in Fig. 2) are distributed in Europe, northern Africa, Asia and northern America (reaching northern Mexico); species of former *Herophydrus* occur mainly in Africa, with five species in the Palaearctic, one (*H. (Hygrotus) musicus*) reaching the Oriental region and *H. (Hygrotus) morandi* (Guignot, 1952) known from Cambodia only; *H. (Hygrotus) descarpentriesi* is endemic to mountainous regions in south-eastern Madagascar.

Main habitat types: The subgenus includes species typical of lentic freshwater environments; some species can be found in inland mineralised or coastal brackish waters, such as for example *H*. (*Hygrotus*) *musicus* (Millán *et al.*, 2006). The latter species can also be found in mineral and thermal spring-pools (pers. communication by J. Hájek, Prague, Czech Republic). The habitat of most African species of the subgenus is poorly known.

Subgenus Leptolambus n. subgen.

Type species: Dytiscus impressopunctatus Schaller, 1783: 312, by present designation.

The subgenus includes 51 species (one of them bitypic), all previously included in the former subgenus *Coelambus* (see Fig. 2 and Table 1). Notes: *Coelambus hudsonicus* Fall, 1919 is treated by us as junior subjective synonym of *Hygrotus* (*Leptolambus*) *novemlineatus* (Stephens, 1829) (according to Nilsson & Hájek, 2017a). We are aware that some authors (e.g. Foster *et al.*, 2016) accepted subspecific rank for this taxon and others (e.g. Alarie *et al.*, 1999) specific rank, but all without giving any justification for their proceeding.

Diagnosis: Body shape moderately to elongate oval (TL/MW ca. 1.75–2.05); small to medium sized species (TL 2.7–5.8 mm) (see Figs 13–15 for *H. (Leptolambus) impressopunctatus*, *H. (Leptolambus) orthogrammus* (Sharp, 1882) and *H. (Leptolambus) obscureplagiatus* (Fall, 1919)). Head with anterior clypeal margin truncate and emarginated (see Fig. 41 for *H. (Leptolambus) impressopunctatus*); in some species medially at least less curved than near eyes (see Fig. 47 for *H. (Leptolambus) masculinus*); border not produced forwards and bead absent (except in H. (Leptolambus) masculinus and H. (Leptolambus) salinarius; cf. Appendix). Antennomeres simple, not broadened. In most species elytral margin in lateral view somewhat less ascending to shoulder than in Fig. 54; in species of Anderson's (1976) group III (H. (Leptolambus) bruesi (Fall, 1928), H. (Leptolambus) compar (Fall, 1919), H. (Leptolambus) nigrescens (Fall, 1919), H. (Leptolambus) dissimilis (Gemminger & Harold, 1868), and H. (Leptolambus) turbidus (LeConte, 1855)) margin only moderately ascending (similar to Fig. 55); in most species epipleuron comparably broad, broader than mesotibia distally; carina meeting inner margin of epipleuron forming a comparably small angle (ca. 135°; similar to Fig. 50 or Fig. 52). In four species of Anderson's (1983) group IV (H. (Leptolambus) diversipes (Leech, 1966), H. (Leptolambus) fontinalis Leech, 1966, H. (Leptolambus) pedalis (Fall, 1901), and H. (Leptolambus) thermarum (Darlington, 1928)) epipleuron narrower and carina meeting inner margin of epipleuron forming a comparably wide angle (> ca. 150°; similar to Fig. 51). In H. (Leptolambus) curvipes (Leech, 1938) (belonging also to group IV in Anderson, 1983) epipleuron slightly broader and carina meeting inner margin of epipleuron forming an angle of ca. 140°; however, in these five species of Anderson's (1983) group IV elytral margin not as strongly ascending as in species of newly defined subgenus Coelambus (see Fig. 54 for H. (Coelambus) caspius). Elytra pattern diverse (vittate, diffuse-vittate or "cloudlike") (see Anderson, 1983; see also Fig. 15 of H. (Leptolambus) obscureplagiatus as an example for diffuse-vittate or "cloudlike" elytral pattern); venter black. Last abdominal ventrite without deep depression.

Aedeagus with shape of median lobe diverse, from robust to very slender; symmetric in ventral view (see Figs 25 and 26 for *H. (Leptolambus) parallellogrammus* (Ahrens, 1812), and *H. (Leptolambus) impressopunctatus*). Species of *H. (Leptolambus) saginatus*-group (see Fig. 2) with distal part of parameres strap-like and condylar process also forming an almost right angle with distal part (see Fig. 33 for *H. (Leptolambus) fresnedai* (Fery, 1992)). Species of *H. (Leptolambus) parallellogrammus*-group (see Fig. 2) with parameres more or less triangular and condylar process indistinct and not forming an angle with distal part (see Fig. 35 for *H. (Leptolambus) parallellogrammus*). Other species with distal part of parameres triangular or broadly strap-like and condylar process forming an almost right angle with distal part (see Fig 34 for *H. (Leptolambus) impressopunctatus*) or with very unusually shaped parameres (see Fig. 36 for *H. (Leptolambus) nubilus*; cf. also fig. 7B in Anderson 1976 for *H. (Leptolambus) saginatus*-group (only four species of all Hygrotini with metatarsal claws of unequal length).

Etymology: From Greek $\lambda \epsilon \pi \tau \delta \varsigma$ (= leptos = narrow) and "lambus" in reference to *Coelambus*. The gender of the generic name is masculine.

Distribution: The subgenus is divided into two main clades, one with mostly Palaearctic distribution except for the Holarctic *H. (Leptolambus) impressopunctatus* and the Nearctic *H. (Leptolambus) picatus* (Kirby, 1837), and a second with mostly Nearctic species, except for *H. (Leptolambus) marklini* (Gyllenhal, 1813), *H. (Leptolambus) novemlineatus*, and *H. (Leptolambus) unguicularis* (Crotch, 1874) which are Holarctic. Some species of the Nearctic clade reach northern Mexico: *H. (Leptolambus) raternus* (LeConte, 1852), *H. (Leptolambus) unguicularis* (Crotch, 1874) which are Holarctic. Some species of the Nearctic clade reach northern Mexico: *H. (Leptolambus) raternus* (LeConte, 1852), *H. (Leptolambus) unguicularis* (Crotch, 1852), *H. (Leptolambus) nubilus*, and *H. (Leptolambus) wardii* (Clark, 1862). *Hygrotus* (*Leptolambus) nubilus* was recently recorded from Hawaii, where it has likely been introduced (see Fery & Challet, 2015).

Main habitat types: Many species of this subgenus are found in mostly lentic freshwaters, but several in the Nearctic clade, as well as the species of the *H*. (*Leptolambus*) *parallel-logrammus*-group, can tolerate from slightly saline to hypersaline waters (Villastrigo *et al.*, 2018, Chapter 2). The subgenus includes the most salt-tolerant species of the tribe, *H*. (*Leptolambus*) *salinarius* and *H*. (*Leptolambus*) *masculinus*.

Discussion

The phylogenetic results of Villastrigo *et al.* (2018, Chapter 2) revealed the need of a thorough systematic rearrangement of the tribe Hygrotini. The close relationships between the former *Hygrotus*, *Herophydrus* and *Heroceras* had already been previously noted by several authors (see the Introduction and the Appendix), and suggested by the incomplete molecular and morphological phylogenies available prior to our study (Miller, 2001; Biström & Nilsson, 2002; Ribera *et al.*, 2002, 2008; Alarie & Michat, 2007; Abellán *et al.*, 2013; Miller & Bergsten, 2014).

Species of *Hyphoporus* have always been considered to be related to species of *Herophydrus*, from which they differ mainly by the male genital shape (e.g. Biström & Nilsson, 2002; Miller & Bergsten, 2016). We opted for maintaining *Hyphoporus* as a valid subgenus, not only based on our phylogenetic results, but also due to the distinctiveness of their male genitalia. It is, however, possible that in further analyses with a more complete sampling *Hyphoporus* proves to be a derived clade within the wider subgenus *Hygrotus* s. str.

Hygrotus descarpentriesi, formerly considered in its own genus *Heroceras*, is a morphologically very deviating species when compared with its closest relatives from Madagascar as resolved in the molecular phylogeny (Fig. 1). The habitus is more elongated,

the elytral surface is smooth in the male and reticulated (although not matt) in the female (a character not found in any other Malagasy species of *Hygrotus*), the clypeal bead is almost absent (see the Appendix), and - the most apparent character - both sexes, but especially the males, have strongly dilated antennae. The latter character is present occasionally in other groups of Dytiscidae (e.g. in the genera *Agabus* Leach, 1817, *Limbodessus* Guignot, 1939, *Hydrovatus*, *Rhithrodytes*, *Exocelina* Broun, 1886, *Lioporeus* Guignot, 1950, and others; see e.g. Miller & Bergsten, 2016 for some examples and Fig. 17), but still exceptional within Hygrotini. Despite all these peculiarities, *H*. (s. str.) *descarpentriesi* was originally described in *Herophydrus*, and found at least to be related to this genus by the morphological phylogenetic analysis of Biström & Nilsson (2002).

The most unexpected result of the phylogeny was the division of Hygrotini into two clades (A and B in Fig. 1), the former (our *Clemnius* **n. gen.**) including a small number of species previously considered belonging in part to former subgenus *Hygrotus* s. str. and in part to former subgenus *Coelambus*. The species of *Clemnius* **n. gen**. had never been suggested to be closely related to each other within Hygrotini. They all share some likely plesiomorphic characters of body shape and colouration. Most of them are also similar in terms of male genitalia shape, which is in general simpler and more similar to those of other related tribes of Hydroporinae.

Of the two subgenera recognised within *Clemnius* **n. gen**., *Cyclopius* **n. subgen**. is well characterised by the special morphology of the male last abdominal ventrite, but we could not recognise any clear unambiguous synapomorphy for *Clemnius* **n. subgen**. The relationships within the latter are still poorly defined, and need further morphological and molecular studies to be clarified.

Although a formal biogeographic analysis is out of the scope of our paper, it is interesting to note that most of the recognised clades have a well-defined distribution within one of the main biogeographic regions:

• *Clemnius* **n. gen.** is Nearctic with the only exception of one species, the widespread Palaearctic *Clemnius* (s. str.) *decoratus* (see Nilsson & Hájek, 2017a, b).

• Subgenus *Coelambus* is almost exclusively Palaearctic, with only one exception, the Nearctic *C. punctilineatus*. However, this species is extremely similar to the Palaearctic species *C. nigrolineatus* (Steven, 1808) (this has not been recognised before), including the shape of the male protarsal claws. Their male and female genitalia show only some slight differences and their general shape could be considered virtually identical. Additionally, females of both species have the upper

side dull. It is thus most likely that *C. punctilineatus* has very recently colonised the Nearctic region from a Palaearctic ancestor.

• Subgenus *Hygrotus* s. str., as here defined, is largely of Afrotropical distribution (and likely origin), with only some species reaching the southern Palaearctic region and a small clade–the *H*. (s. str.) *inaequalis*-group–in the Palaearctic and Nearctic regions (Fig. 2).

• Subgenus *Hyphoporus* is mostly Oriental, with some species reaching the Palaearctic region in China (Yunnan), Afghanistan, northern India (Uttar Pradesh), Pakistan and in the west until Iran and Egypt.

• Subgenus *Leptolambus* **n. subgen.** is divided into two clades, one mostly Palaearctic and one mostly Nearctic (see above and Fig. 2). Only some northern species of *Leptolambus* **n. subgen.** have likely recently expanded their geographic range to the whole Holarctic, and three species have a discordant distribution: *H.* (*Leptolambus*) *picatus* is a Nearctic species in the Palaearctic clade, and *H.* (*Leptolambus*) *polonicus* (Aubé, 1842) and *H.* (*Leptolambus*) *zigetangco* Fery, 2003 are Palaearctic species likely to be in the Nearctic clade (see Fig. 2), although for the last two species there are no molecular data and thus their phylogenetic position is uncertain.

Acknowledgments

We cordially thank Rolf Beutel (Jena, Germany) for giving us access to the SEM microscope of the "Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena". We thank also M.A. Jäch (Vienna, Austria), F. Gusenleitner (Vienna, Austria) and G.N. Foster (Ayr, UK) for permission to use numerous figures published previously in other works. Antoine Mantilleri (MNHN) and P. E. Skelley (FSCA) are warmly thanked for loan of material. We thank also J. Hájek (Prague, Czech Republic) anvd an anonymous reviewer for comments to previous versions of the manuscript. This work was partly funded by an FPI grant to A.V., and projects CGL2013-48950-C2-1-P and CGL2013-48950-C2-2-P (AEI/FEDER, UE) to I.R. and A.M. respectively.

References

- Abellán, P., Sánchez-Fernández, D., Picazo, F., Millán, A., Lobo, J.M. & Ribera, I. (2013) Preserving the evolutionary history of freshwater biota in Iberian National Parks. *Biological Conservation*, **162**, 116–126.
- Alarie, Y., Nilsson, A.N. & Hendrich, L. (1999) Larval morphology of the Palaearctic genera Deronectes Sharp and Scarodytes Gozis (Coleoptera: Dytiscidae: Hydroporinae), with implications for the phylogeny of the Deronectes-group of genera. Entomologica Scandinavica, **30**, 173–195.
- Alarie, Y. & Michat, M.C. (2007) Phylogenetic analysis of Hydroporinae (Coleoptera: Dytiscidae) based on larval morphology, with description of first instar of *Laccornellus lugubris*. *Annals of the Entomological Society of America*, **100**, 655–665.
- Anderson, R.D. (1971) A revision of the Nearctic representatives of *Hygrotus* (Coleoptera: Dytiscidae). *Annals of the Entomological Society of America*, **64 (2)**, 503–512.
- Anderson, R.D. (1976) A revision of the Nearctic species of *Hygrotus* groups II and III (Coleoptera: Dytiscidae). *Annals of the Entomological Society of America*, **69 (4)**, 577–584.
- Anderson, R.D. (1983) Revision of the Nearctic species of *Hygrotus* groups IV, V and VI (Coleoptera: Dytiscidae). *Annals of the Entomological Society of America*, **76 (2)**, 173–196.
- Aubé, C. (1838) Hydrocanthares et gyriniens. In: Dejean, P.F.M.A. Species général des coléoptères de la collection de M. le Comte Dejean. Vol. 6. Paris: Méquignon Père et Fils, xvi + 804 pp.
- Balfour-Browne, F. (1934) Systematic notes upon British aquatic Coleoptera. Part II. The Hydroporinae (*Hygrotus & Coelambus*). *The Entomologist's Monthly Magazine*, **70**, 146–150.
- Balfour-Browne, F. (1940) *British water beetles. Vol I*. London: Ray Society, xix + 375 pp + 5 pls.
- Biström, O. (2002) *Pseudhydrovatus* Peschet, 1924, junior synonym of *Hydrovatus* Motschulsky, 1853 (Coleoptera, Dytiscidae). *Aquatic Insects*, **24**, 53–54.
- Biström, O. & Nilsson, A.N. (2002) *Herophydrus* Sharp: cladistic analysis, taxonomic revision of the African species, and world check list (Coleoptera: Dytiscidae). *Koleopterologische Rundschau*, **72**, 15–111.
- Blatchley, W.S. (1912) On some undescribed forms of Florida Coleoptera. *The Canadian Entomologist*, **44**, 330–332.

Brancucci, M. & Biström, O. (2013) Review of the Hydrovatini, Hygrotini and Hyphydrini

in Laos (Coleoptera, Dytiscidae). *Entomologica Basiliensia et Collectionis Frey*, **34**, 89–102.

- Branden, C. van den (1885) Catalogue des coléoptères carnassiers aquatiques (Haliplidae, Amphizoidae, Pelobiidae et Dytiscidae). *Annales de la Société Entomologique de Belgique*, **29 (1)**, 5–118.
- Curtis, J. (1835) British entomology; being illustrations and descriptions of the genera of insects found in Great Britain and Ireland. Vol. 12. London: J. Curtis, pls 530–577.
- Fabricius, J.C. (1777) Genera Insectorum eorumque characteres naturales secundum numerum, figuram, situm et proportionem omnium partium oris adiecta mantissa speciorum nuper detectarum. Chilonii: M.F. Bartschii, xvi + 310 pp.
- Fabricius, J.C. (1787) Mantissa Insectorum sistens species nuper detectas adiectis characteribus genericis, differentiis specificis, emendationibus, observationibus. (Vol. 1 + Vol. 2). Hafniae: C.G. Proft, xx + 348 + 382 pp.
- Falkenström, G.A. (1933) Schwedisch-chinesische wissenschaftliche Expedition nach den nordwestlichen Provinzen Chinas, unter Leitung von Dr. Sven Hedin und Prof. Sü Ping-chang. Insekten, gesammelt vom schwedischen Arzt der Expedition Dr. David Hummel 1927–1930. 15. Coleoptera. 1. Haliplidae und Dytiscidae. *Arkiv för Zoologi*, 27 A (1), 1–22.
- Fall, H.C. (1919) *The North American species of* Coelambus. Mount Vernon, New York: Privately printed, 20 pp.
- Fery, H. (1992) Revision der *saginatus*-Gruppe der Gattung *Coelambus* Thomson (Coleoptera: Dytiscidae). *Linzer Biologische Beiträge*, **24**, 339–358.
- Fery, H. (1995) Ergänzungen zur saginatus-Gruppe sowie Bemerkungen zu weiteren Arten der Gattung Coelambus Thomson (Coleoptera, Dytiscidae). Linzer Biologische Beiträge, 27, 1045–1061.
- Fery, H. (2003) Dytiscidae: V. Taxonomic and distributional notes on *Hygrotus* Stephens, with emphasis on the Chinese fauna and a key to the Palearctic species (Coleoptera), pp. 133–193. *In*: Jäch, M.A. & Ji, L. (Eds.), *Water Beetles of China Vol. 3*. Wien: Zoologisch-Botanische Gesellschaft in Österreich and Wiener Coleopterologenverein.
- Fery, H. (2013) *Rhithrodytes*-are we all blind? *Latissimus*, **34**, 13–15.
- Fery, H. (2016) Notes on *Rhithrodytes* Bameul, 1989, with the description of *R. minimus* nov. sp. from Algeria (Coleoptera, Dytiscidae. Hydroporini, Siettitiina). *Linzer Biologische Beiträge*, **48**, 431–450.
- Fery, H. & Bouzid, S. (2016) Notes on *Graptodytes* Seidlitz, 1887, re-instatement of *G. lae-ticulus* (Sharp, 1882) as valid species and description of *Tassilodytes* nov.gen. from Al-

geria (Coleoptera, Dytiscidae, Hydroporinae, Siettitiina). *Linzer Biologische Beiträge*, **48 (1)**, 451–481.

- Fery, H. & Challet, G. (2015) Hygrotus (Coelambus) nubilus (LeConte, 1855) on Mauna Kea (Hawaii)–first record of the genus from the Pacific zoogeographical region (Coleoptera: Dytiscidae). Linzer Biologische Beiträge, 47, 1303–1309.
- Fery, H., Pešić, V. & Darvishzadeh, I. (2012) Faunistic notes on some Hydradephaga from the Khuzestan, Hormozgan and Sistan & Baluchestan provinces in Iran, with descriptive notes on the female of *Glareadessus franzi* Wewalka & Biström 1998 (Coleoptera, Dytiscidae, Noteridae). *Linzer Biologische Beiträge*, **44 (2)**, 1057–1070.
- Foster, G.N., Bilton, D.T. & Nelson, B.H. (2016) *Atlas of the predaceous water beetles (Hydradephaga) of Britain and Ireland*. Telford: FSC Publications, x + 370 pp.
- Guignot, F. (1950) Trentième note sur les hydrocanthares (Col.). Bulletin de la Société Entomologique de France, 54 (1949), 146–153.
- Guignot, F. (1959) Revision des hydrocanthares d'Afrique (Coleoptera Dytiscoidea). 2. Annales du Musée Royal du Congo Belge, Série 8vo (Sciences Zoologiques), 78, 323–648.
- Gyllenhal, L. (1810) *Insecta Suecica descripta. Classis I. Coleoptera sive Eleutherata. Vol. 1. Part 2.* Scaris: F.J. Leverentz, III–XIX (Addenda ad partem prima) + 1 + 660 pp.
- Hájek, J. (2006) The westernmost record of *Neptosternus circumductus*, and a review of Dytiscidae (Coleoptera) of Baluchistan (Iran, Pakistan). *Acta Entomologica Musei Nationalis Pragae*, **46**, 43–56.
- Hatch, M.H. (1953) *The beetles of the Pacific Northwest. Part I: Introduction and Adephaga.* University of Washington Publications in Biology, **16**, 1–340.
- Hebert, P.D., Ratnasingham, S. & De Waard, J. R. (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. *Proceedings* of the Royal Society B: Biological Sciences, **270**, S96–S99.
- Katoh, K., Asimenos, G. & Toh, H. (2009) Multiple alignment of DNA sequences with MAFFT. *Methods in Molecular Biology*, **537**, 39–64.
- Larson, D.J., Alarie, Y. & Roughley, R.E. (2000) *Predaceous diving beetles (Coleoptera: Dytiscidae) of the Nearctic Region, with emphasis on the fauna of Canada and Alaska.* Ottawa: NRC Research Press, 982 pp.
- LeConte, J.L. (1855) Analytical table of the species of *Hydroporus* found in the United States, with descriptions of new species. *Proceedings of the Academy of Natural Sciences of Philadelphia*, **7**, 290–299.

- Maddison, W.P. & Maddison, D.R. (2017) Mesquite: a modular system for evolutionary analysis. Version 3.2. Available via http://mesquiteproject.org (last access March 2017).
- Millán, A., Abellán, P., Ribera, I., Sánchez-Fernández, D. & Velasco, J. (2006) The Hydradephaga of the Segura basin (SE Spain): Twentyfive years studying water beetles (Coleoptera). *Memorie della Società Entomologica Italiana*, **85**, 137-158.
- Miller, K.B. (2001) On the phylogeny of the Dytiscidae (Insecta: Coleoptera) with emphasis on the morphology of the female reproductive system. *Insect Systematics and Evolution*, **32**, 45–92.
- Miller, K.B. & Bergsten, J. (2014) The phylogeny and classification of predaceous diving beetles, pp. 49–172. In: Yee, D.A. (ed.) Ecology, systematics and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae). Berlin: Springer.
- Miller, K.B. & Bergsten, J. (2016) *Diving beetles of the world: Systematics and biology of the Dytiscidae*. Baltimore: Johns Hopkins University Press, ix + 320 pp.
- Nilsson, A.N. & Hájek, J. (2017a) A world catalogue of the Family Dytiscidae, or the diving beetles (Coleoptera, Adephaga). Internet Version 31.I.2017. Available via: http://www. norrent.se and www.waterbeetles.eu (last access May 2017).
- Nilsson, A.N. & Hájek, J. (2017b) Catalogue of Palaearctic Dytiscidae (Coleoptera). Internet version 1.I.2017. Available via: http://www.waterbeetles.eu (last access May 2017).
- Nilsson, A.N. & Holmen, M. (1995) The aquatic Adephaga (Coleoptera) of Fennoscandia and Denmark. II. Dytiscidae. *Fauna Entomologica Scandinavica*, **32**, 1–192.
- Pederzani, F. (1995) Keys to the identification of the genera and subgenera of adult Dytiscidae (sensu lato) of the world (Coleoptera Dytiscidae). *Atti dell'Accademia Roveretana degli Agiati*, a. 244 ser. VII, 4 B (1994), 5–83.
- Perris, É. (1864) Description de quelques espèces nouvelles de coléoptères et notes diverses. *Annales de la Société Entomologique de France*, **(4) 4**, 275–310.
- Peschet, R. (1923) Dyticidae et Haliplidae nouveaux (Col.). Bulletin de la Société Entomologique de France, 1923, 175–181.
- Picazo, F., Moreno, J.L. & Millán, A. (2010) The contribution of standing waters to aquatic biodiversity: the case of water beetles in southeastern Iberia. *Aquatic Ecology*, 44, 205–216.
- Portevin, G. (1929) Histoire naturelle des coléoptères de France. Vol. 1. Adephaga–Polyphaga: Staphylinoidea. Encyclopédie Entomologique (A) vol. 12. Paris: Paul Lechevalier, 649 pp. + 4 pls.

Régimbart, M. (1895) Révision des Dytiscidae et Gyrinidae d'Afrique et Madagascar et îles

voisines. Mémoires de la Société Entomologique de Belgique, 4, 1-244.

- Ribera, I., Hogan, J.E. & Vogler, A.P. (2002) Phylogeny of hydradephagan water beetles inferred from 18S rRNA sequences. *Molecular Phylogenetics and Evolution*, **23**, 43–62.
- Ribera, I., Vogler, A.P. & Balke, M. (2008) Phylogeny and diversification of diving beetles (Coleoptera : Dytiscidae). *Cladistics*, **24**, 563–590.
- Schaller, J.G. (1783) Neue Insekten. Abhandlungen der Hallischen Naturforschenden Gesellschaft, **1 (13)**, 217–332.
- Sharp, D. (1880) Avis préliminaire d'une nouvelle classification de la famille des Dytiscidae. Annales de la Société Entomologique de Belgique, 23, Comptes Rendus, cxlvii–cli.
- Sharp, D. (1882) On aquatic carnivorous Coleoptera or Dytiscidae. *The Scientific Transactions of the Royal Dublin Society*, *2*, 179–1003 + pls. 7–18.
- Stamatakis, A. (2006) RAxML-VI-HPC: Maximum Likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics*, **22**, 2688–2690.
- Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAx-ML web servers. *Systematic Biology*, **57**, 758–771.
- Stephens, J.F. (1828–1829) Illustrations of British entomology. Mandibulata. Vol. 2. London: Baldwin & Cradock, 200 pp. [pp. 1–112 in 1828, pp. 113–200 in 1829]
- Thomson, C.G. (1860) *Skandinaviens Coleoptera, synoptiskt bearbetade. Vol. II.* Lund: Lundbergska Boktryckeriet, 304 pp.
- Timms, B.V. & Hammer, U.T. (1988) Water beetles of some saline lakes in Saskatchewan, Canada. *Canadian Field-Naturalist*, **102**, 246–250.
- Vazirani, T.G. (1969) Contribution to the study of aquatic beetles (Coleoptera). V. Revision of Indian species of *Hyphoporus* Sharp (Dysticidae). *Bulletin du Muséum National d'Histoire Naturelle* (2), **41**, 203–225.
- Villastrigo, A., Fery, H., Manuel, M., Millán, A. & Ribera, I. (2018) Evolution of salinity tolerance in the diving beetle tribe Hygrotini (Coleoptera, Dytiscidae). *Zoologica Scripta*, 47, 63-71.
- Zaitzev, F.A. [Ph.] (1953) Nasekomye zhestkokrylye. Plavuntsovye i vertyachki. *Fauna SSSR* 4 (N.S. 58), 1–376. [in Russian]
- Zimmermann, A. (1919) Die Schwimmkäfer des Deutschen Entomologischen Museums in Berlin-Dahlem. *Archiv für Naturgeschichte*, **83 (1917)**, 68–249.
- Zimmermann, A. (1930) Monographie der paläarktischen Dytisciden. I. Noterinae, Laccophilinae, Hydroporinae (1. Teil). *Koleopterologische Rundschau*, **16**, 35–118.

Appendix

Note: The generic and subgeneric names cited in the Appendix are those of the new classification unless stated otherwise.

Detailed description of the clypeus in Hygrotini

The presence and the shape of the clypeal bead (often also called "clypeal rim" or "raised clypeal margin") are used by many authors to separate genera or subgenera within the tribe Hygrotini, mainly the former subgenus *Hygrotus* from former subgenus *Coelambus* and both from the former genera *Herophydrus* and *Hyphoporus* (see Table 1 for the authors and dates of all taxa mentioned here, as well as their past and new classification). Unfortunately, a determination is not always reliable or even impossible because the respective character states are not well recognisable in several species or are present in species which due to other characters, both morphological and molecular, should better be included in another genus or subgenus. Thus, the usefulness of the "clypeal bead" has been debated since long time. This clypeal bead is present in more than half of all members of Hygrotini, and varies considerably in shape. Although in the light of the results of the molecular phylogeny it is clear that the clypeal bead is a highly labile character, without much phylogenetic significance, a detailed description of its structure is necessary to understand the historical classification of Hygrotini, and it can nevertheless have some usefulness to identify some groups of species.

Former subgenera Hygrotus and Coelambus

The more common character state in members of the former subgenus *Coelambus* as recognised prior to this study (Nilsson & Hájek, 2017a, b) is the absence of a clypeal bead (as in e.g. *H.* (*Coelambus*) confluens, Fig. 46, and *H.* (*Leptolambus*) impressopunctatus, Fig. 41). The anterior part of the clypeus descends anteriad more or less evenly or in a slightly convex shape to the labrum (see Figs 5e and 6e). In almost all species of former *Coelambus* the anterior margin of the clypeus is bordered (directly before reaching/contacting the labrum) with a very narrow rim, which we here call the "clypeal line" (see Fig. 5d for *H.* (*Leptolambus*) impressopunctatus and Fig. 6d for *H.* (s. str.) inaequalis; see also below for more details). A rather broad transverse band posterior to this line (reaching more or less until the clypeal grooves) is often somewhat less reticulate (and thus more shiny) and more sparsely and finely punctured than the rest of the clypeus posterior to this band (e.g. recognisable "under the arrows" in Fig. 5 for *H.* (*Leptolambus*) impressopunctatus). Thus, this band might be interpreted as a separate part of the clypeus and - also due to the depressed clypeal grooves posterior to the band - can appear as if it was somewhat vaulted (although it is not), which might be interpreted as a (flat) bead. The structure of this band can vary considerably even among specimens of the same population of a species - in one specimen the band can appear as a flat bead, in another one found at the same locality the illusion of a bead is lacking. In all these typical members of the former subgenus *Coelambus* the anterior border of the clypeus (where it reaches/contacts the labrum) and that "clypeal line" (if present) can be recognised when the clypeus is viewed perpendicularly. Additionally, in this view it can be recognised that the anterior border of the clypeus of all these species of former subgenus *Coelambus* is not evenly rounded, but truncate and somewhat emarginated.

In members of the former subgenus *Hygrotus* the anterior border of the clypeus is evenly rounded in perpendicular view (see Fig. 44 for *H*. (s. str.) *inaequalis*). Additionally, the clypeus does not descend directly to the labrum, but is strongly and almost sharply produced forwards (see Figs. 6 and 45 for *H*. (s. str.) *inaequalis*), so that it reaches so far over the labrum that the real anterior border of the clypeus (where it reaches/contacts the labrum) cannot be recognised when the clypeus is viewed perpendicularly, as the anteriorly produced part of the clypeus covers most of the labrum and in particular the "clypeal line" (if that line is present at all). This is the reason why in species of the former subgenus *Hygrotus* it is necessary to differentiate between the anterior border of the clypeus and its anterior end, the latter being situated posterior (!) to the former. Short behind and parallel to its evenly curved anterior border the clypeus is depressed over the entire distance between the eyes; this depression is anteriorly delimited by a more or less sharp line (see Fig. 44 for *H*. (s. str.) *inaequalis*). That is why between this line and the anterior border an evenly curved "clypeal" bead is formed which has more or less the same width over its entire length.

There are two species of the former subgenus *Coelambus* that have a clypeus with almost exactly the same structure as the species of former subgenus *Hygrotus*, something that has confused generations of dytiscid specialists: *Hygrotus* (*Leptolambus*) *salinarius* and *H.* (*L.*) *masculinus* (see Figs 47 and 48 for *H.* (*L.*) *masculinus*). However, in contrast to members of the former subgenus *Hygrotus*, these two species have the anterior border of the clypeus truncate (in several specimens of *H.* (*L.*) *masculinus* at least less curved centrally than near the eyes) and also somewhat emarginated in *H.* (*L.*) *salinarius* - being in this respect typical *Hygrotus* (*Coelambus*) and not *Hygrotus* s. str.

Former genera Hyphoporus and Herophydrus

Members of former genera Herophydrus and Hyphoporus have a different structure

of the anterior part of the clypeus. Whilst all former *Hyphoporus* have a complete clypeal bead which is mostly narrowed medially (see Fig. 42 for *Hygrotus* (*Hyphoporus*) *solieri*), in former *Herophydrus* some species have a complete bead, some a medially shortly interrupted bead (see Fig. 43 for *Hygrotus* (s. str.) *guineensis*) as well as others with a medially broadly interrupted bead and *Hygrotus* (s. str.) *rohani* (Peschet, 1924) with a hardly delimited bead (cf. Biström & Nilsson, 2002). In those species with incomplete bead, the situation in the middle of the clypeal border is similar to that in typical *Hygrotus* (*Leptolambus*) - the anterior part of the clypeus descends anteriad more or less evenly or in a slightly convex shape to the labrum and the labrum as well as an eventual "clypeal line" are not hidden by the anterior part of the clypeus. Left and right of the bead interruption, the clypeus is widely vaulted and sometimes slightly produced forwards, however never as strongly produced as in former subgenus *Hygrotus*. The two parts of the bead are backwards either delimited by a more or less distinct line or by an anteriorly rather sharply delimited depression (as in the *inaequalis*-group of *Hygrotus* s. str.).

In members of subgenus *Hyphoporus* and those of former genus *Herophydrus* with complete bead, the anterior border of the clypeus is medially also widely vaulted and thus a little produced anteriorly. This is why in perpendicular view an eventually existing "clypeal line" and a very small posterior part of the labrum are covered by the vaulted anterior border of the clypeus. It must, however, be emphasised that these structures are totally different from those in members of former subgenus *Hygrotus* - in all these species the clypeus is by far not as strongly and not as sharply produced forwards as in the latter. Additionally, the bead or its two lateral parts are considerably broader left and right of the middle, whilst it is of more or less of equal width over its entire length in members of the former subgenus *Hygrotus*.

Species of former *Herophydrus* and *Hyphoporus* have the anterior margin of the clypeus truncate and emarginated in perpendicular view (see Fig. 43 for *guineensis*; in some species, however, this emargination is only rather indistinct), but we must concede that we have not been able to study all species and must rely in part on the figures given in Biström & Nilsson (2002).

The separation of former *Herophydrus* from *Hyphoporus* by morphological characters has been debated since long time (see e.g. Guignot, 1950: 149; Vazirani, 1969: 203–205; Biström & Nilsson, 2002: 20–21). We did not find any satisfying solution for this problem and believe that a final classification can only be given once the molecular data of all species of these two genera are known. So far we must refer on what was given by Vazirani (1969: 204) in his key to these two genera, but add some exceptions. According to Guignot (1950: 149; more or less repeated by Vazirani, 1969: 204) in former genus *Herophydrus* the punctation of the head reaches an imaginary line connecting the hind margins of the eyes, but on a small band posterior to this line (on the vertex) this punctation is absent or at most replaced by a few much smaller punctures. In former genus *Hyphoporus* the punctation of the head reaches distinctly beyond this imaginary line and is not replaced by finer punctation. Additionally, both authors note that in *Herophydrus* the median lobe is (more or less) symmetric and in *Hyphoporus* it is not. On the other hand, Guignot (1959: 339) himself conceded that "lack of punctation in that band on the vertex" [our translation from French] does not really hold in *H.* (s. str.) *musicus* and *H.* (s. str.) *rufus*, and we must concede that we were not able to use this character for reliable identifications.

In what refers to the symmetry of the median lobe we want to underline that *Hy-grotus* (*Hyphoporus*) *bengalensis* has a more or less symmetric median lobe, and on the other hand that many former *Herophydrus* have a median lobe which is at least not strictly symmetric (as can be appreciated e.g. in some figures in Biström & Nilsson, 2002).

Former genus Heroceras

Hygrotus (s. str.) *descarpentriesi* is a species not well represented in collections; thus, some of the very few descriptions in the literature may not rely on careful studies of specimens. It is more or less known as a "*Herophydrus* with widened antennae" (cf. Guignot, 1950: 150 and Pederzani, 1995: 35). Guignot (1959: 372) provided for this species: "Tête bourrelet clypéal ininterrompu, …" [= head with clypeal bead not interrupted …] and "... bourrelet clypéal peu marqué …" [= ... clypeal bead not well marked …]. Miller & Bergsten (2016: 204) gave "... having the anterior clypeal margin broadly bordered."

We have studied one male and one female syntype of this species (coll. Peschet, MNHN; see Fig. 17), one additional female from the coll. Guignot (MNHN), and several further specimens collected recently by one of us (M.M.). To our great surprise, at first glance we were not able to detect any distinct clypeal bead. Only when adequately illuminated it was possible to see that in the female syntype the clypeus is very slightly vaulted before the anterior margin. In the male syntype a few transversely stretched punctures indicate a posterior margin of a bead - however, only on the right side of the clypeus. In particular, there are absolutely no traces of a bead recognisable before the eyes. The latter observation is surprising, because even *H.* (s. str.) *nodieri*, with a very broadly interrupted clypeal bead, shows laterally distinct rests of a bead next to the eyes. Similar observations were made with the recently collected material. Additionally, we want to state that only a small posterior part of the labrum is covered by the vaulted anterior border of the clypeus - this being in

contrast to Biström & Nilsson (2002: 18, 19) who stated labrum "not visible from above". On the other hand, our observation that the clypeal bead is practically lacking in former *Heroceras* is supported by Biström & Nilsson (2002: 18, 19, table 1) who gave the anterior margin of the clypeus (character 1 on p. 18) with state 0 (= without bead). These authors, however, did not comment this feature.

It shall be mentioned here that the almost total lack of a medial clypeal bead was the reason for Guignot (1950) to create his subgenus *Dryephorus* of genus *Herophydrus*. Similarly, other species of former *Herophydrus* show only rests of a bead before each eye, such as *Hygrotus* (s. str.) *heros* (Sharp, 1882) (cf. Zimmermann, 1919: 150). Although in a different subgenus, *Hygrotus* (*Leptolambus*) *polonicus polonicus* (Aubé, 1842) and its subspecies *sahlbergi* (Sharp, 1882) have the clypeus anteriorly somewhat vaulted (cf. Zimmermann, 1930: 96). Zimmermann (1919: 150) claimed that also *Hygrotus* (*Leptolambus*) *unguicularis* might be ranged under *Hygrotus* s. str. "… wegen der feinen, aber wenigstens in der Mitte deutlichen Clypeusrandung …" [= because of the fine, but at least medially distinct beading]. We have studied numerous specimens of *H. unguicularis* and can state that Zimmermann (1919) must have been misguided: most probably he mixed up what in Hygrotini is usually called clypeal "bead" (and which is rather broad) with what we call here "clypeal line".

Falkenström (1933: 12) noted that on the one hand *Hygrotus* (s. str.) *versicolor* (Schaller, 1783) should be ranged in *Herophydrus* due to the shape of the clypeal border (meaning a medially reduced width of the clypeal bead), but on the other hand refused this classification.

The "clypeal stripe"

As mentioned above, in many species of Hygrotini, and in particular in species of former subgenus *Coelambus*, the anterior border of the clypeus is provided with a "clypeal line". This line is in some species rather distinct, in others irregularly interrupted and in some not recognisable or absent. The distinctness of this line seems to show also some individual variation within a species. Balfour-Browne (1934: 150) pointed to a special feature of *Hygrotus* (*Coelambus*) *confluens*: at the base of the labrum, before the anterior border of the clypeus there is a flat, transverse stripe which is rather shiny, not reticulate, provided with only a very few punctures, broadest in middle and evenly tapering to the sides (Fig. 46). We interpret this "clypeal stripe" as a broadened "clypeal line". Such stripe can be also found in *H.* (*C.*) *pallidulus*, *H.* (*C.*) *punctilineatus*, *H.* (*C.*) *enneagrammus* and in *H.* (*C.*)

82

flaviventris (Motschulsky, 1860), but in all latter species this stripe is by far not as broad as in *H*. (*C*.) *confluens* and often difficult to observe, as it is strongly reduced to almost a simple line slightly broader medially than laterally. In *H*. (*C*.) *ahmeti* this "clypeal stripe" is in fact reduced to a line of more or less even width. We have found such medially very slightly broadened stripe/line also in a few other species, such as *H*. (*Leptolambus*) *marklini*, *H*. (*L*.). *fraternus*, *H*. (*L*.). *patruelis* (LeConte, 1855), and *H*. (*L*.). *pedalis*.

Finally, we want to emphasise, that this "clypeal stripe" is by no means homologous to the "clypeal bead" found in species of former *Herophydrus*, *Hyphoporus* and subgenus *Hygrotus*.

Chapter 2

Evolution of salinity tolerance in the diving beetle tribe Hygrotini (Coleoptera: Dytiscidae)

Edited version of: Adrián Villastrigo, Hans Fery, Michaël Manuel, Andrés Millán and Ignacio Ribera Published on: *Zoologica Scripta* (2018) **47**: 63-71

Abstract

Some species of the diving beetle tribe Hygrotini (subfamily Hydroporinae) are among the few insects able to tolerate saline concentrations more than twice that of seawater. However, the phylogenetic relationships of the species of Hygrotini, and the origin and evolution of tolerance to salinity in this lineage, are unknown. In this work, we aim to reconstruct how many times salinity tolerance did evolve in Hygrotini, whether this evolution was gradual or if tolerance to hypersalinity could evolve directly from strictly freshwater (FW) species, and to estimate the probabilities of transition between habitats. We build a phylogeny with ca. 45% of the 137 species of Hygrotini, including all major lineages and almost all of the known halophile or tolerant species. We used sequence data of four mitochondrial (COI-5', COI-3', 16S + tRNA and NADH1) and three nuclear (28S, 18S and H3) gene fragments, plus ecological data to reconstruct the history of the salinity tolerance using Bayesian inference. Our results demonstrate multiple origins of the tolerance to salinity, although most saline and hypersaline species were concentrated in two lineages. The evolution of salinity was gradual, with no direct transitions from FW to hypersaline habitats, but with some reversals from tolerant to FW species. The oldest transition to saline tolerance, at the base of the clade with the highest number of saline species, was dated in the late Eocene-early Oligocene, a period with decreasing temperature and precipitation. This temporal coincidence suggests a link between increased aridity and the development of tolerance to saline waters, in agreement with recent research in other groups of aquatic Coleoptera.

Introduction

Hydroporinae is the most diverse of the subfamilies of diving beetles (Dytiscidae) (Nilsson & Hájek, 2017a) and its species also display a large variety of ecologies and life habits (Miller & Bergsten, 2016). Many species of Hydroporinae live in extreme or unusual environments for diving beetles, such as subterranean aquifers, forest litter or hypersaline waters. While the origin and evolution of subterranean and terrestrial lifestyles has received recent attention (e.g. Leys & Watts, 2008; Tierney *et al.*, 2015; Toussaint *et al.*, 2016), the origin of the species of diving beetles able to sustain extreme salt concentration has never been addressed in a phylogenetic context, whereas for other families of aquatic Coleoptera, such as Hydrophilidae or Hydraenidae, comparative studies on the evolution of saline tolerance are already available (Arribas *et al.*, 2014; Sabatelli *et al.*, 2016).

Within Hydroporinae, species which are exclusively halophile or which can tolerate saline or hypersaline waters have independently evolved in three tribes, Bidessini, Hydroporini and Hygrotini (Miller & Bergsten, 2016). The latter includes some of the most extreme examples of saline tolerance, with some species able to sustain concentrations above 70 g/L, twice that of seawater (Picazo, *et al.*, 2010; Timms & Hammer, 1988). The physiological mechanism of salt tolerance of *Hygrotus* (*Coelambus*) *salinarius* (Wallis, 1924) has been studied (Tones, 1978). However, the species' phylogenetic relationships are unknown, and in consequence whether it may be related to other saline tolerant species of *Hygrotus* Stephens, 1828 or what could have been the origin of its saline tolerance.

With this work we aim to investigate the phylogenetic relationships among the salt tolerant species of Hygrotini, and their relationships with the rest of the species of the tribe. This will allow to answer some basic questions such as: (i) how many times did salinity tolerance evolve in Hygrotini?; (ii) was this evolution gradual (i.e. from FW to intermediate salinities to hypersaline), or could tolerance to hypersalinity have evolved directly from strictly FW species?; (iii) what were the probabilities of transitions between habitats in the evolution of Hygrotini? and (iv) are there any general patterns in the geographic and temporal origin of salinity tolerance in Hygrotini?

To answer these questions we built a molecular phylogeny with almost half of the 137 known species of the tribe, including all genera and recognised main species groups (Nilsson & Hájek, 2017a,b), and compiled data on the ecological tolerances of all described species from the literature and our own observations. In addition, our results demonstrated that two of the four currently recognised genera of Hygrotini and one subgenus are para- or polyphyletic, revealing the need of a new classification of the tribe, which will be presented

in a separate paper (Villastrigo, et al., 2017, Chapter 1).

Material and Methods

Molecular data

We obtained molecular data from 101 specimens of 64 species, including all four currently recognised genera of Hygrotini: *Heroceras* Guignot, 1950, *Herophydrus* Sharp, 1880, *Hygrotus* (with two subgenera, *Hygrotus* and *Coelambus* Thompson, 1860) and *Hyphoporus* Sharp, 1880 (Nilsson & Hájek, 2017a,b; see Table S1). We used as outgroups a selection of 12 species from four genera belonging to Hydroporini, shown to be related to Hygrotini (Ribera, *et al.*, 2008). Trees were rooted on *Laccornis* Gozis, 1914, considered to be outside Hydroporini and Hygrotini and in a basal position within Hydroporinae (Miller & Bergsten, 2014; Ribera *et al.*, 2008).

DNA extraction and sequencing

Specimens were collected in the field and preserved in absolute ethanol. DNA was extracted using commercial kits (mostly DNeasy Tissue Kit, Qiagen, Hilden, Germany) following the instructions of the manufacturers. Vouchers and DNA samples are kept in the collections of the Institute of Evolutionary Biology (IBE, Barcelona) and Museo Nacional de Ciencias Naturales (MNCN, Madrid). We sequenced fragments of seven genes in six sequencing reactions, three mitochondrial: (i) 5' end of cytochrome c oxidase subunit 1 (COI-5, "barcode" fragment of Hebert, Ratnasingham, & De Waard, 2003), (ii) 3' end of cytochrome c oxidase subunit 1 (COI-3), (iii) 5' end of 16S RNA plus the Leucine tRNA plus 5' end of NADH dehydrogenase subunit I (16S); three nuclear fragments: (iv) an internal fragment of the large ribosomal unit 28S RNA (28S), (v) an internal fragment of the small ribosomal unit, 18S RNA (18S) and (vi) an internal fragment of Histone 3 (H3). Details on primers used and typical polymerase chain reaction (PCR) conditions are provided in Table S2. Sequences were assembled and edited with Geneious v6.0.6 (Kearse *et al.*, 2012); new sequences have been submitted to the EMBL database with accession numbers LT882773-LT883126 (Table S1).

Phylogenetic analyses

Edited sequences were aligned using the online version of MAFFT 7 with the G-INS-I algorithm (Katoh *et al.*, 2009). For one species (*Hygrotus* (*Coelambus*) *pedalis* (Fall, 1901)) we pooled sequences of two specimens in a chimera to complete the data set (Table

S1), after testing their monophyly with COI-3. We used PartitionFinder v1.1.1 (Lanfear *et al.*, 2012) to estimate the best fitting evolutionary model initially using one partition for each gene fragment except for COI (split in COI-5 and COI-3) and 16S and tRNA (pooled in a single partition), and applied Akaike Information Criterion (AIC) scores as selected Criteria.

We used BEAST 1.8 (Drummond & Rambaut, 2007) for Bayesian phylogenetic analyses, using the partition and evolutionary models selected by PartitionFinder and a molecular-clock approach for estimating divergence times. We applied an uncorrelated lognormal relaxed clock to estimate substitution rates and a Yule speciation process as the tree prior. We calibrated the tree using rates estimated in Andújar *et al.*, (2012) for a genus of Carabidae (*Carabus*), in the same suborder Adephaga (rate of 0.0113 [95% confidence interval 0.0081–0.0147] substitutions per site per million years (subst/s/Ma) for COI- 5; 0.0145 [0.01–0.0198] subst/s/Ma for COI-3 and 0.0016 [0.001–0.0022] subst/s/Ma for 16S + tRNA). Analyses were run for 100 million generations, assessing that convergence was correct and estimating the burn-in fraction with Tracer v1.6 (Drummond & Rambaut, 2007). We also used a fast maximum likelihood (ML) heuristic algorithm in RAxMLHPC2 (Stamatakis, 2006) in the CIPRES Science Gateway (Miller *et al.*, 2010), using the same partition scheme as in BEAST with a GTR + G evolutionary model independently estimated for each partition and assessing node support with 100 pseudoreplicas with a rapid bootstrapping algorithm (Stamatakis *et al.*, 2008).

Morphological data

To estimate the likely phylogenetic relationships of the species for which no molecular data could be obtained, we studied all described species of subgenera *Hygrotus* and *Coelambus* with the only exceptions of *H*. (*C*.) *artus* (Fall, 1919), known only from the holotype and considered to be possibly extinct (see Anderson, 1983), and *H*. (*C*.) *femoratus* (Fall, 1901), which is likely a junior synonym of *H*. (*C*.) *nubilus* (LeConte, 1855) (Anderson, 1983). We have also studied a large selection of species of *Herophydrus* and *Hyphoporus* (see Table S3 for the studied material).

The taxonomic classification of Hygrotini has suffered multiple changes, and some of the characters used to define genera (such as e.g., the morphology of the clypeus) are difficult to interpret and characterise (see e.g., Anderson, 1971; Balfour-Browne, 1934; Biström & Nilsson, 2002; Falkenström, 1933; Villastrigo *et al.*, 2017, Chapter 1). Species for which no molecular data were available were thus considered to be closely related to those showing a high morphological similarity, based both on external characters and on the female and male genitalia. We also recognised diagnostic characters or character combi-

nations of the different clades of the molecular phylogeny and tested their presence in the species without molecular data (see Villastrigo *et al.*, 2017, Chapter 1, for more details). We used Mesquite v3.20 (Maddison & Maddison, 2017) to manually place all species in their most likely position in the phylogenetic tree, and collapsed uncertain nodes to create polytomies.

Salinity tolerance data

We compiled ecological data on habitat preferences of all species of Hygrotini from bibliography and from our own observations (Table S3). Recent work on salinity tolerance in aquatic Coleoptera has recognised six different categories of habitat preferences: (i) FW (<0.5 g/L); (ii) mineralized (0.5–5 g/L); (iii) hyposaline (\geq 5–20 g/L); (iv) mesosaline $(\geq 20-40 \text{ g/L})$; (v) hypersaline $(\geq 40-80 \text{ g/L})$; (vi) extreme hypersaline (>80 g/L) (Arribas et al., 2014). As quantitative observations in species of Hygrotini were very scarce we reduced these categories to three: (i) species strictly bounded to FW environments (approximately <0.5 g/L), corresponding to category (i) above; (ii) species that can tolerate a wide range of salinities (approximately 0.5-40 g/L), corresponding to categories (ii-iv) above; and (iii) hypersaline species (approximately >40 g/L), corresponding to categories (v) and (vi) above. To reconstruct the evolution of saline tolerance we pruned the data set to one specimen per species and deleted the outgroups, using salinity tolerance as a qualitative trait. This reduced matrix was analysed in BEAST using the same settings as for the phylogenetic reconstruction, with an asymmetric substitution model for the trait reconstruction and dating the ancestral node according to the results of the previous analysis (with a Gamma distribution with shape 30 and scale 2.227). We also reconstructed the evolution of saline tolerance in the extended phylogeny, including species for which no molecular data were available, using parsimony in Mesquite.

Results

Molecular data

The best partition schemes selected by PartitionFinder pooled the two fragments of COI and several of the nuclear genes, and favoured the most complex evolutionary models for most partitions (Table 1). The topological differences between the Bayesian analysis and the ML searches were minimal and always affected poorly supported nodes (Figures 1, S1), associated with the position of three species: *Hygrotus (Coelambus) fumatus* (Sharp, 1882), *Hygrotus (Coelambus) urgensis* (Jakovlev, 1899) and *Hygrotus (Hygrotus) hydrop*-

icus (LeConte, 1852). In all cases, the monophyly of Hygrotini was recovered with strong support, as were most of the internal nodes (Figures 1, S1).

Complete data set			Reduced data set		
Ρ	Genes	Model	Ρ	Genes	Model
#1	COI-5' + COI-3'	GTR + I + G	#1	COI-5' + COI-3'	GTR + I + G
#2	16S + NAD1	GTR + I + G	#2	16S + NAD1	GTR + I + G
#3	18S + 28S + H3	GTR + I + G	#3	18S + 28S	GTR + I
			#4	H3	GTR + I + G
P, partition					

 $\label{eq:table_$

In all analyses, Hygrotini was divided into two lineages (posterior probability [pp] = 1; bootstrap support [BS] = 98): (A) three Nearctic and one Palaearctic species of subgenera *Hygrotus* and *Coelambus* and (B) the remaining species of the tribe (Fig. 1). The latter was in turn divided into four clades: (B1) a group of Palaearctic species of subgenus *Coelambus*, (B2) the two sampled species of *Hyphoporus*, (B3) a large group of species including *Heroceras*, all sampled *Herophydrus* and most species of *Hygrotus* s. str., and (B4) the remaining species of subgenus *Coelambus*, in turn divided into two sister clades, one with mostly *Palaearctic* species and a second with mostly Nearctic species.

The monophyly of all clades had strong support in both Bayesian and ML analyses except for clade B3 (Fig. 1). This clade included the genus *Herophydrus* as paraphyletic with respect to *Heroceras* and most species of the subgenus *Hygrotus*, the latter grouped in a monophyletic lineage. *Heroceras* and the sampled species of *Herophydrus* from Madagascar with the exception of *H. spadiceus* Sharp, 1882 formed a strongly supported clade (pp = 1, BS = 100), in turn placed (with lower support) inside a lineage with most of the remaining sampled African *Herophydrus* (Fig. 1).

The internal phylogeny of the main clades was generally in good agreement with the recognised species groups among subgenera *Hygrotus* and *Coelambus* based on morphology (see e.g., Anderson, 1971, 1976, 1983; Fery, 1992, 1995, 2003), although not with the phylogeny of *Herophydrus* obtained by Biström and Nilsson (2002).

Evolution of tolerance to salinity

Differences between the analyses of the complete and reduced data set referred mostly to the position of *Hyphoporus* (clade B2). In the complete data set it was placed as sister to clade B3, and both sister to clade B1, with very strong support (Fig. 1). In the re-

Figure 1. Best maximum ikelihood (ML) phylogram obtained in RAxML with the extended dataset of Hygrotini (including outgroups and multiple terminals per species). Black circles, nodes with bootstrap support in RAxML (BS) > 70 and posterior probability (pp) in BEAST > 0.95; when support values were lower: number above nodes, BS; number below nodes, pp. X, nodes not recovered in the BEAST analysis (Fig. S1). See Table S1 for details on the specimens. For clarity, only the subgenus name is given in *Hygrotus* s. str. and *Coelambus*. Habitus photograph: *Hygrotus* (*Coelambus*) *lagari* (Fery, 1992) (from Millán et al., 2014).

duced data set, without outgroups and with only one terminal per species, it was placed as sister to clade B4, but with low support (Fig. 2). However, the uncertainty in the phylogenetic position of *Hyphoporus* (clade B2) did not have any effect on the reconstruction, as the two possible sister clades, B3 (Fig. 1) or B4 (Figures 2, S2), were reconstructed to have a FW ancestor, and thus, their common ancestor was also reconstructed as living in FW habitats.

According to the Bayesian reconstruction in the reduced data set, tolerance to salinity emerged independently from a FW ancestor at least ten times within three of the main lineages of Hygrotini: B1, B3 and B4 (Fig. 2). There were five subsequent independent

Figure 2. Reconstruction of the evolution of tolerance to salinity in the reduced data set of Hygrotini (excluding outgroups and with only one terminal per species) in BEAST. Letters above nodes: reconstructed state of the trait (FW, freshwater, green; T, tolerant, yellow; HS, hypersaline, red); numbers inside parentheses: posterior probability of the reconstructed discrete state; number below nodes: node support (pp); numbers inside nodes: 95% interval of the reconstructed age of selected nodes. For clarity, only the subgenus name is given in *Hygrotus* s. str. and *Coelambus*. See Table S1 and S3 for details on the specimens and the ecological typification of the species, respectively. Geographic distribution: AF: Afrotropical; H: Holarctic; NA: Nearctic; NT: Neotropical (northern Mexico); OR: Oriental; PL: Palaearctic.

transitions from tolerant to hypersaline (mainly in the Nearctic lineage of clade B4), although in some cases these transitions affected only the terminal branches in our phylogeny. Four of the transitions from FW to salinity tolerant and one of the transitions to hypersalinity led to clades with more than one species, and in only one clade (B4) there have been three reversal transitions from tolerant to FW. No direct transitions from FW to hypersaline habitats were found in the reconstruction (Fig. 2).

The oldest transition to salinity tolerance, at the base of the clade with the highest number of saline species, was dated to the late Eocene-early Oligocene. Three of the transitions to hypersalinity tolerance were estimated to have occurred during the Oligocene, one of them with a further diversification in the early Pleistocene, including *H.* (*C.*) salinarius and *Hygrotus* (*Coelambus*) masculinus (Crotch, 1874; Fig. 2). Other transitions to hypersalinity tolerance affecting single species occurred in the middle Miocene (*Hygrotus* (*Coelambus*) diversipes Leech, 1966) and the Pleistocene (*Hygrotus* (*Coelambus*) fontinalis Leech, 1966; see Fig. 2).

Table 2. Estimated transition rates in BEAST between the discrete states of tolerance to salinity.

	Freshwater	Tolerant	Hypersaline		
Freshwater	-	1.97 (0.33-3.99)	0.23 (<0.001-0.72)		
Tolerant	1.23 (0.09-2.83)	-	1.4 (0.03-3.02)		
Hypersaline	0.37 (<0.001-1.17)	0.73(<0.001-1.9)	-		
In brackets, 95% confidence interval.					

For most species without molecular data a close relative included in the phylogeny could be identified based on similarities in the genitalia or the external morphology, although in a few cases no obvious relatives could be identified, and the species were placed in an unresolved polytomy in the less inclusive clade to which they could be ascribed (Fig. S2). The parsimony reconstruction of salinity tolerance in this extended phylogeny gave similar results to the reconstruction using only the molecular data. The last common ancestor of Hygrotini was a FW species, as was the reconstructed ancestors of clades A, B2 and B3. For nodes including species with the three states of the trait, such as in clades B1 and B4, the ancestral reconstruction was ambiguous in the parsimony analysis (Fig. S2). On the contrary, in the Bayesian analysis of the reduced data set they were reconstructed as FW with a high probability (Fig. 2). Most of the tolerant or hypersaline species were included within clades with at least some other tolerant species, in agreement with the results obtained with the phylogeny using only species with molecular data (Figures 2, S2).

Discussion

Molecular phylogeny

We obtained a robust phylogeny of Hygrotini, with good support for most internal nodes except for the monophyly of clade B3 and its relationship with *Hyphoporus*. Our species sampling was also very dense except for *Herophydrus* and for *Hyphoporus*, of which we could obtain fresh material of only two species. These two species, however, belong to the two different morphological groups recognised in the revision of the genus by Vazirani (1969).

The most unexpected result of our phylogeny was the deep division of Hygrotini in two clades, one of them formed by a small number of species. Despite the lack of clear synapomorphies, these species share some presumably plesiomorphic characters of body shape, colouration and male genitalia, the latter being in general simpler and more similar to those of other related tribes of Hydroporinae. The internal relationships within clade A are still poorly defined, and would need further morphological and molecular studies to be clarified. Within clade B3, the close relationships of *Hygrotus* s. str., *Herophydrus* and *Heroceras* had been previously noted by many authors (Abellán *et al.*, 2013; Alarie & Michat, 2007; Biström & Nilsson, 2002; Miller & Bergsten, 2014; Ribera *et al.*, 2002; Ribera *et al.*, 2008), and suggested by the (incomplete) molecular and morphological phylogenies available prior to our study. Species of *Hyphoporus* have always been considered to be related to the species of *Herophydrus*, of which they differ mostly in the male genital shape (e.g., Biström & Nilsson, 2002; Miller & Bergsten, 2016). The non-monophyly of genera *Hygrotus* and *Herophydrus* and subgenera *Hygrotus* and *Coelambus* requires a revised classification of the tribe, which will be formalised in a separate paper (Villastrigo *et al.*, 2017, Chapter 1).

Evolution of the tolerance to salinity in Hygrotini

We found several independent origins for the salinity tolerance in the tribe Hygrotini, with at least 10 transitions from FW to saline ecosystems both in the Palaearctic and the Nearctic. The multiple origin of saline species was expected, as they were included in different morphologically well characterised subgenera or species groups, but the number of transitions was lower than anticipated, as some of the saline species in clade B4 that were not thought to be related (as e.g., *Hygrotus* (*Coelambus*) *marklini* (Gyllenhall, 1813) and *H*. (*C*.) *salinarius*) were grouped in the same monophyletic radiation. In other families of aquatic Coleoptera, species that were apparently not closely related were also found to have a common origin of their tolerance to salinity, as for example in the genera *Ochthebius* Leach, 1815 (Hydraenidae; see Sabatelli *et al.*, 2016) and *Enochrus* Thomson, 1859 (Hydrophilidae; see Arribas *et al.*, 2014).

We did not find any direct transition from FW to hypersaline habitats, a transition that had the lowest estimated probability, suggesting that in Hygrotini the adaptation to salinity has been a gradual process. The only possible exception was Hygrotus (Coelambus) pallidulus (Aubé, 1850), sister to a group of tolerant species, but the clade was reconstructed as having a FW ancestor with high probability. However, H. (C.) pallidulus together with its tolerant sisters are included in a wider lineage with several other tolerant species of which no molecular data could be obtained, rendering the condition of their common ancestor ambiguous (as can be seen in Fig. S2). This gradual evolution is in contrast to the direct transitions from FW to hypersaline tolerance found in a group of Mediterranean species of Enochrus (Arribas et al., 2014). These transitions were associated with periods of aridification of the climate, leading to the hypothesis that saline tolerance may have been a by-product (an exaptation) of adaptation to desiccation (Arribas et al., 2014; Pallarés et al., 2016). The capability to produce hyperosmotic excreta is a plesiomorphic character in insects, likely linked to the necessary adaptations to a terrestrial environment (Bradley, 2008; Bradley et al., 2009; Cloudsley-Thompson, 2001). In the only species for which the salinity tolerance mechanism is known, H. (C.) salinarius, adults maintain a hyposmotic haemolymph also with hyperosmotic excreta (Tones, 1978), with no evidence of any additional mechanism particular to this species. However, larvae of H. (C.) salinarius maintain a hyperosmotic haemolymph even at high saline concentrations (Tones, 1978), suggesting a different mechanism to that of adults. Although there is an increasing knowledge of the physiological basis of salinity tolerance in adult Coleoptera (e.g., Céspedes et al., 2013; Pallarés et al., 2015; Pallarés et al., 2012), the physiology of larval tolerance to salinity is still unknown. However, both the different characteristics of the cuticle (less sclerotised and without the protection of the elytra) and the biology (usually more strictly linked to the aquatic environment) suggest that the existence of different mechanisms to salinity tolerance in adults and larvae may be frequent.

In any case, it must be noted that we have data only on the ecological preferences of the species of Hygrotini, not on their physiological tolerances. If tolerance to salinity is an exaptation derived from a plesiomorphic adaptation to terrestrial environments (as hypothesised by Arribas *et al.*, 2014; see Pallarés *et al.*, 2017 for an experimental confirmation of the link between salinity and desiccation tolerance), tolerance to at least certain degree of salinity may be widespread even in species commonly found in FW habitats, as has been demonstrated to be the case in other groups of aquatic Coleoptera (Céspedes *et al.*, 2013; Pallarés *et al.*, 2015). Our ecological typification was also in most cases based on qualitative descriptions, without quantitative data. For some species there are few, if any, reports on their habitat, and in some cases we have assumed a FW habitat when the information was not very precise, as when species are found in saline or hypersaline habitats this is usually reported. In some cases qualitative reports can be ambiguous, such as for example when species are considered "halophile" or "halobiont" when they occur in slightly mineralised waters in a landscape otherwise lacking any true saline or hypersaline habitat, such as for example *Hygrotus* (*Hygrotus*) *inaequalis* (Fabricius, 1777) or *H.* (*Coelambus*) *impressopunctatus* (Schaller, 1783) in some areas in central and northern Europe (e.g., Bellstedt, 2008).

In Hygrotini, the transitions to saline habitats were estimated to have occurred in different periods, from the late Eocene to the Plio- and Pleistocene, without a clear pattern of associations to arid periods, in contrast to what happened in the genus *Enochrus* in the Mediterranean region (Arribas *et al.*, 2014). However, the oldest transition to saline habitats in Hygrotini, and the one leading to the higher number of saline species, occurred at the end of the Eocene in clade B4 in the Nearctic region, coincident with a global decrease in temperatures and the onset of the first Oligocene glaciations (Liu *et al.*, 2009; Zachos *et al.*, 2001). In North America, this decrease in temperature was associated with a decrease in precipitation (Retallack, 2007), leaving open the possibility that this transition to saline habitats was also a response to an increased aridification in this lineage.

Acknowledgements

We would like to thank all colleagues mentioned in Table S1 for sending valuable material for study, as well as Ana Izquierdo (MNCN), Rocio Alonso and Anabela Cardoso (IBE) for laboratory work. M. Manuel is grateful to Andriamirado T. Ramahandrison for help during field work in Madagascar, in the context of the RicciaTeam expedition led by Catherine Reeb. We also thank Josefa Velasco and Susana Pallares (Universidad de Murcia) and Paula Arribas (Instituto de Productos Naturales y Agrobiologia-CSIC) For comments on the origin and evolution of salinity tolerance, and three anonymous referees for their comments and suggestions. This work was partly funded by an FPI grant to A.V., and projects CGL2013-48950- C2-1-P and CGL2013-48950-C2-2-P (AEI/FEDER, UE) to I.R. and A.M., respectively.

References

- Abellán, P., Sánchez-Fernández, D., Picazo, F., Millán, A., Lobo, J. M., & Ribera, I. (2013). Preserving the evolutionary history of freshwater biota in Iberian National Parks. *Bio-logical Conservation*, **162**, 116–126.
- Alarie, Y., & Michat, M. C. (2007). Phylogenetic analysis of Hydroporinae (Coleoptera: Dytiscidae) based on larval morphology, with description of first instar of *Laccornellus lugubris*. *Annals of the Entomological Society of America*, **100(5)**, 655–665.
- Anderson, R. D. (1971). A revision of nearctic representatives of *Hygrotus* (Coleoptera: Dytiscidae). *Annals of the Entomological Society of America*, **64(2)**, 503–512.
- Anderson, R. D. (1976). A revision of the neartic species of *Hygrotus* groups II and III (Coleoptera: Dyticidae). *Annals of Entomological Society of America*, **69(4)**, 577–584.
- Anderson, R. D. (1983). Revision of the nearctic species of *Hygrotus* Groups IV, V, and VI (Coleoptera, Dytiscidae). *Annals of the Entomological Society of America*, **76**, 173– 196.
- Andújar, C., Serrano, J., & Gómez-Zurita, J. (2012). Winding up the molecular clock in the genus *Carabus* (Coleoptera: Carabidae): assessment of methodological decisions on rate and node age estimation. *BMC Evolutionary Biology*, **12(1)**, 40.
- Arribas, P., Andújar, C., Abellán, P., Velasco, J., Millán, A., & Ribera, I. (2014). Tempo and mode of the multiple origins of salinity tolerance in a water beetle lineage. *Molecular Ecology*, **23(2)**, 360–373.
- Balfour-Browne, F. (1934). Systematic notes upon British aquatic Coleoptera. Part II. The Hydroporinae (*Hygrotus & Coelambus*). *The Entomologist's Monthly Magazine*, **70**, 146–150.
- Bellstedt, R. (2008). Wasserkäfer & Langbeinfliegen (aquatische Coleoptera & Diptera: Dolichopodidae) in view Binnensalzstellen Nordthüringens von 2005 bis 2007. *Mitteilungen Des Thüringer Entomologenverbandes*, **15**, 124–141.
- Biström, O., & Nilsson, A. N. (2002). *Herophydrus* Sharp: cladistic analysis, taxonomic revision of the African species, and world check list (Coleoptera: Dytiscidae). *Koleopterologische Rundschau*, **72**, 15–111.
- Bradley, T. J. (2008). Saline-water insects: ecology, physiology and evolution. In J. Lancaster & R. A. Briers (Eds.), Aquatic insects: challenges to populations (p. 332). Wallingford: CAB International Publishing.
- Bradley, T. J., Briscoe, A. D., Brady, S. G., Contreras, H. L., Danforth, B. N., Dudley, R., ... Yanoviak, S. P. (2009). Episodes in insect evolution. *Integrative and Comparative*

Biology, **49(5)**, 590–606.

- Céspedes, V., Pallarés, S., Arribas, P., Millán, A., & Velasco, J. (2013). Water beetle tolerance to salinity and anionic composition and its relationship to habitat occupancy. *Journal of Insect Physiology*, **59**, 1076–1084.
- Cloudsley-Thompson, J. L. (2001). Thermal and water relations of desert beetles. *Naturwissenschaften*, **88**, 447–460.
- Drummond, A., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. *BMC Evolutionary Biology*, **7(1)**, 214.
- Falkenström, G. A. (1933). Schwedisch-chinesische wissenschaftliche Expedition nach den nordwestlichen Provinzen Chinas, unter Leitung von Dr. Sven Hedin und Prof. Sü Ping-chang. Insekten, gesammelt vom schwedischen Arzt der Expedition Dr. David Hummel 1927-1930. 15. Coleoptera. 1. *Arkiv För Zoologi*, **27A(1)**, 1–22.
- Fery, H. (1992). Revision der *saginatus*-Gruppe der Gattung *Coelambus* Thomson (Coleoptera: Dytiscidae). *Linzer Biologische Beiträge*, **24(1)**, 339–358.
- Fery, H. (1995). Ergänzungen zur saginatus-Gruppe sowie Bemerkungen zu weiteren Arten der Gattung Coelambus Thomson (Coleoptera, Dytiscidae). Linzer Biologische Beiträge, 27(2), 1045–1061.
- Fery, H. (2003). Dytiscidae: V. Taxonomic and distributional notes on *Hygrotus* Stephens, with emphasis on the Chinese fauna and a key to the Palearctic species (Coleoptera). *In* M. A. Jäch & L. Ji (Eds.), *Water Beetles of China. Volume 3*. (pp. 133–193). Wien.
- Hebert, P. D., Ratnasingham, S., & De Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. *Proceedings* of the Royal Society B: Biological Sciences, **270**, S96–S99.
- Katoh, K., Asimenos, G., & Toh, H. (2009). Multiple Alignment of DNA Sequences with MAFFT. *Methods in Molecular Ecology*, **537**, 39-64.
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics*, **28(12)**, 1647–1649.
- Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology and Evolution*, **29(6)**, 1695–1701.
- Leys, R., & Watts, C. H. S. (2008). Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus. *Invertebrate Systematics*, **22(2)**, 217–225.

- Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S.R., Leckie, R.M., Pearson, A. (2009). Global Cooling During the Eocene-Oligocene Climate Transition. *Science*, **323(5918)**, 1187–1190.
- Maddison, W. P., & Maddison, D. R. (2017). Mesquite: a modular system for evolutionary analysis. Version 3.2. Retrieved from http://mesquiteproject.org (last access March 2017)
- Millán, A., Sánchez-Fernández, D., Picazo, F., Carbonell, J. A., Lobo, J. M., & Ribera, I. (2004). *Atlas de los coleópteros acuáticos de España peninsular*.
- Miller, K. B., & Bergsten, J. (2014). The phylogeny and classification of predaceous diving beetles. In D. A. Yee (Ed.), Ecology, systematics and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae) (pp. 49–172). Springer.
- Miller, K. B., & Bergsten, J. (2016). *Diving Beetles of the World*. Baltimore: Johns Hopkins University Press.
- Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. *Proceedings of the Gateway Computing Environments Workshop (GCE)* (pp. 1–8). New Orleans.
- Nilsson, A. N., & Hájek, J. (2017a). A world catalogue of the family Dytiscidae, or the Diving beetles (Coleoptera, Adephaga). Internet Version 31.I.2017. Retrieved from http:// www.norrent.se and http://www.waterbeetles.eu (last access March 2017).
- Nilsson, A. N., & Hájek, J. (2017b). Catalogue of Palaearctic Dytiscidae (Coleoptera). Internet version 31.I.2017. Retrieved from http://www.norrent.se and http://www.waterbeetles.eu (last access March 2017).
- Pallarés, S., Arribas, P., Bilton, D. T., Millán, A., & Velasco, J. (2015). The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae). *Plos One*, **10(4)**, 16.
- Pallarés, S., Arribas, P., Céspedes, V., Millán, A., & Velasco, J. (2012). Lethal and sublethal behavioural responses of saline water beetles to acute heat and osmotic stress. *Ecological Entomology*, **37(6)**, 508–520.
- Pallarés, S., Botella-cruz, M., Arribas, P., Millán, A., & Velasco, J. (2017). Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation. *The Journal of Experimental Biology*, **220(7)**, 1277–1286.
- Pallarés, S., Velasco, J., Millan, A., Bilton, D. T., & Arribas, P. (2016). Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting habitat preferences? *PeerJ*, **4**, e2382.

- Picazo, F., Moreno, J. L., & Millán, A. (2010). The contribution of standing waters to aquatic biodiversity: The case of water beetles in southeastern Iberia. *Aquatic Ecology*, 44(1), 205–216.
- Retallack, G. J. (2007). Cenozoic Paleoclimate on Land in North America. *The Journal of Geology*, **115(3)**, 271–294.
- Ribera, I., Hogan, J. E., & Vogler, A. P. (2002). Phylogeny of hydradephagan water beetles inferred from 18S rRNA sequences. *Molecular Phylogenetics and Evolution*, **23(1)**, 43–62.
- Ribera, I., Vogler, A. P., & Balke, M. (2008). Phylogeny and diversification of diving beetles (Coleoptera : Dytiscidae). *Cladistics*, **24(4)**, 563–590.
- Sabatelli, S., Audisio, P., Antonini, G., Solano, E., Martinoli, A., & Trizzino, M. (2016). Molecular ecology and phylogenetics of the water beetle genus *Ochthebius* revealed multiple independent shifts to marine rockpools lifestyle. *Zoologica Scripta*, **45(2)**, 175–186.
- Stamatakis, A. (2006). RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. *Bioinformatics*, **22(21)**, 2688–2690.
- Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. *Systematic Biology*, **57**, 758–771.
- Tierney, S. M., Cooper, S. J. B., Saint, K. M., Bertozzi, T., Hyde, J., Humphreys, W. F., & Austin, A. D. (2015). Opsin transcripts of predatory diving beetles: a comparison of surface and subterranean photic niches. *Royal Society Open Science*, **2(1)**, 140386.
- Timms, B. V., & Hammer, U. T. (1988). Water bettles of some saline lakes in Saskatchewan. *The Canadian Field-Naturalist*, **102**, 246–250.
- Tones, P. I. (1978). Osmoregulation in adults and larvae of Hygrotus salinarius wallis (Coleoptera, Dytiscidae). Comparative Biochemistry and Physiology Part A: Physiology, 60(3), 247–250.
- Toussaint, E. F. A., Hendrich, L., Escalona, H. E., Porch, N., & Balke, M. (2016). Evolutionary history of a secondary terrestrial Australian diving beetle (Coleoptera, Dytiscidae) reveals a lineage of high morphological and ecological plasticity. *Systematic Entomol*ogy, **41(3)**, 650–657.
- Vazirani, T. G. (1969). Contribution to the study of aquatic beetles (Coleoptera). V. Revision of Indian species of *Hyphoporus* Sharp (Dytiscidae). *Bulletin Du Muséum National* D'Histoire Naturelle, 41(1), 203–225.
- Villastrigo, A., Ribera, I., Manuel, M., Millán, A., & Fery, H. (2017). A new classification of the tribe Hygrotini Portevin, 1929 (Coleoptera: Dytiscidae: Hydroporinae). *Zootaxa*, 4317(3), 499–529.

Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. *Science*, **292**, 686–693.
Supporting Information

Table S1. Material studied in the molecular study, with voucher numbers, locality data and accession numbers of the sequences.

Table S2. A) Primers used in the amplifying and sequencing reactions and B) standardPCR conditions for the amplification of the studied fragments.

Table S3. Checklist of the species of Hygrotini (following Nilsson & Hàjek, 2017a, b) with the typical habitat and the species for which material could be studied. (AF, Afrotropical; H, Holarctic; NA, Nearctic; NT, Neotropical; OR, Oriental; PL, Palaearctic)

Fig. S1. Time-calibrated majority rule consensus tree obtained in BEAST with the complete dataset. Number in nodes: posterior probability values.

Fig. S2. Reconstructed evolution of salinity tolerance in the tribe Hygrotini, using parsimony with the estimated relationships of species for which no molecular data were available.

d S	ecies	Voucher	Red. country	Loc.	leg	BAR 0	COI 16S	18S	H3	28S
lescarpentriesi IB	_ ≞	E-AV58	Yes Madagascar	Prov. Fianarantsoa / ca 4.5 km WSW Antanifotsy / Andringitra Massif. S22°08'11.9" E46°51'55.5" / 2,127 m.	/ M. Manuel & Rahamandrison	LT882848 LT8	82791 LT883018	t LT882897	T883058 L	T882958
. sp.	ш	8E-AV51	Yes Madagascar	Prov. Fianarantsoa / ca 4.5 km WSW Antanitotsy / Andringtra Massif. 822°08'11.0'' E46°51'55.5'' 2,127 m.	/ M. Manuel & Rahamandrison	LT882851 LT8	82793 LT883020) LT882904	T883068	
ssimilis	~	GENBANK	Yes Madagascar	Ref (1)		HQ	382803 HQ38146	10		
uineensis		MNCN-HI10	Yes Algeria	Raml-Souk (puit) / N 36° 47,494' E 008° 31.326' / 101.19 m	S. Bouzid	LT8	82823 LT883047	LT882898	T883059 L	T882959
uineensis		IBE-AV62	No Namibia		D.J. Mann	LT8	82794			
nquinatus		MNCN-DM44	Yes South Africa	W Cape / Prince Albert Road / pond in junction R407 with N1	I. Ribera & A. Cieslak	LT882884 LT8	82822 LT883046	LT882899	T883060 L	T882960
nquinatus		NHM-IR620	No South Africa	W Cape / Wilderness NP, Swartvlei / Montmere, ditch by the lake	I. Ribera & A. Cieslak	LT8	82828 LT883053			
nusicus		MNCN-AI815	No Turkey	SINOP / rd. 785 btw Saraydüzü & Boyabat / slow stream 5 km S of Yesilyurt 440m / N41°2342.5" E34°49'51"	/ I. Ribera	LT8	82818 LT883043	_	.T883061	
nusicus		NHM-IR36	No Spain	Albacete, Hellin, Charca de los Patos	I. Ribera	AJB	50634 AJ850384	4 AJ318731	F670206	
nusicus		NHM-IR638	No Gran Canaria (E	 Moya, Bco. de Azuaje 	I. Ribera & A. Cieslak	LT8	82829 LT883054	LT882900	T883062 L	T882961
nusicus		IBE-AV10	Yes Crete (GR)	Crete Potarnies	R.B. Angus	LT882838 LT8	82776 LT883007	LT882901	T883063 L	T882962
nuticus		MNCN-AI1220	Yes Ethiopia	Shewa Prov. / 25 km N Addis Ababa, Solutta / 2800m	G. Wewalka	LT882866 LT8	82811 LT883036	LT882902	T883064 L	T882963
nuticus		IBE-RA704	No Ethiopia	Shewa Prov. / 40-60 km N Addis Ababa / 2500m	G. Wewalka	LT8	82804 LT88303(_		
igrescens		IBE-AV32	Yes South Africa	Kwazulu-Natal / iSimangalis Wetland Park / False Bay site 3 / Woodland pool	D.T. Bilton	LT8	82781			
odieri		NHM-IR242	Yes Namibia		D.J. Mann	LT882886 AJ8	50632 AJ850382	AJ850520 F	F670204	
pscurus		NHM-IR622	Yes South Africa	W Cape / Du Toits Kloof, rd. N1 / pond and river Wit in resort	I. Ribera & A. Cieslak	LT882891 AJ8	50633 AJ850383	AJ850521 I	F670205 L	T882964
eticulatus		IBE-AV60	Yes Madagascar	Prov. Antananarivo / ca. 6 km WSW Manandona / Ibity Massif. / S20°04'18.4 E47°00'01" / Alt 1,423 m.	r" M. Manuel & Rahamandrison	LT882850 LT8	82792 LT883019	-	Ľ	T882965
ohani		GENBANK	Yes Zambia	Ref (2)		KJ548554 KJ5	48554 KJ548382	_	(J548799	
ď		IBE-AV59	Yes Madagascar	Prov. Antananarivo / ca. 13 km W Ambatolampy / Ankaratra Massif S19*21'42.8" E47*18'53.8" / Alt 1,737 m.	/ M. Manuel & Rahamandrison	LT882849			T883067	
padiceus		GENBANK	Yes Madagascar	Ref (1)		НОС	383502			
ribolus -		IBE-RA703	Yes Zambia	Northern Province / Kapisha / S011°10'09.4 E031°36'01.6 / 1440 m	R. Vila	LT882856 LT8	82803 LT883029) LT882903	T883066 L	T882966
erticalis		GENBANK	Yes Madagascar	Ref (1)		Н	382802 HQ38146	**		
hmeti		IBE-AV33	Yes Turkey	Erzurum, Çat	Ö.K. Erman	LT8	82782 LT883012	E LT882905	T883069	
meniacus		IBE-RA544	Yes Turkey	Erzurum / Toprakkalekőyű / slow stream in grassland / 2174 m / N40 14 22. E40 59 16.7	9 I. Ribera	LT882855 LT8	82800 LT883026	LT882906	T883071 L	T882967
meniacus		NHM-IR540	No Turkey	Erzurum / ca. 14 Km S Tortum ca. 2 km S Guzelyayla pass / ponds on meadow	w H. Fery	HF9	31283 HF931520	-	.T883070	
iruesi		MNCN-AI983	Yes US (CA)	Mono Co. / Long Valley, Owens river Rd. / tributary r. Owen	I. Ribera & A. Cieslak	LT882881 HF9	31259 HF93149	5 LT882907	T883072	
aspins		NHM-IR688	Yes Russia		A.N. Nilsson	LT882894 AJ8	50635 AJ850385	AJ850522	:F670207 L	T882968
aspius		MNCN-AI963	No Mongolia	Tov / Ondorshiteet / Tuul River -1.5 km W of Tuul Ovoot bridge, downstream o road to Arvayheer / N47.31096 E105.27119 / 1042 m	of A.E.Z. Short	LT8	82819 LT883044	_		
ompar		GENBANK	Yes US (WY)	Ref (2)		KJ548527 KJ5	48527 KJ548332	_	(J548765	
								con	inued on the I	iext page

NoteNo	(Contir	(pənu											
 wild wild wild wild wild wild wild wild	ubge	enus Species	Voucher	Red.	. country	Loc.	leg	BAR	CO	16S	18S	H3	28S
(modi c)	elam.	bus confluens	NHM-IR59	Yes	Portugal	Sa. Da Estrela, Torre / lagoon	I. Ribera	LT882890	AY250964	4 AJ850386	AJ318735	EF670208	LT882969
Operation Operation <t< td=""><td>oelam.</td><td>bus confluens</td><td>IBE-RA914</td><td>No</td><td>Azores (Pot.)</td><td>Terceira / Guinjal, euthrophic lagoon / 38°41'44.6"N 27° 9'27.2"W / 390m</td><td>I. Ribera & A. Cieslak</td><td></td><td>LT882807</td><td>LT883032</td><td></td><td></td><td></td></t<>	oelam.	bus confluens	IBE-RA914	No	Azores (Pot.)	Terceira / Guinjal, euthrophic lagoon / 38°41'44.6"N 27° 9'27.2"W / 390m	I. Ribera & A. Cieslak		LT882807	LT883032			
00	oelam	bus corpulentus	NHM-IR687	Yes	Russia	Astrakhan oblast / Pirogovka / steppe lake NW of village	A.N. Nilsson	LT 882 893	AJ850637	AJ850387	AJ850523	EF670209	LT882970
(mode) (mod) (mod) (mod) <td>oelam</td> <td>bus diversipes</td> <td>IBE-AV25</td> <td>Yes</td> <td>US (CA)</td> <td>Soda Lake (near Baker) / 35º9'19''N,116º6'22''W</td> <td>P. Abellán</td> <td>LT882842</td> <td>LT882780</td> <td>) LT883011</td> <td>LT882908</td> <td>LT883073</td> <td>LT882971</td>	oelam	bus diversipes	IBE-AV25	Yes	US (CA)	Soda Lake (near Baker) / 35º9'19''N,116º6'22''W	P. Abellán	LT882842	LT882780) LT883011	LT882908	LT883073	LT882971
answeranswe	oelam	bus diversipes	GENBANK	No	(WY) SU	Ref (2)			KJ548528	kJ548333		KJ548766	
windwi	oelam.	bus flaviventris	MNCN-AI964	Yes	Mongolia	Tov / Ondorshireet / Tuul River ~1.5 km W of Tuul Ovoot bridge, downstream road to Arvayheer / N47.31096 E105.27119 / 1042 m	of A.E.Z. Short	LT 882877	HF931251	1 HF931487	LT882909	LT883074	
with andwithwith andw	oelam.	bus flaviventris	NHM-IR685	No	Russia		A.N. Nilsson		LT882831	LT883056			
ome Ended De De <th< td=""><td>oelam</td><td>bus fontinalis</td><td>MNCN-AI982</td><td>Yes</td><td>US (CA)</td><td>Mono Co. / Long Valley, Owens river Rd. / tributary r. Owen</td><td>I. Ribera & A. Cieslak</td><td>LT882880</td><td>HF931258</td><td>3 HF931494</td><td>LT882910</td><td>LT883075</td><td></td></th<>	oelam	bus fontinalis	MNCN-AI982	Yes	US (CA)	Mono Co. / Long Valley, Owens river Rd. / tributary r. Owen	I. Ribera & A. Cieslak	LT882880	HF931258	3 HF931494	LT882910	LT883075	
AnnuellyAnnuell	oelam.	bus fontinalis	IBE-AV64	No	US (CA)	Mono Co. / big alkali lake at Benton crossing rd	G. Challet		LT882795	LT883021			
Mode BE-Mode Care and Care	Coelam	bus fresnedai	MNCN-AC19	No	Spain	Segovia / ponds beside cross rd between Abades-Otero de los Herreros SG7 and Segovia-Villacastin N110	23 R.B. Angus	HF947982	HF931108	3 HF931325			
JohuloIE-ADIIE-AD	Coelam	bus fresnedai	IBE-AN36	Yes	Spain	Guadalajara / El Pobo de Dueñas / pond / N40°47'5.0" W1°38'30.3"	I. Ribera & A. Cieslak	LT882835	LT882773	t LT883004	LT882911	LT883076	LT882972
Dimensione Dimensione <thdimensione< th=""> Dimensione Dimensio</thdimensione<>	Coelam	bus fumatus	IBE-AV23	Yes	US (CA)	Mendocino Co. / Rd. 1 Manchester / pond S City	I. Ribera & A. Cieslak	LT882840	LT882778	t LT883009	LT882912	LT883077	LT882973
Diametrial contractional contractional contractional 	Coelam	bus impressopuno.	tatus MNCN-Al116.	Z No	Canada (AL)		T. Berendonk		LT882810) LT883035		LT883078	
Defendious Impact of the stand	Coelam	bus impressopuno.	tatus NHM-IR489	No	Canada (AL)	Rd. 22, 5 km S Longview	I. Ribera & A. Cieslak		LT882827	· LT883052			
Diametric is first in the second first in the sec	Coelam	bus impressopunc.	tatus NHM-IR603	No	Corsica (FR)	Cassamozza: r. l'Abatescu	I. Ribera & A. Cieslak		AJ850653	AJ850405	AJ850537 EF670302	EF670210	
DestinationIn supportantIn supp	Coelam.	bus impressopunc.	tatus IBE-RA270	Yes	Ireland	Gortlecka / Lough Gealain, turlough / N52°59'52.2" W9°01'28.3"	I. Ribera	LT 882854	LT882799) LT883025	LT882913	LT883079	LT882974
Definition NHMH473 No Carada (ON) Mentodin Island. (K, AHW y50, 20 km Ellifle Curreny) Y, Alaie LT88286 LT88296 LT88296 <thl88296< th=""> <thl88296< th=""> <thl8829< td=""><td>Coelam</td><td>bus impressopuna</td><td>tatus IBE-RA1205</td><td>No</td><td>Kyrgyzstan</td><td>Son Kol Lake area / rheohelocrenic spring 2 / 3069 m / 41°55,720' N, 75°12.0' E</td><td>57' Pešić</td><td></td><td>LT882796</td><td>5 LT883022</td><td></td><td></td><td>LT882975</td></thl8829<></thl88296<></thl88296<>	Coelam	bus impressopuna	tatus IBE-RA1205	No	Kyrgyzstan	Son Kol Lake area / rheohelocrenic spring 2 / 3069 m / 41°55,720' N, 75°12.0' E	57' Pešić		LT882796	5 LT883022			LT882975
Zodemize Macrountilization Manual mistand, Cx, Huy 540, Zhm Elutie Curreny Y. Atinie L 188226 H 193145 L 1882306 H 193145 L 1883306 L 1883306 <thl 1883306<="" th=""> L 1883306 L 1883306<!--</td--><td>Coelam.</td><td>bus laccophilinus</td><td>NHM-IR473</td><td>No</td><td>Canada (ON)</td><td>Manitoulin island, Ck. At Hwy 540, 20 km E Little Curreny</td><td>Y. Alarie</td><td></td><td>LT882825</td><td>LT883049</td><td>LT882915</td><td>LT883081</td><td></td></thl>	Coelam.	bus laccophilinus	NHM-IR473	No	Canada (ON)	Manitoulin island, Ck. At Hwy 540, 20 km E Little Curreny	Y. Alarie		LT882825	LT883049	LT882915	LT883081	
DefentibleImage: Nork-MageNork-M	Coelam	bus laccophilinus	MNCN-AI112	5 Yes	Canada (ON)	Manitoulin island, Ck. At Hwy 540, 20 km E Little Curreny	Y. Alarie	LT882862	HF931163	3 HF931382	LT882914	LT883080	LT882976
Obdembus Bgari Muck Audo Vas	Coelam	bus lagari	MNCN-AI85	No	Spain	Zaragoza /Chiprana pond rd. S. Marcos / 41°14'30"N 0°09'27" W / 120m	I. Ribera & A. Cieslak		HF931236	5 HF931465		LT883082	
Oblight IB-AN08 Ves Zentralian Oblight Intera A, Hudy Intera A, Hudy Intera A, Rudy Intera A, R	Coelam	bus lagari	MNCN-Al490	Yes	Spain	Guadalajara /El Pobo de Dueñas / pond in cross N211-CM2112 / N40°4705 W1°38'30.1"	.6″ I. Ribera & A. Cieslak	LT 882869	LT882813	LT883038	LT882916	LT883083	LT882977
Defentions Interested Interes	Coelam.	bus lemaeus	IBE-AN68	Yes	Azerbaijan	Qobustan / ponds in beach / 40°5'38.9"N 49°25'19.5"E /26m	I. Ribera & A. Rudoy	LT 882837	LT882775	LT883006	LT882917	LT883084	LT882978
Dolembus markini MnCN-4189 Ves Mongolia Zavkhan Atmag. Telmen Soum/Idefin Gd -15 km SSW of Telmen / Ovogfil / A.E.Z. Short LT88216 H59126 H59126 H59126 H59126 H59126 T188216 T18	Coelam	bus lutescens	NHM-IR519	Yes	Canada (BC)	B.C. / Rd. 5A, Stump Lake / ponds by road	I. Ribera & A. Cieslak	LT 882889	HF931281	1 HF931518	LT882918	LT883085	LT882979
Defaulture Intifiete No Bussian Volgogad oblast/ SW Lake of Eton / texpe pond with much vegetation A.N. Nilson L1882330 L1883305	Coelam	bus marklini	MNCN-AI89	Yes	Mongolia	Zavkhan Aimag, Telmen Soum,Ideriin Gol ~15 km SSW of Telmen / Ovogd N48,5325,E97,52093 / 1823 m	ii / A.E.Z. Short	LT882876	HF931237	7 HF931467	LT882919	LT883086	
Colembus masculnus Infention NHM-IR290 No Uncolor/Long Valley, Owens river Rd. / saline lagoons I. Fibera & A. Cleslak H=931273 H=931515 Colembus masculnus IBE-AV24 Yes US (CA) Mono Co. / Long Valley, Owens river Rd. / saline lagoons G. Challet L1882841 L1882745 H=931515 Imediation L1882841 L1882745 L1882040 L1882946 L1882946 L1882945 L1882966 L1882961 L1882964 L18	Coelam.	bus marklini	NHM-IR682	No	Russia	Volgograd oblast / SW Lake of Elton / steppe pond with much vegetation	A.N. Nilsson		LT882830	LT883055			
Colembus mesculinus IBE-AV24 Yes US (CA) Mono Co./ stream outlet of big alkali lake at Benton crossing road G. Challet LT882041 LT882379 LT882379 LT882306 C18823960 Coelembus nigrescens MNCN-A11152 Yes Canada (AL) N5%39346 W110 ⁶ 88.922 T. Berendonk LT882664 HF931167 HF931366 LT8823061 LT882366 LT882366 LT882366 N6 LT882366 LT8823	Coelam	bus masculinus	NHM-IR290	No	US (CA)	Mono Co./Long Valley, Owens river Rd./saline lagoons	I. Ribera & A. Cieslak		HF931273	3 HF931510			
Colembus Ingrescents MNCN-A1152 Yes Canada (AL) T. Berendonk L. T. B. T.	Coelam.	bus masculinus	IBE-AV24	Yes	US (CA)	Mono Co./ stream outlet of big alkali lake at Benton crossing road	G. Challet	LT882841	LT882779) LT883010	LT882920	LT883087	LT882980
Delambus nigrescens IBE-RA878 No Canada (AL) N53°39.346 W110°58.922 T. Berendonk T. Berendonk LT882858 LT882806	Coelam	bus nigrescens	MNCN-AI115	2 Yes	Canada (AL)		T. Berendonk	LT882864	HF931167	7 HF931386	LT882921	LT883088	LT882981
	Coelam	bus nigrescens	IBE-RA878	No	Canada (AL)	N53°39.346 W110°58.922	T. Berendonk	LT882858	LT882806				

103

ntinued)											
ubgenus Species Voucher Red. country	Voucher Red. country	Red. country		Loc.	leg		BAR	col 1	18S 18S	H3	28S
elambus nigrolineatus MNCN-Al970 Yes Mongolia	MNCN-Al970 Yes Mongolia	Yes Mongolia		Arkhangay / Bulgan / Urd Tamir Gol braid upstream of bridge, ~63 km SW (Tsetserleg / N47.11192 E101.01048 / 2066 m	of A.E.Z. Short	-	.T882879 ⊢	F931254 HF9	31490 LT8829	922 LT88308	
elambus novemlineatus NHM-IR714 Yes UK (SC) E	NHM-IR714 Yes UK (SC) E	Yes UK (SC) E	ш	. Sutherland, Loch Brora	I. Ribera	-	.T882896 ⊢	F931286 HF9	31523 LT8829	923 LT88309	LT882
əlambus orthogrammus IBE-RA701 Yes Iran Kh	IBE-RA701 Yes Iran Kh	Yes Iran Kh	존	uzestan / 5 km SW Bandare Emam, -21 m / 30 5714N 49 0524E	Darvishzadej		-	T882802 LT8	83028 LT8829	924 LT88309	LT8829
ełambus pałlidulus MNCN-Al216 Yes Spain At gr/	MNCN-Al216 Yes Spain Ald gr/	Yes Spain Ald	gr/	olea de las Peñas / arroyo salino / 30TWL 17757/62735 / 992 m / Sal: 37, I	^{7,1} A. Millán & col.	-	T882868 ⊢	F931184 HF9	31407 LT8829	925 LT88309:	
elambus parallellogrammus MNCN-Al145 Yes Germany Me	s MNCN-Al145 Yes Germany Me	Yes Germany Me	Ŵ	scklenburg-Vorpom. Hiddensee, N Witte St. 4 013º06'26"E 54º34'4"N	L. Hendrich	-	T882867 L	T882812 LT8	83037 LT8829	926 LT88309:	
elambus parallellogrammus NHM-IR683 No Russia At to	s NHM-IR683 No Russia As to	No Russia Ac to	đ À	strakhan oblast / Nishniy Baskuntyak / small stream from small lake at entranc Bogdo Zapovednik	ce A.N. Nilsson		T	F931284 HF9	31521		
elambus patruelis MNCN-Al1163 No Canada (AL)	MNCN-AI1163 No Canada (AL)	No Canada (AL)			T. Berendonk		T	F931169 HF9	31388	LT88309	
elambus patruelis IBE-AV53 Yes Canada	IBE-AV53 Yes Canada	Yes Canada			T. Berendonk	-	.T882845 L	T882787 LT8	83015 LT8829	927 LT88309	
elambus pectoralis MNCN-Al1101 Yes Mongolia Zan N4	Zav MNCN-Al1101 Yes Mongolia Zav N4	Yes Mongolia Zav N4	Zav N4	/khan / Tosontsengel / Ideriin Gol ~15 km SSW of Telmer/Ovogdii 8.53255 E97.52093/1823 m	i / A.E.Z. Short	I	.T882861 ⊢	F931157 HF9	31376 LT8829	928 LT88309	
elambus pedalis MNCN-Al985 Yes US (CA) N	MNCN-AI985 Yes US (CA)	Yes US (CA) N	2	iono Co. / Long Valley, Owens river Rd. / tributary r. Owen	I. Ribera & A. Cieslak	-	.T882882 L	T882821 LT8	83045 LT8829	929 LT88309	LT86
elambus pedalis IBE-AV55 No US (CA) An	IBE-AV55 No US (CA) An	No US (CA) An	An	nargosa River in Dumont Dunes / 35º41'45''N,116º15'5''W	P. Abellán	-	T882846 L	Т882789		LT88309	
elambus pedalis IBE-AV57 No US (CA) Co	IBE-AV57 No US (CA) Co	No US (CA) CC	ŏ	ial Oil Point Reserve (Slough road) / 34°24'47"N,119°52'31"W	P. Abellán			LT8	83016		
elambus picatus NHM-IR474 No Canada (ON) Mai	NHM-IR474 No Canada (ON) Mai	No Canada (ON) Mai	Mai	nitoulin island, Ck. At Hwy 540, 20 km E Little Curreny	Y. Alarie			LT8	83050		
elambus picatus NHM-IR481 Yes Canada (AL) Wat	NHM-IR481 Yes Canada (AL) Wat	Yes Canada (AL) Wat	Wat	erton lakes Nat. Park / junc. Rd. 5&6	I. Ribera & A. Cieslak	-	.T882887 H	F931280 HF9	31517 LT8829	930 LT88309	LT8
elambus saginatus NHM-IR684 Yes Russia Astrak	NHM-IR684 Yes Russia Astrak	Yes Russia Astrak	Astrak	han oblast / Kharabali / flooded margin of Volga just S of city	A.N. Nilsson		.T882892 A	J850639 AJ8	50389 AJ850	524 EF67021	Ë
elambus saginatus nr IBE-AV43 No Cyprus Parali	IBE-AV43 No Cyprus Paralir	No Cyprus Paralir	Paralir	mni / ditch with reed / 35º02'22.7*N 33º57'38.6*E / 81m	A. Millán, I. Ribera, J. Velasco	o & A. Villastrigo	-	Т882784 LT8	83014 LT8829	931 LT88310	
elambus saginatus nr IBE-AN67 Yes Azerbaijan Qobu	IBE-AN67 Yes Azerbaijan Qobu	Yes Azerbaijan Qobu	Qobu	stan / ponds in beach / 40°5'38.9"N 49°25'19.5"E /26m	I. Ribera & A. Rudoy		.T882836 L	Т882774 LT8	83005 LT8829	932 LT88310	LT88
elambus salinarius GENBANK Yes US (WY) Ref (2	GENBANK Yes US (WY) Ref (2	Yes US (WY) Ref (2	Ref (2			Ŧ	(J548531 k	.J548531 KJ54	48335	KJ54876	
elambus sanfilippoi IBE-AF204 Yes Sardinia (IT) Sass	IBE-AF204 Yes Sardinia (IT) Sass pond,	Yes Sardinia (IT) Sass pond,	Sasse pond,	tri prov. / S Stintino (NW Porto Torres) / Stagno di Casaraccio (brakis 0 m) / 40.91403N 8.23021E	sh H. Fery & M. Toledo	1	.T882834 ⊢	F931123 HF9	31342 LT8829	933 LT88310	LT8
elambus semivittatus GENBANK Yes US (WY) Ref	GENBANK Yes US (WY) Ref	Yes US (WY) Ref	Ref	(3)			×	F575509 KF5	75573	KF57539	
elambus suturalis NHM-IR482 Yes Canada (AL) Wat	NHM-IR482 Yes Canada (AL) Wat	Yes Canada (AL) Wat	Wate	erton lakes Nat. Park / junc. Rd. 5&6	I. Ribera & A. Cieslak		.T882888 ⊭	J850640 AJ8	50390 AJ850	525 EF67021	LT8
elambus suturalis IBE-AV54 No Canada	IBE-AV54 No Canada	No Canada			T. Berendonk		-	Т882788			
elambus turnidiventris MNCN-Al984 No US (CA) Mono	MNCN-AI984 No US (CA) Mono	No US (CA) Mono	Mono	Co. / Long Valley, Owens river Rd. / tributary r. Owen	I. Ribera & A. Cieslak		Ŧ	F931260 HF9	31496 LT882	934 LT88310:	
elambus turnidiventris IBE-AV22 Yes US (CA) Mono	IBE-AV22 Yes US (CA) Mono	Yes US (CA) Mono	Mono	Co. / Long Valley, Owens river Rd. / saline lagoons	I. Ribera & A. Cieslak	-	T882839 L	T882777 LT86	83008 LT8829	935 LT88310	LT8
elambus turbidus NHM-IR346 No US (CA) Mono	NHM-IR346 No US (CA) Mono	No US (CA) Mono	Mono	Co./ Yosemite Ntal. Park / Rd. 120 Dana Meadows	I. Ribera & A. Cieslak		-	T882824 LT8	83048		
slambus turbidus IBE-AV56 Yes US (CA) Am	IBE-AV56 Yes US (CA) Am	Yes US (CA) Am	Ama	argosa River in Dumont Dunes / 35º41'45''N,116º15'5''W	P. Abellán	-	T882847 L	T882790 LT8	83017 LT8829	936 LT88310	LT882
elambus unguicularis MNCN-Al968 Yes Mongolia A	MNCN-Al968 Yes Mongolia A	Yes Mongolia A	₹Ë	khangay / Bulgan / Urd Tamir Gol braid upstream of bridge, ~63 km SW setserieg / N47.11192 E101.01048 / 2066 m	of A.E.Z. Short	-	.T882878 ⊢	F931253 HF9	31489 LT8829	937 LT88310	LT8829
elambus unguicularis NHM-IR479 No Canada (AL)	NHM-IR479 No Canada (AL)	No Canada (AL)		Waterton lakes Nat. Park / junc. Rd. 5&6	I. Ribera & A. Cieslak		-	T882826 LT8	83051		
elambus urgensis MNCN-Al962 Yes Mongolia Tr	MNCN-Al962 Yes Mongolia To	Yes Mongolia To	F 5	ov / Ondorshireet / Tuul River ∽1.5 km W of Tuul Ovoot bridge, downstream o ad to Arvayheer / N47.31096 E1 05.27119 / 1042 m	of A.E.Z. Short		T	F931250 HF9	31486 LT8829	938 LT88310	LT8829
										continued on	the next

₽	Genus	Subgenus	Species	Voucher	Red.	country	Loc.	leg	BAR	COI	16S	18S	H3	28S
88	Hygrotus	Hygrotus	acaroides	GENBANK	Yes	US (AL)	Ref (3)		KF575482	KF575482	KF575542		F575361	
89	Hygrotus	Hygrotus	decoratus	MNCN-AI841	Yes	UK (EN)	Norfolk / Ludham / How Hill Marsh	I. Ribera	LT 882875	HF931235	HF931464	T882939	T883108	LT882994
06	Hygrotus	Hygrotus	decoratus	NHM-IR711	N N	Austria	Voralberg / Rheintal, Bodensee. Hard Rheinvorland / 400 m / N47°29'48" E 9°39'59"	I. Ribera		LT882832	LT883057			
91	Hygrotus	Hygrotus	hydropicus	IBE-AV51	Yes	US (CA)	Monterrey Co., 35.9518°N 121.3017ºW / Nacimiento-Ferguson rd.	M. Caterino & A.E.Z. Short	LT 882 844	LT882785	-	T882940	T883109	LT882995
92	Hygrotus	Hygrotus	inaequalis	NHM-IR19	٩	Spain	Girona, Capmany, Estanys inferior	I. Ribera		EF056611	EF056681	AJ318737		LT882996
93	Hygrotus	Hygrotus	inaequalis	IBE-RA208	Yes	Greece	NE Peloponnese, Stymfalia Lake / open swamps, ca. 6 km ENE Lafka, net & bottle traps / 37.84411N 22.45478E / 610 m	H. Fery & L. Hendrich	LT882853	LT882798	LT883024	T882941	T883110	LT882997
94	Hygrotus	Hygrotus	quinquelineatus	MNCN-AI979	R	Mongolia	Zavkhan / Tosontsengel / Ideriin Gol ~15 km SSW of Telmen/Ovogdii / N48.53255 E97.52093/1823 m	A.E.Z. Short		LT882820				
95	Hygrotus	Hygrotus	quinquelineatus	MNCN-DM4	Yes	Sweden	Västerbotten prov. / Åmsele / Vindelälven river lagoon / 64º31'04"N, 19º20'52"E	A.N. Nilsson	LT882883	HF931268	HF931506	T882942	Т883111	LT882998
67	Hygrotus	Hygrotus	sayi	MNCN-AI1149	Yes	(NY) SU	Tompkins Co. / Marsh on Elllis Hollow Road, 4 mi. E of Pine Tree Road	A.E.Z. Short	LT 882863	HF931164	HF931383	T882943	T883112	LT882995
98	Hygrotus	Hygrotus	sayi	IBE-AV52	8	Canada		T. Berendonk		LT882786				
66	Hygrotus	Hygrotus	versicolor	NHM-IR691	Yes ,	Austria	Voralberg, Pfänderstock, Bodensee	I. Ribera	LT 882 895	HF931285	HF931522	T882944	T883113	LT883000
100) Hyphoporus		solieri	IBE-RA700	Yes	Iran	Khuzestan / 8 km SW Abadan, 8 m / 30 3541N 48 2267E / pond	Dawishzadej		LT882801	LT883027	T882945	T883114	
101	Hyphoporus		tonkinenesis	IBE-RA769	Yes	China	Yunnan Xin ping Mamushu / cun 1127m 2011.v.20 / N24.02121 E102.12882	S. Keqing	LT882857	LT882805	LT883031	T882946	T883115	LT88300
102	Hydroporus		basinotatus	MNCN-AH112	٩ N	Spain	Cádiz, Tarifa / stream 2K N Na. Sra de la Luz / 10m / N36°05'53.4" W5°37'35.0"	I. Ribera & P. Aguilera & C. Hernando	LT 882859	HE610196	LT883033	T882955	T883124	
103	Hydroporus		kasyi	IBE-AV42	٩ N	Cyprus	Akrotin / Fassouri reedbeds / 34*37'57.2"N 32°56'01.5"E / 28m	A. Millán, I. Ribera, J. Velasco & A. Villastrigo	LT882843	LT882783	LT883013	T882957	T883126	
104	Hydroporus		obsoletus	IBE-RA206	٩ N	Greece	Peloponnese / Afrodisio Mts / ca. 5 km NE Kondovazena / small spring / ca. 37.82044N 21.93570E / ca. 1098 m	H. Fery & L. Hendrich	LT882852	LT882797	LT883023	T882954	T883123	
105	Hydroporus		tessellatus	MNCN-AI770	٩ N	Turkey	DÜZCE / Rd. to Kartalkaya from Çaydurt / small stream with vegetation / 1191m / N40*42'29" E31*45'56"	I. Ribera	LT882873	LT882817	LT883042	T882956	T883125	
106	Deronectes		ferrugineus	MNCN-AI731	٩ ۷	Portugal	Guarda district / Sabugueiro (Serra da Estrela)	I. Ribera	LN995103	LN995072	LN995176	T882949	N995142	
107	Deronectes		opatrinus	MNCN-AI629	°N N	Spain	Córdova province / Sierra Morena	A. Castro	LN995112	HE610188	LN995185	T882948	N995151	
108	Deronectes		sahlbergi	MNCN-AI1002	٩ N	Bulgaria	Haskovo province / Madjarovo (Eastern Phodope mountains)	Pešić	LT882860	HE610191	HF931361	T882947	T883116	
109	Boreonectes		funereus	MNCN-AI1208	°N N	US (CA)		Y. Alarie	LT 882865	HF931173	HF931393	T882950	T883119	
110	Boreonectes		ibericus	NHM-IR22	٩ N	Portugal	Sa. Da Estrela, Torre, lagoon	I. Ribera	LT882885	EF670064	EF670030	EF670271 EF670298	F670157	
111	Boreonectes		riberae	MNCN-AI829	٩ N	Turkey	DÜZCE / Rd. to Kartalkaya from Çaydurt / pools in mountain pass / 1700m / N40*40'20" E31*47'05"	I. Ribera	LT882874	HF931232	HF931461	T882951	T796550	
112	2 Nebrioporus		amicorum	IBE-AF140	٩ ۷	Crete (GR)	Herakiion, Arkalohori, Tsoutsouros / stream 34°59'05" 25°17'07"	Z. Csabai et al.	LT882833	HF931118	HF931335	T882953	T883122	LT883003
113	3 Nebrioporus		martinii	MNCN-AI702	٩ ۷	Corsica (FR)	Corte, river Restonica, 2	I. Ribera & A. Cieslak	LT882871	LT882815	LT883040	T882952	T883121	LT883002
114	Laccomis		difformis	GENBANK	٩ ٧	(NY) SU	Ref (3)			KF575484	KF575544	-	F575363	
115	Laccomis		kocae	NHM-IR681	٩ ۷	Russia	Volgograd oblast / SW Lake of Elton / steppe pond with much vegetation	A.N. Nilsson		AJ850666	AJ850419 /	AJ850546 I	F670226	
116	Laccomis		snbuoldo	NHM-IR55	°N N	Scotland (UK)	Mount Bog / Peebles	D.T. Bilton		AF309298	AF309241	AJ318715 I	F056579	

Table S2.

gene	primer	sequence	ref.
	Jerry (5')	CAACATTTATTTTGATTTTTTGG	6
	Pat (3')	TCCAATGCACTAATCTGCCATATTA	6
00-5	Chy (5')	T(A/T)GTAGCCCA(T/C)TTTCATTA(T/C)GT	4
	Tom (3')	AC(A/G)TAATGAAA(A/G)TGGGCTAC(T/A)A	4
	Uni LepF1b	TAATACGACTCACTATAGGGATTCAACCAATCATAAAGA-	2
COI-5'	Uni LepR1	ATTAACCCTCACTAAAGTAAACTTCTGGATGTC-	2
		САААААТСА	
16S+trnL+nad1	16SaR (5')	CGCCTGTTTAACAAAAACAT	6
	ND1 (3')	GGTCCCTTACGAATTTGAATATATCCT	6
16S	16Sb	CCGGTCTGAACTCAGATCATGT	6
100	18S 5'	GACAACCTGGTTGATCCTGCCAGT(1)	5
103	18s b5.0	TAACCGCAACAACTTTAAT(1)	5
L10	H3aF (5')	ATGGCTCGTACCAAGCAGACRCG	1
ПЭ	H3aR (3')	ATATCCTTRGGCATRATRGTGAC	1
200	ka	ACACGGACCAAGGAGTCTAGCATG	3
200	kb	CGTCCTGCTGTCTTAAGTTAC	3

A) Primers used in the amplifying and sequencing reactions.

B) Standard PCR conditions for the amplification of the studied fragments.

step	time	temperature
1	30'	96
2	30"	94
3	30" - 1'	47-50 *
4	1'	72
5	Go to setp 2 and repeat 34 - 40 x	
6	10'	72

* Depending on the annealing temperatures of the primers pair used

References

- Colgan, D. J., McLauchlan, A., Wilson, G. D. F., Livingston, S. P., Edgecombe, G. D., Macaranas, J., Cassis, G. & Gray, M. R. (1998). Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. *Australian Journal of Zoology*, 46, 419-437.
- Hebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. *Proceedings of the National Academy of Sciences of the United States of America*, **101(41)**, 14812-14817.
- 3. Monaghan, M. T., Inward, D. J., Hunt, T., & Vogler, A. P. (2007). A molecular phylogenetic analysis of the Scarabaeinae (dung beetles). *Molecular Phylogenetics and Evolution*, **45(2)**, 674-692.
- Ribera, I., Fresneda, J., Bucur, R., Izquierdo, A., Vogler, A.P., Salgado, J.M. & Cieslak, A. (2010). Ancient origin of a Western Mediterranean radiation of subterranean beetles. *BMC Evolutionary Biology*, **10**, 29.
- Shull, V.L., Vogler, A.P., Baker, M.D., Maddison, D.R. & Hammond, P.M. (2001). Sequence alignment of 18S ribosomal RNA and the basal relationships of Adephagan beetles: evidence for monophyly of aquatic families and the placement of Trachypachidae. *Systematic Biology*, **50**, 945–969.
- Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. *Annals of the Entomological Society of America*, 87, 651-701.

Table S3.Checklist of the species of Hygrotini (Nilsson & Hájek, 2017a,b) with the typical habitat and the species for which material could be studied. AF, Afrotropical; H, Holarctic; NA, Nearctic; NT, Neotropical; OR, Oriental; PL, Palaearctic.

ID	Genus	Subgenus	Species	Authors	Distribution	habitat	data type studied
1	Heroceras		descarpentriesi	(Peschet, 1923)	AF	?	morphological & molecular
2	Herophydrus		assimilis	Régimbart, 1895	AF	?	morphological & molecular
3	Herophydrus		bilardoi	Biström & Nilsson, 2002	AF	?	only literature
4	Herophydrus		capensis	Régimbart, 1895	AF	?	only literature
5	Herophydrus		cleopatrae	(Peyron, 1858)	PL	?	morphological
6	Herophydrus		confusus	Régimbart, 1895	AF	?	only literature
7	Herophydrus		discrepatus	Guignot, 1954	AF	Tolerant	only literature
8	Herophydrus		endroedyi	Biström & Nilsson, 2002	AF	Freshwater	only literature
9	Herophydrus		gigantoides	Biström & Nilsson, 2002	AF	?	only literature
10	Herophydrus		gigas	Régimbart, 1895	AF	Freshwater	morphological
11	Herophydrus		goldschmidti	Pedernazi & Rocchi, 2009	AF	?	only literature
12	Herophydrus		gschwendtneri	Omer-Cooper, 1957	AF	?	only literature
13	Herophydrus		guineensis	(Aubé, 1838)	AF, PL	Freshwater	morphological & molecular
14	Herophydrus		heros	Sharp, 1882	AF	Freshwater	morphological
15	Herophydrus		hyphoporoides	Régimbart, 1895	AF	?	only literature
16	Herophydrus		ignoratus	Gschwendtner, 1935	AF	?	only literature
17	Herophvdrus		inquinatus	(Boheman, 1848)	AF	Freshwater	morphological & molecular
18	Herophvdrus		ianssensi	Guignot, 1952	AF	?	only literature
19	Herophvdrus		kalaharii	Gschwendtner, 1935	AF	?	only literature
20	Herophvdrus		morandi	Guignot, 1952	OR	?	only literature
21	Herophvdrus		musicus	(Klug. 1834)	AF. OR. PL	Tolerant	morphological & molecular
22	Herophvdrus		muticus	(Sharp, 1882)	AF	Freshwater	morphological & molecular
23	Herophvdrus		natator	Biström & Nilsson, 2002	AF	?	only literature
24	Herophydrus		niarescens	Biström & Nilsson, 2002	AF	Tolerant	morphological & molecular
25	Herophydrus		nodieri	(Régimbart 1895)	AF	Freshwater	morphological & molecular
26	Herophydrus		obscurus	Sharp. 1882	AF	Tolerant	morphological & molecular
27	Herophydrus		obsoletus	Régimbart 1895	AF	?	only literature
28	Herophydrus		ovalis	Gschwendtner 1932	AF	?	only literature
29	Herophydrus		nallidus	Omer-Cooper 1931	AF	?	only literature
30	Herophydrus		nauliani	Guignot 1950	AF	?	only literature
31	Herophydrus		quadrilineatus	Régimbert 1895		2	morphological
32	Horophydrus		roticulatus	Pedernazi & Rocchi 2009		Freshwater	morphological & molecular
33	Horophydrus		ritsomaa	Régimbert 1889		Freshwater	
34	Horophydrus		robani	Peschet 1924		Freshwater	molecular
25	Horophydrus		rufus	(Clark 1963)		2	morphological
30	Herophydrus		nunus	(Clair, 1003)		: 2	ophylitoroturo
27	Herophydrus		sjosleuli	Charp 1992		? Toloront	only inerature
20	Herophydrus		spaulceus	Sharp, 1062	AF	Freehwater	
30	Herophydrus		travniaaki		AF	o	only illerature
39	Herophydrus		ITAVIIICEKI	Stastily, 2012		í Freebuieter	
40	Herophyarus			Guigriot, 1953		Presnwaler	morphological & molecular
41	Herophyarus		variabilis secundus	Regimbart, 1906		? 0	
42	Herophyarus		variadilis variadilis			? 0	
43	Herophyarus		vazirani	(Nilsson, 1999)	PL	<u> </u>	only literature
44	Herophyarus		verticalis	Sharp, 1882	AF	Freshwater	morphological & molecular
45	Herophydrus		vittatus	Regimbart, 1895	AF	?	only literature
46	Herophydrus		wewalkai	Bistrom & Nilsson, 2002	AF	?	only literature
47	Hygrotus	Coelambus	ahmeti	Hajek, Fery & Erman, 2005	PL	⊢reshwater	morphological & molecular
48	Hygrotus	Coelambus	armeniacus	(Zaitzev, 1927)	PL	Tolerant	morphological & molecular
49	Hygrotus	Coelambus	artus	(Fall, 1919)	NA	Tolerant ²	only literature
50	Hygrotus	Coelambus	berneri	Young & Wolfe, 1984	NA	?	morphological
51	Hygrotus	Coelambus	bruesi	(Fall, 1928)	NA	Tolerant	morphological & molecular
52	Hygrotus	Coelambus	caspius	(Wehncke, 1875)	PL	Freshwater	morphological & molecular

...continued on the next page

Chapter 2

Table S3. (Continued)

ID	Genus	Subgenus	Species	Authors	Distribution	habitat	data type studied
53	Hygrotus	Coelambus	chinensis	(Sharp, 1882)	PL	?	morphological
54	Hygrotus	Coelambus	collatus	(Fall, 1919)	NA	?	morphological
55	Hygrotus	Coelambus	compar	(Fall, 1919)	NA	Tolerant	morphological & molecular
56	Hygrotus	Coelambus	confluens	(Fabricius, 1787)	PL	Tolerant	morphological & molecular
57	Hygrotus	Coelambus	corpulentus	(Schaum, 1864)	PL	?	morphological & molecular
58	Hvarotus	Coelambus	, curvilobus	Ferv. Sadegui & Hosseinie, 2005	PL	?	morphological
59	Hvarotus	Coelambus	curvipes	(Leech, 1938)	NA	?	morphological
60	Hvarotus	Coelambus	dissimilis	(Geminger & Harold 1868)	NA	?	morphological
61	Hygrotus	Coelambus	diversines	Leech 1966	NA	Hypersaline	morphological & molecular
62	Hygrotus	Coelambus	enneagrammus	(Abrens 1833)	PI	Tolerant	morphological
62	Hygrotus	Coolombuo	folli	(Mallie 1924)		2	morphological
64	Hygrotus	Coelembus	idili fomorotuo	(VValiis, 1924) (Foll 1001)		2	only literature
65	Hygrotus	Coelembus	fleviventrie	(Mataobuloky, 1960)		: Toloropt	
05	Hygrotus	Coelambus	naviventris fantina lia				
66	Hygrotus	Coelambus	tontinalis	Leech, 1966	NA	Hypersaline	morphological & molecular
67	Hygrotus	Coelambus	traternus	(LeConte, 1852)	NA	?	morphological
68	Hygrotus	Coelambus	fresnedai	(Fery, 1992)	PL	Freshwater ³	morphological & molecular
69	Hygrotus	Coelambus	fumatus	(Sharp, 1882)	NA	Freshwater	morphological & molecular
70	Hygrotus	Coelambus	impressopunctatus	(Schaller, 1783)	Н	Freshwater ³	morphological & molecular
71	Hygrotus	Coelambus	infuscatus	(Sharp, 1882)	NA	Tolerant	morphological
72	Hygrotus	Coelambus	inscriptus	(Sharp, 1882)	PL	Hypersaline	morphological
73	Hygrotus	Coelambus	laccophilinus	(LeConte, 1878)	NA	Freshwater	morphological & molecular
74	Hygrotus	Coelambus	lagari	(Fery, 1992)	PL	Tolerant	morphological & molecular
75	Hygrotus	Coelambus	lernaeus	(Schaum, 1857)	PL	Tolerant	morphological & molecular
76	Hygrotus	Coelambus	lutescens	(LeConte, 1852)	NA	Tolerant	morphological & molecular
77	Hygrotus	Coelambus	marklini	(Gyllenhal, 1813)	Н	Tolerant ⁴	morphological & molecular
78	Hygrotus	Coelambus	masculinus	(Crotch, 1874)	NA	Hypersaline	morphological & molecular
79	Hygrotus	Coelambus	nigrescens	(Fall, 1919)	NA	Freshwater	morphological & molecular
80	Hygrotus	Coelambus	nigrolineatus	(Steven, 1808)	PL	Tolerant	morphological & molecular
81	Hvarotus	Coelambus	novemlineatus	(Stephens, 1829)	н	Tolerant	morphological & molecular
82	Hvarotus	Coelambus	nubilus	(LeConte, 1855)	NA. NT	?	morphological
83	Hvarotus	Coelambus	obscureplagiatus	(Fall 1919)	NA	?	morphological
84	Hvarotus	Coelambus	orthogrammus	(Sharp 1882)	PI	Tolerant	morphological & molecular
85	Hyarotus	Coelambus	nallidulus	(Aubé 1850)	PI	Hypersaline ¹	morphological & molecular
86	Hygrotus	Coelambus	panadado	(Abrens 1812)	PI	Tolerant	morphological & molecular
97	Hygrotus	Coolombus	parallellogrammus	(L_{1})		Tolorant	morphological & molecular
07	Hygrotus	Coelembus	patruells	(Metaphylaky, 1860)		Tolerant	morphological & molecular
00	Hygrolus	Coelambus	pecioralis			Tolerant	
89	Hygrotus	Coelambus	pedalls	(Fail, 1901)	NA	Tolerant	morphological & molecular
90	Hygrotus	Coelambus	picatus	(Kirby, 1837)	NA	Freshwater	morphological & molecular
91	Hygrotus	Coelambus	polonicus polonicus	(Aube, 1842)	PL	Tolerant	morphological
92	Hygrotus	Coelambus	polonicus sahlbergi	(Sharp, 1882)	PL	Tolerant	morphological
93	Hygrotus	Coelambus	punctilineatus	(Fall, 1919)	NA	Tolerant	morphological
94	Hygrotus	Coelambus	saginatus	(Schaum, 1857)	PL	Tolerant	morphological & molecular
95	Hygrotus	Coelambus	salinarius	(Wallis, 1924)	NA	Hypersaline	morphological & molecular
96	Hygrotus	Coelambus	sanfilippoi	(Fery, 1992)	PL	Tolerant	morphological & molecular
97	Hygrotus	Coelambus	sellatus	(LeConte, 1866)	NA	Tolerant	morphological
98	Hygrotus	Coelambus	semenowi	(Jakovlev, 1899)	PL	Freshwater	morphological
99	Hygrotus	Coelambus	semivittatus	(Fall, 1919)	NA	Tolerant	morphological & molecular
100	Hygrotus	Coelambus	stefanschoedli	Fery, Sadegui & Hosseinie, 2005	PL	?	morphological
101	Hygrotus	Coelambus	suturalis	(LeConte, 1850)	NA	Freshwater	morphological & molecular
102	Hygrotus	Coelambus	sylvanus	(Fall, 1917)	NA	Freshwater	morphological
103	Hygrotus	Coelambus	thermarum	(Darlington, 1928)	NA	?	morphological
104	Hygrotus	Coelambus	tumidiventris	(Fall, 1919)	NA	Hypersaline	morphological & molecular
105	Hygrotus	Coelambus	turbidus	(LeConte, 1855)	NA	Freshwater	morphological & molecular
106	Hygrotus	Coelambus	unguicularis	(Crotch, 1874)	н	Tolerant	morphological & molecular
107	Hygrotus	Coelambus	urgensis	(Jakovlev, 1899)	PL	Freshwater	morphological & molecular
108	Hvarotus	Coelambus	wardii	(Clark, 1862)	NA. NT	?	morphological
109	Hvarotus	Coelambus	zigetangco	Ferv 2003	PI	2	morphological
110	Hvarotus	Hvarotus	acaroides	(leConte 1855)	NA	Freshwater	morphological & molecular
	. 199.0103	. 19910100					

...continued on the next page

Evolution of salinity tolerance in the diving beetle tribe Hygrotini

Table S3. (Continued)

ID	Genus	Subgenus	Species	Authors	Distribution	habitat	data type studied
111	Hygrotus	Hygrotus	aequalis	Falkenström, 1932	PL	Freshwater	morphological
112	Hygrotus	Hygrotus	decoratus	(Gyllenhal, 1810)	PL	Freshwater	morphological & molecular
113	Hygrotus	Hygrotus	farctus	(LeConte, 1855)	NA	?	morphological
114	Hygrotus	Hygrotus	hydropicus	(LeConte, 1852)	NA	?	morphological & molecular
115	Hygrotus	Hygrotus	inaequalis	(Fabricius, 1777)	PL	Freshwater	morphological & molecular
116	Hygrotus	Hygrotus	intermedius	(Fall, 1919)	NA	Freshwater	morphological
117	Hygrotus	Hygrotus	marginipennis	(Blatchley, 1912)	NA	Tolerant	morphological
118	Hygrotus	Hygrotus	quinquelineatus	(Zetterstedt, 1828)	PL	Freshwater	morphological & molecular
119	Hygrotus	Hygrotus	sayi	J. Balfour-Browne, 1944	NA	Tolerant	morphological & molecular
120	Hygrotus	Hygrotus	versicolor	(Schaller, 1783)	PL	Freshwater	morphological & molecular
121	Hyphoporus		anitae	Vazirani, 1969	PL	Freshwater	only literature
122	Hyphoporus		aper	Sharp, 1882	OR, PL	?	only literature
123	Hyphoporus		bengalensis	Severini, 1890	OR	?	morphological
124	Hyphoporus		bertrandi	Vazirani, 1969	PL	Freshwater	only literature
125	Hyphoporus		caliginosus	Régimbart, 1899	OR	?	only literature
126	Hyphoporus		dehraduni	Vazirani, 1969	PL	?	only literature
127	Hyphoporus		elevatus	Sharp, 1882	OR, PL	?	morphological
128	Hyphoporus		geetae	Vazirani, 1969	OR	?	only literature
129	Hyphoporus		josephi	Vazirani, 1969	OR	?	only literature
130	Hyphoporus		kempi	Gschwendtner, 1936	OR, PL	Tolerant	only literature
131	Hyphoporus		montanus	Régimbart, 1899	OR	?	only literature
132	Hyphoporus		nilghiricus	Régimbart, 1903	OR, PL	Freshwater	only literature
133	Hyphoporus		oudomxai	Biström & Bilsson, 2013	OR	?	only literature
134	Hyphoporus		pacistanus	Guignot, 1959	PL	?	only literature
135	Hyphoporus		pugnator	Sharp, 1890	OR	?	only literature
136	Hyphoporus		severini	Régimbart, 1892	OR, PL	Tolerant	morphological
137	Hyphoporus		solieri	(Aubé, 1838)	PL	Freshwater	morphological & molecular
138	Hyphoporus		subaequalis	Vazirani, 1969	OR	?	only literature
139	Hyphoporus		tonkinensis	Régimbart, 1899	OR	?	morphological & molecular

Fig. S1. Time-calibrated majority rule consensus tree obtained in BEAST with the complete dataset. Number in nodes: posterior probability values.

111

Fig. S2. Reconstructed evolution of salinity tolerance in the tribe Hygrotini, using parsimony with the estimated relationships of species for which no molecular data were available.

112

Chapter 3

A molecular phylogeny of the tribe Ochthebiini (Coleoptera, Hydraenidae, Ochthebiinae)

Edited version of: Adrián Villastrigo, Manfred A. Jäch, Anabela Cardoso, Luis F. Valladares and Ignacio Ribera Published on: *Systematic Entomology* (2019) **44(2)**: 273-288

Abstract

Ochthebiinae, with c. 650 species distributed worldwide, are the second most speciose subfamily of the aquatic beetle family Hydraenidae. They are the ecologically most diverse subfamily, with terrestrial species as well as species in almost all types of aquatic habitats, including hypersaline waters. Ochthebiinae include the tribes Ochtheosini (four species in three genera) and Ochthebiini. We provide here the first comprehensive phylogeny of the tribe Ochthebiini, based on 188 species and four subspecies from most genera, subgenera and species groups. We obtained sequence data for a combination of mitochondrial and nuclear gene fragments including the 5' and 3' ends of the cytochrome c oxidase subunit 1, the 5' end of 16S RNA plus the leucine tRNA transfer plus 5' end of NADH dehydrogenase subunit I, and internal fragments of the large and small ribosomal units. The analyses with maximum likelihood and Bayesian probabilities consistently recovered a generally well supported phylogeny, with most currently accepted taxa and species groups as monophyletic. We provide a new classification of the tribe based on our phylogenetic results, with six genera: Meropathus Enderlein, Ochthebius Leach, Protochthebius Perkins, Prototympanogaster Perkins, Tympallopatrum Perkins, and Tympanogaster Janssens. The genus Ochthebius is here divided into nine subgenera in addition to Ochthebius s.str.: (1) O. (Angiochthebius) Jäch & Ribera; (2) O. (Asiobates) Thomson; (3) O. (Aulacochthebius) Kuwert; (4) O. (Cobalius) Rey; (5) O. (Enicocerus) Stephens; (6) O. (Gymnanthelius) Perkins comb.n.; (7) O. (Gymnochthebius) Orchymont comb.n.; (8) O. (Hughleechia) Perkins comb.n.; and (9) O. (Micragasma) Sahlberg. Within Ochthebius s.str., 17 species groups are proposed, five of them newly established (3, 9, 11, 13 and 16): (1) andraei; (2) atriceps; (3) corrugatus; (4) foveolatus; (5) kosiensis; (6) lobicollis; (7) marinus; (8) metallescens; (9) nitidipennis; (10) notabilis; (11) peisonis; (12) punctatus; (13) quadricollis; (14) rivalis; (15) strigosus; (16) sumatrensis; and (17) vandykei. We elevated to species rank two subspecies of Ochthebius: O. fallaciosus Ganglbauer stat.n. (former subspecies of O. viridis Peyron) and O. deletus Rey stat.rest. (former subspecies of O. subpictus Wollaston).

Introduction

Ochthebiinae, with c. 650 species and 11 subspecies described, are the second most diverse subfamily of the water beetle family Hydraenidae (Hansen, 1998; Jäch & Balke, 2008; Tables 1, S1). They occur in all biogeographic regions, including the Antarctic islands of Kerguelen and Heard, where they are the only Hydraenidae present (Hansen, 1998). Ochthebiinae are the ecologically most diverse hydraenid subfamily, with terrestrial species, species living in the interface between land and water, as well as in most types of aquatic environments (Jäch *et al.*, 2016). A large number of species are tolerant to hypersaline waters, living in coastal rockpools (e.g. *Cobalius* Rey or *Calobius* Wollaston, Antonini *et al.*, 2010; Sabatelli *et al.*, 2016), coastal or inland saltpans or inland hypersaline streams (especially the O. *notabilis* group, but also many other species in different groups, Abellán *et al.*, 2009; Millán *et al.*, 2011).

The external morphology of the species of Ochthebiinae is more heterogeneous than in other Holarctic lineages of Hydraenidae [e.g. *Hydraena* Kugelann (Trizzino *et al.*, 2013) or *Limnebius* Leach (Rudoy *et al.*, 2016)]. This has resulted in a more complex taxonomy, with mostly all of the described genera or subgenera with uncertain relationships. Thus, the genus *Ochthebius* Leach was divided in 16 subgenera by Kuwert (1887), but all of them with the exception of *Aulacochthebius* Kuwert, were later synonymised (see Tables 1, S2 for a synopsis of the classification and Table S1 for a complete checklist of Ochthebiini).

Ochthebiinae were divided by Perkins (1980) into two tribes, Ochthebiini and Ochtheosini, the latter for the single terrestrial genus Ochtheosus Perkins, with two species. The monotypic genera Edaphobates Jäch & Díaz and Ginkgoscia Jäch & Díaz, for which we could not obtain fresh material for DNA extraction, were tentatively hypothesized to be related to Ochtheosus by Jäch & Díaz (2003, 2004) and thus we consider them within Ochtheosini. Perkins (1997) divided Ochthebiini in five newly defined subtribes: Enicocerina (for the single genus Enicocerus Stephens), Meropathina (Meropathus Enderlein, Tympallopatrum Perkins, Tympanogaster Perkins and the recently described Prototympanogaster Perkins; Perkins, 2018), Neochthebiina (Neochthebius Orchymont), Ochthebiina (Ochthebius, Gymnochthebius Orchymont, Hughleechia Perkins, Gymnanthelius Perkins, Aulacochthebius and Micragasma Sahlberg) and Protochthebiina (Protochthebius Perkins). Enicocerus was treated as a subgenus by several subsequent authors (e.g. Jäch, 1998; Ribera et al., 2010; Jäch & Skale, 2015), and Neochthebius was treated as a synonym of Ochthebius s.str. by Jäch & Delgado (2014b), leaving ten genera in Ochthebiini, most of them described in the 20th century (Table 1). Ochthebius is the oldest available generic name (Leach, 1815; Hansen, 1998; Table 1), grouped into four recognised subgenera with mostly Palaearctic distribution: *Asiobates* Thomson, *Calobius*, *Enicocerus* and *Ochthebius* (Jäch & Skale, 2015; Tables 1, S1; see the detailed taxonomic history of subgenera and species groups in the Discussion). Within *Ochthebius* s.str., the most diverse subgenus, several informal species groups have been defined, which have undergone important modifications through their taxonomic history (Tables S1, S2).

The classification and proposed relationships within Ochthebiini have also experienced many modifications during the last four decades. Perkins (1980) revised the by then known American species, and proposed a phylogeny derived from the examination of some morphological characters. *Gymnochthebius* was placed as sister to the remaining taxa, which were divided in two lineages: (i) *Meropathus* plus *Neochthebius* (currently a synonym of *Ochthebius*, Table S2) and (ii) *Ochthebius* plus *Asiobates*. Subsequently, Perkins (1997) synonymized four subgenera with *Ochthebius* (*Calobius*, *Cobalius*, *Liochthebius* Sahlberg and *Notochthebius* Orchymont), and described three additional genera (Tables 1, S2). Based mostly on the exocrine secretion delivery system (ESDS), he divided the subfamily in two tribes, Ochtheosini for the newly described *Ochtheosus* and Ochthebiini, divided in turn into subtribes, with unresolved relationship among them. *Ochtheosus* was considered to have some plesiomorphic characters similar to some southern African genera (e.g. antennae with 11 antennomeres, as in many Prosthetopinae, Perkins, 1997; see also Beutel *et al.*, 2003), and did not share several of the most characteristic synapomorphies with the remaining Ochthebiinae, in particular the structure of the tentorial arms, galea and lacinia.

The first formal cladistic analysis of the family Hydraenidae was published by Beutel et al. (2003), but sampling was too incomplete to resolve internal relationships within Ochthebiinae other than the sister relationship of Meropathus with Ochthebius + Gymnochthebius. There is no published global molecular phylogeny of the entire family Hydraenidae or subfamily Ochthebiinae, but in recent years some detailed molecular phylogenies for some lineages have been published, such as the Ochthebius notabilis group (Abellán et al., 2009) and Enicocerus (Ribera et al., 2010). In Abellán et al. (2013) an extensive phylogeny of Ochthebius and some related genera using only mitochondrial markers was used to estimate the phylogenetic diversity of the Iberian fauna. The sampling of some geographical areas was, however, very incomplete, as the intention was not to produce a phylogenetic study. Still, most Palaearctic lineages were represented, which allowed us to establish the monophyly of most of the included genera/subgenera and of the recognized species groups, although internal groups had poor relationships between them. Sabatelli et al. (2016) used these data to study the origin of species typical of rockpools, recovering basically the same relationships and establishing a new species group for the South African O. capicola Péringuey. In the same paper, the subgenus Cobalius was found to be outside

Ochthebius s.str., but Calobius nested within it, referring to it as the 'Calobius' lineage.

In this study we provide a comprehensive phylogeny of Ochthebiini, based on mitochondrial and nuclear sequence data, including representatives of most lineages. We introduce several changes in the taxonomic classification to accommodate our phylogenetic results, and provide a complete checklist based on our new classification (Table S1).

Material and Methods

Taxon sampling

We studied 186 species and four subspecies of the 641 described species and 11 described subspecies of Ochthebiini, plus 29 specimens corresponding to undetermined or still undescribed species (Table S3). For two species with an isolated or unsupported placement (*O. plesiotypus* Perkins and *O. peisonis* Ganglbauer) we sequenced two specimens to test for possible sequencing mistakes. We included examples of eight of the 11 genera currently recognised in the tribe, all subgenera but two (within genus *Tympanogaster*), and all recognised species groups within the genus *Ochthebius* but one (*O. kosiensis* group, Tables 1, S1, S3). The three missing genera, *Tympallopatrum* (Australia) and *Protochthebius* (Asia) and *Prototympanogaster* (Lord Howe Island), have four, seven and a single species, respectively (Table S1).

We used as outgroups 31 species of other Hydraenidae genera (*Hydraena, Laeliaena* Sahlberg and *Limnebius*) and of Ptiliidae. Trees were rooted in the split between Hydraenidae and Ptiliidae, considered to be sister groups both based on molecular (e.g. Hunt *et al.*, 2007; McKenna *et al.*, 2015; Zhang *et al.*, 2018) and morphological evidence (Hansen, 1997; Lawrence *et al.*, 2011).

DNA extraction and sequencing

Specimens were killed and preserved in absolute ethanol. DNA was extracted with a standard phenol-chloroform extraction or by commercial extraction kits (mostly Quiagen DNeasy Tissue Kit, Hildesheim, Germany) following the manufacturers' instructions. DNA samples and voucher specimens are kept in the collections of the Institute of Evolutionary Biology (IBE, Barcelona, Spain), Museo Nacional de Ciencias Naturales (MNCN, Madrid, Spain) and Naturhistorisches Museum Wien (NMW, Vienna, Austria). We sequenced fragments of six genes in five sequencing reactions, three mitochondrial: [(i) 5' end of the cytochrome c oxidase subunit 1 (the standard barcode, Hebert *et al.*, 2003) (COI-5'), (ii)

3' end of cytochrome *c* oxidase subunit 1 (COI-3'), (iii) 5' end of 16S RNA (16S) plus the leucine tRNA transfer (tRNA-Leu) plus 5' end of NADH dehydrogenase subunit I (NAD1)]; and two nuclear [(iv) an internal fragment of the large ribosomal unit, 28S RNA (28S) and (v) an internal fragment of the small ribosomal unit, 18S RNA (18S)] (see Table S4 for details on primers used and typical PCR conditions). Sequences were assembled and edited with GENEIOUS v10.1 (Kearse *et al.*, 2012); new sequences (a total of 897) were deposited in the ENA database with accession numbers LT990690-LT991586.

Phylogenetic analyses

Edited sequences were aligned using the online version of MAFFT v.7 with the G-INS-I algorithm (Katoh et al., 2009). We used PartitionFinder v1.1.1 (Lanfear et al., 2012) to estimate the evolutionary model that best fitted the data, using one partition for each gene fragment (six partitions in total), and using Akaike Information Criterion (AIC) scores as selection criteria. Phylogenetic analyses were made using Bayesian probabilities in BEAST 1.8 (Drummond & Rambaut, 2007), using the partition and evolutionary models selected by PartitionFinder, with a Yule speciation process as tree prior. There are few fossils usable for calibrating a phylogeny of Hydraenidae. The oldest recognised members of the family are Ochthebiites Ponomarenko, from the Jurassic (Arnol'di et al., 1991; Ponomarenko & Prokin, 2015; Yamamoto et al., 2017), but they cannot confidently be placed in any extant lineage. One of the best preserved fossils is Archaeodraena cretacea Jäch & Yamamoto from Upper Cretaceous Burmese amber (c. 99 Ma, Yamamoto et al., 2017), which probably belongs to the crown Hydraenidae. Both fossils are compatible with an estimate of c. 170 Ma for the split between Hydraenidae and Ptiliidae obtained in recent molecular phylogenies calibrated with a range of fossils (Hunt et al., 2007; McKenna et al., 2015). We thus used this estimation to calibrate our tree, with a normal distribution with a standard deviation of 1 Ma and an uncorrelated lognormal relaxed clock. A Middle Jurassic separation between Hydraenidae and Ptiliidae is considerably younger than the estimation of Toussaint et al. (2016) (Middle Triassic, 243 Ma), but older than the more recent of Zhang et al. (2018) (Upper Jurassic, c. 150 Ma), both of which we consider to be less plausible. In any case, it must be noted that the main objectives of our study do not require an absolute calibration of the phylogeny of Ochthebiini, which is done only as a preliminary exploration.

We ran the analyses for 100 million generations, logging results for every 5,000, and checked convergence to estimate the burn-in fraction with Tracer v1.6 (Drummond & Rambaut, 2007). We ran an additional ML phylogenetic reconstruction with RAxML-HPC2 (Stamatakis, 2006) in the CIPRES portal (Miller *et al.*, 2010), using the same partition scheme as in BEAST with a GTR+G model estimated independently for each partition.

Node supports values were estimated with 100 pseudoreplicas using a rapid bootstrapping algorithm (Stamatakis et al., 2008). The same ML analysis was repeated only with the nuclear sequence (18S and 28S).

Table 1. Synopsis of the genus-level classification of Ochthebiini, with notes of the former status of the taxa (following Jäch & Skale, 2015, Jäch et al. 2016 and Perkins, 2018), total number of species and species included in the phylogeny (see Table S1 for a complete checklist and Table S1 for synonyms and type species). In brackets, number of subspecies. Species of uncertain iden-tification included in the phylogeny noted after '+'.

New status	Former status	No. sp. (spp.)	DNA sp. (spp.)
Genus Meropathus Enderlein, 1901	Genes	8	1
Genus Ochthebius Leach, 1815	Genus	540a (9)	186 + 27 (2)
Subgenus Angiochthebius Jäch & Ribera, 2018	Subgenus of Ochthebius	3	1
Subgenus Asiobates Thomson, 1859	Subgenus of Ochthebius	105 (3)	34 + 6
Subgenus Aulacochthebius Kuwert, 1887	Genus	13	4 + 6
Subgenus Cobalius Rey, 1886	Subgenus of Ochthebius s.str.b	9 (2)	6
Subgenus Enicocerus Stephens, 1829	Subgenus of Ochthebius	16	9 + 1
Subgenus Gymnanthelius Perkins, 1997	Genus	8	2
Subgenus Gymnochthebius Orchymont, 1943	Genus	58	7 + 1
Subgenus Hughleechia Perkins, 1981	Genus	2	1
Subgenus Micragasma Sahlberg, 1900	Genus°	3	1
Subgenus Ochthebius Leach, 1815	Subgenus of Ochthebius	322 (4)	121 + 13 (2)
Genus Protochthebius Perkins, 1997	Genus	7	0
Genus Prototympanogaster Perkins, 2018	Genus	1	0
Genus Tympallopatrum Perkins, 1977	Genus	4	0
Genus Tympanogaster Perkins, 1967	Genus	84	3
Subgenus Hygrotympanogaster Perkins, 2006	Subgenus of Tympanogaster	36	1
Subgenus Plesiotympanogaster Perkins, 2006	Subgenus of Tympanogaster	2	0
Subgenus Topotympanogaster Perkins, 2006	Subgenus of Tympanogaster	8	0
Subgenus Tympanogaster Janssens, 1967	Subgenus of Tympanogaster	38	2

alncludes one species 'incertae sedis'.

⁶Considered as a subgenus of *Ochthebius* by Sabatelli *et al.* (2016) and Jäch & Delgado (2017a). ⁶Considered as a subgenus of *Ochthebius* by Hernando *et al.* (2017), based on the results of this study.

Results

The final matrix included 252 terminals with 3,656 aligned characters. Protein-coding regions had no indels except for the 3' end of COI-3, where some species had an additional codon. The best partitioning scheme obtained with PartitionFinder had six partitions corresponding to (i) COI-5, (ii) COI-3, (iii) 16S+tRNA-Leu, (iv) NAD1, (v) 18S and (vi) 28S. The optimal evolutionary model was GTR+I+G for all partitions except for NAD1 (best model TMV) and 28S (best model SYM). The BEAST run implementing the best models did not converge properly, however, mostly due to the parameters related to the estimation of the branch lengths, especially for the genes NAD1, 18S and 28S. We thus did a second run with simpler models for these genes (HKY+G+I), which converged adequately. The topologies of the two Bayesian analyses were, however, almost identical (Figs 1, S1), and unless specified we report only the results of the analyses with the better parameter convergence (i.e. with the simpler evolutionary models).

Molecular phylogeny

The topologies obtained in the ML and the two Bayesian analyses were very similar, differing only in some poorly supported nodes (Figs 1, S1, S2), most notably in the position of *Hughleechia* (see below). The ML tree with the nuclear sequence only had a topology very similar to that obtained with the combined data, although with a generally lower resolution and support. Main difference was the recovery of Ochthebiini as paraphyletic, with the genus *Hydraena* as sister to *Tympanogaster* plus *Meropathus*, although with very low support (bootstrap support, BS = 53%; Fig. S3). Genera, subgenera and most species groups were, however, recovered as monophyletic with strong support, with internal topologies very similar to that of the combined ML tree (Figs S2, S3).

In the ML and Bayesian trees with the combined nuclear and mitochondrial data, the monophyly of Ochthebiini was strongly supported, as well as their separation into two clades, (i) *Meropathus* plus *Tympanogaster* and (ii) *Ochthebius* s.l. *Meropathus* was nested within a paraphyletic *Tympanogaster* in the ML tree (combined and nuclear only) and in the Bayesian tree with the best models, and sister to *Tympanogaster* with low support in the Bayesian tree with simpler models (posterior probability, PP = 0.63; Figs 1a, S1, S2).

Within *Ochthebius* s.I. *Asiobates* and *Aulacochthebius* were sister groups in the Bayesian tree with low support (PP = 0.85), and both sisters to the rest of Ochthebiini. In the ML analysis, *Asiobates* and *Aulacochthebius* were paraphyletic with respect to the rest of Ochthebiini, also with low support (BS < 50%) (Figs 1a, S2). In both analyses Ochthebiini minus *Asiobates* and *Aulacochthebius* were monophyletic with strong support (BS = 80%; PP = 1; Fig. 1a).

The remaining Ochthebiini were divided in a series of well supported clades corresponding to traditionally recognised genera or subgenera, but with poorly resolved relationships among them: (i) *Enicocerus*, strongly supported and with well-resolved internal relationships, sister to the Australian *Hughleechia* in ML and the Bayesian analysis with the simpler models (BS = 81%, PP = 0.76; Figs 1b, S2); in the Bayesian analysis with

the best models *Hughleechia* was sister to the clade formed by *Micragasma* and *Cobalius*, with low support (PP = 0.88; Fig. S1); (ii) a clade including *Gymnochthebius* and *Gymnan-thelius*, the latter as sister to *Angiochthebius* Jäch & Ribera (*Gymnochthebius plesiotypus*)

Figure 1. Majority rule consensus tree obtained with BEAST for the phylogeny of Ochthebiini, with the simple evolutionary models (see text). Numbers in nodes, posterior probabilities/bootstrap support values in RAxML. Names in nodes refer to the new classification. Habitus photographs correspond to species used in the analyses, with the addition of *Limnebius papposus* Mulsant, *Hydraena riparia* Kugelann (a), *Ochthebius* (s.s.) *bernhardi* Jäch & Delgado and *O. (Micragasma) minoicus* Hernando, Villastrigo & Ribera (b).

group of Perkins, 1980; see Jäch & Ribera, 2018) (BS = 94%, PP = 0.96); within *Gymnochthebius*, the Australian and American species were respectively monophyletic and sisters, with very strong support both in the ML and Bayesian trees (Figs 1b, S2); (iii) *Cobalius*,

A molecular phylogeny of the tribe Ochthebiini (Coleoptera, Hydraenidae, Ochthebiinae)

Figure 1. Continued.

with a strongly supported monophyly (BS= 98%, PP = 1) and sister to the only sequenced species of *Micragasma*, also with strong support (BS = 100%, PP = 1) (Figs 1b, S2); (iv) *Ochthebius* s.str., including *Calobius*, strongly supported both in the ML (BS = 94%) and Bayesian (PP = 1) trees (Figs 1b, S2).

Within *Ochthebius* s.str. the most established Palaearctic species groups were recovered as monophyletic (see Discussion, Figs 1b, 1c, S2). Their monophyly was strongly

Figure 1. Continued.

supported in the ML and Bayesian trees, with the only exception of the group of species related to the *O. atriceps* and *O. notabilis* groups in the ML analyses. The main difference with established groups was the expansion of the *O. marinus* group to include the South African *O. capicola* and the American *O. bilincisus, bisinuatus* and *interruptus* groups of Perkins (1980). The *O. foveolatus* group of Jäch (1991) was split in three clades: (i) *O. foveolatus* group, sister to the *O. metallescens* group with strong support in both ML and Bayesian trees (BS = 71%, PP = 0.99); (ii) *O. atriceps* group and (iii) *O. corrugatus* group.

The latter two formed a clade with the species of the *O. notabilis* and *O. andraei* groups, strongly supported in the Bayesian tree (PP = 1) but not in the ML tree (BS < 50%), in which the group also included one of the two sampled species of the *O. rivalis* group (Figs 1c, S2). Two coastal lineages, *Calobius* and the *O. vandykei* group (formerly genus *Neochthebius*), were nested within *Ochthebius* s.str., the former as sister to the *O. lobicollis* + *O. strigosus* groups (BS < 50%, PP = 0.92) and the latter as sister to the *O. marinus* group (BS < 50%, PP = 0.92).

Table 2. Estimated evolutionary rates of the different partitions (substitutions per site per Ma per lineage) and 95% high posterior density interval (HPD) in the Bayesian analysis with simple evolutionary models (see text). Partition Mean rate 95% HPD interval COI-5 0.0085 [0.0070, 0.0102] COI-3 0.0111 [0.0091, 0.0133] [0.0020, 0.0029] 16S + tRNA 0.0024 NAD1 0.0039 [0.0030, 0.0048] 18S 0.00014 [0.00010, 0.00017] 28S 0.00052 [0.00040, 0.00064]

According to our calibration scheme, with a separation between Hydraenidae and Ptiliidae at 170 Ma, the estimated age of crown Hydraenidae was 106 Ma [highest posterior density (HPD): 122.8–90.2 Ma], and that of the crown Ochthebiini 93 Ma (HPD: 109.7–80.8 Ma). The basal diversification of Ochthebiini was reconstructed as having occurred in a relatively short temporal window, with genera, subgenera and most species groups with an origin between c. 87–60 Ma (Fig. 1; see Table 2 for the estimated evolutionary rates of all partitions).

Discussion

Our results strongly support the monophyly of Ochthebiini, but our sampling did not allow us to test for the monophyly of Ochthebiinae, or its position within Hydraenidae. Within Ochthebiini our results recover two well-supported clades: *Meropathus* plus *Tympanogaster*, and *Ochthebius* s.l. (Fig. 2; see below for a detailed discussion of the taxonomic classification of Ochthebiini). We did not find evidence to support the five subtribes proposed by Perkins (1997), which are therefore not considered here.

We did not find evidence for a clear separation between the studied species of *Tympanogaster* and *Meropathus*, in agreement with previous studies (Hansen, 1991). How-

ever, we could not obtain material of the genera *Prototympanogaster* and *Tympallopatrum*, considered to be closely related to *Tympanogaster* by Perkins (1997, 2018), and two of the subgenera of *Tympanogaster* (*Plesiotympanogaster* Perkins and *Topotympanogaster* Perkins), so until more data become available we refrain from any taxonomic change and consider *Prototympanogaster*, *Tympallopatrum* and *Tympanogaster* as valid genera (Tables 1, S1; Fig. 2) (see Perkins, 2006 for a discussion on the subgeneric classification of *Tympanogaster*). The species of *Meropathus*, *Prototympanogaster*, *Tympallopatrum* and *Tympanogaster*, *Tympallopatrum* and *Tympanogaster* are found in the Australian Region, on two Antarctic islands (Kerguelen and Heard) and on several Subantarctic islands, such as Campbell Island, Crozet Islands, Prince Edward Island and Falkland Islands.

The second lineage, genus Ochthebius s.l., included all the non-Australian Ochthebiini, as well as several Australian species. Our results agree remarkably well with the currently recognised subgenera and many of the established species groups, which were recovered as monophyletic with general strong support (Fig. 2). The relationships between these lineages, however, do not confirm some previous hypotheses on their relationships. Thus, Aulacochthebius was not found to be closely related to Gymnochthebius, as proposed in Hansen (1991), but to Asiobates; Micragasma and Hughleechia were not among the basal lineages and Cobalius and Calobius were not closely related, as hypothesised in Perkins (1997). Novel relationships found here are the possible sister relationship between Hughleechia and Enicocerus, and the close relationship between Gymnochthebius and Gymnanthelius. Interestingly, within the clade Gymnochthebius + Gymnanthelius + Angiochthebius there are two cladogenetic events separating American from Australian species: one within Gymnochthebius, dated at 73 Ma (95% HPD 87-60 Ma), and another separating the Australian Gymnanthelius and the Chilean Angiochthebius, dated at 60 Ma (95% HPD 78–51 Ma). Although a detailed biogeographic analysis is outside the scope of this paper, it is interesting to note that these estimations are too recent for a tectonic split between Australia and South America (i.e. west and east Gondwana), dated at c. 130 Ma (McIntyre et al., 2017). Our calibration would thus require a different scenario, probably through the colonization of some southern islands or the Antarctica. An older age for these nodes is unlikely, given that our rate estimations are already slower than most recent estimations for the same genes in other groups of Coleoptera (Table 2; see e.g. Papadopoulou et al., 2010; Andújar et al., 2012; Cieslak et al., 2014).

Taxonomic classification of Ochthebiini Thomson, 1859

Genus Meropathus Enderlein, 1910

Type species: Meropathus chuni Enderlein, 1910, by monotypy.

Figure 2. Summary tree of the phylogenetic relationships of the Ochthebiini main lineages. The width of the triangles reflects the number of species of the respective clade in the tree. Symbols in nodes: circles, congruent topology in the maximum likelihood and Bayesian analyses; triangles, incongruent topologies; in black, nodes with good support (Bayesian posterior probability > 95% and maximum likelihood bootstrap support > 70%) in both analyses; in grey, in one analysis only; in white, not supported nodes. Pie charts reflect the geographical distribution of the species of the respective clades.

Meropathus was described as genus, considered as subgenus of *Ochthebius* by Orchymont (1938) and reinstated again as genus by Jeannel (1940). Bameul (1989) redescribed the genus and recognised 12 species (in two species groups), transferring *Ochthebius schizolabrus* Deane to *Meropathus*. Hansen (1991) noted the difficulty in establishing clear distinctions within the *Meropathus-Tympanogaster* complex. *Meropathus* includes seven New Zealand, Antarctic and Subantarctic species plus *M. labratus* Deane from Queensland (Table S1). They are all found in coastal habitats, usually among debris and algae (Bameul, 1989).

Genus Prototympanogaster Perkins, 2018

Type species: Prototympanogaster lordhowensis Perkins, 2018, by original designation.

Prototympanogaster was described by Perkins (2018) as a monotypic genus based on two males collected in 2003 in Lord Howe Island (Australia). This genus seems to be closely related to *Tympanogaster*, but without its characteristic glabrous tabella in the metaventrite (Perkins, 2018).

Genus Tympallopatrum Perkins, 1997

Type species: Tympallopatrum longitudum Perkins, 1997, by original designation.

Tympallopatrum was described by Perkins (1997) as a monotypic genus within Meropathina. Subsequently, Perkins (2004a) revised the genus and described three additional species, all of them from western Australia (Table S1). We could not obtain any representative of this genus for our study, and thus its phylogenetic placement remains untested.

Genus Tympanogaster Janssens, 1967

Type species: *Tympanogaster deanei* Perkins, 1979 (replacement name for *Ochthebius longipes* Deane, 1931), by monotypy.

Described by Janssens (1967) as a monotypic genus for *O. longipes* (= *T. deanei* Perkins), Perkins (1997) redescribed *Tympanogaster* and transferred some species from *Meropathus*. Perkins (2006) revised the genus and described three subgenera and 76 new species, raising the total number of the species in the genus to 84 (Tables 1, S1), all distributed in Australia and Tasmania.

Subgenus *Hygrotympanogaster* Perkins, 2006. Type species: *Tympanogaster maureenae* Perkins, 2006, by original designation.

Hygrotympanogaster Perkins was described by Perkins (2006) as a subgenus of *Tympanogaster*, to include mostly hygropetric species in southwestern Australia. Currently it includes 36 species (Perkins, 2006) (Table S1).

Subgenus *Plesiotympanogaster* Perkins, 2006. Type species: *Tympanogaster thayerae* Perkins, 2006, by original designation.

Plesiotympanogaster was described by Perkins (2006) as a subgenus of *Tympanogaster* to include the type species plus *Ochthebius costatus* Deane (Table S1). Both species were considered to have plesiomorphic characters within the genus.

Subgenus *Topotympanogaster* Perkins, 2006. Type species: *Tympanogaster crista* Perkins, 2006, by original designation.

Topotympanogaster was described by Perkins (2006) as a subgenus of *Tympanogaster* to include eight Australian species, all described in Perkins (2006) (Table S1). We could not obtain any representative of this and the previous subgenus for our study, and thus their phylogenetic placement remain untested.

Subgenus *Tympanogaster* Janssens, 1967. Type species: *Tympanogaster deanei* Perkins, 1979 (replacement name for *Ochthebius longipes* Deane, 1931), by monotypy.

Tympanogaster s.str. was revised by Perkins (2006), raising the total number of the species to 38 (Tables 1, S1), all distributed in Australia and Tasmania.

Genus Ochthebius Leach, 1815

Type species: *Helophorus marinus* Paykull, 1798, fixed by Orchymont (1942).

The second well-supported lineage within Ochthebiini includes the remaining genera/subgenera with, in some cases, uncertain relationships among them. We consider *Ochthebius* a single genus with 540 species and nine subspecies in ten well-supported subgenera, corresponding in most cases to currently recognised taxa (Fig. 2). One additional species, *O. eremita* Knisch from Fiji, cannot be confidently placed in any of the described subgenera, and it is left as incertae sedis within the genus *Ochthebius* (Hansen, 1998; Table S1).

Subgenus *Angiochthebius* Jäch & Ribera, 2018. Type species: *Gymnochthebius plesiotypus* Perkins, 1980, by original designation.

The subgenus *Angiochthebius* was created for the *Gymnochthebius plesiotypus* species group (sensu Perkins, 1980), which now includes three South American species (Jäch & Ribera, 2018; Table S1). The species of the *G. plesiotypus* group were included within *Gymnochthebius* by Perkins (1980) as they share a bifid apex of the aedeagus, but external characters (e.g. the pubescent fifth abdominal ventrite) and some aedeagal characters (Jäch & Ribera, 2018) as well as molecular data (Figs 1b, S2) warrant their removal from *Gymnochthebius* and their status as a distinct subgenus of *Ochthebius*.

Subgenus *Asiobates* Thomson, 1859. Type species: *Ochthebius rufimarginatus* Stephens, 1829 (= *O. bicolon* Germar, 1824), by monotypy.

Originally described as a genus, but downgraded to subgenus by Seidlitz (1875), and treated as such by most authors (e.g. Jäch, 1990a; Hansen, 1991; Perkins, 1997). Jäch (1990a) divided the Palaearctic species in the *bicolon* and *minimus* groups, which were recovered as respectively monophyletic with strong support. The sampled American species were divided in the *puncticollis* group of Perkins (1980), with only one sampled species being sister to the rest of the subgenus with strong support (BS = 88%, PP = 1; Figs 1a, S2), plus the *discretus* group of Perkins (1980). The placement of the studied Nearctic species of the A. discretus group and two of the Afrotropical species (O. andreiini Régimbart and O. andronius Orchymont) was uncertain both in the ML and the Bayesian trees (Figs 1a, S2). We provisionally consider them within the A. minimus group due to the similarities in their aedeagi and the morphology of the pronotum (Orchymont, 1948; Perkins, 1980; Jäch, 1990a). The subgenus Asiobates currently includes 105 described species and three subspecies occurring in all biogeographical regions, except the Oriental and Australian Realms. While the *puncticollis* group is restricted to the Nearctic Region, the *bicolon* and *minimus* groups are more widespread. The former occurs in the Palaearctic and (with several undescribed species) Afrotropical regions, and the latter occurs in the Nearctic, Neotropical, Palaearctic, and Afrotropical Regions. Many additional species of Asiobates await description, several of them included in our phylogeny (Table S3).

Subgenus *Aulacochthebius* Kuwert, 1887. Type species: *Ochthebius exaratus* Mulsant, 1844, by monotypy.

Considered as a subgenus until Perkins (1997) raised it to genus level. There are no species groups defined within this subgenus, and our sampling is too incomplete to draw firm conclusions. Currently the subgenus includes 13 Palaearctic, Oriental and Afrotropical species (Table S1), although the taxonomy of the subgenus is in clear need of revision and it is expected that the number of species will increase considerably (Table S3).

Subgenus *Cobalius* Rey, 1886. Type species: *Ochthebius lejolisii* Mulsant & Rey, 1861, fixed by Jäch (1989b).

Described as a subgenus of *Ochthebius* by Rey (1886), synonymised by Perkins (1997) with *Ochthebius* s.str. and considered again as subgenus by Sabatelli *et al.* (2016). We recovered it here as a strongly supported monophyletic lineage clearly outside *Ochthebius* s.str., confirming its status as subgenus. Its nine recognised species and two subspecies occur along the coasts of the Mediterranean Sea, the Black Sea and the eastern Atlantic Ocean from Cape Verde to Scotland (Jäch, 1989b; Jäch & Skale, 2015; Jäch & Delgado, 2017a). Its taxonomy is in need of revision (Sabatelli *et al.*, 2016; Jäch & Delgado,

2017a; I. Ribera et al., unpublished results).

Subgenus *Enicocerus* Stephens, 1829. Type species: *Enicocerus viridiaeneus* Stephens, 1829 (= *Ochthebius exsculptus* Germar, 1824), by monotypy.

Enicocerus was originally described as a genus, downgraded to subgenus of *Ochthebius* by Chenu (1851), reinstated again as genus by Perkins (1997) (within its own subtribe, Enicocerina), but treated as a subgenus by subsequent authors (e.g. Jäch, 1998; Ribera *et al.*, 2010; Jäch & Skale, 2015). Our results support the exclusion of the East Palaearctic and Oriental species, confirming Jäch (1998) and Skale & Jäch (2009), and are in agreement with the phylogeny of Ribera *et al.* (2010). *Enicocerus* in its current sense includes 16 species with a mostly Mediterranean distribution, with some species reaching the British Isles, Central Europe, the Middle East and the Caucasus. One species from eastern North America, *O. benefossus* LeConte, not included in our phylogeny, is here tentatively placed in *Enicocerus* (following Perkins, 1980); it might, however, instead belong to the *O.* (s.str.) *nitidipennis* group, or to a species group of its own.

Subgenus *Gymnanthelius* Perkins, 1997 **comb.n**. Type species: *Ochthebius hieroglyphicus* Deane, 1933, by original designation.

The genus *Gymnanthelius* was introduced by Perkins (1997) for *O. hieroglyphicus*. Subsequently, Perkins (2004b) revised the genus and transferred to *Gymnanthelius* two other Australian species described by Deane (1931, 1937) within *Ochthebius* (Table S1). The eight described species are distributed mostly in southeastern Australia, with some reaching as far north as Queensland (Perkins, 2004b).

Subgenus *Gymnochthebius* Orchymont, 1943. Type species: *Ochthebius nitidus* LeConte, 1850 by original designation.

Gymnochthebius was originally described as a subgenus of *Ochthebius* (Orchymont, 1943) to place several American species described under *Ochthebius* that could not be placed in any of the described subgenera, which had been established mostly for Palaearctic species. Orchymont (1943) also included three Australian species for which he could examine the aedeagus and confirmed that they had the same general structure as the American species. Perkins (1980) revised the American species and Perkins (2005) the Australian and Papuan species, recognizing another four species in addition to the three previously noted by Orchymont (1943) and raising the total number of species in the subgenus to 58 (Table S1). The Australian and the American species of the subgenus form two well-supported clades, the *O. australis* and *O. fossatus* groups, with 36 and 22 species respectively (Table S1).

Subgenus *Hughleechia* Perkins, 1981 **comb.n**. Type species: *Hughleechia giulianii* Perkins, 1981, by original designation.

Originally described as a monotypic genus (Perkins, 1981), a second species was described by Perkins (2007a). Both species inhabit coastal rockpools in southern Australia and Tasmania, in the intertidal zone and (most frequently) above the tide (Perkins, 2007a).

Subgenus *Micragasma* Sahlberg, 1900 comb.n. Type species: *Micragasma paradoxum* Sahlberg, 1900, by monotypy.

Described as a monotypic genus for *M. paradoxum* (Sahlberg, 1900). Jäch (1997a) redescribed the genus and transferred *O. substrigosus* Reitter to *Micragasma*. A third species was recently described from Crete (Hernando *et al.*, 2017), and there are two additional undescribed species from Central Asia (M.A. Jäch *et al.*, unpublished data). Our results clearly show that *Micragasma* is nested within *Ochthebius* s.l., and thus we consider it a subgenus of *Ochthebius*.

Subgenus *Ochthebius* Leach, 1815. Type species: *Helophorus marinus* Paykull, 1798, fixed by Orchymont (1942).

Within *Ochthebius* s.str. we recovered, with strong support, most of the currently recognised species groups as monophyletic. Most species groups are entirely Palaearctic, or with mostly Palaearctic species, and thus the basis for the taxonomy of the subgenus is the revisionary work of Jäch (e.g. 1989a, 1990a, 1991, 1992a), who distinguished 13 groups and subgroups. With only one exception (*O. jengi* group), they were all, with some modifications, recovered as monophyletic. According to our results, the 322 described species and four subspecies of *Ochthebius* s.str. are separated in 17 species groups, five of them newly established herein (Fig. 2). A few species still have an uncertain phylogenetic placement. This is particularly the case for *O. belucistanicus* Ferro, *O. caudatus* Frivaldsz-ky, *O. fissicollis* Janssens and *O. pierottii* Ferro, which presently cannot be confidently included in any of the recognised species groups, mainly because their original descriptions lack information about relevant characters (Table S1).

(1) *O. andraei* group: Defined and revised in Jäch (1992a), with additional species described in Jäch (2002) and Jäch & Delgado (2010). Currently this group includes six species and one subspecies of Palaearctic distribution (Table S1), typical of saline or hypersaline habitats. We could study a single species (*O. patergazellae* Jäch & Delgado, Table S3), included in a clade together with the species of the *O. notabilis, corrugatus* and *atriceps* groups (Fig. 1). The close relationship between the species of the *O. andraei, corrugatus, notabilis* and *atriceps* groups were already suggested in Jäch (1991, 1992a).

(2) *O. atriceps* group: In Jäch (1991) the species of the *O. foveolatus* group were divided in two subgroups, (A) *foveolatus* subgroup, sharing some characters with the species of the *O. metallescens* group, and (B) *atriceps* subgroup, sharing some characters with the species of the *O. notabilis* group. We recovered both subgroups as respectively monophyletic, and confirm the suspected relationships proposed by Jäch (1991) (see below). *Ochthebius burjkhalifa* Jäch & Delgado and *O. despoliatus* Jäch & Delgado, both from the UAE and of uncertain affinities, although hypothesised to be related to the *O. atriceps* group (Jäch & Delgado, 2014a), were found to be sister to the rest of the species of the group, with strong support in the Bayesian analysis (PP = 0.95) but weaker in the ML (BS = 55%) (Figs 1, S2). With the inclusion of these two species the *O. atriceps* group includes 20 species and one subspecies (Table S1). They have a mostly Palaearctic distribution but extending to East Africa (Djibouti) (Jäch & Delgado, 2017b).

(3) *O. corrugatus* group: Jäch (1992a) suggested that *O. corrugatus* Rosenhauer, despite being related to the species of the *O. andraei* and *notabilis* groups, could not be included in either of them. Our results confirm this hypothesis, but extend the *O. corrugatus* group to include two additional Mediterranean species previously included in the *O. atriceps* subgroup (Jäch, 1991; Table S1).

(4) *O. foveolatus* group: The *O. foveolatus* group as here defined corresponds to the *O. foveolatus* subgroup of Jäch (1991), recovered as sister of the *O. metallescens* group with strong support (Fig. 1). After the additions and corrections of Delgado & Jäch (2009) and Jäch & Delgado (2010, 2014b) it currently includes 27 species, all Palaearctic (Fig. 1; Table S1).

(5) *O. kosiensis* group: Jäch (1997b) established this group for *O. kosiensis* Champion, described within *Ochthebius* but originally not placed in any subgenus (Champion, 1920). Knisch (1924) placed it in *Asiobates* due to the resemblance of the general habitus, although the male genitalia do not correspond to those of the species of *Asiobates* (Jäch, 1997b). Jäch (2003) recognised the similarity between *O. kosiensis*, *O. strigosus* and related species, and included both species in the *strigosus* subgroup of the *metallescens* group. The study of some undescribed species deposited in Jäch (2003) should be divided in the *kosiensis* and *strigosus* groups, with two and 16 described species respectively (see below; Table S1). We could not obtain any species of the *kosiensis* group suitable for DNA extraction, and thus their phylogenetic relationships (and composition) remain untested. Based on described and undescribed species the group is so far known from the Himalaya and Myanmar.

(6) *O. lobicollis* group: Jäch (1990b) revised the *lobicollis* group, with subsequent additions by Jäch (1994) and Jäch *et al.* (1998). It currently includes 11 species with a West Palaearctic distribution (Table S1; Fig. 1b).

(7) *O. marinus* group: The Palaearctic species of the *O. marinus* group, the most speciose within *Ochthebius* s.str., were revised by Jäch (1992b). According to our results it includes the species of the *O. jengi* group sensu Jäch (1998) and also species from the Nearctic and Neotropical Regions (*O. biincisus, bisinuatus* and *interruptus* groups of Perkins, 1980); the Afrotropical Region (*O. extremus* and *salinarius* groups of Perkins, 1980); the Afrotropical Region (*O. extremus* and *salinarius* groups of Perkins, 2011; *O. capicola* group of Sabatelli *et al.*, 2016), including Madagascar (*O. alluaudi* Régimbart; Perkins, 2017); the Oriental Region (*O. masatakasatoi* Jäch; Jäch, 1992b; Jäch & Delgado, 2017a); and the Australian Region (*O. queenslandicus* Hansen; Jäch, 2001a; Perkins, 2007b).

Two of the studied subspecies were not recovered as sisters to the nominal subspecies in any of the analyses: *O. viridis fallaciosus* Ganglbauer (sister to *O. arefniae* Jäch & Delgado and another specimen probably representing an undescribed species), and *O. subpictus deletus* Rey (sister to *O. marinus* plus *O. auropallens* Fairmaire), in both cases with strong support (Figs 1, S1, S2; Table S1). We thus upgrade the two subspecies to species, *O. fallaciosus* Ganglbauer, 1901 **stat.n.** and *O. deletus* Rey, 1885 **stat.rest.** (see Jäch, 1992b and Jäch & Delgado, 2008 for a detailed description of the species). The *O. marinus* group as here defined includes 78 species, plus two species of uncertain adscription (Table S1). Most of these species seem to be associated to lentic habitats, frequently saline and, especially those outside the Palaearctic, coastal.

(8) *O. metallescens* group: The *O. metallescens* group was revised by Jäch (1989a). It is well defined morphologically, but many species have variable isolated populations, making species recognition and diagnosis difficult. This difficulty is reflected in the complex taxonomic history of the group, with multiple changes in the status of some species (e.g. Jäch, 1989a, 1999, 2001b). A number of species are typical of hygropetric habitats covered by a thin film of water, such as seepages or the marginal areas of stony surfaces in streams. The species group has currently 56 Palaearctic species and one subspecies (Table S1). Due to the somewhat cryptic habits and restricted geographic ranges of many species it is expected that this number will increase considerably.

(9) *O. nitidipennis* group: We include in the *O. nitidipennis* group the Asian species formerly included in the subgenus *Enicocerus*. As suggested by previous authors (Jäch, 1989b; Skale & Jäch, 2009; Yoshitomi & Satô, 2011), morphological similarities between these species and those of *Enicocerus* are the result of evolutionary convergence, probably

due to occupying similar microhabitats on the surface of rocks and stones partially submerged in streams. The group currently includes 12 species in the Himalaya Region and East Asia (Table S1).

(10) *O. notabilis* group: Jäch (1992a) recognised the *O. notabilis* group for species formerly included in the subgenus *Doryochthebius* Kuwert, establishing its synonymy with *Ochthebius* s.str. and differentiating the members of this group from the species of *Calobius* (see below). The group includes 13 Palaearctic species, all typical of saline or hypersaline habitats.

(11) *O. peisonis* group: *Ochthebius peisonis* was included in the *O. marinus* group by Jäch (1992b). Our results, however, place the species in a very isolated and uncertain position within *Ochthebius* s.str. We provisionally consider it in its own group, until additional evidence clarifies its phylogenetic relationships.

(12) *O. punctatus* group: The *punctatus* group was defined by Jäch (1992c) to include the species formerly considered under subgenus *Bothochius* Rey, with irregular elytral punctation (Jäch, 1989c), and a series of species with similar morphological characters but with regular elytral striae. The *Ochthebius punctatus* group includes 53 species and one subspecies, mostly Palaearctic (reaching the Oriental Region) but with some Afrotropical species, among them the *namibiensis* group of Perkins & Balfour-Browne (1994) (Jäch, 1992c; Hansen, 1998; Perkins, 2011; Jäch & Delgado, 2017b; Table S1).

(13) *O. quadricollis* group: The *O. quadricollis* group corresponds to the genus *Calobius*, described for *C. heeri* Wollaston from Madeira. The concept of *Calobius* was expanded by subsequent authors to include species now in different species groups (e.g. Reitter, 1886 included among them *O. notabilis* Rosenhauer and *O. quadrifoveolatus* Wollaston), and was usually treated as a subgenus. It was revised by Jäch (1993), who still considered it a subgenus, but was synonymised with *Ochthebius* s.str. by Perkins (1997), who considered it to be closely related to *Cobalius*. Its status remained uncertain, however, with some authors treating it as a genus (e.g. Audisio *et al.*, 2010) or subgenus (e.g. Jäch & Skale, 2015). Finally, Sabatelli *et al.* (2016) provided evidence of the phylogenetic position of *Calobius*, demonstrating its derived status within *Ochthebius* s.str. and considering it as the "*Calobius*" lineage, named here the *O. quadricollis* group for consistency with other species groups within *Ochthebius* s.str. Sabatelli *et al.* (2016) also found that the group includes more than the five species currently recognised (Table S1), in agreement with previous results from the Italian species (e.g. Urbanelli & Porretta, 2008; Audisio *et al.*, 2010). Our results support this impression, as happens with the subgenus *Cobalius*, which is also

in need of taxonomic revision. All species of the *O. quadricollis* group are found in coastal rockpools in the Mediterranean basin and the islands of Madeira and the Canaries.

(14) *O. rivalis* group: *Ochthebius rivalis* Champion and two similar species were originally considered to be a subgroup of the *O. metallescens* group (Jäch, 2003). Our results, however, do not support a close relationship with the species of the *O. metallescens* group, but with *O. peisonis* and the *O. notabilis, corrugatus* and *andraei* groups (Figs 1, S2), with low support. In the Bayesian analysis the two sampled species of the group were sister with strong support (PP = 1), but in the ML analysis they were not placed together, although with low support (BS < 50%) (Fig. S2). Currently the group includes four Asian species (including *O. himalayae* Jäch, originally described within the *O. metallescens* group, Jäch, 1989a), distributed from the Himalaya to Hainan Island (Table S1).

(15) Ochthebius strigosus group: Ochthebius strigosus Champion, described as Ochthebius s.str., was included in the subgenus Asiobates by Jäch (1989b) based on the study of female specimens only. After the discovery of males of a related species (*O. strigoides* Jäch) they were placed in their own subgroup within the *O. metallescens* group (Jäch, 1998). We found the only sequenced species of the group to be sister of the *O. lobicollis* group with low support (BS = 56%, PP = 0.87), and we consider it here as a distinct species group within *Ochthebius* s.str. The *O. strigosus* group currently includes 16 described plus some undescribed species, one of them included here (voucher IBE-RA617). The group is distributed in the eastern Palaearctic, including Taiwan (Jäch, 2003; Table S1).

(16) Ochthebius sumatrensis group: In the original description, O. sumatrensis Jäch could not be placed in any of the by then described groups, although some similarities with O. jengi Jäch (currently in the marinus group) were noted (Jäch, 2001a). Several undescribed species similar to O. sumatrensis have been collected in recent years (M.A. Jäch, unpublished data), among them the one from Hong Kong included here (specimen voucher MNCN-AC16; Table S1), recovered as sister to the rest of the species of Ochthebius s.str. with low support in the ML analysis (BS < 50%; Fig. S2) and as sister to the *punctatus* group in the Bayesian analysis, also with low support (PP < 0.5; Fig. 1). They live in hygropetric surfaces, which makes them prone to evolutionary convergence with non-related species sharing the same habitat, thus obscuring their relationships. The group is distributed from the Himalaya to eastern China and southward to Sumatra, where it is the only known species of Ochthebius s.str.

(17) *O. vandykei* group: The species of the *O. vandykei* group correspond to the former *Neochthebius*, originally described as subgenus but raised to genus (within its own

subtribe, Neochthebiina) by Perkins (1997) based on peculiarities of their antennae and the lack of ESDS. Jäch & Delgado (2014b), based on unpublished molecular data and on aedeagal characters, synonymised *Neochthebius* and considered it as a species group within *Ochthebius* s.str. The group currently includes eight species from the northern Pacific coast, seven in Asia and one in North America (Jäch & Delgado, 2014b; Table S1). They are all typical of rocky seashores or other coastal microhabitats.

Genus Protochthebius Perkins, 1997

Type species: Protochthebius satoi Perkins, 1997, by original designation.

The genus *Protochthebius* was described by Perkins (1997) for *P. satoi* and *O. jagthanae* Champion, who erected also the subtribe Protochthebiina based on peculiarities of the antennae and the ESDS. Subsequently, Jäch (1997b) and Perkins (1998) described another two and three species respectively. All seven known species of *Protochthebius* are found in the Himalaya Region, Meghalaya and Laos (Table S1). Some of them have been found by sifting forest litter or moss (Jäch, 1997b; Perkins, 1998).

We could not obtain molecular data of any of the species of *Protochthebius*, and thus the phylogenetic placement of the genus remains uncertain. Perkins (1997) noted some presumably plesiomorphic characters of the pronotum and postocular area of the head. The species of the genus have also a reduced ESDS system (Perkins, 1997), but this might be a secondary loss due to their microhabitat preferences. Their male genitalia are, however, typical of *Ochthebius* s.str., and when molecular data become available the taxonomic status of *Protochthebius* may have to be changed to a subgenus of *Ochthebius* or a species group within *Ochthebius* s.str., in which case *P. satoi* would become a junior homonym.

Acknowledgements

We thank all collectors mentioned in Table S3 for allowing us to study their material, Ana Izquierdo (MNCN) and Rocío Alonso (IBE) for laboratory work and three anonymous referees for comments to previous versions of the manuscript. A.V. has a FPI-MINE-CO PhD grant from the Spanish Government. This work has been partly funded by project CGL2013-48950-C2 (AEI/FEDER, UE) to I.R.
References

- Abellán, P., Millán, A., & Ribera, I. (2009) Parallel habitat-driven differences in the phylogeographical structure of two independent lineages of Mediterranean saline water beetles. *Molecular Ecology*, **18**, 3885–3902.
- Abellán, P., Sánchez-Fernández, D., Picazo, F., Millán, A., Lobo, J.M. & Ribera, I. (2013) Preserving the evolutionary history of freshwater biota in Iberian National Parks. *Bio-logical Conservation*, **162**, 116-126.
- Andújar, C., Serrano, J., & Gómez-Zurita, J. (2012) Winding up the molecular clock in the genus *Carabus* (Coleoptera: Carabidae): assessment of methodological decisions on rate and node age estimation. *BMC Evolutionary Biology*, **12**, 40.
- Antonini, G., Audisio, P., Mancini, E., de Biase, A., Tronci, C., Rossetti, G., & Trizzino, M. (2010) Molecular phylogeography of two Italian sibling species of *Calobius* (Coleoptera, Hydraenidae, Ochthebiinae) inhabiting Mediterranean marine rock-pools. *Marine Biology*, **157**, 371–381.
- Arnol'di, L.V., Zherikhin, V.V., Nikritin, L.M., & Ponomarenko, A.G. (1991) *Mesozoic Cole*optera. Oxonian Press, New Dehli.
- Audisio, P., Trizzino, M., de Biase, A., Rossetti, G., Mancini, E., & Antonini, G. (2010) Molecular and morphological evidence of a new sibling species of *Calobius* (Coleoptera: Hydraenidae) of the *C. quadricollis* complex from peninsular Italy. *Italian Journal of Zoology*, **77**, 29–37.
- Bameul, F. (1989) Redéfinition des *Meropathus* Enderlein, 1901 des archipels subantarctiques de l'Océan Indien, et notes sur les autres espèces et la biogéographie du genre (Coleoptera, Hydraenidae). *Nouvelle Revue d'Entomologie (N.S.)*, 6, 219–229.
- Beutel, R.G., Anton, E., & Jäch, M.A. (2003) On the evolution of adult head structures and the phylogeny of Hydraenidae (Coleoptera, Staphyliniformia). *Journal of Zoological Systematics and Evolutionary Research*, **41**, 256–275.
- Champion, G. C. (1920) Some Indian Coleoptera (3). *Entomologist's Monthly Magazine*, **56**, 165–175.
- Chenu, J. (1851) *Encyclopedie d'Histoire naturelle*. Coleoptera I. 312 pp., 12 + 28 pl. Maresq et Co., Paris.
- Cieslak, A., Fresneda, J., & Ribera, I. (2014) Life-history specialization was not an evolutionary dead-end in Pyrenean cave beetles. *Proceedings of the Royal Society B, Biological Sciences*, 281, 20132978.
- Deane, C. (1931) Australian Hydrophilidae; notes and new species. Proceedings of the

Royal Society of Victoria, 43, 166–176.

- Deane, C. (1937) [Descriptions of two new species of beetles] *In*: Melhuish, C. A. & Deane,C. Victorian Cave Pools. *Victorian Naturalist*, **54**, 56–59.
- Delgado, J. A., & Jäch, M. A. (2009) Revision of the Palearctic species of the genus Ochthebius Leach XXVII. Revisional notes on the O. (s. str.) foveolatus subgroup (Coleoptera: Hydraenidae). Koleopterologische Rundschau, **79**, 39–57.
- Drummond, A.J., & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. *BMC Evolutionary Biology*, **7**, 214.
- Hansen, M. (1991) A review of the genera of the beetle family Hydraenidae (Coleoptera). *Steenstrupia*, **17**, 1–52.
- Hansen, M., (1997) Phylogeny and classification of the staphyliniform beetle families (Coleoptera). *Biologiske Skrifter*, **48**, 1–339.
- Hansen, M. (1998) World Catalogue of Insects, Vol 1. Apollo Books, Stenstrup.
- Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003) Biological identifications through DNA barcodes. *Proceedings of the Royal Society B, Biological Sciences*, **270**, 313–321.
- Hernando, C., Villastrigo, A., & Ribera, I. (2017) A new species of *Micragasma* J. Sahlberg, 1900 (Coleoptera: Hydraenidae) from Crete. *Aquatic Insects*, **38**, 185-196.
- Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., John, O.S., Wild, R., Hammond, P.M., Ahrens, D., Balke, M., Caterino, M.S., Gómez-Zurita, J., Ribera, I., Barraclough, T.G., Bocakova, M., Bocak, L., & Vogler, A.P. (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. *Science*, **318**, 1913–1916.
- Jäch, M.A. (1989a) Revision of the palearctic species of the genus *Ochthebius* Leach. III. The *metallescens*-group (Hydraenidae, Coleoptera). *Linzer Biologische Beiträge*, **21**, 351–390.
- Jäch, M. A. (1989b) New and little known Himalayan species of the genus *Ochthebius* Leach (Coleoptera, Hydraenidae). *Acta Coleopterologica*, **1**, 15–20.
- Jäch, M. A. (1989c) Revision of the Palearctic species of the genus *Ochthebius* Leach. I. The so-called subgenus "*Bothochius*." *Koleopterologische Rundschau*, **59**, 95–126.
- Jäch, M. A. (1990a) Revision of the Palearctic species of the genus *Ochthebius* Leach. V. The subgenus *Asiobates* (Coleoptera: Hydraenidae). *Koleopterologische Rundschau*, 60, 37–105.
- Jäch, M.A. (1990b) Revision of the Palearctic species of the genus *Ochthebius* Leach. IV. The *lobicollis* group. *Entomologische Blätter*, **86**, 26–40.

- Jäch, M.A. (1991) Revision of the Palearctic species of the genus *Ochthebius* VII. The *foveolatus* group (Coleoptera: Hydraenidae). *Koleopterologische Rundschau*, **61**, 61–94.
- Jäch, M.A. (1992a) Revision of the Palearctic species of the genus Ochthebius Leach, 1815. IX. The andraei and notabilis species groups (Coleoptera, Hydraenidae). Nachrichtenblatt der Bayerischen Entomologen, 41, 7–21.
- Jäch, M.A. (1992b) Revision of the Palearctic species of the genus Ochthebius Leach. VI. The marinus group (Hydraenidae, Coleoptera). Entomologica Basiliensia, 14, 101– 145.
- Jäch, M.A. (1992c) Revision of the Palearctic species of the genus Ochthebius Leach X. The punctatus species group (Hydraenidae: Coleoptera). Bulletin et Annales de la Société royale belge d'entomologie, **128**, 167–195.
- Jäch, M.A. (1993) Revision of the Palaearctic species of the genus Ochthebius XI. The subgenus Calobius Wollaston, 1854 (Insecta: Coleoptera: Hydraenidae). Reichenbachia, 30, 4–7.
- Jäch, M. A. (1994) Revision der paläarktischen Arten der Gattung Ochthebius Leach. XIII. Beschreibung neuer Arten aus Spanien, der Türkei, Rußland und China (Insecta: Coleoptera: Hydraenidae). Annalen des Naturhistorischen Museums in Wien, Serie B., 96, 199–208.
- Jäch, M.A. (1997a) Synopsis of the genus *Micragasma* Sahlberg, 1900 (Insecta: Coleoptera: Hydraenidae). *Annalen des Naturhistorischen Museums in Wien*, Serie B., 99, 313–318.
- Jäch, M. A. (1997b) Notes on Asian Ochthebiinae (Insecta: Coleoptera: Hydraenidae). *An*nalen des Naturhistorischen Museums in Wien, Serie B., **99**, 303–312.
- Jäch, M. A. (1998) Hydraenidae: II. The Taiwanese and Japanese species of Ochthebius Leach (Coleoptera). Water Beetles of China, Vol. II (ed. by M.A. Jäch and L. Ji), pp. 173–193. Zoologisch-Botanische Gesellschaft in Österreich and Wiener Coleopterologenverein, Wien.
- Jäch, M. A. (1999) Revision of the Palearctic species of the genus Ochthebius Leach (Coleoptera: Hydraenidae) XVI. Additional notes on the metallescens group. Koleopterologische Rundschau, 69, 83–98.
- Jäch, M. A. (2001a) *Ochthebius* s. str. Leach in Indonesia and Australia (Coleoptera: Hydraenidae). *Koleopterologische Rundschau*, **71**, 101–104.
- Jäch, M. A. (2001b) Revision of the Palearctic species of the genus Ochthebius XVIII. The European species of the O. semisericeus complex (Coleoptera: Hydraenidae). Entomological Problems, 32, 45–53.

- Jäch, M. A. (2002) Revision of the Palearctic species of the genus Ochthebius Leach XXI. Taxonomic notes on the O. andraei species group (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 72, 159–160.
- Jäch, M.A. (2003) Hydraenidae: II. Synopsis of *Ochthebius* Leach from Mainland China, with descriptions of 23 new species (Coleoptera). *Water Beetles of China,* Vol. III (ed. by M.A. Jäch and L. Ji), pp. 313–369. Zoologisch-Botanische Gesellschaft in Österreich and Wiener Coleopterologenverein, Wien.
- Jäch, M.A. & Balke, M. (2008) Global diversity of water beetles (Coleoptera) in freshwater. *Hydrobiologia*, **595**, 419–442.
- Jäch, M. A., & Delgado, J. A. (2008) Revision of the Palearctic species of the genus Ochthebius Leach XXV. The superspecies O. (s.str.) viridis Peyron and its allies (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 78, 199–231.
- Jäch, M. A., & Delgado, J. A. (2010) Order Coleoptera, family Hydraenidae. *Arthropod Fauna of the UAE* (ed. A, A, van Harten), p. 700. Vol. **3**, pp. 173–194. Multiply Marketing Consultancy Services, Abu Dhabi.
- Jäch, M. A., & Delgado, J. A. (2014a) Order Coleoptera, family Hydraenidae. An update of the hydraenid fauna of the United Arab Emirates. *Arthropod Fauna of the UAE* (ed. A, A, van Harten), Vol. 5, pp II + [1] + 744.Department of The President's Affairs, Abu Dhabi.
- Jäch, M.A., & Delgado, J.A. (2014b) Revision of the Palearctic species of the genus Ochthebius Leach XXIX . The Asian species of the O. vandykei group (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 84, 81–100.
- Jäch, M. A., & Delgado, J. A. (2017a) Revision of the Palearctic species of the genus Ochthebius Leach, 1835 XXXIII. Ochthebius (Cobalius) biltoni sp.n. from Sicily (Italy). Koleopterologische Rundschau, 87, 85–88.
- Jäch, M. A., & Delgado, J. A. (2017b) Hydraenidae of Djibouti, with description of two new species (Coleoptera: Hydraenidae). *Koleopterologische Rundschau*, **87**, 51–84.
- Jäch, M.A., Díaz, J.A. (2003) Hydraenidae: I. *Edaphobates puetzi* gen. et sp. n. from Sichuan (Coleoptera). *Water Beetles of China,* Vol. III (ed. by M.A. Jäch and L. Ji), pp. 301–311. Zoologisch-Botanische Gesellschaft in Österreich and Wiener Coleopterologenverein, Wien.
- Jäch, M.A., Díaz, J.A. (2004) *Ginkgoscia relicta* gen.n. et sp.n. from China (Coleoptera: Hydraenidae). *Koleopterologische Rundschau*, **74**, 279–286.
- Jäch, M.A. & Ribera, I. (2018) *Angiochthebius* subg. n., a new subgenus of *Ochthebius* Leach, 1815 from the southern Neotropical Region (Coleoptera: Hydraenidae). *Kole-*

opterologische Rundschau, 88.

- Jäch, M. A., & Skale, A. (2015) Family Hydraenidae. Catalogue of Palaearctic Coleoptera. Volume 1, Revised and updated edition. Hydrophiloidea–Staphylinoidea (ed. by I. Löbl and D. Löbl), pp. 130–162. Brill, Leiden.
- Jäch, M.A., Ribera, I., Aguilera, P. (1998). Revision of the Palearctic species of the genus Ochthebius Leach XXI (Coleoptera: Hydraenidae) XV. Additional notes on the *lobicollis* group. Aquatic Insects, **20**, 197–202.
- Jäch, M.A., Beutel, R.G., Delgado, J.A. & Díaz, J.A. (2016) 14.1 Hydraenidae Mulsant, 1844. Handbook of Zoology. Arthropoda: Insecta. Coleoptera, Beetles: Morphology and Systematics, 2nd edn, Vol. 1 (ed. by R.G. Beutel and R.A.B. Leschen), pp. 316– 345. Walter de Gruyter, Berlin.
- Janssens, E. (1967) Sur quelques Hydraenidae de la faune Australe. *Bulletin de l'Institut Royal Des Sciences Naturelles de Belgique*, **43**, 1–13.
- Jeannel R. (1940) Coléoptères. *Croisiere du Bougainville aux iles australes françaises* (ed. by R. Jeannel), pp. 63–202. Mémoires du Muséum National d'histoire naturelle, nouvelle series, Paris.
- Katoh, K., Asimenos, G., & Toh, H. (2009) Multiple Alignment of DNA Sequences with MAFFT. *Methods in Molecular Biology*, **537**, 39–64.
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics*, 28, 1647–1649.
- Knisch, A. (1924) Neue neotropische Palpicornier (Col. Hydrophilidae. Op. 16.). *Wiener Entomologische Zeitung*, **41**, 114–140.
- Kuwert, A. (1887) Übersicht der europäischen *Ochthebius*-Arten. *Deutsche Entomologische Zeitschrift*, **31**, 369–401.
- Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012) PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology and Evolution*, **29**, 1695–1701.
- Lawrence, J.F., Ślipiński, A., Seago, A.E., Thayer, M.K., Newton, A.F. & Marvaldi, A.E. (2011) Phylogeny of the Coleoptera based on morphological characters of adults and larvae. *Annales Zoologici*, **61**, 1–217.
- Leach, W. E. (1815) Entomology. *The Edinburgh Encyclopaedia* (ed. by D. Brewster), pp. 57–172. Balfour, Edimburgh.

- McIntyre, S. R. N., Lineweaver, C. H., Groves, C. P., & Chopra, A. (2017) Global biogeography since Pangaea. *Proceedings of the Royal Society B, Biological Sciences*, 284, 20170716.
- McKenna, D.D., Wild, A.L., Kanda, K., Bellamy, C.L., Beutel, R.G., Caterino, M.S., Farnum, C.W., Hawks, D.C., Ivie, M.A., Jameson, M.L., Leschen, R.A.B., Marvaldi, A.E., McHugh, J. V., Newton, A.F., Robertson, J.A., Thayer, M.K., Whiting, M.F., Lawrence, J.F., Ślipiński, A., Maddison, D.R. & Farrell, B.D. (2015) The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. *Systematic Entomology*, **40**, 835–880.
- Millán, A., Velasco, J., Gutiérrez-Cánovas, C., Arribas, P., Picazo, F., Sánchez-Fernández,
 D. & Abellán, P. (2011) Mediterranean saline streams in southeast Spain: What do we know? *Journal of Arid Environments*, **75**, 1352–1359.
- Miller, M.A., Pfeiffer, W., & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. *Proceedings of the Gateway Computing Environments Workshop (GCE)*. New Orleans, Louisiana, 14 November 2010, pp. 1–8.
- Orchymont, A. d' (1938) Voyage de M. E. Aubert de la Roe aux iles Kerguelen: Palpicornia. *Revue française d'entomologie*, **5**, 78–91.
- Orchymont, A. d' (1943) Faune du Nord-Est Bresilien (récoltes du Dr. O. Schubart). Palpicornia. *Mémoires du Musée royal d'Histoire naturelle de Belgique (2)*, **28**, 1–85.
- Orchymont, A. d' (1948) Mission scientifique de l'Omo. Coleoptera XV. Hydraenidae. *Mémoires du Muséum national d'histoire naturelle, Paris (nouvelle series)*, **27**, 29–62.
- Papadopoulou, A., Anastasiou, I., & Vogler, A.P. (2010) Revisiting the insect mitochondrial molecular clock: The mid-aegean trench calibration. *Molecular Biology and Evolution*, 27, 1659–1672.
- Perkins, P.D. (1980) Aquatic beetles of the family Hydraenidae in the western hemisphere: Classification, biogeography and inferred phylogeny. *Quaestiones Entomologicae*, **16**, 3–554.
- Perkins, P. D. (1981) *Hughleechia giulianii*, a new genus and new species of intertidal beetle from Australia (Coleoptera: Hydraenidae). *Pan-Pacific Entomologist*, **57**, 295–302.
- Perkins, P.D. (1997) Life on the effective bubble: exocrine secretion delivery systems (ESDS) and the evolution and classification of beetles in the family Hydraenidae (Insecta: Coleoptera). Annals of the Carnegie Museum, 66, 89–207.
- Perkins, P. D. (1998) New Nepalese *Protochthebius*, and comparative notes on the genus (Coleoptera: Hydraenidae). *Oriental Insects*, **32**, 279–285.
- Perkins, P. D. (2004a) A revision of the Australian endemic humicolous beetle genus Tym-

pallopatrum Perkins (Coleoptera: Hydraenidae). Zootaxa, 672, 1–16.

- Perkins, P. D. (2004b) A revision of the Australian endemic water beetle genus *Gymnanthelius* Perkins (Coleoptera: Hydraenidae). *Zootaxa*, **585**, 1–39.
- Perkins, P. D. (2005). A revision of the water beetle genus *Gymnochthebius* Orchymont (Coleoptera: Hydraenidae) for Australia and Papua New Guinea. *Zootaxa*, **1024**, 1-161.
- Perkins, P. D. (2006) A revision of the Australian humicolous and hygropetric water beetle genus *Tympanogaster* Perkins, and comparative morphology of the Meropathina (Coleoptera: Hydraenidae). *Zootaxa*, **1346**, 1-396.
- Perkins, P. D. (2007a) A revision of the Australian intertidal water beetle genus *Hughleechia* Perkins (Coleoptera: Hydraenidae). *Zootaxa*, **1527**, 17–29.
- Perkins, P. D. (2007b) A review of the coastal marsh water beetle *Ochthebius queenslandicus* Hansen (Coleoptera: Hydraenidae). *Zootaxa*, **1625**, 35–42.
- Perkins, P.D. (2011) New species and new collection records of aquatic beetles in the genus *Ochthebius* Leach from southern Africa (Coleoptera: Hydraenidae). *Zootaxa*, **3093**, 1–34.
- Perkins, P. D. (2017) Hydraenidae of Madagascar (Insecta: Coleoptera). *Zootaxa*, **4342**, 1–264.
- Perkins, P.D. (2018) A new genus and new species of Meropathina from Lord Howe Island (Coleoptera: Hydraenidae). *Zootaxa*, **4444**, 409-420.
- Perkins, P.D., & Balfour-Browne, J. (1994) A contribution to the taxonomy of aquatic and humicolous beetles of the family Hydraenidae in Southern Africa. *Fieldiana Zoology*, 77, 1–159.
- Ponomarenko, A.G., & Prokin, A.A. (2015) Review of paleontological data on the evolution of aquatic beetles (Coleoptera). *Paleontological Journal*, **49**, 1383–1412.
- Reitter, E. (1886) Über die *Ochthebius*-Arten aus der Gruppe des *O. Lejolisii* Muls. *Wiener Entomologische Zeitung*, **5**, 156-157.
- Rey, C. (1886) Histoire naturelle des coléoptères de France (suite). *Annales de la Société Linnéenne de Lyon*, **32**, 1–187.
- Ribera, I., Castro, A. & Hernando, C. (2010) Ochthebius (Enicocerus) aguilerai sp.n. from central Spain, with a molecular phylogeny of the Western Palaearctic species of Enicocerus (Coleoptera, Hydraenidae). Zootaxa, 2351, 1–13.
- Rudoy, A., Beutel, R.G. & Ribera, I. (2016) Evolution of the male genitalia in the genus Limnebius Leach, 1815 (Coleoptera, Hydraenidae). Zoological Journal of the Linnean Society, **178**, 97–127.

- Sabatelli, S., Audisio, P., Antonini, G., Solano, E., Martinoli, A. & Trizzino, M. (2016) Molecular ecology and phylogenetics of the water beetle genus *Ochthebius* revealed multiple independent shifts to marine rockpools lifestyle. *Zoologica Scripta*, **45**, 175–186.
- Sahlberg, J. (1900) Coleoptera mediterranea et rosso-asiatica nova et minus cognita. *Öfversigt af Finska Vetenskaps-Societetens Förhandlingar*, **42**, 174–208.
- Seidlitz, G.K.M. von (1875). *Fauna Baltica. Die Käfer (Coleoptera) der Ostseeprovinzen Russlands*. H. Laakmann, Dorpat [Tartu].
- Skale, A., & Jäch, M. A. (2009). Revision of the Palearctic species of the genus Ochthebius Leach (Insecta: Coleoptera: Hydraenidae) XXVI. A new species of Enicocerus Stephens from Iran. Annalen des Naturhistorischen Museums in Wien, Serie B., 110, 51–56.
- Stamatakis, A. (2006). RAxML-VI-HPC: Maximum Likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics*, **22**, 2688–2690.
- Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAx-ML web servers. *Systematic Biology*, **57**, 758–771.
- Toussaint, E.F.A., Seidel, M., Arriaga-Varela, E., Hájek, J., Král, D., Sekerka, L., Short, A.E.Z., & Fikáček, M. (2017) The peril of dating beetles. *Systematic Entomology*, **42**, 1–10.
- Trizzino, M., Jäch, M.A., Audisio, P., Alonso, R. & Ribera, I. (2013) A molecular phylogeny of the cosmopolitan hyperdiverse genus *Hydraena* Kugelann (Coleoptera, Hydraenidae). *Systematic Entomology*, **38**, 192–208.
- Urbanelli, S., & Porretta, D. (2008) Evidence of reinforcement of premating isolation between two species of the genus *Ochthebius* (Coleoptera: Hydraenidae). *Evolution*, 62, 1520–1527.
- Yamamoto, S., Jäch, M.A., & Takahashi, Y. (2017) Discovery of the first hydraenid beetle in amber, with description of a new genus and species (Coleoptera: Staphylinoidea: Hydraenidae). *Cretaceous Research*, **78**, 27–33.
- Yoshitomi, H., & Satô, M. (2001) Discovery of the genus Ochthebius Leach from the Ryukyu Islands, with description of a new species (Coleoptera: Hydraenidae). *Koleopterologische Rundschau*, **71**, 105–110.
- Zhang, S.-Q., Che, L.-H., Li, Y., Liang, D., Pang, H., Ślipiński, A., & Zhang, P. (2018) Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. *Nature Communications*, **9**, 205.

Supporting Information

Table S1. Checklist of the species of Ochthebiini, with the current (following Jäch & Skale, 2015 and Jäch *et al.*, 2016) and new classifications. In bold, type species. phyl, species included in the phylogeny (in brackets, species for which the sequenced specimen was a female). Distribution: PAL, Palaearctic; AFR, Afrotropical; AUR, Australia; NAR, Nearctic; NTR, Neotropical; ORR, Oriental; ANR, Antarctic. In brackets, specimens considered to have a Palaearctic distribution in Jäch & Skale (2015), but including the Oriental or Afrotropical Regions in Hansen (1998).

Table S2. Current classification of Ochthebiini, with synonymies and type species (followingJäch & Skale, 2015 and Jäch *et al.*, 2016). In bold, taxa included in the phylogeny.

Table S3. List of material used in the molecular phylogeny, including voucher numbers, accession numbers of the sequences and locality data. In bold, newly obtained sequences.

Table S4. (A) primers used for DNA amplification and sequencing reactions; (B) Typical conditions for the polymerase chain reaction.

Fig. S1. Majority rule consensus tree obtained with BEAST for the phylogeny of Ochthebiini with the best partition models. Numbers in nodes, posterior probabilities.

Fig. S2. Phylogeny obtained with RAxML, including current Ochthebiini classification. Numbers in nodes, bootstrap support values.

Fig. S3. Phylogeny obtained with RAxML with the nuclear genes only. Numbers in nodes, bootstrap support values.

New classification	mono actoria		e uhenooloo		annon original anno anno	current classifica	tion	aho	A IAI buda	
1 Marchathus	Inn ifi cainade	u species		trolich 1071		gerus Maronathue	enliafiche	OUS.		
2 Maronathus		camballansis		ruokes 1951	Meropaulus	Meronathus				< ×
3 Meropathus		chuni	υ	nderlein. 1901	Meropathus	Meropathus				×
4 Meropathus		johnsi	0	Irdish, 1971	Meropathus	Meropathus				×
5 Meropathus		labratus		leane, 1933	Ochthebius	Meropathus				×
6 Meropathus		randi	ŗ	eannel, 1953	Meropathus	Meropathus			×	
7 Meropathus		vectis	₫.	verkins, 1980	Meropathus	Meropathus				×
8 Meropathus		zelandicus	0	Drdish, 1984	Meropathus	Meropathus			-	×
9 Ochthebius Angiochthebius	6	jensenhaarupi	×	nisch, 1924,	Ochthebius	Gymnochthebius				×
10 Ochthebius Angiochthebius	(octonarius	۵.	erkins, 1980	Gymnochthebius	Gymnochthebius				×
11 Ochthebius Angiochthebius	(0)	plesiotypus	۵.	rkins, 1980	Gymnochthebius	Gymnochthebius			-	×
12 Ochthebius Asiobates	bicolon	abeillei	U	Suillebeae, 1896	Ochthebius	Ochthebius	Asiobates		×	
13 Ochthebius Asiobates	bicolon	amplicollis	U	champion, 1925	Ochthebius	Ochthebius	Asiobates		×	
14 Ochthebius Asiobates	bicolon	annae	ш	erro, 1979	Ochthebius	Ochthebius	Asiobates		×	
15 Ochthebius Asiobates	bicolon	arator	ш	ittorun & Jäch, 2014	Ochthebius	Ochthebius	Asiobates		+ ×	
16 Ochthebius Asiobates	bicolon	atricapillus	Ľ	Reitter, 1901	Ochthebius	Ochthebius	Asiobates		×	
17 Ochthebius Asiobates	bicolon	auriculatus	Ľ	tey, 1886	Ochthebius	Ochthebius	Asiobates		- ×	
18 Ochthebius Asiobates	bicolon	avdati)elgado & Jäch, 2007	Ochthebius	Ochthebius	Asiobates			
19 Ochthebius Asiobates	bicolon	bellein	×	uwert, 1887	Ochthebius	Ochthebius	Asiobates		-	
20 Ochthebius Asiobates	bicolon	bicolon		sermar, 1824	Ochthebius	Ochthebius	Asiobates		+	
21 Ochthebius Asiobates	bicolon	bonnairei		suillebeau, 1896	Ochthebius	Ochthebius	Asiobates		- × :	
22 Ochthebius Asiobates	bicolon	cantabricus		alfour-Browne, 1979	Ochthebius	Ochthebius	Asiobates		×	
23 Ochthebius Asiobates	bicolon	corcyraeus	-; (äch, 1990	Ochthebius	Ochthebius	Asiobates		× :	
24 Ochthebius Asiobates	bicolon	corsicus	<i>i n</i> :	saint-Claire Deville, 1908	Ochthebius	Ochthebius	Asiobates		× ;	
25 Ochthebius Asiobates	bicolon	crenulatus	2 :	Julsant & Hey, 1850	Ochthebius	Ochthebius	Asiobates		- × :	
26 Ochthebius Asiobates	bicolon	cyprensis	¥ 1	uwert, 1890	Ochthebius	Ochthebius	Asiobates		×÷	
27 Ochthebius Asiobates	bicolon	cyrenaeus	ш :	erro, 1985	Ochthebius	Ochthebius	Asiobates		××	
28 Ochthebius Asiobates	picolon	czwalinae	~ (uwert, 1887	Ochthebius	Ochthebius	Asiobates		×	
29 Ocntheblus Aslobates	bicolon	depressus	nŭ	aniberg, 1900		Ochthebius	Asiobates		< > ,	
31 Ochthebius Asiobates	hicolon	dilucidue	9 C	irchumont 1040	Och#ohins	Ochthebius	Asiobates		-	
32 Ophthobius Asiobates	hicolon	formanaria	<u>-</u> ر	Sch 1000	Ochhobius	Ochthobius	Aciohates		< >	
32 Ochthabius Asiobates 33 Ochthabius Asiobates	hirolon	ferroi	<u>,</u> ц	acii, 1990 respeda ager & Hernando 1903	Ochthebius	Ochthebius	Asiobates		<	
34 Ochthobius Asiobates	hicolon	fiction	_ 0	testeua, Lagar & Herrianuo, 1990 terrido Velladares & Dónil 1000	Ochthobius	Ochthobius	Asiobates		- +	
35 Ochthehius Asiobates	hicolon	flacellifer	, <u>-</u>	annoo, vanadares a meglii, 1992 äch 2003	Ochthebius	Ochthebins	Asinhates		-	
36 Ochthebius Asiobates	bicolon	aadiardii	. 0	hrchvmont. 1940	Ochthebius	Ochthebius	Asiobates		: ×	
37 Ochthebius Asiobates	bicolon	haberfelneri	Υ Υ	eitter, 1890	Ochthebius	Ochthebius	Asiobates		×	
38 Ochthebius Asiobates	bicolon	haelii	Ľ	erro, 1983	Ochthebius	Ochthebius	Asiobates		×	
39 Ochthebius Asiobates	bicolon	heydeni	×	uwert, 1887	Ochthebius	Ochthebius	Asiobates		۲ ×	
40 Ochthebius Asiobates	bicolon	hyblaemajoris	Ľ	erro, 1986	Ochthebius	Ochthebius	Asiobates		×	
41 Ochthebius Asiobates	bicolon	immaculatus	Ξ	freit, 1908	Ochthebius	Ochthebius	Asiobates		۲ ×	
42 Ochthebius Asiobates	bicolon	impressipennis	α I	tey, 1886	Ochthebius	Ochthebius	Asiobates		× :	
43 Ochthebius Asiobates	bicolon	irenae	ш:	Ribera & Millán, 1999	Ochthebius	Ochthebius	Asiobates		- × :	
44 Ochthebius Asiobates	bicolon	italicus	-j (ach, 1990	Ochthebius	Ochthebius	Asiobates		×	
45 Ochthebius Asiobates	picolon	jaimei		Jelgado & Jach, 2007	Ochthebius	Ochthebius	Asiobates		- -	
40 Ochthebius Aslobates	bicolon	kaninensis	L -	oppius, 1909	Ochthebius	Ochthebius	Asiobates		< >	
48 Ochthebius Asiobates	hicolon	kiesenwetteri	• ×	ansens, 1974 Inwert, 1887	Ochthebius	Ochthebius	Asinhates		<	
49 Ochthebius Asiobates	bicolon	laevisculptus		eitter. 1901	Ochthebius	Ochthebius	Asiobates		: ×	
50 Ochthebius Asiobates	bicolon	laticullos		ankow, 1986	Ochthebius	Ochthebius	Asiobates		×	
51 Ochthebius Asiobates	bicolon	lederi	ŗ	äch, 1990	Ochthebius	Ochthebius	Asiobates		۲ ×	
52 Ochthebius Asiobates	bicolon	lenkoranus	R	teitter, 1885	Ochthebius	Ochthebius	Asiobates		۲	
53 Ochthebius Asiobates	bicolon	limbicollis	Υ Υ	ceitter, 1885	Ochthebius	Ochthebius	Asiobates		×	
54 Ochthebius Asiobates	bicolon	maculatus	ur i	Reiche, 1872	Ochthebius	Ochthebius	Asiobates		× ×	
00 Ocilinerius horono	nuoni	IIInnanuo	-	HVAIUSZNY, 1001	CALIFICATION	OUNIEUUO	Asionatas		-	a the next of the next of

Table S1: (Continue	(þ								
New classification No genus	subgenus	species gron	ID species	subspecies	author	taxonomic act original genus	current classifi genus	cation subgenus obs.	phyl. PAL AFR AUR NAR NTR ORR ANR
56 Ochthebius	Asiobates	bicolon	monychus		Orchymont, 1941	Ochthebius	Ochthebius	Asiobates	×
57 Ochthebius	Asiobates	biclon	naxianus		leniștea, 1988	Asiobates	Ochthebius	Asiobates	×
58 Ochthebius	Asiobates	biclon	oezkani		Jäch, Kasapoğlu & Erman, 2003	Ochthebius	Ochthebius	Asiobates	×
59 Ochthebius	Asiobates	biclon	olicinium		Jäch, 1990	Ochthebius	Ochthebius	Asiobates	× :
60 Ochthebius	Asiobates	biclon	opacus		Baudi, 1882	Ochthebius	Ochthebius	Asiobates	×
61 Ochthebius	Asiobates	biclon	beregrnus		Orchymont, 1941	Ochthebius	Ochthebius	Asiobates	× +
62 Ochthebius	Asiobates	biclon	perkinsi		Pankow, 1986	Ochthebius	Ocnthebius	Asiobates	< >
6.4 Ochthebius	Asiobates	bicion	pur		Perkins, 1979 15ch 1000	Ochthobius	Ochthebius	Asiobates	< >
64 Ochthabius	Asiobates	hiclon	liiedivii		Jach, 1990 18ch 1000	Ochthebius	Ochthebius	Asiobates	< >
66 Ochthabius	Asinhates	hiclon	striatus		Castelnau 1840	Hudraena	Ochthehius	Asinhates	< ~
67 Ochthabius	Aciohatac	hictor	otratuo etratio		Orchymont 1937	Ochthehine Ochthehine	Ochthabius	Aciohatas	
68 Ochthabius	Asinhates	hicton	siyyialis subonacris		Cluriymuri, 1937 Reitter 1885	Ochthebius	Ochthebius	Asiobates	< >
60 Ochthabius	Asinhatas	hiclon	tadilatus		18ch 1000	Ochthabius	Ochthebius	Asinhatas	< >
70 Ochthabius	Asinhatas	hiclon	thraciae		Jach 1000	Ochthebius	Ochthabius	Asiobates	< >
71 Ochthebius	Asinhates	hiclon	turcmeniae		Jäch 1990	Ochthehius	Ochthehius	Asinhates	< ×
72 Ochthehius	Asinhates	minimus	adventicius		Jäch 1990	Ochthehius	Ochthehius	Asinhates	: ×
73 Ochthebius	Asiohates	minimus	aeneus		Stephens. 1835	Ochthebius	Ochthebius	Asiobates	~ ~
74 Ochthebius	Asiobates	minimus	akbuluti		Jäch. Kasapoğlu & Erman. 2003	Ochthebius	Ochthebius	Asiobates	: ×
75 Ochthebius	Asiobates	minimus	alpinus		lenistea. 1988	Homalochthebius	Ochthebius	Asiobates	: ×
76 Ochthebius	Asiobates	minimus	andreinii	andreinii	Réqimbart, 1905	Ochthebius	Ochthebius	Asiobates	۲ ×
77 Ochthebius	Asiobates	minimus	andreinii	andriscus	Orchymont, 1948	Ochthebius	Ochthebius	Asiobates	×
78 Ochthebius	Asiobates	minimus	andreinii	androsthenus	Orchymont, 1948	Ochthebius	Ochthebius	Asiobates	×
79 Ochthebius	Asiobates	minimus	andronius		Orchymont, 1948	Ochthebius	Ochthebius	Asiobates	۲ ×
80 Ochthebius	Asiobates	minimus	apache		Perkins, 1980	Ochthebius	Ochthebius	Asiobates	X X
81 Ochthebius	Asiobates	minimus	apicalis		Sharp, 1882	Ochthebius	Ochthebius	Asiobates	×
82 Ochthebius	Asiobates	minimus	brevipennis		Perkins, 1980	Ochthebius	Ochthebius	Asiobates	×
83 Ochthebius	Asiobates	minimus	browni		Perkins, 1980	Ochthebius	Ochthebius	Asiobates	×
84 Ochthebius	Asiobates	minimus	pupunctus		Perkins, 2011	Ochthebius	Ochthebius	Asiobates	×
85 Ochthebius	Asiobates	minimus	coomani		Orchymont, 1925	Ochthebius	Ochthebius	Asiobates	×
86 Ochthebius	Asiobates	minimus	cribricollis		LeConte, 1850	Ochthebius	Ochthebius	Asiobates	×
87 Ochthebius	Asiobates	minimus	discretus		LeConte, 1878	Ochthebius	Ochthebius	Asiobates	1 X X
88 Ochthebius	Asiobates	minimus	flavipes		Dalla Torre, 1877	Ochthebius	Ochthebius	Asiobates	7 X
89 Ochthebius	Asiobates	minimus	formosanus		Jäch, 1998	Ochthebius	Ochthebius	Asiobates	×
90 Ochthebius	Asiobates	minimus	furcatus		Pu, 1958	Ochthebius	Ochthebius	Asiobates	× :
91 Ocnthebius	Asiobates	snuuuu	nebaueri		Jach, 1983	Contrebius	Ochthebius	Asiobates	~
9.2 Ocnthebius	Asiobates	snuuuu	nibernus		Perkins, 1980	Contrieblus	Ochthebius	Asiobates	~
93 Ochthebius	Asiobates	snuuuu	nokkaidensis		Jach, 1998		Ochthebius	Asiobates	<
94 Octilitebius 06 Ochthabius	Asiobates	minimus	hungancus		Endroug-1001198, 1307	Ochthebius Ochthebius	Ochthebius	Asiobates	< >
96 Ochthebius	Asinhates	minimus	mexicanus		Perkins 1980	Ochthehius	Ochthehius	Asiobates	~
97 Ochthebius	Asiobates	minimus	mimicus		Brown, 1933	Ochthebius	Ochthebius	Asiobates	: ×
98 Ochthebius	Asiobates	minimus	minervus	minervus	Orchymont, 1940	Ochthebius	Ochthebius	Asiobates	×
99 Ochthebius	Asiobates	minimus	minervus	semechonitis	Jäch, 1998	Ochthebius	Ochthebius	Asiobates	×
100 Ochthebius	Asiobates	minimus	minimus		Fabricius, 1792	Helophorus	Ochthebius	Asiobates	1 X
101 Ochthebius	Asiobates	minimus	monticola		Orchymont, 1948	Ochthebius	Ochthebius	Asiobates	×
102 Ochthebius	Asiobates	minimus	nonaginta		Jäch, 1998	Ochthebius	Ochthebius	Asiobates	×
103 Ochthebius	Asiobates	minimus	orbus		Perkins, 1980	Ochthebius	Ochthebius	Asiobates	×
104 Ochthebius	Asiobates	snuiuiu	otavalensis		Anderson, 1983	Ochthebius	Ochthebius	Asiobates	×
1 06 Ochthebius	Asiobates	minimus	peraurus		Keitter, 1899 18ch 1000	Ochthobius	Ochthebius	Asiobates	< >
107 Ochthabius	Asiobates	minimus	piigiriskiyi piithamaneie		Jacri, 1990 Bistohlev, 1010	Ochthebius	Ochthebius	Asiobates	~
108 Ochthebius	Asinhates	minimus	recimbarti		blatchiney, 1910 Knisch 1924	Ochthebius	Ochthebius	Asinhates	< ×
109 Ochthebius	Asiobates	minimus	remotus		Reitter, 1885	Ochthebius	Ochthebius	Asiobates	1 × 5
110 Ochthebius	Asiobates	minimus	reticulocostus		Perkins, 1980	Ochthebius	Ochthebius	Asiobates	×
111 Ochthebius	Asiobates	minimus	snsolugur		Wollaston, 1857	Ochthebius	Ochthebius	Asiobates	× +

New classification											
							current classificat	tion .			
112 Ochthebius Asiobates	species gro minimus	up species sanabrensis	supspecies	aumor Valladares & Jäch, 2008	taxonomic ac	Ochthebius	genus Ochthebius	Asiobates	005.	1 × http://www.http://	
113 Ochthebius Asiobates	minimus	similis		Sharp, 1882		Ochthebius	Ochthebius	Asiobates			× ×
114 Ochthebius Asiobates	minimus	unimaculatus		Pu, 1958		Ochthebius	Ochthebius	Asiobates		×	
115 Ochthebius Asiobates	minimus	yunnanensis		Orchymont, 1925		Ochthebius	Ochthebius	Asiobates		×	;
116 Ochthebius Asiobates	puncticollis	angularidus		Mined & Bouking 1078		Ochthebius Ochthebius	Ochthebius	Asiobates			× × >
111 Octimetius Asiobates 118 Ochthebius Asiobates	puncticollis	martini		WOOD & FEIKITIS, 1970 Fall 1010		Ochthebius	Ochthebius	Asiobates			< >
110 Octimebius Asiobates	puncticollis	nuntiollis		rall, 1919 LeConte 1852		Ochthebius	Ochthebius	Asiobates Asiohates		Ŧ	× × ×
120 Ochthebius Aulacochthe	shius	alienus		Orchymont, 1929		Ochthebius	Aulacochthebius	Noionates		- ×	<
121 Ochthebius Aulacochthe	spins	amrishi		Makhan, 2004		Ochthebius	Ochthebius	Ochthebius	possibly a synonym of O. asiaticus		×
122 Ochthebius Aulacochthe	sbius	asiaticus		Orchymont, 1929		Ochthebius	Aulacochthebius				×
123 Ochthebius Aulacochthe	sbius	continentalis		Orchymont, 1929		Ochthebius	Aulacochthebius			×	
124 Ochthebius Aulacochthe	sbius	densus		Orchymont, 1929		Ochthebius	Aulacochthebius				×
125 Ochthebius Aulacochthe	spins	exaratus		Mulsant, 1844		Ochthebius	Aulacochthebius			1 × ×	
126 Ochthebius Aulacochthe	ebius	hunanensis		Pu, 1958		Ochthebius	Aulacochthebius			×	
127 Ochthebius Aulacochthe	ebius	libertarius		Aguilera, Ribera & Hernando, 1998	comb.n.	Aulacochthebius	Aulacochthebius			۲ ×	
128 Ochthebius Aulacochthu	ebius	manipurensis		Orchymont, 1929		Ochthebius	Aulacochthebius			;	×
129 Ochthebius Aulacochthu	ebius	narentinus		Reitter, 1885		Ochthebius	Aulacochthebius			+ ×	
130 Ochthebius Aulacochthu	ebius	perlaevis		Perkins, 2017	comb.n.	Aulacochthebius	Aulacochthebius			- -	
131 Ocnthebius Aulacochth	snide	plicicollis		Fairmaire, 1898		Ochthebius	Aulacochthebius			<	
132 Ochthebius Aulacochins 133 Ochthebius Cobalius	snide	renupunctus	adviations	Regimitant, 1900 Patter 1886		Ochthebius	Aulacocrimenus Ochthehius	Ochthobius		< ,	
134 Ochthabius Coballus 134 Ochthabius Coballus		adriatious	auraticus	District, 1000 District, 1020		Ochthebius	Ochthabius	Ochthebius		< > -	
135 Ochthebius Cobalius		adriaticus	nleuralis	Reither 1886		Ochthebius	Ochthebius	Ochthehius		< ×	
136 Ochthebius Cobalius		algicola		Wollaston, 1871		Ochthebius	Ochthebius	Ochthebius		: ×	
137 Ochthebius Cobalius		balfourbrownei		Jäch, 1989		Ochthebius	Ochthebius	Ochthebius		×	
138 Ochthebius Cobalius		biltoni		Jäch & Delgado, 2017		Ochthebius	Ochthebius	Cobalius		×	
139 Ochthebius Cobalius		celatus		Jäch, 1989		Ochthebius	Ochthebius	Ochthebius		×	
140 Ochthebius Cobalius		freyi		Orchymont, 1940		Ochthebius	Ochthebius	Ochthebius			
141 Ochthebius Cobalius		lejolisii		Mulsant & Rey, 1861		Ochthebius	Ochthebius	Ochthebius		+ ·	
142 Ocnthebius Cobalius		serratus		Kosenhauer, 1856		Ocnthebius	Ochthebius	Ocnthebius		<	
144 Ochthabius Coulaius 144 Ochthabius Enimoranis		subineger annilarai		Ribera Castro & Hernando 2010		Ochthahius	Ochthabius	Enirocenis		<	
145 Ochthebius Enicocerus		albanicus		Orchymont, 1941		Ochthebius	Ochthebius	Enicocerus		: ×	
146 Ochthebius Enicocerus		anatolicus		Janssens, 1963		Ochthebius	Ochthebius	Enicocerus		×	
147 Ochthebius Enicocerus		angelinii		Ferro, 2008		Ochthebius	Ochthebius	Enicocerus		×	
148 Ochthebius Enicocerus		colveranus		Ferro, 1979		Ochthebius	Ochthebius	Enicocerus		×	
149 Ochthebius Enicocerus		delyi		Hebauer, 1990		Ochthebius	Ochthebius	Enicocerus		×	
150 Ochthebius Enicocerus		exsculptus		Germar, 1824		Ochthebius	Ochthebius	Enicocerus		+ ·	
151 Ocntrebius Enicocerus		snsoaalb		Germar, 1824		Ochthebius	Ochthebius	Enicocerus		<	
152 Ochthohius Enicocerus		granulatus holhhorri		Muisant, 1844 Doittor 1800		Ucntneblus	Ochthebius	Enicocerus		< >	
153 Ochthebius Enicocerus 154 Ochthebius Enicocerus		lacionancis		Heherier, 1090 Heherier & Velladeres Díez, 1985		Dohthahine Ochthahine	Ochthebius	Enicocerus		< >	
155 Ochthebius Enicocetus		melanescens		neuauer & valiauares Diez, 1900 Dalla Torre 1877		Ochthehius	Ochthebius	Enicocerus		<	
156 Ochthebius Enicocenus		montenearinus		Gandbauer, 1901		Ochthebius	Ochthebius	Enicocenus		< × -	
157 Ochthebius Enicocerus		saboorii		Skale & Jäch, 2009		Ochthebius	Ochthebius	Enicocerus		- F	
158 Ochthebius Enicocerus		sattmanni		Jäch, 1992		Ochthebius	Ochthebius	Enicocerus		×	
159 Ochthebius Enicocerus:	6	benefossus		LeConte, 1878		Ochthebius	Ochthebius	Enicocerus			×
160 Ochthebius Gymnanthe	lius	clypeatus		Deane, 1931		Ochthebius	Gymnanthelius				×
161 Ochthebius Gymnanthe	lius	cupreus		Deane, 1937		Ochthebius	Gymnanthelius				×
162 Ochthebius Gymnanthe	lius	hieroglyphicus		Deane, 1933		Ochthebius	Gymnanthelius				×
163 Ochthebius Gymnanthe	lius	lamingtonensis		Perkins, 2004	comb.n.	Gymnanthelius	Gymnanthelius				× >
164 Ochthebius Gymnanthei 165 Ochthebius Gymnanthei	lius	opacicollis		Perkins, 2004	comb.n.	Gymnanthelius	Gymnanthelius			.	< ×
166 Ochthebius Gymnanthe	lius	porchi		2001 in 1001	a dama	C-mantholine	Commented in a				: :
				PERKIDS. 2004	COLID.II.	GVTIIIAIIIIAIIUS	CVIIIIAIIIIAIIIIA			-	×

A molecular phylogeny of the tribe Ochthebiini (Coleoptera, Hydraenidae, Ochthebiinae)

							antitation of the second s				
No dentis stiftcation	species dr	seides und.	suhsherias	author	taxonomic a	of original games	current classification dentis	ohe	IAU IVAN	AFR ALLE NAR NTR ORR	ANP
168 Ochthobius Gumoohthob	ine anetmie	and aponeo	0000000000	Derkine 2005	comb n	Gumochthahine	Gumoohthehine				
	ins australis	anguionous		Planthum 4000	COLIDATI.	O -+++ -+:				< >	
109 Ocninebius Gymnochinet	ius australis	australis		DidCKDUIII, 1000		Octimentus	Gymnocmmebius		_	< >	
1.0 Ocninebius Gymnochinet	ius australis	Daccriusi			COTID.II.	aymnocmmenus	aymnocmmenus			< :	
1/1 Ocnthebius Gymnochthet	ius australis	penesculptus		Perkins, 2005	comb.n.	Gymnochtheblus	Gymnochthebius			×	
172 Ochthebius Gymnochthet	ius australis	brisbanensis		Blackburn, 1898		Ochthebius	Gymnochthebius			×	
173 Ochthebius Gymnochtheb	ius australis	clarki		Deane, 1931		Ochthebius	Gymnochthebius			×	
174 Ochthebius Gymnochtheb	ius australis	conscus		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
175 Ochthebius Gymnochtheb	ius australis	fontinalis		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
176 Ochthebius Gymnochtheb	ius australis	fumosus		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
177 Ochthebius Gymnochtheb	ius australis	hesperius		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
178 Ochthebius Gwmochtheb	ius australis	inlineatus		Perkins. 2005	comb.n.	Gvmnochthebius	Gvmnochthebius			×	
179 Ochthebius Gymnochtheb	ius australis	levis		Deane 1933		Ochthehius	Gumnochthehius			×	
180 Ochthabius Gumochthab	ine anetralie	linidue		Deane 1033		Ochthabius	Gumochthehine		÷	< >	
		SUDIVI			a danaa	OctiliteDius			-	< >	
181 Ocntreblus Gymnochthet	ius australis	Instrosulcus		Perkins, 2005	comp.n.	aymnocntneblus	Gymnocntnebius			< :	
182 Ocnthebius Gymnochthet	ius australis	minpunctus		Perkins, 2005	comb.n.	Gymnochtheblus	Gymnochthebius			×	
183 Ochthebius Gymnochthet	ius australis	nanosetus		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
184 Ochthebius Gymnochtheb	ius australis	nicki		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
185 Ochthebius Gymnochtheb	ius australis	nigriceps		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
186 Ochthebius Gymnochtheb	ius australis	notalis		Deane, 1933		Ochthebius	Gymnochthebius			×	
187 Ochthebius Gvmnochtheb	ius australis	papua		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
188 Ochthebius Gvmnochtheb	ius australis	Demunctus		Perkins, 2005	comb.n.	Gymnochthebius	Gumnochthehius			×	
189 Ochthehius Gymnochtheh	ine australis	nluvinennis		Perkins 2005	comb n	Gumnochthehius	Gumnochthehius			: ×	
100 Ochthobius Gymnosthob	ino onotrolio	produce		Dorking, 2006	comb n	Composition	Gumoohthohino		Ŧ	< >	
100 Ocininetius Ophiniocininet.	ine australia	sucio id			comb n	Cynnochulaeblus Cymraeblubeblus	Oymnodimedias		-	< >	
	ins australis	racialus			COLID.II.	ayiiinociiinebius	Gymrodimedius			< >	
192 Ocnthebius Gymnochthet	ius australis	respiendens		Perkins, 2005	comb.n.	Gymnochtheblus	Gymnochthebius			× :	
193 Ochthebius Gymnochthet	ius australis	rhombus		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
194 Ochthebius Gymnochtheb	ius australis	semicylindrus		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
195 Ochthebius Gymnochtheb	ius australis	setosus		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius		-	×	
196 Ochthebius Gymnochtheb	ius australis	sexplanatus		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
197 Ochthebius Gymnochtheb	ius australis	squamifer		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
198 Ochthebius Gymnochtheb	ius australis	subsulcatus		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
199 Ochthebius Gymnochtheb	ius australis	tenebricosus		Deane, 1931		Ochthebius	Gymnochthebius			×	
200 Ochthebius Gymnochtheb	ius australis	trilineatus		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
201 Ochthebius Gymnochtheb	ius australis	truncatus		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
202 Ochthebius Gymnochtheb	ius australis	wattsi		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
203 Ochthebius Gymnochtheb	ius australis	weiri		Perkins, 2005	comb.n.	Gymnochthebius	Gymnochthebius			×	
204 Ochthebius Gymnochtheb	ius fossatus	bartyrae		Perkins, 1980	comb.n.	Gymnochthebius	Gymnochthebius			×	
205 Ochthebius Gymnochtheb	ius fossatus	bisagittatus		Perkins, 1980	comb.n.	Gymnochthebius	Gymnochthebius			×	
206 Ochthebius Gymnochtheb	ius fossatus	chilenus		Balfour-Browne, 1971		Ochthebius	Gymnochthebius			×	
207 Ochthebius Gymnochtheb	ius fossatus	clandestinus		Perkins, 1980	comb.n.	Gymnochthebius	Gymnochthebius			×	
208 Ochthebius Gymnochtheb	ius fossatus	compactus		Perkins, 1980	comb.n.	Gymnochthebius	Gymnochthebius			×	
209 Ochthebius Gymnochtheb	ius fossatus	crassipes		Sharp, 1882		Ochthebius	Gymnochthebius			×	
210 Ochthebius Gymnochtheb	ius fossatus	curvus		Perkins, 1980	comb.n.	Gymnochthebius	Gymnochthebius			×	
211 Ochthebius Gymnochtheb	ius fossatus	fossatus		LeConte, 1855		Ochthebius	Gymnochthebius		-	××	
212 Ochthebius Gymnochtheb	ius fossatus	francki		Bruch, 1915		Ochthebius	Gymnochthebius			×	
213 Ochthebius Gymnochtheb	ius fossatus	germaini		Zaitzev, 1908		Ochthebius	Gymnochthebius		-	×	
214 Ochthebius Gymnochtheb	ius fossatus	ischigualasto		Perkins & Archangelsky, 2002	comb.n.	Gymnochthebius	Gymnochthebius			×	
215 Ochthebius Gymnochtheb	ius fossatus	laevipennis		LeConte, 1878		Ochthebius	Gymnochthebius			××	
216 Ochthebius Gymnochtheb	ius fossatus	maureenae		Perkins, 1980	comb.n.	Gymnochthebius	Gymnochthebius			×	
217 Ochthebius Gymnochtheb	ius fossatus	nitidus		LeConte, 1850		Ochthebius	Gymnochthebius			×	
218 Ochthebius Gymnochtheb	ius fossatus	oppositus		Perkins, 1980	comb.n.	Gymnochthebius	Gymnochthebius			××	
219 Ochthebius Gymnochtheb	ius fossatus	perlabidus		Perkins, 1980	comb.n.	Gymnochthebius	Gymnochthebius			×	
220 Ochthebius Gymnochtheb	ius fossatus	peruvianus		Balfour-Browne, 1971		Ochthebius	Gymnochthebius		۲	×	
221 Ochthebius Gymnochthet	ius fossatus	reticulatissimus		Perkins, 1980	comb.n.	Gymnochthebius	Gymnochthebius			×	
222 Ochthebius Gymnochthet:	ius fossatus	reticulatus		Orchymont, 1943		Ochthebius	Gymnochthebius			×	
223 Ochthebius Gymnochthet	ius fossatus	seminole		Perkins, 1980	comb.n.	Gymnochthebius	Gymnochthebius			×	
										continued on the next	page

New classificatio	(2000							current classific	ation			
No genus	subgenus	species grou	ID species	subspecies	author	taxonomic ac	ct original genus	genus	subgenus	obs.	phyl.	PAL AFR AUR NAR NTR ORR ANR
224 Ochthebius	Gymnochthebius	fossatus	tectus		Perkins, 1980	comb.n.	Gymnochthebius	Gymnochthebius				×
225 Ochthebius	Gymnochthebius	fossatus	topali		Balfour-Browne, 1971		Ochthebius	Gymnochthebius				×
226 Ochthebius	Hughleechia		giulianii		Perkins, 1981	comb.n.	Hughleechia	Hughleechia			-	×
227 Ochthebius	Hughleechia		gracilis		Perkins, 2007	comb.n.	Hughleechia	Hughleechia				×
228 Ochthebius	Micragasma		minoicus		Hernando, Villastrigo & Ribera, 2017		Ochthebius	Ochthebius				×
229 Ochthebius	Micragasma		paradoxus		Sahlberg, 1900		Micragasma	Micragasma			~	×
230 Ochthebius	Micragasma		substrigosus		Reitter, 1897		Ochthebius	Micragasma				×
231 Ochthebius	Ochthebius	andraei	andraei	andraei	Breit, 1920		Ochthebius	Ochthebius	Ochthebius			×
232 Ochthebius	Ochthebius	andraei	andraei	explanatus	Orchymont, 1937		Ochthebius	Ochthebius	Ochthebius			×
233 Ochthebius	Ochthebius	andraei	caspius		Jäch, 1992		Ochthebius	Ochthebius	Ochthebius			×
234 Ochthebius	Ochthebius	andraei	cupricollis		Sahlberg, 1903		Ochthebius	Ochthebius	Ochthebius			×
235 Ochthebius	Ochthebius	andraei	inelegans		Jäch, 2002		Ochthebius	Ochthebius	Ochthebius			×
236 Ochthebius	Ochthebius	andraei	madli		Jäch, 1992		Ochthebius	Ochthebius	Ochthebius			×
237 Ochthebius	Ochthebius	andraei	patergazellae		Jäch & Delgado, 2010		Ochthebius	Ochthebius	Ochthebius		-	×
238 Ochthebius	Ochthebius	atriceps	andalusicus		Jäch & Castro, 1999		Ochthebius	Ochthebius	Ochthebius		-	×
239 Ochthebius	Ochthebius	atriceps	anxifer		Balfour-Browne, 1979		Ochthebius	Ochthebius	Ochthebius		,	×
240 Ochthebius	Ochthebius	atriceps	atriceps		Fairmaire, 1879		Ochthebius	Ochthebius	Ochthebius		,	×
241 Ochthebius	Ochthebius	atriceps	burjkhalifa		Jäch & Delgado, 2014		Ochthebius	Ochthebius	Ochthebius		~	×
242 Ochthebius	Ochthebius	atriceps	cameroni		Baltour-Browne, 1951		Ochthebius	Ochthebius	Ochthebius			× :
243 Ochthebius	Ochthebius	atriceps	dentifer		Rey, 1885		Ochthebius	Ochthebius	Ochthebius		. .	× :
244 Ochthebius	Ochthebius	atriceps	depressionis		Jäch, 1991		Ochthebius	Ochthebius	Ochthebius		. .	× :
245 Ochthebius	Ochthebius	atriceps	despoliatus		Jäch & Delgado, 2014		Ochthebius	Ochthebius	Ochthebius		-	× :
246 Ocnthebius	Ochthebius	atriceps	talcatus		Jach, 1991		Ochthebius	Ochthebius	Ochthebius			× :
247 Ochthebius	Ochthebius	atriceps	faustr		Sharp, 1887		Ochthebius	Ochthebius	Ochthebius			~ >
248 Ocntheblus	Ocnthebius	atriceps	raustinus		Urchymont, 1940		Ocntrebius	Ocntheblus	Ocnmebius			~
249 Ocnthebius	Ocnthebius	atriceps	hesperides		Baltour-Browne, 1976		Ochmebius	Ocntheblus	Ocntrebius			~ ```
250 Ocminepius	Ocnineblus	ainceps	karasur		Ferro, 1960		Ochinebius	Ocntreblus	Ochinebius			< >
251 Ocnthebius	Ochthebius	atriceps	lacustatta		Jach, 1991		Ochthebius	Ochthebius	Ochthebius			×
252 Ocntheblus	Ochthebius	arnceps	iouiae		Jach & Deigado, 2017		Ochmebius	Ocntheblus	Ocnmenus		-	< >
254 Ochthabius	Ochthabius	atricens	pi determinasus recumatus		Jach, 1991 Jäch, 1991		Ochthabius	Ochthabius	Ochthahius			< >
255 Ochthabius	Ochthabius	atriceps	contratus		Sablberg 1900		Ochthahine	Ochthabius	Ochthabius			< ×
256 Ochthabius	Ochthabius	atricepo	taranacancic	haaticus	Carinorig, 1900 Farro 1984		Ochthahine	Ochthabius	Ochthabius		Ŧ	< ×
257 Ochthebius	Ochthebius	atricens	tacapasensis	tacapasensis	Ferro, 1983		Ochthebius	Ochthebius	Ochthebius		-	× ×
258 Ochthebius	Ochthebius	atriceps	thermalis		Janssens. 1965		Ochthebius	Ochthebius	Ochthebius		-	: ×
259 Ochthebius	Ochthebius	corrugatus	corrugatus		Rosenhauer, 1856		Ochthebius	Ochthebius	Ochthebius		-	×
260 Ochthebius	Ochthebius	corrugatus	gauthieri		Peyerimhoff, 1924		Ochthebius	Ochthebius	Ochthebius		-	×
261 Ochthebius	Ochthebius	corrugatus	perpusillus		Ferro, 1985		Ochthebius	Ochthebius	Ochthebius		-	×
262 Ochthebius	Ochthebius	foveolatus	afghanicus		Jäch, 1991		Ochthebius	Ochthebius	Ochthebius			×
263 Ochthebius	Ochthebius	foveolatus	alpheius		Janssens, 1959		Ochthebius	Ochthebius	Ochthebius			×
264 Ochthebius	Ochthebius	foveolatus	elisae		Sahlberg, 1900		Ochthebius	Ochthebius	Ochthebius		. .	×
265 Ocntheblus	Ochthebius	toveolatus	toveolatus		Germar, 1824		Ochthebius	Ochthebius	Ochthebius			~ >
267 Ochthabius	Ochthebius	foveolatus	hartani		Jacri & Delgauo, 2014 Isch & Delredo, 2010		Ochthabius	Ochthebius	Ochthebius			< >
268 Ochthebius	Ochthebius	foveolatus	hellenicus		lenistea. 1988		Hymenodes	Ochthebius	Ochthebius		-	× ×
269 Ochthebius	Ochthebius	foveolatus	inconspicuus		Jäch, 1991		Ochthebius	Ochthebius	Ochthebius			: ×
270 Ochthebius	Ochthebius	foveolatus	indicus		leniștea, 1988		Hymenodes	Ochthebius	Ochthebius			×
271 Ochthebius	Ochthebius	foveolatus	innexus		Balfour-Browne, 1951		Ochthebius	Ochthebius	Ochthebius			×
272 Ochthebius	Ochthebius	foveolatus	magnannulatus		Delgado & Jäch, 2009		Ochthebius	Ochthebius	Ochthebius		1	×
273 Ochthebius	Ochthebius	foveolatus	marginalis		Rey, 1886		Ochthobius	Ochthebius	Ochthebius		-	×
274 Ochthebius	Ochthebius	foveolatus	mediterraneus		leniștea, 1988		Hymenodes	Ochthebius	Ochthebius		-	×
275 Ochthebius	Ochthebius	foveolatus	medius		Jäch, 1991		Ochthebius	Ochthebius	Ochthebius			×
276 Ochthebius	Ochthebius	foveolatus	merinidicus		Ferro, 1985		Ochthebius	Ochthebius	Ochthebius		-	×
211 Ocnthebius	Ochthebius	foveolatus	muratus		Jach, 1991 Dolendo & Téch 2000		Ochthebius	Ochthobius	Ochthebius Ochthebius			< >
279 Ochthabius	Ochthehius	foveolatic	panistaritus nallidulus		Vergado a Jacri, 2003 Kriwert 1887		Ochthahins	Ochthabius	Ochthahius			< ×
												continued on the next page

Table S1: (Continued						ficale technic			
No genus suicauori su	ibgenus	species grout	p species subst	pecies author	taxonomic act original genus	genus	cauon subgenus	obs. phyl. PAL AFR AUR NAR NTR ORF	ORR ANR
280 Ochthebius C	Chthebius	foveolatus	parvannulatus	Delgado & Jäch, 2009	Ochthebius	Ochthebius	Ochthebius	×	
281 Ochthebius C	Chthebius	foveolatus	pedicularius	Kuwert, 1887	Ochthebius	Ochthebius	Ochthebius	1 X	
282 Ochthebius C	Chthebius	foveolatus	pudilaceris	Ferro, 1982	Ochthebius	Ochthebius	Ochthebius	×	
283 Ochthebius C	Chthebius	foveolatus	satoi	Nakane, 1965	Ochthebius	Ochthebius	Ochthebius	7 X	
284 Ochthebius C	Chthebius	foveolatus	siculus	Kuwert, 1887	Ochthebius	Ochthebius	Ochthebius	× :	
285 Ochthebius C	chthebius	toveolatus	sidanus	Urchymont, 1942	Ochthebius	Ochthebius	Ochthebius	× +	
285 Ocnthebius C	critrebius	toveolatus	speculator	Jach, 1991	Ochthopius	Ochthobius	Ochthebius	<	
288 Ochthebius C	chthebius	foveolatus	uskupensis viratila	Ferro 1986	Ochthebius	Ochthebius	Ochthabius	<	
289 Ochthabius O	chthabins	kosiensis	virgura	- EIIO, 1900	Ochthebius	Ochthebius	Ochthabius	<	
290 Ochthabius 0	chthahire	kneiensis	kneiensis	Champion 1920	Contraction	Ochthehius	Ochthehius	< ×	
291 Ochthebius 0	chthebius	labicallis	basilicatus	Fiori, 1915	Ochthebius	Ochthebius	Ochthebius	x (I)	
292 Ochthebius 0	chthebius	lobicollis	caesaraudustae	Jäch. Ribera & Aquilera. 1998	Ochthebius	Ochthebius	Ochthebius		
293 Ochthebius C	chthebius	lobicollis	delgadoi	Jäch, 1994	Ochthebius	Ochthebius	Ochthebius	x t	
294 Ochthebius C	chthebius	lobicollis	eyrei	Jäch, 1990	Ochthebius	Ochthebius	Ochthebius	1 X	
295 Ochthebius C	Chthebius	lobicollis	fossulatus	Mulsant, 1844	Ochthebius	Ochthebius	Ochthebius	×	
296 Ochthebius C	Chthebius	lobicollis	lapidicola	Wollaston, 1864	Ochthebius	Ochthebius	Ochthebius	1 ×	
297 Ochthebius C	Chthebius	lobicollis	lobicollis	Rey, 1885	Ochthebius	Ochthebius	Ochthebius	1 X	
298 Ochthebius C	Chthebius	lobicollis	mauretanicus	Jäch, 1990	Ochthebius	Ochthebius	Ochthebius	×	
299 Ochthebius C	Chthebius	lobicollis	quadrifossulatus	Waltl, 1835	Ochthebius	Ochthebius	Ochthebius	1 X	
300 Ochthebius C	ochthebius	lobicollis	tivelunus	Ferro, 1984	Ochthebius	Ochthebius	Ochthebius	X	
301 Ochthebius C	chthebius	lobicollis	velutinus	Fairmaire, 1883	Ochthebius	Ochthebius	Ochthebius	×	
302 Ochthebius C	chthebius	marinus	alluaudi	Régimbart, 1903	Ochthebius	Ochthebius	Ochthebius	: ×	
303 Ochthebius C	Chthebius	marinus	alpinopetrus	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius	× ;	
304 Ochthebius C	cutnebius	marinus	anchorus	Perkins, 2011	Ochthebius	Ochthebius	Ochthebius	~ ``	
C Contrebius	criteblus	marinus	angusi	Jacn, 1994		Ochtheblus	Ochmebius	< >	
300 Ocninebius C	crineolus	marinus	arabicus	Jach, 1992 1856 & Doloodo 2008	Och the phine	Ochthebius	Ochthebius Ochthebius	< >	
308 Ochthabius C	chineblus	marinus	areninae areninalus	Jacii & Deigauo, 2000 Derkine 1980	Ochthebius Ochthebius	Ochthebius	Ochthebius	~ _	
300 Ochthebius C	chthabius	marinus	arizonicus	Derkins, 1900	Ochthebius	Ochthebius	Ochthahius	× (I)	
310 Ochthebius O	chthebius	marinus	attritus	LeConte. 1878	Ochthebius	Ochthebius	Ochthebius		
311 Ochthebius 0	chthebius	marinus	auropallens	Fairmaire, 1879	Ochthebius	Ochthebius	Ochthebius		
312 Ochthebius C	chthebius	marinus	aztecus	Sharp, 1887	Ochthebius	Ochthebius	Ochthebius	1 × × ×	
313 Ochthebius 0	chthebius	marinus	bactrianus	Janssens, 1962	Ochthebius	Ochthebius	Ochthebius	×	
314 Ochthebius G	chthebius	marinus	batesoni	Blair, 1933	Ochthebius	Ochthebius	Ochthebius	1 ×	
315 Ochthebius C	chthebius	marinus	bellstedti	Jäch, 1992	Ochthebius	Ochthebius	Ochthebius	×	
316 Ochthebius C	Achthebius	marinus	bernhardi	Jäch & Delgado, 2008	Ochthebius	Ochthebius	Ochthebius	×	
317 Ochthebius C	Chthebius	marinus	bicomicus	Perkins, 2011	Ochthebius	Ochthebius	Ochthebius	; ×	
318 Ochthebius C	chthebius	marinus	plincisus	Perkins, 1980		Ochthebius	Ochthebius	×	
319 Ochinebius C	chineblus	marinus	bornatus	Dervins, 1900 Dervins, 1980	Ochthebius Ochthebius	Ochthebius	Ochthebius		
321 Ochthebius 0	chthebius	marinus	californicus	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius	< ×	
322 Ochthebius C	chthebius	marinus	capicola	Péringuey, 1892	Hydraena	Ochthebius	Ochthebius		
323 Ochthebius C	chthebius	marinus	chappuisi	Orchymont, 1948	Ochthebius	Ochthebius	Ochthebius	(1) X	
324 Ochthebius C	chthebius	marinus	costatellus	Reitter, 1897	Ochthebius	Ochthebius	Ochthebius	X X	
325 Ochthebius 0	chthebius	marinus	costipennis	Fall, 1901	Ochthebius	Ochthebius	Ochthebius	×	
326 Ochthebius C	chthebius	marinus	crassalus	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius	×	
327 Ochthebius C	chthebius	marinus	crenatus	Hatch, 1965	Ochthebius	Ochthebius	Ochthebius	×	
328 Ochthebius C	chthebius	marinus	deletus	Rey, 1885	stat.rest. Ochthebius	Ochthebius	Ochthebius	currently a subspecies of O. subpictus 1 X	;
329 Ochthebius C	Chthebius	marinus	delhiensis	Jach, 1992 Borking 2011	Ochthobius	Ochthobius	Ochthebius	× ^ ~	~
330 Ocninebius C	criteblus	marinus	enaroeayi	Perkins, 2011 Kumort 1907	Och the oblig	Ochthebius	Ochthobius	< >	
332 Ochthebius O	chthebius	marinus	evanescens	Sahlberg, 1875	Ochthebius	Ochthebius	Ochthebius	< ~ ~	
333 Ochthebius 0	chthebius	marinus	extremus	Péringuey, 1892	Hvdraena	Ochthebius	Ochthebius	×	
334 Ochthebius C	chthebius	marinus	fallaciosus	Ganglbauer, 1901	stat.n. Ochthebius	Ochthebius	Ochthebius	currently a subspecies of O. viridis 1 X	
335 Ochthebius C	Chthebius	marinus	granulinus	Perkins, 2011	Ochthebius	Ochthebius	Ochthebius	×	
								continued on the new	e next page

Chapter 3

Table 51: (Contin	(per					100 100 100			
No centic	silhanuis	species groun	n snacias	subsnecies author	taxonomic act original genus	current classifi	cation subdenus	ohs	nhvi pai afr air nar ntr orr anr
336 Ochthehius	Ochthebius	marinus	aruwelli	Perkins, 1980	Contractions and original genes	Ochthebius	Ochthehius		
337 Ochthebius	Ochthebius	marinus	hainanensis	Jäch. 2003	Ochthebius	Ochthebius	Ochthebius		× ×
338 Ochthebius	Ochthebius	marinus	interruptus	LeConte, 1852	Ochthebius	Ochthebius	Ochthebius		× ×
339 Ochthebius	Ochthebius	marinus	involatus	Perkins, 2011	Ochthebius	Ochthebius	Ochthebius		×
340 Ochthebius	Ochthebius	marinus	janssensi	Ferro, 1983	Ochthebius	Ochthebius	Ochthebius		×
341 Ochthebius	Ochthebius	marinus	jengi	Jäch, 1998	Ochthebius	Ochthebius	Ochthebius		×
342 Ochthebius	Ochthebius	marinus	kuwerti	Reitter, 1897	Ochthebius	Ochthebius	Ochthebius		×
343 Ochthebius	Ochthebius	marinus	lecontei	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius		× :
344 Ochthebius	Ochthebius	marinus	lenensis	Poppius, 1907	Ochthebius	Ochthebius	Ochthebius		: : :
345 Ochthebius	Ochthebius	marinus	lineatus	LeConte, 1852	Ochthebius	Ochthebius	Ochthebius		1 × ×
346 Ochthebius	Ochthebius	marinus	lividipennis	Peyron, 1858	Ochthebius	Ochthebius	Ochthebius		1 × 1
347 Ochthebius	Ochthebius	marinus	madrensis	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius		× × :
348 Ochthebius	Ochthebius	marinus	marinus	Paykull, 1798	Elophorus	Ochthebius	Ochthebius		1 X X
349 Ochthebius	Ochthebius	marinus	masatakasatoi	Jäch, 1992	Ochthebius	Ochthebius	Ochthebius		×
350 Ochthebius	Ochthebius	marinus	meridionalis	Rey, 1885	Ochthebius	Ochthebius	Ochthebius		1 ×
351 Ochthebius	Ochthebius	marinus	mesoamericanus	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius		1 X
352 Ochthebius	Ochthebius	marinus	mexcavatus	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius		×
353 Ochthebius	Ochthebius	marinus	minabensis	Ferro, 1983	Ochthebius	Ochthebius	Ochthebius		×
354 Ochthebius	Ochthebius	marinus	mongolensis	Janssens, 1967	Ochthebius	Ochthebius	Ochthebius		×
355 Ochthebius	Ochthebius	marinus	nipponicus	Jäch, 1998	Ochthebius	Ochthebius	Ochthebius	Ryukyu	1 ×
356 Ochthebius	Ochthebius	marinus	pacificus	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius		×
357 Ochthebius	Ochthebius	marinus	pauli	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius		×
358 Ochthebius	Ochthebius	marinus	pedalis	Balfour-Browne, 1954	Ochthebius	Ochthebius	Ochthebius		1 ×
359 Ochthebius	Ochthebius	marinus	pusillus	Stephens, 1835	Ochthebius	Ochthebius	Ochthebius		1 ×
360 Ochthebius	Ochthebius	marinus	queenslandicus	Hansen, 1998	Ochthebius	Ochthebius	Ochthebius		1 ×
361 Ochthebius	Ochthebius	marinus	recticulus	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius		×
362 Ochthebius	Ochthebius	marinus	rectus	LeConte, 1878	Ochthebius	Ochthebius	Ochthebius		1 ×
363 Ochthebius	Ochthebius	marinus	rectusalsus	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius		××
364 Ochthebius	Ochthebius	marinus	richmondi	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius		×
365 Ochthebius	Ochthebius	marinus	rubripes	Boheman, 1860	Ochthebius	Ochthebius	Ochthebius		×
366 Ochthebius	Ochthebius	marinus	salinarius	Balfour-Browne, 1954	Ochthebius	Ochthebius	Ochthebius		1 ×
367 Ochthebius	Ochthebius	marinus	sculptoides	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius		+ ×
368 Ochthebius	Ochthebius	marinus	sculptus	LeConte, 1878	Ochthebius	Ochthebius	Ochthebius		×
369 Ocnthebius	Ochthebius	mannus	sharpi	Jach, 1992	Ochthebius	Ochthebius	Ochthebius		×
370 Ocntheblus	Ochthebius	mannus	sierrensis	Perkins, 1980 Borline, 2011	Ochthetic	Ochthebius	Ochthebius		~ ``
371 Ochthabius 372 Ochthabius	Ochthabius	marinus	suerisis	Wood & Derkins 1978	Ochthebius	Ochthabius	Ochthabius		~
373 Ochthehius	Ochthehius	marinus	sningene	Perkins & Balfour-Browne 199	-4 Ochthebius	Ochthehius	Ochthehius		× × +
374 Ochthehius	Ochthebius	marinus	subaeneus	Janssens, 1967	Ochthebius	Ochthebius	Ochthehius		× ×
375 Ochthebius	Ochthebius	marinus	subpictus	Wollaston, 1857	Ochthebius	Ochthebius	Ochthebius		× +
376 Ochthebius	Ochthebius	marinus	tubus	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius		××
377 Ochthebius	Ochthebius	marinus	uniformis	Perkins, 1980	Ochthebius	Ochthebius	Ochthebius		(1) X
378 Ochthebius	Ochthebius	marinus	virens	Jäch, 1992	Ochthebius	Ochthebius	Ochthebius		×
379 Ochthebius	Ochthebius	marinus	viridescens	leniștea, 1988	Ochthebius	Ochthebius	Ochthebius		1 ×
380 Ochthebius	Ochthebius	marinus	viridis	Peyron, 1858	Ochthebius	Ochthebius	Ochthebius		1 ×
381 Ochthebius	Ochthebius	marinus?	romanicus	leniștea, 1968	Ochthebius	Ochthebius	Ochthebius		×
382 Ochthebius	Ochthebius	metallescens	albacetinus	Ferro, 1984	Ochthebius	Ochthebius	Ochthebius		×
383 Ochthebius	Ochthebius	metallescens	anaxagoras	Jäch, 1999	Ochthebius	Ochthebius	Ochthebius		××
384 Ochthebius	Ochthebius	metallescens	aristoteles	Jach, 1999	Ochthebius	Ochthebius	Ochthebius		× >
385 Ocntheblus	Ochthebius	metallescens	ciliciae	Jacn, 1989	Ochthebius	Ochthebius	Ochthebius		< >
300 Ocnineblus	Ochinebius	metallescens	colonicus	Caralhouor 1001	Ochthebius	Ochthebius	Ochthebius		< >
388 Ochthahius	Ochthebius	metallescens	deciantis	Orchymont 1942	Ochthebius	Ochthabius	Ochthehius		< ×
389 Ochthebius	Ochthebius	metallescens	diazi	Jäch, 1999	Ochthebius	Ochthebius	Ochthebius		
390 Ochthebius	Ochthebius	metallescens	empedocles	Jäch, 1999	Ochthebius	Ochthebius	Ochthebius		×
391 Ochthebius	Ochthebius	metallescens	gayosoi	Jäch, 2001	Ochthebius	Ochthebius	Ochthebius		1 X
									continued on the next page

A molecular phylogeny of the tribe Ochthebiini (Coleoptera, Hydraenidae, Ochthebiinae)

New classification							current classific	sation			
No genus su	ibgenus	species group	species	subspecies	author	taxonomic act original genus	genus	subgenus	obs.	phyl. PAL A	FR AUR NAR NTR ORR ANR
392 Ochthebius O	chthebius	metallescens	gestroi		Gridelli, 1926	Ochthebius	Ochthebius	Ochthebius		×	
393 Ochthebius O.	chthebius	metallescens	griotes		Ferro, 1985	Ochthebius	Ochthebius	Ochthebius		۲ ×	
394 Ochthebius O.	chthebius	metallescens	hanshebaueri	-	Jäch, 1994	Ochthebius	Ochthebius	Ochthebius		×	
395 Ochthebius O.	chthebius	metallescens	hatayensis	-	Jäch, 1989	Ochthebius	Ochthebius	Ochthebius		×	
396 Ochthebius O	chthebius	metallescens	hivae		Jäch, Irani & Delgado, 2013	Ochthebius	Ochthebius	Ochthebius		۲ ×	
397 Ochthebius O	chthebius	metallescens	hofratvukovitsi		Jäch, 1994	Ochthebius	Ochthebius	Ochthebius		×	
398 Ochthebius 0	chthebius	metallescens	huberti		Jäch, 1989	Ochthebius	Ochthebius	Ochthebius		×	
399 Ochthebius O	chthebius	metallescens	insidiosus		Jäch, 1999	Ochthebius	Ochthebius	Ochthebius		×	
400 Ochthebius O.	chthebius	metallescens	iternuptialis	-	Jäch, 2001	Ochthebius	Ochthebius	Ochthebius		×	
401 Ochthebius 0.	chthebius	metallescens	javieri		Jäch, 2000	Ochthebius	Ochthebius	Ochthebius		×	
402 Ochthebius O.	chthebius	metallescens	judemaesi		Delgado & Jäch, 2007	Ochthebius	Ochthebius	Ochthebius		۲ ×	
403 Ochthebius O.	chthebius	metallescens	khuzestanicus		Ferro, 1982	Ochthebius	Ochthebius	Ochthebius		×	
404 Ochthebius O	chthebius	metallescens	kieneri		Jäch, 1999	Ochthebius	Ochthebius	Ochthebius		×	
405 Ochthebius O	chthebius	metallescens	kirschenhoferi		Jäch, 1994	Ochthebius	Ochthebius	Ochthebius		×	
406 Ochthebius O	chthebius	metallescens	kurdistanicus		Jäch, 1989	Ochthebius	Ochthebius	Ochthebius		×	
407 Ochthebius O	chthebius	metallescens	latinorum		leniștea, 1988	Ochthebius	Ochthebius	Ochthebius		×	
408 Ochthebius O	chthebius	metallescens	levantinus		Jäch, 1989	Ochthebius	Ochthebius	Ochthebius		×	
409 Ochthebius O	chthebius	metallescens	libanus		Jäch & Dia, 1992	Ochthebius	Ochthebius	Ochthebius		×	
410 Ochthebius O	chthebius	metallescens	marijanmatoki		Jäch & Delgado, 2015	Ochthebius	Ochthebius	Ochthebius		×	
411 Ochthebius O.	chthebius	metallescens	maxfischeri		Jäch, 1999	Ochthebius	Ochthebius	Ochthebius		(1) ×	
412 Ochthebius O	chthebius	metallescens	metallescens	metallescens	Rosenhauer, 1847	Ochthebius	Ochthebius	Ochthebius		t X	
413 Ochthebius 0.	chthebius	metallescens	metallescens	plato	Jäch, 1999	Ochthebius	Ochthebius	Ochthebius		۲ ×	
414 Ochthebius O	chthebius	metallescens	metallicus	-	Orchymont, 1942	Ochthebius	Ochthebius	Ochthebius		×	
415 Ochthebius O.	chthebius	metallescens	metarius	-	Orchymont, 1942	Ochthebius	Ochthebius	Ochthebius		×	
416 Ochthebius O.	chthebius	metallescens	metellus		Orchymont, 1942	Ochthebius	Ochthebius	Ochthebius		×	
417 Ochthebius O.	chthebius	metallescens	morettii		Pirisinu, 1974	Ochthebius	Ochthebius	Ochthebius		(1) X	
418 Ochthebius O.	chthebius	metallescens	pedroi	-	Jäch, 2000	Ochthebius	Ochthebius	Ochthebius		۲ ×	
419 Ochthebius O.	chthebius	metallescens	poweri		Rye, 1869	Ochthebius	Ochthebius	Ochthebius		1 X	
420 Ochthebius O.	chthebius	metallescens	preissi		Jäch, 2001	Ochthebius	Ochthebius	Ochthebius		1 X	
421 Ochthebius O.	chthebius	metallescens	pretneri	-	Jäch, 1999	Ochthebius	Ochthebius	Ochthebius		×	
422 Ochthebius 0	chthebius	metallescens	puberulus		Reitter, 1885	Ochthebius	Ochthebius	Ochthebius		×	
423 Ochthebius C	chthebius	metallescens	rectilobus		Jäch, 1989	Ochthebius	Ochthebius	Ochthebius		×	
424 Ochthebius C	chthebius	metallescens	schoedli		Jäch, 1999	Ochthebius	Ochthebius	Ochthebius		××	
425 Ochthebius C	chthebius	metallescens	schuberti		Jäch, 1999	Ochthebius	Ochthebius	Ochthebius		×	
426 Ochthebius 0	chthebius	metallescens	scitulus 	-	Ferro, 1982	Ochthebius	Ochthebius	Ochthebius		× ×	
42/ Ocnthebius 0	cutnepius	metallescens	scopuli	-	Konler, Jach & Deigado, 2016	Ochthebius	Ochthebius	Ocnthebius		< >	
	critrebius	literallescens	serinsericeus			Octimentus	Ochinebius	OctimeDius		< >	
429 Ocntreblus C	criteblus	metallescens	semours		Orenymont, 1942		Ochtheblus	Ochmebius		-	
430 Ochinebius C	chineblus	metallescens	sempronus		Orchymont, 1942 Droburnont, 1943	Ochthebius Ochthebius	Ochthebius	Ochthebius		< >	
431 Ochthebius C	chthabitis	metallescens	sementinus cementinus		Oldinyiii0ii(, 1342 1äch 1989	Ochthebius	Ochthabius	Ochthahius		<	
433 Ochthebius O	chthabius	metallescens	smurnensis		Sahlberg 1908	Ochthebius	Ochthebius	Ochthehius		-	
434 Ochthebius O	chthebius	metallescens	trapezuntinus	-	Jäch. 1999	Ochthebius	Ochthebius	Ochthebius		: ×	
435 Ochthebius 0	chthebius	metallescens	ustaoglui		Topkara, Jäch & Kasapoğlu, 2011	Ochthebius	Ochthebius	Ochthebius		×	
436 Ochthebius O	chthebius	metallescens	vedovai		Ferro, 1987	Ochthebius	Ochthebius	Ochthebius		×	
437 Ochthebius O	chthebius	metallescens	viganoi		Pirisinu, 1974	Ochthebius	Ochthebius	Ochthebius		×	
438 Ochthebius O.	chthebius	metallescens	wurayah	-	Jäch & Delgado, 2010	Ochthebius	Ochthebius	Ochthebius		t X	
439 Ochthebius O.	chthebius	nitidipennis	amami		Yoshitomi & Satô, 2001	Ochthebius	Ochthebius	Enicocerus	Ryukyu	×	
440 Ochthebius 0.	chthebius	nitidipennis	championi		Jäch, 1989	Ochthebius	Ochthebius	Ochthebius		×	
441 Ochthebius 0.	chthebius	nitidipennis	exiguus		Jäch, 2003	Ochthebius	Ochthebius	Enicocerus		×	
442 Ochthebius 0.	chthebius	nitidipennis	hasegawai		Nakane & Matsui, 1986	Ochthebius	Ochthebius	Ochthebius		1 X	
443 Ochthebius 0	chthebius	nitidipennis	ilanensis		Jäch, 1998	Ochthebius	Ochthebius	Ochthebius		×	
444 Ochthebius C	chthebius	nitidipennis	japonicus		Jäch, 1998	Ochthebius	Ochthebius	Ochthebius		۲ × :	
445 Ochthebius C	chthebius	nitidipennis	nakanei		Matsui, 1986	Ochthebius	Ochthebius	Enicocerus		×	
44b Ocntnebius C	cntneblus	nitidipennis	nigrasperulus		Jach, ∠UU3 Chamnian 1020	Och the office	Ochthebius	Enicocerus		< >	
	Ultriomico	our odionau i	Inumper			~~~~~	CONFIGURA	LINCOCCIAC		:	continued on the next page

Table S1: (Continued)	_								
New classification						current classifi	cation		
448 Ochthebius Oc	chthebius	species group nitidipennis	obesus	subspecies aumor Jäch, 2003	taxonomic act original genus Ochthebius	genus Ochthebius	Enicocerus	ODS. DDJ. PAL AFK AUT	
449 Ochthebius Ot	chthebius	nitidipennis	rotundatus	Jäch, 2003	Ochthebius	Ochthebius	Enicocerus	×	
450 Ochthebius Ot	Chthebius	nitidipennis	scintillans	Champion, 1920	Ochthebius	Ochthebius	Enicocerus	×	
451 Ochthebius O	Chthebius	notabilis	eburneus	Sahlberg, 1900	Ochthebius	Ochthebius	Ochthebius	×	
452 Ochthebius O	chthebius	notabilis	elburzi	Ferro, 1987	Ochthebius	Ochthebius	Ochthebius	~ ~	
453 Ocninebius O	critreblus	notabilis	gereckei	Jach, 1993		Ocntheblus	Ochthebius	< >	
454 Ocnthebius Oc	chthebius	notabilis	glaber halonhilus	Montes & Soler, 1988 Etterun & Tach 2014	Ochthebius Ochthebius	Ochthebius	Ochthebius	< >	
456 Ochthebius Oc	chthebius	notabilis	iermakovi	Orchymont, 1933	Ochthebius	Ochthebius	Ochthebius	-	
457 Ochthebius Ou	chthebius	notabilis	lanarotis	Ferro, 1985	Ochthebius	Ochthebius	Ochthebius		
458 Ochthebius Or	chthebius	notabilis	maroccanus	Jäch, 1992	Ochthebius	Ochthebius	Ochthebius	×	
459 Ochthebius Ot	chthebius	notabilis	normandi	Jäch, 1992	Ochthebius	Ochthebius	Ochthebius	1 X	
460 Ochthebius Ot	Chthebius	notabilis	notabilis	Rosenhauer, 1856	Ochthebius	Ochthebius	Ochthebius	۲ ×	
461 Ochthebius Ot	Chthebius	notabilis	ponticus	leniştea, 1956	Ochthebius	Ochthebius	Ochthebius	possibly a synonym of <i>O. jermakovi</i> X	
462 Ochthebius O	Chthebius	notabilis	salinator	Peyerimhoff, 1924	Ochthebius	Ochthebius	Ochthebius	-	
463 Ochthebius OA	Chthebius	notabilis	zugmayeri	Kniž, 1909	Ochthebius	Ochthebius	Ochthebius	× :	
464 Ochthebius O	Chthebius	peisonis	peisonis	Ganglbauer, 1901	Ochthebius	Ochthebius	Ochthebius		
465 Ochthebius O	chthebius	punctatus	almorensis	Jach, 1989	Ochthebius	Ochthebius	Ochthebius	~ >	
460 Ochinebius O.	chinebius	punciatus	argeniaus	Jach, 2003 Dácimhart 1005	Och # of ing	Ochthebius	Ochthebius	~	
461 Ochthebius Oc	chineblus	punctatus	bifouroclatus	NVaHI 1805	Ochtheblus Ochtheblus	Ochthebius	Ochthebius	< >	
469 Ochthebius Oc	chthebius	punctatus	cancasicus	Kuwert 1887	Ochthehius	Ochthehius	Ochthahius	-	
470 Ochthebius Oc	chthebius	punctatus	ciffidilis	Ferro. 1984	Ochthebius	Ochthebius	Ochthebius	: ×	
471 Ochthebius Oc	chthebius	punctatus	cuprescens	Guillebeau, 1893	Ochthebius	Ochthebius	Ochthebius		
472 Ochthebius Ot	chthebius	punctatus	danjo	Nakane, 1990	Ochthebius	Ochthebius	Ochthebius	×	
473 Ochthebius Ot	Chthebius	punctatus	darius	Balfour-Browne, 1979	Ochthebius	Ochthebius	Ochthebius	×	
474 Ochthebius Ot	Chthebius	punctatus	difficilis	Mulsant, 1844	Ochthebius	Ochthebius	Ochthebius	۲ ×	
475 Ochthebius Oc	Chthebius	punctatus	flexus	Pu, 1958	Ochthebius	Ochthebius	Ochthebius	×	
476 Ochthebius O	Chthebius	punctatus	flumineus	Orchymont, 1937	Ochthebius	Ochthebius	Ochthebius	×	
477 Ochthebius O	Chthebius	punctatus	gonggashanen	asis Jäch, 2003	Ochthebius	Ochthebius	Ochthebius	× :	
478 Ochthebius 0	Chthebius	punctatus	grandipennis	Fairmaire, 1879	Ochthebius	Ochthebius	Ochthebius	× :	
4 r9 Ocmnebius Or 480 Ochthebius	chthebius chthebius	punctatus	imbensimhi	Jach, 1992 15ch, 1080	Ochthebius Ochthebius	Ochthebius	Ochthebius	< >	
481 Ochthehius Or	chthebius	punctatus	inemis	Sham 1884	Ochthehius	Ochthehius	Ochthehius	< ×	
482 Ochthebius Oc	chthebius	punctatus	iranicus	Balfour-Browne, 1979	Ochthebius	Ochthebius	Ochthebius		
483 Ochthebius Ou	chthebius	punctatus	joosti	Jäch, 1992	Ochthebius	Ochthebius	Ochthebius	+ +	
484 Ochthebius Ot	Chthebius	punctatus	klapperichi	Jäch, 1989	Ochthebius	Ochthebius	Ochthebius	۲ ×	×
485 Ochthebius Ot	Chthebius	punctatus	lanuginosus	Reiche & Saulcy, 1856	Ochthebius	Ochthebius	Ochthebius	× +	
486 Ochthebius O	Chthebius	punctatus	lobatus	Pu, 1958	Ochthebius	Ochthebius	Ochthebius	× :	
48/ Uchthebius U	Crithebius	punctatus	manmoodi	Jach & Delgado, 2014	Ochthebius	Ocnthebius	Ochthebius		
400 Ochthebius O.	chthebius	punciatus	mondolicus	Daliour-Diowie, 1931 Janesans, 1967	Ochthebius	Ochthebius	Ochthahine		
490 Ochthebius Oc	chthebius	punctatus	monseti	Janssens, 1907 Jäch & Deloado: 2010	Ochthebius	Ochthehius	Ochthehius	-	
491 Ochthebius Oc	chthebius	punctatus	montesi	Ferro. 1984	Ochthebius	Ochthebius	Ochthebius		
492 Ochthebius Oc	chthebius	punctatus	namibiensis	Perkins & Balfour-Browne, 1994	Ochthebius	Ochthebius	Ochthebius	×	
493 Ochthebius Ot	chthebius	punctatus	nanus	Stephens, 1829	Ochthebius	Ochthebius	Ochthebius	+ +	
494 Ochthebius Ot	chthebius	punctatus	nepalensis	Jäch, 1989	Ochthebius	Ochthebius	Ochthebius	×	
495 Ochthebius Ou	chthebius	punctatus	nilssoni	Hebauer, 1986	Ochthebius	Ochthebius	Ochthebius	× +	
496 Ochthebius Ot	chthebius	punctatus	nobilis	Villa & Villa, 1835	Ochthebius	Ochthebius	Ochthebius	× +	
497 Ochthebius O	Chthebius	punctatus	opacipennis	Champion, 1920	Ochthebius	Ochthebius	Ochthebius	××	×
498 Ochthebius O	Chthebius	punctatus	orientalis	Janssens, 1962	Ochthebius	Ochthebius	Ochthebius	××	
499 Ochthebius O	Chthebius	punctatus	ovatus	Jäch, 1989	Ochthebius	Ochthebius	Ochthebius	× .	(X)
500 Ocnthebius Or 501 Ochthebius	Chthebius chthebius	punctatus	pagotrichus	Perkins & Balfour-Browne, 1994 Mairi 1835	Ochthebius	Ochthebius	Ochthebius	× ×	
		punduo	eneoud	VY GILI, 1000	CULIERIA	CONTRACTOR	COLUMAN	<	
CUP A MARKED AND AND AND AND AND AND AND AND AND AN	Chthenus	nunctatus	nunctatoides	Jäch. 1994	Ochthehius	Ochthehius	Ochthehius	×	

A molecular phylogeny of the tribe Ochthebiini (Coleoptera, Hydraenidae, Ochthebiinae)

Table S1: (Continue	d)						alfiands frantis				
No genus 5	subgenus	species group	o species subs	vspecies autho	ir tax	onomic act original genus	genus	subgenus	obs.	phyl. PAL	AFR AUR NAR NTR ORR ANR
504 Ochthebius	Ochthebius	punctatus	quadrifoveolatus	Wolla	ston, 1854	Ochthebius	Ochthebius	Ochthebius			×
505 Ochthebius	Ochthebius	punctatus	ragusae	Kuwe	rt, 1887	Ochthebius	Ochthebius	Ochthebius		1 ×	
506 Ochthebius	Ochthebius	punctatus	schneideri orch,	hymonti Jäch,	1984	Ochthebius	Ochthebius	Ochthebius		×	
507 Ochthebius	Ochthebius	punctatus	schneideri schr.	neideri Kuwa	rt, 1887	Ochthebius	Ochthebius	Ochthebius		۲ ×	
508 Ochthebius	Ochthebius	punctatus	sexfoveatus	Chan	1920, 1920	Ochthebius	Ochthebius	Ochthebius		× :	
509 Ochthebius	Ochthebius	punctatus	sitverbergi	Jach,	1992	Ochthebius	Ochthebius	Ochtheblus		- -	
510 Ochthebius	Ochthebius	punctatus	spatulus	Balfo	Jr-Browne, 1954	Ochthebius	Ochthebius	Ochthebius			×
511 Ochthebius	Ochthebius	punctatus	subnus	Jach,	1989	Ochthebius	Ochthebius	Ochtheblus		×	
212 Ocnthebius	Ocntrebius	punctatus	tudmirensis	Jach,	1991	Ocninebius	Ocnthebius	Ocnmeblus		×	
513 Ocnthebius	Ochthebius	punctatus	tunisicus	Jach,	1997	Ocntrebius	Ocnthebius	Ocntheblus		×	
514 Ochthebius	Ochthebius	punctatus	turcicus	Jach,	1989	Ochthebius	Ochthebius	Ochthebius		×	
515 Ochthebius	Ochthebius	punctatus	turkestanus	Kuwé	irt, 1892	Ochthebius	Ochthebius	Ochthebius		× :	
516 Ochthebius	Ochthebius	punctatus	verrucosus	Pu, 1	942	Ochthebius	Ochthebius	Ochthebius		×	
517 Ochthebius	Ochthebius	punctatus	wewalkai	Jäch,	1984	Ochthebius	Ochthebius	Ochthebius		×	
518 Ochthebius	Ochthebius	punctatus	zulu	Perki.	ns, 2011	Ochthebius	Ochthebius	Ochthebius			×
219 Ochthebius	Ocntheblus	quadricollis	Drevicollis	Eauc	1 a Selve, 1864	Calobius	Ocntheblus	Calobius			
520 Ochthebius	Ochthebius	quadricollis	heeri	VVOII5	ston, 1854	Calobius	Ochthebius	Calobius		× :	
521 Ochthebius	Ochthebius	quadricollis	quadncollis	Muls	ant, 1844	Ochthebius	Ochthebius	Calobius		× ×	
222 Ocmnebius	Ocntheblus	quadricollis	steinbuenleri	Keitte	r, 1886	Calobius	Ocnthebius	Calobius		× ×	
523 Ocnthebius	Ocntheblus	quadricollis	urbanelliae	AUDIE	ilo, Irrizzino & De Blase, 2010	Calobius	Ocnthebius	Calobius		<	
524 Ocnthebius	Ocntrebius	rivalis	nimalayae	Jach,	1989	Ocninebius	Ocnthebius	Ocntrebus		×	
225 Octinebius	Ocnthebius	rvais	octoroveatus	г , л	958	Ochmebius	Ocnthebius	Ocntheblus		<	
5.26 Ocnthebius	Ochthebius	rvalis	rivalis	Chan	1920, 1920	Ochthebius	Ochthebius	Ochthebius		×	
52/ Ochthebius	Ochthebius	rvalis	wuznisnanensis	Jach,	2003	Ochthebius	Ochthebius	Ochthebius		×	
528 Ochinebius	Ocninebius	sugosus	andreasi	Jacn,	2003	Ochinebius	Ocntheblus	Ochinebius		< >	
520 Ochthebius	Ocntheblus	stugosus	andreasoldes	Jacn,	2003		Ocntreblus	Ochmebius		< >	
530 Ocnthebius	Ocntheblus	stugosus	asiopatoides	Jacn,	2003		Ocntheblus	Ocnmenus		< >	
531 Ochthebius	Ochthebius	stugosus	caligatus	Jach,	2003		Ochthebius	Ochthebius		×	
532 Ochinebius	Ochineblus	strigosus	castellanus	Jacri,	2003	Ocnureolus	Ocritreplus	Ochimebius		< >	
533 Ochinebius	Ochineblus	strigosus	eriicocerolaes 4. iiicocerolaes	Jacn,	2003	Ochthebius Ochthebius	Ochthebius	Ochtheblus		< >	
534 Ochthebius	Ochthabius	strigosus	ujanensis auandonannin	Jacii, Išob	2003	Ochthobius Ochthobius	Ochthobius	Ochthebius		< >	
530 OchineDius	Ochthabius	strigosus	guariyuuriyerisis IBE-DA617	uacri,	2003 Arithod	Ochthobius Ochthobius	Ochthobius	Ochthebius		< >	
537 Ochthabius	Ochthebius	surgusus etrianeus	iilanzhui		2003	Ochthebius	Ochthabius	Ochthabius		-	
538 Ochthehius	Ochthehius	strictostis	salahinsus	Pii 16	2000	Ochthehius	Ochthebius	Ochthehius		<	
539 Ochthebius (Ochthebius	striaosus	sichuanensis	Jäch.	2003	Ochthebius	Ochthebius	Ochthebius		< ×	
540 Ochthebius	Ochthebius	striaosus	stastnvi	Jäch.	2003	Ochthebius	Ochthebius	Ochthebius		×	
541 Ochthebius	Ochthebius	striaosus	striaoides	Jäch.	1998	Ochthebius	Ochthebius	Ochthebius		×	
542 Ochthebius	Ochthebius	strigosus	strigosus	Charr	ipion, 1921	Ochthebius	Ochthebius	Ochthebius		×	
543 Ochthebius	Ochthebius	strigosus	wangmiaoi	Jäch,	2003	Ochthebius	Ochthebius	Ochthebius		×	
544 Ochthebius	Ochthebius	strigosus	yaanensis	Jäch,	2003	Ochthebius	Ochthebius	Ochthebius		×	
545 Ochthebius	Ochthebius	sumatrensis	MNCN-AC16	unde	scribed	Ochthebius	Ochthebius	Ochthebius		۲ ×	
546 Ochthebius	Ochthebius	sumatrensis	sumatrensis	Jäch,	2001	Ochthebius	Ochthebius	Ochthebius			×
547 Ochthebius	Ochthebius	vandykei	ahni	Jäch	& Delgado, 2014	Ochthebius	Ochthebius	Ochthebius		×	
548 Ochthebius	Ochthebius	vandykei	asanoae	Jäch	& Delgado, 2014	Ochthebius	Ochthebius	Ochthebius		×	
549 Ochthebius	Ochthebius	vandykei	granulosus	Satô,	1963	Ochthebius	Ochthebius	Ochthebius		×	
550 Ochthebius	Ochthebius	vandykei	hayashii	Jäch	& Delgado, 2014	Ochthebius	Ochthebius	Ochthebius		×	
551 Ochthebius	Ochthebius	vandykei	matsudae	Jach	& Delgado, 2014	Ochthebius	Ochthebius	Ochthebius		×	
552 Ocnthebius	Ocnthebius	vandykei	parki	Jach	& Deigado, 2014	Ochthebius	Ochthebius	Ochthebius		× .	>
553 Ocnineblus	Ochthebius Ochthebius	vandykei	vandykei	Nnisc I äck	n, 1944 2 Doloodo 2014	Ochthobius	Ochtheblus	Ochthebius Ochthebius		>	<
555 Ochthebius	Ochinebius	variuykei incertae sedis	yosmionii bali mistanimis	Ferro	x Delgado, 2014 1048	Ochthebius Ochthebius	Ochthabius	Ochthebius		-	
556 Ochthehius	Ochthebius	incertae sedis	candatus	Frival	- 10-00 diszky 1883	Ochthebius	Ochthebius	Ochthehius		<	
557 Ochthebius	Ochthebius	incertae sedis	fissicollis	Janss	ens, 1970	Ochthebius	Ochthebius	Ochthebius		: ×	
558 Ochthebius	Ochthebius	incertae sedis	pierottii	Ferro	1979	Ochthebius	Ochthebius	Ochthebius		×	
559 Ochthebius	incertae sedis		eremita	Knisc	h, 1922	Ochthebius	Ochthebius	incertae sedis			×
											continued on the next name

New classification				current classific	stion	
No genus subgenus	species group species	subspecies author	taxonomic act original genus	genus	subgenus obs.	phyl. PAL AFR AUR NAR NTR ORR ANR
560 Protochthebius	CONVEXUS	Perkins, 1998	Protochthebius	Protochthebius		×
561 Protochthebius	jagthanae	Champion, 1921	Ochthebius	Protochthebius		×
562 Protochthebius	jendeki	Jäch, 1997	Protochthebius	Protochthebius		×
563 Protochthebius	loebli	Perkins, 1998	Protochthebius	Protochthebius		× :
564 Protochthebius	satoi	Perkins, 1997	Protochthebius	Protochthebius		×
spideutucotora coc	schlinammeri		Protochineblus	Protochtheblus		<
Soo Protochinebius	smetanal	Perkins, 1996	Protochineblus	Protocntneblus		~
501 Prototympanogaster	IOI OTI OWERISIS	Derkins, 2010	Turonomaticum	er Prototympanogas Trimpollopotrium	Jai	< >
508 Iympallopatrum	aureolum	Perkins, 2004	I ympanopatrum	iympailopatrum T		< >
569 Tympallopatrum	callosum	Perkins, 2004	Tympanopatrum	Tympallopatrum		× :
570 Tympallopatrum	curvicostum	Perkins, 2004	Tympanopatrum	Tympallopatrum		×
571 Tympallopatrum	longitudum	Perkins, 1997	Tympallopatrum	Tympallopatrum	:	× :
572 Tympanogaster Hygrotympa	nogaster arcuata	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
573 Tympanogaster Hygrotympa	nogaster atroargenta	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	× :
574 Tympanogaster Hygrotympa	nogaster barronensis	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
575 Tympanogaster Hygrotympa	nogaster	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	× :
576 Tympanogaster Hygrotympa	nogaster bryosa	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
577 Tympanogaster Hygrotympa.	nogaster buffalo	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
578 Tympanogaster Hygrotympa.	nogaster canobolas	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
579 Tympanogaster Hygrotympa.	nogaster cascadensis	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
580 Tympanogaster Hygrotympa.	nogaster clandestina	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
581 Tympanogaster Hygrotympa	nogaster clypeata	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
582 Tympanogaster Hygrotympa	nogaster coopracambra	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
583 Tympanogaster Hygrotympa	nogaster comutus	Janssens, 1967	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
584 Tympanogaster Hygrotympa.	nogaster cudgee	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
585 Tympanogaster Hygrotympa.	nogaster decepta	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
586 Tympanogaster Hygrotympa	nogaster duobifida	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
587 Tympanogaster Hygrotympa	nogaster grampians	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
588 Tympanogaster Hygrotympa	nogaster gushi	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
589 Tympanogaster Hygrotympa	nogaster kuranda	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
590 Tympanogaster Hygrotympa	nogaster macrognatha	Lea, 1926	Ochthebius	Tympanogaster	Hygrotympanogaster	×
591 Tympanogaster Hygrotympa	nogaster	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
592 Tympanogaster Hygrotympa.	nogaster megamorpha	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
593 Tympanogaster Hygrotympa.	nogaster merrijig	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
594 Tympanogaster Hygrotympa.	nogaster nargun	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
595 Tympanogaster Hygrotympa.	nogaster newtoni	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
596 Tympanogaster Hygrotympa.	nogaster novicia	Blackburn, 1896	Ochthebius	Tympanogaster	Hygrotympanogaster	×
597 Tympanogaster Hygrotympa	nogaster porchi	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
598 Tympanogaster Hygrotympa	nogaster punctata	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
599 Tympanogaster Hygrotympa	nogaster schizolabra	Deane, 1933	Ochthebius	Tympanogaster	Hygrotympanogaster	×
600 Tympanogaster Hygrotympa	nogaster spicerensis	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×
601 Tympanogaster Hygrotympa	nogaster storeyi	Perkins, 2006	Tympanogaster	Tympanogaster	Hygrotympanogaster	×÷
602 Tympanogaster Hygrotympa	nogaster subcostata	Deane, 1933	Ochthebius	Tympanogaster	Hygrotympanogaster	××
603 Iympanogaster Hygrotympa	nogaster tabula	Perkins, 2006	l ympanogaster	rympanogaster T	Hygrotympanogaster	~ >
606 Trimonogaster Hygrotympä	nogaster tallawarra	Perkins, 2006	Tumpanogaster	Tympanogaster	Hydrotympanogaster	< >
606 Tumpanogaser Hurrotumpa	nogastar truncata	Perkins 2000	Tumpanogaster	Tympanogaster	hydrolympanogaster Hydrolympanogaster	< >
607 Tympanogaser Hydrofympa	nogaster wahroonga	Perkins 2006	Tumpanoraster	Tumpanogaster	Humbhandaster Humbhandaster	< ×
608 Tympanogaster Plesiotympa	nogaster costata	Deane, 1933	Ochthebius	Tympanogaster	Plesiotympanogaster	: ×
609 Tympanogaster Plesiotympa.	nogaster thaverae	Perkins, 2006	Tympanogaster	Tympanogaster	Plesiotympanogaster	×
610 Tympanogaster Topotympan	ogaster crista	Perkins, 2006	Tympanogaster	Tympanogaster	Topotympanogaster	×
611 Tympanogaster Topotympan	ogaster dorsa	Perkins, 2006	Tympanogaster	Tympanogaster	Topotympanogaster	×
612 Tympanogaster Topotympan	ogaster finniganensis	Perkins, 2006	Tympanogaster	Tympanogaster	Topotympanogaster	×
613 Tympanogaster Topotympar.	ogaster intricata	Perkins, 2006	Tympanogaster	Tympanogaster	Topotympanogaster	×
614 Tympanogaster Topotympar.	logaster juga	Perkins, 2006	Tympanogaster	Tympanogaster	Topotympanogaster	××
015 Iympanogaster Iopouympan	ogaster monueuru	rerkins, ∠uuo	I ympariogasier	Iympanogaster	Iopotympanogaster	 continued on the next page

Table S1: (Continu	(pər						
New classification	-				current classifica	tion	
No genus	subgenus	species group species subspecies	author	taxonomic act original genus	genus	subgenus obs.	phyl. PAL AFR AUR NAR NTR ORR ANR
616 Tympanogaster	Topotympanogaster	parallela	Perkins, 2006	Tympanogaster	Tympanogaster	Topotympanogaster	×
617 Tympanogaster	Topotympanogaster	summa	Perkins, 2006	Tympanogaster	Tympanogaster	Topotympanogaster	×
618 Tympanogaster	Tympanogaster	aldinga	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
619 Tympanogaster	Tympanogaster	amaroo	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
620 Tympanogaster	Tympanogaster	ambigua	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
621 Tympanogaster	Tympanogaster	bluensis	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
622 Tympanogaster	Tympanogaster	cardwellensis	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
623 Tympanogaster	Tympanogaster	cooloogatta	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
624 Tympanogaster	Tympanogaster	cunninghamensis	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
625 Tympanogaster	Tympanogaster	darlingtoni	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
626 Tympanogaster	Tympanogaster	deanei	Perkins, 1979	Ochthebius	Tympanogaster	Tympanogaster	+ ×
627 Tympanogaster	Tympanogaster	dingabledinga	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
628 Tympanogaster	Tympanogaster	dorrigoensis	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
629 Tympanogaster	Tympanogaster	eungella	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
630 Tympanogaster	Tympanogaster	foveova	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
631 Tympanogaster	Tympanogaster	hypipamee	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
632 Tympanogaster	Tympanogaster	illawarra	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
633 Tympanogaster	Tympanogaster	jaechi	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
634 Tympanogaster	Tympanogaster	lamingtonensis	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
635 Tympanogaster	Tympanogaster	magarra	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
636 Tympanogaster	Tympanogaster	millaamillaa	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
637 Tympanogaster	Tympanogaster	modulatrix	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	+ ×
638 Tympanogaster	Tympanogaster	moondarra	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
639 Tympanogaster	Tympanogaster	mysteriosa	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
640 Tympanogaster	Tympanogaster	obcordata	Deane, 1931	Ochthebius	Tympanogaster	Tympanogaster	×
641 Tympanogaster	Tympanogaster	ovipennis	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
642 Tympanogaster	Tympanogaster	pagetae	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
643 Tympanogaster	Tympanogaster	perpendicula	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
644 Tympanogaster	Tympanogaster	plana	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
645 Tympanogaster	Tympanogaster	precariosa	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
646 Tympanogaster	Tympanogaster	protecta	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
647 Tympanogaster	Tympanogaster	ravenshoensis	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
648 Tympanogaster	Tympanogaster	robinae	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
649 Tympanogaster	Tympanogaster	serrata	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
650 Tympanogaster	Tympanogaster	tenax	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
651 Tympanogaster	Tympanogaster	tora	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
652 Tympanogaster	Tympanogaster	volata	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
653 Tympanogaster	Tympanogaster	wattsi	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
654 Tympanogaster	Tympanogaster	weiri	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×
655 Tympanogaster	Tympanogaster	wooloomgabba	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	×

Table S2: Current classification of C	Ochthebiini, with synonymies and type	species (following Jäch & Skale, 2015 and	Jäch et al., 2016). In bold, taxa included in the phylogeny.
genus	snpgenus	synonyms	type species
Aulacochthebius Kuwert, 1887: 376			Ochthebius exaratus Mulsant, 1844
		Chirochthebius Kuwert, 1887: 383	Ochthebius narentinus Reitter, 1885
		Eochirochthebius leniștea 1988: 220	Ochthebius narentinus Reitter, 1885
Gymnanthelius Perkins, 1997: 139			Ochthebius hieroglyphicus Deane, 1931
Gymnochthebius Orchymont, 1943: 3	8		Ochthebius nittidus LeConte 1850
Hughleechia Perkins, 1981: 300			Hughleechia giulianii Perkins, 1981
Meropathus Enderlein, 1901: 121			Meropathus chuni Enderlein, 1901
Micragasma Sahlberg, 1900: 199			Micragasma paradoxum Sahlberg, 1900
Ochthebius Leach, 1815: 95	Asiobates Thomson, 1859: 15		Ochthebius rufimarginatus Stephens, 1829 (=bicolon Germar, 1824)
		Trymochthebius Kuwert, 1887: 380	Ochthebius bicolon German, 1824
		Homalochthebius Kuwert, 1887: 383	Helophorus minimus Fabricius, 1792
		Lunzochthebius Ieniștea, 1988: 220	Ochthebius haberfelneri Reitter, 1890
		Mimasiobates leniștea, 1988: 220	Ochthebius montanus Frivaldszky, 1881
	Calobius Wollaston, 1854: 92 ¹		Calobius heeri Wollaston, 1854
		Calochthebius Kuwert, 1887: 372	Ochthebius quadricollis Mulsant, 1844
	Enicocerus Stephens, 1829: 196		Enicocerus viridiaeneus Stephens, 1829 (<i>⇒exsculptus</i> Germar, 1824)
		Henicocerus Agassiz, 1846: 178	Enicocerus viridiaeneus Stephens, 1829 (⇒ exsculptus Germar, 1824)
		Cyrtochthebius Kuwert, 1887: 371	Ochthebius exsculptus Germar, 1824
		Sphaerochthebius Kuwert, 1887: 371	Ochthebius gibbosus Germar, 1824
		Eosphaerochthebius leniştea, 1988: 218	Ochthebius gibbosus Germar, 1824
	Ochthebius Leach, 1815: 95 ²		Helophorus marinus Paykull, 1798
		Hymenodes Mulsant, 1844: 68	Ochthebius punctatus Stephens, 1829
		Cobalius Rey, 1886: 24 ³	Ochthebius lejolisii Mulsant & Rey, 1861
		Bothochius Rey, 1886: 53	Ochthebius nobilis, Villa & Villa, 1835
		Ochthobius Rey, 1886: 14	Helophorus marinus Paykull, 1798
		Doryochthebius Kuwert, 1887: 373	Ochthebius notabilis Rosenhauer, 1856
		Prionochthebius Kuwert, 1887: 373	Ochthebius lejolisii Mulsant & Rey, 1861
		Cheilochthebius Kuwert, 1887: 374	Ochthebius metallescens Rosenhauer, 1856
		Camptochthebius Kuwert, 1887: 377	Ochthebius bifoveolatus Waltl, 1835
		Odontochthebius Kuwert, 1887: 377	Ochthebius bifoveolatus Waltl, 1835
		Colpochthebius Kuwert, 1887: 379	Ochthebius punctatus Stephens, 1829
		Eccoptochthebius Kuwert, 1887: 379	Ochthebius difficilis Mulsant, 1844
		Acanthochthebius Kuwert, 1887:383	Ochthebius serratus Rosenhauer, 1856
		Pseudhydraena Acloque, 1896: 96	Helophorus marinus Paykull, 1798
		Liochthebius Sahlberg, 1900: 198	Ochthebius eburneus Sahlberg, 1900
		Neochthebius Orchymont, 1932: 43	<i>Hydraena vandykei</i> Knisch, 1924
		Notochthebius Orchymont, 1933: 408	<i>Hydraena capicola</i> Péringuey, 1892
			continued on the next page

Table S2: (Continued)			
genus	subgenus	synonyms	type species
		Nyxochthebius Orchymont, 1933: 408	Ochthebius rubripes Boheman, 1860
		Neohymenodes Ieniștea, 1988: 218	Ochthebius pedicularius Kuwert, 1887
		<i>Parahymenodes</i> leniştea, 1988: 218	Ochthebius metallescens Rosenhauer, 1856
		<i>Eocolpochthebius</i> leniștea, 1988: 219	Ochthebius punctatus Stephens, 1829
		<i>Metahymenodes</i> leniştea, 1988: 219	Ochthebius semisericeus Sainte-Claire Deville, 1914
		<i>Chaetochthebius</i> leniștea, 1988: 220	Ochthebius quadrifoveolatus Wollaston, 1854
		<i>Balfourochthebius</i> leniștea, 1988: 220	Ochthebius lindbergi Balfour-Browne, 1976 (<i>=balfourbrownei</i> Jäch, 1989)
Protochthebius Perkins, 1997: 154			Protochthebius satoi Perkins, 1997
Prototympanogaster Perkins, 2018			Prototympanogaster lordhowensis Perkins, 2018
Tympallopatrum Perkins, 1977: 147			Tympallopatrum longitudum Perkins, 1997
Tympanogaster Janssens, 1967: 8	Hygrotympanogaster Perkins, 2006: 11		Tympanogaster maureenae Perkins, 2006
	Plesiotympanogaster Perkins, 2006: 12		Tympanogaster thayerae Perkins, 2006
	Topotympanogaster Perkins, 2006: 11		Tympanogaster crista Perkins, 2006
	Tympanogaster Janssens, 1967: 8		Ochthebius longipes Deane, 1931 (=deanei Perkins, 1979)
 Considered as the "Calobius lineage" The subgenus Angiochthebius was de Considered as a subgenus of Ochthe. 	of <i>Ochthebiu</i> s s.s. by Sabatelli <i>et al.</i> (2016). sscribed by Jäch & Ribera (2018). <i>brus</i> by Sabatelli <i>et al.</i> (2016).		

Table S3: List of material used in t	the molecular phylogeny,	including voucher numb	ers, accesion	n numbers of the sequences and locality dat	ta. In bold, newly obtained sequ	ences.
id family subfamily genus	subgenus sp. group	species subspecies	voucher	locality	leg	COI-5 COI-3 16S 18S 28S
1 Hydraenidae Hydraeninae Hydraena	Holcohydraena	arenicola	MNCN-AI504	California (USA); Trinity Co., Forest Glen, Rattlesnake Creek 22.6.2000	I. Ribera & A. Cieslak	LT391251 HM588381 HM588525 HM588584 HM588441
2 Hydraenidae Hydraeninae Hydraena	Holcohydraena	ngosa	MNCN-AI392	Spain; Palencia, Castil de Vela 5.2005	L.F. Valladares	HE970908 HM588366 HM588510 HM588575 HM588432
3 Hydraenidae Hydraeninae Hydraena	Hydraena	altamirensis	MNCN-AI425	Spain; Ciudad Real, Navas de Estena, Río Estena 18.8.2005	A. Castro	HF947944 HM588371 HM588515 HM588578 HM588435
4 Hydraenidae Hydraeninae Hydraena	Hydraena	croatica	IBE-RA52	Corfu (Greece); South Corfu, 2 km S Lefkimi, stream 20.7.2009	M.A. Jäch	LT391252 HE970794 HE971027 HE970936 HE970982
5 Hydraenidae Hydraeninae Hydraena	Hydraena	dochula	MNCN-AI518	Bhutan; Timphu, 12 km east Timphu Town, stream 24.11.2005	M.A. Jäch	LT991253 FM946170 FM946171 FM946174 FM946175
6 Hydraenidae Hydraeninae Hydraena	Hydraena	hayashii	MNCN-AI691	Japan; Honshu, Shimane Pref., Mitarai-taki, Jinji river 19.2.2006	M. Hayashi	LT991254 HM588389 HM588533 HM588590 HM588447
7 Hydraenidae Hydraeninae Hydraena	Hydraena	pygmaea	MNCN-AI346	Austria: Niederösterreich, Schwarzenbach, Sankt Veit an der Gölsen 6.8.2005	I. Ribera & A. Cieslak	HE970901 HM588353 HM588497 HM588572 HM588429
8 Hydraenidae Hydraeninae Hydraena	Hydraena	riberai	MNCN-AI568	Morocco; Assif-Oumarhouz, Oued Massa 25.4.2000	I. Ribera	LT991255 HM588388 HM588532 HM588589 HM588446
9 Hydraenidae Hydraeninae Hydraena	Hydraenopsis	palawanensis	MNCN-AH133	Philippines; North Palawan, Taytay, Manguao Stream 2007	H. Freitag	LT991256 HM588309 HM588454 HM588546 HM588403
10 Hydraenidae Hydraeninae Hydraena	Monomadraena	impressicollis	MNCN-AI541	Madagascar; Montagne d'Ambre, Petit Cascade 12.2004	M. Balke	LT991257 HE970850 HE971081 HE970961 HE970998
11 Hydraenidae Hydraeninae Hydraena	Phothydraena	atrata	MNCN-AI314	Spain; Albacete, Robledo, Laguna del Arquillo 2.6.2002	I. Ribera & A. Cieslak	HE970895 HM588344 HM588488 HM588568 HM588425
12 Hydraenidae Hydraeninae Hydraena	Phothydraena	putearius	IBE-RA95	Oman; Al-Akhdar, Ghul 5.4.2010	I. Ribera, C. Hernando & A. Cieslak	LT991258 LT991448 HE971029 HE610241 HE610244
13 Hydraenidae Limnebiinae Laeliaena		sahlbergi	MNCN-HI19	India; Uttarakhand, 15 km north Bageshwar, River Falda 14.11.2006	M.A. Jäch	LN995192 LN995232 LN995260 LN995286 LT991039
14 Hydraenidae Limnebiinae Limnebius	Bilimneus	acupunctus	MNCN-AI582	Australia; South Australia, Cudlee Creek, River Torrens 14.1.2006	C.H.S. Watts	LN995196 LN995238 LN995266 LN995292 LN995353
15 Hydraenidae Limnebiinae Limnebius	Bilimneus	dioscoridus	IBE-RA728	Socotra (Yemen); Wadi Ayhaft 8.11.2010	J. Hájek	LN995198 LN995239 LT990690 LN995310 LN995355
16 Hydraenidae Limnebiinae Limnebius	Bilimneus	extraneus	IBE-RA89	Spain; Huelva, Encinasola, Río Barranco Frío 26.7.1998	I. Ribera	LN995199 HF931321 HF931544 LN995312 LN995357
17 Hydraenidae Limnebiinae Limnebius	Bilimneus	pollex	IBE-RA1019	Mauritius; Le Pouce, S Port Louis 29.11.2012	M.A. Jäch	LN995201 LT991449 LN995268 LN995294 LN995364
18 Hydraenidae Limnebiinae Limnebius	Bilimneus	wewalkai	IBE-RA108	Oman; Al-Akhdar, wadi Bani Awf 6.4.2010	I. Ribera, C. Hernando & A. Cieslak	LN995202 LN995241 LN995269 LN995295 LN995365
19 Hydraenidae Limnebiinae Limnebius	Limnebius	arenicolus	MNCN-AI466	California (USA); Trinity Co., Forest Glen, Rattlesnake Creek 22.6.2000	I. Ribera & A. Cieslak	LN995229 HF931204 HF931429 LN995344 LN995407
20 Hydraenidae Limnebiinae Limnebius	Limnebius	cordobanus	IBE-PA275	Spain; Teruel, Beceite, river Matarranya, El Parrisal 3.6.2006	I. Ribera	LT991259 HF931292 HF931527 LN995319 LN995368
21 Hydraenidae Limnebiinae Limnebius	Limnebius	crinifer	IBE-AR55	Sweden; Öland, Möckelmossen, ponds 22.5.2011	I. Ribera	LN995221 LN995255 LN995281 LN995305 LN995400
22 Hydraenidae Limnebiinae Limnebius	Limnebius	doderoi	MNCN-AI1174	Corsica (France); Cap Corse, Bettolacce 21.9.1999	I. Ribera & A. Cieslak	LN995222 HF931170 HF931389 LN995341 LN995401
23 Hydraenidae Limnebiinae Limnebius	Limnebius	hieronymi	IBE-AR22	Italy: Abruzzo National Park, Pescasseroli, Fiume Sangro 26.7.2010	I. Ribera & A. Cieslak	LN995212 LN995249 LN995276 LN995301 LN995381
24 Hydraenidae Limnebiinae Limnebius	Limnebius	levantinus	IBE-RA731	Iran; Fars, Arzhan oak nature reserve 29.4.2010	A. Skale	LN995206 LT991450 LN995273 LN995298 LN995376
25 Hydraenidae Limnebiinae Limnebius	Limnebius	millani	MNCN-AI920	Spain; Albacete, Paterna del Madera, Arroyo de la Fuenfría 30.7.1998	I. Ribera	LT991260 HE610235 HF931476 LT990834 LN995389
26 Hydraenidae Limnebiinae Limnebius	Limnebius	zaerensis	MNCN-AC14	Morocco; Rommani, tributary Oued Korifla 10.4.2007	I. Ribera, P. Aguilera & C. Hemando	LT991261 EU365868 EU365865 HE970937 HE970984
27 Hydraenidae Ochthebiinae Meropathus		zelandicus	MNCN-AI715	New Zealand; South Island, Papatowai, beach 7.12.2005	M. Thayer, A. Newton & J. Nunn	LT991262 LT991451 LT990691 LT990835 LT991040
28 Hydraenidae Ochthebiinae Tympanogaster	Hygrotympanogaster	schizolabra	IBE-AF167	Australia; Victoria, Beech Forest below Hopetoun Falls 21.7.2009	I. Ribera & A. Cieslak	LT991263 LT991452 LT990692 LT990836 LT991041
29 Hydraenidae Ochthebiinae Tympanogaster	Tympanogaster	deanei	MNCN-AI372	Australia; Queensland, 40 km SSE Brisbane, Cedar Creek Road, above Cedar Creek Falls 22.8.2004	M.A. Jäch	LT991264 LT991453 LT990693 LT990837 LT991042
30 Hydraenidae Ochthebiinae Tympanogaster	Tympanogaster	modulatrix	IBE-AN183	Australia; Queensland, Lamington NP, Morans falls 26.4.2014	J. Maté	LT991265 LT991454 LT990694 LT990838 LT991043
31 Hydraenidae Ochthebiinae Ochthebius	Angiochthebius	plesiotypus	MNCN-AI502	Chile; IX Región, Termas de Río Blanco 8.2.2001	M. Guerrero	LT991266 LT991455 LT990695 LT990839 LT991044
32 Hydraenidae Ochthebiinae Ochthebius	Angiochthebius	plesiotypus	MNCN-AI562	Chile; Región Metropolitana, Alto Cantillana 8.1.2001	M. Guerrero	LT991267 LT991456 LT990696 LT990840 LT991045
33 Hydraenidae Ochthebius Ochthebius	Asiobates bicolon	arator	IBE-AN185	Turkey; Uşak, Çatalbayır village 19.6.2012	N. Ertorun	LT991268 LT991457 LT990841 LT991046
						continued on the next page

A molecular phylogeny of the tribe Ochthebiini (Coleoptera, Hydraenidae, Ochthebiinae)

Table	e S3: (continued)										
id fan	nily subfamily genus	subgenus	sp. group	species subspecie	es voucher	locality	leg	COI-5 COI-3	16S	18S 28S	
34 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	auriculatus	MNCN-AH154	England (UK); S Devon, Dawlish Warren Saltmarsh 29.9.2007	D.T. Bilton	LT991269 HF93113	34 HF931352 LT	990842 LT991047	
35 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	bellieri	IBE-AN290	Spain; Albacete, Paterna del Madera, Arroyo de la Fuenfría 30.7.1998	I. Ribera	LT991270 LT99145	58 LT990697 LT	990843 LT991048	c
36 Hyv	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	bicolon	IBE-RA1171	England (UK); N Devon, 1 km S Hartland Quay, stream 28.7.2013	D.T. Bilton	LT991271 LT99145	59 LT990698 LT	990844 LT991049	c
37 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	bonnairei	MNCN-AI1272	Spain; Jaén, Santiago de la Espada, Río Zumeta 16.6.2006	à A. Millán & collaborators	LT991272 HF93117	77 HF931398 LT	990845 LT991050	~
38 Hyı	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	cantabricus cf.	MNCN-AI1027	Turkey; Kastamonu, Aşağı Kayı 27.4.2006	A. Castro	LT991273 HF9311	45 HF931364 LT	990846 LT991051	
39 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	corsicus	IBE-AN159	Corsica (France); Col de Bavella 14.5.2014	R. Vila	LT991274 LT99146	30 LT990699 LT	990847 LT991052	
40 Hyv	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	crenulatus	MNCN-AH159	Sicily (Italy); Parco dei Nebrodi, trail Lago Urio - Portella dell'Obolo 13.6.2007	P. Abellán & F. Picazo	LT991275 HF93113	36 HF931353 LT	990848 LT991053	
41 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	dilatatus	MNCN-AI792	Turkey; Bartin, between Topallar & Çakraz, calcareous stream 25.4.2006	I. Ribera	LT991276 HF93123	27 HF931456 LT	990849 LT991054	
42 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	ferroi	IBE-PB28	Spain; Huesca, Sta. Cruz de Serós, Barranco Carbonera 3.8.2013	I. Esteban	HG915303 LT99146	31 LT990700 LT	990850 LT991055	
43 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	figueroi	IBE-AN23	Spain; Cantabria, Río Soto 15.7.2014	D.T. Bilton	LT991277 LT99146	32 LT990701 LT	990851 LT991056	
44 Hyr	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	gagliardii	IBE-RA121	Italy: Toscana, Lorenzana, Gello Mattaccino, pond 26.5.2008	I. Ribera	LT991278 HF93130	01 LT990702 LT	990852 LT991057	
45 Hyr	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	heydeni	MNCN-AI390	Spain; Ourense, Sierra de Queixa, river San Lázaro 9.7.2005	I. Ribera & A. Cieslak	LT991279 HF93116	34 HF931419 LT	990853 LT991058	
46 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	immaculatus	IBE-AN434	Mallorca (Spain); Mallorca, Salines de Llevant 28.3.2016	I. Ribera & A. Cieslak	LT991280 LT99146	33 LT990703 LT	990854 LT991059	-
47 Hyr	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	irenae	MNCN-AI986	Spain; Navarra, Tudela, ditch near Balsa de Purguer 20.7.2004	I. Ribera & A. Cieslak	HG915302 HF93126	51 HF931497 LT	990855 LT991060	c
48 Hyı	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	jaimei	IBE-RA1081	Spain; Alicante, Albatera 12.5.2013	I. Esteban	LT991281 HG91530	07 LT990704 LT	990856 LT991061	
49 Hyr	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	lederi	IBE-AN63	Azerbaijan; Alishanli, 7 km NE Masally 8.5.2014	I. Ribera & A. Rudoy	LT991282 LT99146	34 LT990705 LT	990857 LT991062	
50 Hyı	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	lenkoranus	IBE-AN75	Azerbaijan; Gosmalijion, stream 7.5.2014	I. Ribera & A. Rudoy	LT991283 LT99146	55 LT990706 LT	990858 LT991063	
51 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	montanus	IBE-AN207	Greece; Evvoia, Seta, mountain stream 8.4.2013	I. Ribera & A. Cieslak	LT991284 LT99146	96 LT990707 LT	990859 LT991064	
52 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	opacus	MNCN-AI389	Italy; Liguria, 2 km E Cosio di Arroscia 31.7.2005	I. Ribera & A. Cieslak	LT991285 HF93119	33 HF931418 LT	990860 LT991065	
53 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	peregrinus	IBE-AN206	Greece: Sterea Ellada, Fokida, Itea, stream E of Kirra 7.4.2013	I. Ribera & A. Cieslak	LT991286 LT99146	57 LT990708 LT	990861 LT991066	
54 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	sp.	IBE-AN74	Azerbaijan; Elabad, road to Garaybayli, stream 4.5.2014	I. Ribera & A. Rudoy	LT991287 LT99146	38 LT990709 LT	990862 LT991067	
55 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	striatus	MNCN-AI787	Turkey; Bartin, between Amasra & Inpiri, spring & stream 25.4.2006	I. Ribera	LT991288 HF93122	26 HF931455 LT	990863 LT991068	
56 Hyı	draenidae Ochthebiinae Ochthebius	Asiobates	bicolon	stygialis	IBE-AN160	Turkey; Antalya, 1 km N Hacıyusuflar 24.6.2014	D.T. Bilton	LT991289 LT99146	39 LT990710 LT	990864 LT991069	~
57 Hyv	draenidae Ochthebiinae Ochthebius	Asiobates	minimus	aeneus	MNCN-AI914	Morocco; Ou-Maghous, Amaghouz 24.4.2000	I. Ribera, P. Aguilera, C. Hernando & A. Millán	LT991290 HF93124	40 HF931472 LT	990865 LT991070	~
58 Hyı	draenidae Ochthebiinae Ochthebius	Asiobates	minimus	alpinus	IBE-RA1114	Belarus; Berezinsky Biosphere Reserve 24.6.2013	I. Ribera	LT991291 LT99147	70 LT990711 LT	990866 LT991071	
59 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	minimus	andreiini	IBE-AN20	Ethiopia; Amhara, 30 km NE Gashena 13.6.2014	R. Vila & G. Talavera	LT991292 LT99147	71 LT990712 LT	990867 LT991072	
60 Hyv	draenidae Ochthebiinae Ochthebius	Asiobates	minimus	andreinii cf.	IBE-AN104	Ethiopia; Oromia, Bale Mountains, Goba Forest, Togona River 22.2.2014	M.A. Jäch	LT991293 LT99147	72 LT990713 LT	990868 LT991073	
61 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	minimus	andronius	MNCN-AI498	South Africa; West Cape, Prince Albert Road, pond 23.3.2001	I. Ribera & A. Cieslak	LT991294 LT99147	73 LT990714 LT	990869 LT991074	
62 Hyr	draenidae Ochthebiinae Ochthebius	Asiobates	minimus	discretus	MNCN-AI503	California (USA); Trinity Co., Forest Glen, Rattlesnake Creek 22.6.2000	I. Ribera & A. Cieslak	LT991295 LT99147	74 LT990715 LT	990870 LT991075	15
63 Hyı	draenidae Ochthebiinae Ochthebius	Asiobates	minimus	flavipes	IBE-RA437	Slovakia; Hámske tŕstie, near Číčov, ditch 7.6.2009	I. Ribera	LT991296 HF93131	15 LT990716 LT	990871 LT991076	
64 Hyu	draenidae Ochthebiinae Ochthebius	Asiobates	minimus	hokkaidensis	IBE-AF213	Japan; Hokkaido, Togeshita, Rumoi-shi 18.7.2007	H. Yoshitomi	HF93112	25 HF931344 LT	990872 LT991077	
65 Hyı	draenidae Ochthebiinae Ochthebius	Asiobates	minimus	minimus	MNCN-AI447	Slovakia; Banská Bystrica Region, Cerovo 2005	via R.G. Beutel	HE970917 HE97084	42 HE971074 HE	970955 HE970995	10
66 Hyı	draenidae Ochthebiinae Ochthebius	Asiobates	minimus	remotus	MNCN-AI1030	Turkey; Karabük, stream in Çayörengüney 28.4.2006	A. Castro	LT991297 HF93114	48 HF931367 LT	990873 LT991078	
								:	continued on	the next page	l m

Table S3: (continued)	,									
id family subfamily genus	subgenus	sp. group	species	subspecies	voucher	locality	leg	COI-5 COI-3	16S	18S 28S
67 Hydraenidae Ochthebiinae Ochthebius	Asiobates	minimus	snsojnbru		MNCN-AI637	Gran Canaria (Spain); Moya, Barranco de Azuaje 15.4.2001	I. Ribera & A. Cieslak	LT991298 HF931219) HF931447 LT	90874 LT991079
68 Hydraenidae Ochthebiinae Ochthebius	Asiobates	minimus	sanabrensis		MNCN-AH75	Spain; Zamora, Parque Natural Lago Sanabria, Laguna de la Yegua 4.7.2007	L.F. Valladares	LT991299 EU660055	5 HF931357	LT 991 080
69 Hydraenidae Ochthebiinae Ochthebius	Asiobates	minimus	sp.		IBE-AN292	Alberta (Canada); 2 km W Lundbreck 27.6.2000	I. Ribera & A. Cieslak	LT991300 LT991475	LT990717 LT	90875 LT991081
70 Hydraenidae Ochthebiinae Ochthebius	Asiobates	minimus	sp.		IBE-AN97	Ethiopia; Oromia, Jemjem Forest, small stream 25.2.2014	M.A. Jäch	LT991301 LT991476	LT990718 LT	190876 LT991082
71 Hydraenidae Ochthebiinae Ochthebius	Asiobates	minimus	sp.		IBE-AN93	Ethiopia; Amhara, Debark, Simien Mountains 18.6.2014	R. Vila & G. Talavera	LT991302 LT991477	. LT990719 LT	90877 LT991083
72 Hydraenidae Ochthebiinae Ochthebius	Asiobates	puncticollis	puncticollis		MNCN-AI1274	California (USA); Santa Barbara Co., Sedgewick Reserve 6.7.2006	A.E.Z. Short	LT991303 LT991478	LT990720	LT991084
73 Hydraenidae Ochthebiinae Ochthebius	Aulacochthebius		exaratus		MNCN-AI453	Tunisia; road Jendouba-Makthar, 1 km NW crossroad to Mt. Kebbouch 24,10.2001	I. Ribera & A. Cieslak	LT991304 HF931202	E HF931427	190878 LT991085
74 Hydraenidae Ochthebiinae Ochthebius	Aulacochthebius		libertarius		MNCN-AI421	Morocco; Ou-Maghous, Amaghouz 24.4.2000	I. Ribera, P. Aguilera, C. Hernando & A. Millán	LT991305 HF931196	6 HF931421 LT	90879 LT991086
75 Hydraenidae Ochthebiinae Ochthebius	Aulacochthebius		narentinus		IBE-AF161	Slovakia; Studienka, Rudava river 5.6.2009	I. Ribera	LT991306 HF931120) HF931338 LT	90880 LT991087
76 Hydraenidae Ochthebiinae Ochthebius	Aulacochthebius		perlaevis		MNCN-AI548	Madagascar; Ankarana, 1er canyon, river 12.2004	M. Balke	LT991307 HF931211	HF931437 LT	90881 LT991088
77 Hydraenidae Ochthebiinae Ochthebius	Aulacochthebius		.ds		IBE-AN390	South Africa; West Cape, Baardskeerdersbos, Boesmans River 10.5.2010	J. Den Heijer & A. Hidalgo-Galiana	LT991308 LT991479		90882 LT991089
78 Hydraenidae Ochthebiinae Ochthebius	Aulacochthebius		sp.		MNCN-AI499	South Africa; West Cape, 3 km SE Franschhoek 25.3.2001	I. Ribera & A. Cieslak	LT991309 LT991480	LT990721 LT	90883 LT991090
79 Hydraenidae Ochthebiinae Ochthebius	Aulacochthebius		sp.		MNCN-AI501	South Africa: Eastern Cape, Kareedouwberg, river in Skoop Drif 23.3.2001	I. Ribera & A. Cieslak	LT991310 HF931207	' HF931432 LT	90884 LT991091
80 Hydraenidae Ochthebiinae Ochthebius	Aulacochthebius		sp.		MNCN-AI519	Bhutan; Sarpang, 11 km NW Sarpang, Bhur Khola river 27.11.2005	M.A. Jäch	LT991311 LT991481	LT990722 LT	90885 LT991092
81 Hydraenidae Ochthebiinae Ochthebius	Aulacochthebius		sp.		MNCN-AI520	Bhutan; Punakha, 16 km NW Punakha, Mo Chhu river 28:11.2005	M.A. Jäch	LT991312 LT991482	LT990723 LT	90886 LT991093
82 Hydraenidae Ochthebiinae Ochthebius	Aulacochthebius		sp.		IBE-RA1155	Tanzania; Mwanza Region, near Kashishi, ponds 24.7.2010	R. Sites & A. Mbogho	LT991313 LT991483	LT990724 LT	90887 LT991094
83 Hydraenidae Ochthebiinae Ochthebius	Cobalius		adriaticus	adriaticus	IBE-AN787	Croatia; Trsteno, rockpools 5.5.2017	A. Faille, J. Fresneda & I. Ribera	LT991314 LT991484	LT990725 LT	90888 LT991095
84 Hydraenidae Ochthebiinae Ochthebius	Cobalius		celatus		IBE-AN441	Cyprus; Akamas peninsula, Lara beach 29.4.2016	A. Millán, I. Ribera, J. Velasco & A. Villastrigc	0 LT991315 LT991485	LT990726 LT	90889 LT991096
85 Hydraenidae Ochthebiinae Ochthebius	Cobalius		freyi		IBE-RA1197	Azores (Portugal); Terceira, São Pedro, rockpools 4.9.2012	I. Ribera	LT991316 LT991486	LT990727 LT	90890 LT991097
86 Hydraenidae Ochthebiinae Ochthebius	Cobalius		lejolisii		MNCN-AI513	Spain; Pontevedra, Nigran, Playa Patos 3.10.2005	J. Garrido	LT991317 HF931206	8 HF931433 LT	90891 LT991098
87 Hydraenidae Ochthebiinae Ochthebius	Cobalius		serratus		MNCN-AI1194	Morocco; El Ouedaya, Oued Sebt 18.4.2006	A. Millán & collaborators	LT991318 HF931171	HF931391 LT	90892 LT991099
88 Hydraenidae Ochthebiinae Ochthebius	Cobalius		subinteger		MNCN-AI432	Corsica (France); Cap Corse, Port de Centuri 20.9.2000	I. Ribera & A. Cieslak	LT991319 HF931200) HF931425 LT	90893 LT991100
89 Hydraenidae Ochthebiinae Ochthebius	Enicocerus		aguilerai		MNCN-AI387	Spain; Ávila, Arenas de San Pedro, río Pelayo 15.5.2005	I. Ribera	HF947939 GU14376	1 GU143728 GU	143770 GU143778
90 Hydraenidae Ochthebiinae Ochthebius	Enicocerus		colveranus		MNCN-AI791	Turkey; Bartın, between Topallar & Çakraz, calcareous stream 25.4.2006	I. Ribera	LT991320 GU14374	4 GU143733 GU	143768 GU143776
91 Hydraenidae Ochthebiinae Ochthebius	Enicocerus		exsculptus		MNCN-AI374	Spain; Barcelona, Guardiola del Berguedà, torrent Gavarrós 25.7.2005	I. Ribera	LT991321 GU14376:	3 GU143741 GU	143772 GU143780
92 Hydraenidae Ochthebiinae Ochthebius	Enicocerus		exsculptus cf.		MNCN-AI925	Spain; Albacete, Sierra de Segura, 10 km N Yeste, Rio Tús 10.4.2003	V. Assing & P. Wunderle	LT991322 GU143750	0 GU143737 LT	90894 LT991101
93 Hydraenidae Ochthebiinae Ochthebius	Enicocerus		gibbosus		MNCN-AI365	Italy; Piemonte, Móngia, torrente Móngia 31.7.2005	I. Ribera & A. Cieslak	LT991323 GU143759	5 GU143727 GU	143769 GU143777
94 Hydraenidae Ochthebiinae Ochthebius	Enicocerus		granulatus		MNCN-AI427	Austria: Niederösterreich, Kleiner Ötscherbach, Langau 25.9.2005	M.A. Jäch	LT991324 GU14376	5 GU143725 GU	143774 GU143782
95 Hydraenidae Ochthebiinae Ochthebius	Enicocerus		halbherri		MNCN-AH190	Italy; Emilia Romagna, Bosco, Torrente Parma 24.5.2008	I. Ribera	LT991325 GU143764	4 GU143736 GU	143773 GU143781
96 Hydraenidae Ochthebiinae Ochthebius	Enicocerus		legionensis		MNCN-AI507	Spain; León, Puerto de Panderrueda 12.7.2005	L.F. Valladares	HF947941 GU143762	2 GU143735 GU	143771 GU143779
97 Hydraenidae Ochthebiinae Ochthebius	Enicocerus		melanescens		MNCN-AI344	Austria; Niederösterreich, Schwarzenbach, Sankt Veit an der Gölsen 6.8.2005	I. Ribera & A. Cieslak	HE970900 GU143766	5 GU143743 GU	143775 GU143783
98 Hydraenidae Ochthebiinae Ochthebius	Enicocerus		saboorii		IBE-RA739	Iran; Mazandaran, near Nowshar, Kheiroud Kenar Forest 2.5.2010	A. Skale	LT991326	LT990728 LT	90895 LT991102
99 Hydraenidae Ochthebiinae Ochthebius	Gymnanthelius		opacicollis		IBE-AF162	Australia; Victoria, Allambee, 19 km N Leongatha 8.7.2009	I. Ribera & A. Cieslak	LT991327 LT991487	. LT990729 LT	90896 LT991103
									continued on	the next page

Table S3: (continued)											
id family subfamily genus	subgenus	sp. group	species subspe	cies voucher	locality	leg	COI-5	COI-3	16S	18S	28S
100 Hydraenidae Ochthebiinae Ochthebius	Gymnanthelius		porchi	IBE-AF164	Australia; Victoria, Tarra-Bulga NP, River Tarra 9.7.2009	I. Ribera & A. Cieslak	LT991328	LT991488 LT	990730 LT	90897 LTS	91104
101 Hydraenidae Ochthebiinae Ochthebius	Gymnochthebius	australis	australis	MNCN-AI583	Australia: South Australia, 1 km W Cudlee Creek, River Torrens 14.1.2006	C.H.S. Watts	LT991329	LT991489 LT	990731 LTS	90898 LTS	91105
102 Hydraenidae Ochthebiinae Ochthebius	Gymnochthebius	australis	lividus	IBE-AF163	Australia; Victoria, Tarra-Bulga NP, River Tarra 9.7.2009	I. Ribera & A. Cieslak	LT991330	LT991490 LT	990732 LT	90899 LTS	91106
103 Hydraenidae Ochthebiinae Ochthebius	Gymnochthebius	australis	brobus	MNCN-AI584	Australia: South Australia, 1 km W Cudlee Creek, River Torrens 14.1.2006	C.H.S. Watts	LT991331	LT991491 LT	990733 LT(90900 LTS	91107
104 Hydraenidae Ochthebiinae Ochthebius	Gymnochthebius	australis	setosus	IBE-AF165	Australia; Victoria, Tarra-Bulga NP, River Tarra 9.7.2009	I. Ribera & A. Cieslak	LT991332	LT991492 LT	990734 LT	90901 LTS	91108
105 Hydraenidae Ochthebiinae Ochthebius	Gymnochthebius	fossatus	fossatus	IBE-AN498	Dominican Republic; Independencia, La Colonia 15.8.2014	A. Deler-Hernández, M. Fikácek & M. Gimmel	LT991333	LT991493 LT	990735 LT(90902 LTS	91109
106 Hydraenidae Ochthebiinae Ochthebius	Gymnochthebius	fossatus	germaini	MNCN-AI454	Chille: IX Región, 5 km E Lonquimay, road to Lolén 26.1.1999	I. Ribera & M. Guerrero	LT991334	LT991494 LT	990736 LT	90903 LTS	91110
107 Hydraenidae Ochthebiinae Ochthebius	Gymnochthebius	fossatus	peruvianus	MNCN-AI689	Peru; San Clemente, km 222 Panamericana Sur 31.8.2005	P. Aguilera	LT991335	LT991495 LT	990737 LT	90904 LT	91111
108 Hydraenidae Ochthebiinae Ochthebius	Gymnochthebius	fossatus	sp.	MNCN-AI569	Chile; Chiloé, 6 km E Huillinco, river in Notuco 3.2.1999	I. Ribera & M. Guerrero	LT991336	LT991496 LT	990738 LT	90905 LTS	91112
109 Hydraenidae Ochthebiinae Ochthebius	Hughleechia		giuliani	MNCN-AI716	Australia; West Australia, Peron Point 2.10.2003	C.H.S. & G.A. Watts	LT991337	LT991497 LT	990739 LT	190906 LTS	91113
110 Hydraenidae Ochthebiinae Ochthebius	Micragasma		paradoxum	IBE-AF116	Russia; Volgogradskaya Oblast, Lake Elton, residual pools 17.4.2008	A. Prokin	LT991338	HF931114 HF	931331 LT	90907 LTS	91114
111 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	andraei	patergazellae	IBE-RA735	United Arab Emirates; Ajman, salt water pools NE Ajman City 25.1.2010	M.A. Jäch	LT991339	LT991498 LT	990740 LT	90908 LTS	91115
112 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	atriceps	andalusicus	IBE-PA296	Spain; Cádiz, Salinas de Hortales 10.11.2003	A. Millán & collaborators	LT991340	HF931297 LT	990741 LT	90909 LTS	91116
113 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	atriceps	anxifer	MNCN-AI945	Morocco; Immouzzer Ida Ou Tanane, Assif Tanit 21.4.2001	I. Ribera & A. Cieslak	LT991341	HF931247 HF	931482 LT9	90910 LTS	91117
114 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	atriceps	atriceps	IBE-AN210	Tunisia; road Jendouba-Makthar, 1 km NW crossroad to Mt. Kebbouch 24,10.2001	I. Ribera & A. Cieslak	LT991342	LT991499 LT	990742 LT	90911 LTS	91118
115 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	atriceps	burjkhalifa	IBE-RA737	United Arab Emirates; Ajman, salt water pools NE Ajman City 25.1.2010	M.A. Jäch	LT991343	LT991500 LT	990743 LT	90912 LTS	91119
116 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	atriceps	dentifer	IBE-PA290	Spain; Navarra, Barranco Salado de Mendavia 30.10.2008	A. Millán & collaborators	LT991344	HF931296 LT	990744 LT	90913 LTS	91120
117 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	atriceps	depressionis	IBE-AF171	Russia; Volgogradskaya Oblast, Lake Elton, nr Lantsug River 14.4.2008	A. Prokin	LT991345	HF931122 HF	931340 LT	90914 LTS	91121
118 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	atriceps	loulae	IBE-AN476	Djibouti; 50 km W Dikhil, Lac Abbé, thermal springs 2.2.2016	M.A. Jäch	LT837919	LT991501 LT	990745 LT	90915 LTS	91122
119 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	atriceps	tacapasensis baeticus	IBE-AN365	Spain; Málaga, Laguna de Fuente de Piedra 3.5.2011	A. Millán & collaborators	LT991346	LT991502 LT	990746 LT	90916 LTS	91123
120 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	atriceps	thermalis	IBE-AN451	Cyprus; Larnaka, saline coastal pond 25.4.2016	A. Millán, I. Ribera, J. Velasco & A. Villastrigo	o LT991347	LT991503 LT	990747	L	91124
121 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	atriceps?	despoliatus	IBE-RA736	United Arab Emirates; Ajman, salt water pools NE Ajman City 25.1.2010	M.A. Jäch		LT991504	Ë	90917 LTS	91125
122 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	corrugatus	corrugatus	MNCN-AI56	Mallorca (Spain); Mallorca, Salines de Llevant 15.10.2004	I. Ribera & A. Cieslak		HF931213 HF	931438 LT9	90918 LTS	91126
123 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	corrugatus	gauthieri	MNCN-AI55	Tunisia; road Kebili-Tozeur, 37 km SE Tozeur, salines 26.10.2001	I. Ribera & A. Cieslak		HF931212	LŢ	90919 LTS	91127
124 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	corrugatus	perpusillus	IBE-AN323	Morocco; Ouezzane, Sidi Kacem, Oued Khendek 18.4.2006	A. Millán & collaborators		LT991505	LT	90920 LTS	91128
125 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	foveolatus	elisae	IBE-RA746	Iran; Khuzestan, Behbahan, Morvarid spring 4.9.2010	E. Irani	LT991348	LT991506	LŢ	90921 LTS	91129
126 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	foveolatus	foveolatus	MNCN-AI801	Turkey; Kastamonu, Çocukören 26.4.2006	I. Ribera	LT991349	HF931228 HF	931457 LT	90922 LTS	91130
127 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	foveolatus	hajeki	IBE-RA1231	Socotra (Yemen); Dixam plateau, Firmihin, Dracaena woodland 15.6.2012	J. Hájek	LT991350	LT991507 LT	990748 LT	90923 LTS	91131
128 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	foveolatus	harteni	IBE-RA705	Oman; Al-Akhdar, Bahla, wadi in city 5.4.2010	I. Ribera, C. Hernando & A. Cieslak	LT991351	LT991508 LT	990749 LT	90924 LTS	91132
129 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	foveolatus	magnannulatus	IBE-AN328	Bulgaria; Kotlari, river Arda 27.5.2015	I. Ribera	LT991352	LT991509 LT	990750 LT	90925 LTS	91133
130 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	foveolatus	marginalis	IBE-AN522	France; Drôme, river Méouge 2016	A. Faille	LT991353	LT991510 LT	990751 LT	90926 LTS	91134
131 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	foveolatus	mediterraneus	MNCN-AI422	Morocco; Ou-Maghous, Amaghouz 24.4.2000	I. Ribera, P. Aguilera, C. Hemando & A. Millán	LT991354	HF931197 HF	931422 LT	90927 LTS	91135
132 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	foveolatus	merinidicus	IBE-RA1023	Spain; Albacete, River Mundo, Azud de Liétor 26.7.2012	A. Millán & collaborators	LT991355	LT991511 LT	990752 LT(90928 LTS	91136
								cont	inued on	the next	page

Table S3: (continued)							
id family subfamily genus	subgenus	sp. group	species subs	pecies voucher	locality	leg	COI-5 COI-3 16S 18S
133 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	foveolatus	pedicularius	IBE-AN809	Italy; Udine, Flagogna 9.4.2017	A. Eckelt	LT991356 LT991512 LT990753 LT990929 LT
134 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	foveolatus	satoi	IBE-AF210	Japan; Hokkaido, Taiki 11.7.2009	H. Yoshitomi	LT991357 HF931124 HF931343
135 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	foveolatus	sidanus	IBE-AF132	Italy; Emilia Romagna, Bosco, Torrente Parma 24.5.2008	I. Ribera	LT991358 HF931115 HF931332 LT990930 LT
136 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	foveolatus	virgula	IBE-AF134	Italy: Emilia Romagna, Vigoleno, Parco dello Stirone, Torrente Stirone 25.5.2008	I. Ribera	LT991359 HF931116 HF931333 LT990931 LT
137 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	lobicollis	basilicatus	IBE-AN801	Sardinia (Italy); Cabras, Stagno di Cabras 10.4.2017	I. Ribera & A. Cieslak	LT991360 LT991513 LT990754 LT990932 LT
138 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	lobicollis	caesaraugustae	MNCN-AI1195	Spain; Zaragoza, Medianan de Aragón, saline river 20.7.2006	A. Millán & collaborators	LT991361 HF931172 HF931392 LT990933 LT
139 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	lobicollis	delgadoi	IBE-AN364	Spain; Murcia, Rambla del Reventón 9.3.2012	A. Millán & collaborators	LT991362 LT991514 LT990755 LT990934 LT
140 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	lobicollis	eyrei	IBE-AN600	Sicily (Italy); Palermo, Fiume Salso 28.7.2009	C. Gutiérrez-Cánovas	LT991363 LT991515 LT990756 LT990935 LT
141 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	lobicollis	lapidicola	IBE-AN126	Tenerife (Spain); Puerto de la Cruz, Roque Grande, 9.4.2015	R. Lyszkowski	LT991516 LT990757 LT990936 LT
142 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	lobicollis	lobicollis	IBE-RA242	Menorca (Spain); Cap de Favàritx 26.2.2010	I. Ribera & A. Cieslak	LT991364 HF931308 HF931534 LT990937 LT
143 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	lobicollis	quadrifossulatus	MNCN-AI226	Spain; Guadalajara, Alcolea de las Peñas 21.5.2005	A. Millán & collaborators	LT991517 LT990758 LT990938 LT
144 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	lobicollis	tivelunus	MNCN-AI420	Morocco; Agarzane, tributary of Oued Dråa 17.4.2001	I. Ribera & A. Cieslak	LT991365 HF931195 HF931420 LT990939 LT
145 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	arefniae	IBE-AN72	Azerbaijan; road Budzhakah-Bash-Dashagyi, ponds 5.5.2014	I. Ribera & A. Rudoy	LT991366 LT991518 LT990759 LT990940 LT
146 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	arefniae cf.	IBE-AN446	Cyprus; Loukrounou, upstream of Evretou reservoir 29.4.2016	A. Millán, I. Ribera, J. Velasco & A. Villastrig	jo LT991367 LT991519 LT990760
147 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	arizonicus	IBE-AN177	Arizona (USA); Yavapai Co., Agua Fria River 22.6.2007	W.D. Shepard	LT991368 LT991520 LT990761 LT990941 LT
148 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	auropallens	IBE-AN217	Tunisia; road Kairouan-Enfida, 13 km N Kairouan, lagoon 27.10.2001	I. Ribera & A. Cieslak	LT991521 LT990762 LT990942 LT
149 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	aztecus	IBE-AN222	California (USA); Inyo Co., Shoshone, Amargosa River 8.4.2008	P. Abellán	LT991369 LT991522 LT990763 LT990943 LT
150 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	batesoni	MNCN-AI690	Peru; San Clemente, km 222 Panamericana Sur 31.8.2005	P. Aguilera	LT991370 LT991523 LT990764 LT990944 LT
151 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	bisinuatus	IBE-AN153	California (USA); Mendocino Co., circa 5 mi W Davis Creek 9.6.2007	W.D. Shepard	LT991371 LT991524 LT990765 LT990945 LT
152 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	capicola	IBE-RA854	South Africa; West Cape, West Cape NP, Tsaarsbank, rookpools 2.10.2011	D.T. Bilton	LT991372 LT991525 LT990766 LT990946 LT
153 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	chappuisi cf.	IBE-AN475	Djibouti; 50 km W Dikhil, Lac Abbé, thermal springs 2.2.2016	M.A. Jäch	LT837918 LT991526 LT990767 LT990947 LT
154 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	costatellus cf.	IBE-RA1119	Alberta (Canada); Alberta, Derwent, circa Lac Coté 2000	T. Berendonk	LT991373 LT991527 LT990768 LT990948 LT
155 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	evanescens	IBE-AN66	Azerbaijan; Alishanli, 7 km NE Masally 8.5.2014	I. Ribera & A. Rudoy	LT991374 LT991528 LT990769 LT990949 LT
156 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	gruwelli	IBE-RA304	California (USA); Riverside Co., Morongo Valley, Whitewa- ter river 12.12.2010	I. Ribera & J. Bergsten	LT991375 HF931311 HF931535 LT990950 LT
157 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	interruptus	IBE-AN219	California (USA); Santa Barbara Co., Coal Oil Point Reserve (Slough road) 26.3.2008	^a P. Abellán	LT991376 LT991529 LT990770 LT990951 LT
158 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	lineatus	IBE-AN223	California (USA); Inyo Co., Ballarant, Post Office Spring 10.4.2008	P. Abellán	LT991377 LT991530
159 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	lineatus cplx	IBE-RA1129	Venezuela; Guárico state, Río San Antonio 4.2.2010	A.E.Z. Short, M. García & L. Joly	LT991531 LT990771 LT990952 LT
160 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	lividipennis	IBE-AN71	Azerbaijan; road Budzhakah-Bash-Dashagyi, ponds 7.5.2014	I. Ribera & A. Rudoy	LT991378 LT991532 LT990772 LT990953 LT
161 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	marinus	MNCN-AI615	Spain; Madrid, Aranjuez, salinas 11.2.2006	I. Ribera & A. Cieslak	LT991379 HF931215 HF931441 LT990954 LT
162 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	meridionalis	IBE-RA373	Morocco; Moulay Bousselham, Oued Drader 12.4.2007	I. Ribera, P. Aguilera & C. Hernando	LT991380 HF931313 HF931538 LT990955 LT
163 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	mesoamericanus	IBE-RA58	Costa Rica; Cartago, 7.8 km SE Turrialba, Río Tuis 15.3.2009	M. Brojer	LT991533
164 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	nipponicus	MNCN-HI27	Japan; Honshu, Ibaraki Pref., Kobodihana, Ohmika-machi, Hitachi-shi 22.7.2006	N. Hikida	LT991381 HF931270 LT990773 LT990956 LT

Table S3: (continued)												1
id family subfamily genus	subgenus	sp. group	species	subspecies	voucher	locality	leg	COI-5	COI-3	16S 1	8S 28	ŝ
166 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	pusillus		MNCN-AI1028	Turkey; Sinop, road Saraydüzü-Boyabat, stream 5 km S Yeşilyurt 27.4.2006	A. Castro	LT991383	HF931146 HF	931365 LT9	0958 LT99	1169
167 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	queenslandicus		IBE-AN18	Australia; Queensland, Brisbane, Shorncliffe 2.5.2014	J. Maté	LT991384	LT991535 LT	60775	LT99	1170
168 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	rectus		MNCN-AI464	California (USA); Mono Co., Long Valley, Owens River road 19.6.2000	I. Ribera & A. Cieslak	LT991385	LT991536 LT	990776 LT99	0959 LT99	1171
169 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	rectus cplx		IBE-AN152	California (USA); Ventura Co., Los Padres National Forest, Upper Sespe Creek 1.7.2006	A.E.Z. Short & M. Caterino	LT991386	LT991537 LT	990777 LT96	0960 LT99	1172
170 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	rectus cplx		IBE-AN291	Alberta (Canada); 2 km W Lundbreck 27.6.2000	I. Ribera & A. Cieslak	LT991387	LT991538 LT	6173 PLT96	0961 LT99	1173
171 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	salinarius		IBE-AN79	South Africa; West Cape, Wilderness NP, road to Swartvlei, stream 22.3.2001	I. Ribera & A. Cieslak	LT991388	LT991539 LT	611 62709	0962 LT99	1174
172 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	sculptoides		IBE-AN221	California (USA); Inyo Co., Tecopa, Amargosa River 8.4.2008	P. Abellán	LT991389	LT991540 LT	990780 LT9	0963 LT99	11 75
173 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	spinasus		MNCN-AH100	South Africa; West Cape, Berg River, saline stream 3.9.2006	G. Challet	LT991390	LT991541 LT	990781 LT9	0964 LT99	1176
174 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	subpictus	deletus	IBE-AN433	Mallorca (Spain); Mallorca, Salines de Llevant 28.3.2016	I. Ribera & A. Cieslak	LT991391	LT991542 LT	990782 LT9	0965 LT99	1177
175 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	subpictus	subpictus	MNCN-AI452	France; Bouches du Rhône, Salin-de-Girau 29.7.2005	I. Ribera & A. Cieslak	HE970918	HE970844 HE	:971076 HE9	70957 HE97	9660.
176 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	uniformis		IBE-AN437	California (USA); Mendocino Co., Manchester 30.6.2000	I. Ribera & A. Cieslak	LT991392	LT991543 LT	990783 LT9	0966 LT99	1178
177 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	viridescens		IBE-RA40	Spain; Zaragoza, Cinco Villas, Estanca de Castiliscar 1.11.2009	I. Ribera & A. Cieslak	LT991393	HF931314 HF	931539 LT9	0967 LT99	1179
178 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	viridis	fallaciosus	MNCN-AI918	Morocco; Azrou, Lac Afenourir 29.4.2000	I. Ribera	LT991394	HF931242 HF	931474 LT9	0968 LT99	1180
179 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	marinus	viridis	viridis	IBE-AN5	Turkey; Izmir, 6 km E Foça, head of reservoir 26.7.2014	I. Ribera & A. Cieslak	LT991395	LT991544 LT	990784 LT9	00969 LT99	1181
180 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	albacetinus		IBE-RA1181	Spain; Jaén, Río Madera 7.9.2013	D.T. Bilton	LT991396	HG915306 LT	990785 LT9	00070 LT99	1182
181 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	diazi		IBE-RA595	Spain; Cádiz, 15 km W Los Barrios, Arroyo del Tiradero 22.6.2011	D.T. Bilton	HF948001	LT991545 LT	990786 LT9	0971 LT99	1183
182 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	gayosoi		IBE-AN311	Portugal; Algarve, Caldas de Monchique 11.6.2015	D.T. Bilton	LT991397	LT991546 LT	990787 LT99	0972 LT99	1184
183 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	griotes		MNCN-AI943	Morocco; Immouzzer Ida Ou Tanane, Assif Tanit 21.4.2001	I. Ribera & A. Cieslak	LT991398	HF931245 HF	931480 LT9	0973 LT99	1185
184 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	hivae		IBE-RA744	Iran; Khuzestan, Behbahan, Morvarid spring 4.9.2010	E. Irani	LT991399	LT991547 LT	990788 LT99	0974 LT99	1186
185 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	judemaesi		IBE-RA1179	Spain; Albacete, Chorros del Río Mundo 7.9.2013	D.T. Bilton	LT991400	LT991548 LT	990789 LT99	0975 LT99	1187
186 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	maxfischeri		IBE-AN164	Turkey; Antalya, 1 km N Hacıyusuflar 24.6.2014	D.T. Bilton	LT991401	LT991549 LT	990790 LT99	0976 LT99	1188
187 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	metallescens	metallescens	MNCN-AI376	Austria; Niederösterreich, Lunz 2002	M.A. Jäch	LT991402	HF931191 HF	931414 LT9	0977 LT99	1189
188 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	metallescens	plato	IBE-RA1057	Greece; Peloponnese, Achaea, 1.5 km NE Kleitor 3.4.2013	I. Ribera & A. Cieslak	LT991403	LT991550 LT	16206	LT99	1190
189 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	morettii		IBE-RA1173	Italy; Liguria, Imperia, 1 km S Pigna 7.7.2013	D.T. Bilton	LT991404	LT991551 LT	990792 LT9	0978 LT99	1191
190 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	pedroi		IBE-RA1082	Mallorca (Spain); Sa Calobra, Font de sa Mata 8.5.2013	I. Ribera	LT991405	LT991552 LT	990793 LT99	0979 LT99	1192
191 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	poweri		MNCN-AC26	England (UK); S Devon, Ladram Bay, seepage 4.7.2007	D.T. Bilton	LT991406	LT991553 LT	990794 LT9	0980 LT99	1193
192 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	preissi		IBE-AN448	Cyprus; Loukrounou, river Kaboura 28.4.2016	A. Millán, I. Ribera, J. Velasco & A. Villastrig	o LT991407	LT991554 LT	990795 LT99	0981 LT99	1194
193 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	scopuli		IBE-AN382	Sardinia (Italy); Golf of Orosei, Cala Mariolu 12.10.2015	J. Köhler	LT602656	LT602657 LT	990796 LT99	0982 LT99	1195
194 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	semisericeus		MNCN-AI1064	Spain; Teruel, Beceite, river Matarranya, El Parrisal 7.8.2006	I. Ribera & A. Cieslak		HF931151 HF	931370 LT9	0983 LT99	1196
195 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	semotus		IBE-RA1180	Spain; Albacete, Chorros del Río Mundo 7.9.2013	D.T. Bilton	_	HG915305 LT	990797 LT9	0984 LT99	1197
196 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	serpentinus		MNCN-AI819	Turkey; Kastamonu, road Ağlı-Azdavay 28.4.2006	I. Ribera	LT991408	HF931229 HF	931458 LT9	0985 LT99	1198
197 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	sp.		IBE-AN77	Azerbaijan; Gosmalijion, stream 7.5.2014	I. Ribera & A. Rudoy	LT991409	LT991555 LT	990798 LT9	0986 LT99	1199
198 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	metallescens	wurayah		IBE-RA733	United Arab Emirates; Fujairah (north), Hajar Mountains, Wadi Wurayah 24.1.2010	M.A. Jäch		LT991556 LT	990799 LT99	0987 LT99	1200
									cont	tinued on 1	he next p	age

Table S3: (continued)							
id family subfamily genus	subgenus	sp. group	species subspecies	voucher	locality	leg	COI-5 COI-3 16S 18S 28S
199 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	nitidipennis	hasegawai	MNCN-AI1289	Japan; Honshu, Shimane Pref., Mt. Sentsu, Okuizumo 15.7.2006	N. Hayashi	LT991410 LT991557 LT990800 LT990988 LT991201
200 Hydraenidae Ochtheblinae Ochthebius	Ochthebius	nitidipennis	japonicus	MNCN-HI26	Japan; Shikoku, Ehime Pref., Oda-gawa, Mizumoto, Uchiko-chô 30.9.2006	Y. Kamite	LT991411 LT991558 LT990801 LT990989 LT991202
201 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	notabilis	corrugatus cf.	IBE-RA118	Tunisia: road Safax-Gabes, Wadi 7 km N Hachichina 25.10.2001	I. Ribera & A. Cieslak	HF931300 LT990802 LT990990 LT991203
202 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	notabilis	gereckei	MNCN-PA141	Sicily (Italy); Caltanissetta, Torto Valley 11.6.2007	P. Abellán & F. Picazo	LT991412 FJ944176 LT990803 LT990991 LT991204
203 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	notabilis	glaber	MNCN-PA30	Spain: Córdoba, Priego de Córdoba, Río Salado de Priego 21.7.2006	A. Millán & collaborators	HF948002 FJ944214 LT990804 LT990992 LT991205
204 Hydraenidae Ochtheblinae Ochthebius	Ochthebius	notabilis	halophilus	IBE-AN22	Turkey; Kırıkkale, Delice Çoğul salt pond 14.6.2012	T. Söylemez	LT991413 LT991559 LT990805 LT990993 LT991206
205 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	notabilis	lanarotis	MNCN-PA32	Morocco; Ouezzane, Sidi Kacem, Oued Khendek 18.4.2006	A. Millán & collaborators	LT991414 FJ944251 LT990806 LT990994 LT991207
206 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	notabilis	normandi	MNCN-PA253	Algeria; Blida, Mellaha 23.8.2007	S. Bouzid	LT991415 FJ944275 LT990807 LT990995 LT991208
207 Hydraenidae Ochtheblinae Ochthebius	Ochthebius	notabilis	notabilis	MNCN-AI38	Spain; Albacete, Pinilla, Salinas de Pinilla 2.6.2002	I. Ribera & A. Cieslak	LT391416 FJ944107 HF931416 LT390996 LT991209
208 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	notabilis	salinator	MNCN-AI53	Tunisia: road Kebili-Tozeur, 37 km SE Tozeur, salines 26.10.2001	I. Ribera & A. Cieslak	LT991417 FJ944271 HF931436 LT990997 LT991210
209 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	peisonis	peisonis	IBE-AF168	Russia; Volgogradskaya Oblast, Lake Elton, residual pools 17.4.2008	A. Prokin	LT991418 LT991560 LT990808 LT991211
210 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	peisonis	peisonis	IBE-AN64	Azerbaijan; Alishanli, 7 km NE Masally 8.5.2014	I. Ribera & A. Rudoy	LT991419 LT991561 LT990809 LT990998 LT991212
211 Hydraenidae Ochtheblinae Ochthebius	Ochthebius	punctatus	bifoveolatus	IBE-AN381	Spain; Cádiz, Bahía de Cádiz, marshes 27.4.2011	A. Millán & collaborators	LT991562 LT990810 LT990999 LT991213
212 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	cuprescens	IBE-PA276	Tunisia; road Tozeur-Gafsa, 24 km SW Gafsa, Oued El Melah 16.10.2001	I. Ribera & A. Cieslak	LT991420 HF931293 HF931528 LT991000 LT991214
213 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	difficilis	MNCN-AI944	Morocco; Immouzzer Ida Ou Tanane, Assif Tanit 21.4.2001	I. Ribera & A. Cieslak	LT991421 HF931246 HF931481 LT991001 LT991215
214 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	difficilis cplx	IBE-AN76	Azerbaijan; Gosmalijion, stream 7.5.2014	I. Ribera & A. Rudoy	LT991422 LT991563 LT990811 LT991002 LT991216
215 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	grandipennis	MNCN-AI616	Spain; Madrid, Aranjuez, salinas 11.2.2006	I. Ribera & A. Cieslak	LT991423 HF931216 HF931442 LT991003 LT991217
216 Hydraenidae Ochtheblinae Ochthebius	Ochthebius	punctatus	inermis	IBE-RA795	Japan; Honshu, Ibaraki Pref., Kobodihana, Ohmika-machi, Hitachi-shi 22.7.2006	N. Hikida	LT991564 LT990812 LT991004 LT991218
217 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	joosti	IBE-AF169	Russia: Volgogradskaya Oblast, Lake Elton, residual pools 17.4.2008	A. Prokin	LT991424 HF931121 HF931339 LT991005 LT991219
218 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	klapperichi	MNCN-AI1269	Bhutan; Timphu, Taba, Wang Chhu river 23.11.2005	M.A. Jäch	LT991425 LT991565 LT990813 LT991006 LT991220
219 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	lanuginosus	IBE-AN204	Greece; Arkadia, Astros, Lake Moustou 6.4.2013	I. Ribera & A. Cieslak	LT991426 LT991566 LT990814 LT991007 LT991221
220 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	mahmoodi	IBE-RA126	Oman; 1 km W Qalhat, residual pools in wadi 9.4.2010	I. Ribera, C. Hernando & A. Cieslak	LT991427 HF931304 HF931532 LT991008 LT991222
221 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	micans	IBE-AN474	Djibouti; Arta, wadi Alloulli (oasis), Oued Kalou 31.1.2016	M.A. Jäch	LT837917 LT991567 LT990815 LT991009 LT991223
222 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	monseti	IBE-RA124	Oman; 15 km SW Sur, residual pools in wadi 9.4.2010	I. Ribera, C. Hernando & A. Cieslak	LT991428 HF931302 LT990816 LT991010 LT991224
223 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	montesi	MNCN-AI491	Spain; Murcia, Caravaca, Rambla Pozo Enmedio 2.6.2005	A. Millán & collaborators	HF931206 HF931431 LT991011 LT991225
224 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	nanus	IBE-PA277	Morocco; Âït-Rahhal, Oued Akka 17.2.2001	I. Ribera & A. Cieslak	HF931294 HF931529 LT991012 LT991226
225 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	nilssoni	MNCN-AH76	Ireland; Clare, Lough Gealáin 31.7.2007	D.T. Bilton	LT991429 LT991568 LT990817 LT991013 LT991227
226 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	nobilis	IBE-AF133	Italy; Emilia Romagna, Bosco, Torrente Parma 24.5.2008	I. Ribera	LT991430 LT991569 LT990818 LT991014 LT991228
227 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	pagotrichus	MNCN-AI497	South Africa; West Cape, Prince Albert Road, pond 23.3.2001	I. Ribera & A. Cieslak	LT991431 LT991570 LT990819 LT991015 LT991229
228 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	pilosus	IBE-AN363	Spain; Cádiz, Bahía de Cádiz 27.4.2011	A. Millán & collaborators	LT991432 LT991571 LT990820 LT991016 LT991230
229 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	punctatus	IBE-RA286	Ireland; Clare, Finavarra, Lough Muree 23.5.2010	I. Ribera	LT991433 HF931310 LT990821 LT991017 LT991231
230 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	quadrifo veolatus	MNCN-AI636	Gran Canaria (Spain); Moya, Barranco de Azuaje 15.4.2001	I. Ribera & A. Cieslak	LT991434 HF931218 HF931446 LT991018 LT991232
231 Hydraenidae Ochtheblinae Ochthebius	Ochthebius	punctatus	ragusae	MNCN-AI1029	Turkey; Sinop, road Saraydüzü-Boyabat, stream 5 km S Yeşilyurt 27.4.2006	A. Castro	LT991435 HF931147 HF931366 LT991019 LT991233
							continued on the next page

Table S3: (continued)											
id family subfamily genus	subgenus	sp. group	species	subspecies voucher	locality	leg	COI-5	COI-3 1	6S 1	8S 28	SS SS
232 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	siftverbergi	IBE-RA1021	Morocco; Tan-Tan, Oued Drâa 3.4.2007	A. Millán & collaborators	LT991436	.T991572 LT9	90822 LT99	1020 LT99	11234
233 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	sp.	IBE-RA104	Oman; Al-Akhdar, source of wadi Bani Awf 6.4.2010	I. Ribera, C. Hernando & A. Cieslak	LT991437	.T991573 LT90	90823 LT99	1021 LT99	11 235
234 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	sp.	IBE-AF191	Bhutan; Sarpang, 11 km NW Sarpang, Bhur Khola river 27.11.2005	M.A. Jäch	LT991438	.T991574 LT9(90824 LT99	1022 LT99	11236
235 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	punctatus	tudmirensis	MNCN-AI467	Spain; Guadalajara, Salinas de Imón 22.5.2005	I. Ribera & A. Cieslak	HF948004 F	IF931205 HF9	31430 LT99	1023 LT99	11 237
236 Hydraenidae Ochtheblinae Ochthebius	Ochthebius	quadricollis	brevicollis	IBE-AN440	Cyprus; Akamas peninsula, Lara beach 29.4.2016	A. Millán, I. Ribera, J. Velasco & A. Villastrigo	LT991439 1	.T991575 LT90	90825 LT99	1024 LT99	11 238
237 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	quadricollis	heeri	IBE-AN200	Tenerife (Spain); Tenerife, La Orotava, rookpools in El Barco 4.4.2015	R. Lyszkowski	LT991440	. 1991576 LT9	90826 LT99	1025 LT99	11239
238 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	quadricollis	quadricollis	MNCN-AI431	Corsica (France); Cap Corse, Port de Centuri 20.9.2000	I. Ribera & A. Cieslak	LT991441 F	IF931199 HF9	31424 LT99	1026 LT99	1240
239 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	quadricollis	quadricollis cplx1	IBE-AN11	Spain; Murcia, La Manga del Mar Menor, Punta del Cocedor 10.10.2009	r J. Sánchez-Meca	LT991442	.T991577 LT9	90827 LT99	1027 LT99	11241
240 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	quadricollis	quadricollis cplx2	MNCN-AI514	Spain; Pontevedra, Nigran, Playa Patos 3.10.2005	J. Garrido	LT991443 +	IF931209 HF9	31434 LT99	1028 LT99	11242
241 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	quadricollis	steinbuehleri	MNCN-AI517	Greece; Halkidiki, Kassandra 29.6.2002	M.A. Jäch	LT991444 F	IF931210 HF9	31435 LT99	1029 LT99	11243
242 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	rivalis	himalayae	MNCN-AI1270) Bhutan; Timphu, Taba, Wang Chhu river 23.11.2005	M.A. Jäch	1	.T991578 LT90	90828 LT99	1030 LT99	11244
243 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	rivalis	rivalis	IBE-AF81	India; Uttarakhand, 10 km SW Rudraprayag, River Alak- nanda 11.11.2006	M.A. Jäch	-	. 1991579 LT9	90829 LT99	1031 LT99	11 2 4 5
244 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	strigosus	sp.	IBE-RA617	China; Shaanxi, 110 km ENE Xian, Huayin vill., Hija Mt. 10.5.2011	M. Balke & J. Hájek	-	.T991580 LT9	90830 LT99	1032 LT99	11 246
245 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	sumatrensis	sp.	MNCN-AC16	Hong-Kong (China); Hong Kong Island, hygropetric 19.2.2007	J. Maté	LT991445	.T991581 LT9(90831 LT99	1033 LT99	11 247
246 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	vandykei	vandykei	IBE-AF159	California (USA); San Luis Obispo Co., Rancho Marino Res. 28.6.2008	M. Caterino	-	Т991582	LT95	1034 LT99	11 248
247 Hydraenidae Ochthebiinae Ochthebius	Ochthebius	vandykei	yoshitomii	IBE-AF121	Japan; Hokkaido, Shirakami, Matsumae-chô 14.7.2006	H. Yoshitomi	-	Т991583	LT96	1035 LT99	N 249
248 Ptillidae Acrotrichis			sp.	MNCN-AI413	Germany; Thuringia, Jena, Pennickental 19.7.2005	R.G. Beutel	-	.T991584 LT90	90832 LT99	1036	
249 Ptiliidae Cylindroselloia	SƏ		dybasi	MNCN-AI564	Ontario (Canada); Eastern Ontario, circa Westport 25.7.2005	V.V. Grebennikov	-	.T991585 LT99	90833 LT99	1037 LT99	11250
250 Ptillidae Ptenidium			pusillum	MNCN-AI515	Morocco; Immouzzer Ida Ou Tanane, Assif Tanit 21.4.2001	I. Ribera & A. Cieslak	LT991446 H	E970847 HE9	71079 HE9	70959 HE97	70997
251 Ptiliidae Ptiliolum			sp.	MNCN-AI649	Spain; Córdoba, Cabra, La Nava 22.1.2006	A. Castro	LT991447 F	E970857 HE9	71087 HE9	70967 HE97	71004
252 Ptiliidae Rioneta			uluguruensis	MNCN-AI415	Tanzania; Uluguru Mts., between Tchenzema vil. and Lukvangule Plateau 19-21.10.2002	V.V. Grebennikov	-	.T991586	LT9	1038	

Table S4. (A) primers used for DNA amplification and sequencing reactions; (B) Typical conditions for the polymerase chain reaction.

(A)

gene	primer	F/R	sequence	ref.
	Uni LepF1b	F	TAATACGACTCACTATAGGGATTCAACCAATCATAAAGA- TATTGGAAC	1
00-5	Uni LepR1	R	ATTAACCCTCACTAAAGTAAACTTCTGGATGTC- CAAAAAATCA	1
	Jerry	F	CAACATTTATTTTGATTTTTTGG	5
	Pat	R	TCCAATGCACTAATCTGCCATATTA	5
001-3	Chy	F	T(A/T)GTAGCCCA(T/C)TTTCATTA(T/C)GT	3
	Tom	R	AC(A/G)TAATGAAA(A/G)TGGGCTAC(T/A)A	3
	16sAr	R	CGCCTGTTTAACAAAAACAT	5
16S	ND1A	F	GGTCCCTTACGAATTTGAATATATCCT	5
	16Sb	R	CCGGTCTGAACTCAGATCATGT	5
000	ka	F	ACACGGACCAAGGAGTCTAGCATG	2
285	kb	R	CGTCCTGCTGTCTTAAGTTAC	2
400	18S 5'	F	GACAACCTGGTTGATCCTGCCAGT(1)	4
100	18s b5.0	R	TAACCGCAACAACTTTAAT(1)	4

(B)

COI-3	'/18S	
step	time	temperature
1	3'	96°
2	30"	94°
3	30"	50°
4	1'	72°
5	Go to setp 2 and repeat 39 x	
6	10'	72°

16S / 28S

step	time	temperature
1	3'	96°
2	30"	94°
3	1'	48°
4	1'	72°
5	Go to setp 2 and repeat 34 x	
6	10'	72°

COI-5'			
step	time	temperature	
1	3'	96°	
2	40"	94°	
3	40"	48°	
4	1'	72°	
5	Go to setp 2 and repeat 4 x		
6	40"	94°	
7	40"	51°	
8	1'	72°	
9	Go to setp 6 and repeat 29 x		
10	10'	72°	

References

- Hebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. *Proceedings of the National Academy of Sciences of the United States of America*, **101(41)**, 14812-14817.
- 2. Monaghan, M. T., Inward, D. J., Hunt, T., & Vogler, A. P. (2007). A molecular phylogenetic analysis of the Scarabaeinae (dung beetles). *Molecular Phylogenetics and Evolution*, **45(2)**, 674-692.
- Ribera, I., Fresneda, J., Bucur, R., Izquierdo, A., Vogler, A.P., Salgado, J.M. & Cieslak, A. (2010). Ancient origin of a Western Mediterranean radiation of subterranean beetles. *BMC Evolutionary Biology*, **10**, 29.
- Shull, V.L., Vogler, A.P., Baker, M.D., Maddison, D.R. & Hammond, P.M. (2001). Sequence alignment of 18S ribosomal RNA and the basal relationships of Adephagan beetles: evidence for monophyly of aquatic families and the placement of Trachypachidae. *Systematic Biology*, **50**, 945–969.
- Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. *Annals of the Entomological Society of America*, 87, 651-701.

Figure S1. Majority rule consensus tree obtained with BEAST for the phylogeny of Ochthebiini with the best partition models. Numbers in nodes, posterior probabilities.

Figure S1. (Continued)

Figure S1. (Continued)

Figure S2. Phylogeny obtained with RAxML, including current Ochthebiini classification. Numbers in nodes, bootstrap support values.

173

Figure S2. (Continued)

174

Figure S2. (Continued)

Figure S3. Phylogeny obtained with RAxML with the nuclear genes only. Numbers in nodes, bootstrap support values. Upper part of the figure.

Figure S3. (Continued)

Figure S3. (Continued)

Chapter 4

A new species of *Micragasma* J. Sahlberg, 1900 (Coleoptera: Hydraenidae) from Crete

Edited version of: Carles Hernando, Adrián Villastrigo, and Ignacio Ribera Published on: *Aquatic Insects* (2017) **38**: 185-196

Abstract

180

We describe a new species in of *Micragasma* J. Sahlberg, 1900 (Coleoptera, Hydraenidae), which is here treated as a subgenus of *Ochthebius* Leach, 1815. The new species, *O. (Micragasma) minoicus* sp. n., was found at the margins of a coastal rockpool in the island of Crete.

The species differs from the other two known species of the genus in both external and genital characters, but shares with them the presence of small setiferous tubercles on the surface of the head, pronotum and elytra, and a strong medial gibbosity on the head. In some characters, such as the structure and shape of the aedeagus, *O. (Micragasma) minoicus* sp. n. is more similar to other species of the genus *Ochthebius*, in particular of the subgenus *Cobalius* Rey, 1886, typical of coastal rockpools.

Introduction

Micragasma J. Sahlberg, 1900, one of the most elusive and lesser known genera of European aquatic Coleoptera, was described for a single species, M. paradoxum J. Sahlberg, 1900 from the island of Corfu. In the original description, Sahlberg (1900) reports collecting several specimens in December, 1895 amongst flooded vegetation in the mouth of the Potamos River and some additional specimen in November, 1898 again amongst flooded grasses in the Kalichiopulo [=Calichiopulo] Lagoon. The species had not been collected again until 1993 when a small series (three specimens) was collected in Puglia, southern Italy (Figure 1), amongst plant debris not far from the sea. Subsequently, a larger series was collected in the same area by sifting sand among Salicornia L. next to the coast (Ferro et al., 1996). Jäch (1997) redescribed the genus and transferred Ochthebius substrigosus Reitter, 1897 to Micragasma. This species was described from a small series collected in the mouth of the Kura River, in Azerbaijan (Figure 1), although no details on the habitat were given in the original description (Reitter, 1897). The species has never been reported again. More recently, M. paradoxum has been found in the surrounding area of Lake Elton, in Volgograd Province, Russia (Makarov et al., 2009; Prokin et al., 2016), in saline ditches and pools, and i two localities on the north coast of the Black Sea, in detritus or in overgrown grass puddles (Shatrovskiy, 2015) (Figure 1). There are no other published records of Micragasma.

The phylogenetic affinities of *Micragasma* are also not well understood. Reitter (1897) described O. substrigosum within subgenus Chirochthebius Kuwert, 1887, currently a synonymy of Aulacochthebius Kuwert, 1887 (Jäch and Skale, 2015), noting its resemblance to A. narentinus (Reitter, 1885). Sahlberg (1900) compared the newly described genus with species of Ochthebius Leach, 1815, and, in his revision of Hydraenidae genera, Hansen (1991) notes that it is a distinct an apparently well-justified genus. However, Jäch (1997), after including O. substrigosum in the genus Micragasma, noted the similarity between *Micragasma* and *Ochthebius*, questioning its status as a separate genus. In Beutel, Anton and Jäch (2003), some peculiarities of the head of Micragasma were noted in reference to other species of Ochthebius or the wider Hydraenidae (absence of ocelli in M. paradoxum, a shield-like clypeus with distinctly raised lateral margin), but the genus was not included in the phylogenetic analyses and nothing was said about its possible relationships. Unpublished molecular data place *Micragasma* as sister to the species of the Cobalius Rey, 1886, treated as a synonym of Ochthebius s. str. in the last reference catalogues (e.g., Jäch and Skale, 2015). Here we treat both Micragasma and Cobalius as subgenera of Ochthebius; a more detailed discussion on the phylogenetic relatioship of both taxa will be published in a forthcoming work.

A new species of Micragasma J. Sahlberg, 1900 (Coleoptera: Hydraenidae) from Crete

The close relationship between *Micragasma* and *Cobalius* suggested by molecular data may apear suprising, given the strong differences in external morphology. This relationship seems more likely in the light of the species newly described here, found during a recent trip to Crete in the margins of a rock pool in the south western coast of the island.

Figure 1. Distribution of the known species of *Micragasma* J. Sahlberg, 1900: circles, *Ochthebius* (*M.*) *paradoxus* (J. Sahlberg, 1900); triangle, *O.* (*M.*) *substrigosus* Reitter, 1897; hexagon, O. (M.) *minoicus* sp. n.

Material and methods

We studied one species of *O*. (*M*.) *paradoxus* labelled 'RUSSIA: 17.4.2008, Volgogradskaya Oblast, 49°07'43.6"N/ 46°47'39.5"E, Lake Elton, -18 m below sea level, residual pools of temp. water course, leg. A. Prokin', 'Voucher IBE-AF116' (one of the specimens reported in Prokin et al. 2016). The DNA of one paratype of the new species was extracted non-destructively (voucher IBE-AN770, see below) with commercial kits (DNeasy Tissue Kit, Qiagen, Hilden, Germany).

The specimen used for DNA extraction (voucher IBE-AN770) was subsequently used for SEM observation. After the extraction process, it was mounted on a stub with double-sided carbon conductive tab and coated with gold in a Quorum Q150R S sputter coater unit (Quorum Technologies Ltd., UK). The sample was observed using a Hitachi S3500N scanning electron microscope (Hitachi High-Technologies Co. Ltd., Japan) operated at 4 kV

in the Electron Microscopy Service of the Institute of Marine Sciences (CSIC), in Barcelona (Spain).

Specimens are deposited in the following collections: CHB, Collection of C. Hernando, Badalona, Spain; IBE, Institute of Evolutionary Biology, Barcelona, Spain; MNCN, Museo Nacional de Ciencias Naturales, Madrid, Spain; NMW, Naturhistorisches Museum, Wien, Austria.

Taxonomy

Ochthebius (M.) minoicus sp. n.

Figures 2-10.

Figure 2. Habitus of the holotype of *Ochthebius (M.) minoicus* sp. n. Photo by M. Brojer, Scale bar 0.5 mm.

Figure 3. SEM habitus of a paratype of Ochthebius (M.) minoicus sp. n. (voucher IBE-AN770). Scale bar 0.5 mm.

Type locality

Greece, Crete, Elafonisi, 35°16'9.2"N, 23°32'42"E (Figure 1).

Type material

Holotype. 3: '22 Crete, Elafonisi 20.iv.2017 / rockpools on calcareous bed / 35°16'9.2"N 23°32'42."E 0m / Hernando, Ribera & Villastrigo leg.' (NMW); aedeagus dissected and mounted in DMHF on a transparent card, pinned with the specimen; plus red holotype label. *Paratypes.* 6 ♂ 3 ♀, same data as holotype, with paratype labels (IBE, CHB, NMW, MNCN). DNA of one paratype extracted (voucher number IBE-AN770).

Description

Total length 1.68-1.73 mm, maximum width 0.65-0.70 mm, without apparent differences between males and females. Body shape oval (Figures 2 and 3). Body colour dark brown; head, disk of pronotum and elytra darker, appendages paler (Figure 2).

Head (Figures 4 and 5). Labrum deflexed, deeply emarginated; surface smooth, with a shallow reticulation; with sparse small setae. Clypeus trapezoidal, narrower distally; surface rugose, with small tubercles, with sparse setiferous punctures with small setae; finely bordered; fronto-clypeal suture well marked. Frons expanded laterally, with a medial gibbosity; two lateral elongated excavations bordering the gibbosity joining posteriorly, with-out pubescence or tubercles (in most specimens, these excavations are not visible due to salt concretions, but are clearly visible in the specimen used for DNA extraction). Margins of head only slightly elevated. Head covered with small tubercles with very robust, short, recurved silverish-whitish setae, almost squamiform; as observed with the SEM, setae are lanceolate, wider in the middle and with lateral expansions (specially on the elytra, see below), with surface rugose. Eyes widely separated, laterally very prominent. Ocelli absent.

Figure 4. Head of Ochthebius (M.) minoicus sp. n. (voucher IBE-AN770), dorsal view.

Thorax. Pronotum transverse, with margins explanate (Figures 5 and 6); disc elevated, with a medial irregular longitudinal sulcus; central area covered with small, very dense setiferous tubercles; lateral area rugose; with two basal elevated areas forming a 'V'. Lateral margins irregular, but uniformly arched, elevated, with a fringe of denser setae; anterior margin with a narrow hyaline expansion; posterior margin constricted, with postero-lateral hyaline expansion following the contour of the pronotum; postero-lateral hyaline expansions densely covered with setae; posterior margin of pronotum covering base of elytra, partly covering the scutellum.

Elytra elongated, oval (Figures 2 and 3); apparently fused; shoulders with a strong gibbosity; apex acuminate; margins slightly explanate, with a fringe of denser setae. With

Figure 5. Head and pronotum of Ochthebius (M.) minoicus sp. n. (voucher IBE-AN770), frontal view.

Figure 6. Pronotum of *Ochthebius* (*M*.) *minoicus* sp. n. (voucher IBE-AN770), dorsal view.

10 very regular rows of punctures in each elytron, with smaller punctures distributed irregularly, some of them with smaller setae; main sculpture composed of a large puncture with a tubercle on the anterior margin, with a setae on top (Figure 7); surface rugose-chagrinated (not as rugose as pronotum and head); setae as on pronotum and head; apex of elytra and, to a lesser extend, marginal areas with an irregular surface, with tubercles united forming small carinnae (Figure 8). Apterous (observed in one paratype).

Figure 7. Details of the elytral disk of *Ochthebius* (*M*.) *minoicus* sp. n. (voucher IBE-AN770).

Figure 8. Apex of the elytral of *Ochthebius (M.) minoicus* sp. n. (voucher IBE-AN770), dorsal view. Hypomera with deep antennal grooves, with a hyaline margin. Metaventrite short, covered with hydrophobe pubescence except on medial part, which is covered with a longer and more robust pubescence; prosternum and mesoventrite glabrous, with a rugose surface; mesoventrite with a small anterior longitudinal carina, with an acuminate apophysis.

Legs short, robust; tarsi short, specially protarsi, without natatory setae; with spiniform setae.

Abdomen. Ventrites 1-5 with short hydrophobe pubescence and longer and recurved sparse setae, denser in the medial part (Figure 9); last ventrites without hydrophobe pubescene, with short, straight spiniform setae. Surface irregular, with a chagrinated aspect. Last ventrite with a row of 7-9 long, explanate setae.

Figure 9. Surface of the abdominal ventrite 2 of *Ochthebius* (*M*.) *minoicus* sp. n. (voucher IBE-AN770).

Figure 10. Aedeagus of Ochthebius (M.) minoicus sp. n. (paratype), lateral view.

Aedeagus as in Figure 10, asymmetrical, medial lobe slightly arced; distal piece elongated, widest in the middle.

Females

Pronotum with anterior angles more rounded and lateral margins more arced than in males.

Etymology

Named in reference to the Minoan civilization of Crete. The name is an adjective in the nominative singular.

Distribution

So far only known from the type locality.

Habitat

Specimens were collected at the margins of a rock pool close to the seashore, with saline water over rocky substratum with gravel and sand on the margins, with a tuff of vegetation (Figure 11). They were dislodged from the shore and the tuff of vegetation by splashing water. Species were collected in association with *Bledius* sp. (Staphylinidae), *Ochthebius* (*Cobalius*) *adriaticus moreanus* Pretner, 1929, *O.* (*Cobalius*) *subinteger* Mulsant & Rey, 1861 and *O.* (*Calobius*) *steinbuehleri* Reitter, 1886.

Discussion

Of the characters listed by Jäch (1997) as diagnostic for the genus Micragasma based on the two only known species at the time (O. (M.) paradoxus and O. (M.) substrigosus), potential synapomorphies are the presence of small tubercles covering most of the surface of the body and the presence of a well-developed medial gibbosity on the vertex surrounded by more or less impressed foveae. As already noted by Jäch (1997), all other characters occur in various species of Ochthebius. In O. (M.) minoicus sp. n., the shape of the labrum is more similar to other species of *Ochthebius*, not as strongly deflexed as in O. (M.) paradoxus and less transverse. The head is also less transverse and explanate, without the strong lateral elevations present in O. (M.) paradoxus. The pronotum in O. (M.) minoicus sp. n. is also less explanate, with the marginal areas less flat and with a more rugose surface. Other differences refer to the general shape and size, more elongated in O. (M.) minoicus sp. n. (the studied specimen of O. (M.) paradoxus, a female, was 1.58 mm length and 0.75 mm wide), with a darker body colour, and a more dense and robust pubescence, with a more regular appearance on the elytra. The studied specimen of O. (M.) paradoxus was brachypterous, with a non-functional small stump only slightly longer than the metaventrite, but the elytra are not fused.

The aedeagus of *O*. (*M*.) *minoicus* sp. n. has the same general structure as that of other species of the subgenus, but without the strongly deviating features of *O*. (*M*.) *paradoxus*, and with a simpler distal piece than *O*. (*M*.) *substrigosus* (see Jäch 1997, Figures 2 and 3). This results in an aedeagus that is surprisingly similar to those of the species of the *Cobalius*, in particular to that of *O*. (*C*.)*celatus* Jäch, 1989 (see Jäch 1989, Figure 7).

Figure 11. Type locality of *Ochthebius (M.) minoicus* sp. n.: rockpool in Elafonisi, Crete. Note the edge of the pool with some vegetation, from where specimens were flushed.

Some species of the *Cobalius* have also very regular elytral striae with strong setae, and deep fossae on the head (but without gibbosity) (e.g. *O.* (*C.*) *subinteger*). Although the ecology of the species of *Micragasma* is still poorly known, they are undoubtedly associated to coastal saline habitats, with the only know exception of the population of *O.* (*M.*) *paradoxus* near Lake Elton (Prokin *et al.*, 2016). They seem to be, however, less linked to water than the species of the *Cobalius*, as suggested also by some morphological features (shorter legs, more robust pubescence), and some specimens seem to have been found in a fully terrestrial environment (e.g., Shatrovskiy, 2015). When washed into the water, specimens of *O.* (*M.*) *minoicus* sp. n. floated upside down with a film of air attached to the ventrites, as happens with other species of *Ochthebius* (including those of the *Cobalius*), suggesting that the ventral pubescence may be hydrophobic. It is interesting to note, however, that the dor-

sal surface is extremely hydrophilic: when dry specimens were touched with a wet brush, the whole dorsal surface was immediately covered by a film of water, maybe through the capillary effect of the tubercles and setae, or perhaps due to a possible strong hydrophilic effect of the highly modified expanded setae. The potential function of a hydrophylic dorsal surface in combination with a hydrophobic ventral surface is unknown, but it may be related with respiration or to avoid dehydration in the sometimes extreme saline and dry environment in which the species may be found.

Acknowledgements

We thank Anabela Cardoso (IBE) for laboratory work, J.M. Fortuño (ICM) for help with the SEM observations, Michaela Brocher (NMW) for the habitus photograph and M.A. Jäch (NMW) and A. Prokin for making available the specimen of *O*. (*M*.) *paradoxus* for study and M.A. Jäch for useful comments to the manuscript.

References

- Beutel, R.G., Anton, E., and Jäch, M.A. (2003). On the evolution of adult head structures and the phylogeny of Hydraenidae (Coleoptera, Staphyliniformia). *Journal of Zoological Systematics and Evolutionary Research*, **41**, 256–275.
- Ferro, G., Audisio, P., and De Biase, A. (1996). Presenza in Italia di Micragasma paradoxum (Coleoptera, Hydraenidae). Bolletino dell'Associazione Romana di Entomologia, 50, 3–5.
- Hansen, M. (1991). A review of the genera of the beetle family Hydraenidae (Coleoptera). *Steenstrupia*, **17**, 1–52.
- Jäch, M.A. (1989). Revision of the palearctic species of the genus *Ochthebius* Leach. II. The subgenus *Cobalius* Rey (Hydraenidae. Coleoptera). *Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen*, **41**, 41–51.
- Jäch, M.A. (1997). Synopsis of the genus *Micragasma*. *Annalen des Naturhistorischen Museums in Wien, Serie B*, **99**, 313–318.
- Jäch, M.A. and Skale, A. (2015). Hydraenidae, In: Löbl, I. and Löbl D. (Eds.) Catalogue of Palaearctic Coleoptera, Volume 2/1- Hydrophiloidea, Staphylinoidea (revised and updated edition), Leiden: Brill, pp. 130-162.
- Kuwert, A. (1887). Übersicht der europäischen Ochthebius-Arten, Deutsche Entomologische Zeitschrift, **32**, 113-123.
- Leach, W.E. (1815). Entomology, *In*: Brewster D. (Eds.) *The Edinburgh Encyclopaedia* (Vol. 9), Balfour: Edinburgh, pp. 55-172.
- Makarov, K.V., Matalin, A.V., and Komarov, E.V. (2009). Fauna of beetles (Coleoptera) of Elton Lake vicinities, In: *Animals of clayey semidesert in Transvolga region (fauna conspecta and ecological characteristics)*, ed. A.A. Tishkov, pp. 95–134 [In Russian].
- Prokin, A.A., Litovkin, S.V., and Jäch, M.A. (2016). New records of Hydraenidae and Elmidae (Coleoptera) from Russia and adjacent countries, *Fragmenta Faunistica*, **58**, 99–110.
- Reitter, E. (1885). Neue Coleopteren aus Europa und den angrenzenden Ländern, mit Bemerkungen über bekannte Arten. Theil 1, *Deutsche Entomologische Zeitschrift*, **29**, 353–392.
- Reitter, E. (1897). Dreifsig neue Coleopteren aus russisch Asien und der Mongolei, *Deutsche Entomologische Zeitschrift*, **2**, 209–228.
- Rey, C. (1886). Histoire naturelle des coleopteres de France (suite), *Annales de la Société Limnéenne de Lyon*, **32**, 1–187, pl. 1–2.

- Sahlberg, J. (1900). Coleoptera mediterranea et rosso-asiatica nova et minus cognita, *Öfversigt af Finska Vetenskaps-Societetens Förhandlingar*, **42**, 174–208.
- Shatrovskiy, A.G. (2015). *Micragasma* Sahlberg, 1900 (Coleoptera: Hydraenidae) a new for Ukraine genus of halophilic minute moss beetle, *Kharkov Entomological Society gazette*, **23**, 13–15. [In Russian with English title and abstract].

Chapter 5

Irreversible habitat specialisation does not constraint diversification in hypersaline water beetles

Adrián Villastrigo, Paula Arribas, Anabela Cardoso and Ignacio Ribera *Manuscript in preparation for submission.*

Abstract

Specialization to extreme environments is often considered an evolutionary dead-end, leading to irreversible adaptations and reduced evolvability. There is, however, mixed evidence of this macroevolutionary pattern, and limited data from speciose lineages. Here, we tested the effect of habitat specialization to hypersaline waters in the diversification rates of aquatic beetles of the genus *Ohthebius* (Coleoptera, Hydraenidae), using a molecular phylogeny with 279 of the 541 recognised species. Phylogenies were built with three mitochondrial and two nuclear genes, with the addition of 42 mitochondrial genomes obtained through NGS. Using Bayesian methods of character reconstruction we show that hypersaline tolerance is an irreversible adaptation that arose multiple times independently. Two lineages had a significant increase in diversification rates, one of them inhabiting hypersaline waters, but there was no overall correlation with habitat or any significant decrease in diversification rates despite the irreversibility of the hypersaline habits. Living in extreme environments often requires key innovations that allow organisms to cope with extreme conditions, like anti-freezing proteins in cold-tolerant organisms (Duman, 2015), modifications in the life cycle or metabolism in cave beetles (Deleurance, 1963; Delay, 1978), or the tolerance to hypersaline waters (Arribas *et al.*, 2018). It has been hypothesised that these traits concede species the ability to live in new environments, representing an ecological opportunity that allow species to diversify swiftly until niches are saturated, but producing a decline on diversification rates later on the history of the lineage (Rabosky, 2009; Henao-Díaz *et al.*, 2019). Some extreme traits are considered evolutionary dead ends: irreversible specializations (Kelley and Farrell, 1998) that affect negatively the diversification rate, normally due to an increased extinction (Wright *et al.*, 2013). However, recent works have shown that adaptations assumed to be dead-ends, such as those of subterranean organisms, have some potential for diversification due to differentiation of niches (Fišer *et al.*, 2012) or differential life-histories (Cieslak *et al.*, 2014). More evidence seems thus clearly needed to understand the effect of habitat specialisation on diversification rates.

During the last years, tolerance to hypersaline water - an extreme ecological specialization on aquatic Coleoptera - has been the focus of some research (Picazo *et al.*, 2010; Arribas *et al.*, 2014; Sabatelli *et al.*, 2016; Pallarés *et al.*, 2017; Villastrigo *et al.*, 2018, Chapter 2). Some species of water beetles can tolerate salt concentrations several fold higher than that of the oceans (Picazo *et al.*, 2010; Timms and Hammer, 1988), and together with some Diptera and Crustacea are the only macrorganisms able to live in these environments. The study of the origin of salinity tolerance in *Enochrus* Thomson (family Hydrophilidae, Arribas *et al.*, 2014; Pallarés *et al.*, 2017) and Hygrotini (family Dytiscidae, Villastrigo *et al.*, 2018, Chapter 2) gave similar results: the ecological adaptation to hypersaline waters appeared during periods of global aridification, possibly as an exaptation to aridity, and it is irreversible. However, the limited number of species in these studies did not allow to investigate the possible relationship between salinity tolerance and diversification rates.

The aim of this research is to explore the macroevolutionary consequences of the origin and evolution of hypersalinity in the genus *Ochthebius* Leach (family Hydraenidae), the most speciose group of water beetles able to live in these environments, with lineages living in inland hypersaline streams, coastal rockpools or saltpans (Millán *et al.*, 2014; Villastrigo *et al.*, 2019, Chapter 3). We hypothesize that this trait evolved independently several times as in other aquatic beetles (Arribas *et al.*, 2014; Villastrigo *et al.*, 2018, Chapter 2), following a pattern of a dead end due to its irreversibility. As the transition to hypersaline habitats requires the evolution of traits that allow to cope with very stressful conditions of these singular aquatic systems, it may also be expected to play an important role on diver-

sification rates, with differences among freshwater and salt tolerant lineages.

Results

Molecular phylogeny

We used the dataset based of Villastrigo et al. (2019, Chapter 3) with the addition of 66 specimens, complementing the data with 42 new mitogenome sequences (see Methods). This represents ca. 50% of the recognised species of Ochthebius (Villastrigo et al., 2019, Chapter 3). The best convergence in the Bayesian analyses was obtained with the simplest evolutionary model, HKY+G+I under a strict clock. The consensus topology (Fig. 1) was similar to previous phylogenies of the group (e.g. Villastrigo et al., 2019 Chapter 3), but with higher support values in most nodes. Main differences were the fully supported relationships between subgenera (posterior probability [pp] > 0.98), with the clade Aulacochthebius plus Asiobates as sister to the rest of Ochthebius, followed by Enicocerus plus Hughleechia (Fig. 1). The addition of the newly described Micragasma minoicus (Hernando et al., 2017, Chapter 4) resulted in a non-monophyletic Micragasma, recovering M. minoicus as sister to Ochthebius s.str. (with low support, pp= 0.59; Fig. S1) whilst the type species of the subgenus, *M. paradoxum*, was sister to subgenus *Cobalius* with strong support (Figs 1, S1). The monophyly of all subgenera and species groups (as defined in Villastrigo et al., 2019, Chapter 3) were strongly supported (pp > 0.99) except for the notabilis group of Ochthebius s.str.

Ochthebius diversification

We used three different phylogenies to estimates diversification rates: A) the consensus tree; B) the consensus tree with the manual inclusion of the missing species of *Ochthebius*; and C) 100 randomly selected post-burnin trees plus the missing species (see Methods for details on how we placed missing species in the phylogeny). We ran BAMM and MM-estimator on phylogenies B and C.

The overall diversification rate through time showed a standard pattern of decelerated speciation with time (Fig. 2). According to the Bayes factors scores, phylogeny B showed evidence of 1 to 3 diversification shifts (Fig. 3; scores 34.26, 29.44 and 21.25 respectively). Shifts were most frequently in subgenus *Asiobates* (mainly in the *bicolon* group, but also on all *Asiobates* except the puncticollis group) and the eastern Mediterranean species of *Cobalius*. Phylogenies C had a similar pattern, with 0 to 4 diversification shifts (mean number of core shifts= 1.56, mode= 1). Additional diversification shifts detected in

Figure 1. Time calibrated majority rule consensus tree obtained in BEAST, with habitat reconstruction. Number in nodes, posterior probability (circles when pp=1). Top-left corner, marginal frequency distribution of the estimated transitions between habitats.

Figure 2. Speciation rate (green) and habitat transition rate (blue) of Ochthebius through time.

Figure 3. Left, diversification rate of *Ochthebius* obtained in Beast (warmer colours indicate a faster rate); right, habitat preference of *Ochthebius* reconstructed by Beast.

phylogenies B and C were in species groups with a low proportion of species included in the phylogeny (e.g. the *strigosus* group, Table S1). BAMM rates calculated for the main clades of phylogenies B and C separately (mean values) were basically the same, with a slightly lower rate in phylogeny B for the *bicolon* group of *Asiobates* and the eastern *Cobalius* (Table 1). The mean diversification rate for *Ochthebius* using the MM-estimator was between 0.044 and 0.062 (high extinction and no extinction fraction scenario respectively), while BAMM calculated a mean rate of 0.048, similar to the high extinction scenario (extinction fraction = 0.9). Rates of phylogeny B and the mean of diversification rates of Phylogenies C were similar, and rates calculated using MM-estimator were also similar to those with BAMM results for a mid-extinction scenario (Table 1). The only disagreements between BAMM and MM-estimator were for the rates in subgenus *Hughleechia* and the east Mediterranean *Cobalius*, with MM crown clade rates overestimated and stem clade rates underestimated in comparison with BAMM.

	MM estimator					BAMM		
	crown groups			stem groups				
	ε = 0	ε = 0.5	ε = 0.9	ε = 0	ε = 0.5	ε = 0.9	Mean Phylogeny C	Consensus Phylogeny B
Ochthebius genus	0.062	0.059	0.044	NA	NA	NA	0.048	0.048
Angiochthebius	0.040	0.035	0.012	0.006	0.006	0.002	0.051	0.049
Asiobates	0.050	0.046	0.030	0.045	0.042	0.028	0.062	0.059
Aulacochthebius	0.032	0.029	0.014	0.025	0.022	0.011	0.049	0.047
Cobalius	0.055	0.050	0.025	0.042	0.038	0.019	0.047	0.046
Enicocerus	0.044	0.039	0.018	0.027	0.024	0.011	0.047	0.046
Gymnanthelius	0.056	0.049	0.019	0.019	0.016	0.006	0.046	0.047
Gymnochthebius	0.050	0.046	0.027	0.045	0.042	0.025	0.044	0.046
Hughleechia	0.125	0.109	0.036	0.005	0.004	0.002	0.057	0.054
Ochthebius	0.073	0.069	0.050	0.066	0.063	0.045	0.045	0.045
bicolon group	0.136	0.125	0.076	0.086	0.080	0.048	0.083	0.072
East Cobalius	0.269	0.232	0.089	0.029	0.025	0.010	0.060	0.048

Table 1. Diversification rates for main groups (i.e. subgenera plus groups with higher rates) estimated by *method of moments* (stem and crown ages, ε = extinction fraction) and BAMM.

Evolution of salinity tolerance

We reconstructed multiple independent origins of salinity tolerance across the phylogeny of *Ochthebius* using a Bayesian approach in BEAST. Species were divided in three categories according to their ecological preferences: freshwater, mesohaline (i.e. tolerant) and hypersaline (see Methods). The ancestor of *Ochthebius* was estimated to have a freshwater preference, but the most common recent ancestor of subgenera *Ochthebius*, *Micragasma* and *Cobalius* was undefined, with similar probabilities for mesohaline and freshwater states (0.57/0.43, 0.59/0.38 and 0.64/0.33 for freshwater and mesohaline respectively). Most transitions where found to be gradual, but there were some direct transitions from freshwater to hypersaline waters in old lineages with long branches (e.g. *quadricollis* group, *Micragasma minoicus, Cobalius* plus *Micragasma paradoxum* and *Hughleechia*). The most common estimated habitat transition was from mesohaline to freshwater, followed by mesohaline to hypersaline, freshwater to mesohaline and finally freshwater to hypersaline (Table 2). The estimated transitions from hypersaline water to mesohaline or freshwater were very low (Table 2).

	Transition rate (transition / My)
Freshwater to hypersaline	0.438
Freshwater to mesohaline	1.116
Mesohaline to freshwater	2.634
Mesohaline to hypersaline	1.508
Hypersaline to mesohaline	0.165
Hypersaline to freshwater	0.159

Table 2. Habitat transitions rates obtained inBeast v1.10.1.

The best evolutionary model for habitat preference under the Markov model estimated all transition rates independently (Table 3). All estimated transitions were gradual, and there was no reversal from the hypersaline condition. The most common transition was again from mesohaline to freshwater, followed by mesohaline to hypersaline and mesohaline to tolerant (Table 3).

Table 3. AIC weight values of three Mkmodels for discrete trait evolution.

	AIC weight
Equal rates model	0.00000
Symmetrical rates model	0.00005
All rates different model	0.99995

The rates calculated for habitat transitions on BAMM were not constant through time, with a tendency to increase over the last 30 million years (Fig. 2). An additional, smaller increase on rate was also identified between 55 to 45 million years ago (Fig. 2).

We further tested the influence of the trait in the diversification rates using Hidden State Speciation and Extinction (Herrera-Alsina, 2019). The best performing model using the salinity tolerance (the "examined-trait-diversification" or ETD, see methods) included four independent transition rates (Table 4), with lineages found exclusively on freshwater environments having the lowest speciation rates ($\lambda f = 0.045$) compared with those that that can tolerate some range of salinity (mesohaline) ($\lambda t = 0.059$) and those found in hypersa-

line waters ($\lambda h = 0.061$, Table 4). However, when comparing this model with the constant rate (CR) and concealed trait diversification (CTD) models we found a significant effect of a concealed trait rather than the examined trait (CTD was most likely than CR and ETD models, Table 4), suggesting that despite the heterogeneity of speciation rates across the phylogeny there is no significant evidence for salinity being responsible for this speciation rate variation. Results were similar when the effect of the incomplete taxon sampling across trait states was considered (Table 4).

Table 4. Maximum Likelihood (ML) framework of SecSSE for different models of trait-dependent diversification. A) Model comparison for a set of nested examined trait-dependent diversification models (ETD) that included different numbers of transition rates (from 1 to 4) between the three examined trait states. B) Model comparison for different settings of the speciation rates: constant-rate (CR); concealed trait-dependent (CTD) and examined trait-dependent diversification (ETD) models using four transition rates between the three examined trait states. C) and D) are analogous to A) and B) but considering the potential effect of the incomplete taxon sampling across the three different trait states. Models are compared using Akaike weights (AICw), best model in bold.

			-	-	-				
A)	model	k	ML	AICw	C)	model	k	ML	AICw
	ETD_1	5	-1342.2	0.00006		ETD_1	5	-1324.8	0.00432
	ETD_2	6	-1342.1	0.00003		ETD_2	6	-1324.8	0.00160
	ETD_3	7	-1339.8	0.00010		ETD_3	7	-1322.3	0.00746
	ETD_4	8	-1329.5	0.99981		ETD_4	8	-1316.4	0.98662
B)	model	k	ML	AICw	D)	model	k	ML	AICw
	CR_4	6	-1330.2	0.00000		CR_4	6	-1319.2	0.00140
	CTD_4	8	-1313.9	1.00000		CTD_4	8	-1310.7	0.99531
	ETD_4	8	-1329.5	0.00000		ETD_4	8	-1316.4	0.00329

Discussion

Molecular phylogeny

The topology of consensus tree (A) was essentially the same as in Villastrigo *et al.* (2019, Chapter 3). The addition of mitogenome sequences into the core dataset has improved the support values of mostly all basal nodes except for a few fast speciation branches at the origin of *Ochthebius* subgenus. This unresolved fast diversification splits occurred between the end of the Cretaceous and the early Paleocene, a period of global changes linked to mass extinction (e.g. Longrich *et al.*, 2012). The inclusion of *Micragasma minoicus* established *Micragasma* as polyphyletic, something unexpected given the morphological resemblance of the two sampled species, but not completely given the complex taxonomic history of the genus (Hernando *et al.*, 2017, Chapter 4). The phylogenetic position of *Ochthebius zugmayeri* was also unexpected, raising questions about the taxonomical status of the *andraei, atriceps, corrugatus* and *notabilis* species groups (Jäch, 1991, 1992). Other minor unresolved relationships between species groups were likely due to an incomplete sampling (*andraei, nitidipennis* and *vandykei* groups) or for being part of isolated old line-

ages (peisonis, rivalis and sumatrensis groups).

Tempo and Mode of the evolution of tolerance to salinity

We found multiple origins of salinity tolerance, in accordance with previous studies (Arribas *et al.*, 2014; Pallarés *et al.*, 2017; Villastrigo *et al.*, 2018, Chapter 2). The first appearance of tolerant ancestors was likely at the end of Campanian (Upper Cretaceous) as the most common recent ancestor of subgenera *Ochthebius* plus *Micragasma* plus *Cobalius*. The BEAST analysis was inconclusive with the reconstruction of that node, with almost the same state probability for freshwater and mesosaline but with the exclusion of a hypersaline state. However, BEAST and fitMk established mesosaline as the most common origin of habitat transitions, supporting the idea of an early origin of salinity tolerance. Based on our results, hypersalinity tolerance appeared during the Paleocene-Eocene thermal maximum (PETM), a period associated with a decreased precipitation and increased temperatures (Barrón *et al.*, 2010; Zachos *et al.* 2001) which may be linked with a reduction of freshwater and the increase of saline habitats.

BAMM found non-constant rate for habitat transitions through time, starting with a general decline during Cretaceous, increasing fast at the beginning of PETM but decreasing again after 10 million years, and increasing during early Oligocene in a trend that it is currently maintained. The increase in diversification during the PETM may be related to the climatic changes of that period, and associated to the increase of the availability of saline habitats, as noted above. In agreement with this, the early Oligocene increase is again coincident with a period of abrupt climate change, and coincident also with the findings by Villastrigo *et al.* (2018, Chapter 2), who linked the appearance of hypersalinity tolerance in Dytiscidae with a global decrease in temperature in the Early Oligocene (Liu *et al.*, 2009).

Tolerance to salinity evolved gradually except for some lineages linked with coastal rockpools. Two of these lineages are associated with the likely origin of salinity tolerance (see above), one without any extant close relatives (*Hughleechia*) and another (*quadricollis* group) related to mesosaline taxa. This gradual evolution is in agreement with the reconstructed evolution of Hygrotini (family Dytiscidae, Villastrigo *et al.*, 2018, Chapter 2), but in contrast with the direct transition from freshwater to hypersaline species in the hydrophylid genus *Enochrus* (Arribas *et al.*, 2014; Pallarés *et al.*, 2017). In any case, the origin of tolerance to hypersaline in all studied groups seems to be associated with periods of increasing aridity, despite the unavoidable uncertainties in the calibration of the trees.

Diversification rate

Both BAMM and MM-estimator showed similar results when crown ages were used. There were some expected differences in clades with a small number of species (4 or less) such as *Angiochthebius* or *Hughleechia*, as rate estimates is an inverse function of clade size (Rabosky, 2019). As both analyses were coincident, only BAMM is considered below.

BAMM supported at least one shift in diversification rate. The analyses with 100 post-burnin trees showed 0 to 4 shifts, but some of them were due to artefacts on lineages with just a few species or with only one sampled species (e.g. *strigosus* group). Unsampled species were added into the consensus phylogeny randomly within the crown clade, but if there was only one species in that clade, the first species was included randomly on the stem branch, affecting the estimated diversification rate by altering the rate of speciation and detecting an artefactual shift. Without considering those artefacts, BAMM consistently detected shifts on subgenus *Asiobates* (specially on the *bicolon* group) and the eastern Mediterranean species of *Cobalius. Asiobates* has more than 100 species (Villastrigo *et al.*, 2019, Chapter 3), almost all included in the *bicolon* and *minimus* groups. Both groups are mostly linked to freshwater environments, but many of the species are known only by the type locality or a few number of isolated records (see Jäch, 1990; Ribera, 2000 or Delgado & Jäch, 2007 for examples). The scarcity of records is probably due to their cryptic habitats, being likely that some species are linked to semi-aquatic or terrestrial lifestyles.

Most species of subgenus *Cobalius* live in coastal rockpools. The core shift in diversification was detected in a clade comprising species that live in the eastern Mediterranean islands. These islands (like Crete or Cyprus) arose early in the early Miocene - about 20 million years ago (Ring *et al.*, 2001), opening a vast amount of new coastal areas to be colonized. The dispersal ability of species of *Cobalius* seems to be more limited than usually assumed, and largely determined by predominant wind currents (*personal observations*). The emergence of hundreds of islands in a reduced area represented an ecological opportunity that likely increased diversification.

Methods

Dataset and taxon sampling

We compiled ca. 200 *Ochthebius* species from Villastrigo *et al.* (2019, Chapter 3) plus four species as outgroups (genera *Meropathus* and *Tympanogaster*). To this data-

set we added 66 new specimens representing 25 recognised species plus 41 unidentified species, for what we extracted their DNA using Qiagen DNeasy Tissue Kit (Hildesheim, Germany). New DNA samples and voucher specimens are stored in the collection of Institute of Evolutionary Biology (IBE, Barcelona, Spain). In total, we include 279 specimens of 209 recognised species and 6 subspecies plus 68 unidentified species of the known 541 species and 9 subspecies of *Ochthebius* sensu lato (s.l.), with examples of all subgenera and species groups except for *kosiensis* (see Villastrigo *et al.*, 2019, Chapter 3) (Table S1). We amplified six genes in five sequencing reactions, including mitochondrial and nuclear genes – two cytochrome c oxidase subunit I fragments (COI-5' and COI-3'), 5' end of rrnL RNA plus leucine tRNA transfer (tRNA-L1) plus 5' end of NADH dehydrogenase subunit I (NAD1), and one internal fragment of both larger ribosomal unit (28S RNA) and small ribosomal unit (18S RNA) (see Table S4 in Villastrigo *et al.*, 2019, Chapter 3, for details). Sequences were edited using Geneious v10.1 (Kearse *et al.*, 2012) and were uploaded in the ENA database with accession numbers XXXXX-XXXXX (Table S1).

With the aim to increase the support of some poorly supported basal nodes at Villastrigo et al. (2019, Chapter 3) we obtained 42 complete or partial mitochondrial genomes (mt genomes) plus one outgroup mt genome obtained from Genbank (Meropathus sp., accession number KX035131). Mt genomes were obtained with a modified Mitochondrial metagenomics protocol based on Crampton-Platt et al. (2016): DNA extractions for species with less than 95% pairwise similarities based on the COI gene were equimolarly pooled, and libraries were prepared with TruSeq Nano DNA kit. In total, four libraries were run in two Illumina MiSeq runs (2 x 300 bp). Libraries were trimmed and filtered with Trimmomatic (Bolger et al., 2014) and PrinSEQ (Schmieder & Edwards, 2011) respectively. Non mitochondrial reads were excluded with BLAST (Madden et al., 2009) prior to assembly with four different approaches: (i) IDBA-UD (Peng et al., 2012), (ii) RAY-meta (Boisvert et al., 2012), (iii) WGS-assembler (Myers et al., 2000) and (iv) SPAdes (Bankevich et al., 2012). Contigs found in at least three assemblers were considered valid and were identified using Sanger sequences of COI and rrnL genes. Consensus contigs were annotated with MITOS WebServer (Bernt et al., 2013), checking every note by hand using reference sequences available of closely related aquatic beetles on Genbank (Clark et al., 2016). Newly obtained sequences have been deposited in Genbank (XXXXXX-XXXXXXX; Table S1), and a list of samples per gene and their length can be found in Table S2.

Phylogenetic analyses

Genes and tRNAs sequences extracted from the mt genomes plus Sanger sequences were aligned with the MAFFT plugin (Katoh *et al.*, 2009) in Geneious v10.1 with the G-INS-I algorithm. We established seven partitions according to the type of data: (i) nuclear genes (28S plus 18S), (ii) tRNA present in both the Sanger sequencing and the mt genomes (tRNA-L1), (iii) the remaining tRNAs, (iv) protein coding genes present in both the Sanger sequencing and the mt genomes (COI plus NAD1), (v) the remaining 11 protein coding genes, (vi) rRNAs present in both the Sanger sequencing and the mt genomes (16S), (vii) the remaining rRNAs (12S) (see S2 for more information). We tested four different scenarios, combining two evolutionary models (HKY+G+I and GTR+G+I) and two clocks models (uncorrelated relaxed lognormal and strict) with Beast v10.0.1 (Suchard *et al.*, 2018) under a Yule speciation process as tree prior. For dating the phylogeny, we used the crown age of Ochthebiini estimated by Villastrigo *et al.* (2019, Chapter 3) (93 Ma), as a normal prior with SD 0.01. Convergence of all parameters were checked on Tracer v.1.7.1 (Rambaut *et al.*, 2018) in order to select the best model.

The best model was used to reconstruct different phylogenies in BEAST, in all of them without outgroups and constraining the basal node to match the topology with outgroups: (A) consensus tree, (B) consensus tree plus unsampled species and (C) 100 randomly selected post-burnin trees plus unsampled species. We included the remaining 343 unsampled species and 5 subspecies of *Ochthebius* s.l. randomly using the *phytools* r-package (Revell, 2012) following current recognised species groups and subgenera (Villastrigo *et al.*, 2019, Chapter 3). Two *incertae sedis* species were discarded (*Ochthebius belucistanicus* and *Ochthebius eremita*), and the species of the *kosiensis* group of *Ochthebius* s.l. were clustered together with that of the *strigosus* group based on their morpholog-ical similarities (Villastrigo *et al.*, 2019, Chapter 3; Jäch, 2003).

Diversification analyses

We used Bayesian Analysis of Macroevolutionary Mixtures - BAMM (Rabosky, 2014) to detect shifts in diversification rates for all subgenera except *Micragasma*, as it was not reconstructed as monophyletic. Given the current controversy around BAMM (Moore *et al.*, 2016; Rabosky *et al.*, 2017; Meyer *et al.*, 2018; Meyer & Wiens, 2018; Rabosky, 2018), we also calculate diversification rates based on the *method of moments* estimators (MM-estimator) (Magallón & Sanderson, 2001) using *geiger* r-package (Harmon et al., 2008). Both methodologies were assessed using the complete phylogenies (i.e. with the inclusion of the non-sampled species).

BAMM analyses were run on phylogenies B and C. Priors were calculate using setBAMMpriors from *BAMMtools* r-package (Rabosky *et al.*, 2014) during 10 million generations unless the effective sample sizes where below 200, in which cases they were run

for 20 million generations. MM-estimator were calculated under three extinction fractions, (i) low ($\epsilon = 0.0$), (ii) intermediate ($\epsilon = 0.5$), and (iii) high ($\epsilon = 0.9$) for both crown and stem subgenera. Additionally, we calculated diversification rates for the lineages where BAMM detected diversification shifts.

Evolution of salinity tolerance

Ecological data on habitat preference were obtained for all the species with molecular data based on bibliography and direct observation on the field (Table S1). As quantitative data on environmental salinity were sparse, we reconstructed habitat preference using three qualitative states, as in similar previous study (Villastrigo *et al.*, 2018, Chapter 2): (i) species found exclusively on freshwater environments, (ii) species that can tolerate some range of salinity (including freshwater) but never (or only very occasionally) found on hypersaline environments, and (iii) species that are mostly restricted to hypersaline waters, found regularly on them (> 40 g/L). Analyses were run on the consensus tree after deleting the outgroups.

Habitat reconstruction were performed by BEAST using an asymmetrical model of trait evolution, and AIC weights (Wagenmakers & Farrell, 2004) was used to compare different model of discrete trait evolution under a MK model (fitMK function on *phytools* r-package): model with equal rates, model with symmetrical rates and model with different rates among states. BAMM was used to detect shifts in transition rates associated with habitat preference.

Trait-dependent diversification was analysed using SecSSE (Herrera-Alsina *et al.*, 2019), that allows to simultaneously infer state-dependent diversification across multiple (observed) trait states while accounting for the role of a possible concealed (hidden) trait. Firstly, we compared among a set of nested Examined-Trait-Dependent speciation models (ETD, see below) that included different numbers of transition rates between the examined trait states. Four models were tested from single to four transition rates that were sequentially constrained according with the results of fitMk (all different rates as best model, see details in Table 3). Second, we compared models with different settings for the speciation rates: (i) a Constant Rates model (CR) where all species have the same speciation rate λ regardless of their trait state; (ii) a Concealed-Trait-Dependent speciation model (CTD) where speciation rates are allowed to vary only between concealed (hidden) trait states and (iii) the Examined-Trait-Dependent speciation model (ETD) where the speciation rates are allowed to vary only between the examined trait states. For all the models the Maximum Likelihood search was performed with the simplex algorithm offered by the *DDD* package,
using the best transition rates constraint as tested before and the rest of parameters as recommended1. Finally, model selection based on Akaike weights was carried to select the best-performing model in each comparison. Additionally, all the analyses were repeated as before but considering the potential effect of the incomplete taxon sampling across different trait states, i.e. including *sampling_fraction* = c (0.64, 0.39, 0.36) according with the number of species in the phylogeny by the total number of described species for freshwater, tolerant and hypersaline states.

Acknowledgements

We thank all collectors mentioned in Table S1 for their contribution to this paper. AV has a FPI-MINECO PhD grant (BES-2014-069398) from the Spanish Government and part of the analyses were done under a short-stay grant (EEBB-I-17-11993) from the Spanish Government. This work has been partially funded by project CGL2013-48950-C2 (AEI/ FEDER EU) to IR.

Author contributions

PA and IR designed the study. AV, PA and IR prepared the methodology. AV and AC obtain sanger sequences. AV and PA obtain mitogenome sequences. AV and PA ran the analyses. AV, PA and IR prepared the manuscript with contributions of AC.

References

- Arribas, P., Andújar, C., Abellán, P., Velasco, J., Millán, A., Ribera, I. (2014). Tempo and mode of the multiple origins of salinity tolerance in a water beetle lineage. *Molecular Ecology*, **23**, 360–373.
- Arribas, P., Gutiérrez-Cánovas, C., Botella-cruz, M., Cañedo-Argüelles, M., Carbonell, J.A., Millán, A., Pallarés, S., Velasco, J., Sánchez-Fernández, D. (2018). Insect communities in saline waters consist of realised but not fundamental niche specialists. *Philosophical Transactions of the Royal Society B*, **374(1764)**, 20180008.
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. *Journal of computational biology*, **19**, 455–477.
- Barrón, E., Rivas-Carballo, R., Postigo-Mijarra, J.M., Alcade-Olivares, C., Vieira, M., Castro, L., Pais, J., Valle-Hernández, M. (2010). The Cenozoic vegetation of the Iberian Peninsula: A synthesis. *Review of Palaeobotany and Palynology*, **162**, 382–402.
- Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., Stadler, P.F. (2013). MITOS: Improved de novo metazoan mitochondrial genome annotation. *Molecular Phylogenetics and Evolution*, **69**, 313–319.
- Boisvert, S., Raymond, F., Godzaridis, É., Laviolette, F., Corbeil, J. (2012). Ray Meta: Scalable de novo metagenome assembly and profiling. *Genome Biology*, **13(12)**, R122.
- Bolger, A.M., Lohse, M., Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics*, **30**, 2114–2120.
- Cieslak, A., Fresneda, J., Ribera, I. (2014). Life-history specialization was not an evolutionary dead-end in Pyrenean cave beetles. *Proceedings of the Royal Society B: Biological Sciences*, *281*, 20132978.
- Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W. (2016). GenBank. *Nucleic Acids Research*, **44**, D67–D72.
- Crampton-Platt, A., Yu, D.W., Zhou, X., Vogler, A.P. (2016). Mitochondrial metagenomics: letting the genes out of the bottle. *GigaScience*, **5**, 15.
- Delay, B. (1978). Milieu souterrain et écophysiologie de la reproduction et du développement des Coléoptères Bathysciinae hypogés. *Mém. Biosp.*, **5**, 1–349.
- Deleurance, S. (1963). Recherches sur les Coléoptères troglobies de la sous-famille Bathysciinae. *Annales des sciences naturelles, Zoologie*, **12**, 1–172.

- Delgado, J.A., Jäch, M.A. (2007). Revision of the Palearctic species of the genus Ochthebius Leach XXIII. The O. (Asiobates) maculatus species complex (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 77, 101–121.
- Duman, J.G. (2015). Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. *Journal of Experimental Biology*, **218**, 1846– 1855.
- Fišer, C., Blejec, A., Trontelj, P. (2012). Niche-based mechanisms operating within extreme habitats: A case study of subterranean amphipod communities. *Biology Letters*, 8, 578–581.
- Harmon, L.J., Weir, J.T., Brock, C.D., Glor, R.E., Challenger, W. (2008). GEIGER: Investigating evolutionary radiations. *Bioinformatics*, **24**, 129–131.
- Henao Diaz, L.F., Harmon, L.J., Sugawara, M.T.C., Miller, E.T., Pennell, M.W. (2019). Macroevolutionary diversification rates show time dependency. *Proceedings of the National Academy of Sciences of the United States of America*, 201818058.
- Hernando, C., Villastrigo, A., Ribera, I. (2017). A new species of *Micragasma* J. Sahlberg, 1900 (Coleoptera: Hydraenidae) from Crete. *Aquatic Insects*, **38(4)**, 1–12.
- Herrera-Alsina, L., van Els, P., Etienne, R.S. (2019). Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. *Systematic Biology*, 68(2), 317–328.
- Jäch, M.A. (1990). Revision of the Palearctic species of the genus Ochthebius Leach V.
 The subgenus Asiobates (Coleoptera: Hydraenidae). Koleopterologische Rundschau,
 60, 37–105.
- Jäch, M.A. (1991). Revision of the palearctic species of the genus *Ochthebius* VII. The *fove-olatus* group (Coleoptera: Hydraenidae). *Koleopterologische Rundschau*, **61**, 61–94.
- Jäch, M.A. (1992). Revision of the Paleartic species of the genus Ochthebius Leach, 1815.
 IX. The andraei and notabilis species groups (Coleoptera, Hydraenidae). Nachrichtenblatt Bayerischer Entomologen, 41, 7–21.
- Jäch, M.A. (2003). Hydraenidae: II. Synopsis of Ochthebius Leach from Mainland China, with descriptions of 23 new species (Coleoptera). Water Beetles of China Vol III, 313– 369.
- Katoh, K., Asimenos, G., Toh, H. (2009). Multiple Alignment of DNA Sequences with MAFFT, *In: Bioinformatics for DNA Sequence Analysis*. pp. 323–336.
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform

for the organization and analysis of sequence data. Bioinformatics, 28, 1647-1649.

- Kelley, S.T., Farrell, B.D. (1998). Is specialization a dead end ? The phylogeny of host use in Dendroctonus bark beetles. *Evolution*, **52**, 1731–1743.
- Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S.R., Leckie, R.M., Pearson, A. (2009). Global Cooling During the Eocene-Oligocene Climate Transition. *Science*, **323**, 1187–1190.
- Longrich, N.R., Bhullar, B.-A.S., Gauthier, J.A. (2012). Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary. *Proceedings of the National Academy of Sciences*, **109**, 21396–21401.
- Madden, T.L., Camacho, C., Ma, N., Coulouris, G., Avagyan, V., Bealer, K., Papadopoulos, J. (2009). BLAST+: architecture and applications. *BMC Bioinformatics*, **10**, 421.
- Magallón, S., Sanderson, M.J. (2001). Absolute diversification rates in Angiosperm clades. *Evolution*, **55**, 1762–1780.
- Meyer, A.L.S., Román-Palacios, C., Wiens, J.J. (2018). BAMM gives misleading rate estimates in simulated and empirical datasets. *Evolution*, **72(10)**, 2257–2266.
- Meyer, A.L.S., Wiens, J.J. (2018). Estimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shifts. *Evolution*, **72(1)**, 39–53.
- Millán, A., Sánchez-Fernández, D., Picazo, F., Carbonell, J.A., Lobo, J.M., Ribera, I. (2014). Atlas de los coleópteros acuáticos de España peninsular.
- Moore, B.R., Huelsenbeck, J.P., Rannala, B., May, M.R., Höhna, S. (2016). Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. *Proceedings of the National Academy of Sciences*, **113**, 9569–9574.
- Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J., Kravitz, S.A., Mobarry, C.M., Reinert, K.H.J., Remington, K.A., Anson, E.L., Bolanos, R.A., Chou, H.-H., Jordan, C.M., Halpern, A.L., Lonardi, S., Beasley, E.M., Brandon, R.C., Chen, L., Dunn, P.J., Lai, Z., Liang, Y., Nusskern, D.R., Zhan, M., Zhang, Q., Zheng, X., Rubin, G.M., Adams, M.D., Venter, J.C. (2000). A whole-genome assembly of *Dro-sophila*. *Science*, **287**, 2196–2204.
- Pallarés, S., Arribas, P., Bilton, D.T., Millán, A., Velasco, J., Ribera, I. (2017). The chicken or the egg? Adaptation to desiccation and salinity tolerance in a lineage of water beetles. *Molecular Ecology*, **26(20)**, 5614-5628.
- Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L. (2012). IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. *Bioinformatics*, 28, 1420–1428.

- Picazo, F., Moreno, J.L., Millán, A. (2010). The contribution of standing waters to aquatic biodiversity: The case of water beetles in southeastern Iberia. *Aquatic Ecology*, 44, 205–216.
- Rabosky, D.L. (2009). Ecological limits and diversification rate: Alternative paradigms to explain the variation in species richness among clades and regions. *Ecology Letters*, **12**, 735–743.
- Rabosky, D.L. (2014). Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. *PLoS ONE*, **9(2)**, e89543.
- Rabosky, D.L. (2018). BAMM at the court of false equivalency: A response to Meyer and Wiens. *Evolution*, **72(10)**, 2246–2256.
- Rabosky, D.L. (2019). Phylogenies and diversification rates: Variance cannot be ignored. *Systematic Biology*.
- Rabosky, D.L., Grundler, M., Anderson, C., Title, P., Shi, J.J., Brown, J.W., Huang, H., Larson, J.G. (2014). BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. *Methods in Ecology and Evolution*, **5**, 701–707.
- Rabosky, D.L., Mitchell, J.S., Chang, J. (2017). Is BAMM Flawed? Theoretical and Practical Concerns in the Analysis of Multi-Rate Diversification Models. *Systematic Biology*, 66, 477–498.
- Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. *Systematic biology*, **67**, 901–904.
- Revell, L.J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). *Methods in Ecology and Evolution*, **3**, 217–223.
- Ribera, I. (2000). Biogeography and conservation of Iberian water beetles. *Biological Conservation*, **92**, 131–150.
- Ring, U., Layer, P.W., Reischmann, T. (2001). Miocene high-pressure metamorphism in the Cyclades and Crete, Aegean Sea, Greece: Evidence for large-magnitude displacement on the Cretan detachment. *Geology*, **29**, 395–398.
- Sabatelli, S., Audisio, P., Antonini, G., Solano, E., Martinoli, A., Trizzino, M. (2016). Molecular ecology and phylogenetics of the water beetle genus Ochthebius revealed multiple independent shifts to marine rockpools lifestyle. *Zoologica Scripta*, **45**, 175–186.
- Schmieder, R., Edwards, Ro. (2011). Quality control and preprocessing of metagenomic datasets. *Bioinformatics*, **27**, 863–864.
- Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J., Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. *Virus*

Evolution, **4**, 1–5.

- Timms, B. V., Hammer, U.T. (1988). Water bettles of some saline lakes in Saskatchewan. *The Canadian Field-Naturalist*, **102**, 246–250.
- Villastrigo, A., Fery, H., Manuel, M., Millán, A., Ribera, I. (2018). Evolution of salinity tolerance in the diving beetle tribe Hygrotini (Coleoptera, Dytiscidae). *Zoologica Scripta*, 47, 63–71.
- Villastrigo, A., Jäch, M.A., Cardoso, A., Valladares, L.F., Ribera, I. (2019). A molecular phylogeny of the tribe Ochthebiini (Coleoptera, Hydraenidae, Ochthebiinae). Systematic Entomology, 44, 273–288.
- Wagenmakers, E., Farrell, S. (2004). AIC model selection using Akaike weights. *Psycho-nomic Bulletin & Review*, **11**, 192–196.
- Wright, S.I., Kalisz, S., Slotte, T. (2013). Evolutionary consequences of self-fertilization in plants. *Proceedings of the Royal Society B: Biological Sciences*, **280(1760)**, 20130133.
- Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K. (2001). Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. *Science*, **292**, 686–693.

Supporting Information

Table S1. List of material used in the molecular phylogeny, including voucher numbers, accession numbers of the sequences and locality data

Table S2. List of genes used in phylogenetic reconstruction, including samples pergene and length of each aligment.

Figure S1. Majority rule consensus tree obtained in Beast. Number in nodes: posterior probability values.

all genus	eningene	dnoiß sainads	ferme canads	Decles sammers		IOCAILLY	2	
1 Meropathus	Hygrotympanogaster	ø	schizolabra		IBE-AF167	Australia; Victoria, Beech Forest below Hopetoun Falls 21.7.2009	I. Ribera & A. Cieslak	LT991263 LT991452 LT990692 LT990836 LT991041
2 Meropathus	Tympanogaster	0	leanei		MNCN-AI372	Australia: Queensland, 40 km SSE Brisbane, Cedar Creek Road, above Cedar Creek Falls 22.8.2004	M.A. Jäch	LT991264 LT991453 LT990693 LT990837 LT991042
3 Meropathus	Tympanogaster	u	nodulatrix		IBE-AN183	Australia; Queensland, Lamington NP, Morans falls 26.4.2014	J. Maté	XXXXXX LT991265 LT991454 LT990694 LT990838 LT991043
4 Meropathus	Meropathus	7	realandicus		MNCN-AI715	New Zealand; South Island, Papatowai, beach 7.12.2005	M. Thayer, A. Newton & J. Nunn	LT991262 LT991451 LT990691 LT990835 LT991040
5 Meropathus	Meropathus	2	rectis		genbank			XXXXXX
5 Ochthebius	Angiochthebius	Р	olesiotypus	Freshwater	MNCN-AI562	Chile; Región Metropolitana, Alto Cantillana 8.1.2001	M. Guerrero	XXXXXX LT991267 LT991456 LT990696 LT990840 LT991045
7 Ochthebius	Asiobates	bicolon	arator	Freshwater	IBE-AN185	Turkey; Uşak, Çatalbayır village 19.6.2012	N. Ertorun	LT991268 LT991457 LT990841 LT991046
3 Ochthebius	Asiobates	bicolon	auriculatus	Tolerant	MNCN-AH154	England (UK); S Devon, Dawlish Warren Saltmarsh 29.9.2007	D.T. Bilton	LT991269 HF931134 HF931352 LT990842 LT991047
9 Ochthebius	Asiobates	bicolon t	oellieri	Freshwater	IBE-AN290	Spain; Albacete, Paterna del Madera, Arroyo de la Fuenfría 30.7.1998	3 I. Ribera	LT991270 LT991458 LT990697 LT990843 LT991048
10 Ochthebius	Asiobates	bicolon t	oicolon	Freshwater	IBE-RA1171	England (UK); N Devon, 1 km S Hartland Quay, stream 28.7.2013	D.T. Bilton	LT991271 LT991459 LT990698 LT990844 LT991049
11 Ochthebius	Asiobates	bicolon t	oonnairei	Freshwater	MNCN-AI1272	Spain; Jaén, Santiago de la Espada, Río Zumeta 16.6.2006	A. Millán & collaborators	LT991272 HF931177 HF931398 LT990845 LT991050
12 Ochthebius	Asiobates	bicolon c	cantabricus cf.	Freshwater	MNCN-AI1027	Turkey; Kastamonu, Aşağı Kayı 27.4.2006	A. Castro	LT991273 HF931145 HF931364 LT990846 LT991051
13 Ochthebius	Asiobates	bicolon c	sorsicus	Freshwater	IBE-AN159	Corsica (France); Col de Bavella 14.5.2014	R. Vila	LT991274 LT991460 LT990699 LT990847 LT991052
14 Ochthebius	Asiobates	bicolon c	crenulatus	Freshwater	MNCN-AH159	Sicily (Italy); Parco dei Nebrodi, trail Lago Urio - Portella dell'Obolo 13.6.2007	P. Abellán & F. Picazo	LT991275 HF931136 HF931353 LT990848 LT991053
15 Ochthebius	Asiobates	bicolon	dilatatus	Freshwater	MNCN-AI792	Turkey: Bartın, between Topallar & Çakraz, calcareous stream 25.4.2006	I. Ribera	LT991276 HF931227 HF931456 LT990849 LT991054
16 Ochthebius	Asiobates	bicolon f	erroi	Freshwater	IBE-PB28	Spain; Huesca, Sta. Cruz de Serós, Barranco Carbonera 3.8.2013	I. Esteban	HG915303 LT991461 LT990700 LT990850 LT991055
17 Ochthebius	Asiobates	bicolon f	igueroi	Freshwater	IBE-AN23	Spain; Cantabria, Río Soto 15.7.2014	D.T. Bilton	LT991277 LT991462 LT990701 LT990851 LT991056
18 Ochthebius	Asiobates	bicolon g	<i>jagliardii</i>	Freshwater	IBE-RA121	Italy; Toscana, Lorenzana, Gello Mattaccino, pond 26.5.2008	I. Ribera	LT991278 HF931301 LT990702 LT990852 LT991057
19 Ochthebius	Asiobates	bicolon h	neydeni	Freshwater	MNCN-AI390	Spain; Ourense, Sierra de Queixa, river San Lázaro 9.7.2005	I. Ribera & A. Cieslak	LT991279 HF931194 HF931419 LT990853 LT991058
20 Ochthebius	Asiobates	bicolon ii	mmaculatus	Tolerant	IBE-AN434	Mallorca (Spain); Mallorca, Salines de Llevant 28.3.2016	I. Ribera & A. Cieslak	LT991280 LT991463 LT990703 LT990854 LT991059
21 Ochthebius	Asiobates	bicolon ii	renae	Tolerant	MNCN-AI986	Spain; Navarra, Tudela, ditch near Balsa de Purguer 20.7.2004	I. Ribera & A. Cieslak	HG915302 HF931261 HF931497 LT990855 LT991060
22 Ochthebius	Asiobates	bicolon ji	aimei	Tolerant	IBE-RA1081	Spain; Alicante, Albatera 12.5.2013	I. Esteban	LT991281 HG915307 LT990704 LT990856 LT991061
23 Ochthebius	Asiobates	bicolon lı	ederi	Freshwater	IBE-AN63	Azerbaijan; Alishanli, 7 km NE Masally 8.5.2014	I. Ribera & A. Rudoy	XXXXXX LT991282 LT991464 LT990705 LT990857 LT991062
24 Ochthebius	Asiobates	bicolon le	enkoranus	Freshwater	IBE-AN75	Azerbaijan; Gosmalijion, stream 7.5.2014	I. Ribera & A. Rudoy	LT991283 LT991465 LT990706 LT990858 LT991063
25 Ochthebius	Asiobates	bicolon r	nontanus	Freshwater	IBE-AN207	Greece; Evvoia, Seta, mountain stream 8.4.2013	I. Ribera & A. Cieslak	LT991284 LT991466 LT990707 LT990859 LT991064
26 Ochthebius	Asiobates	bicolon	ppacus	Freshwater	MNCN-AI389	ltaly; Liguria, 2 km E Cosio di Arroscia 31.7.2005	I. Ribera & A. Cieslak	LT991285 HF931193 HF931418 LT990860 LT991065
27 Ochthebius	Asiobates	bicolon p	oeregrinus	Tolerant	IBE-AN206	Greece; Sterea Ellada, Fokida, Itea, stream E of Kirra 7.4.2013	I. Ribera & A. Cieslak	LT991286 LT991467 LT990708 LT990861 LT991066
28 Ochthebius	Asiobates	bicolon s	.c	Freshwater	IBE-AN74	Azerbaijan; Elabad, road to Garaybayli, stream 4.5.2014	I. Ribera & A. Rudoy	LT991287 LT991468 LT990709 LT990862 LT991067
29 Ochthebius	Asiobates	bicolon s	sp.	Freshwater	IBE-AV154	Kyrgyzstan; Kara-Darya, Uzgen 4.7.2017	D. Palatov	XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX
30 Ochthebius	Asiobates	bicolon s	striatus	Freshwater	MNCN-AI787	Turkey; Bartın, between Amasra & Inpiri, spring & stream 25.4.2006	I. Ribera	LT991288 HF931226 HF931455 LT990863 LT991068
31 Ochthebius	Asiobates	bicolon s	stygialis	Freshwater	IBE-AN160	Turkey; Antalya, 1 km N Hacıyusuflar 24.6.2014	D.T. Bilton	LT991289 LT991469 LT990710 LT990864 LT991069
32 Ochthebius	Asiobates	ainimus	seneus	Freshwater	MNCN-AI914	Morocco; Ou-Maghous, Amaghouz 24.4.2000	I. Ribera, P. Aguilera, C. Hernando & A. Millán	LT991290 HF931240 HF931472 LT990865 LT991070
33 Ochthebius	Asiobates	ainimus	adventicius	Freshwater	IBE-AV122	Russia; Adygea, Maikop Distr. 3.9.2014	Saprykin & Khiryanov	XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX
								continued on the next page

all	genus	subgenus	species group	species	subspecies	salinity voucher	locality	leg	mtgenome	COI-5 COI-3	rrnL	18S	28S	
34 Q	chthebius	Asiobates	minimus	alpinus		Freshwater IBE-RA1114	Belarus; Berezinsky Biosphere Reserve 24.6.2013	I. Ribera	_	LT991291 LT99147	70 LT990711	LT990866 L	.T991071	
35 Oc	chthebius	Asiobates	minimus	andreiini a	andreiini	Freshwater IBE-AN20	Ethiopia; Amhara, 30 km NE Gashena 13.6.2014	R. Vila & G. Talavera	_	LT991292 LT99147	71 LT990712	LT990867 L	.T991072	
36 <i>O</i> (chthebius	Asiobates	minimus	sp.	-	Freshwater IBE-AN104	Ethiopia; Oromia, Bale Mountains, Goba Forest, Togona River 22.2.2014	M.A. Jäch	XXXXXX	LT991293 LT99147	72 LT990713	LT990868 L	.T991073	
37 O	chthebius	Asiobates	minimus	andronius	÷	Freshwater MNCN-Al498	South Africa; West Cape, Prince Albert Road, pond 23.3.2001	I. Ribera & A. Cieslak	_	LT991294 LT99147	73 LT990714	LT990869 L	.T991074	
38 Q	chthebius	Asiobates	minimus	discretus	_	Freshwater MNCN-AI503	California (USA); Trinity Co., Forest Glen, Rattlesnake Creek 22.6.2000	I. Ribera & A. Cieslak	-	LT991295 LT99147	74 LT990715	LT990870 L	.T991075	
39 Q	chthebius	Asiobates	minimus	flavipes	-	Freshwater IBE-RA437	Slovakia; Hámske tŕstie, near Číčov, ditch 7.6.2009	I. Ribera	_	LT991296 HF93131	15 LT990716	LT990871 L	.T991076	
40 Q	chthebius	Asiobates	minimus	hokkaidensis	-	Freshwater IBE-AF213	Japan; Hokkaido, Togeshita, Rumoi-shi 18.7.2007	H. Yoshitomi		HF93112	25 HF931344	LT990872 L	.T991077	
41 Q	chthebius	Asiobates	minimus	minimus	-	Freshwater MNCN-Al447	Slovakia; Banská Bystrica Region, Cerovo 2005	via R.G. Beutel	-	HE970917 HE97084	42 HE971074	HE970955 H	IE970995	
42 Q	chthebius	Asiobates	minimus	perdurus	-	Freshwater IBE-AV151	China; Xinjiang 24.7.2017	D. Palatov		XXXXX XXXXXX	XXXXXX X	< XXXXXXX	XXXXXX	
43 Q	chthebius	Asiobates	minimus	remotus	-	Freshwater MNCN-Al1030	Turkey; Karabük, stream in Çayörengüney 28.4.2006	A. Castro	XXXXXX	LT991297 HF93114	48 HF931367	LT990873 L	.T991078	
44 Q	chthebius	Asiobates	minimus	rugulosus	-	Freshwater IBE-AN822	Greece; Crete, Latomia, rockpools 18.4.2017	C. Hemando, I. Ribera & A. Villastrigo		XXXXX XXXXXX	XXXXXX X		ххххх	
45 Ot	chthebius	Asiobates	minimus	sp.	-	Freshwater MNCN-AI637	Gran Canaria (Spain); Moya, Barranco de Azuaje 15.4.2001	I. Ribera & A. Cieslak	1	LT991298 HF93121	19 HF931447	LT990874 L	.T991079	
46 O	chthebius	Asiobates	minimus	sanabrensis	-	Freshwater MNCN-AH75	Spain; Zamora, Parque Natural Lago Sanabria, Laguna de la Yegua 4.7.2007	L.F. Valladares	-	LT991299 EU66005	55 HF931357	Г	.T991080	
47 Ot	chthebius	Asiobates	minimus	sp.	-	Freshwater IBE-AN292	Alberta (Canada); 2 km W Lundbreck 27.6.2000	I. Ribera & A. Cieslak	XXXXXX	LT991300 LT99147	75 LT990717	LT990875 L	.T991081	
48 Q	chthebius	Asiobates	minimus	sp.	-	Freshwater IBE-AN97	Ethiopia; Oromia, Jemjem Forest, small stream 25.2.2014	M.A. Jäch	-	LT991301 LT99147	76 LT990718	LT990876 L	.T991082	
49 Oc	chthebius	Asiobates	minimus	sp.	-	Freshwater IBE-AN93	Ethiopia; Amhara, Debark, Simien Mountains 18.6.2014	R. Vila & G. Talavera	-	LT991302 LT99147	77 LT990719	LT990877 L	.T991083	
50 Q	chthebius	Asiobates	minimus	sp.	-	Freshwater IBE-AV167	Cameroon; 22.1.2018	R. Vila		XXXXX XXXXXX	XXXXXX X	< XXXXXXX	ххххх	
51 OC	chthebius	Asiobates	puncticollis	puncticollis	-	Freshwater MNCN-AI1274	California (USA); Santa Barbara Co., Sedgewick Reserve 6.7.2006	A.E.Z. Short	XXXXXX	LT991303 LT99147	78 LT990720	Г	.T991084	
52 O	chthebius	Aulacochthebius	-	exaratus		Tolerant MNCN-Al453	Tunisia: road Jendouba-Makthar, 1 km NW crossroad to Mt. Kebbouch 24:10:2001	I. Ribera & A. Cieslak	1	LT991304 HF93120	02 HF931427	LT990878 L	.T991085	
53 <i>O</i> (chthebius	Aulacochthebius	-	libertarius	-	Freshwater MNCN-Al421	Morocco; Ou-Maghous, Amaghouz 24.4.2000	I. Ribera, P. Aguilera, C. Hernando & A. Millán	-	LT991305 HF93119	96 HF931421	LT990879 L	.T991086	
54 O	chthebius	Aulacochthebius	-	narentinus	-	Freshwater IBE-AF161	Slovakia; Studienka, Rudava river 5.6.2009	I. Ribera	-	LT991306 HF93112	20 HF931338	LT990880 L	.T991087	
55 O(chthebius	Aulacochthebius		perlaevis	-	Freshwater MNCN-AI548	Madagascar; Ankarana, 1er canyon, river 12.2004	M. Balke	-	LT991307 HF93121	11 HF931437	LT990881 L	.T991088	
56 O	chthebius	Aulacochthebius		sp.	-	Freshwater IBE-AN390	South Africa; West Cape, Baardskeerdersbos, Boesmans River 10.5.2010	J. Den Heijer & A. Hidalgo-Galiana	-	LT991308 LT99147	79 XXXXXX 67	LT990882 L	.T991089	
57 Ot	chthebius	Aulacochthebius		sp.	_	Freshwater MNCN-Al499	South Africa; West Cape, 3 km SE Franschhoek 25.3.2001	I. Ribera & A. Cieslak	1	LT991309 LT99148	30 LT990721	LT990883 L	.T991090	
58 <i>O</i> (chthebius	Aulacochthebius		sp.	-	Freshwater MNCN-Al501	South Africa; Eastern Cape, Kareedouwberg, river in Skoop Drif 23.3.2001	I. Ribera & A. Cieslak	-	LT991310 HF93120	07 HF931432	LT990884 L	.T991091	
59 <i>Q</i>	chthebius	Aulacochthebius		sp.	-	Freshwater MNCN-AI519	Bhutan; Sarpang, 11 km NW Sarpang, Bhur Khola river 27.11.2005	M.A. Jäch	_	LT991311 LT99148	31 LT990722	LT990885 L	.T991092	
60 Q	chthebius	Aulacochthebius		sp.	-	Freshwater MNCN-AI520	Bhutan; Punakha, 16 km NW Punakha, Mo Chhu river 28.11.2005	M.A. Jäch	-	LT991312 LT99148	32 LT990723	LT990886 L	.T991093	
61 Q	chthebius	Aulacochthebius		sp.	-	Freshwater IBE-RA1155	Tanzania; Mwanza Region, near Kashishi, ponds 24.7.2010	R. Sites & A. Mbogho	XXXXXX	LT991313 LT99148	33 LT990724	LT990887 L	.T991094	
62 Q	chthebius	Cobalius	-	adriaticus a	adriaticus	Hypersaline IBE-AN787	Croatia; Trsteno, rockpools 5.5.2017	A. Faille, J. Fresneda & I. Ribera	1	LT991314 LT99148	34 LT990725	LT990888 L	.T991095	
63 <i>Q</i>	chthebius	Cobalius	-	adriaticus n	noreanus	Hypersaline IBE-AV80	Greece; Crete, Elafonisi, rockpools 20.4.2017	C. Hemando, I. Ribera & A. Villastrigo	^	XXXXX XXXXXX	XXXXXXX XX	х хххххх	XXXXXX	
64 Q	chthebius	Cobalius		sp.	-	Hypersaline IBE-AN821	Greece; Crete, Latomia, rockpools 18.4.2017	C. Hemando, I. Ribera & A. Villastrigo	^	XXXXX XXXXXX	XXXXXXX XX	х хххххх	XXXXXX	
65 <i>O</i> (chthebius	Cobalius	-	algicola	-	Hypersaline IBE-AV117	Portugal; Madeira. Camara de Lobos 17.10.2017	I. Ribera & A. Cieslak	^	XXXXX XXXXXX	XXXXXXX XX	х хххххх	XXXXXX	
66 <i>Q</i>	chthebius	Cobalius	-	asper	-	Hypersaline IBE-AV217	Spain; Girona, Cala de Sant Francesc	A. Cardoso & A. Villastrigo	^	XXXXX XXXXXX	XXXXXXX XX	X XXXXXX	XXXXXX	
										0	continued c	ken eht no	kt page	

Table S1. (continued)

Chapter 5

218	Table S1. (c	ontinued)								
3	all genus	subgenus	species group) species (subspecies	salinity voud	cher	locality	leg	mtgenome COI-5 COI-3 rrnL 18S 28S
	67 Ochthebius	Cobalius		balfourbrownei	f	ypersaline genbank	×			XXXXXXX XXXXXXX XXXXXXX
	68 Ochthebius	Cobalius		biltoni gr1	£	ypersaline IBE-AV1	177 More	vcco; Temara, rockpools 11.4.2018	Alfambra, C. Hernando, I. Ribera & A. Villastrigo	***************************************
	69 Ochthebius	Cobalius		biltoni gr2	Í	ypersaline IBE-AV1	193 Moro	vcco; Essaouira, rockpools 9.4.2018	Alfambra, C. Hernando, I. Ribera & A. Villastrigo	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
	70 Ochthebius	Cobalius		celatus	f	ypersaline IBE-AN₄	1441 Cypr	us; Akamas peninsula, Lara beach 29.4.2016	A. Millán, I. Ribera, J. Velasco & A. Villastrigo	LT991315 LT991485 LT990726 LT990889 LT991096
	71 Ochthebius	Cobalius		sp.	f	ypersaline IBE-AN8	1838 Italy;	Civitavecchia, rockpools 12.5.2017	A. Faille, J. Fresneda & I. Ribera	XXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
	72 Ochthebius	Cobalius		freyi	£	ypersaline IBE-RA1	1197 Azor	es (Portugal); Teroeira, São Pedro, rockpools 4.9.2012	I. Ribera	LT991316 LT991486 LT990727 LT990890 LT991097
	73 Ochthebius	Cobalius		lanthanus	f	ypersaline IBE-AV1	169 Spair	n; Gran Canaria, Taliarte, rockpools 14.3.2018	A. Millán, I. Ribera & A. Villastrigo	XXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
	74 Ochthebius	Cobalius		lejolisii	f	ypersaline MNCN-/	AI513 Spair	ν; Pontevedra, Nigran, Playa Patos 3.10.2005	J. Garrido	LT991317 HF931208 HF931433 LT990891 LT991098
	75 Ochthebius	Cobalius		sp.	£	ypersaline IBE-RA1	.1232 Spair	n; Ceuta, Cala del Desnarigado, 16.11.2013	J.L. Ruiz & K. Bensusan	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
	76 Ochthebius	Cobalius		sp.	Ĥ	ypersaline IBE-AV1	181 Moro	vooo; Sidi Ifni, rockpools 6.4.2018	Alfambra, C. Hernando, I. Ribera & A. Villastrigo	*******
	77 Ochthebius	Cobalius		serratus	Í	ypersaline MNCN-/	Al1194 Moro	vcco; El Ouedaya, Oued Sebt 18.4.2006	A. Millán & collaborators	LT991318 HF931171 HF931391 LT990892 LT991099
	78 Ochthebius	Cobalius		sp.	ť	ypersaline IBE-AV1	180 Moro	vooo; Sidi Ifni, rockpools 6.4.2018	Alfambra, C. Hernando, I. Ribera & A. Villastrigo	******
	79 Ochthebius	Cobalius		subinteger	f	ypersaline MNCN-/	Al432 Cors	ica (France); Cap Corse, Port de Centuri 20.9.2000	I. Ribera & A. Cieslak	LT991319 HF931200 HF931425 LT990893 LT991100
	80 Ochthebius	Cobalius		sp.	f	ypersaline IBE-AV1	100 Spair	ν; Cabrera, Caló de ses Agulles 5.7.2017	I. Ribera & A. Faille	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
	81 Ochthebius	Cobalius		sp.	£	ypersaline IBE-AV7	79 Gree	.ce; Crete, Pacheia Ammos, rockpools 17.4.2017	C. Hernando, I. Ribera & A. Villastrigo	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
	82 Ochthebius	Enicocerus		aguilerai	Ë	eshwater MNCN-/	Al387 Spair	ν; Ávila, Arenas de San Pedro, río Pelayo 15.5.2005	I. Ribera	HF947939 GU143761 GU143728 GU143770 GU143778
	83 Ochthebius	Enicocerus		colveranus	Ë	reshwater MNCN-#	AIB18 Turkı	ey; Kastamonu, fast stream in forest 28.4.2006	I. Ribera	***************************************
	84 Ochthebius	Enicocerus		exsculptus	Fr	reshwater MNCN-	Al374 Spair	n; Barcelona, Guardiola del Berguedà, torrent Gavarrós 25.7.2005	5 I. Ribera	LT991321 GU143763 GU143741 GU143772 GU143780
	85 Ochthebius	Enicocerus		sp.	Ē	reshwater MNCN-A	Al925 Spair	n; Albacete, Sierra de Segura, 10 km N Yeste, Rio Tús 10.4.2003	3 V. Assing & P. Wunderle	LT991322 GU143750 GU143737 LT990894 LT991101
	86 Ochthebius	Enicocerus		snsoqqib	Ë	reshwater MNCN-#	Al365 Italy;	Piermonte, Móngia, torrente Móngia 31.7.2005	I. Ribera & A. Cieslak	LT991323 GU143755 GU143727 GU143769 GU143777
	87 Ochthebius	Enicocerus		granulatus	Ē	reshwater MNCN-A	Al427 Austi	ria; Niederösterreich, Kleiner Ötscherbach, Langau 25.9.2005	M.A. Jäch	LT991324 GU143765 GU143725 GU143774 GU143782
	88 Ochthebius	Enicocerus		halbherri	н	reshwater MNCN-#	AH190 Italy;	Emilia Romagna, Bosco, Torrente Parma 24.5.2008	I. Ribera	LT991325 GU143764 GU143736 GU143773 GU143781
	89 Ochthebius	Enicocerus		legionensis	Ë	eshwater MNCN-#	AI507 Spair	n; León, Puerto de Panderrueda 12.7.2005	L.F. Valladares	HF947941 GU143762 GU143735 GU143771 GU143779
	90 Ochthebius	Enicocerus		melanescens	H	reshwater MNCN-#	Al344 Aust 6.8.2	ria; Niederösterreich, Schwarzenbach, Sankt Veit an der Gölsen 005	I. Ribera & A. Cieslak	HE970900 GU143766 GU143743 GU143775 GU143783
	91 Ochthebius	Enicocerus		saboonii	Ē	eshwater IBE-RA7	(739 Iran;	Mazandaran, near Nowshar, Kheiroud Kenar Forest 2.5.2010	A. Skale	LT991326 LT990728 LT990895 LT991102
	92 Ochthebius	Gymnanthelius		opacicollis	Ë	eshwater IBE-AF1	162 Austi	ralia; Victoria, Allambee, 19 km N Leongatha 8.7.2009	I. Ribera & A. Cieslak	LT991327 LT991487 LT990729 LT990896 LT991103
	93 Ochthebius	Gymnanthelius		porchi	Ë	eshwater IBE-AF1	164 Austi	ralia; Victoria, Tarra-Bulga NP, River Tarra 9.7.2009	I. Ribera & A. Cieslak	LT991328 LT991488 LT990730 LT990897 LT991104
	94 Ochthebius	Gymnochthebius	australis	australis	Ë	eshwater MNCN-#	Al583 Austi 14.1.	ralia; South Australia, 1 km W Cudlee Creek, River Torrens 2006	C.H.S. Watts	LT991329 LT991489 LT990731 LT990898 LT991105
	95 Ochthebius	Gymnochthebius	australis	lividus	Ë	eshwater IBE-AF1	163 Austi	ralia; Victoria, Tarra-Bulga NP, River Tarra 9.7.2009	I. Ribera & A. Cieslak	XXXXXXX LT991330 LT991490 LT990732 LT990899 LT991106
	96 Ochthebius	Gymnochthebius	australis	brobus	Ë	reshwater MNCN-#	Al584 Aust 14.1.	ralia; South Australia, 1 km W Cudlee Creek, River Torrens 2006	C.H.S. Watts	LT991331 LT991491 LT990733 LT990900 LT991107
	97 Ochthebius	Gymnochthebius	australis	setosus	F	reshwater IBE-AF1	165 Austi	ralia; Victoria, Tarra-Bulga NP, River Tarra 9.7.2009	I. Ribera & A. Cieslak	LT991332 LT991492 LT990734 LT990901 LT991108
	98 Ochthebius	Gymnochthebius	australis	semicylindrus	Ē	reshwater IBE-AV2	'228 Austi	ralia; Kangaroo Island, Waterfall Creek, stream 25.8.2018	A. Villastrigo	XXXXXXX XXXXXXX XXXXXXXX
	99 Ochthebius	Gymnochthebius	fossatus	fossatus	Ë	reshwater IBE-AN₄	1498 Dom	inican Republic; Independencia, La Colonia 15.8.2014	A. Deler-Hernández, M. Fikácek & M. Gimmel	LT991333 LT991493 LT990735 LT990902 LT991109
										continued on the next page

Irreversible habitat specialisation does not constraint diversification in hypersaline water beetles

Table S1. (con	ntinued)												
all genus	subgenus	species group	species subspe	ecies	salinity vouch	her		leg	mtgenome	COI-5 COI-	3 rmL	18S	28S
100 Ochthebius	Gymnochthebius	fossatus	gemaini	Fre	eshwater MNCN-A.	Al454 Chile; IX Región, 5 km E Lonquimay, ro:	ad to Lolén 26.1.1999	I. Ribera & M. Guerrero	-	-T991334 LT991	494 LT990736	LT990903	LT991110
101 Ochthebius	Gymnochthebius	fossatus	peruvianus	To	vlerant MNCN-A.	Al689 Peru; San Clemente, km 222 Panameric	cana Sur 31.8.2005	P. Aguilera	-	-T991335 LT991	495 LT990737	LT990904	LT991111
102 Ochthebius	Gymnochthebius	fossatus	sp.	Fre	eshwater MNCN-A.	Al569 Chile; Chiloé, 6 km E Huillinco, river in N	Notuco 3.2.1999	I. Ribera & M. Guerrero	-	-T991336 LT991	496 LT990738	LT990905	LT991112
103 Ochthebius	Hughleechia		giuliani	Ę	persaline MNCN-A.	AI716 Australia; West Australia, Peron Point 2.	.10.2003	C.H.S. & G.A. Watts	-	-T991337 LT991	497 LT990739	LT990906	LT991113
104 Ochthebius	Hughleechia		sp.	Ę	persaline IBE-AV2	26 Australia; Kangaroo Island, Vivonne Bay	y, rockpools 24.8.2018	A. Villastrigo	î	XXXX XXXXX	XXXXXXX XXX		XXXXXX
105 Ochthebius	Micragasma		minoicus	Ę	persaline AN770	Greece; Crete, Elafonisi, rockpools 20.4	4.2017	C. Hemando, I. Ribera & A. Villastrigo		XXXXX XXXXX	XXXXXXX XXX		XXXXXX
106 Ochthebius	Micragasma	1	paradoxum	Ŧ	persaline IBE-AF11	16 Russia; Volgogradskaya Oblast, Lake Ei	Elton, residual pools 17.4.2008	A. Prokin		-T991338 HF931	114 HF931331	LT990907	LT 991 11 4
107 Ochthebius	Ochthebius	andraei	patergazellae	To	vlerant IBE-RA7	⁷³⁵ United Arab Emirates; Ajman, salt water 25.1.2010	rr pools NE Ajman City	M.A. Jäch	-	-T991339 LT991	498 LT990740	LT990908	LT991115
108 Ochthebius	Ochthebius	atriceps	andalusicus	Ę	persaline IBE-PA20	.96 Spain; Cádiz, Salinas de Hortales 10.11	1.2003	A. Millán & collaborators	-	T991340 HF931	297 LT990741	LT990909	LT991116
109 Ochthebius	Ochthebius	atriceps	anxifer	Fre	eshwater MNCN-A	1945 Morocco; Immouzzer Ida Ou Tanane, A	ssif Tanit 21.4.2001	I. Ribera & A. Cieslak	1	T991341 HF931	247 HF931482	LT990910	LT991117
110 Ochthebius	Ochthebius	atriceps	atriceps	To	vlerant IBE-AN2	210 Tunisia; road Jendouba-Makthar, 1 km l 24.10.2001	NW crossroad to Mt. Kebbouch	I. Ribera & A. Cieslak		-T991342 LT991	499 LT990742	LT 990911	LT991118
111 Ochthebius	Ochthebius	atriceps	burjkhalifa	To	vlerant IBE-RA7;	⁷³⁷ United Arab Emirates; Ajman, salt water 25.1.2010	r pools NE Ajman City	M.A. Jäch	-	-T991343 LT991	500 LT990743	LT990912	LT991119
112 Ochthebius	Ochthebius	atriceps	dentifer	To	vierant IBE-PA26	:90 Spain; Navarra, Barranco Salado de Me	endavia 30.10.2008	A. Millán & collaborators	1	T991344 HF931	296 LT990744	LT990913	LT991120
113 Ochthebius	Ochthebius	atriceps	depressionis	Fre	eshwater IBE-AF17	71 Russia; Volgogradskaya Oblast, Lake E 14.4.2008	elton, nr Lantsug River	A. Prokin	-	_T991345 HF931	122 HF931340	LT990914	LT991121
114 Ochthebius	Ochthebius	atriceps	loulae	To	vlerant IBE-AN4;	176 Djibouti; 50 km W Dikhil, Lac Abbé, then	rmal springs 2.2.2016	M.A. Jäch	-	-T837919 LT991	501 LT990745	LT990915	LT991122
115 Ochthebius	Ochthebius	atriceps	recurvatus	To	vierant IBE-AN5(395 Tunisia; Safax-Gabes, oued 25.10.2001	-	I. Ribera & A. Cieslak		XXXX	XXXXXXX XXX		XXXXXX
116 Ochthebius	Ochthebius	atriceps	sp.	To	lerant IBE-AN40	(36 Morocco; Our Draa		A. Millán & collaborators	^	XXXXX XXXXX	XXXXXXX XXX		XXXXXX
117 Ochthebius	Ochthebius	atriceps	tacapasensis baeticus	s To	vierant IBE-AN36	365 Spain; Málaga, Laguna de Fuente de Pi,	iedra 3.5.2011	A. Millán & collaborators	-	_T991346 LT991!	502 LT990746	LT990916	LT991123
118 Ochthebius	Ochthebius	atriceps	thermalis	Ę	persaline IBE-AN4	151 Cyprus; Lamaka, saline coastal pond 25	5.4.2016	A. Millán, I. Ribera, J. Velasco & A. Villastrico	-	-T991347 LT991	503 LT990747	XXXXXXX	LT991124
119 Ochthebius	Ochthebius	atriceps?	despoliatus	To	vlerant IBE-RA7;	⁷³⁶ United Arab Emirates; Ajman, salt water 25.1.2010	r pools NE Ajman City	M.A. Jäch		LT 991	504 XXXXXX	LT990917	LT991125
120 Ochthebius	Ochthebius	corrugatus	corrugatus	To	vlerant MNCN-A	AI56 Mallorca (Spain); Mallorca, Salines de L	Llevant 15.10.2004	I. Ribera & A. Cieslak		HF931	213 HF931438	LT990918	LT991126
121 Ochthebius	Ochthebius	corrugatus	gauthieri	Η	persaline MNCN-A	AI55 Tunisia; road Kebili-Tozeur, 37 km SE T	Tozeur, salines 26.10.2001	I. Ribera & A. Cieslak		HF931	212	LT990919	LT991127
122 Ochthebius	Ochthebius	corrugatus	perpusillus	To	vierant IBE-AN3	323 Morocco; Ouezzane, Sidi Kacem, Oued	l Khendek 18.4.2006	A. Millán & collaborators	XXXXXXX	LT 991	505	LT990920	LT991128
123 Ochthebius	Ochthebius	corrugatus	sp.	Ę	persaline MNCN-A.	Al54 Tunisia; Kebili-Tozeur, salines 26.10.20	01	I. Ribera & A. Cieslak	Ŷ	XXXXX XXXXX	XXXXXXX XXX		XXXXXX
124 Ochthebius	Ochthebius	foveolatus	elisae	Fre	eshwater IBE-RA74	746 Iran; Khuzestan, Behbahan, Morvarid sp	pring 4.9.2010	E. Irani	-	-T991348 LT991	506	LT990921	LT991129
125 Ochthebius	Ochthebius	foveolatus	foveolatus	Fre	eshwater MNCN-A	1801 Turkey; Kastamonu, Çocukören 26.4.20	006	I. Ribera	-	T991349 HF931	228 HF931457	LT990922	LT991130
126 Ochthebius	Ochthebius	foveolatus	hajeki	Fre	eshwater IBE-RA12	1231 Socotra (Yemen); Dixam plateau, Firmit 15.6.2012	hin, Dracaena woodland	J. Hájek	-	-T991350 LT991	507 LT990748	LT990923	LT991131
127 Ochthebius	Ochthebius	foveolatus	harteni	Fre	eshwater IBE-RA70	² 05 Oman; Al-Akhdar, Bahla, wadi in city 5.4	4.2010	I. Ribera, C. Hemando & A. Cieslak	-	_T991351 LT991	508 LT990749	LT990924	LT991132
128 Ochthebius	Ochthebius	foveolatus	magnannulatus	Fre	eshwater IBE-AN3;	328 Bulgaria; Kotlari, river Arda 27.5.2015		I. Ribera		-T991352 LT991!	509 LT990750	LT990925	LT991133
129 Ochthebius	Ochthebius	foveolatus	marginalis	Fre	eshwater IBE-AN52	522 France; Drôme, river Méouge 2016		A. Faille	-	-T991353 LT991!	510 LT990751	LT990926	LT991134
130 Ochthebius	Ochthebius	foveolatus	mediterraneus	Fre	eshwater IBE-AN2 ⁻	213 Tunisia; Ouessalatia, muddy pond 24.1(0.2001	I. Ribera & A. Cieslak		XXXXX XXXXX	хххххх хх		XXXXXX
131 Ochthebius	Ochthebius	foveolatus	merinidicus	Fre	eshwater IBE-RA10	1023 Spain; Albacete, River Mundo, Azud de	: Liétor 26.7.2012	A. Millán & collaborators	-	_T991355 LT991!	511 LT990752	LT990928	LT991136
132 Ochthebius	Ochthebius	foveolatus	pedicularius	Fre	eshwater IBE-AN80	309 Italy; Udine, Flagogna 9.4.2017		A. Eckelt	1	-T991356 LT991	512 LT990753	LT990929	LT991137

Chapter 5

...continued on the next page

(continued)						
subgenus	species grou	Ip species	subspecies salinity voucher	locality	leg	mtgenome COI-5 COI-3 rrnL 18S 28S
thebius	foveolatus	satoi	Freshwater IBE-AF210	Japan; Hokkaido, Taiki 11.7.2009	H. Yoshitomi	LT991357 HF931124 HF931343 LT991138
hthebius	foveolatus	sidanus	Freshwater IBE-AF132	Italy; Emilia Romagna, Bosco, Torrente Parma 24.5.2008	I. Ribera	LT991358 HF931115 HF931332 LT990930 LT991139
hthebius	foveolatus	sp.	Freshwater IBE-AV114	Russia; Krasnodar, Pshekha River 16.8.2016	A. Prokin	XXXXXXX XXXXXXX XXXXXXX XXXXXXXXXXXXXX
hthebius	foveolatus	sp.	Freshwater IBE-AV127	Russia; Agoy River near Tuapse	A. Prokin	XXXXXXX XXXXXXX XXXXXXX XXXXXXXXXXXXXX
hthebius	foveolatus	sp.	Freshwater IBE-AV161	Azerbaijan; Devechi-chay River 27.5.2017	A. Prokin	XXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
chthebius	foveolatus	sp.	Freshwater IBE-AV163	Azerbaijan; Kyzyl-chay River 5.6.2017	A. Prokin	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
<i>ichthebius</i>	foveolatus	virgula	Freshwater IBE-AF134	Italy; Emilia Romagna, Vigoleno, Parco dello Stirone, Torrente Stirone 25.5.2008	I. Ribera	LT991359 HF931116 HF931333 LT990931 LT991140
chthebius	lobicollis	basilicatus	Freshwater IBE-AN801	Sardinia (Italy); Cabras, Stagno di Cabras 10.4.2017	I. Ribera & A. Cieslak	LT991360 LT991513 LT990754 LT990332 LT991141
Ochthebius	lobicollis	caesaraugustae	Tolerant MNCN-Al119	5 Spain; Zaragoza, Medianan de Aragón, saline river 20.7.2006	A. Millán & collaborators	LT991361 HF931172 HF931392 LT990933 LT991142
Ochthebius	lobicollis	delgadoi	Tolerant IBE-AN364	Spain; Murcia, Rambla del Reventón 9.3.2012	A. Millán & collaborators	XXXXXX LT991362 LT991514 LT990755 LT990934 LT991143
Ochthebius	lobicollis	eyrei	Tolerant IBE-AN600	Sicily (Italy); Palermo, Fiume Salso 28.7.2009	C. Gutiérrez-Cánovas	LT991363 LT991515 LT990756 LT990335 LT991144
Ochthebius	lobicollis	lapidicola	Freshwater IBE-AN126	Tenerife (Spain); Puerto de la Cruz, Roque Grande, 9.4.2015	R. Lyszkowski	LT991516 LT990757 LT990336 LT991145
Ochthebius	lobicollis	lobicollis	Freshwater IBE-RA242	Menorca (Spain); Cap de Favàritx 26.2.2010	I. Ribera & A. Cieslak	LT991364 HF931308 HF931534 LT990937 LT991146
Ochthebius	lobicollis	quadrifossulatus	Tolerant MNCN-Al226	Spain; Guadalajara, Alcolea de las Peñas 21.5.2005	A. Millán & collaborators	LT991517 LT990758 LT990338 LT991147
Ochthebius	lobicollis	sp.	Tolerant IBE-AH155	Italy; Sicilia, Agrigento 11.6.2007	P. Abellán & F. Picazo	XXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXX
Ochthebius	lobicollis	tivelunus	Tolerant MNCN-Al420	Morocco; Agarzane, tributary of Oued Drâa 17.4.2001	I. Ribera & A. Cieslak	LT991365 HF931195 HF931420 LT990939 LT991148
Ochthebius	marinus	arefniae	Freshwater IBE-AN72	Azerbaijan; road Budzhakah-Bash-Dashagyi, ponds 5.5.2014	I. Ribera & A. Rudoy	LT991366 LT991518 LT990759 LT990940 LT991149
Ochthebius	marinus	arizonicus	Freshwater IBE-AN177	Arizona (USA); Yavapai Co., Agua Fria River 22.6.2007	W.D. Shepard	LT991368 LT991520 LT990761 LT990941 LT991151
Ochthebius	marinus	auropallens	Freshwater IBE-AN217	Tunisia; road Kairouan-Enfida, 13 km N Kairouan, lagoon 27.10.2001	I. Ribera & A. Cieslak	LT991521 LT990762 LT990942 LT991152
Ochthebius	marinus	aztecus	Tolerant IBE-AN222	California (USA); Inyo Co., Shoshone, Amargosa River 8.4.2008	P. Abellán	LT991369 LT991522 LT990763 LT990943 LT991153
Ochthebius	marinus	batesoni	Tolerant MNCN-AI690	Peru; San Clemente, km 222 Panamericana Sur 31.8.2005	P. Aguilera	LT991370 LT991523 LT990764 LT990944 LT991154
Ochthebius	marinus	bisinuatus	Freshwater IBE-AN153	California (USA); Mendocino Co., circa 5 mi W Davis Creek 9.6.2007	W.D. Shepard	LT991371 LT991524 LT990765 LT990945 LT991155
Ochthebius	marinus	capicola	Tolerant IBE-RA854	South Africa; West Cape, West Cape NP, Tsaarsbank, rookpools 2.10.2011	D.T. Bilton	XXXXXX LT991372 LT991525 LT990766 LT990946 LT991156
Ochthebius	marinus	caudatus	Tolerant IBE-AV112	Poland; Sanocki District, Tyrawa Solna 19.5.2017	D. Twardy	XXXXXXX XXXXXXX XXXXXXX XXXXXXXXXXXXXX
Ochthebius	marinus	chappuisi	Tolerant IBE-AN475	Djibouti; 50 km W Dikhil, Lac Abbé, thermal springs 2.2.2016	M.A. Jäch	LT837918 LT991526 LT990767 LT990947 LT991157
Ochthebius	marinus	costatellus	Tolerant IBE-RA1119	Alberta (Canada); Alberta, Derwent, circa Lac Coté 2000	T. Berendonk	LT991373 LT991527 LT990768 LT990948 LT991158
Ochthebius	marinus	deletus	Tolerant IBE-AN433	Mallorca (Spain); Mallorca, Salines de Llevant 28.3.2016	I. Ribera & A. Cieslak	XXXXXX LT991391 LT991542 LT990782 LT990965 LT991177
Ochthebius	marinus	evanescens	Tolerant IBE-AN66	Azerbaijan; Alishanli, 7 km NE Masally 8.5.2014	I. Ribera & A. Rudoy	LT991374 LT991528 LT990769 LT990949 LT991159
Ochthebius	marinus	extremus	Tolerant IBE-AV140	South Africa; 6.11.2017	R. Vila	XXXXXXX XXXXXXX XXXXXXX XXXXXXXXXXXXXX
chthebius	marinus	fallaciosus	Tolerant MNCN-AI918	Morocco; Azrou, Lac Afenourir 29.4.2000	I. Ribera	LT991394 HF931242 HF931474 LT990968 LT991180
chthebius	marinus	gruwelli	Freshwater IBE-RA304	California (USA); Riverside Co., Morongo Valley, Whitewater river 12.12.2010	I. Ribera & J. Bergsten	LT991375 HF931311 HF931535 LT990950 LT991160
chthebius	marinus	interruptus	Tolerant IBE-AN219	California (USA); Santa Barbara Co., Coal Oil Point Reserve (Slough road) 26.3.2008	P. Abellán	LT991376 LT991529 LT990770 LT990951 LT991161
chthebius	marinus	involatus	Freshwater IBE-AV142	South Africa; 6.11.2017	R. Vila	XXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
						continued on the next page

Irreversible habitat specialisation does not constraint diversification in hypersaline water beetles

all genus	subgenus	species group	species sul	bspecies salinity	voucher	locality	leg	mtgenome COI-5 COI-3 rrnL 18S 28S
166 Ochthebius	Ochthebius	marinus	lineatus	Tolerant	IBE-AN223	California (USA); Inyo Co., Ballarant, Post Office Spring 10.4.2008	P. Abellán	LT991377 LT991530 XXXXXX LT991162
167 Ochthebius	Ochthebius	marinus	lividipennis	Tolerant	IBE-AN71	Azerbaijan; road Budzhakah-Bash-Dashagyi, ponds 7.5.2014	I. Ribera & A. Rudoy	XXXXXXX LT991378 LT991532 LT990772 LT990953 LT991164
168 Ochthebius	Ochthebius	marinus	marinus	Tolerant	MNCN-AI615	Spain; Madrid, Aranjuez, salinas 11.2.2006	I. Ribera & A. Cieslak	LT991379 HF931215 HF931441 LT990954 LT991165
169 Ochthebius	Ochthebius	marinus	meridionalis	Tolerant	IBE-RA373	Morocco; Moulay Bousselham, Oued Drader 12.4.2007	I. Ribera, P. Aguilera & C. Hernando	LT991380 HF931313 HF931538 LT990955 LT991166
170 Ochthebius	Ochthebius	marinus	nipponicus	Freshwate	er MNCN-HI27	Japan; Honshu, Ibaraki Pref., Kobodihana, Ohmika-machi, Hitachi-shi 22.7.2006	N. Hikida	LT991381 HF931270 LT990773 LT990956 LT991167
171 Ochthebius	Ochthebius	marinus	pedalis	Tolerant	MNCN-AH98	South Africa; West Cape, Papendorp, brackish pond 23.8.2006	G. Challet	LT991382 LT991534 LT990774 LT990957 LT991168
172 Ochthebius	Ochthebius	marinus	busillus	Tolerant	MNCN-AI1028	Turkey: Sinop, road Saraydüzü-Boyabat, stream 5 km S Yeşilyurt 27.4.2006	A. Castro	LT991383 HF931146 HF931365 LT990958 LT991169
173 Ochthebius	Ochthebius	marinus	queenslandicus	Freshwate	er IBE-AN18	Australia; Queensland, Brisbane, Shorncliffe 2.5.2014	J. Maté	LT991384 LT991535 LT990775 LT991170
174 Ochthebius	Ochthebius	marinus	rectus	Tolerant	MNCN-Al464	California (USA); Mono Co., Long Valley, Owens River road 19.6.2000	0 I. Ribera & A. Cieslak	LT991385 LT991536 LT990776 LT990959 LT991171
175 Ochthebius	Ochthebius	marinus	salinarius	Tolerant	IBE-AN79	South Africa; West Cape, Wilderness NP, road to Swartvlei, stream 22.3.2001	I. Ribera & A. Cieslak	XXXXXX LT991388 LT991539 LT990779 LT990962 LT991174
176 Ochthebius	Ochthebius	marinus	sculptoides	Tolerant	IBE-AN221	California (USA); Inyo Co., Tecopa, Amargosa River 8.4.2008	P. Abellán	XXXXXX LT991389 LT991540 LT990780 LT990963 LT991175
177 Ochthebius	Ochthebius	marinus	sp.	Freshwate	er IBE-AN446	Cyprus; Loukrounou, upstream of Evretou reservoir 29.4.2016	A. Millán, I. Ribera, J. Velasco & A. Villastrigo	LT991367 LT991519 LT990760 XXXXXXX LT991150
178 Ochthebius	Ochthebius	marinus	sp.	Freshwate	er IBE-RA1129	Venezuela; Guárico state, Río San Antonio 4.2.2010	A.E.Z. Short, M. García & L. Joly	LT991531 LT990771 LT990952 LT991163
179 Ochthebius	Ochthebius	marinus	sp.	Freshwate	er IBE-AN152	California (USA); Ventura Co., Los Padres National Forest, Upper Sespe Creek 1.7.2006	A.E.Z. Short & M. Caterino	LT991386 LT991537 LT990777 LT990960 LT991172
180 Ochthebius	Ochthebius	marinus	sp.	Freshwate	er IBE-AN291	Alberta (Canada); 2 km W Lundbreck 27.6.2000	I. Ribera & A. Cieslak	LT991387 LT991538 LT990778 LT990961 LT991173
181 Ochthebius	Ochthebius	marinus	sp.	Hypersalir	ne IBE-AN452	Cyprus; Lamaka, saline wetland 25.4.2016	A. Millán, I. Ribera, J. Velasco & A. Villastrigo	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
182 Ochthebius	Ochthebius	marinus	sp.	Tolerant	IBE-AV149	Mongolia; Tatsyn-Tsaagan-nuur Lake 14.8.2017	A. Prokin & A. Sazhnev	XXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
183 Ochthebius	Ochthebius	marinus	sp.	Freshwate	er IBE-AV150	China; Xinjiang 24.7.2017	D. Palatov	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
184 Ochthebius	Ochthebius	marinus	sp.	Freshwate	er IBE-AV165	Uzbekistan; Amu-Darya valley 24.6.2017	D. Palatov	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
185 Ochthebius	Ochthebius	marinus	sp.	Tolerant	IBE-RA884	South Africa; 30.9.2011	D.T. Bilton	XXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
186 Ochthebius	Ochthebius	marinus	sp.	Tolerant	MNCN-AI452	France; Bouches du Rhône, Salin-de-Girau 29.7.2005	I. Ribera & A. Cieslak	HE970918 HE970844 HE971076 HE970957 HE970996
187 Ochthebius	Ochthebius	marinus	sp.	Tolerant	IBE-AN216	Tunisia; Hachichina 25.10.2001	I. Ribera & A. Cieslak	XXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
188 Ochthebius	Ochthebius	marinus	spinasus	Tolerant	MNCN-AH100	South Africa; West Cape, Berg River, saline stream 3.9.2006	G. Challet	LT991390 LT991541 LT990781 LT990964 LT991176
189 Ochthebius	Ochthebius	marinus	subpictus	Tolerant	IBE-AN880	Portugal: Madeira, Praia da Maiata, river mouth 21.10.2017	I. Ribera & A. Cieslak	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
190 Ochthebius	Ochthebius	marinus	uniformis	Tolerant	IBE-AN437	California (USA); Mendocino Co., Manchester 30.6.2000	I. Ribera & A. Cieslak	XXXXXX LT991392 LT991543 LT990783 LT990966 LT991178
191 Ochthebius	Ochthebius	marinus	viridescens	Tolerant	IBE-RA40	Spain; Zaragoza, Cinco Villas, Estanca de Castiliscar 1.11.2009	I. Ribera & A. Cieslak	LT991393 HF931314 HF931539 LT990967 LT991179
192 Ochthebius	Ochthebius	marinus	viridis	Freshwate	er IBE-AN5	Turkey; Izmir, 6 km E Foça, head of reservoir 26.7.2014	I. Ribera & A. Cieslak	XXXXXX LT991395 LT991544 LT990784 LT990969 LT991181
193 Ochthebius	Ochthebius	metallescens	albacetinus	Freshwate	er IBE-RA1181	Spain; Jaén, Río Madera 7.9.2013	D.T. Bilton	LT991396 HG915306 LT990785 LT990970 LT991182
194 Ochthebius	Ochthebius	metallescens	bemard	Freshwate	er IBE-RA96	Oman; Al-Akhdar, 5.4.2010	I. Ribera, A. Cieslak & C. Hernando	XXXXXX XXXXXXX XXXXXXX XXXXXXX
195 Ochthebius	Ochthebius	metallescens	diazi	Freshwate	ar IBE-RA595	Spain; Cádiz, 15 km W Los Barrios, Arroyo del Tiradero 22.6.2011	D.T. Bilton	HF948001 LT991545 LT990786 LT990971 LT991183
196 Ochthebius	Ochthebius	metallescens	gayosoi	Freshwate	er IBE-AN311	Portugal; Algarve, Caldas de Monchique 11.6.2015	D.T. Bilton	LT991397 LT991546 LT990787 LT990972 LT991184
197 Ochthebius	Ochthebius	metallescens	griotes	Freshwate	er IBE-AN130	Morocco; Taza, stream 22.3.2008	I. Ribera, C. Hernando & P. Aguilera	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
198 Ochthebius	Ochthebius	metallescens	hivae	Freshwate	er IBE-RA744	Iran; Khuzestan, Behbahan, Morvarid spring 4.9.2010	E. Irani	LT991399 LT991547 LT990788 LT990974 LT991186

Table S1. (continued)

221

Chapter 5

...continued on the next page

222	Table S1 . (co	intinued)									
2	all genus	subgenus	species grou	Ip species	subspecies	salinity	voucher	locality	leg	mtgenome COI-5 COI-3 rrnL 18S 28S	
	199 Ochthebius	Ochthebius	metallescens	judemaesi		Freshwater IB	sE-RA1179	Spain; Albacete, Chorros del Río Mundo 7.9.2013	D.T. Bilton	LT991400 LT991548 LT990789 LT990975 LT991187	5
	200 Ochthebius	Ochthebius	metallescens	metallescens	metallescens F	Freshwater M.	NCN-AI376	Austria; Niederösterreich, Lunz 2002	M.A. Jäch	LT991402 HF931191 HF931414 LT990977 LT991189	68
	201 Ochthebius	Ochthebius	metallescens	metallescens	plato F	Freshwater IB	3E-RA1057	Greece; Peloponnese, Achaea, 1.5 km NE Kleitor 3.4.2013	I. Ribera & A. Cieslak	LT991403 LT991550 LT990791 LT991190	00
	202 Ochthebius	Ochthebius	metallescens	morettii	Ľ	Freshwater IB	se-RA1173	ttaly; Liguria, Imperia, 1 km S Pigna 7.7.2013	D.T. Bilton	LT991404 LT991551 LT990792 LT990978 LT991191	5
	203 Ochthebius	Ochthebius	metallescens	pedroi	Ľ	Freshwater IB	3E-RA1082	Mallorca (Spain); Sa Calobra, Font de sa Mata 8.5.2013	I. Ribera	LT991405 LT991552 LT990793 LT990979 LT991192	92
	204 Ochthebius	Ochthebius	metallescens	poweri	Ţ	Freshwater M.	NCN-AC26	England (UK); S Devon, Ladram Bay, seepage 4.7.2007	D.T. Bilton	LT991406 LT991553 LT990794 LT990980 LT991193	33
	205 Ochthebius	Ochthebius	metallescens	preissi	Ŧ	Freshwater IB	8E-AN448	Cyprus; Loukrounou, river Kaboura 28.4.2016	A. Millán, I. Ribera, J. Velasco & A. Villastrigo	LT991407 LT991554 LT990795 LT990981 LT991194	94
	206 Ochthebius	Ochthebius	metallescens	puberulus	÷	Freshwater IB	3E-AV164	Azerbaijan; 2.6.2017	A. Prokin	XXXXXXX XXXXXXX XXXXXXX XXXXXXX	
	207 Ochthebius	Ochthebius	metallescens	scopuli	Ľ	Freshwater IB	3E-AN382	Sardinia (Italy); Golf of Orosei, Cala Mariolu 12.10.2015	J. Köhler	XXXXXXX LT602656 LT602657 LT990796 LT990982 LT991195	95
	208 Ochthebius	Ochthebius	metallescens	semisericeus	÷	Freshwater M.	NCN-AI1064	Spain; Teruel, Beceite, river Matarranya, El Parrisal 7.8.2006	I. Ribera & A. Cieslak	HF931151 HF931370 LT990983 LT991196	96
	209 Ochthebius	Ochthebius	metallescens	semotus	Ľ	Freshwater IB	3E-RA1180	Spain; Albacete, Chorros del Río Mundo 7.9.2013	D.T. Bilton	HG915305 LT990797 LT990984 LT991197	26
	210 Ochthebius	Ochthebius	metallescens	serpentinus	Ľ	Freshwater M.	NCN-AI819	Turkey; Kastamonu, road Ağlı-Azdavay 28.4.2006	I. Ribera	LT991408 HF931229 HF931458 LT990985 LT991198	86
	211 Ochthebius	Ochthebius	metallescens	sp.	Ľ	Freshwater IB	3E-AN164	Turkey; Antalya, 1 km N Hacıyusuflar 24.6.2014	D.T. Bilton	XXXXXXX LT991401 LT991549 LT990790 LT990976 LT991188	88
	212 Ochthebius	Ochthebius	metallescens	sp.	Ţ	Freshwater IB	8E-RA584	Spain; Cádiz, Garganta de la Balsa 23.6.2011	D.T. Bilton	XXXXXX XXXXXXX XXXXXXX	
	213 Ochthebius	Ochthebius	metallescens	sp.	Ľ	Freshwater IB	8E-AN77	Azerbaijan; Gosmalijion, stream 7.5.2014	I. Ribera & A. Rudoy	XXXXXXX LT991409 LT991555 LT990798 LT990986 LT991199	66
	214 Ochthebius	Ochthebius	metallescens	sp.	Ľ.	Freshwater IB	8E-AV130	Russia; Pshysh River upstream of Khodyzhensk	A. Prokin	XXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX	×
	215 Ochthebius	Ochthebius	metallescens	sp.	Ľ	Freshwater IB	8E-AV144	Kazakhstan; Karatau Mts. 2.6.2016	S. Litovkin	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX	×
	216 Ochthebius	Ochthebius	metallescens	sp.	Ţ	Freshwater IB	8E-AN1016	Morocco, Talassemtane National Park, mountain stream 3.4.2018	Alfambra, C. Hemando, I. Ribera & A. Villastrigo	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX	×
	217 Ochthebius	Ochthebius	metallescens	wurayah	Ľ	Freshwater IB	3E-RA733	United Arab Emirates; Fujairah (north), Hajar Mountains, Wadi Wurayah 24.1.2010	M.A. Jäch	LT991556 LT990799 LT990387 LT991200	0
	218 Ochthebius	Ochthebius	nitidipennis	hasegawai	Ľ	Freshwater M.	NCN-AI1289	Japan; Honshu, Shimane Pref., Mt. Sentsu, Okuizumo 15.7.2006	N. Hayashi	XXXXXXX LT991410 LT991557 LT990800 LT990988 LT991201	5
	219 Ochthebius	Ochthebius	nitidipennis	japonicus	Ţ	Freshwater M.	NCN-HI26	Japan; Shikoku, Ehime Pref., Oda-gawa, Mizumoto, Uchiko-chô 30.9.2006	Y. Kamite	LT991411 LT991558 LT990801 LT990989 LT991202	02
	220 Ochthebius	Ochthebius	notabilis	gereckei	-	Hypersaline M.	NCN-PA141	Sicily (Italy); Caltanissetta, Torto Valley 11.6.2007	P. Abellán & F. Picazo	LT991412 FJ944176 LT990803 LT990991 LT991204	4
	221 Ochthebius	Ochthebius	notabilis	glaber	-	Hypersaline M.	NCN-PA30	Spain; Córdoba, Priego de Córdoba, Río Salado de Priego 21.7.2006	A. Millán & collaborators	XXXXXX HF948002 FJ944214 LT990804 LT990992 LT991205	5
	222 Ochthebius	Ochthebius	notabilis	halophilus	-	Hypersaline IB	8E-AN22	Turkey; Kırıkkale, Delice Çoğul salt pond 14.6.2012	T. Söylemez	LT991413 LT991559 LT990805 LT990993 LT991206	90
	223 Ochthebius	Ochthebius	notabilis	lanarotis	-	Hypersaline M.	NCN-PA32	Morocco; Ouezzane, Sidi Kacem, Oued Khendek 18.4.2006	A. Millán & collaborators	LT991414 FJ944251 LT990806 LT990994 LT991207	20
	224 Ochthebius	Ochthebius	notabilis	nomandi	-	Hypersaline M.	NCN-PA253	Algeria; Blida, Mellaha 23.8.2007	S. Bouzid	LT991415 FJ944275 LT990807 LT990995 LT991208	80
	225 Ochthebius	Ochthebius	notabilis	notabilis	-	Hypersaline M.	NCN-AI38	Spain; Albacete, Pinilla, Salinas de Pinilla 2.6.2002	I. Ribera & A. Cieslak	LT991416 FJ944107 HF931416 LT990996 LT991209	60
	226 Ochthebius	Ochthebius	notabilis	salinator	-	Hypersaline M.	NCN-AI53	Tunisia; road Kebili-Tozeur, 37 km SE Tozeur, salines 26.10.2001	I. Ribera & A. Cieslak	LT991417 FJ944271 HF931436 LT990997 LT991210	0
	227 Ochthebius	Ochthebius	notabilis	zugmayeri	-	Tolerant IB	se-AV113	Russia; Astrakhan Oblast, Krasnoyarsk District 6.5.2016	P. Petrov	XXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXX	×
	228 Ochthebius	Ochthebius	peisonis	peisonis		Tolerant IB	8E-AN64	Azerbaijan; Alishanli, 7 km NE Masally 8.5.2014	I. Ribera & A. Rudoy	XXXXXX LT991419 LT991561 LT990809 LT990998 LT991212	2
	229 Ochthebius	Ochthebius	punctatus	bifoveolatus	-	Tolerant IB	8E-AN381	Spain; Cádiz, Bahía de Cádiz, marshes 27.4.2011	A. Millán & collaborators	LT991562 LT990810 LT990999 LT991213	3
	230 Ochthebius	Ochthebius	punctatus	cuprescens	L.	Tolerant IB	8E-PA276	Tunisia; road Tozeur-Gafsa, 24 km SW Gafsa, Oued El Melah 16.10.2001	I. Ribera & A. Cieslak	LT991420 HF931293 HF931528 LT991000 LT991214	4
	231 Ochthebius	Ochthebius	punctatus	difficilis	Ľ	Freshwater M.	NCN-AI944	Morocco; Immouzzer Ida Ou Tanane, Assif Tanit 21.4.2001	I. Ribera & A. Cieslak	LT991421 HF931246 HF931481 LT991001 LT991215	5
										continued on the next page	e de

Irreversible habitat specialisation does not constraint diversification in hypersaline water beetles

Table S1. (continued)

all genus	subgenus	species group	species su	bspecies	salinity	voucher	locality	leg	mtgenome	COI-5	COI-3	rrnL	18S	28S
232 Ochthebius	Ochthebius	punctatus	grandipennis	To	lerant M	NCN-AI616	Spain; Madrid, Aranjuez, salinas 11.2.2006	I. Ribera & A. Cieslak		LT991423 HF	F931216 H	F931442 LT	991003 L	991217
233 Ochthebius	Ochthebius	punctatus	inemis	Fre	eshwater IB	se-RA795	Japan; Honshu, Ibaraki Pref., Kobodihana, Ohmika-machi, Hitachi-shi 22.7.2006	N. Hikida		L	1991564 L	1990812 LT	991004 L	991218
234 Ochthebius	Ochthebius	punctatus	joosti	To	llerant IB	sE-AF169	Russia; Volgogradskaya Oblast, Lake Elton, residual pools 17.4.2008	A. Prokin		LT991424 HF	F931121 H	F931339 LT	991005 L	991219
235 Ochthebius	Ochthebius	punctatus	klapperichi	Fre	eshwater M	NCN-AI1269	Bhutan; Timphu, Taba, Wang Chhu river 23.11.2005	M.A. Jäch		LT991425 LT	1991565 L ⁻	F990813 LT	991006 L	991220
236 Ochthebius	Ochthebius	punctatus	lanuginosus	To	lerant IB	3E-AN204	Greece: Arkadia, Astros, Lake Moustou 6.4.2013	I. Ribera & A. Cieslak		LT991426 LT	1991566 L	1990814 LT	991007 L	991221
237 Ochthebius	Ochthebius	punctatus	mahmoodi	Fre	eshwater IB	3E-RA126	Oman; 1 km W Qalhat, residual pools in wadi 9.4.2010	I. Ribera, C. Hemando & A. Cieslak		LT991427 HF	F931304 H	F931532 LT	991008 L	991222
238 Ochthebius	Ochthebius	punctatus	micans	Fre	eshwater IB	8E-AN474	Djibouti; Arta, wadi Alloulli (oasis), Oued Kalou 31.1.2016	M.A. Jäch		LT837917 LT	1991567 L	1990815 LT	991009 L	991223
239 Ochthebius	Ochthebius	punctatus	monseti	Fre	eshwater IB	8E-RA124	Oman; 15 km SW Sur, residual pools in wadi 9.4.2010	I. Ribera, C. Hernando & A. Cieslak		LT991428 HF	F931302 L ⁻	1990816 LT	991010 L	991224
240 Ochthebius	Ochthebius	punctatus	montesi	To	llerant M	NCN-Al491	Spain; Murcia, Caravaca, Rambla Pozo Enmedio 2.6.2005	A. Millán & collaborators		Ŧ	F931206 H	F931431 LT	991011 L	991225
241 Ochthebius	Ochthebius	punctatus	nanus	Fre	eshwater IB	3E-PA277	Morocco; Âĩt-Rahhal, Oued Akka 17.2.2001	I. Ribera & A. Cieslak	XXXXXXX	Ŧ	F931294 H	F931529 LT	991012 L	991226
242 Ochthebius	Ochthebius	punctatus	nilssoni	Fre	eshwater M	NCN-AH76	Ireland; Clare, Lough Gealáin 31.7.2007	D.T. Bilton		LT991429 LT	1991568 L	1990817 LT	991013 L	991227
243 Ochthebius	Ochthebius	punctatus	nobilis	Fre	eshwater IB	se-AF133	Italy; Emilia Romagna, Bosco, Torrente Parma 24.5.2008	I. Ribera	XXXXXXX	LT991430 LT	1991569 L ⁻	F990818 LT	991014 L	991228
244 Ochthebius	Ochthebius	punctatus	pagotrichus	Fre	eshwater M	NCN-AI497	South Africa; West Cape, Prince Albert Road, pond 23.3.2001	I. Ribera & A. Cieslak		LT991431 LT	1991570 L	1990819 LT	991015 L	991229
245 Ochthebius	Ochthebius	punctatus	pilosus	To	lerant IB	3E-AN363	Spain; Cádiz, Bahía de Cádiz 27.4.2011	A. Millán & collaborators	XXXXXXX	LT991432 LT	F991571 L	1990820 LT	991016 L	991230
246 Ochthebius	Ochthebius	punctatus	punctatus	To	llerant IB	3E-RA286	Ireland; Clare, Finavarra, Lough Muree 23.5.2010	I. Ribera		LT991433 HF	F931310 L ⁻	F990821 LT	991017 L	991231
247 Ochthebius	Ochthebius	punctatus	quadrifoveolatus	Fre	eshwater M	NCN-AI636	Gran Canaria (Spain); Moya, Barranco de Azuaje 15.4.2001	I. Ribera & A. Cieslak		LT991434 HF	F931218 H	F931446 LT	991018 L	991232
248 Ochthebius	Ochthebius	punctatus	ragusae	Fre	eshwater M	NCN-AI1029	Turkey; Sinop, road Saraydüzü-Boyabat, stream 5 km S Yeşilyurt 27.4.2006	A. Castro		LT991435 HF	F931147 H	F931366 LT	991019 L	991233
249 Ochthebius	Ochthebius	punctatus	silfverbergi	To	llerant IB	sE-RA1021	Morocco; Tan-Tan, Oued Dråa 3.4.2007	A. Millán & collaborators		LT991436 LT	F991572 L	1990822 LT	991020 L	991234
250 Ochthebius	Ochthebius	punctatus	sp.	ĥ	persaline IB	8E-AH164	Italy; Sicily, Caltanissetta 12.6.2007	P. Abellán & F. Picazo	~	CX XXXXXXX	X XXXXX X	XXXXXX	X XXXXX	XXXXX
251 Ochthebius	Ochthebius	punctatus	sp.	ĥ	persaline IB	3E-PA288	Spain; Murcia, río Chícamo 23.1.2008	A. Millán & collaborators	~	XXXXXXXX	X XXXXX X	XXXXXXX	X XXXXX	XXXXX
252 Ochthebius	Ochthebius	punctatus	sp.	Fre	eshwater IB	3E-AN76	Azerbaijan; Gosmalijion, stream 7.5.2014	I. Ribera & A. Rudoy	XXXXXXX	LT991422 LT	1991563 L ⁻	F990811 LT	991002 L ⁻	991216
253 Ochthebius	Ochthebius	punctatus	sp.	Fre	eshwater IB	sE-AV159	Taiwan; Taichung city, Heping 6.1.2018 / Fikácek, Liang, Hsiao	M. Fikácek, Liang & Hsiao	~	XXXXXXXX	XXXXXX X	XXXXXXX	X XXXXX	XXXXX
254 Ochthebius	Ochthebius	punctatus	sp.	Fre	eshwater IB	8E-RA247	China, Yunnan 18.5.2010	V.V. Grevennikov	~	CX XXXXXXX	X XXXXX	XXXXXX	X XXXXX	XXXXX
255 Ochthebius	Ochthebius	punctatus	sp.	Fre	eshwater IB	8E-RA104	Ornan; Al-Akhdar, source of wadi Bani Awf 6.4.2010	I. Ribera, C. Hernando & A. Cieslak		LT991437 LT	1991573 L	1990823 LT	991021 L ⁻	991235
256 Ochthebius	Ochthebius	punctatus	sp.	Fre	eshwater IB	8E-AF191	Bhutan; Sarpang, 11 km NW Sarpang, Bhur Khola river 27.11.2005	M.A. Jäch		LT991438 LT	1991574 L	r990824 LT	991022 L ⁻	991236
257 Ochthebius	Ochthebius	punctatus	sp.	Fre	eshwater IB	8E-AV147	Kyrgyzstan; Jalal-Abad Reg. 19.7.2017	S. Litovkin	~	XXXXXXXX	X XXXXX	XXXXXX	X XXXXX	XXXXX
258 Ochthebius	Ochthebius	punctatus	sp.	Fre	eshwater IB	8E-AV152	Tajikistan; 2.7.2016	D. Palatov	~	CX XXXXXXX	X XXXXX	XXXXXX	X XXXXX	XXXXX
259 Ochthebius	Ochthebius	punctatus	sp.	Fre	eshwater IB	8E-RA745	Iran; Khuzestan, Begbahan, river 5.5.2011	E. Irani	~	CX XXXXXXX	X XXXXX X	XXXXXX	X XXXXX	XXXXX
260 Ochthebius	Ochthebius	punctatus	tudmirensis	Η	rpersaline M	NCN-AI467	Spain; Guadalajara, Salinas de Imón 22.5.2005	I. Ribera & A. Cieslak	-	HF948004 HF	F931205 H	F931430 LT	991023 L	991237
261 Ochthebius	Ochthebius	quadricollis	brevicollis	Η	persaline IB	8E-AN440	Cyprus; Akamas peninsula, Lara beach 29.4.2016	A. Millán, I. Ribera, J. Velasco & A. Villastrigo		LT991439 LT	1991575 L	1990825 LT	991024 L	991238
262 Ochthebius	Ochthebius	quadricollis	heeri	Η	persaline IB	8E-AV116	Portugal; Madeira, Sao Martinho 17.10.2017	I. Ribera & A. Cieslak		~ ~~~~~~	X XXXXX X	XXXXXX XX	X XXXXX	XXXXX
263 Ochthebius	Ochthebius	quadricollis	quadricollis	Η	persaline IB	8E-AN140	Italy; Sicily, Acicastello, rockpools 1.6.2015	A. Rudoy		XXXXXXXX	X XXXXX	ox xxxxxx	X XXXXX	XXXXX
264 Ochthebius	Ochthebius	quadricollis	sp.	ĥ	persaline IB	3E-AN200	Tenerife (Spain); Tenerife, La Orotava, rookpools in El Barco 4.4.2015	R. Lyszkowski		LT991440 LT	1991576 L ⁻	1990826 LT	991025 L ⁻	991239

Chapter 5

...continued on the next page

Table S1. (co.	ntinued)								
all genus	subgenus	species grou	species dr	subspecies	salinity voucher	locality	leg	mtgenome COI-5	COI-3 rrnL
265 Ochthebius	Ochthebius	quadricollis	sp.	Ť	ypersaline IBE-AV179	Spain; Lanzarote, Caletón Blanco, rockpools 29.3.2018	C. Andújar	XXXXXX	X XXXXXX XXXXXXX
266 Ochthebius	Ochthebius	quadricollis	sp.	T	ypersaline IBE-AN11	Spain; Murcia, La Manga del Mar Menor, Punta del Cocedor 10.10.2009	J. Sánchez-Meca	LT991442	LT991577 LT990827 L
267 Ochthebius	Ochthebius	quadricollis	sp.	T	ypersaline MNCN-AI514	Spain; Pontevedra, Nigran, Playa Patos 3.10.2005	J. Garrido	LT991443	HF931209 HF931434 L
268 Ochthebius	Ochthebius	quadricollis	sp.	T	ypersaline IBE-AN609	Spain; Cartagena, Cabo de Palos, rockpools 23.10.2016	A. Millán & J. Velasco	XXXXXXX	X XXXXXXX XXXXXXX
269 Ochthebius	Ochthebius	quadricollis	sp.	T	ypersaline IBE-AV78	Greece; Crete, Pacheia Ammos, rockpools 17.4.2017	C. Hemando, I. Ribera & A. Villastrigo		* *******
270 Ochthebius	Ochthebius	quadricollis	sp.	T	ypersaline MNCN-AI517	Greece; Halkidiki, Kassandra 29.6.2002	M.A. Jäch	LT991444	HF931210 HF931435 L
271 Ochthebius	Ochthebius	quadricollis	steinbuehleri	T	ypersaline IBE-AN791	Croatia; Trsteno, rockpools 5.5.2017	A. Faille, J. Fresneda & I. Ribera	XXXXXXX	* ******
272 Ochthebius	Ochthebius	quadricollis	urbanelliae	T	ypersaline genbank				XXXXXXX
273 Ochthebius	Ochthebius	rivalis	himalayae	Ľ	eshwater MNCN-AI1270	Bhutan; Timphu, Taba, Wang Chhu river 23.11.2005	M.A. Jäch	XXXXXXX	LT991578 LT990828 L
274 Ochthebius	Ochthebius	rivalis	rivalis	L	eshwater IBE-AF81	India; Uttarakhand, 10 km SW Rudraprayag, River Alaknanda 11.11.2006	M.A. Jäch		LT991579 LT990829 L
275 Ochthebius	Ochthebius	strigosus	sp.	ш	eshwater IBE-RA617	China; Shaanxi, 110 km ENE Xian, Huayin vill., Hija Mt. 10.5.2011	M. Balke & J. Hájek	XXXXXXX	LT991580 LT990830 L
276 Ochthebius	Ochthebius	sumatrensis	sp.	ш	eshwater MNCN-AC16	Hong-Kong (China); Hong Kong Island, hygropetric 19.2.2007	J. Maté	LT991445	LT991581 LT990831 L
277 Ochthebius	Ochthebius	vandykei	vandykei	T	ypersaline IBE-AF159	California (USA); San Luis Obispo Co., Rancho Marino Res. 28.6.200	008 M. Caterino		LT991582 L
278 Ochthebius	Ochthebius	vandykei	sp.	T	ypersaline IBE-RA1018	Japan; Okinawa 2010	H. Yoshitomi		
279 Ochthebius	Ochthebius	vandvkei	voshitomii	T	vnersaline IRE-AF121	. Janan: Hokkaido, Shirakami, Matsumae-chô 14 7 2006	H Voshitomi	~~~~~	I T001583

gene	partition	# terminals	# nucleotides
18S	nuclear	271	603
28S	nuclear	279	644
atp6	CDS mitogenome	42	672
atp8	CDS mitogenome	42	165
cob	CDS mitogenome	41	1140
cox1	CDS all data	282	1506
cox2	CDS mitogenome	42	706
cox3	CDS mitogenome	42	789
nad1	CDS all data / CDS mitogenome	231 / 42	104 / 847
nad2	CDS mitogenome	42	1011
nad3	CDS mitogenome	41	357
nad4	CDS mitogenome	41	1336
nad4l	CDS mitogenome	41	282
nad5	CDS mitogenome	41	1740
nad6	CDS mitogenome	41	507
rmL	ribosomal all data / ribosomal mitogenome	273 / 41	692 / 723
rrnS	ribosomal mitogenome	40	812
trnA	trn mitogenome	41	69
trnC	trn mitogenome	42	69
trnD	trn mitogenome	42	71
trnE	trn mitogenome	41	70
trnF	trn mitogenome	41	73
trnG	trn mitogenome	41	68
trnH	trn mitogenome	41	70
trnl	trn mitogenome	40	73
trnK	trn mitogenome	42	72
trnL1	trn all data	237	69
trnL2	trn mitogenome	42	67
trnM	trn mitogenome	40	69
trnN	trn mitogenome	41	67
trnP	trn mitogenome	41	71
trnQ	trn mitogenome	40	69
trnR	trn mitogenome	41	68
trnS1	trn mitogenome	41	68
trnS2	trn mitogenome	41	71
trnT	trn mitogenome	41	66
trnV	trn mitogenome	40	72
trnW	trn mitogenome	42	73
trnY	trn mitogenome	41	68

Table S2. List of genes used in phylogenetic reconstruction, including samples per gene and length of each alignment.

Figure S1. Majority rule consensus tree obtained in Beast. Number in nodes: posterior probability values.

226

Figure S1. (Continued)

227

Chapter 6

Habitat preferences, body size and diversification in a speciose lineage of diving beetles

Adrián Villastrigo, Pedro Abellán, Anabela Cardoso and Ignacio Ribera Manuscript in preparation for submission.

Abstract

The long-term geological stability of aquatic habitats has demonstrated to be determinant in the evolution of their macroinvertebrate fauna, with species in running (lotic) waters having lower dispersal abilities, smaller ranges and higher gene flow between populations that species in standing (lentic) environments. Lotic species have been hypothesized to be more specialised, but the diversification dynamics of both habitat types, and the possible constraints in morphology, have not been studied in detail. Using a speciose lineage of water beetles we test here whether diversification rates and body size are related to the habitat preference of the species. We built a comprehensive molecular phylogeny with 473 terminals representing 421 of the 689 known species tribe Hydroporini (Coleoptera, Dytiscidae), using a combination of sequences from three mitochondrial and two nuclear genes plus 69 mitogenomes obtained with NGS. We found a general pattern of gradual acceleration of diversification rate with time, with 2 to 3 significant diversification shifts. Habitat diversification rates estimated by MuSSE were similar for both lotic and lentic environments, with overlapping posterior distribution but a slightly higher rate for lentic. The most recent common ancestor of Hydroporini was reconstructed as a lotic species, with multiple shifts to lentic environments. Most frequent transitions were estimated from lentic and lotic habitats to the category "both" followed by transitions from lotic to lentic and lentic to lotic respectively, although with very similar rates. Body size of species in category 'Both' were larger than the rest, followed by lentic and then lotic species. Model comparison for body size evolution selected an Ornstein-Uhlenbeck evolutionary model with preference over a Brownian Motion, but the variance and range of body size of the species of each of the defined clades were not correlated with their main habitat. Changes in body size were not related to habitat transitions but with evolution within each habitat. Contrary to expectations, we found little evidence for differences in diversification dynamics or body size evolution between habitats, with lotic environments clearly not acting as evolutionary dead-ends or strongly constraining the body size of the species of Hydroporini.

Introduction

The unevenness in species richness across the Tree of Life is one of the most striking features of biological diversity. Two major hypotheses have been proposed to explain differences in richness among clades (Wiens, 2017): time as the main diversification factor - clade age hypothesis (Li and Wiens, 2019) and / or differential diversification rates among clades - rates hypothesis (Hugall and Stuart-Fox, 2012; Baker *et al.*, 2014; McGuire *et al.*, 2014; Wiens *et al.*, 2015a; Seeholzer *et al.*, 2017). A possible cause for differential speciation or extinction rates between clades is the constraint posed by the habitats to the species (Southwood, 1977), tested multiple times in both terrestrial and aquatic environments, such as the shift from saline to freshwaters in amphibians (Hou *et al.*, 2011), the type of nesting of some birds (Irestedt *et al.*, 2009), or the habitat preference in lizards (Collar *et al.*, 2010).

In aquatic environments, the main habitat constraint is the one set between running (lotic) and standing (lentic) waters (e.g. Ribera *et al.*, 2001; 2008; Kalkman *et al.*, 2018; Ye *et al.*, 2019). The lower habitat stability in geological times of isolated lentic water bodies forces a higher dispersal capability of the species living in them, and in consequence broader geographical ranges for lentic than for lotic species (Ribera and Vogler, 2000, Marten *et al.*, 2006; Hof *et al.*, 2006; Sánchez-Fernández *et al.*, 2012). Ribera (2008) hypothesized that habitat constraints determine a higher gene flow between populations of lentic species, which lead to lower speciation and extinction probabilities compared to lotic species. However, the net outcome of the balance between speciation and extinction is uncertain, and there is no strong evidence that lotic or lentic habitats endorse a higher biodiversity.

Limited efforts have been made to understand whether diversification rates are influenced by habitat preference in aquatic environments, perhaps due to the difficulties to estimate diversification rates (Rabosky, 2009) and the need of comprehensive phylogenies to account for precise rates (Barraclough and Nee, 2001). Letsch *et al.* (2016) demonstrated heterogeneous species rates across Odonata, with lentic environments linked to higher rates. However, an incomplete sampling effort (c. 17% of recognized anisopteran species) and the heterogeneous complex biological traits across species may have affected their results. More recently, Désamoré *et al.* (2018) suggested no differential diversification rates between lotic and lentic environments and an uncoupled evolution of morphology and diversification in aquatic Coleoptera, but again with an incomplete sampling (c. 4% of dytiscid species) that underestimated the number of habitat shifts within genera (e.g. *Hydroporus*, with 189 species, has an heterogeneous habitat, but in Désamoré *et al.* (2018) only five of them were included and it was considered as an homogeneous lentic genus).

Here we tested whether diversification rates and body size are related with habitat preference, under the main hypothesis that lotic environments are more specialized habitats than lentic ones (Ribera, 2008). We specifically tested if diversification rates differ between habitats and whether habitat transitions were associated to changes in diversification rates. In the case of lotic environments acting as an ecological specialization, we tested whether they are an evolutionary dead-end (i.e., what are the probabilities of habitat transitions between habitats, and what are their net diversification rates). Additionally, we compared the body size of the species in the two main habitats, and if differences were associated to transitions between habitats or to the evolution of lineages within a habitat. We also tested if lotic habitats show evidence of morphological specialization, as reflected in a reduced variance, or a directional evolution of body size.

To answer those questions, we studied the tribe Hydroporini of the diving beetle family Dytiscidae with a comprehensive dataset including c. 65% of the 688 known species (Nilsson and Hájek, 2019). Species of Hydroporini are more homogeneous in morphology and general life style than other tribes within Dytiscidae, but they are highly diverse and with numerous species both in lotic and lentic environments.

Methods

Molecular data

Molecular sequences were obtained from 473 Hydroporini specimens, representatives of all genera except *Amurodytes, Etruscodytes, Siamoporus* and *Tassilodytes,* all of them monotypic. We included in the analyses only species of Hydroporini as currently understood (Nilsson and Hájek, 2019), following the most recent phylogenies of Dytiscidae (Désamore *et al.*, 2018). We compiled available published sequences plus 500 newly obtained sequences. DNA was extracted with a non-destructive protocol using commercial kits, mostly Qiagen DNeasy Tissue Kit (Hildesheim, Germany). Voucher specimens and DNA samples are kept in the collections of Institute of Evolutionary Biology (IBE, Barcelona, Spain) and Museo Nacional de Ciencias Naturales (MNCN, Madrid). DNA was amplified by PCR for six gene fragments in five reactions for a set of mitochondrial and nuclear genes: i) 5' end of cytochrome c oxidase subunit I (COI-5), ii) 3' end of cytochrome c oxidase subunit I (COI-3), iii) 5' end of rrnL RNA (16S) plus leucine tRNA (tRNA-L1) plus 5' end of NADH dehydrogenase subunit I (NAD1), iv) an internal fragment of small ribosomal unit (18S) and v) an internal fragment of large ribosomal subunit (28S). PCR primers and conditions can be found in Table S1. Additionally, we sequenced 69 mitochondrial genomes from an equimolar bulk of DNA following a Mitochondrial Metagenomic protocol adapted from Crampton-Platt *et al.* (2016). Our pipeline includes preparation of DNA libraries with TruSeq Nano DNA kit, sequencing in an Illumina MiSeq (insert size 300 bp) and *de novo* assemblies with different softwares (IDBA-UD (Peng *et al.*, 2012), RAY-meta (Boisvert *et al.*, 2012), WGS-assembler (Myers *et al.*, 2000), and SPAdes (Bankevich *et al.*, 2012)) to validate each contigs. To assure correct identification of contigs, BLAST (Madden *et al.*, 2009) searches were made against a custom database with Sanger sequences of COI and rrnL genes (see Villastrigo *et al.*, Chapter 5, for detailed instructions). All sequences were trimmed using Geneious v10.2.5 (Kearse *et al.*, 2012) and were uploaded to ENA database with accession numbers (XXXXXX-XXXXXX) (see Table S2 for a complete list of voucher specimens, mitochondrial genomes and accession numbers).

Phylogenetic reconstruction

Sequences from both mitochondrial genomes and sanger sequencing were aligned using MAFFT 7.409 (Katoh *et al.*, 2009) with the G-INS-I algorithm. To avoid alignments with partitions with very unequal amount of missing data, the partition scheme was based on the type and source of the sequence: (i) nuclear genes (18S plus 28S), (ii) leucine tRNA, present in both Sanger and mitogenomes sequences, (iii) tRNAs present only in mitogenome sequences, (iv) coding sequences present in both Sanger and mitogenome sequences (COI plus partial NAD1), (v) coding sequences present only in mitogenome sequences, (vi) rRNA present in both Sanger and mitogenome sequences (rrnL) and (vii) rRNA present only in mitogenome sequences (rrnS).

We tested four scenarios under a Yule speciation process in Beast v1.10.4 (Suchard *et al.*, 2018) for 100 million generations: two complex evolutionary models (HKY+G+I and GTR+G+I) in combination with two different clock model (strict and uncorrelated lognormal clocks). Phylogenies were calibrated with the crown age of Hydroporini (103.6 Ma) obtained by the most recent phylogeny of Dytiscidae, obtained using a combination of fossils (Désamoré *et al.* 2018). To reduce computation time, the monophyly of the subtribes was constrained based on the results of a separate analysis with RAxML-HPC2 (Stamatakis, 2006) without any topological constraint in the CIPRES Science Gateway (Miller *et al.*, 2010) with the same partition scheme under a GTR+G model (Fig. S1). Convergence was assessed using Tracer v1.7 (Rambaut *et al.*, 2018).

Pattern of diversification and its relationship with habitat

Diversification rates were calculated for all genera with more than two sampled terminals in BAMM v2.5.0 (Rabosky, 2014). In addition to the consensus tree obtained in Beast, we randomly selected a set of 100 trees from the posterior distribution to account for phylogenetic uncertainty, considering in both cases the sampled fraction of species following BAMM specifications. We also estimated diversification rates of the same clades using the *method of moments* estimator (MM-estimator, Magallón and Sanderson, 2001) using the *geiger* r-package (Harmon *et al.*, 2008) for both crown and stem ages under different extinction scenarios (no extinction - $\varepsilon = 0$, intermediate - $\varepsilon = 0.5$, and high extinction - $\varepsilon = 0.9$).

To test whether habitat preference states had a different diversification pattern we used Multistate Speciation and Extinction model (MuSSE) under the most complex scenario (one speciation rate and one extinction rate for each state, allowing transitions from and to all habitats preferences), obtaining diversification rate per habitat association. Estimates were calculated in the *Diversitree* r-package (Fitzjohn, 2012) after running a Markov Chain MonteCarlo (MCMC) for 1000 generations.

We also tested the current diversification patterns in each habitat preference state. Mean diversification rates of extant species (tip rates) plus its variance were obtained from the set of 100 post-burnin trees, and the *slouch* r-package (Hansen *et al.*, 2008) was used to obtain pairwise comparison of each habitat states trends. Tip rates and its variance were used and habitat preference reconstructed in Beast was included as a fixed factor. The *slouch* package can integrate a measure of variance within the response, minimizing errors attributed to an uneven number of measures across taxa.

Evolution of body size and habitat preference

We compiled average body size values of all species from de data set used by Nilsson-Örtman and Nilsson (2010). Beast was used to reconstruct the evolution of body size and habitat preference under a simple Brownian Motion evolutionary model and an asymmetric substitution model respectively. Alternative evolutionary models were tested for body size evolution using fitContinuous function from *phytools* r-package, selecting the best fitting evolutionary model based on AIC weights (Wagenmakers and Farrell, 2004). We tested the phylogenetic signal of body size using the *phylosignal* r-package (Keck *et al.*, 2016) following three different statistics (Abouheif's Cmean, Blomberg's K and Pagel's λ). Phylogenetic signal of habitat was calculated using a likelihood ratio test that compared the maximized likelihood of a model with strong signal ($\lambda = 1$) and a model without signal ($\lambda =$

0), and transitions rates between habitat categories were obtained in Beast.

The relationship between body size and habitat was assessed using Phylogenetic Generalized Least Squares (PGLS) under a linear model. Analysis of variance (ANOVA) was used to test significance.

Specialized habitat as morphological evolutionary drivers

To explore whether habitat transitions affected body size evolution, we used the maximum clade credibility tree to calculate the rate at which body size evolved per node (i.e. the body size difference between each node and its most recent one divided by the branch length between both nodes) and whether a transition has occurred between a node and its most recent one (a variable with seven states, one for no transition between nodes, and six for different habitat preference transitions). We also extracted the rate of habitat evolution and the reconstructed state for habitat at each node. Relations between rate of body size evolution and rate of habitat transition, and for each of those variables against transitions and habitat at each node were tested with ANOVA.

To explore whether the habitat constrained variation in body size, we tested for differences in the variance and absolute range of body size within the most inclusive clades with a homogeneous habitat, allowing for isolated transitions of terminal species within the clade in some cases to increase the size of the clade (see Fig. S2 for the collapsed phylogeny and Table S2 for the delimitation of the clades). Differences in variance and absolute range of body size between clades were tested using PGLS.

Results

Molecular phylogeny and taxonomic status

The phylogenetic reconstruction included 473 terminals representing 423 species and 41 subspecies, plus unidentified lineages (Table S4), covering c. 65% of the recognized species of Hydroporini (688 species plus 27 subspecies, Nilsson and Hájek, 2019). Analyses under uncorrelated lognormal clock did not converge adequately, whilst strict clock analyses did, with essentially the same topology (results not shown). The HKY+G+I model obtained a higher effective sample size than the GTR+G+I and therefore was selected for subsequent analyses.

The consensus phylogeny (Fig. S3) fully resolved the relationships between major

Figure 1. Collapsed molecular phylogeny of the genera of Hydroporini. Each colour represents one of the four subtribes. Circles in nodes when posterior probabilities are equal to 1.

clades (posterior probability [pp] > 1 for subtribe relationships) and considered mostly all genera as monophyletic, except for *Tiporus* (which included the monotypic genus *Sekaliporus*), a clade including the American genera *Neoporus* plus *Heterosternuta* plus *Haideoporus*, and a clade with *Hydrocolus* plus *Hydroporus*. The only non-expected result was the position of *Lioporeus* within Siettitiina (Fig. S1, Fig. S3), while it is currently considered within Hydroporina (Nilsson and Hájek, 2019). A collapsed phylogeny showing major clades is provided in Figure 1.

Pattern of diversification and its relationship with habitat

Estimated diversification rates were similar for most of the major clades analyzed in both analyses, specially comparing BAMM against MM-estimator under a scenario with low extinction for crown groups (Fig. 2, Table S3). Main differences between analyses occurred only in clades with a low number of species: *Barretthydrus, Carabhydrus, Chostonectes, Iberoporus, Megaporus, Mystonectes, Porhydrus* and *Stictotarsus* (Table S4).

Figure 2. Mean diversification rate for major clades.

The net diversification rate of Hydroporini was estimated by BAMM as 0.056 species/lineage/My, in accordance with the range of estimates obtained by MM-estimator (0.044-0.060 species/lineage/My). The general pattern of diversification reflects a gradually acceleration of diversification rates (Figure 3). BAMM analyses detected 2 to 3 core diversification shifts, with a mean number of shifts in the 100 post-burnin trees of 2.19, and a mode of 2. Shifts were detected in clades within *Boreonectes* and *Sternopriscus*, but also in the clade formed by *Hydrocolus* plus *Hydroporus*, with higher diversification rates in *Sternopriscus* (Figure 3).

Habitat diversification rates estimated by MuSSE were similar for both lotic and lentic environments, with overlapping posterior distribution but a slightly higher rate for lentic (Figure 4). The posterior distribution of category 'Both' had a large variance, with a distribution overlapping that of the other two habitats, although the average was smaller than the other categories.

Table 1. Pairwise contrast of expected incr	ease of
diversification rate of species considering	habitat
categories (in diversification rate/My).	

	Contrast	Standard error
Lentic - Both	0.0007	0.0006
Lotic - Both	0.0002	0.0005

Figure 3. BAMM tree plot of the diversification rates in Hydroporini.

Diversification rate based on habitat preference

Figure 4. Marginal probabilities of the diversification rates estimated for each habitat preference states in MuSSE.

Lotic - Lentic -0.0004 0.0002

The diversification trends estimated in *slouch* for the terminals (see tip diversification rates in Table S5) were similar to those found in MuSSE (Table 1, Figure 4): species living in lentic environments tend to increase their diversification rates in comparison with the other categories. Differences between lotic and both categories did not show an evident difference due to their broad standard error.

Evolution of body size and habitat preference

Beast reconstructed the most recent common ancestor of Hydroporini as a lotic species, with multiple shifts to lentic environments (Fig. 5). Transitions from lentic to lotic occurred multiple times and mostly on terminal branches (except in a clade within *Hydropo*-

Figure 5. Reconstruction of the habitat preference in Hydroporini in BEAST using an asymmetrical model.

rus), with a similar pattern for species of category both. The reconstructed body size of the most recent common ancestor of Hydroporini was intermediate (3.59 mm), with the biggest species occurring in *Nebrioporus* (7.8 mm) and the smallest ones in the groundwater genus *Paroster* (1 mm).

Model comparison for body size evolution selected an Ornstein-Uhlenbeck evolutionary model with preference over a Brownian Motion based on AIC weights (Table 2). Body size also showed a strong support for Ornstein-Uhlenbeck process by all indexes (Pagel's $\lambda = 0.98$, p = 0.001; Cmean = 0.74, p = 0.001; Blomberg's K = 0.63, p = 0.001).

Table 2. AIC weigh	t comparison for	body size evolution
--------------------	------------------	---------------------

	Brownian Motion	Ornstein- Uhlenbeck	Early Bust
AIC weight	0.002	0.997	0.001

Habitat preference showed a solid phylogenetic signal based on the likelihood ratio test ($p = 1.6 \times 10^{-64}$). Most frequent transitions were estimated from Lentic to Both and from Lotic to Both (1.586 [95% HDP interval 0.42-3.06] and 1.536 [0.43-2.91] t [transitions]/My respectively), followed by transitions from Lotic to Lentic (1.130 [0.28-2.20] t/My) and Lentic to Lotic (0.835 [0.15-1.67] t/My), with transitions from category Both as the less frequent ones (0.490 [0.01-1.24] and 0.371 [0.01-0.90] t/My).

Phylogenetic Generalized Leas Squares provides evidence of body size response based on habitat preference (p = 0.0005). Model coefficients for each habitat state were obtained (Table 3), revealing that species for category 'Both' are larger than the rest, followed by lentic species and lotic species.

Table 3. Model coefficients obtained from the linear model applied in PGLS for each habitat state (absolute values)

	Both	Lentic	Lotic
Log(body size)	0.5469	0.5407	0.5288

Specialized habitat as morphological evolutionary drivers

The rate of body size evolution per branch was not correlated with the rate of habitat evolution (F value = 0.905, p = 0.72). Similarly, the rate of habitat evolution was not related to the reconstructed habitat at each node (F value = 0.015, p = 0.99). However, the rate of body size evolution was significantly correlated with the reconstructed habitat at each node (F value = 4.30, p = 0.014), with nodes reconstructed as lotic having accelerated rates of body size evolution (0.016 mm/My) than nodes reconstructed as lentic or both (-0.056 and -0.045 mm/My respectively).

The variance and range of body size of the species of each of the defined clades (Fig. S2, Table S2) were not correlated with their main habitat, as measured by PGLS (p = 0.5 and p = 0.9 respectively).

Discussion

Molecular phylogeny

We found some unexpected phylogenetic relationships, in disagreement with the current classification of Hydroporini. Previous authors noticed the morphological resemblance of *Neoporus* and *Heterosternuta* (e.g. Larson *et al.*, 2000; Miller and Bergsten, 2016), considering them as closely related genera - also, their distributions are overlapping (Larson *et al.* 2000) and they mostly share their habitat preference (Table S2). The main morphological character to distinguish between both genera is the apex of the aedeagus (bifid in *Heterosternuta*), and our samples were identified in base of that character. Our results shed light of a more complex scenario, with *Heterosternuta* as mononophyletic within a larger clade including both *Neoporus* and *Haideoporus*, suggesting the need of a revision of both genera. Miller *et al.* (2013) found a similar result, with a clade including *Haideoporus*, *Heterosternuta* and *Neoporus*. Other novel result was the ascription of *Lioporeus* to Siettitiina subtribe, formerly considered to be part of the *Hydroporus pulcher-undulatus* group by Fall (1923) (see also Miller and Bergsten, 2016). However, their morphological resemblance to other Siettitiina species, especially in the male genitalia, support this new relationship.

The paraphyly of *Hydroporus* is also not surprising, as *Hydrocolus* was erected by the former *Hydroporus oblitus* group (Larson *et al.*, 2000). Recent studies considered *Hy-drocolus* as closely related to *Hydroporus* (Ribera *et al.*, 2008; Miller and Bergsten, 2014), but further studies with a more complete sampling are needed prior to rearrange their taxonomy.

Tiporus is a homogeneous group of species inhabiting lotic environments in northern Australia (Miller and Bergsten, 2016). The low support value of its monophyly (pp = 0.85) may be due to the inclusion of *Sekaliporus* in some of the topologies of the Bayesian analysis. Toussaint *et al.* (2015) found the same result, with a supported clade formed by both *Sekaliporus* and *Tiporus*.

Another interesting result is the relationship between subtribes. We identified Siettitiina as the sister to the rest of Hydroporini, followed by Deronectina and a clade formed by Hydroporina plus Sternopriscina, all of them with very strong support. Désamoré *et al.* (2018) found Hydroporina as sister to the rest, with Siettitiina sister to Deronectina, but with a more incomplete sampling and lower support.

Pattern of diversification and its relationship with the habitat

Despite the recent controversy on the accuracy of diversification rates estimated by BAMM (Moore *et al.*, 2016; Rabosky *et al.*, 2017; Meyer *et al.*, 2018; Meyer and Wiens, 2018; Rabosky, 2018; Rabosky, 2019), our results provide useful insights of its power when using comprehensive phylogenies. Rabosky (2019) showed how rates were an inverse function of clade size and how variance should be taken into account when estimating diversification rates. The low number of species and associated higher variances may explain the differences between the estimates of BAMM and the method of moments in some genera (*Barretthydrus, Carabhydrus, Chostonectes, Iberoporus, Megaporus, Mystonectes, Porhydrus* and *Stictotarsus*).

The general trend of diversification through time is a gradual acceleration, contrary to the general trend of a slowdown reported in the literature (McPeek, 2008; Morlon et al., 2010; Moen and Morlon, 2014). A recent study (Henao-Díaz et al., 2019) suggested differential patterns within clades, with higher rates at their origin resulting in a slow-down with time. This patter was not observed in Hydroporini, that have undergone diversification events that have maintained or increased the rates of evolution in recent times. Cusimano and Renner (2010) considered that the general pattern of slow-down with time may be caused by non-random sampling, overestimating diversification events in deep nodes. However, some accelerated diversification rates can also be found linked to niche expansions (Nürk et al., 2015). BAMM analyses revealed a heterogeneous diversification rate across Hydroporini, with at least two main core shifts for clades within Sternopriscus and Boreonectes, and in some trees in the clade formed by Hydrocolus plus Hydroporus. Main shifts occurred in clades formed by species linked to lentic environments, although Hydroporus plus Hydrocolus has a more heterogeneous habitat preference. However, the amount of species of Hydroporus plus Hydrocolus that do not live in lotic environment is outnumbered by the others (40 lotic species against 94).

Additionally, the pattern of diversification based on habitat preference showed evidence of a slightly higher diversification rate in lentic environments, no matter whether MuSSE or tip rates were considered. The overlapping posterior distribution between lentic and lotic diversification rates revealed a similar diversification pattern, but slightly slower for species living in lotic environments. Other authors tried to find relationships between these variables: Letsch *et al.* (2016) discovered a similar pattern in dragonflies comparing speciation rates, whereas Désamoré *et al.* (2018) did not recovered any differential net diversification for diving beetles. However, our results can be considered as more robust due to the completeness of out sampling in comparison with these previous studies. Other studies have also tried to match differential diversification or speciation rates with the habitat of the species, such as fishes living in freshwater having higher diversification rates than those in marine habitats (Bloom *et al.*, 2013), the coral reef-associated sharks displaying higher speciation rates (Sorenson *et al.*, 2014), grassland and savannah as drivers of accelerated diversification rates for falcons (Fuchs *et al.*, 2015), the humid forest in Madagascar increasing speciation rates for tenrecs (Everson *et al.*, 2016) or the division between terrestrial and aquatic environments exhibit differential rates (Wiens, 2015a). Habitat has been found to explain between 30 to 37 % of the total variation in diversification rates among animal phyla (Wiens, 2015b).

Evolution of body size and habitat preference

Our analyses showed strong evidence of phylogenetic signal for both body size and habitat preference. All tests demonstrated signal for a body size evolution under an Ornstein-Uhlenbeck evolutionary model. Although indexes such as Blomberg's K or Pagel's assume a Brownian-Motion model, the estimated values for all indexes were compatible with an Ornstein-Uhlenbeck process with a low alpha value (Diniz-Filho *et al.*, 2012; Münkemüller *et al.*, 2012). The Ornstein-Uhlenbeck model is a random walk complex model based on Brownian Motion that assumes the existence of an optimum trait value than influences the direction of trait evolution (Lande, 1976)), Parameter-rich models like the Ornstein-Uhlenbeck may be favored by AIC comparison over Brownian Motion (Cooper *et al.*, 2016), but our extensive sampling with more than 450 terminals is likely to not to be affected by this problem.

According to the habitat reconstruction in Beast, the most common recent ancestor of Hydroporini lived in lotic habitats, with most of the basal nodes being also lotic. The phylogenetic position of Hydroporini within the wider Hydroporinae is still uncertain (e.g. Ribera *et al.*, 2008; Désamore *et al.*, 2018), and in consequence it is not possible to consider the habitat preference of putative sister groups which may influence the reconstruction of the ancestral habitat of the tribe. The expected outcome of habitat transitions suggested by Ribera (2008) was that the more specialized habitats should have a lower frequency of transitions to other habitats, therefore, transitions from lotic habitats should be lower than those from lentic habitats. Contrary to this expectation, we found similar transition rates between lotic and lentic habitats, demonstrating that lotic habitats are not evolutionary deadends (Kelley and Farrel, 1998). The diversification of strictly lotic lineages of water beetles has been related to cycles of rapid expansion in temporal windows of favorable conditions followed by diversification by isolation when these conditions change, as for example during the interglaciars (Ribera *et al.*, 2011; García-Vázquez *et al.*, 2017). Other studies also found that habitat specialization does not imply an evolutionary dead-end, such as the adaptation to the subterranean environment in both beetles (Cieslak *et al.*, 2014) and crayfishes (Stern *et al.*, (2017), and in pollinator-specific plants and host-specific plants (Day *et al.*, 2016).

Specialized habitat as morphological evolutionary drivers

Our analysis determined that body size evolution is linked to habitat preference, with a strong correlation as measured with PGLS. Mean body sizes were larger for species living in category "Both", followed by lentic species and lotic species as the smallest ones. In agreement with our results, Gaston *et al.* (2012) found different body sizes in fishes depending on their microhabitats, with species living in pools being larger than species living in riffles. Haad *et al.* (2011) also found differential sizes in tadpoles, with larger species in lentic environments. Ribera and Nilsson (1995) hypothesized that the general absence of large-bodied Dytiscidae in lotic environments was due to the difficulties of overcoming the drag even for the best swimmers, but this referred to the largest species in subfamilies Dytiscinae and Cybistrinae, well over the size of the largest Hydroporini (*Nebrioporu kilimandjarensis*, with 7.8 mm, Table S5).

The mode of body size evolution showed a correlation with the habitat preference of the species but was not associated to the transitions between habitats. Changes in body size were thus related not to changes in main habitat type, but to the evolution of lineages within each type. Some authors have found previously the influence of habitat in morphological aspects, e.g. the relationship of the habitat of the agamid lizards and the evolution of their limbs and body form were found in Collar *et al.*, (2010), or the body shapes in different habitats found in threespine stickleback (Aguirre, 2009) and *Mus musculus* (West and King, 2018). These evidences reflect that differential body shape and size are a consequence of evolution within the habitat, as it is usually found no correlation between body size and diversification rates (e.g. Thomas *et al.*, 2006; Adams *et al.*, 2009; Crouch and Ricklefs, 2019).

If specialized habitats constraint the body size of the species it would be expected that they had less interspecific variation than species living in habitat with less stringent constrains. However, we did not find any evidence of different variance or range of body size between habitats, supporting that body size has been evolving directionally to optimum
values within each habitat, as expected under an Ornstein-Uhlenbeck evolutionary model (Lande, 1976).

In conclusion, we found differential diversification rates related to habitat preference in Hydroporini species, added to the influence of the habitats in species' body sizes. In addition, body sizes are not influenced by constrains posed by the habitats, but they are evolving towards optimum values, reflecting that more specialized habitats do not imply an irreversibility similar to an evolutionary dead-end.

Acknowledgements

We would like to thank all colleagues mentioned in Table S2 for sending valuable material for study, as well as Ana Izquierdo (MNCN) and Rocío Alonso (IBE) for laboratory work and A.N. Nilsson (Ümea) for making available the dataset of Dytiscidae body sizes. This work was partly funded by an FPI grant to A.V., and projects CGL2013-48950-C2-1-P and CGL2013-48950-C2-2-P (AEI/FEDER, UE) to I.R. and A.M., respectively.

References

- Adams, D.C., Berns, C.M., Kozak, K.H., Wiens, J.J. (2009). Are rates of species diversification correlated with rates of morphological evolution? *Proceedings of the Royal Society B: Biological Sciences*, **276**, 2729–2738.
- Aguirre, W.E. (2009). Microgeographical diversification of threespine stickleback: body shape-habitat correlations in a small, ecologically diverse Alaskan drainage. *Biological Journal of the Linnean Society*, **98**, 139–151.
- Baker, T.R., Pennington, R.T., Magallon, S., Gloor, E., Laurance, W.F., Alexiades, M., Alvarez, E., Araujo, A., Arets, E.J.M.M., Aymard, G., de Oliveira, A.A., Amaral, I., Arroyo, L., Bonal, D., Brienen, R.J.W., Chave, J., Dexter, K.G., Di Fiore, A., Eler, E., Feldpausch, T.R., Ferreira, L., Lopez-Gonzalez, G., van der Heijden, G., Higuchi, N., Honorio, E., Huamantupa, I., Killeen, T.J., Laurance, S., Leaño, C., Lewis, S.L., Malhi, Y., Marimon, B.S., Marimon Junior, B.H., Monteagudo Mendoza, A., Neill, D., Peñuela-Mora, M.C., Pitman, N., Prieto, A., Quesada, C.A., Ramírez, F., Ramírez Angulo, H., Rudas, A., Ruschel, A.R., Salomão, R.P., de Andrade, A.S., Silva, J.N.M., Silveira, M., Simon, M.F., Spironello, W., Steege, H. ter, Terborgh, J., Toledo, M., Torres-Lezama, A., Vasquez, R., Vieira, I.C.G., Vilanova, E., Vos, V.A., Phillips, O.L. (2014). Fast demographic traits promote high diversification rates of Amazonian trees. *Ecology Letters*, **17**, 527–536.
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. *Journal of computational biology*, **19**, 455–477.
- Barraclough, T.G., Nee, S. (2001). Phylogenetics and speciation. Trends in Ecology and *Evolution*, **16**, 391–399.
- Bloom, D.D., Weir, J.T., Piller, K.R., Lovejoy, N.R. (2013). Do Freshwater Fishes Diversify Faster Than Marine Fishes? A Test Using State-Dependent Diversification Analyses And Molecular Phylogenetics Of New World Silversides (Atherinopsidae), *Evolution*, 67, 2040-2057.
- Boisvert, S., Raymond, F., Godzaridis, É., Laviolette, F., Corbeil, J. (2012). Ray Meta: Scalable de novo metagenome assembly and profiling. *Genome Biology*, **13(12)**, R122.
- Cieslak, A., Fresneda, J., Ribera, I. (2014). Life-history specialization was not an evolutionary dead-end in Pyrenean cave beetles. *Proceedings. Biological sciences / The Royal Society*, **281**, 20132978.
- Collar, D.C., Schulte, J.A., O'meara, B.C., Losos, J.B. (2010). Habitat use affects morpho-

logical diversification in dragon lizards. *Journal of Evolutionary Biology*, **23**, 1033–1049.

- Cooper, N., Thomas, G.H., Venditti, C., Meade, A., Freckleton, R.P. (2016). A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. *Biological Journal of the Linnean Society*, **118**, 64–77.
- Crampton-Platt, A., Yu, D.W., Zhou, X., Vogler, A.P. (2016). Mitochondrial metagenomics: letting the genes out of the bottle. *GigaScience*, **5**, 15.
- Crouch, N.M.A., Ricklefs, R.E. (2019). Speciation rate is independent of the rate of evolution of morphological size, shape, and absolute morphological specialization in a large clade of birds. *The American Naturalist*, **193**, E000–E000.
- Cusimano, N., Renner, S.S. (2010). Slowdowns in diversification rates from real phylogenies may not be real. *Systematic Biology*, **59**, 458–464.
- Day, E.H., Hua, X., Bromham, L. (2016). Is specialization an evolutionary dead end? Testing for differences in speciation, extinction and trait transition rates across diverse phylogenies of specialists and generalists. *Journal of evolutionary biology*, **29**, 1257–1267.
- Désamoré, A., Laenen, B., Miller, K.B., Bergsten, J. (2018). Early burst in body size evolution is uncoupled from species diversification in diving beetles (Dytiscidae). *Molecular Ecology*, **27**, 979–993.
- Diniz-Filho, J.A.F., Santos, T., Rangel, T.F., Bini, L.M. (2012). A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models. *Genetics and Molecular Biology*, **35**, 673–679.
- Everson, K.M., Soarimalala, V., Goodman, S.M., Olson, L.E. (2016). Multiple Loci and Complete Taxonomic Sampling Resolve the Phylogeny and Biogeographic History of Tenrecs (Mammalia: Tenrecidae) and Reveal Higher Speciation Rates in Madagascar's Humid Forests. *Systematic Biology*, **65**, 890–909.
- Fall, H.C. (1923). A revision of North American species of Hydroporus and Agaporus. J.D. Sherman, Mt. Vernon, New York, 129pp.
- Fitzjohn, R.G. (2012). Diversitree: Comparative phylogenetic analyses of diversification in R. *Methods in Ecology and Evolution*, **3**, 1084–1092.
- Fuchs, J., Johnson, J.A., Mindell, D.P. (2015). Rapid diversification of falcons (Aves: Falconidae) due to expansion of open habitats in the Late Miocene. *Molecular Phylogenetics and Evolution*, **82**, 166–182.
- García-Vázquez, D., Bilton, D.T., Foster, G.N., Ribera, I. (2017). Pleistocene range shifts, refugia and the origin of widespread species in western Palaearctic water beetles. *Molecular Phylogenetics and Evolution*, **114**, 122–136.

- Gaston, K.A., Eft, J.A., Lauer, T.E. (2012). Morphology and its effect on habitat selection of stream fishes. *Proceedings of the Indiana Academy of Science*, **121**, 71–78.
- Haad, B., Vera Candioti, F., Baldo, D. (2011). Shape variation in lentic and lotic tadpoles of *Melanophryniscus* (Anura: Bufonidae). *Studies on Neotropical Fauna and Environment*, 46, 91–99.
- Hansen, T.F., Pienaar, J., Orzack, S.H. (2008). A comparative method for studying adaptation to a randomly evolving environment. *Evolution*, **62**, 1965–1977.
- Harmon, L.J., Weir, J.T., Brock, C.D., Glor, R.E., Challenger, W. (2008). GEIGER: Investigating evolutionary radiations. *Bioinformatics*, **24**, 129–131.
- Henao Diaz, L.F., Harmon, L.J., Sugawara, M.T.C., Miller, E.T., Pennell, M.W. (2019). Macroevolutionary diversification rates show time dependency. *Proceedings of the National Academy of Sciences of the United States of America*, 1–6.
- Hof, C., Brändle, M., Brandl, R. (2006). Lentic odonates have larger and more northern ranges than lotic species. *Journal of Biogeography*, **33**, 63–70.
- Hou, Z., Sket, B., Fiser, C., Li, S. (2011). Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of *Sciences*, **108**, 14533–14538.
- Hugall, A.F., Stuart-Fox, D. (2012). Accelerated speciation in colour-polymorphic birds. *Nature*, **485**, 631–4.
- Irestedt, M., Fjeldså, J., Dalén, L., Ericson, P.G.P. (2009). Convergent evolution, habitat shifts and variable diversification rates in the ovenbird-woodcreeper family (Furnarii-dae). *BMC Evolutionary Biology*, **9**, 1–13.
- Kalkman, V.J., Rafał, J.B., Geert, B., Suhling, F., Termaat, T. (2018). Diversity and conservation of European dragonflies and damselflies (Odonata). *Hydrobiologia*, **811**, 269–282.
- Katoh, K., Asimenos, G., Toh, H. (2009). Multiple alignment of DNA sequences with MAFFT. *Methods in Molecular Biology*, **537**, 39–64.
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics*, 28, 1647–1649.
- Keck, F., Rimet, F., Bouchez, A., Franc, A. (2016). Phylosignal: An R package to measure, test, and explore the phylogenetic signal. *Ecology and Evolution*, **6**, 2774–2780.

Kelley, S.T., Farrell, B.D. (1998). Is specialization a dead end? The phylogeny of host use

in Dendroctonus bark beetles. Evolution, 52, 1731–1743.

- Lande, R. (1976). Natural Selection and Random Genetic Drift in Phenotypic Evolution. *Evolution*, **30**, 314–334.
- Larson, D.J., Alarie, Y., Roughley, R.E. (2000). *Predaceous diving beetles (Coleoptera: Dytiscidae) of the Nearctic Region with emphasis on the fauna of Canada and Alaska.* NRC Research Press, Ottawa.
- Letsch, H., Gottsberger, B., Ware, J.L. (2016). Not going with the flow: A comprehensive time-calibrated phylogeny of dragonflies (Anisoptera: Odonata: Insecta) provides evidence for the role of lentic habitats on diversification. *Molecular Ecology*, 25, 1340– 1353.
- Li, H., Wiens, J.J. (2019). Time Explains Regional Richness Patterns within Clades More Often than Diversification Rates or Area. *The American naturalist*.
- Madden, T.L., Camacho, C., Ma, N., Coulouris, G., Avagyan, V., Bealer, K., Papadopoulos, J. (2009). BLAST+: architecture and applications. *BMC Bioinformatics*, **10**, 421.
- Magallón, S., Sanderson, M.J. (2001). Absolute diversification rates in Angiosperm clades. *Evolution*, **55**, 1762–1780.
- Marten, A., Brändle, M., Brandl, R. (2006). Habitat type predicts genetic population differentiation in freshwater invertebrates. *Molecular Ecology*, **15**, 2643–2651.
- McGuire, J.A., Witt, C.C., J. V. Remsen, J., Corl, A., Rabosky, D.L., Altshuler, D.L., Dudley,
 R. (2014). Molecular phylogenetics and the diversification of hummingbirds. *Current Biology*, 24, 910–916.
- McPeek, M.A. (2008). The ecological dynamics of clade diversification and community assembly. *The American Naturalist*, **172**, E270–E284.
- Meyer, A.L.S., Román-Palacios, C., Wiens, J.J. (2018). BAMM gives misleading rate estimates in simulated and empirical datasets. *Evolution*, **72(10)**, 2257–2266.
- Meyer, A.L.S., Wiens, J.J. (2018). Estimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shifts. *Evolution*, **72**, 39–53.
- Miller, K.B., Bergsten, J. (2014). The phylogeny and classification of predaceous diving beetles, In: Yee, D.A. (Ed.), Ecology, Systematics and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae). Springer, pp. 49–172.
- Miller, K.B., Bergsten, J. (2016). Diving beetles of the world: Systematics and biology of the Dytiscidae. Baltimore: Johns Hopkins University Press.
- Miller, K.B., Jean, A., Alarie, Y., Hardy, N., Gibson, R. (2013). Phylogenetic placement of north American subterranean diving beetles (Insecta: Coleoptera: Dytiscidae). *Arthro-*

pod Systematics and Phylogeny, **71**, 75–90.

- Miller, M.A., Pfeiffer, W., Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees, In: *Proceedings of the Gateway Computing Environments Workshop (GCE)*. New Orleans, pp. 1–8.
- Moen, D., Morlon, H. (2014). Why does diversification slow down? *Trends in Ecology and Evolution*, **29**, 190–197.
- Moore, B.R., Huelsenbeck, J.P., Rannala, B., May, M.R., Höhna, S. (2016). Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. *Proceedings of the National Academy of Sciences*, **113**, 9569–9574.
- Morlon, H., Potts, M.D., Plotkin, J.B. (2010). Inferring the dynamics of diversification: A coalescent approach. *PLoS Biology*, **8(9)**, e1000493.
- Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., Thuiler, W. (2012). How to measure and test phylogenetic signal. *Methods in Ecology and Evolution*, **3**, 743–756.
- Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J., Kravitz, S.A., Mobarry, C.M., Reinert, K.H.J., Remington, K.A., Anson, E.L., Bolanos, R.A., Chou, H.-H., Jordan, C.M., Halpern, A.L., Lonardi, S., Beasley, E.M., Brandon, R.C., Chen, L., Dunn, P.J., Lai, Z., Liang, Y., Nusskern, D.R., Zhan, M., Zhang, Q., Zheng, X., Rubin, G.M., Adams, M.D., Venter, J.C. (2000). A whole-genome assembly of Drosophila. *Science*, **287**, 2196–2204.
- Nilsson, A.N., Hájek, J. (2019). A world catalogue of the family Dytiscidae, or the Diving beetles (Coleoptera, Adephaga). Internet Version 31.I.2019. Available via: www.wa-terbeetles.eu
- Nilsson-Örtman, V. & Nilsson, A.N. (2010). Using taxonomic revision data to estimate the global species richness and characteristics of undescribed species of diving beetles (Coleoptera: Dytiscidae). *Biodiversity Informatics*, **7**, 1-16.
- Nürk, N.M., Uribe-Convers, S., Gehrke, B., Tank, D.C., Blattner, F.R. (2015). Oligocene niche shift, Miocene diversification - Cold tolerance and accelerated speciation rates in the St. John's Worts (Hypericum, Hypericaceae). *BMC Evolutionary Biology*, **15**, 1–13.
- Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L. (2012). IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. *Bioinformatics*, 28, 1420–1428.
- Rabosky, D.L. (2009). Ecological limits and diversification rate: Alternative paradigms to explain the variation in species richness among clades and regions. *Ecology Letters*, **12**, 735–743.

- Rabosky, D.L. (2014). Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. *PLoS ONE*, **9(2)**, e89543.
- Rabosky, D.L. (2018). BAMM at the court of false equivalency: A response to Meyer and Wiens. *Evolution*, **72(10)**, 2246–2256.
- Rabosky, D.L. (2019). Phylogenies and diversification rates: Variance cannot be ignored. *Systematic Biology*.
- Rabosky, D.L., Mitchell, J.S., Chang, J. (2017). Is BAMM flawed? Theoretical and practical Concerns in the analysis of multi-rate diversification models. *Systematic Biology*, **66**, 477–498.
- Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. *Systematic biology*, **67**, 901–904.
- Ribera, I. (2008). Habitat constraints and the generation of diversity in freshwater macroinvertebrates, *In*: Lancaster, J., Briers, R.A. (Eds.), *Aquatic Insects: Challenges to Populations: Proceedings of the Royal Entomological Society's 24th Symposium*. pp. 289–311.
- Ribera, I., Barraclough, T.G., Vogler, A.P. (2001). The effect of habitat type on speciation rates and range movements in aquatic beetles: Inferences from species-level phylogenies. *Molecular Ecology*, **10**, 721–735.
- Ribera, I., Castro, A., Díaz, J.A., Garrido, J., Izquierdo, A., Jäch, M.A., Valladares, L.F. (2011). The geography of speciation in narrow-range endemics of the "*Haenydra*" lineage (Coleoptera, Hydraenidae, Hydraena). *Journal of Biogeography*, **38**, 502–516.
- Ribera, I., Nilsson, A.N. (1995). Morphometric patterns among diving beetles (Coleoptera: Noteridae, Hygrobiidae, and Dytiscidae). *Canadian Journal of Zoology*, **73**, 2343–2360.
- Ribera, I., Vogler, A.P. (2000). Habitat type as a determinant of species range sizes: the example of lotic - lentic differences in aquatic Coleoptera. *Biological Journal of the Linnean Society*, **71**, 33–52.
- Ribera, I., Vogler, A.P., Balke, M. (2008). Phylogeny and diversification of diving beetles (Coleoptera : Dytiscidae). *Cladistics*, **24**, 563–590.
- Sánchez-Fernández, D., Lobo, J.M., Millán, A., Ribera, I. (2012). Habitat type mediates equilibrium with climatic conditions in the distribution of Iberian diving beetles. *Global Ecology and Biogeography*, **21**, 988–997.
- Seeholzer, G.F., Claramunt, S., Brumfield, R.T. (2017). Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae). *Evolution*, **71**, 702–715.

Sorenson, L., Santini, F., Alfaro, M.E. (2014). The effect of habitat on modern shark diver-

sification. Journal of Evolutionary Biology, 27, 1536–1548.

- Southwood, T.R.E. (1977). Habitat, the templet for ecological strategies? *Journal of Animal Ecology*, **46**, 337–365.
- Stamatakis, A. (2006). RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. *Bioinformatics*, **22**, 2688–2690.
- Stern, D.B., Breinholt, J., Pedraza-Lara, C., López-Mejía, M., Owen, C.L., Bracken-Grissom, H., Fetzner, J.W., Crandall, K.A. (2017). Phylogenetic evidence from freshwater crayfishes that cave adaptation is not an evolutionary dead-end. *Evolution*, **71**, 2522–2532.
- Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J., Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. *Virus Evolution*, **4**, 1–5.
- Thomas, J.A., Welch, J.J., Woolfit, M., Bromham, L. (2006). There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. *Proceedings of the National Academy of Sciences*, **103**, 7366–7371.
- Toussaint, E.F.A., Condamine, F.L., Hawlitschek, O., Watts, C.H., Porch, N., Hendrich, L., Balke, M. (2015). Unveiling the diversification dynamics of australasian predaceous diving beetles in the cenozoic. *Systematic Biology*, **64**, 3–24.
- Wagenmakers, E., Farrell, S. (2004). AIC model selection using Akaike weights. *Psycho-nomic Bulletin & Review*, **11**, 192–196.
- West, A.G., King, C.M. (2018). Variation in mandible shape and body size of house mice *Mus musculus* in five separate New Zealand forest habitats. *New Zealand Journal of Zoology*, **45**, 136–153.
- Wiens, J.J. (2015a). Explaining large-scale patterns of vertebrate diversity. *Biology Letters*, **11**, 10–13.
- Wiens, J.J. (2015b). Faster diversification on land than sea helps explain global biodiversity patterns among habitats and animal phyla. *Ecology Letters*, **18**, 1234–1241.
- Wiens, J.J. (2017). What explains patterns of biodiversity across the Tree of Life?: New research is revealing the causes of the dramatic variation in species numbers across branches of the Tree of Life. *BioEssays*, **39**, 1–10.
- Ye, Z., Damgaard, J., Yang, H., Hebsgaard, M.B., Weir, T., Bu, W. (2019). Cladistics phylogeny and diversification of the true water bugs (Insecta: Hemiptera: Heteroptera: Nepomorpha). *Cladistics*.

Supporting Information

 Table S1. List of PCR primers (A) and PCR conditions (B).

Table S2. List of material used in the study, including voucher number, locatity data and accession numbers of mitogenomes and sequences. In bold, newly obtained sequences.

Table S3. Mean diversification rates and standard deviations obtained in BAMM and MM-estimator (3 different ε scenarios).

Table S4. Number of species per genera currently recognized in Hydroporini andnumber of samples per genera.

Table S5. Rates estimated for extant taxa (speciation, extinction, diversification and its standard deviation - sd).

Figure S1. Phylogeny obtained with RAxML. Numbers in nodes, bootstrap support values.

Figure S2. Collapsed phylogeny for clades with homogeneous habitat.

Figure S3. Consensus topology obtained in Beast, including genera and tribes names. Numbers in nodes, posterior probability

Table S1. List of PCR primers (A) and PCR conditions (B)

(A) PCR primers

gene	primer	sequence	ref.				
	Jerry (5')	CAACATTTATTTTGATTTTTTGG	5				
	Pat (3')	TCCAATGCACTAATCTGCCATATTA	5				
00-3	Chy (5')	T(A/T)GTAGCCCA(T/C)TTTCATTA(T/C)GT	3				
	Tom (3')	AC(A/G)TAATGAAA(A/G)TGGGCTAC(T/A)A	3				
	Uni LepF1b	TAATACGACTCACTATAGGGATTCAACCAATCATAAAGATATTGGAAC	2				
00-5	Uni LepR1	ATTAACCCTCACTAAAGTAAACTTCTGGATGTCCAAAAAATCA	2				
16S+trol +pad1	16SaR (5')	CGCCTGTTTAACAAAAACAT	5				
100	ND1 (3')	GGTCCCTTACGAATTTGAATATATCCT	5				
165	16Sb	CCGGTCTGAACTCAGATCATGT	5				
100	18S 5'	GACAACCTGGTTGATCCTGCCAGT(1)					
105	18S b5.0	TAACCGCAACAACTTTAAT(1)	4				
Цо	H3aF (5')	ATGGCTCGTACCAAGCAGACRCG	1				
по	H3aR (3')	ATATCCTTRGGCATRATRGTGAC	1				

(B) PCR conditions

COI-3	'/18S	
step	time	temperature
1	3'	96°
2	30"	94°
3	30"	50°
4	1'	72°
5	Go to setp 2 and repeat 39 x	
6	10'	72°

16S / 28S

step	time	temperature
1	3'	96°
2	30"	94°
3	1'	48°
4	1'	72°
5	Go to setp 2 and repeat 34 x	
6	10'	72°

COI-5	,	
step	time	temperature
1	3'	96°
2	40"	94°
3	40"	48°
4	1'	72°
5	Go to setp 2 and repeat 4 x	
6	40"	94°
7	40"	51°
8	1'	72°
9	Go to setp 6 and repeat 29 x	
10	10'	72°

References

- Colgan, D. J., McLauchlan, A., Wilson, G. D. F., Livingston, S. P., Edgecombe, G. D., Macaranas, J., Cassis, G. & Gray, M. R. (1998). Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. *Australian Journal of Zoology*, 46, 419-437.
- Hebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. *Proceedings of the National Academy of Sciences of the United States of America*, **101(41)**, 14812-14817.
- 3. Ribera, I., Fresneda, J., Bucur, R., Izquierdo, A., Vogler, A.P., Salgado, J.M. & Cieslak, A. (2010). Ancient origin of a Western Mediterranean radiation of subterranean beetles. *BMC Evolutionary Biology*, **10**, 29.
- Shull, V.L., Vogler, A.P., Baker, M.D., Maddison, D.R. & Hammond, P.M. (2001). Sequence alignment of 18S ribosomal RNA and the basal relationships of Adephagan beetles: evidence for monophyly of aquatic families and the placement of Trachypachidae. *Systematic Biology*, **50**, 945–969.
- Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. *Annals of the Entomological Society of America*, 87, 651-701.

id subtribe	genus	species	subspecies	voucher	Loc.	leg	Habitat clade	mtgenome BAR COI 16S 18S H3
Deronectiné	a Boreonectes	alpestris		IBE-RA263	Italy. Piemonte: Gran Paradiso Nat. Park, Colle del Nivolet, roadside lake at ca 2500 m; 3.9.2010	R.B. Angus	Lentic Boreonectes + Larsonectes	LS451062 LT796525 LT796551 LT796537
Deronectine	a Boreonectes	emmerichi		IBE-RA891	Tibet: S Namtso lake 4750m, banks, 30°37'03"N 90°43'30"E; 21.vii.10	J. Schmidt	Lentic Boreonectes + Larsonectes	LS451064 LT796532 LT796552 LS453502 LT796542
Deronectine	a Boreonectes	griseostriatus	griseostriatus	MNCN-AI952	Sweden; Prov. Angermanland, Hörnefors parish, Norrbyskäv island, rock pool	A.N. Nilsson	Both Boreonectes + Larsonectes	LS451110 LT796533 LT796553 LS453480 LT796544
Deronectins	a Boreonectes	griseostriatus	strandi	MNCN-AI1082	2 Norway; Bugöynes; 29.7.2006	S. Ligaard & B. Andrén	Lentic Boreonectes + Larsonectes	HF931153 HF931372 LT796548
Deronectins	a Boreonectes	griseostriatus nr1		NHM-IR342	California (USA); Mono co., Long Valley, 7 km S Bodie, Cotton Wood Canyon Rd.; 19.6.2000	I. Ribera & A. Cieslak	Lentic Boreonectes + Larsonectes	LS451162 LS452935 XXXXXX
Deronectine	a Boreonectes	griseostriatus nr2		MNCN-AI1160	California (USA); Napa Co., Knoxville Recreation Araea, N38º51.350 W122º24.401	T. Berendonk	Lentic Boreonectes + Larsonectes	LS451065 HF931168 HF931387 LS453496 LT796547
Deronectins	a Boreonectes	griseostriatus nr3		MNCN-AI1150	3 California (USA); Sacramento Co., Clay Station Rd.	W.D. Shepard & C.B. Barr	Lentic Boreonectes + Larsonectes	LS451060 HF931166 HF931385 LS453497 LT796545
Deronectins	a Boreonectes	griseostriatus nr4		IBE-RA483	California (USA); Marin Co., Seasonal Pools - Dillans Beach Dunes, N38.23877, W122.96545	D. Post	Lentic Boreonectes + Larsonectes	LS451066 HF931317 HF931541 LS453503 LT796546
Deronectine	a Boreonectes	ibericus		NHM-IR22	Portugal; Sa. Da Estrela, Torre, lagoon; 25.7.1998	I. Ribera	Lentic Boreonectes + Larsonectes	LT882885 EF670064 EF670030 EF670271 LS451061
0 Deronectins	a Boreonectes	macedonicus		MNCN-AI1120	0 Macedonia, Sar (Shar) Planina, Karanikolicko ezero, 6.9.2006	6 R.B. Angus	Lentic Boreonectes + Larsonectes	XXXXXX LS451063 LT796534 LT796554 LS453505 LT796549
1 Deronectins	a Boreonectes	multilineatus		IBE-RA255	France (Hautes-Pyrénées); Barèges, 2245m, Pond south of the Lac d'Oncet, 31170266069 4756711, 11.9.2010	F.Bameul	Lentic Boreonectes + Larsonectes	XXXXXX LS451148 LS452903 XXXXXXX LS453111
2 Deronectins	a Boreonectes	riberae		MNCN-AI829	Turkey: Düzce, Rd. to Kartalkaya from Çaydurt, pools in mountain pass, N40º40'20" E31º47'05", 23.4.2006	I. Ribera	Lentic Boreonectes + Larsonectes	LT882974 HF931232 HF931461 LT882951 LT796550 LS451113 HF931232 HF931461 LS453506 LT796550
3 Deronectins	a Clarkhydrus	corvinus		genbank			Lentic Clarkhydrus + Leconectes	EU797415
4 Deronectins	a Clarkhydrus	deceptus		IBE-AV27	California (USA); San Luis Obispo Co., 35.5816°N 121.0057ªW, Santa Rosa creek, 31.10.2007	M. Caterino & A.E.Z. Short	Lotic Clarkhydrus + Leconectes	LS451031 LS451156 LS452883 LS453170
5 Deronectine	a Clarkhydrus	falli		NHM-IR334	New Mexico (USA); 9.2000	Y. Alarie	Lentic Clarkhydrus + Leconectes	EF670063 EF670029 EF670270 EF670155
6 Deronectins	a Clarkhydrus	roffii		NHM-IR335	Texas (USA); 9.2000	Y. Alarie	Lotic Clarkhydrus + Leconectes	LS451032 AJ850607 AJ850355 AJ850498 EF670158
7 Deronectins	a Deronectes	abnormicollis		MNCN-AI120	Uzbekistan; Tashkent prov. Yakka-tut nr. Burchmulla, 41°38'N 70°03E	V L. Hendrich	Loric Deronectes	LN995086 LN995059 LN995161 LN995126
8 Deronectine	a Deronectes	adanensis		IBE-DV84	Turkey: Adana prov., Yakapinar, Kizildera env., rokle s potuckern, 36°56.430'N 35° 39.638'E, 30.3.2010	M. Boukal	Lotic Deronectes	LN995060 LS451146
9 Deronectine	a Deronectes	algibensis		NHM-IR76	Spain; Cadiz, Puerto de Galis, rd., 27.7.1998	I. Ribera	Lotic Deronectes	AF309318 AF309261
0 Deronectine	a Deronectes	angelinii		IBE-RA234	Italy, Quintodecimo, 21.7.09	M. Toledo	Lotic Deronectes	LN995087 LN995061 LN995162 LS453465 LN995127
1 Deronectine	a Deronectes	angusi		IBE-DV67	Spain; Galdos, Viveiro, Río Bravos, 08.11.2011	C. Benetti & A. Pérez	Lotic Deronectes	XXXXXX LT602087 LT601819 LT602510 LS453466 LT602335
								continued on the next page

id subtri	se genus	species	subspecies	voucher	Loc.	leg	Habitat	clade	mtgenome B	AR COI	16S	18S	또
22 Deronecti	na Deronectes	aubei	aubei	IBE-DV150	Italy: Brescia prov., Pisogne, val Palot, stream, in muddy spring, tributary of the stream, 16.6.2009		Lotic Deronectes		LT6	02097 LT6018:	329 LT60251	6 LS453485	LT602343
23 Deronecti	na Deronectes	aubei	sanfilippoi	IBE-DV149	France: Gard, Le Vigan, Str. Coudoulous, Rd D48 pk11.5, N44°02'14.7" E3°34'56.8", 3.8.2008		Lotic Deronectes		LT6	02141 LT6018	373 LT60253	5	LT602355
24 Deronecti	na Deronectes	bicostatus		MNCN-AI639	Portugal; Serra Estrela, Manteigas , ponds in rd. to Torre, N40*1957" W7*37'03"	I. Ribera	Lotic Deronectes		XXXXXX HF9	47933 HE6101 95091	179 LN99516	6 LS453486	LN995130
25 Deronecti	na Deronectes	brannanii		MNCN-AI178	Mallorca (Spain); Ternelles, Torrent de Ternelles, N 39°53'37.2" E3°00'14.9"	I. Ribera & A. Cieslak	Lotic Deronectes		LN9	95094 HE6101	180 HF93140	4 LS453477	LN995130
26 Deronecti	na Deronectes	costipennis	costipennis	MNCN-AI183	Portugal; Manteigas, river Zezere	I. Ribera	Lotic Deronectes		HF9 LN9	47934 HE6101 95095 HE6101	181 LN99516	9 LS453487	LN995134
27 Deronecti	na Deronectes	costipennis	gignouxi	IBE-DV19	Spain: Valverdin, río Valverdín, 42º 56' 53" N 5º 32' 10" W, 25.9.2011	L.F. Valladares	Lotic Deronectes		XXXXXX HG7	95096 LN9950	068 LN99517	0	LN995135
28 Deronecti	na Deronectes	delarouzei		IBE-DV1	Spain; Barcelona, Bagà, N42º16'05.3º E1º48º46.1º, 25.7.05	I. Ribera, P. Aguilera & C. Hemando	Lotic Deronectes		LT6	02166 LT6018	399 LT60253	8 LS453488	LT602361
29 Deronecti	na Deronectes	depressicollis		MNCN-AI1023	Spain; Almeria, Abrucena, río Nacimiento	A. Castro	Lotic Deronectes		HF9 LN9	47936 HE6101 95098 HE6101	182 LN99517	2 LS453489	LN995137
30 Deronecti	na Deronectes	doriae		MNCN-AI775	Turkey; Düzce, Rd. to Katalkaya from Çaydurt, fast stream in conflerous forest, N40°39'20" E31°47'8.5", 23.4.2006	ⁿ I. Ribera	Lotic Deronectes		XXXXXX LN9	95099 HE6101	183 LN99517	3 LS453490	LN995136
31 Deronecti	na Deronectes	evelynae		IBE-AV155	Turkey, Kup distric.	via H. Fery	Lotic Deronectes		xxx	XXXX XXXX	ххххх хх	хххххх х	XXXXXX
32 Deronecti	na Deronectes	fairmairei		MNCN-AI855	Spain; Teruel, Beceite, r. Matarranya, El Parrisal, N40'47'12.5' E0'12'13.5', 3.6.2006	I. Ribera	Lotic Deronectes		LS4	51094 HE6101	184 LS45291	5 LS453479	LS453116
33 Deronecti	na Deronectes	ferrugineus		MNCN-AI731	Portugal; Serra Estrela/Sabugueiro, N40°24'20" W7°37'43", 12.5.2005	I. Ribera	Lotic Deronectes		LN9 LT8	95103 LN9950 82872 LT8828	372 LN99517 316 LT88304	6 LT882949 1 LS453491	LN995142 LT883118
34 Deronecti	na Deronectes	fosteri		NHM-IR77	Spain, Barcelona, Saldes	P. Aguilera	Lotic Deronectes			AF3093	317 AF30926	Q	
35 Deronecti	na Deronectes	hispanicus		IBE-DV49	Spain; Jaén, Sierra de Cazorla, Ayo. Km 43.3 cta. Del Tranco	A. Castro	Lotic Deronectes		XXXXXX LS4	51102 LS4511	119 LS45292	0	LS453135
36 Deronecti	na Deronectes	lareynii		NHM-IR165	Corsica; Vizzavona: Cascades des Anglais,16.9.1999	I. Ribera & A. Cieslak	Lotic Deronectes		FN9	95105 AF3093	316 AF30925	9 LS453482	XXXXXXX
37 Deronecti	na Deronectes	latus		IBE-DV80	Slovenia: Carniola, rv Cerkniščica, Topol pri Begunjah, N45º4557.5' E14º21'40.0'', 4.8.2007		Lotic Deronectes		LT6	02190 LT6019:	326 LT60255	3 LS453467	LT602372
38 Deronecti	na Deronectes	moestus	inconspectus	MNCN-AI937	Morocco; 30º47'507"N 7º31'351"W, Tachokchte, Assif Siroua, 19.4.2001	[,] I. Ribera & A. Cieslak	Lotic Deronectes		6NJ	95109 LN9950	177 LN99518	H XXXXXX	LN995147
39 Deronecti	na Deronectes	moestus	moestus	IBE-DV69	Sardinia; Olbia-Tempio, Tempio Pausania, Monte Limbara, SW Cantoniera Curadureddu, 40,8585N 9,1226E 560m, brook, 29.5.2009		Lotic Deronectes		XXXXXX LN9	95110 LN9950)78 LN99518	2 LS453478	LN995146
40 Deronecti	na Deronectes	nilssoni		IBE-AF104	Iran; Khorasan Shamali prov., 15 km N Eshq Abad, (river valley; at light), 37° 48.2'N 56°55.5'E, 25-26.5.2006	J. Hájek & P. Chvojka	Lotic Deronectes		LS4	51077 LN9950)80 LN99518	4 LS453508	LN995150
41 Deronecti	na Deronectes	opatrinus		MNCN-AI629	Spain; Córdoba, Sierra Morena, Km 28.5 cta. Villaviciosa	A. Castro	Lotic Deronectes		LT8 LT8	95112 HE6101 82870 LT8828	188 LN99518 314 LT88303	5 LT882948	LN995151 LT883117
42 Deronecti	na Deronectes	parvicollis		MNCN-AI776	Turkey; Düzce, Rd. to Kartalkaya from Çaydurt, fast stream in conferous forest N40°39'20" E31°47'8.5", 23.4.2006	¹ I. Ribera	Lotic Deronectes		6NJ XXXXXX	95113 HF9312	225 HF93145	4 LS453509	LN995152
										J	continuec	l on the n	ext page

258	Table S2	2. (continued)										
	id sub:	tribe genus	species	subspecies	voucher	Loc.	feal	Habitat clade	mtgenome BAR	COI 16	S 18S	H3
	43 Derone	∋ctina <i>Deronectes</i>	persicus		NHM-IR45	Iran; Fars, 18 km N Sepidan (=Ardakan) Sepidan-Yasuj rd. brook, 13.8.98	H. Fery	Lotic Deronectes		4F309308 AF309	1251 AJ850479 EF670290	EF670140
	44 Derone	sctina <i>Deronectes</i>	platynotus	-	MNCN-AI1039	Bulgaria; Rila mts., stream above Rila village.	D.T. Bilton	Both Deronectes	LN995115 F	HE610190 LN995	5186 LS453492	LN995154
	45 Derone	sctina <i>Deronectes</i>	sahlbergi	-	MNCN-AI1002	Bulgaria: Rhodopes, Madjarovo, stream Malkata Reka, 25.4.2006	V. Pesic	Lotic Deronectes	LT882860 + LS451103 +	HE610191 HF931	361 LT882947 034 LS453493	LT883116 LS453109
	46 Derone	∋ctina <i>Deronectes</i>	semirufus	-	IBE-DV59	ltaly: Ascoli-Piceno prov., Acqvusanta, Rio della Volpara, nr. Umito, 2.6.2010	M. Toledo	Lotic Deronectes	LT602305 1	LT602054 LT602	599 LS453464	LT602410
	47 Derone	∋ctina <i>Deronectes</i>	taron	-	IBE-AV157	Turkey: Mus, ca. 13 km E Karhova, Karhova-Varto road, ca. 39.285N 41.160E, 18.5.2017	Aykut [via H. Fery]	Lotic Deronectes		XXXX XXXXXX	XXXXXX XXX	XXXXXX
	48 Derone	∋ctina <i>Deronect</i> es	theryi	-	IBE-RA37	Morocco: Taza, stream in Tazzeka N.P., N34º08'56.8" W4º00'25.5", 22.3.2008	I. Ribera, P. Aguilera & C. Hernando	Lotic Deronectes	LN995119 L	LN995083 LN995	189 LS453483	LN995158
	49 Derone	∋ctina <i>Deronect</i> es	toledoi	-	IBE-DV6	Turkey: Erzurum, Toprakkaleköyü,slow stream in grassland m, N40 14 22.9 E40 59 16.7, 11.6.2011	i. Ribera	Lotic Deronectes	LN995120 L	LN995084 LN995	190 LS453468	LN995159
	50 Derone	∋ctina <i>Deronectes</i>	wewalkai	-	MNCN-AI725	Spain; Guadalajara, r. Berbedillo, 7km E Cardoso de la S. 1159m, N41ª05'34.3'' W3º25'32.1''	I. Ribera & A. Cieslak	Lotic Deronectes	HG793317 L	LN995085 LN995	191 LS453494	LN995160
	51 Derone	sctina Deronectes	ibunok	-	NHM-IR182	Iran; Kohkiluyeh and Boyer Ahmad province, Gachsaran to Behbahan. road, 16 km N Gachsaran, stream, 24.3.99	H. Fery	Lotic Deronectes	LS451079 /	AF309306 AF309	1249 AJ850480	EF670142
	52 Derone	sctina Deuteronect€	ss picturatus	-	NHM-IR369	California (USA); Trinity co., junc. Rd. 36 & 14, Forest Glen, Rattlesnake Creek, 22.6.2000	I. Ribera & A. Cieslak	Nectomimus + Nectoporus + Ne Lotic nectes + Hornectes + Oreodytes Deuteronectes	-09 -09	AJ850602 AJ850	350 AJ850489	EF670150
	53 Derone	∋ctina <i>Hornectes</i>	quadrimaculatus	_	NHM-IR366	California (USA); Trinity co., junc. Rd. 36 & 14, Forest Glen, Rattlesnake Creek, 22.6.2000	I. Ribera & A. Cieslak	Nectomimus + Nectoporus + Ne Lotic nectes + Hornectes + Oreodytes Deuteronectes	eo- s + XXXXXXX /	AJ850603 AJ850	351 AJ850490	EF670151
	54 Derone	ectina Iberonectes	bertrandi	-	NHM-IR30	Spain; Leon, Puente del Rey, r. Burbia, 23.7.1998	I. Ribera	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	LS451059 /	AY250984 AY250	1946 AJ850494 EF670296	EF670154
	55 Derone	∋ctina <i>Larsonectes</i>	idinim	-	IBE-AN861	Saskatchewan (Canada; Thomson Bay, Athabasca Sansa Park, 59°05'00"N 109°01'13"W, 2.7.2004	R. Hooper	Lentic Boreonectes + Larsonectes		LS451131 XXXX	ХХХ	LS453114
	56 Derone	sctina Leconectes	striatellus	_	IBE-RA327	California (USA); San Diego Co. rd. 78, Cuyamaca Rancho State Park, Lotto veg. rich cold small creek, N 32° 56.711' W 116° 34.225, 11.12.2010	I. Ribera & J. Bergsten	Both Clarkhydrus + Leconectes	XXXXXX LS451114 1	LS451125 LS452	886 LS453504	LS453112
	57 Derone	ectina Mystonectes	coelamboides	-	IBE-PB35	California (USA)		Both Mystonectes + Nectoboreus	XXXXXX LS451058 1	LS451169 LS452	924 LS453481	LS453142
	58 Derone	∋ctina <i>Mystonectes</i>	neomexicanus	-	IBE-RA775	Mexico: Chihuahua, Avaro Obregon, 1,3 miles NW, 10.10.1975	J.R. Zimmermann	Lotic Mystonectes + Nectoboreus				LS453158
	59 Derone	ectina Mystonectes	panaminti	-	IBE-RA1086	California (USA) Inyo Co., Salt Crek@Interprtive, Site. Death Valley Nat.Park	G. Challet	Lotic Mystonectes + Nectoboreus	LS451112 1	LS451170 LS452	923 XXXXXX	LS453141
	60 Derone	etina <i>Nebrioporus</i>	abyssinicus	-	MNCN-AI1227	Ethiopia; Welo Prov. 10 km N. Lalibela, 2200m	G. Wewalka	Both Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	LS451048 1	LS451124 LS452	902 LS453516	LS453129
	61 Derone	etina <i>Nebrioporus</i>	airumlus	-	MNCN-AI1179	Iran; Fars prov., road Sepidan-Yasuj, Vezek, 13 km S Yasuj, brook	H. Fery	Both Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	1 XXXXXX XXXXXXX	LS451150 LS452	XXXXXX 709	LS453175
	62 Derone	ectina <i>Nebrioporus</i>	amicorum	-	IBE-AF140	Crete; Heraklion, Arkalohori, Tsoutsouros: stream 34°59'05" 25°17'07'', 22.2.2008	Z. Csabai et al.	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	XXXXXX LT882833 + LS451024	HF931118 HF931	335 LT882953 335 LS453462	LT883122 LS453162
	63 Derone	sctina <i>Nebrioporus</i>	assimilis	-	MNCN-AI607	Sweden: Västerbotten prov., Åmsele, Vindelälven, river lagoon, 64°31'04"N, 19°20'52"E	A.N. Nilsson	Both Nebrioporus + Stictotarsus + Scarodytes + Iberonectes		LS451115 LS452	910 LS453534	LS453117
										continu	ed on the ne	ext page

pi	subtribe	genus	species	subspecies	voucher	Loc.	leg	Habitat clade	mtgenome BAR COI 16S 18S H3
64 L	Jeronectina	Nebrioporus	baeticus		NHM-IR10	Spain; Sevilla, Osuna, Arroyo el Pintado, 27.7.1998	I. Ribera	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	XXXXXX AF309302 AF309245 AJ850481 EF670143
65 L	Jeronectina	Nebrioporus	bucheti	cazorlensis	MNCN-AI926	Spain; Albacete, E-No. 10, N Sierra de Segura, 10 km N Yeste, Rio Tús, 38º25'N,02º19W	V. Assing & P. Wunderle	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	HF947997 LS451139 LS452918 LS453521 LS453122
66 L	Jeronectina	Nebrioporus	canaliculatus		MNCN-AI1044	Spain; Bascara, Rio Fluvia, 10.9.2000	P. Aguilera	Both Scarodytes + Iberonectes	XXXXXX LS451073 HF931149 HF931368 LS453517 LS453157
67 L	Jeronectina	Nebrioporus	canariensis		MNCN-AI1091	Tenerite (Spain); Chamorga, Bco. Roque Bermejo	A. Castro	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	LS451051 HF931155 HF931374 LS453532 LS453133
68 L	Jeronectina	Nebrioporus	capensis		IBE-RA850	South Africa; N. Cape, Oorlogshloof river, on R 6.7 caolen [?], E of Neeuwouedt ville, 25.9.2011	1, D.T. Bilton	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	LS451123 LS452908 LS453547 LS453097
69 E	Jeronectina	Nebrioporus	carinatus	÷	NHM-IR17	Spain; Leon, Puente del Rey, r. Burbia, 23.7.1998	I. Ribera	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	AF309303 AF309246 EA670293 EF670144
70 E	Jeronectina	Nebrioporus	ceresyi		MNCN-AI57	Malta; Ghadira Nat. reserve, saline pool	N. Barbara	Lentic Scarodytes + Iberonectes	XXXXXX LS451027 FJ944417 LS452881 LS453522 LS453121
71 E	Jeronectina	Nebrioporus	clarkii	·	NHM-IR46	Spain; Sevilla, Osuna, Arroyo el Pintado, 27.7.1998	I. Ribera	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	EF056623 AY250924 EF056657 EF056685
72 L	Jeronectina	Nebrioporus	cooperi		IBE-AN21	Ethiopia: Amhara, Debark, Simien Mountains, 13.193N 37.891E, 18.6.2014	R. Vila & G. Talavera	Both Scarodytes + Iberonectes	XXXXXX XXXXXX LS451127 LS452900 LS453535 LS453127
73 L	Jeronectina	Nebrioporus	croceus		MNCN-AI82	Spain; Soria, Calatañazor, R. Abion	P. Aguilera	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	HF947999 LS451149 LS452914 LS453523 LS453118
74 C	Jeronectina	Nebrioporus	depressus		MNCN-AI331	Russia; Karelen	J. Damgaard	Both Scarodytes + Iberonectes	LS451055 HF931189 HF931412 LS453524 LS453120
75 L	Jeronectina	Nebrioporus	dubius		MNCN-AI83	Madeira (Portugal); Achada, Curral das Freiras	G.N. Foster	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	LS451105 HF931233 HF931462 LS453533 LS453134
76 L	Jeronectina	Nebrioporus	elegans		MNCN-AI606	Sweden; Västerbotten prov., Åmsele, Vindelälven, river lagoon, 64°31'04"N, 19°20'52"E	A.N. Nilsson	Both Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	XXXXXX LS451054 HF931214 HF931440 LS453525 LS453119
77 L	Jeronectina	Nebrioporus	fabressei		NHM-IR169	Spain; Navarra, Barindano, r. Itxaco, 2.11.1997	I. Ribera	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	AY250966 AY250926 XXXXXX
78 L	Jeronectina	Nebrioporus	fenestratus	_	MNCN-AH175	Sicily (Italy); Parco dei Nebrodi, Fiume Sanbárbaro Fughetto, 33N 461042 E, 4206949 N, 13.6.07	^{1,} P. Abellán & F. Picazo	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	XXXXXX LS451053 HF931138 HF931355 LS453526 LS453104
79 E	Jeronectina	Nebrioporus	kilimandjarensis		IBE-AN690	Tanzania, Kilimandjaro, Alluaud	via H. Fery	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	LS453130
80 E	Jeronectina	Nebrioporus	lanceolatus		NHM-IR650	Iran; Fars, 38 Km NE Shiraz, road Shiraz-Band-e-Amir, ditch running water, 24.4.2001	r K. Elmi & H. Fery	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	LS451092 AY250967 AY250927 LS453518 LS453143
81 E	Jeronectina	Nebrioporus	luctuosus		IBE-RA724	Spain; Zaragoza, 19.9.2009	I. Esteban	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	LS451050 LS451151 LS452916 LS453527 LS453123
82 L	Jeronectina	Nebrioporus	macronychus		genbank			Lentic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	KJ204116
83 L	Jeronectina	Nebrioporus	martinii		MNCN-AI702	Corsica; Corte, river Restonica	I. Ribera & A. Cieslak	Lotic Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	LT882871 LT882815 LT883040 LT882952 LT883121 LS451045 LS451118 LS452917 LS453461 LS453128
84 L	Jeronectina	Nebrioporus	mascatensis	-	IBE-RA107	Oman; J. Al-Akhdar, wadi Bani Awf, village below source, N2: 11 38.6 E57 23 41.7, 6.4.2010	23 I. Ribera, C. Hernando & A. Cieslak	Nebrioporus + Stictotarsus + Lotic Scarodytes + Iberonectes	LS451091 HF931299 HF931531 LS453519 LS453163

259

Chapter 6

...continued on the next page

260	Table S2. (C(id subtribe	ontinued) genus	species	subspecies	voucher	Loc. Voranis Cani a Rout E Line Stift of Maturah vill 15843-7N	Be	Habitat clade		anome BAR COI 16S 18S H	웊
	85 Deronectina	Nebrioporus	millingeni		IBE-RA607	Yemen; Sana'a gov. 5 km SW of Matnah vill., 15°13.7'N, 43°59.7'E, 19.11.2010	J. Hájek	Lotic Nebrioporus + Stictot Scarodytes + Iberone	arsus + XXX	XXXX LS451109 LS451126 LS452909 LS453463 LS45	453159
	86 Deronectina	Nebrioporus	nemethi		MNCN-AI307	Morocco; Laatamna, Afl. Oued Larbâa	P. Aguilera	Lotic Nebrioporus + Stictot Scarodytes + Iberone	arsus + ictes	LS451026 FJ944375 LS452906 LS453528 LS45	453101
	87 Deronectina	Nebrioporus	nipponicus		NHM-IR610	Japan; Honshu, Gifu Pref., Tokuyama, 29.8.2000	J. Bergsten	Lotic Nebrioporus + Stictot Scarodytes + Iberone	arsus + ctes	XXXXXX AY250971 AY250931 LS453520 LS45	453173
	88 Deronectina	Nebrioporus	rotundatus		MNCN-AC41	Nova Scotia (Canada); Cumberland c., river next Rd. 2, Mapleton, N45°34'54.3" W64°08'30.3", 23.8.2007	I. Ribera & A. Cieslak	Lotic Nebrioporus + Stictot Scarodytes + Iberone	arsus + ctes	LS451056 HF931111 HF931328 LS453529 LS45	453124
	89 Deronectina	Nebrioporus	sansii		IBE-RA725	Spain; Teruel, Aliaga, 30.7.2010	I. Esteban	Lotic Nebrioporus + Stictot Scarodytes + Iberone	arsus + ictes	LS451068 LS451164 LS452919 LS453530 LS45	453174
	90 Deronectina	Nebrioporus	sardus		IBE-RA17	Sardinia; Ogliastra, W Villanova Strisalil, 39.96332N 9.459891 834m, 27.5.2009	^{)E} H. Fery & M. Toledo	Lotic Nebrioporus + Stictot Scarodytes + Iberone	arsus + ictes	LS451108 HF931306 HF931533 LS453531 LS45	453131
	91 Deronectina	Nebrioporus	scotti		MNCN-AI1225	Ethiopia; Shewa Prov., 95 km N Addis Ababa, Debre Libanos	s G. Wewalka	Lotic Nebrioporus + Stictot Scarodytes + Iberone	arsus + ictes	XXXXXX LS451158 LS452901 LS453536 LS45	453132
	92 Deronectina	Nebrioporus	seriatus		IBE-RA613	Yemen; Sana'a gov. 5 km SW of Matnah vill., 15°13.7'N, 43°59.7'E., 19.11.2010	J. Hájek	Lotic Nebrioporus + Stictot Scarodytes + Iberone	arsus + ictes	LS451052 LS451120 LS452936 LS453548 LS45	453126
	93 Deronectina	Nebrioporus	stearinus	stearinus	NHM-IR134	Iran; Fars prov., road Sepidan-Yasuj, 65 km N Sepidan, almost dry brook, 13.8.1998	H. Fery	Lotic Nebrioporus + Stictot Scarodytes + Iberone	arsus + ictes	AY250972 AY250932 AJ850484 EF67	370145
	94 Deronectina	Nebrioporus	stearinus	suavis	MNCN-AI109	Chios (Greece); Katasavi	G.N. Foster	Lotic Nebrioporus + Stictot Scarodytes + Iberone	arsus + ictes	LS451047 HF931154 HF931373 XXXXXX LS45	453161
	95 Deronectina	Nebrioporus	vagrans		IBE-RA588	South Africa; NC /Kamiesberg Stream on Witwater-/ Lon- gkloof road ca. 1 km S. Of / junction, 19.9.2010	D.T. Bilton	Both Nebrioporus + Stictot Scarodytes + Iberone	arsus + XXX	XXXX LS451111 LS451137 LS452911 LS453549 LS45	453181
	96 Deronectina	Nectoboreus	dolerosus		IBE-AN128	California (USA); San Bernardino Co., San Benito River at Clear, Creek Rd., 36'358176 120'785887	G. Challet	Lotic Mystonectes + Necto	boreus XXX	XXXX XXXXXX LS451132 LS452884 LS453484 LS45	453113
	97 Deronectina	Nectoboreus	sneueus		MNCN-AI1208	California (USA); 9.2000	Y. Alarie	Lentic Mystonectes + Necto	boreus	LT882865 HF931173 HF931393 LT882950 LT79 LS451106 HF931173 HF931393 LS453507 LT88	796543 383119
	98 Deronectina	Nectomimus	okulovi		IBE-RA1218	Russia; Tyva, Ungesh River, stream, roiled, 3.9.06	Zaika [via H. Fery]	Nectomimus + Necto Lotic nectes + Hornectes + Deuteronectes	porus + Neo- · Oreodytes +	LT855780 LT855 LS451145 LS45	356005 453102
	99 Deronectina	Nectoporus	abbreviatus		MNCN-A1932	California (USA); El Dorado Co., E Placerville at Park Creek	A.I. Cognato	Nectomimus + Necto Lotic nectes + Hornectes + Deuteronectes	porus + Neo- · Oreodytes +	LS451099 HF931243 HF931477 LS453512 L785	355994 453099
	100 Deronectina	Nectoporus	snrubuoo		NHM-IR440	British Columbia (Canada); Rd. 3, Rock Creek , 26.6.2000	I. Ribera & A. Cieslak	Nectomimus + Necto Lotic nectes + Hornectes + Deuteronectes	porus + Neo- Oreodytes +	AJ850599 AJ850347 AJ850485 EF67	370146
	101 Deronectina	Nectoporus	crassulus		NHM-IR451	Alberta (Canada); Rd. 3, 2 km W Lund Breck, Crownsnest r. campground, 27.6.2000	I. Ribera & A. Cieslak	Nectomimus + Necto Lotic nectes + Hornectes + Deuteronectes	porus + Neo- Oreodytes +	XXXXXX AJ850600 AJ850348 AJ850486 EF67	570147
	102 Deronectina	Nectoporus	snsəqo	cordillerensis	NHM-IR452	Alberta (Canada); Rd. 3, 2 km W Lund Breck, Crownsnest r. campground, 27.6.2000	I. Ribera & A. Cieslak	Nectomimus + Necto Lotic nectes + Hornectes + Deuteronectes	porus + Neo- Oreodytes +	HF931279 HF931516 LS453514 XXX	XXXXX
	103 Deronectina	Nectoporus	snsəqo	snsəqo	NHM-IR399	California (USA); Marin co., Olema, Olema Creek, Olema campground, 24,6.2000	I. Ribera & A. Cieslak	Nectomimus + Necto Both nectes + Hornectes + Deuteronectes	porus + Neo- · Oreodytes +	LT855762 LT856139	
	104 Deronectina	Nectoporus	rhyacophilus		NHM-IR367	California (USA); Trinity co., junc. Rd. 36 & 14, Forest Glen, Rattlesnake Creek, 22.6.2000	I. Ribera & A. Cieslak	Nectomimus + Necto Lotic nectes + Hornectes + Deuteronectes	porus + Neo- Oreodytes +	XXXXXX AJ850604 AJ850352 AJ850491 EF67	370152
	105 Deronectina	Nectoporus	sanmarkii	alienus	MNCN-AI1134	Portugal; Manteigas, r. Zezere	I. Ribera	Nectomimus + Necto Lotic nectes + Hornectes + Deuteronectes	porus + Neo- · Oreodytes +	LT855757 LT855813 LT856168 XXXXXX LT85 LS451075 LS451173 LS452897 XXXXXXX LS45	856018 453098
										continued on the next p	page

_
8
ž
Ē
ъ
0
3
S2.
le S2. (
ble S2. (
Table S2. (

id subtribe	genus	species	subspecies	voucher	Loc.	leg	Habitat	clade	mtgenome	BAR CO	01 16S	18S	H3
106 Deronectina	Nectoporus	sanmarkii	sanmarkii	MNCN-AI973	Mongolia: Ovorhangay, Bat-Olziy, Orkhon's Waterfall on Ulaan Gol, ~300 m S of Orkhon Gol, ~84 km W of Khujirt, N46.78742 E101.96021, 7.7.2004	A.E.Z. Short	Nectomimus Lotic nectes + Hor. Deuteronecte	+ Nectoporus + Neo- nectes + Oreodytes +		855753 LT855	5801 LT856161 1167 LS452891	LS453510 L	T856014 S453100
107 Deronectina	Nectoporus	subrotundus		IBE-RA485	California (USA); Mendocino Co., Chadboume Gulch at Mouth, N - 39.61321, W - 123.78116	D. Post	Nectomimus Lotic nectes + Hor Deuteronecte	+ Nectoporus + Neo- nectes + Oreodytes +	XXXXXX LS	855759 LT855	5817 LT856173 1157 LS452888	LS453511 L	T856022 S453103
108 Deronectina	Neonectes	natrix		NHM-IR611	Japan	J. Bergsten	Nectomimus Lotic nectes + Hor. Deuteronecte	+ Nectoporus + Neo- nectes + Oreodytes +		AJ850)601 AJ850349	AJ850488 E	F670149
109 Deronectina	Oreodytes	alpinus		MNCN-AI977	Scotland (UK); E Sutherland, Loch Brora	I. Ribera & G.N. Foster	Nectomimus Lentic nectes + Hor. Deuteronecte	+ Nectoporus + Neo- nectes + Oreodytes +	L ^O	855735 HF931	1257 HF931493	LS453498 L	T855995 S453139
110 Deronectina	Oreodytes	davisii	davisii	MNCN-AI1127	* Spain; Granada, Río Trévelez, Sierra Nevada	F.M. Cabezas	Nectomimus Lotic nectes + Hor Deuteronecte	+ Nectoporus + Neo- nectes + Oreodytes +	XXXXXX LS	855743 LT855	5774 LT856148 1134 LS452893	LS453499 L	T856003 S453137
111 Deronectina	Oreodytes	davisii	rhianae	NHM-ER33	Spain; Avila, Sa. De Gredos, Gredos, ca., Gebirgsbach, 20.7.99	H. Fery	Nectomimus Lotic nectes + Hor Deuteronecte	+ Nectoporus + Neo- nectes + Oreodytes +		AF305	3301 AF309244	AJ850487 EF670295 E	F670148
112 Deronectina	Oreodytes	mongolicus		MNCN-AI972	Mongolia; Ovorhangay, Bat-Olziy, Orkhon's Waterfall on Ulaan Gol, ~300 m S of Orkhon Gol, ~84 km W of Khujirt, N46.78742 E101.96021, 7.7.2004	A.E.Z. Short	Nectomimus Lotic nectes + Hor Deuteronecte	+ Nectoporus + Neo- nectes + Oreodytes + 3S	ΓS	3451086 HF931	1255 HF931491	LS453500 L	T856006 S453138
113 Deronectina	Oreodytes	scitulus	bisulcatus	IBE-AN613	California (USA); Humbolt Co., Redwood Creek at Hwy 101 at Orick, 18.8.2016	G.L. Challet	Nectomimus Both nectes + Hor Deuteronecte	+ Nectoporus + Neo- nectes + Oreodytes +	LS	3451025 LS451	1129 LS452892		S453177
114 Deronectina	Oreodytes	scitulus	scitulus	IBE-AV1	Nova Scotia (Canada); Cape Breton, c. Inverness, stream in Big Marsh Rd., N45º53'36.8" W61º12'16.8", 16.8.2007	I. Ribera & A. Cieslak	Nectomimus Lotic nectes + Hor Deuteronecte	+ Nectoporus + Neo- nectes + Oreodytes +	XX XXXXXX	XXXXX LS451	1168 LS452889	XXXXXXX L	S453178
115 Deronectina	Oreodytes	septentrionalis		MNCN-AI974	Mongolia; Ovorhangay, Bat-Olziy, Orkhon's Waterfall on Ulaan Gol, ~300 m S of Orkhon Gol, ~84 km W of Khujirt, N46.78742 E101.96021, 7.7.2004	A.E.Z. Short	Nectomimus Lotic nectes + Hor Deuteronecte	+ Nectoporus + Neo- nectes + Oreodytes +	LS	3451049 HF931	1256 HF931492	LS453513 L	T856019 S453136
116 Deronectina	Oreodytes	shorti		MNCN-AI965	Mongolia: Arkhangay, Bulgan, Urd Tamir Gol braid upstream of bridge. ~63 km SW of Tsetserleg / N47.11192 E101.01048, 13-15.7.2004	A.E.Z. Short	Nectomimus Lotic nectes + Hor Deuteronecte	+ Nectoporus + Neo- nectes + Oreodytes +	Γ	3451089 HF931	1252 HF931486	LS453495 L	T856021 S453140
117 Deronectina	Oreodytes	snoqualmie		NHM-IR447	Alberta (Canada); Rd. 3, 2 km W Lund Breck, Crownsnest r. campground, 27,6,2000	I. Ribera & A. Cieslak	Nectomimus Both nectes + Hor Deuteronecte	+ Nectoporus + Neo- riectes + Oreodytes + 3S	ΓC	3451088 LT855 LS451	5816 LT856172 1143 LS452890	LS453501	
118 Deronectina	Scarodytes	antoni		MNCN-AC6	Croatia, Istria	H. Fery	Lotic Nebrioporus +	+ Stictotarsus + - Iberonectes	LS	3451041 LS451	1121 EU156492	LS453537 L	S453151
119 Deronectina	Scarodytes	fuscitarsis		IBE-RA4	Sardinia; Nuoro prov. (Ogliastra historical region), river W Villanova Strisàili, 39.96332N 9.45989E, 27.5.2009	H. Fery & M. Toledo	Lotic Nebrioporus +	+ Stictotarsus + · Iberonectes	LS	3451071 LS451	1142 LS452921	LS453552 L	S453156
120 Deronectina	Scarodytes	halensis		MNCN-AI773	Turkey; Düzce, Rd. to Kartalkaya from Çaydurt, pools in mountain pass, N40°40'20" E31°47'05", 23.4.2006	I. Ribera	Both Nebrioporus	+ Stictotarsus + - Iberonectes	LS	3451040 LS451	1140 LS452928	LS453538 L	S453149
121 Deronectina	Scarodytes	halensis nr1		MNCN-AH121	Rhodos (Greece); Municipality of Kamiros, Apollona, River Gadouras, upper north arm 2. 36º12'56'N 27º57'35'E. 22.2.2007	Z. Csabai et al.	Lotic Nebrioporus -	+ Stictotarsus + - Iberonectes	LS	3451043 LS451	1141 LS452929	LS453459 L	S453164
122 Deronectina	Scarodytes	halensis nr2		NHM-ER35	Spain; Barcelona, Saldes, Bach, 2.8.1999	H. Fery	Lotic Nebrioporus Scarodytes +	+ Stictotarsus + - Iberonectes	LS	3451042 AF309	3305 AF309248	AJ850492 E	F670153
123 Deronectina	Scarodytes	malickyi		IBE-AF139	Crete; Chania, Kolimbari, Minothiana: stream 35°32'09,9" 23°47'30,5", 21.2.2008	Z. Csabai et al.	Lotic Nebrioporus +	+ Stictotarsus + Iberonectes	XXXXXX LS	3451039 HF931	1117 HF931334	LS453539 L	S453146
124 Deronectina	Scarodytes	nigriventris		NHM-IR157	Corsica; Cassamozza, r. l'Abatescu, 19.9.1999	I. Ribera & A. Cieslak	Lotic Nebrioporus +	+ Stictotarsus + - Iberonectes	ΓC	3451070 AY250	0977 AY25093E	×	XXXXXX
125 Deronectina	Scarodytes	pederzanii		MNCN-AH168	 Sicily (Italy); Parco dei Nebrodi, Stream Trail Lago Urio-Pila. dell'Obolo 2, 33N 448676 E, 4194243 N, 13.06.07 	P. Abellán & F. Picazo	Lotic Nebrioporus +	+ Stictotarsus + - Iberonectes	ΓC	3451029 HF931	1137 HF931354	LS453550 L	S453147
126 Deronectina	Scarodytes	roberti		IBE-RA204	Greece; S Peloponnese, ca. 12 km NW Sparti, NE Kambos, small stream, 37.15319N 22.35553E, ca. 294 m, 19.5.2010	H. Fery & L. Hendrich	Lotic Nebrioporus	+ Stictotarsus + · Iberonectes	LS	3451038 FR773	3506 LS452927	LS453540 L	S453154

Chapter 6

...continued on the next page

	18S H3	LS453551 LS453148	XXXXXX LS453153	LS453541 LS453155	LS453543 LS453107	LS453544 LS453152	LS453542 LS453150	LS453460 LS453145	LS453553 LS453144	AJ850496 EF670156 EF670297	LS453545 LS453182	LS453546 LS453160	AJ850499 EF670159 EF670299 EF670159	LS453515 LS453166	LS453165	KF575393	XXXXXX XXXXXXX	XXXXXX		XXXXXX XXXXXXX	*****		on the next page
	16S	28 HF931347	22 LS452926	90 EU156491	17 LS452925	78 AY250939	28 LS452930	07 HF931324	16 LS452905	04 AF309247	85 AY250947	60 HF931379	08 AJ850356	58 HF931377	30 LS452933	KF575564	XXXXXXX XX	XXXXXX XX	хххххх	48 XXXXXX	XXXXXX XX		continued (
	R COI	030 HF9311	035 LS45112	034 EU1564	036 LS4511	057 AY2509	037 LS45113	033 HF9311	028 LS4511	AF3093(072 AY2509	080 HF9311	AJ8506(067 HF9311	023 LS4511:		(XXXXX XXX	(XXXXX XXX		HE5996	(XXXXX XXX	675	0
	mtgenome BA	LS451	XXXXXX LS451	LS451	LS451	LS451	LS451	LS451	LS451		LS451	LS451		LS451	XXXXXX LS451		XXXX XXXXXX	XXXX			XXXXX	KJ203	
	t clade	Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	Nebrioporus + Stictotarsus + Scarodytes + Iberonectes	*deleted	Zaitzevhydrus	Zaitzevhydrus	Neoporus + Heterosternuta + Haideoporus	Neoporus + Heterosternuta + Haideoporus	Neoporus + Heterosternuta + Haideoporus	Neoporus + Heterosternuta + Haideoporus	Hydroporus + Hydrocolus Lentic	Hydroporus + Hydrocolus Lentic	Hydroporus + Hydrocolus Lentic	
	Habitat	Lotic	Lotic	Lotic	Lotic	Lotic	Lotic	Lotic	Lotic	Both	Both	Both	Lotic	Lentic	Lentic	Lotic	Lotic	Both	Both	Both	Both	Lentic	
	leg	H. Fery	Z. Csabai et al.	V. Pesic	I. Ribera & A. Cieslak	K. Elmi & H. Fery	P. Abellán & F. Picazo	I. Ribera & P. Aguilera & C. Hernando	I. Ribera & A. Cieslak	I. Ribera	I. Ribera	D.T. Bilton	I. Ribera	A.E.Z. Short	R.B. Angus, F.L. Jia & Y. Zhang		I. Ribera & A. Cieslak	I. Ribera & A. Cieslak	Y. Alarie	I. Ribera & A. Cieslak	I. Ribera & A. Cieslak		
	Loc.	Italy; Abruzzi, prov. L'Aquila, ca. 4 km, N Pescasséroli, Fiume	Corfou (Greece); Municip. of Lefkimeon, Vitalades, stream, 39°24'12.70"N 20°01'44.20"E	Montenegro, Virpazar, Orahovska river	France; Alpes Maritimes, river Carai, 2 km N Monti, 19.10.2002	Iran; Fars, 17 km SE Sepidan (=Ardakan) Shesh Pir. Ditch with running water, 18.4.2001	Sicily (Italy); Parco dei Nebrodi, Stream Trail Lago Urio-Plla. dell'Obolo 2, 33N 448676 E, 4194243 N, 13.06.07	Morocco: Zaër Zaiane, Tachenrhout, n. crsrd. Aguelmous- sa-Goaïda, N33°759.4" W5°58'46.7", 9.4.2007	Spain; Madrid Sieteiglesias, Ayo. Quiñón Jábalo, N40⁰54'17" W3⁰34'34"	Spain; Cadiz, Ventorillo de las Canillas, Afl. R. Hozgarganta 27.7.1998	Morocco; Tioulit, Oued Ait-Baha, 24.4.2000	Corsica; River Golo below Calacuccia	Spain; Jaen, Porcuna, Arroyo de las Salinas, A305 pk 35.5, 28.7.1998	Mongolia: Zavkhan, Ider, ponds by Ideriin Gol at Darkhjan Uu Brigade, ~12 km SE of Zuunmod/Ider, N48.13246 E97,48425 23.7.2004	China; Qinghai, Golo, Huamuxia, Zuimatan. Roadside pool., 19'52''N 99°03'57"E, 7.6.2013		Nova Scotia (Canada); Cape Breton, c. Inverness, stream in Big Marsh Rd., N45º53'36.8" W61º12'16.8", 16.8.2007	Nova Scotia (Canada) Regional M. Cape Breton, pond next Sand Lake Rd., Glace Bay, N46º08'01.9" W59º55'53.7", 19.8.2007	Ontario (Canada); 9.2000	Nova Scotia (Canada); Cumberland c., river next Rd. 2, Mapleton, N45°34'54.3" W64º08'30.3", 23.8.2007	Nova Sootia (Canada); Cape Breton, c. Richmond, str. in Battery Prov. P., St. Peters, N45°38'50.8" W60°51'57.3", 20.8.2007		
	voucher	IBE-AF62	IBE-RA219	MNCN-AI135	MNCN-AI304	NHM-IR653	MNCN-AH167	MNCN-AC15	MNCN-AI893	NHM-IR42	NHM-IR236	MNCN-AI1116	NHM-IR29	MNCN-AI1102	IBE-RA1170	genbank	IBE-AV2	IBE-AV4	NHM-IR330	MNCN-AC43	IBE-AV5	genbank	
	subspecies		cercyrae	savinensis						SI				formaster	ulanulana								
	species	ruffoi	savinensis	savinensis	sp1	sp2	sp3	sp4	sp5	duodecimpustulat	maghrebinus	procerus	otini	formaster	formaster	texanus	allegheniana	pulchra	wickhami	paugus	persimilis	rubyi	
itinued)	genus	Scarodytes	Scarodytes	Scarodytes	Scarodytes	Scarodytes	Scarodytes	Scarodytes	Scarodytes	Stictotarsus	Stictotarsus	Stictotarsus	Trichonectes	Zaitzevhydrus	Zaitzevhydrus	Haideoporus	Heterosternuta	Heterosternuta	Heterosternuta	Hydrocolus	Hydrocolus	Hydrocolus	
Table S2. (con	id subtribe	127 Deronectina	128 Deronectina	129 Deronectina	130 Deronectina	131 Deronectina	132 Deronectina	133 Deronectina	134 Deronectina	135 Deronectina	136 Deronectina	137 Deronectina	138 Deronectina	139 Deronectina	140 Deronectina	141 Hydroporina	142 Hydroporina	143 Hydroporina	144 Hydroporina	145 Hydroporina	146 Hydroporina	147 Hydroporina	
262																							

id subtribe	genus	species	subspecies	voucher	Loc.	leg	Habitat clade	mtgenome BAR COI 16S 18S H3
148 Hydroporina	Hydrocolus	sahlbergi	z	HM-ER21	Sweden; Prov. Vasterbotten, Ansele, 3.8.99	A.N. Nilsson	Lentic Hydroporus + Hydrocolus Lentic	XXXXXX AJ850629 AJ850379 AJ850518 EF670199
149 Hydroporina	Hydrocolus	stagnalis	Ш	BE-AV6	Nova Scotia (Canada): Cape Breton, c. Richmond, str. in Battery Prov. P., St. Peters, N45°38'50.8' W60°5 1'57.3', 20.8.2007	I. Ribera & A. Cieslak	Lentic Hydroporus + Hydrocolus Lentic	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
150 Hydroporina	Hydroporus	acutangulus	Z	VHM-ER1	Sweden; Prov. Vasterbotten, Vindeln, Skatan, 2.6.2004	A.N. Nilsson	Lentic Hydroporus Lentic 1	XXXXXX AF518286 AF518256 XXXXXX XXXXXX
151 Hydroporina	Hydroporus	analis	E	BE-AV9	Sardinia: Nuoro prov. (Ogliastra historical region), river W Villanova Strisàili, 39.96332N 9.45989E, 27.5.2009	H. Fery & M. Toledo	Lentic *deleted	******
152 Hydroporina	Hydroporus	angustatus	z	VHM-GR16	England (UK); Eping Forest, Goldings hill outer pond, 17.5.1999	I. Ribera	Lentic *deleted	XXXXXX AY365300 AY365266 XXXXXX XXXXXX
153 Hydroporina	Hydroporus	apenninus	Ш	BE-AF60	Italy; Abruzzi, prov. L'Aquila, ca. 4 km, N Pescasséroli, Fiume	ə H. Fery	Lotic Hydroporus Lotic 1	XXXXXXX XXXXXXX HF931127 HF931346 XXXXXXX XXXXXX
154 Hydroporina	Hydroporus	appalachius	6	lenbank			Both Hydroporus + Hydrocolus Lentic	JX434807 JX434765 JX434786 JX434826
155 Hydroporina	Hydroporus	axillaris	2	ANCN-DM32	California (USA); Shasta co., Manzanita Creek drive, ca. Lake McCumber, 21.6.2000	^e I. Ribera & A. Cieslak	Lotic Hydroporus + Hydrocolus Lentic	******
156 Hydroporina	Hydroporus	basinotatus	2	ANCN-AH112	Spain; Cádíz, Tanifa, stream 2K N Na. Sra de la Luz, N36º0553.4* W5º37.35.0°, 29.3.2008	I. Ribera & P. Aguilera & C. Hernando	Lotic Hydroporus Lentic 4	LT882859 HE610196 LT883033 LT882955 LT883124 LT882808
157 Hydroporina	Hydroporus	bithynicus	2	ANCN-AI782	Turkey: Bolu, Rd. 750 btw Yeniçaga & Mengen, fast stream in mixed forest, N40°50'49" E32°03'47.5", 24.4.2006	¹ I. Ribera	Lotic Hydroporus Lotic 1	XXXXXX HE599650 HE599681 XXXXXX XXXXXX
158 Hydroporina	Hydroporus	bodemeyeri	bodemeyeri N	ANCN-AI110	Chios (Greece); seepage lines with tufa, roadside ditch below oleander, Kapouries	G.N. Foster	Lotic Hydroporus Lotic 1	XXXXXX HE599651 HE599675 XXXXXX XXXXXX
159 Hydroporina	Hydroporus	bodemeyeri	guignoti IE	BE-RA216	Greece: S Peloponnese, ca. 12 km NW Spart, NE Kambos, small stream, 37.15319N 22.35353E, ca. 294 m, 19.5.2010	H. Fery & L. Hendrich	Lotic Hydroporus Lotic 1	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
160 Hydroporina	Hydroporus	brancoi	brancoi N	ANCN-AI228	Portugal; Serra de Arga, Pools on summit, 9.5.2005	D.T. Bilton	Both Hydroporus Lotic 1	HF947975 HE599652 HE599678 XXXXXX XXXXXX
161 Hydroporina	Hydroporus	brancoi	gredensis N	/NCN-AC9	Spain; Madrid, Rascafria, PN Peñalara, below Laguna Gran- de, N40°50'14,4" W3°57'18.7", 2.6.07	I. Ribera	Both Hydroporus Lotic 1	HF947976 HF931112 HF931329
162 Hydroporina	Hydroporus	brancuccii	2	ANCN-AI180	Portugal; Serra de Arga, Pools on summit, 9.5.2005	D.T. Bilton	Lotic Hydroporus Lotic 3	HF947977 HE610197 HF931406 XXXXXXX XXXXXXX
163 Hydroporina	Hydroporus	brevis	2	ANCN-DM23	Sweden; Vasterbotten province, Vindeln district, 13.5.2000	A.N. Nilsson	Lentic Hydroporus Lentic 3	XXXXXX XXXXXX HE610198 HF931505 XXXXXX XXXXX
164 Hydroporina	Hydroporus	brucki	ΕE	BE-AN4	Turkey; Izmir prov., Selçuk, delta Küçükmenderes, 37°57'24.3"N 27°17'32.8'E, 25.7.2014	I. Ribera & A. Cieslak	Lentic *deleted	XXXXXXX XXXXXXX XXXXXXX XXXXXXX
165 Hydroporina	Hydroporus	cagrankaya	2	ANCN-AI62	Turkey	Ö.K. Erman	Lotic Hydroporus Lotic 1	FN946167 XXXXXXX FN946166 FN946168 FN946169
166 Hydroporina	Hydroporus	cantabricus	2	ANCN-AI122	Spain; Puerto de las Estacas de Trueba	H. Fery	Lentic Hydroporus Lotic 1	HF947978 HE599653 HE599676 XXXXXXX XXXXXX
167 Hydroporina	Hydroporus	carri	σ	Jenbank			Lotic Hydroporus + Hydrocolus Lentic	JX434806 JX434764 JX434785 JX434825
168 Hydroporina	Hydroporus	columbianus	σ	tenbank			Both Hydroporus + Hydrocolus Lentic	KR491461
								continued on the next page

Chapter 6

263

264	Table S2 . (col	intinued)										
	id subtribe	genus	species	subspecies	voucher	Loc.	Bel	Habitat clade	mtgenome BAR COI	16S	18S H3	<u>ت</u>
	169 Hydroporina	Hydroporus	compunctus	z	HM-IR181	Gomera (Spain); Garajonay, 15.1.2000	D.T. Bilton	Lotic Hydroporus Lotic 2	XXXXXX AF5182	89 HE599693 XX)	XXXX XXXXX	XXX
	170 Hydroporina	Hydroporus	constantini	Σ	INCN-AI285	Spain: Burgos, Cruz de la Demanda, spring, N 42°11'52.6" W 3°6'1.9", 23.10.04	VI. Ribera	Lotic Hydroporus Lotic 1	HF947979 HE5996	54 HE599679 XX	XXXX XXXXX	XXX
	171 Hydroporina	Hydroporus	suesseurs	z	IHM-IR647	Cyprus; Ayia, Paphos forest, 13.3.2001	K. Miller	Lotic Hydroporus Lotic 1	XXXXXX HE5996	65 HE599699 XX)	хххх хххх	XXX
	172 Hydroporina	Hydroporus	decipiens	Σ	INCN-DM31	Spain, Avila, Sa. De Gredos, Gredos, ca., Gebirgsbach, 20.7.99	H. Fery	Both *deleted	HE6102	XX XXXXXX 00	XXXX XXXXX	XXX
	173 Hydroporina	Hydroporus	dentellus	z	IHM-IR575	Vermont (USA), Bennington, 15.7.2000	C. Hernando	Lentic Hydroporus + Hydrocolus Le	ntic XXXXXX AY3652	97 AY365263 XX	хххх хххх	XXX
	174 Hydroporina	Hydroporus	despectus	z	IHM-IR483	Alberta (Canada); Waterton lakes Nat. Park, junc. Pd. 5&6, 28.6.2000	I. Ribera & A. Cieslak	Lentic Hydroporus + Hydrocolus Le	tic XXXXXX XXXXXX AY36530	02 HE599696	хххх	XXXX
	175 Hydroporina	Hydroporus	discretus	×	INCN-AI641	Spain; Logroño, Posadas, spring, rd. by r. Oja, N 42º12'52.7" W 3º3'40.3", 23.10.04	I. Ribera	Both Hydroporus Lotic 3	******		XXXX XXXXX	XXX
	176 Hydroporina	Hydroporus	discretus cplx1	Σ	INCN-AI651	Spain; Ciudad Real, Fuencaliente, arroyo Cereceda	A. Castro	Both Hydroporus Lotic 3	XXXXXX HF9312	20 HF931449 XX	XXXX XXXXX	XXX
	177 Hydroporina	Hydroporus	discretus cplx2	≞	3E-AV45	Cyprus: Troodos mt., stream 2 Km S Prodromos, 34 ⁵ 5553.2*N 32*50'19.4*E, 27,4.2016	A, Miilán, I. Ribera, J. Velasco & A. Villastrigo	Both Hydroporus Lotic 3	~~~~~		XXXX XXXXX	XXX
	178 Hydroporina	Hydroporus	discretus cplx3	Ш	3E-RA142	ttalty: Abbeverat. Ca., Str. Pianogrande, Força Canaping; 20.7.2009	M. Toledo	Both Hydroporus Lotic 3	*****		XXXX XXXXX	XXX
	179 Hydroporina	Hydroporus	distinguendus	Σ	INCN-HI15	Algeria; Feid 3, N 36° 43.960' E 008° 01.767', 16.3.2006	S. Bouzid	Both Hydroporus Lentic 2	xxxxx		XXXX XXXXX	XXX
	180 Hydroporina	Hydroporus	dobrogeanus	Σ	INCN-DM85	Serbia: Canyon of River Pschinja, spring at road to Monastir Prohor-Pchinjski, 28.4.2006	V. Pesic	Lotic Hydroporus Lotic 1	XXXXXX HE5996	156 HE599689 XX	XXXX XXXXX	XXX
	181 Hydroporina	Hydroporus	dobrogeanus cplx	Ш	3E-AV49	Cyprus: Pafos forest, spring in Cedar Valley,34°59'28.0"N 32°41'18.5"E, 28.4.2016	A. Millán, I. Ribera, J. Velasco & A. Villastrigo	Lotic Hydroporus Lotic 1	****** ********		XXXX XXXXX	XXXX
	182 Hydroporina	Hydroporus	dorsalis	Ш	3E-RA939	Ireland; Limerick, Lough at Ballyhibin, 1.8.2007	D.T. Bilton	Both Hydroporus + Hydrocolus Le	tic XXXXXX XXXXX		XXXX XXXXX	XXX
	183 Hydroporina	Hydroporus	elongatulus	Σ	INCN-DM18	Germany: Bavaria, Dietramszell, Reith, Irrigation ditch on meadow, slightly running	M. Baike	Lentic Hydroporus + Hydrocolus Le	tic XXXXXX HF93126	67 HF931504 XX)	XXXX XXXXX	XXX
	184 Hydroporina	Hydroporus	errans	×	INCN-AI638	Gran Canaria (Spain); Moya: Bco. de Azuaje, stream and ponds w. veget, 15.4.2001	I. Ribera & A. Cieslak	Lotic Hydroporus Lotic 3	XXXXXX HE6102	03 HF931448 XX	XXXX XXXXX	XXX
	185 Hydroporina	Hydroporus	erythrocephalus	Ш	3E-RA710	Ireland; Co. Clare, Corrofin, Ballymacaugh Lough, fen, N52°58'08.0° W9°04'00.2″, 23.5.2010	I. Ribera	Lentic Hydroporus + Hydrocolus Le	tic XXXXXX XXXXX	XX XXXXXX XX	XXXX XXXXX	XXX
	186 Hydroporina	Hydroporus	ferrugineus	×	INCN-AI929	Germany; Bayern, Rehau, Rehauer First, Mähringe bach	A. Skale	Lotic Hydroporus Lotic 1	XXXXXX HE5996	67 HE599683 XX	XXXX XXXXX	XXXX
	187 Hydroporina	Hydroporus	feryi	×	INCN-DM33	Tunisia	I. Ribera & A. Cieslak	Lotic Hydroporus Lotic 3	*****	XXXXXXX XX	XXXX	XXX
	188 Hydroporina	Hydroporus	figuratus	z	IHM-IR67	England (UK); Norfolk	D.T. Bilton	Both Hydroporus + Hydrocolus Le	itic LS451093 AF3092	99 HE599700 AJ3	318745 EF670	0203
	189 Hydroporina	Hydroporus	fortis	z	IHM-IR353	California (USA); Shasta co., Manzanita Creek drive, ca. Lak McCumber, 21.6.2000	^e I. Ribera & A. Cieslak	Lotic Hydroporus + Hydrocolus Le	tic	хххххх		

...continued on the next page

id subtribe	genus	species	subspecies	voucher	Loc.	leg	Habitat clade	mtgenome BAR	COI 16S	18S	H3
190 Hydroporina	Hydroporus	foveolatus		MNCN-DM8	Switzerland; Berner Alpen, Grimselpass, Oberaars Stausee, Bach b. Berghaus, N46°22.932' E08°16.684'	T. Ekrem	Lentic Hydroporus Lentic 4	+ XXXXXXX	HE610205 HF93150	02 XXXXXX	XXXXXXX
191 Hydroporina	Hydroporus	foveolatus nr		MNCN-DM14	Spain; Avila, Sierra de Gredos, S Hoyos del Espino, nr Plataforma	H. Fery	Lentic Hydroporus Lentic 4	I XXXXXX	HF931269 HF9315(07 XXXXXX	XXXXXXX
192 Hydroporina	Hydroporus	fuscipennis		NHM-IR491	Alberta (Canada); Rd. 22, 5 km S Longview, 28.6.2000	I. Ribera & A. Cieslak	Lentic *deleted	+ XXXXXX	HE610206 XXXXX	XXXXXXX XX	XXXXXX
193 Hydroporina	Hydroporus	galloprovincialis		IBE-RA289	France: ca. 1 km SEE Jouques (13), little spring on the edge of a grassy marshland,9.10.2010	M. Manuel	Lotic Hydroporus Lotic 1	+ XXXXXX	НЕ793376 ХХХХХ	XXXXXXX XX	XXXXXX
194 Hydroporina	Hydroporus	geniculatus		NHM-ER3	Sweden; Prov. Vasterbotten, Vindeln, Skatan, 2.6.2001	A.N. Nilsson	Lentic Hydroporus + Hydroco	lus Lentic XXXXXX	AY365303 AY36526	XXXXXX 69	XXXXXX
195 Hydroporina	Hydroporus	glabriusculus		NHM-GR33	England (UK); Norfolk, East Watton Common 1, 6.6.1999	I. Ribera	Lentic Hydroporus Lentic 3		AY365304 AY36527	20	
196 Hydroporina	Hydroporus	glasunovi	dolini	IBE-RA1204	Kyrgyzstan; Ala Archa NP, rheocrenic spring, 42°36.203'N, 074°28.959'E, 9.7.2013	Pešíć	Lotic *deleted		*****	XXXXXXX XX	XXXXXX
197 Hydroporina	Hydroporus	goldschmidti		MNCN-AI118	Uzbekistan; Tashkent prov., Yakka-tut nr. Burchmulla, 41°38'N 70°03'E	L. Hendrich	Lotic *deleted	+ xxxxxx	HE610207 HF9313	XXXXXXX 06	XXXXXX
198 Hydroporina	Hydroporus	gueorguievi		MNCN-DM20	Bulgaria; Pirin Mts. Cottongrass bog, 1200m above Dobriniste	a D.T. Bilton	Lotic Hydroporus Lotic 1	+ XXXXXX	HE599660 HE5996	85 XXXXXX	XXXXXX
199 Hydroporina	Hydroporus	guernei		IBE-RA911	Azores (Portuga)); Terceira, Casas da Falca, ditch & alberca, 38°43'36.6"N 27°16'53.8"W, 3.9.2012	I. Ribera & A. Cieslak	Both *deleted		XXXXXX XXXXXX	XXXXXXX XX	XXXXXXX
200 Hydroporina	Hydroporus	gyllenhalii		NHM-GR12	Spain; Huelva, Almonte, poblado forestal 26.7.1998	I. Ribera	Lentic Hydroporus Lentic 2	~	*****	XXXXXXX XX	XXXXXXX
201 Hydroporina	Hydroporus	hebaueni		MNCN-DM86	Bulgaria: Rhodopes, Madjarovo, village Senoklas, spring, 25.4.2006	V. Pesic	Both Hydroporus Lotic 1		*****	хххххх х	хххххх
202 Hydroporina	Hydroporus	incognitus		IBE-RA691	Turkey; Erzurum, stream, Senyurtköyu, N40 11 34.0 E41 28 03.6, 12.6.2011	I. Ribera, A. Faille, J. Fresneda	Lentic Hydroporus Lentic 2		XXXXXX XXXXXX	XXXXXXX XX	XXXXXX
203 Hydroporina	Hydroporus	incommodus		MNCN-AI382	Slovakia, Laksárska Nová Ves, Cerveny rybnik	R. Cséfalvay	Lentic Hydroporus Lentic 2		HF931192 HF9314	17 XXXXXX	XXXXXX
204 Hydroporina	Hydroporus	jonicus		MNCN-AI1233	Greece; Peloppones, Korinthia, 5 km E lake Stymphalia, 10.7.2005	G. Wewalka	Both Hydroporus Lentic 2	LS451078 I	HF931176 HF93130	96 LS453476	LS453171
205 Hydroporina	Hydroporus	kabakovi		MNCN-AI91	MONGOLIA: Zavkhan Aimag, Telmen Soum,Ideriin Gol ~15 km SSW of Telmen, Ovogdii,N48.53255,E97.52093	A.E.Z. Short	Lotic *deleted	+ XXXXXX	HE610208 HF93146	XXXXXX 69	XXXXXX
206 Hydroporina	Hydroporus	kasyi		IBE-AV42	Cyprus: Akrotin, Fassouri reedbeds, 34º3757.2"N 32º5601.5"E, 26.4.2016	A. Millán, I. Ribera, J. Velasco & A. Villastrigo	Lentic Hydroporus Lentic 2	XXXXXX LT882843	LT882783 LT88301	13 LT882957	LT883126
207 Hydroporina	Hydroporus	kozlovskii		MNCN-AI1264	GreeceM Makedonia (Pella), Voras Ski Resort, N40°54'12.0°, E021°49'30.8″	P. & V. Ponel	Lentic Hydroporus Lentic 4	+ XXXXXX	HE610209 HF9313	97 XXXXXX	
208 Hydroporina	Hydroporus	kraatzi		MNCN-AI602	Germany; Harz, Kaltenborn Queligebiet	Spitzenberg	Both Hydroporus Lotic 1	~	*****	×	
209 Hydroporina	Hydroporus	lapponum		genbank			Lentic Hydroporus + Hydroco	lus Lentic	JX434818 JX43477	76 JX434797	JX434837
210 Hydroporina	Hydroporus	larsoni		genbank			Lentic Hydroporus Lentic 3	KC017013			
									continued	d on the ne	ext page

265

	Habitat clade migenome BAR COI 16S 18S H3	Lentic *deleted XXXXXXX HE610210 XXXXXXX XXXXXXX	Lotic Hydroporus Lotic 1 XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXX	Lotic Hydroporus Lotic 1 XXXXXXX HE599663 HE599686 XXXXXXX XXXXXXX	Lentic Hydroporus + Hydrocolus Lentic XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXX	Lotic Hydroporus Lotic 1 XXXXXXX HES99664 HES99680 XXXXXXX XXXXXXX	Both "deleted XXXXXXX HE610211 XXXXXXX XXXXXXX XXXXXXX	Lotic Hydroporus Lotic 2 AF518297	Lotic Hydroporus Lotic 3 XXXXXX HE610212 XXXXXXX XXXXXXX XXXXXXX	Lentic Hydroporus + Hydrocolus Lentic XXXXXXX	Lentic Hydroporus + Hydrocolus Lentic XXXXXX AY365295 AY365261	Both "deleted XXXXXXX XXXXXXX HE610213 XXXXXXX XXXXXXX XXXXXXX	Both Hydroporus Lotic 1 XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXX	Both Hydroporus Lotic 1 LS451097 HE599667 HE599694 LS453470 LS453176	Both Hydroporus Lotic 1 XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXX	Lentic Hydroporus + Hydrocolus Lentic XXXXXX AY365308 AY365274 XXXXXXX XXXXXXX	Lentic Hydroporus Lotic 1 HG793318	Lentic Hydroporus Lotic 1 JN790723	Lentic Hydroporus Lotic 1 JN790760	Lenlic Hydroporus Lenlic 1 AY365310 AY365276 XXXXXXX XXXXXXX	Both Hydroporus Lotic 1 XXXXXXX XXXXXXX XXXXXXXX XXXXXXXX XXXXX	Lentic Hydroporus + Hydrocolus Lentic AY365311 AY365277 AJ850515 EF670195	continued on the next page
	leg	I. Ribera & A. Cieslak	I. Ribera & A. Cieslak	A.N. Nilsson	I. Ribera & A. Cieslak	I. Ribera & A. Cieslak	A. Castro	D.T. Bilton	P. & V. Ponel	I. Ribera & A. Cieslak	I. Ribera & A. Cieslak	Ö.K. Erman	R.B. Angus	I. Ribera & A. Cieslak	I. Ribera	A.N. Nilsson	H. Fery			I. Ribera	I. Ribera	B. Andren	
	Loc.	Spain; Aranjuez, salinas cta. N400, 8.4.2006	Mallorca (Spain): Bunyola, te. de Bunyola, Ma 2100 pk 5.5, N39º43'24.7" E2º43'15.7", 13.5.2007	Sweden; Vasterbotten province, Vindeln district, 13.5.2000	California (USA); Mono co., Yosemite Ntal. Park, Rd. 120 Dana Meadows, 19.6.2000	Italy: Brescia, val Trompia, stream rd. to Guiogo di Bala, 17.10.2002	Spain; Córdoba, Sierra Morena, Km 28.5 cta. Villaviciosa	Madeira (Portugal); Wet rock wall and adjacent spring pools below Paul do Serra by the way, 8.3.2001	GreeceM Makedonía (Pella), Voras Ski Resort, N40°54'12.0" E021°49'30.8"	Alberta (Canada); Waterton lakes Nat. Park, Rd. 5, park limit, 28.6.2000	British Columbia (Canada); Rd. 5, 40 km N Hope, ponds by motorway, 30.6.2000	Turkey; Erzurum	Hungary, Körös Maros, Nemzeti Park, Szabadkígyós 13.4.2011	Switzerland; St. Gottardo pass, Rd. 2, summit, 27.7.00	Turkey: Düzce, Rd. to Samandere from Kaynasli, small sha- llow stream & pools, N40°45'13.5" E31°19'54", 23.4.2006	Sweden; Prov. Vasterbotten, Ansele, 3.8.99	Spain; Burgos, 1km W Soncillo, 25 km E Reinosa, ponds UTM VN34412 58004			England (UK); Norfolk, East Walton Common 1, 6.6.1999	Spain; Posadas, spring, rd. by r. Oja, N 42°12'52.7" W 3°3'40.3", 23.10.04	Sweden; S. Ha. Onsala, Kustgol, VSV Rorvik, 3.11.2000	
	voucher	MNCN-AI736	IBE-RA368	MNCN-DM22	NHM-IR345	MNCN-AI300	MNCN-AI630	NHM-IR664	MNCN-AI1265	NHM-IR485	NHM-IR526	MNCN-AI61	IBE-RA636	NHM-IR315	MNCN-AI764	NHM-ER22	MNCN-AI1 130	genbank	genbank	NHM-GR15	MNCN-AI640	NHM-IR506	
	subspecies																necopinatus	robertorum	ioni				
	species	limbatus	lluci	longicornis	longiusculus	sningnol	lucasi	lundbladi	macedonicus	mannerheimi	mannerheimi nr	marginatus	melanarius	memnonius	memnonius gr	morio	necopinatus	necopinatus	necopinatus	neglectus	nevadensis	nigellus	
nued)	genus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	ydroporus	
Table S2. (conti	id subtribe	211 Hydroporina <i>H</i>	212 Hydroporina <i>H</i> .	213 Hydroporina <i>H</i> _	214 Hydroporina <i>H</i> _	215 Hydroporina <i>H</i>	216 Hydroporina <i>H</i> .	217 Hydroporina <i>H</i> .	218 Hydroporina <i>H</i> .	219 Hydroporina <i>H</i> _	220 Hydroporina <i>H</i> .	221 Hydroporina <i>H</i> _	222 Hydroporina <i>H</i> .	223 Hydroporina <i>H</i> .	224 Hydroporina <i>H</i>	225 Hydroporina <i>H</i> .	226 Hydroporina <i>H</i>	227 Hydroporina <i>H</i>	228 Hydroporina <i>H</i>	229 Hydroporina <i>H</i> .	230 Hydroporina <i>H</i>	231 Hydroporina <i>H</i> .	
266																							

id subtribe	genus	species	subspecies	voucher	Loc.	leg	Habitat clade	mtgenome BAR COI 16S 18S H3
232 Hydroporina	Hydroporus	niger		NHM-IR124	New York (USA); Tompkins Co., Ithaca, 1.11.1998	K.B. Miller	Both Hydroporus + Hydrocolus Lentic	XXXXXX AF518301 AF518270 XXXXXXX XXXXXX
233 Hydroporina	Hydroporus	niger gr1		IBE-AV7	California (USA): Invo co., Amargosa River in Tecopa 35°50'57"N,116°13'49"W, 8.4.2008	P. Abellán	Lentic Hydroporus + Hydrocolus Lentic	XXXXXXX XXXXXXX XXXXXXX XXXXXXX
234 Hydroporina	Hydroporus	nigrita		IBE-RA334	Spain; Huesca, torrentera del Ibon de Plan	I. Esteban	Lentic Hydroporus Lentic 4	*****
235 Hydroporina	Hydroporus	nomandi	alhambrae	IBE-RA461	Spain; Granada prov., Sierra Nevada, ca. 2 km NEE Capilei- ra, spring, ca. 36,967N 3.339W, 26.5.2011	H. Fery	Lotic Hydroporus Lotic 1	HF947981 HF931316 HF931540 XXXXXX
236 Hydroporina	Hydroporus	nomandi	ifranensis	NHM-GR13	Morocco; Azrou, 8, Lac Afenourir, 9.4.1999	R. Gerecke	Lotic Hydroporus Lotic 1	XXXXXXX XXXXXXX XXXXXXX
237 Hydroporina	Hydroporus	nomandi	normandi	MNCN-AH105	Morocco; Tanger, well in rd. to Melloussa, N35º48'15.9" W5º41'39.1", 27.3.2008	I. Ribera, P. Aguilera & C. Hemando	Lotic Hydroporus Lotic 1	XXXXXXX XXXXXXX XXXXXXX XXXXXXX
238 Hydroporina	Hydroporus	notabilis		MNCN-AI92	MONGOLIA: Zavkhan Aimag, Telmen Soum,Iderlin Gol ~15 km SSW of Telmen, Ovogdil,N48.53255,E97.52093	A.E.Z. Short	Both Hydroporus + Hydrocolus Lentic	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
239 Hydroporina	Hydroporus	opscurus		NHM-ER4	Sweden; Prov. Vasterbotten, Vindeln, Skatan, 2.6.2002	A.N. Nilsson	Lentic Hydroporus + Hydrocolus Lentic	AF518303 AF518272 XXXXXXX XXXXXX
240 Hydroporina	Hydroporus	obsoletus		IBE-RA206	Greece; Peloponnese, Afrodisio Mts, ca. 5 km NE Kondo- vazena, small spring, ca. 37.82044N 21.93570E, 16.5.2010	H. Fery & L. Hendrich	Lotic Hydroporus Lotic 1	XXXXXXX LT882852 LT882797 LT883023 LT882954 LT883123
241 Hydroporina	Hydroporus	occidentalis		NHM-IR517	British Columbia (Canada); Glacier Ntal. Park; Rd. 1, 4 km N limit of the park, 29.6.2000	I. Ribera & A. Cieslak	Lentic Hydroporus + Hydrocolus Lentic	XXXXXXX XXXXXXX XXXXXXX XXXXXXX
242 Hydroporina	Hydroporus	paganettianus		NHM-IR145	Portugal; Guarda, Sa. Estrela, close summit, pools & stream, 7.8.99	D.T. Bilton	Both Hydroporus + Hydrocolus Lentic	XXXXXX AY365324 AY365290 XXXXXX XXXXXX
243 Hydroporina	Hydroporus	palustris		MNCN-AI19	Faroes (Denmark)	G.N. Foster	Both Hydroporus Lentic 2	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
244 Hydroporina	Hydroporus	pervicinus		NHM-IR359	California (USA); Shasta co., Manzanita Creek drive, ca. Lake McCumber, 21.6.2000	. ^e I. Ribera & A. Cieslak	Lentic Hydroporus + Hydrocolus Lentic	XXXXXX AY365316 HE599695 XXXXXX
245 Hydroporina	Hydroporus	pfefferi		IBE-RA1060	Greece: Achaïa, 1.5Km NE Kitor, mountain stream+fen w. dead trees, 37°53'31.55"N 22°3'26.92"E, 3.4.2013	I. Ribera & A. Cieslak	Lotic Hydroporus Lotic 1	XXXXXX XXXXXXX
246 Hydroporina	Hydroporus	bilosus		NHM-IR37	Tenerite (Spain); Anaga, Roque Chinobre, 12.1997	D.T. Bilton	Lotic Hydroporus Lotic 2	AF518305 AF518274 AJ318733 EF670196
247 Hydroporina	Hydroporus	planus		IBE-AN82	Morocco: Oukaimeden, flooded field&stream, 3km N; N31º1111" W7º50'36.4", 10.7.2011	I. Ribera & A. Cieslak	Lentic *deleted	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
248 Hydroporina	Hydroporus	snµneqnd		NHM-ER2	Sweden; Prov. Vasterbotten, Vindeln, Skatan, 2.6.1999	A.N. Nilsson	Lentic Hydroporus Lentic 3	XXXXXX XXXXXXX AY365317 AY365283 XXXXXXX XXXXXX
249 Hydroporina	Hydroporus	pubescens		IBE-AN383	Corsica; Porto-Vecchio, l'Ospedale, 18.9.1999	I. Ribera & A. Cieslak	Lentic *deleted	LS451101 LS451133 LS452932 LS453172
250 Hydroporina	Hydroporus	regularis		NHM-IR166	Corsica; Vizzavona: Cascades des Anglais,16.9.1999	I. Ribera & A. Cieslak	Lotic Hydroporus Lotic 1	XXXXXX AY365318 AY365284 XXXXXX XXXXXX
251 Hydroporina	Hydroporus	rifensis		IBE-AV218	Morroco; Anasar (Chefchaouen), 35°01'12.06"N 04°59'59.17"W, 2.4.2018	A. Millán et al.	Lentic Hydroporus Lentic 2	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
252 Hydroporina	Hydroporus	rutitrons		NHM-ER19	Sweden; Prov. Vasterbotten, Ansele, 3.8.99	A.N. Nilsson	Lentic Hydroporus + Hydrocolus Lentic	HG915299 HG915299 HG915299 HG915299 HG915299 HG915299
								continued on the next page

267

253 Hydropori 253 Hydropori 254 Hydropori	(continued) be genus ina Hydroporus na Hydroporus	species rufinasus sabaudus	subspecies	voucher genbank MNCN-DM16	Loc. Spain, Tervel, Sierra de Albarracin, ca. 1 km NW Noguera	leg H. Fery	Habitat clade Lotic Hydroporus + Hydrocolus Lentic Lentic Hydroporus Lentic 4	mtgenome BAR COI 16S 18S H3 K.I204068 XXXXXX HE610217 HF931503 XXXXXXX XXXXXX
255 Hydropori 256 Hydropori	ina <i>Hydroporus</i> ina <i>Hydroporus</i>	sabaudus santilippoi	sierranevadensis	IBE-PA262 MNCN-AH189	Spain; Granada, Sierra Nevada, Borreguitos del S. Juan A Italy, Emilia Romagna, creek 2km SW Berceto, N44°30'01.1 [°] ₁	A. Castro I. Ribera	Lentic Hydroporus Lentic 4 Lotic Hydroporus Lotic 1	HG915299 HF931290 XXXXXXX XXXXXXX XXXXXXX XXXXXX XXXXXX HE999672 HE999674 XXXXXXX XXXXXX
257 Hydropori 258 Hydropori 259 Hydropori	ina <i>Hydroporus</i> ina <i>Hydroporus</i> ina <i>Hydroporus</i>	sardomontanus scalesianus semenowi		MNCN-DM62 NHM-IR38 MNCN-DM24	Sardinia: Nuoro, Germangentu entre Rifugio Sa Arena et Bruncu Spina, N. 40°01'08.4° E 9°15/41.8° Bruncu Spina, N. 40°01'08.4° E 9°15/41.8° England (UK); Dorset, Wareham, Morden bog, 5.7.1998 I. Sweden; Vasterbotten province, Vindeln district, 13.5.2000 A	P. & V. Ponel I. Ribera A.N. Nilsson	Lotic Hydroporus Lotic 1 Lentic Hydroporus Lentic 1 Lentic Hydroporus + Hydrocolus Lentic	XXXXXX HE599673 HE599688 XXXXXX XXXXXX AJ5518309 AF518278 AJ50300 EF670197 XXXXXXX XXXXXX XXXXXXX XXXXXXX XXXXXXX
260 Hydropon 261 Hydropori 262 Hydropori	ina <i>Hydroporus</i> ina <i>Hydroporus</i> ina <i>Hydroporus</i>	signatus signatus sinuatipes	signatus	genbank IBE-RA682 genbank	Nova Scotta (Canada); c. Annapolis, Greywood, Liverpool I. Head Lake, N44°34 <i>57.7</i> " (N65°24'21.7", 13.8.2007	I. Ribera & A. Cieslak	Lentic Hydroporus + Hydrocolus Lentic Lentic Hydroporus + Hydrocolus Lentic Lentic Hydroporus + Hydrocolus Lentic	KR914955 XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
263 Hydropon 264 Hydropon 265 Hydropon	ina <i>Hydroporus</i> ina <i>Hydroporus</i> ina <i>Hydroporus</i>	springeri striola submuticus		NHM-IR632 NHM-IR484 NHM-ER23	Italy: Lombardia, Prov. Mantova, bogs of Marcaria, 24.3.2001 M Alberta (Canada): Waterton lakes Nat. Park, junc. Rd. 5&6, I, 28.6.2000 Sweden: Prov. Vasterbotten, Strycksele, 3.8.99 A	M. Toledo I. Ribera & A. Cleslak A.N. Nilsson	Lentic Hydroporus Lentic 2 Lentic Hydroporus Lentic 2 Both Hydroporus + Hydrocolus Lentic	XXXXXX AY365319 AY365285 XXXXXX XXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXX
266 Hydropon 267 Hydropon 268 Hydropon	ina <i>Hydroporus</i> ina <i>Hydroporus</i> ina <i>Hydroporus</i>	subpubescens tenebrosus tessellatus		MNCN-AC46 genbank MNCN-AI770	Nova Scotta (Canada), Cumberland c., river next Rd. 2, Mapleton, N45°34'54'3' We4*08'30.3', 23.8.2007 Mapleton, N45°34'54'3' We4*08'30.3', 23.8.2007 Turkey: Dizzes, Rd. to Kantalkaya from Caydurt, small stream 1, with vegetation, N40*42'29' E31*45'56", 23.4.2006	. Ribera & A. Cleslak I. Ribera	Lentic Hydroporus + Hydrocolus Lentic Lentic Hydroporus + Hydrocolus Lentic Both Hydroporus Lentic 4	XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXX
269 Hydropor 270 Hydropon 271 Hydropon 272 Hydropon	ina <i>Hydroporus</i> ina <i>Hydroporus</i> ina <i>Hydroporus</i> ina <i>Hydroporus</i>	tessellatus nr thracicus transgrediens transpunctatus		IBE-AN585 MNCN-Al336 IBE-RA217 NHM-IR341	Creatia: spring of Cetina river, N 43°58'36.1" E16°25'48.6", I 07.8.2016 Bulgaria: Pirin mts. Pools, 2.000m. Below Vihren D Greece: E Peloponnese, Lytkio Mts. 1 km SE Ketaloryso, F Gurnain & spring, 37.66516N 22.47982E; 20.5.2010 Contronta (USA), Fresno co., Sequota Ntal. Forest. Alder I, I	I. Stankovic D.T. Bitton H. Fery & L. Hendrich I. Ribera & A. Cleslak	Both Hydroporus Lentic 4 Lentic Hydroporus Lentic 4 Lotic Hydroporus Lotic 3 Lotic Hydroporus + Hydrocolus Lentic	XXXXXXX XXXXXX XXXXXXX XXXXXXX XXXXXX XXXXXX
273 Hydropori	ina <i>Hydroporus</i>	tristis	_	NHM-ER5	Sweden; Prov. Vasterbotten, Vindeln, Skatan, 2.6.2006	A.N. Nilsson	Lentic Hydroporus Lentic 2	XXXXXX AY365323 AY365289 XXXXXX XXXXXX XXXXXXX AY365323 AY365289 XXXXXXX XXXXXX continued on the next page

Table S2. (continued)

id	subtribe	genus	species sul	bspecies vo	oucher	Loc.	leg	Habitat	clade	mtgenome	BAR	CO	16S	18S	유
274	Hydroporina	Hydroporus	<i>tristis</i> nr	WHN	1-IR521	British Columbia (Canada); Rd. 5A, Stump Lake, ponds by road, 30.6.2000	I. Ribera & A. Cieslak	Lentic Hyo	froporus Lentic 2			AY365293	i AY365259		XXXXXX
275	Hydroporina	Hydroporus	snsouqun	NHM	1-IR152 F	Finland	T. Berendonk	Lentic Hyo	droporus Lentic 3			AF518311	AF518280	(XXXXXXX	XXXXXX
276	Hydroporina	Hydroporus	vagepictus	MHM	1-IR28 F	Portugal; Sa. Da Estrela, Torre, lagoon, 25.7.1998	I. Ribera	Both Hyd	droporus Lentic 2			AF518312	AF518281	AJ850517 EF670301	
277	Hydroporina	Hydroporus	vespertinus	NHM	1-IR144	Portugal; Guarda, Sa. Estrela, dose summit, pools & stream, 7.8.99	D.T. Bilton	Lentic Hya	droporus + Hydrocolus Lentic	×	/ XXXXXX	AY365325	5 AY365291	(XXXXXXX	XXXXXX
278	Hydroporina	Hydroporus	zimmermanni	MNCI	:N-AH123	Slovenia; Pivka	H. Fery	Lentic Hyd	Iroporus Lentic 4	×		HE610220) HF931351	(XXXXXXX	XXXXXX
279	Hydroporina	Neoporus	arizonicus	NHM	1-IR331 I	New Mexico (USA); 9.2000	Y. Alarie	Both Nec Hai	pporus + Heterosternuta + deoporus			AJ850630	AJ850380	AJ850519 E	EF670193
280	Hydroporina	Neoporus	clypealis	MNCI	N-AC48	Nova Scotia (Canada); Cumberland c, river next Rd. 2, Mapleton, N45°34'54.3" W64°08'30.3", 23.8.2007	I. Ribera & A. Cieslak	Both Nec Hai	pporus + Heterostemuta + deoporus	×		XXXXXXX	XXXXXXX	~ xxxxxxx	XXXXXX
281	Hydroporina	Neoporus	dilatatus	MNCI	N-AC49	Nova Scotta (Canada); Cumberland c, river next Rd. 2, Mapleton, N45°34'54.3" W64°08'30.3", 23.8.2007	I. Ribera & A. Cieslak	Lotic Nec Hai	pporus + Heterosternuta + deoporus		î	XXXXXXX	XXXXXXX	(XXXXXXX	XXXXXX
282	Hydroporina	Neoporus	dimidiatus	MHN	1-IR486	Alberta (Canada); Waterton lakes Nat. Park, Rd. 5, park limit, 28.6.2000	I. Ribera & A. Cieslak	Both Nec Hai	pporus + Heterosternuta + deoporus	×		XXXXXXX	XXXXXXX	Ŷ	XXXXXX
283	Hydroporina	Neoporus	melitus	genb	ank			Lotic Nec Hai	pporus + Heterosternuta + deoporus		-	KF575501	KF575562	-	<pre></pre>
284	Hydroporina	Neoporus	sp1	NHM	1-IR598	South Carolina (USA); Baker Creek s.p., Sunter N.F. 28.7.2000	C. Hernando	Lotic Nec Hai	pporus + Heterostemuta + deoporus		^	XXXXXXX	XXXXXXX		
285	Hydroporina	Neoporus	sp2	NHM	1-IR597	South Carolina (USA); Baker Creek s.p., Sunter N.F. 28.7.2000	C. Hernando	Lotic Nec Hai	pporus + Heterostermuta + deoporus		^	XXXXXXX	XXXXXXX	(XXXXXX	XXXXXX
286	Hydroporina	Neoporus	sp3	MNCI	N-AC47	Nova Scotia (Canada); Cumberland c, river next Rd. 2, Mapleton, N45°34'54.3" W64°08'30.3", 23.8.2007	I. Ribera & A. Cieslak	Lotic Nec Hair	ррогиs + Heterostermuta + deoporus	XXXXXXX		XXXXXXX	XXXXXXX	~ xxxxxxx	XXXXXX
287	Hydroporina	Neoporus	sp4	NHM	1-IR594	Pennsylvania (USA); Fowlers Hollow s.p., Tuscarora s.f., 20.7.2000	C. Hernando	Both Nec Hai	pporus + Heterostermuta + deoporus	XXXXXXX		XXXXXXX	XXXXXXX	~ xxxxxxx	XXXXXX
288	Hydroporina	Neoporus	superioris	MNCI	N-DM28	Alberta (Canada); Waterton lakes Nat. Park, junc. Rd. 5&6, 28.6.2000	I. Ribera & A. Cieslak	Both Nec Hai	pporus + Heterostermuta + deoporus	×	(XXXXX	XXXXXXX	XXXXXXX	~ xxxxxxx	XXXXXX
289	Hydroporina	Neoporus	undulatus	NHM	1-IR75 (Ontario (Canada)	Y. Alarie	Both Nec Hai	pporus + Heterostemuta + deoporus			AJ850631	AJ850381	AJ318741 E	EF670200
290	Hydroporina	Sanfilippodytes	adelardi	IBE-R	RA487	California (USA); Mendocino Co., Rain Pool - Albion Little River Rú. ~2.9 mi NE Hwy 1, N - 39,25949, W - 123,74311	D. Post	Lentic San	ifilippodytes	XXXXXXX	(XXXXXX	XXXXXXX	XXXXXXX	(XXXXXXX	XXXXXX
291	Hydroporina	Sanfilippodytes	bidessoides	IBE-R	RA488	California (USA); Mendocino County, Rain Pools - Nat. Cons. Pygny Forest Near Lil. R. Airport, N - 39.25343, W - 123.74945	D. Post	Lentic Sari	filippodytes		^	XXXXXXX	XXXXXXX		XXXXXX
292	Hydroporina	Sanfilippodytes	compertus	genb	ank			Both Sar	filippodytes		2	MG062181	_		
293	Hydroporina	Sanfilippodytes	edwardsi	MNCI	:N-DM42 (California (USA)	I. Ribera & A. Cieslak	Lotic San	filippodytes		î	XXXXXXX	XXXXXXX	(XXXXXXX	XXXXXX
294	Hydroporina	Sanfilippodytes	edwardsi nr	IBE-A	4V20	California (USA); Big Morongo Canyon Preserve (Morongo Valley) 34°1'50'N,116°33'43'W, 3.4.2008	P. Abellán	Lotic San	filippodytes	×		XXXXXXX	XXXXXXX	(XXXXXXX	XXXXXX

...continued on the next page

269

COI 16S 18S H3	XXXXXXX XXXXXXX XXXXXXX	******	****	******	******	XXXXXXX XXXXXXX XXXXXXX	AJ850673 AJ850426 AJ850552 EF670202	******	KF575502 KF575565 KF575357	aY250953 AY250910 AJ850509 EF670184 4M588264 AY250910 AJ850509 EF670184	1M588265 HM588602 LS999692 LS999771	4M588267 HM588603 LS999693 LS999772	4M588268 HM588604 LS999694 LS999773	1M588269 HM588605 LS999695 LS999774	1M588271 HM588606 LS999696 LS999775	EF056604 AY250914 AJ318730 EF056561 1M588273 AY250914 AJ318730 EF056561	1M588274 HM588608 LS453474 LS453168	4M588278 HM588611 LS999697 LS999776	4Y250956 AY250915 AJ850510 EF670185	
mtgenome BAR	X	×	****	* ******	×	* *****	¥	X XXXXXX XXXXXXX	¥	LS999725 H	LS999726 HI	LS999727 H	HF947943 H	LS999728 HI	XXXXXX LS999729 HI	ΨŢ	LS451100 H	LLS999730 HI	LS999731 H	I 200003 I
Habitat clade	Lotic Sanfilippodytes	Lotic Sanfilippodytes	Lentic Sanfilippodytes	Lotic Sanfilippodytes	Lotic Sanfilippodytes	Lentic Sanfilippodytes	Lotic Sanfilippodytes	Both Sanfilippodytes	Lotic *deleted	Lentic Graptodytes Lotic	Lentic Graptodytes Lotic	Lentic Graptodytes Lentic	Both Graptodytes Lotic	Lotic Graptodytes Lotic	Lotic Graptodytes Lotic	Both *deleted	Lotic Graptodytes Lotic	Lentic Graptodytes Lentic	Lotic Graptodytes Lotic	Lotic Grantodytas Lotic
leg	ve, A.E.Z. Short	l, I. Ribera & A. Cieslak	D. Post	m I. Ribera & A. Cieslak	I. Ribera & A. Cieslak	ⁿ⁻ I. Ribera & A. Cieslak	S I. Ribera & A. Cieslak	Y. Alarie		I. Ribera, P. Aguilera, C. Hernando & A. Millán	I. Ribera	A.N. Nilsson	I. Ribera & A. Cieslak	A. Castro	, J.M. Bichain et al.	I. Ribera	s A. Castro	A.N. Nilsson	P. Aguilera	- Dihara 8. A. Ciaslak
Loc.	Galifornia (USA); Santa Barbara Co., UC Sedgewick Reset upper creek crossing, 6.7.2006	California (USA); Trinity co., junc. Rd. 36 & 14, Forest Glen Rattlesnake Creek, 22.6.2000	California (USA); Mendocino County, Rain Pools - Nat. Cons. Pygmy Forest Near Ltl. R. Airport, N - 39 25343, W - 123.74945	California (USA); Humbolt co., Avenue of the Giants, Strea nr. Red Crest, 22.6.2000	California (USA)	British Columbia (Canada); Rd. 3, 11 km W junct. 3B, Char pion L. Prov. Park Castlegar, 27.6.2000	California (USA); Mendocino co., Rd. 1 Manchester, pond City, 23.6.2000	California (USA); 9.2000		Morocco; Debdou, 50, Meson forestiere, 6.4.1999	Morocco: lac Afenourir, Azrou, 33°17'12.4"N 5°15'09.8"W, 29.4.2000	Sweden; Västerbotten prov., Åmsele, Vindelälven, river lagoon, 64°31'04"N, 19°20'52"E	Spain; Navarra, Pftillas, pond in crossroad, 42°25'29"N 6 1°38'35" W, 21.7.04	2 Tenerife (Spain); Chamorga, Bco. Roque Bermejo	Morocco: Tiqqi, cave Doussoulile N 30°44,529'W9°19,803' 28.7.2008	Spain; Huelva, Almonte, poblado forestal 26.7.1998	Spain; Córdoba, Sierra de Córdoba, Arroyo de los Arenale:	Sweden; Västerbotten prov., Åmsele, Vindelälven, river lagoon, 64°31'04"N, 19°20'52"E	Spain; Girona, Estanys de Capmany	Mallorca (Spain); Ternelles, Torrent de Ternelles, N
ies voucher	MNCN-AI127	NHM-IR372	IBE-RA489	NHM-IR375	MNCN-DM40	NHM-IR441	NHM-IR412	MNCN-DM26	genbank	NHM-IR206	MNCN-AI921	MNCN-AI608	MNCN-AI131	MNCN-AI109	IBE-AF33	NHM-IR40	MNCN-AI627	MNCN-AI609	NHM-IR531	MANCAL AL1777
species subspec	hardyi	malkini	setifer	sp1	sp2	sp3	terminalis	vilis	naturaconservatus	aequalis	atlantis	bilineatus	castilianus	delectus	eremitus	flavipes	fractus	granularis	ignotus	
genus	Sanfilippodytes	Sanfilippodytes	Sanfilippodytes	Sanfilippodytes	Sanfilippodytes	Sanfilippodytes	Sanfilippodytes	Sanfilippodytes	Ereboporus	Graptodytes	Graptodytes	Graptodytes	Graptodytes	Graptodytes	Graptodytes	Graptodytes	Graptodytes	Graptodytes	Graptodytes	
-ibe	łydroporina	Hydroporina	Hydroporina	Hydroporina	Hydroporina) Hydroporina	1 Hydroporina	2 Hydroporina	3 Siettitiina	4 Siettitiina	5 Siettitiina	6 Siettitiina	7 Siettitiina	8 Siettitiina	9 Siettitiina	0 Siettitiina	1 Siettitiina	2 Siettitiina	3 Siettitiina	- Cistolision

ued)	
ontin	
2 .	
ble S	
Та	

id subtribe	genus	species	subspecies	voucher	Loc.	leg	Habitat clade	mtgenome BAR COI 16S 18S H3
316 Siettitiina	Graptodytes	pictus		MNCN-AI660	Poland; Zachodniopomorsky, Dygowo: garden pond, N54°07'59" E15°42'49", 16.8.04	Ribera & A. Cieslak	Both Graptodytes Lentic	XXXXXXX LS999733 HM588290 HM588615 LS999700 LS999779
317 Siettitiina	Graptodytes	pietrii		MNCN-DM37	Tunisia; Rd. Beja-Teboursouk , Oued 3 km NW Teboursouk, I, 1 23.10.2001	Ribera & A. Cieslak	Lotic Graptodytes Lotic	XXXXXXX LS999734 HM588292 HM588616 LS999701 LS999780
318 Siettitiina	Graptodytes	sedilloti	phrygius	MNCN-AI111	Chios (Greece); Marmaro marsh G.	.N. Foster	Lentic Graptodytes Lentic	LS999735 HM588293 HM588618 LS999702 LS999781
319 Siettitiina	Graptodytes	sedilloti	sedilloti	NHM-IR585	Cyprus	Miller	Lentic Graptodytes Lentic	LS451098 HM588294 HM588619 LS453473 LS453167
320 Siettitiina	Graptodytes	siculus		MNCN-AH162	Sicily (Italy): Parco dei Nebrodi. Stream Trail Lago Urio - Pila. P. dell'Obolo, 33N 448991 E, 4193859 N, 13.06.07	Abellán & F. Picazo	Lotic Graptodytes Lotic	LS999736 HM588295 HM588620 LS999703 LS999782
321 Siettitiina	Graptodytes	varius		MNCN-AH160	Sicily (Italy); Parco dei Nebrodi, Stream Trail Lago Urio - Pila. P. dell'Obolo, 33N 448991 E, 4193859 N, 13.06.07	Abellán & F. Picazo	Both Graptodytes Lotic	XXXXXXX LS999737 HM588297 HM588622 LS999704 LS999783
322 Siettitiina	Graptodytes	veterator	behningi	MNCN-AI774	Turkey: Düzce, Rd. to Katalkaya from Çaydurt, pools in mountain pass, N40°40'20" E31°47'05", 23.4.2006	Ribera	Both Graptodytes Lentic	LS999738 HM588303 HM588624 LS999705 LS999784
323 Siettitiina	Graptodytes	veterator	veterator	MNCN-AH161	Sicily (Italy); Parco dei Nebrodi, Stream Trail Lago Urio - Pila. P. dell'Obolo, 33N 448991 E, 4193859 N, 13.06.07	Abellán & F. Picazo	Both Graptodytes Lentic	LS451095 HM588304 HM588625 LS453472 LS453105
324 Siettitiina	lberoporus	snube		MNCN-AI1007	Portugal; Viana do Castelo, ca. 6 km N Ponte de Lima, W Labruja, rest ponds of brook under bridge, 28.5.2006	. Fery	Lotic Iberoporus	LS999744 HF931143 HF931362 LS999710 LS999789
325 Siettitiina	lberoporus	argaensis		MNCN-AI179	Portugal; Serra de Arga, Pools on summit, 9.5.2005 D.	.T. Bilton	Lotic Iberoporus	HF948005 HF931183 HF931405 LS999711 LS999790
326 Siettitiina	lberoporus	cermenius		NHM-IR276	Spain; Cordoba, Priego de Cordoba 29.4.2000 A.	Castro	Lotic Iberoporus	LS451107 AY250958 AY250918 AJ850511 EF670186
327 Siettitiina	lberoporus	pluto		IBE-AN151	Portugal; G. Soprador do Carvalho, S. Reboleira S.	Reboleira	Lotic Iberoporus	XXXXXX LS999739 LS999756 LS999763 LS999706 LS999785
328 Siettitiina	Lioporeus	pilatei		IBE-AN699	USA N.	. Manuel & Baca	Lotic Lioporeus	XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
329 Siettitiina	Lioporeus	triangularis		IBE-AN698	USA N.	. Manuel & Baca	Lotic Lioporeus	XXXXXXX XXXXXXX XXXXXXX XXXXXXX
330 Siettitiina	Metaporus	meridionalis		NHM-IR34	Spain; Albacete, Robledo, Ojos de Villaverde	Ribera	Both *deleted	AY260869 AY260919 AJ318739 EF670187 HM588307 AY260919 AJ318739 EF670187
331 Siettitiina	Porhydrus	genei		IBE-RA86	Algeria: Garaet Aïn Nechma, 36° 50.261'N 7° 16.907'E, nr Ben-Azzouz (Skikda), 29.6.2009	Bouzid	Lentic Porhydrus	LS999740 HF931320 HF931543 LS999707 LS999786
332 Siettitiina	Porhydrus	lineatus		NHM-IR24	England (UK); Sommerset Levels, Chilton Trinity, 4.7.1998 I. I	Ribera	Lentic Porhydrus	LS999741 AY250973 AY250933 AJ318743 EF670188
333 Siettitiina	Porhydrus	obliquesignatus		IBE-RA147	Italy; Piano Grande, Piano di Castelluccio, 20.7.2009 M.	. Toledo	Lentic Porhydrus	XXXXXX LS999742 HF931305 LS999764 LS999708 LS999787
334 Siettitiina	Porhydrus	vicinus		MNCN-AH113	Portugal: Cercal, ephemeral pond, N37%47/29.1* W8%41'43.0°, I. I Rd. btw. Cercal & Vilanova, 24.1.2008 He	Ribera & P. Aguilera & C. emando	Lentic Porhydrus	LS999743 HF931132 HF931350 LS999709 LS999788
335 Siettitiina	Psychopompon	us felipi		genbank			Lotic *deleted	KF575574 KF575363
336 Siettitiina	Rhithrodytes	bimaculatus		IBE-RA727	Spain; Huesca, Aragués del Puerto, 23.7.2011	Esteban	Lotic Rhithrodytes	XXXXXX LS999745 LS999757 LS999765 LS999712 LS999791
								continued on the next page

Table S2. (cor	ntinued)							
id subtribe	genus	species	subspecies	voucher	Loc.	leg	Habitat clade	mtgenome BAR COI 16S 18S H3
337 Siettitiina	Rhithrodytes	crux		MNCN-AI302	Italy; prov. Alessandria, stream 2.5 km S Praglia, 18.10.2002	I. Ribera & A. Cieslak	Lotic Rhithrodytes	XXXXXXX LS451084 HF931187 HF931410 LS453475 LS453
338 Siettitiina	Rhithrodytes	numidicus	-	MNCN-DM34	Tunisia; Rd. Tabarka-Aîn-Draham, stream 1 km N Aîn-Dra- ham, 23.10.2001	I. Ribera & A. Cieslak	Lotic Rhithrodytes	LS999758 LS999766 LS999713 LS999
339 Siettitiina	Rhithrodytes	sexguttatus	-	NHM-IR183	Corsica; Porto-Vecchio, l'Ospedale, 18.9.1999	I. Ribera & A. Cieslak	Lotic Rhithrodytes	AY250975 AY250936 AJ850513 EF670
340 Siettitiina	Siettitia	avenionensis	-	MNCN-AI897	France; Barbentane, 12.1989	J. Dalmon	Lotic *deleted	LS999759 LS999714
341 Siettitiina	Stictonectes	abellani	_	IBE-PA312	Spain; Arroyo de los Pescados, PN Cabañeros, Ciudad Real 7.7.2008	A. Millán & col.	Lotic Stictonectes	LS451083 HF931298 HF931530 LS453469 LS453
342 Siettitiina	Stictonectes	azruensis	-	NHM-IR661	Morocco; Moyen Atlas, nr. Azrou, Col du Zad, 16.4.2001	Pellecchia & Pizzetti	Lotic Stictonectes	LS999746 AY250979 AY250940 LS999715 LS999
343 Siettitiina	Stictonectes	canariensis	_	IBE-AF114	Gran Canarias (Spain); ca. 2 km SSW EI Risco, Barranco Gügüi grande, 1,4.2008	J. Hájek & K. Kaliková	Lotic Stictonectes	LS999747 HF931113 HF931330 LS999716 LS999
344 Siettitiina	Stictonectes	epipleuricus	-	MNCN-AH73	Portugal; Serra de Sâo Mameme, Portalegre: r. Caia	I. Ribera	Lotic Stictonectes	LS999748 LS999760 LS999767 LS999717
345 Siettitiina	Stictonectes	escheri	-	MNCN-AH107	Morocco; Asilah, 27,3,2008, rd. N1, stream ca. 4 km S Asilah, N35°2510,5' W6°01'32,3', 27,3,2008	i, I. Ribera, P. Aguilera & C. Hernando	Lotic Stictonectes	XXXXXX LS999749 HF931130 HF931349 LS999718 LS999
346 Siettitina	Stictonectes	formosus	-	MNCN-AH108	Morocco; Asilah, 27.3.2008, rd. N1, stream ca. 4 km S Asilah, N35º25'10.5" W6º01'32.5", 27.3.2008	1, I. Ribera, P. Aguilera & C. Hernando	Lotic Stictonectes	LS999750 HF931131 LS999768 LS999719 LS999
347 Siettitiina	Stictonectes	lepidus	-	MNCN-AI632	Spain; Córdoba, Sierra Morena, Km 28.5 cta. Villaviciosa	A. Castro	Both Stictonectes	LS999751 LS999761 LS999761 LS999769 LS999720 LS999
348 Siettitiina	Stictonectes	occidentalis	-	NHM-IR529	Portugal; Algarve	P. Aguilera	Lotic Stictonectes	AY250980 AY250942 LS999
349 Siettitiina	Stictonectes	optatus	-	MNCN-AI1089	Spain; Jaén, Sierra de Cazorla, Ayo. Km 43.3 cta. Del Tranco	A. Castro	Lotic Stictonectes	XXXXXXX LS999752 LS999762 LS999770 LS999721 LS999
50 Siettitiina	Stictonectes	rebeccae	-	MNCN-AH72	Portugal; Serra Estrela, Sabugueiro, r. above village, N40°24.20° W.7°37'43°, 12.5.2005	I. Ribera	Lotic Stictonectes	LS999753 FR851207 FR851208 LS999722 LS999
351 Siettitiina	Stictonectes	rufulus	-	MNCN-AI1299	Sardinia: Road from Óschiri to Mount Limbara, 8 km from Tempio, 32T UTH 05103/45230	G.N. Foster	Lotic Stictonectes	LS999754 HF931179 HF931400 LS999723 LS999
352 Siettitiina	Stictonectes	samai	-	IBE-AF142	Algeria; Oued Bagrat, 24.3.2006	S. Bouzid	Lotic Stictonectes	XXXXXXX LS999755 HF931119 HF931336 LS999724 LS999
353 Siettitiina	Stictonectes	ds	-	MsC00C	Corsica; Porto-Vecchio, l'Ospedale, 18.9.1999	I. Ribera & A. Cieslak	Lotic Stictonectes	AY250981 AY250943 AJ850514 EF670
354 Siettitiina	Stygoporus	oregonensis	3	genbank			Lentic *deleted	KX882134 KX882132 KX882
355 Sternopriscina	ı Antiporus	bakewellii	3	genbank			Lotic Antiporus Lotic	FR732791 FR727255 FR727281 FR727
356 Sternopriscina	Antiporus	blakeii	3	genbank			Lotic Antiporus Lotic	FR733155 FR727288 FR727265 FR727
357 Sternopriscina	Antiporus	femoralis	-	NHM-IR97	Australia; SA, 1 k S Nangwarry	C.H.S. Watts	Lentic Antiporus Lentic	AJ850561 AJ850309 4J850437 EF670
								continued on the next pa

id subtribe genus	species	subspecies voucher	Loc.	leg	Habitat clade	migenome BAR COI 16S 18S H3
358 Sternopriscina Antiporus	gilbertii	genbank			Lentic Antiporus Lentic	FR733428 FR727262 FR727269 FR727320
359 Sternopriscina Antiporus	hollingsworthi	genbank			Lentic *deleted	FR732532 FR727247 FR727274 HG965673
360 Sternopriscina Antiporus	interrogationis	genbank			Lentic Antiporus Lentic	FR732678 FR727262 FR727278 FR727308
361 Sternopriscina Antiporus	jenniferae	genbank			Lotic Antiporus Lotic	FR732618 FR727306
362 Sternopriscina Antiporus	uncifer	NHM-IR633	New Zealand; Glenariffe, upper Rahaia river, 6.12.2000	R.M. McDownll	Lotic Antiporus Lentic	XXXXXX AJ850562 AJ850310 AJ850438 EF670094
363 Sternopriscina Antiporus	wilsoni	genbank			Lentic Antiporus Lotic	FR732824 FR727256 FR727282 FR727312
364 Sternopriscina Barretthydrus	geminatus	genbank			Lotic Barretthydrus	FR733549 HG940428
365 Sternopriscina Barretthydrus	stepheni	genbank			Lotic Barretthydrus	FR732757 HE818935 HE818972 HE819087
366 Sternopriscina Barretthydrus	tibialis	NHM-IR555	Australia; New South Wales, 4k N Eccleston	C.H.S. Watts	Lotic Barretthydrus	AJ850563 AJ850311 AJ850439 EF670095
367 Sternopriscina Brancuporus	gottwaldi	genbank			Lentic *deleted	FR732968 FR727314
368 Sternopriscina Carabhydrus	andreas	genbank			Lotic Carabhydrus	HG965634 HG940413 HG965590 HG965690
369 Sternopriscina Carabhydrus	niger	NHM-IR563	Tasmania (Australia); Dentention River 2km W Montumana Tasmania 17.11.00	C.H.S. Watts	Lotic Carabhydrus	AU850564 AJ850312 AJ850440 EF670096
370 Sternopriscina Carabhydrus	plicatus	genbank			Lotic Carabhydrus	DQ888640
371 Sternopriscina Carabhydrus	stephanieae	genbank			Lotic Carabhydrus	DQ888641
372 Sternopriscina Chostonectes	; gigas	genbank			Lotic Chostonectes	FR733160 HG940418 HG965595 HG965695
373 Sternopriscina Chostonectes	; johnsoni	genbank			Lotic Chostonectes	FR733199 HG940419 HG965596 HG965696
374 Sternopriscina Chostonectes	s maai	genbank			Lotic Chostonectes	HG965629
375 Sternopriscina Chostonectes	snsoluden	genbank			Lentic Chostonectes	FR733265 HG940422 HG965599 HG965699
376 Sternopriscina Chostonectes	sharpi	NHM-IR582	Australia; Queensland, Coolongatta, 2.01.2001	F. Johansson	Lotic Chostonectes	AU850565 AU850313 AU850441 EF670097
377 Sternopriscina Megaporus	feryi	genbank			Lentic *deleted	HG965628
378 Sternopriscina Megaporus	fischeri	genbank			Lotic *deleted	FR733464
						continued on the next page

273

<u>-</u>	18S H3	965603 HG965703	965585 HG965685	965581 HG965682	965594 HG965694	850442	965576 HG965674		965580 HG965681	965579 HG965679	965601 HG965701	965577 HG965676		XXXX EF670241	965600 HG965700	965586 HG965686		965604 HG965705		965583 HG965683			the next page
	16S	940426 HG	940408 HG	940405 HG	940417 HG	850314 AJ	940397 HG		940404 HG	940401 HG	940424 HG	940399 HG		850315 XX	940423 HG	940409 HG		940429 HG		940406 HG		616917	nued on
	col	3733470 HG	3732843 HG	3732717 HG	333142 HG	J850566 AJ	3965630 HG	3965627	3732711 HG	3732628 HG	3733381 HG	3732558 HG	3965639	J850567 AJ	3733378 HG	3732864 HG	3965631	333576 HG	3965636	3732783 HG	J549161	J616972 EU	conti
	BAR	Ë	Ë	Ë	Ë	XXXXX A.	Ħ	¥	Ë	Ë	Ë	Ë	H	XXXXX A.	Ħ	Ë	¥	Ë	H	Ë	K	Ш	
	mtgenome					х хххххх								х хххххх									
	clade	Surs	Drus	orus	7	7	orus	7		soma	soma	soma	soma	soma	soma	soma	soma	soma	soma	soma	-	Ļ	
	Habitat	Lentic Megapo	Lentic Megapo	Lentic Megapo	Both *deleted	Both *deleted	Lentic Megapo	Lotic *deleted	Lotic *deleted	Both Nectero	Lentic Nectero	Both Nectero	Lotic Nectero	Both Nectero	Lotic Nectero	Both Nectero	Lotic Nectero	Lotic Nectero	Lotic Nectero	Lotic Nectero	Lentic Paroste	Lentic Paroste	
-	leg					rton								Miller									
						.98 D. N								.16.39S 149.00.05E, K.B.									
-	Loc.					Australia; Kakadu, Jabiru lake, 4.10								Australia; NSW, 3 km W Cooma, 36 4.11.2000									
-	voucher	enbank	enbank	enbank	enbank	HM-IR64	enbank	enbank	enbank	enbank	enbank	enbank	enbank	HM-IR699	enbank	enbank	enbank	enbank	enbank	enbank	enbank	enbank	
	subspecies	Ō	6	6	ō	Z	0	ō	ō	ō	6	6	6	z	6	6	6	ō	6	6	6	Ō	
-	species	gardnen	hamatus	howittii	natvigi	rutipes	solidus	tristis	wilsoni	aphrodite	darwini	dispar	novaecaledoniae	penicillatum	regulare	schmeltzi	schoelleri	susanna	theonathani	undecimlineatum	angustus	arachnoides	
	genus	sulous	sulodage	ŝgaporus	sgaporus	sgaporus	ŝgaporus	sgaporus	ŝgaporus	cterosoma	scterosoma	scterosoma	scterosoma	scterosoma	scterosoma	scterosoma	scterosoma	scterosoma	scterosoma	scterosoma	Iroster	iroster	
	id subtribe	i79 Sternopriscina M€	80 Sternopriscina Me	81 Sternopriscina Me	82 Sternopriscina Me	i83 Sternopriscina M∈	84 Sternopriscina Me	i85 Sternopriscina M∈	86 Sternopriscina Me	87 Sternopriscina Ne	88 Sternopriscina Ne	89 Sternopriscina Ne	90 Sternopriscina Ne	91 Sternopriscina Ne	92 Sternopriscina Ne	93 Sternopriscina Ne	94 Sternopriscina Ne	95 Sternopriscina Ne	:96 Sternopriscina Ne	97 Sternopriscina Ne	i98 Sternopriscina Pa	.99 Sternopriscina Pa	
4	1	ю	e	С	е	e	e	Э	С	С	e	e	e	e	e	e	С	С	e	e	e	e	

id subtribe genus	species	subspecies	voucher	Loc.	leg	Habitat	clade	mtgenome BAR	COI	16S	18S	H3
400 Sternopriscina Paroster	baylyi	ō	lenbank			Lentic Paroster			HG965632 H	G940400 HG	1965578 HG	965678
401 Sternopriscina Paroster	snqinq	ō	lenbank			Lentic Paroster			EU616973			
402 Sternopriscina Paroster	byroensis	ō	lenbank			Lentic Paroster			EU616965 E	U616910		
403 Sternopriscina Paroster	copidotibiae	ō	lenbank			Lentic Paroster			EU616967 E	U616912		
404 Sternopriscina Paroster	couragei	6	enbank			Lentic Paroster			EU644497 E	U644493		
405 Sternopriscina Paroster	darlotensis	6	enbank			Lentic Paroster			EU616976 E	U616921		
406 Sternopriscina Paroster	dingbatensis	6	enbank			Lentic Paroster			EU616966 E	U616911		
407 Sternopriscina Paroster	eurypleuron	6	enbank			Lentic Paroster			EU616964 E	U616909		
408 Sternopriscina Paroster	extraordinarius	6	enbank			Lentic Paroster			GQ380574 G	Q380572		
409 Sternopriscina Paroster	fortispina	6	enbank			Lentic Paroster			AY350900 A	Y353847		
410 Sternopriscina Paroster	iddig	z	IHM-IR92	Australia; SA, 10k E Mt Compass	C.H.S. Watts	Lentic Paroster		XXXXXX	AJ850568 A	J850316 AJ	318742 EF	370098
411 Sternopriscina Paroster	hamoni	ō	lenbank			Lentic Paroster			AY350878 A	Y353825		
412 Sternopriscina Paroster	hinzeae	ō	lenbank			Lentic Paroster			AY350885 A	Y353832		
413 Sternopriscina Paroster	innoendyensis	6	enbank			Lentic Paroster			EU616968 E	U616913		
414 Sternopriscina Paroster	insculptilis	6	enbank			Lentic Paroster			AY350876 A	Y353823		
415 Sternopriscina Paroster	killaraensis	6	enbank			Lentic Paroster			EU616992 E	U616937		
416 Sternopriscina Paroster	macrocephalus	6	enbank			Lentic Paroster			EU616960 E	U616905		
417 Sternopriscina Paroster	macrosturtensis	ō	lenbank			Lentic Paroster		MG912995				
418 Sternopriscina Paroster	megamacrocephalus	ō	lenbank			Lentic Paroster			EU616990 E	U616935		
419 Sternopriscina Paroster	melroseensis	ō	lenbank			Lentic Paroster			EU616977 E	U616922		
420 Sternopriscina Paroster	mesosturtensis	ō	enbank			Lentic Paroster			EU616997 E	U616942		
									cont	tinued on	the nexi	page

subspecies v	species t	ų į
aank aank aank	genbarik genbarik genbarik	aelseni genbank sturtensis genbank riensis genbank
ank ank	gen bank gen bank	er <i>thyensis</i> genbank <i>avenensis</i> genbank
ank aank	genbank genbank	r genbank ad <i>umbratus</i> genbank
aan k aan k	genbank genbank	scens genbank <i>insis</i> genbank
ank ank ank	genbank genbank genbank	ameres genbank nicensis genbank hites genbank
ank ank	genbank genbank	astos genbank <i>Treros</i> genbank
aank aank	gen bank gen bank	dae genbank cos <i>us</i> genbank
aank Dank	genbank genbank	<i>jeensis</i> <i>i</i> genbank
aank	genbank	genbank
bank	genbank	genbank
bank	genbank	onaris genbank

(pən	
ontin	
5. (C	
le Si	
Tab	

id subtribe genus	species subspe	cies voucher	Loc.	Habitat	clade mtgenoi	ome BAR	COI 165	18S	Ħ
442 Sternopriscina Sternopriscus	balkei	genbank		Lotic Sternoprisc	us Lotic		FR732881 HE816	939 HE818978	HE819097
443 Sternopriscina Sternopriscus	barbarae	genbank		Lotic Sternoprisc	us Lentic	_	FR732974 HE816	943 HE818980	HE819101
444 Sternopriscina Sternopriscus	browni	genbank		Both Sternoprisc	us Lentic		FR732708 HE818	944 HE818981	HE819102
445 Sternopriscina Sternopriscus	clavatus	NHM-IR698	Australia: Victoria, 24 km W Hamilton, 37.34.49S 141.46.31E, K.B. Miller 11.1.2000	Both Sternoprisc	us Lotic XXXXX	XXXXXXX XX	AJ850569 AJ850	317 AJ850444	EF670099
446 Sternopriscina Sternopriscus	eikei	genbank		Lentic *deleted		_	FR733384 HE816	947 HE818984	HE819107
447 Sternopriscina Sternopriscus	emmae	genbank		Lotic Sternoprisc	us Lotic	-	HG 965637		
448 Sternopriscina Sternopriscus	goldbergi	genbank		Lotic Sternoprisc	us Lotic		FR733029	HE818985	HE819109
449 Sternopriscina Sternopriscus	hansardii	genbank		Lotic Sternoprisci	us Lotic	_	FR733319 HE816	949 HE818987	HE819110
450 Sternopriscina Sternopriscus	marginatus	genbank		Lotic Sternoprisc	us Lotic	_	FR733436 HE818	951 HE818988	HE819112
451 Sternopriscina Sternopriscus	meadfootii	genbank		Both Sternoprisc	us Lentic		FR732582 HE818	952	HE819113
452 Sternopriscina Sternopriscus	minimus	genbank		Lentic Sternoprisc	us Lentic	_	FR733393	HE818989	HE819114
453 Sternopriscina Sternopriscus	montanus	genbank		Lentic Sternoprisc	us Lentic	_	FR733462 HE816	955 HE818990	HE819115
454 Sternopriscina Sternopriscus	multimaculatus	genbank		Both Sternoprisc	us Lentic	_	FR732594 HE816	956 HE818991	HE819116
455 Sternopriscina Sternopriscus	mundanus	genbank		Both Sternoprisc	us Lentic		FR732906 HE818	945 HE818982	HE819103
456 Sternopriscina Sternopriscus	storeyi	genbank		Lentic Sternopriscr	us Lentic		FR732720 HE818	959 HE818994	HE819119
457 Stemopriscina Sternopriscus	tarsalis	genbank		Both Sternoprisci	us Lentic		FR733186 HE818	961 HE818997	HE819122
458 Sternopriscina Sternopriscus	tasmanicus	genbank		Lentic Sternoprisci	us Lentic		FR732710 HE818	962 HE818998	HE819123
459 Sternopriscina Sternopriscus	wallumphilia	genbank		Lotic Sternoprisci	us Lotic	_	FR732926		HE819125
460 Sternopriscina Sternopriscus	wattsi	genbank		Both Sternoprisc	us Lentic	_	FR732982 HE816	963 HE818999	HE819127
461 Sternopriscina Sternopriscus	weckwerthi	genbank		Lentic Sternoprisci	us Lentic	_	FR732888 HE816	966 HE819000	HE819130
462 Sternopriscina Sternopriscus	wehnckei	genbank		Both Sternoprisci	us Lentic	_	FR732936 HE816	967 HE819001	HE819131
							continue	ed on the n	ext page

*														
278	Table S2. (cont	inued)												
	id subtribe	genus	species	subspecies	voucher	Loc.	leg	Habitat	clade	mtgenome	BAR	COI 165	s 18S	H3
	463 Sternopriscina 5	iternopriscus	weiń		genbank			Lentic Sterno	priscus Lotic		FR	732762 HE818	970 HE8190	002 HE8191
	464 Sternopriscina 5	iternopriscus	williamsi		genbank			Lentic Sterno	priscus Lentic		FR	732694 HE816	971 HE8190	003 HE8191
	465 Sternopriscina 7	iporus	alastairi		genbank			Lotic Tiporus	s + Sekaliporus		FR	732513		
	466 Sternopriscina 7	iporus	centralis		genbank			Lotic Tiporus	s + Sekaliporus		FR	732645 HG940	1402	HG9656
	467 Sternopriscina 7	iporus	collaris		genbank			Lotic Tiporus	s + Sekaliporus		FR	732880 HG940	1412 HG9655	589 HG9656
	468 Sternopriscina 7	iporus	emmae		genbank			Lotic Tiporus	s + Sekaliporus		FR	732990		
	469 Sternopriscina 7	iporus	giuliani		genbank			Lotic Tiporus	s + Sekaliporus		FR	733050		
	470 Sternopriscina 7	iporus	josepheni		NHM-IR550	Australia; Queensland, 8k N Blue Water	C.H.S. Watts	Lotic Tiporus	s + Sekaliporus		ſΓΥ	350570 AJ850	318 AJ8504	145 EF6701
	471 Sternopriscina 7	iporus	lachlani		genbank			Lotic Tiporus	s + Sekaliporus		FR	732817 HG940	1407 HG9655	584 HG9656
	472 Sternopriscina 7	iporus	tambreyi		genbank			Lotic Tiporus	s + Sekaliporus		FR	733420 HG940	1425 HG9656	602 HG9657
	473 Sternopriscina 7	iporus	undecimmaculatus		genbank			Lotic Tiporus	s + Sekaliporus		FR	733046 HG940	1416 HG9655	593 HG9656

Table S3. Mean diversification rates and standa	Ind devia	tions ob	itained i	n BAMN	1 and M	M-estim	ator (3 c	different	s scena	rios).			
		N	ethod o	of mome	ents est	imator	(Magallo	ón and S	Sanders	on, 200′	(
	ω	0	Π ω	0.5	Π ω	0.9	ω	0 =	Π ω	0.5	Π ω	0.9	BAMM
	mean	sd	mean	sd	mean	sd	mean	sd	mean	sd	mean	sd	
complete phylogeny	0.060	0.007	0.057	0.006	0.044	0.005	NA	NA	NA	NA	NA	NA	0.056
Boreonectes	0.141	0.018	0.124	0.016	0.057	0.008	0.078	0.011	0.069	0.009	0.032	0.004	0.068
Clarkhydrus	0.051	0.010	0.044	0.009	0.018	0.004	0.035	0.005	0.030	0.004	0.013	0.002	0.056
Deronectes	0.059	0.007	0.054	0.006	0.033	0.004	0.040	0.005	0.037	0.004	0.022	0.003	0.056
Mystonectes	0.057	0.019	0.049	0.016	0.017	0.006	0.024	0.003	0.020	0.002	0.007	0.001	0.056
Nebrioporus	0.080	0.009	0.074	0.008	0.044	0.005	0.067	0.007	0.061	0.007	0.037	0.004	0.057
Nectoboreus	0.062	0.010	0.054	0.009	0.018	0.003	0.011	0.001	0.009	0.001	0.003	0.000	0.056
Nectoporus	0.047	0.006	0.041	0.005	0.018	0.002	0.033	0.005	0.029	0.004	0.013	0.002	0.056
Oreodytes	0.057	0.007	0.051	0.006	0.024	0.003	0.037	0.004	0.033	0.004	0.015	0.002	0.056
Scarodytes	0.102	0.013	0.091	0.011	0.044	0.005	0.057	0.007	0.051	0.006	0.025	0.003	0.057
Stictotarsus	0.036	0.005	0.031	0.005	0.010	0.002	0.017	0.002	0.014	0.002	0.005	0.001	0.057
Sanfilippodytes	0.077	0.010	0.069	0.009	0.037	0.005	0.040	0.005	0.036	0.004	0.019	0.002	0.074
Graptodytes	0.078	0.010	0.070	0.009	0.036	0.005	0.063	0.009	0.056	0.008	0.029	0.004	0.058
Iberoporus	0.039	0.005	0.033	0.005	0.011	0.002	0.031	0.005	0.026	0.004	0.009	0.001	0.057
Hydroporus plus Hydrocolus	0.094	0.011	0.088	0.010	0.062	0.007	0.071	0.008	0.067	0.008	0.047	0.005	0.089
Heterosternuta plus Neoporus plus Haideoporus	0.046	0.006	0.043	0.005	0.025	0.003	0.046	0.005	0.042	0.005	0.025	0.003	0.061
Porhydrus	0.021	0.003	0.018	0.002	0.006	0.001	0.012	0.001	0.010	0.001	0.003	0.000	0.055
Rhithrodytes	0.057	0.007	0.049	0.006	0.018	0.002	0.029	0.003	0.025	0.003	0.009	0.001	0.056
Stictonectes	0.078	0.009	0.069	0.008	0.031	0.004	0.032	0.004	0.028	0.003	0.013	0.001	0.056
Antiporus	0.056	0.007	0.049	0.006	0.023	0.003	0.042	0.005	0.037	0.005	0.017	0.002	0.056
Barretthydrus	0.015	0.002	0.013	0.002	0.004	0.001	0.007	0.001	0.006	0.001	0.002	0.000	0.055
Carabhydrus	0.030	0.004	0.027	0.004	0.011	0.002	0.025	0.003	0.022	0.003	0.009	0.001	0.055
Chostonectes	0.019	0.002	0.017	0.002	0.006	0.001	0.017	0.002	0.015	0.002	0.005	0.001	0.055
Megaporus	0.052	0.007	0.046	0.006	0.020	0.003	0.026	0.003	0.023	0.003	0.010	0.001	0.056
Necterosoma	0.045	0.007	0.040	0.006	0.017	0.003	0.025	0.003	0.022	0.003	0.010	0.001	0.056
Paroster	0.065	0.008	0.060	0.007	0.035	0.004	0.044	0.005	0.040	0.005	0.024	0.003	0.056
Sternopriscus	0.066	0.008	0.060	0.007	0.032	0.004	0.045	0.005	0.040	0.005	0.021	0.003	0.069
Tiporus	0.050	0.007	0.044	0.006	0.020	0.003	0.043	0.006	0.038	0.005	0.017	0.002	0.056

			Cata	logue		Sample	s
id	subtribe	genus	sp	spp	sp	spp	unknown lineages
1	Deronectina	Amurodytes	1		0		
2	Deronectina	Boreonectes	10	1	7	1	4
3	Deronectina	Clarkhydrus	10		4		
4	Deronectina	Deronectes	59	4	32	3	
5	Deronectina	Deuteronectes	2		1		
6	Deronectina	Hornectes	1		1		
7	Deronectina	Iberonectes	1		1		
8	Deronectina	Larsonectes	1		1		
9	Deronectina	Leconectes	1		1		
10	Deronectina	Mystonectes	5		3		
11	Deronectina	Nebrioporus	57	2	34	2	
12	Deronectina	Nectoboreus	3		2		
13	Deronectina	Nectomimus	1		1		
14	Deronectina	Nectoporus	9	2	7	2	
15	Deronectina	Neonectes	3		1		
16	Deronectina	Oreodytes	14	2	7	2	
17	Deronectina	Scarodytes	11	1	9	1	7
18	Deronectina	Stictotarsus	3		3	•	·
19	Deronectina	Trichonectes	1		1		
20	Deronectina	Zaitzevhydrus	1	1	1	1	
21	Hydroporina	Haideonorus	1		1		
22	Hydroporina	Heterosternuta	14		3		
22	Hydroporina	Hydrocolus	12		5		
20	Hydroporina	Hydroporus	189	12	111	7	11
25	Hydroporina	Neoporus	30	12	7	'	1
26	Hydroporina	Sanfilinnodytes	25		9		4
20	Siettitiina	Erebonorus	20		1		4
20	Siettitiina	Etruccodutoc	1		0		
20	Siettitiina	Grantodytes	22	2	18	2	
20 20	Siettitiina	Iberoporus	1	2	10	2	
21	Siettitiina	Liaparaua	4		4		
20	Siettitiine	Lioporeus	2		۲ ۲		
১∠ ১১	Siettitiine	Research	Z 4		1		
33	Siettitina	Pornyarus	4		4		
34	Siettitina	Psychopomporus			1		
35	Siettitiina	Rhithrodytes	0		4		
36	Slettitiina		2		1		
37	Siettitiina	Stictonectes	12		12		1
38	Slettitiina	Stygoporus	1		1		
39	Sternopriscina	Antiporus	15		9		
40	Sternopriscina	Barretthydrus	3		3		
41	Sternopriscina	Brancuporus	2		1		
42	Sternopriscina	Carabhydrus	10		4		
43	Sternopriscina	Chostonectes	6		5		
44	Sternopriscina	Megaporus	11		10		
45	Sternopriscina	Necterosoma	12		11		
46	Sternopriscina	Paroster	52		40		
47	Sternopriscina	Sekaliporus	2		1		
48	Sternopriscina	Sternopriscus	29		26		
49	Sternopriscina	Tiporus	13		9		
50	Unknown	Siamoporus	1		0		
51	Unknown	Tassilodytes	1		0		

Table S4. Number of species per genera currently recognized in Hydroporini and number of samples per genera.
Table S5. Rates estimated for extant taxa (speciation, extinction, diversification and its standard deviation - sd).

	Speciation	Extinction	Diversification	sd
Antiporus bakewellii GBK	0.060	0.003	0.058	0.007
Antiporus blakeii GBK	0.060	0.003	0.058	0.007
Antiporus femoralis IR97	0.060	0.003	0.057	0.007
Antiporus gilbertii GBK	0.060	0.003	0.058	0.007
Antiporus hollingsworthi GBK	0.060	0.003	0.057	0.007
Antiporus interrogationis GBK	0.060	0.003	0.057	0.007
Antiporus jenniferae GBK	0.060	0.003	0.057	0.007
Antiporus uncifer IR633	0.060	0.003	0.058	0.007
Antiporus wilsoni GBK	0.060	0.003	0.058	0.007
Barretthydrus geminatus GBK	0.060	0.003	0.057	0.007
Barretthydrus stepheni GBK	0.060	0.003	0.057	0.007
Barretthydrus tibialis IR555	0.060	0.003	0.057	0.007
Boreonectes alpestris RA263	0.146	0.034	0.111	0.028
Boreonectes emmerichi RA891	0.073	0.011	0.062	0.007
Boreonectes griseostriatus griseostriatus Al952	0.146	0.034	0.111	0.028
Boreonectes griseostriatus nr1 IR342	0.082	0.015	0.067	0.010
Boreonectes griseostriatus nr2 Al1160	0.076	0.013	0.064	0.008
Boreonectes griseostriatus nr3 Al1150	0.068	0.009	0.060	0.007
Boreonectes griseostriatus nr4 RA483	0.076	0.013	0.064	0.008
Boreonectes griseostriatus strandi Al1082	0.146	0.034	0.111	0.028
Boreonectes ibericus IR22	0.146	0.034	0.111	0.028
Boreonectes macedonicus AI1120	0.144	0.034	0.110	0.028
Boreonectes multilineatus RA255	0.145	0.034	0.111	0.028
Boreonectes riberae AI829	0.144	0.034	0.110	0.028
Brancuporus gottwaldi GBK	0.060	0.004	0.057	0.007
Carabhydrus andreas GBK	0.060	0.003	0.057	0.007
Carabhydrus niger IR563	0.060	0.003	0.057	0.007
Carabhydrus plicatus GBK	0.060	0.003	0.057	0.007
Carabhydrus stephanieae GBK	0.060	0.004	0.057	0.006
Chostonectes gigas GBK	0.060	0.003	0.057	0.007
Chostonectes johnsoni GBK	0.060	0.003	0.057	0.007
Chostonectes maai GBK	0.060	0.003	0.057	0.007
Chostonectes nebulosus GBK	0.060	0.003	0.057	0.007
Chostonectes sharpi IR582	0.060	0.003	0.057	0.007
Clarkhydrus corvinus GBK	0.060	0.003	0.058	0.007
Clarkhydrus deceptus AV27	0.061	0.003	0.058	0.007
Clarkhydrus falli IR334	0.060	0.003	0.058	0.007
Clarkhydrus roffii IR335	0.061	0.003	0.058	0.007
Deronectes abnormicollis AI120	0.060	0.003	0.058	0.007
Deronectes adanensis DV84	0.060	0.003	0.058	0.007
Deronectes algibensis IR76	0.061	0.003	0.058	0.007
Deronectes angelinii RA234	0.073	0.014	0.060	0.007
Deronectes angusi DV67	0.074	0.014	0.060	0.007
Deronectes aubei aubei DV150	0.066	0.006	0.060	0.007
Deronectes aubei sanfilippoi DV149	0.066	0.006	0.060	0.007
Deronectes bicostatus AI639	0.061	0.003	0.058	0.007
Deronectes brannanii Al178	0.061	0.003	0.058	0.007
Deronectes costipennis costipennis AI183	0.062	0.004	0.058	0.007
Deronectes costipennis gignouxi DV19	0.062	0.004	0.058	0.007
Deronectes delarouzei DV1	0.066	0.006	0.060	0.007
Deronectes depressicollis AI1023	0.061	0.003	0.058	0.007
Deronectes doriae AI775	0.061	0.003	0.058	0.007
Deronectes evelynae AV155	0.061	0.003	0.058	0.007
Deronectes fairmairei AI855	0.061	0.003	0.058	0.007
Deronectes ferrugineus AI731	0.061	0.004	0.058	0.007
Deronectes fosteri IR77	0.061	0.003	0.058	0.007

Habitat preferences, body size and diversification in a speciose lineage of diving beetles

Table S5. (continued)

	Speciation	Extinction	Diversification	sd
Deronectes hispanicus DV49	0.061	0.003	0.058	0.007
Deronectes lareynii IR165	0.061	0.004	0.058	0.007
Deronectes latus DV80	0.074	0.014	0.060	0.007
Deronectes moestus insconspectus AI937	0.061	0.003	0.058	0.007
Deronectes moestus moestus DV69	0.061	0.003	0.058	0.007
Deronectes nilssoni AF104	0.060	0.003	0.058	0.007
Deronectes opatrinus AI629	0.061	0.003	0.058	0.007
Deronectes parvicollis AI776	0.060	0.003	0.058	0.007
Deronectes persicus IR45	0.060	0.003	0.058	0.007
Deronectes platynotus Al1039	0.061	0.004	0.058	0.007
Deronectes sahlbergi Al1002	0.061	0.004	0.058	0.007
Deronectes semirufus DV59	0.066	0.006	0.060	0.007
Deronectes taron AV157	0.060	0.003	0.058	0.007
Deronectes theryi RA37	0.061	0.004	0.058	0.007
Deronectes toledoi DV6	0.073	0.014	0.060	0.007
Deronectes wewalkai AI725	0.061	0.004	0.058	0.007
Deronectes youngi IR182	0.060	0.003	0.058	0.007
Deuteronectes picturatus IR369	0.060	0.004	0.057	0.007
Ereboporus naturaconservatus GBK	0.060	0.004	0.057	0.007
Graptodytes aequalis IR206	0.084	0.020	0.064	0.008
Graptodytes atlantis Al921	0.075	0.016	0.059	0.007
Graptodytes bilineatus AI608	0.066	0.009	0.057	0.007
Graptodytes castilianus Al1316	0.084	0.020	0.064	0.008
Graptodytes delectus Al1092	0.086	0.021	0.065	0.009
Graptodytes eremitus AF33	0.078	0.018	0.061	0.007
Graptodytes flavipes IR40	0.063	0.006	0.057	0.007
Graptodytes fractus AI627	0.099	0.025	0.074	0.011
Graptodytes granularis Al609	0.066	0.009	0.058	0.007
Graptodytes ignotus IR531	0.099	0.025	0.074	0.011
Graptodytes kuchtai Al177	0.099	0.025	0.074	0.011
Graptodytes laeticulus HI16	0.099	0.025	0.074	0.011
Graptodytes pictus Al660	0.066	0.009	0.058	0.007
Graptodytes pietrii DM37	0.084	0.020	0.064	0.008
Graptodytes sedilloti phrygius Al111	0.066	0.009	0.058	0.007
Graptodytes sedilloti sedilloti IR585	0.066	0.009	0.058	0.007
Graptodytes siculus AH162	0.084	0.020	0.064	0.008
Graptodytes varius AH160	0.099	0.025	0.074	0.011
Graptodytes veterator behningi AI774	0.066	0.009	0.058	0.007
Graptodytes veterator veterator AH161	0.066	0.009	0.058	0.007
Haideoporus texanus GBK2	0.072	0.009	0.063	0.007
Heterosternuta allegheniana AV2	0.072	0.008	0.065	0.008
Heterosternuta pulchra AV4	0.072	0.008	0.065	0.008
Heterosternuta wickhami IR330	0.072	0.008	0.065	0.008
Hornectes quadrimaculatus IR366	0.060	0.004	0.057	0.007
Hydrocolus paugus AC43	0.121	0.035	0.087	0.010
Hydrocolus persimilis AV5	0.121	0.035	0.087	0.010
Hydrocolus rubyi GBK	0.121	0.035	0.086	0.010
Hydrocolus sahlbergi ER21	0.121	0.035	0.086	0.010
Hydrocolus stagnalis AV6	0.121	0.035	0.086	0.010
Hydroporus acutangulus ER1	0.135	0.045	0.091	0.011
Hydroporus analis AV9	0.135	0.045	0.091	0.011
Hydroporus angustatus GR16	0.122	0.036	0.087	0.010
Hydroporus apenninus AF60	0.156	0.057	0.099	0.012
Hydroporus appalachius GBK	0.122	0.035	0.087	0.010
Hydroporus axillaris DM32	0.121	0.035	0.087	0.010
Hydroporus basinotatus AH112	0.136	0.045	0.091	0.011

Table S5. (continued)

	Speciation	Extinction	Diversification	sd
Hydroporus bithynicus AI782	0.142	0.049	0.093	0.011
Hydroporus bodemeyeri bodemeyeri Al110	0.154	0.056	0.098	0.012
Hydroporus bodemeyeri guignoti RA216	0.154	0.056	0.098	0.012
Hydroporus brancoi brancoi Al228	0.154	0.056	0.098	0.012
Hydroporus brancoi gredensis AC9	0.154	0.056	0.098	0.012
Hydroporus brancuccii Al180	0.136	0.045	0.091	0.011
Hydroporus brevis DM23	0.131	0.042	0.089	0.010
Hydroporus brucki AN4	0.135	0.045	0.091	0.011
Hydroporus cagrankaya AI62	0.156	0.057	0.099	0.012
Hydroporus cantabricus Al122	0.154	0.056	0.098	0.012
Hydroporus carri GBK	0.122	0.035	0.087	0.010
Hvdroporus columbianus GBK	0.122	0.035	0.087	0.010
Hydroporus compunctus IR181	0.135	0.045	0.091	0.011
Hvdroporus constantini Al285	0.155	0.057	0.099	0.012
Hydroporus cuprescens IB647	0.154	0.056	0.098	0.012
Hydroporus decipiens DM31	0.135	0.045	0.091	0.011
Hydroporus dentellus IB575	0.121	0.035	0.087	0.010
Hydroporus despectus IB483	0.121	0.035	0.087	0.010
Hydroporus discretus cplx1 AI651	0.135	0.045	0.091	0.011
Hydroporus discretus cplx2 AV45	0.135	0.045	0.091	0.011
Hydroporus discretus cplx3 R4142	0 135	0.045	0.001	0.011
Hydroporus discretus AI641	0.135	0.045	0.001	0.011
Hydroporus distinguendus HI15	0.130	0.043	0.089	0.010
Hydroporus dobrogeanus coly AV/49	0.150	0.041	0.009	0.012
Hydroporus dobrogeanus DM85	0.150	0.057	0.099	0.012
Hydroporus dosolis PA030	0.130	0.037	0.099	0.012
Hydroporus dorsalis AA939	0.121	0.035	0.000	0.010
	0.121	0.035	0.007	0.010
Hydroporus enthrocophalus PA710	0.133	0.045	0.091	0.011
Hydroporus forruginous AI020	0.121	0.035	0.007	0.010
Hydroporus ferri DM22	0.142	0.049	0.093	0.011
	0.135	0.045	0.091	0.011
Hydroporus liguratus IR67	0.121	0.035	0.085	0.010
Hydroporus forus IR355	0.121	0.035	0.087	0.010
	0.130	0.045	0.091	0.011
Hydroporus toveolatus nr Divi 14	0.136	0.045	0.091	0.011
	0.135	0.045	0.091	0.011
Hydroporus galioprovincialis RA269	0.155	0.056	0.099	0.012
Hydroporus geniculatus ER3	0.122	0.035	0.087	0.010
	0.131	0.042	0.090	0.010
Hydroporus glasunovi dolini KA1204	0.135	0.045	0.091	0.011
	0.135	0.045	0.091	0.010
	0.156	0.057	0.099	0.012
nyaroporus guernei KA911	0.135	0.045	0.091	0.011
Hydroporus gyllenhalii GR12	0.130	0.041	0.090	0.010
Hydroporus hebaueri DM86	0.154	0.056	0.098	0.012
Hydroporus incognitus HA691	0.130	0.041	0.090	0.010
Hydroporus incommodus Al382	0.130	0.041	0.090	0.010
Hydroporus jonicus Al1233	0.130	0.041	0.089	0.010
Hydroporus kabakovi Al91	0.135	0.045	0.091	0.011
Hydroporus kasyi AV42	0.130	0.041	0.089	0.010
Hydroporus kozlovskii Al1264	0.137	0.045	0.092	0.011
Hydroporus kraatzi Al602	0.156	0.057	0.099	0.012
Hydroporus lapponum GBK	0.121	0.035	0.087	0.010
Hydroporus Iarsoni GBK	0.131	0.042	0.090	0.010
Hydroporus limbatus Al736	0.135	0.045	0.091	0.011
Hydroporus Iluci RA368	0.155	0.056	0.099	0.012

Habitat preferences, body size and diversification in a speciose lineage of diving beetles

Table S5. (continued)

	Speciation	Extinction	Diversification	sd
Hydroporus longicornis DM22	0.153	0.055	0.098	0.012
Hydroporus longiusculus IR345	0.122	0.035	0.087	0.010
Hydroporus longulus Al300	0.155	0.057	0.099	0.012
Hydroporus lucasi Al630	0.135	0.045	0.091	0.011
Hydroporus lundbladi IR664	0.135	0.045	0.091	0.011
Hydroporus macedonicus AI1265	0.136	0.045	0.091	0.011
Hydroporus mannerheimi IR485	0.122	0.035	0.087	0.010
Hydroporus mannerheimi nr IR526	0.122	0.035	0.087	0.010
Hydroporus marginatus Al61	0.135	0.045	0.091	0.010
Hydroporus melanarius RA636	0.154	0.056	0.098	0.012
Hydroporus memnonius gr AI764	0.153	0.055	0.098	0.012
Hydroporus memnonius IR315	0.154	0.056	0.098	0.012
Hydroporus morio ER22	0.121	0.035	0.086	0.010
Hydroporus necopinatus robertorum GBK	0.154	0.056	0.098	0.012
Hydroporus necopinatus roni GBK	0.154	0.056	0.098	0.012
Hydroporus necopinatus necopinatus AI1130	0.154	0.056	0.098	0.012
Hydroporus neglectus GR15	0.122	0.036	0.087	0.010
Hydroporus nevadensis AI640	0.155	0.057	0.099	0.012
Hydroporus nigellus IR506	0.122	0.035	0.087	0.010
Hydroporus niger gr1 AV7	0.121	0.035	0.086	0.010
Hydroporus signatus RA682	0.122	0.035	0.087	0.010
Hydroporus niger IR124	0.121	0.035	0.087	0.010
Hydroporus nigrita RA334	0.137	0.045	0.092	0.011
Hydroporus normandi alhambrae RA461	0.155	0.056	0.099	0.012
Hydroporus normandi ifnii GR13	0.154	0.056	0.098	0.012
Hydroporus normandi normandi AH105	0.155	0.056	0.099	0.012
Hydroporus notabilis Al92	0.121	0.035	0.087	0.010
Hydroporus obscurus ER4	0.121	0.035	0.087	0.010
Hydroporus obsoletus RA206	0.135	0.045	0.090	0.010
Hydroporus occidentalis IR517	0.122	0.035	0.087	0.010
Hydroporus paganettianus IR145	0.121	0.035	0.087	0.010
Hydroporus palustris Al19	0.130	0.041	0.090	0.010
Hydroporus pervicinus IR359	0.122	0.035	0.087	0.010
Hydroporus pfefferi RA1060	0.153	0.055	0.098	0.012
Hydroporus pilosus IR37	0.135	0.045	0.091	0.011
Hydroporus planus AN82	0.135	0.045	0.091	0.011
Hydroporus puberulus ER2	0.131	0.042	0.090	0.010
Hydroporus pubescens AN383	0.135	0.045	0.091	0.011
Hydroporus regularis IR166	0.155	0.057	0.099	0.012
Hydroporus rifensis AV218	0.130	0.041	0.090	0.010
Hydroporus rufifrons ER19	0.121	0.035	0.087	0.010
Hydroporus rufinasus GBK	0.121	0.035	0.087	0.010
Hydroporus sabaudus sabaudus DM16	0.137	0.045	0.092	0.011
Hydroporus sabaudus sierranevadensis PA262	0.137	0.045	0.092	0.011
Hydroporus sanfilippoi AH189	0.142	0.049	0.093	0.011
Hydroporus sardomontanus DM62	0.156	0.057	0.099	0.012
Hydroporus scalesianus IR38	0.122	0.036	0.086	0.010
Hydroporus semenowi DM24	0.121	0.035	0.087	0.010
Hydroporus signatus signatus GBK	0.122	0.035	0.087	0.010
Hydroporus sinuatipes GBK	0.121	0.035	0.087	0.010
Hydroporus springeri IR632	0.130	0.041	0.090	0.010
Hydroporus striola IR484	0.130	0.041	0.090	0.010
Hydroporus submuticus ER23	0.121	0.035	0.087	0.010
Hydroporus subpubescens AC46	0.122	0.035	0.087	0.010
Hydroporus tenebrosus GBK	0.122	0.035	0.087	0.010
Hydroporus tessellatus AI770	0.136	0.045	0.091	0.011

Table S5. (continued)

	Speciation	Extinction	Diversification	sd
Hydroporus tessellatus nr AN585	0.136	0.045	0.091	0.011
Hydroporus thracicus Al336	0.137	0.045	0.092	0.011
Hydroporus transgrediens RA217	0.135	0.045	0.091	0.011
Hydroporus transpunctatus IR341	0.121	0.035	0.087	0.010
Hydroporus tristis ER5	0.130	0.041	0.090	0.010
Hydroporus tristis nr IR521	0.130	0.041	0.090	0.010
Hydroporus umbrosus IR152	0.131	0.042	0.090	0.010
Hydroporus vagepictus IR28	0.130	0.041	0.090	0.010
Hydroporus vespertinus IR144	0.121	0.035	0.087	0.010
Hydroporus zimmermanni AH123	0.136	0.045	0.091	0.011
Iberonectes bertrandi IR30	0.061	0.003	0.057	0.007
Iberoporus agnus Al1007	0.060	0.003	0.058	0.007
Iberoporus argaensis AI179	0.060	0.003	0.058	0.007
Iberoporus cermenius IR276	0.060	0.003	0.058	0.007
Iberoporus pluto AN151	0.060	0.003	0.058	0.007
Larsonectes minipi AN861	0.061	0.004	0.057	0.007
Leconectes striatellus RA327	0.060	0.004	0.057	0.006
Lioporeus pilatei AN699	0.061	0.004	0.057	0.007
Lioporeus triangularis AN698	0.061	0.004	0.057	0.007
Megaporus feryi GBK	0.060	0.003	0.057	0.007
Megaporus fischeri GBK	0.060	0.003	0.058	0.007
Megaporus gardneri GBK	0.062	0.004	0.058	0.007
Megaporus hamatus GBK	0.062	0.004	0.058	0.007
Megaporus howittii GBK	0.061	0.004	0.058	0.007
Megaporus natvigi GBK	0.060	0.003	0.057	0.007
Megaporus rufipes IR64	0.060	0.003	0.057	0.007
Megaporus solidus GBK	0.061	0.003	0.058	0.007
Megaporus tristis GBK	0.060	0.003	0.057	0.007
Megaporus wilsoni GBK	0.060	0.003	0.057	0.007
Metaporus meridionalis IR34	0.062	0.005	0.057	0.007
Mystonectes coelamboides PB35	0.061	0.003	0.058	0.007
Mystonectes neomexicanus RA775	0.060	0.003	0.058	0.007
Mystonectes panaminti RA1086	0.061	0.003	0.058	0.007
Nebrioporus abyssinicus Al1227	0.061	0.004	0.058	0.007
Nebrioporus airumlus Al1179	0.061	0.004	0.058	0.007
Nebrioporus amicorum AF140	0.061	0.003	0.058	0.007
Nebrioporus assimilis Al607	0.063	0.006	0.058	0.007
Nebrioporus baeticus IR10	0.062	0.004	0.058	0.007
Nebrioporus bucheti cazorlensis Al926	0.063	0.005	0.058	0.007
Nebrioporus canaliculatus Al1044	0.061	0.004	0.057	0.007
Nebrioporus canariensis Al1091	0.061	0.004	0.058	0.007
Nebrioporus capensis RA850	0.061	0.004	0.057	0.007
Nebrioporus carinatus IR17	0.070	0.009	0.061	0.007
Nebrioporus ceresyi AI57	0.061	0.004	0.058	0.007
Nebrioporus clarkii IR46	0.063	0.005	0.058	0.007
Nebrioporus cooperi AN21	0.061	0.004	0.058	0.007
Nebrioporus croceus AI82	0.070	0.009	0.061	0.007
Nebrioporus depressus AI331	0.068	0.008	0.060	0.007
Nebrioporus dubius AI83	0.061	0.004	0.058	0.007
Nebrioporus elegans Al606	0.068	0.008	0.060	0.007
Nebrioporus fabressei IR169	0.070	0.009	0.061	0.007
Nebrioporus fenestratus AH175	0.062	0.005	0.058	0.007
Nebrioporus kilimandjarensis AN690	0.061	0.004	0.058	0.007
Nebrioporus lanceolatus IR650	0.061	0.003	0.058	0.007
Nebrioporus luctuosus RA724	0.062	0.004	0.058	0.007
Nebrioporus macronychus GBK	0.068	0.008	0.060	0.007

Habitat preferences, body size and diversification in a speciose lineage of diving beetles

Table S5. (continued)

	Speciation	Extinction	Diversification	sd
Nebrioporus martinii Al702	0.063	0.005	0.058	0.007
Nebrioporus mascatensis RA107	0.061	0.003	0.058	0.007
Nebrioporus millingeni RA607	0.061	0.004	0.057	0.007
Nebrioporus nemethi Al307	0.062	0.004	0.058	0.007
Nebrioporus nipponicus IR610	0.061	0.004	0.058	0.007
Nebrioporus rotundatus AC41	0.068	0.008	0.060	0.007
Nebrioporus sansii RA725	0.063	0.005	0.058	0.007
Nebrioporus sardus RA17	0.063	0.005	0.058	0.007
Nebrioporus scotti Al1225	0.061	0.004	0.058	0.007
Nebrioporus seriatus RA613	0.061	0.004	0.058	0.007
Nebrioporus stearinus stearinus IR134	0.061	0.003	0.058	0.007
Nebrioporus stearinus suavis Al109	0.061	0.003	0.058	0.007
Nebrioporus vagrans RA588	0.061	0.004	0.057	0.007
Necterosoma aphrodite GBK	0.100	0.019	0.081	0.017
Necterosoma darwini GBK	0.099	0.019	0.081	0.017
Necterosoma dispar GBK	0.100	0.019	0.081	0.017
Necterosoma novaecaledoniae GBK	0.060	0.003	0.057	0.007
Necterosoma penicillatum IR699	0.062	0.005	0.058	0.007
Necterosoma regulare GBK	0.060	0.003	0.057	0.007
Necterosoma schmeltzi GBK	0.100	0.019	0.081	0.017
Necterosoma schoelleri GBK	0.060	0.003	0.057	0.007
Necterosoma susanna GBK	0.060	0.003	0.057	0.007
Necterosoma theonathani GBK	0.060	0.003	0.057	0.007
Necterosoma undecimlineatum GBK	0.100	0.019	0.081	0.017
Nectoboreus dolerosus AN128	0.060	0.003	0.058	0.007
Nectoboreus funereus Al1208	0.060	0.003	0.058	0.007
Nectomimus okulovi RA1218	0.060	0.004	0.057	0.007
Nectoporus abbreviatus AI932	0.061	0.003	0.058	0.007
Nectoporus congruus IR440	0.060	0.003	0.058	0.007
Nectoporus crassulus IR451	0.060	0.003	0.058	0.007
Nectoporus obesus cordillerensis IR452	0.060	0.003	0.058	0.007
Nectoporus obesus obesus IR399	0.060	0.003	0.058	0.007
Nectoporus rhyacophilus IR367	0.061	0.003	0.058	0.007
Nectoporus sanmarkii alienus Al1134	0.060	0.003	0.058	0.007
Nectoporus sanmarkii sanmarkii Al973	0.060	0.003	0.058	0.007
Nectoporus subrotundus RA485	0.060	0.003	0.057	0.007
Neonectes natrix IR611	0.060	0.004	0.057	0.007
Neoporus arizonicus IR331	0.075	0.010	0.066	0.008
Neoporus clypealis AC48	0.072	0.008	0.065	0.008
Neoporus dilatatus AC49	0.075	0.010	0.066	0.008
Neoporus dimidiatus IR486	0.075	0.010	0.066	0.008
Neoporus mellitus GBK9	0.072	0.010	0.063	0.007
Neoporus sp1 IR598	0.072	0.008	0.064	0.008
Neoporus sp2 IR597	0.072	0.008	0.064	0.007
Neoporus sp3 AC47	0.072	0.008	0.065	0.008
Neoporus sp4 IR594	0.072	0.008	0.065	0.008
Neoporus superioris DM28	0.072	0.008	0.065	0.007
Neoporus undulatus IR75	0.072	0.008	0.065	0.008
Oreodytes alpinus Al977	0.073	0.008	0.065	0.008
Oreodytes davisii davisii Al1127	0.073	0.008	0.065	0.008
Oreodytes davisii rhianae ER33	0.073	0.008	0.065	0.008
Oreodytes mongolicus AI972	0.073	0.008	0.065	0.008
Oreodytes scitulus scitulus AV1	0.060	0.003	0.058	0.007
Oreodytes scitulus bisulcatus AN613	0.060	0.003	0.058	0.007
Oreodytes septentrionalis AI974	0.060	0.003	0.058	0.007
Oreodytes shorti Al965	0.060	0.003	0.058	0.007

Table S5. (continued)

	Speciation	Extinction	Diversification	sd
Oreodytes snoqualmie IR447	0.061	0.003	0.058	0.007
Paroster angustus GBK	0.060	0.003	0.057	0.007
Paroster arachnoides GBK	0.060	0.003	0.057	0.007
Paroster baylyi GBK	0.062	0.004	0.059	0.007
Paroster bulbus GBK	0.060	0.003	0.057	0.007
Paroster byroensis GBK	0.060	0.003	0.057	0.007
Paroster copidotibiae GBK	0.060	0.003	0.057	0.007
Paroster couragei GBK	0.060	0.003	0.058	0.007
Paroster darlotensis GBK	0.060	0.003	0.057	0.007
Paroster dingbatensis GBK	0.060	0.003	0.058	0.007
Paroster eurypleuron GBK	0.060	0.003	0.057	0.007
Paroster extraordinarius GBK	0.060	0.003	0.057	0.007
Paroster fortispina GBK	0.060	0.003	0.057	0.007
Paroster gibbi IR92	0.060	0.003	0.057	0.007
Paroster hamoni GBK	0.060	0.003	0.057	0.007
Paroster hinzeae GBK	0.060	0.003	0.057	0.007
Paroster innoendyensis GBK	0.060	0.003	0.057	0.007
Paroster insculptilis GBK	0.060	0.003	0.057	0.007
Paroster killaraensis GBK	0.060	0.003	0.057	0.007
Paroster macrocephalus GBK	0.060	0.003	0.057	0.007
Paroster macrosturtensis MG912995	0.060	0.003	0.057	0.007
Paroster megamacrocephalus GBK	0.060	0.003	0.057	0.007
Paroster melroseensis GBK	0.060	0.003	0.057	0.007
Paroster mesosturtensis GBK	0.060	0.003	0.057	0.007
Paroster michaelseni GBK	0.060	0.003	0.058	0.007
Paroster microsturtensis GBK	0.060	0.003	0.057	0.007
Paroster milgunensis GBK	0.060	0.003	0.057	0.007
Paroster napperbyensis GBK	0.060	0.003	0.057	0.007
Paroster newhavenensis GBK	0.060	0.003	0.057	0.007
Paroster niger GBK	0.060	0.003	0.057	0.007
Paroster nigroadumbratus GBK	0.060	0.003	0.058	0.007
Paroster pallescens GBK	0.062	0.004	0.059	0.007
Paroster peelensis GBK	0.060	0.003	0.057	0.007
Paroster pentameres GBK	0.060	0.003	0.057	0.007
Paroster plutonicensis GBK	0.060	0.003	0.057	0.007
Paroster skaphites GBK	0.060	0.003	0.057	0.007
Paroster stegastos GBK	0.060	0.003	0.057	0.007
Paroster tetrameres GBK	0.060	0.003	0.057	0.007
Paroster ursulae GBK	0.062	0.004	0.059	0.007
Paroster verrucosus GBK	0.060	0.003	0.057	0.007
Paroster wedgeensis GBK	0.060	0.003	0.057	0.007
Porhydrus genei RA86	0.060	0.003	0.058	0.007
Porhydrus lineatus IR24	0.060	0.003	0.057	0.007
Porhydrus obliquesignatus RA147	0.060	0.003	0.058	0.007
Porhydrus vicinus AH113	0.060	0.003	0.058	0.007
Psychopomporus felipi GBK14	0.061	0.008	0.053	0.006
Rhithrodytes bimaculatus RA727	0.060	0.003	0.058	0.007
Rhithrodytes crux AI302	0.060	0.003	0.058	0.007
Rhithrodytes numidicus DM34	0.060	0.003	0.058	0.007
Rhithrodytes sexguttatus IR183	0.060	0.003	0.058	0.007
Sanfilippodytes adelardi RA487	0.100	0.023	0.077	0.009
Sanfilippodytes bidessoides RA488	0.100	0.023	0.077	0.009
Sanfilippodytes compertus GBK	0.103	0.024	0.079	0.009
Sanfilippodytes edwardsi DM42	0.103	0.024	0.079	0.009
Sanfilippodytes edwardsi nr AV20	0.103	0.024	0.079	0.009
Sanfilippodytes hardyi AI1279	0.101	0.023	0.078	0.009

Habitat preferences, body size and diversification in a speciose lineage of diving beetles

Table S5. (continued)

	Speciation	Extinction	Diversification	sd
Sanfilippodytes malkini IR372	0.101	0.023	0.078	0.009
Sanfilippodytes setifer RA489	0.100	0.023	0.078	0.009
Sanfilippodytes sp1 IR375	0.100	0.023	0.078	0.009
Sanfilippodytes sp2 DM40	0.101	0.023	0.078	0.009
Sanfilippodytes sp3 IR441	0.103	0.024	0.079	0.009
Sanfilippodytes terminalis IR412	0.100	0.023	0.077	0.009
Sanfilippodytes vilis DM26	0.103	0.024	0.079	0.009
Scarodytes antoni AC6	0.064	0.006	0.059	0.007
Scarodytes fuscitarsis RA4	0.062	0.005	0.058	0.007
Scarodytes halensis nr1 AH121	0.063	0.005	0.058	0.007
Scarodytes halensis nr2 ER35	0.063	0.005	0.059	0.007
Scarodytes sp3 AH167	0.063	0.005	0.058	0.007
Scarodytes halensis AI773	0.063	0.005	0.059	0.007
Scarodytes sp4 AC15	0.062	0.004	0.058	0.007
Scarodytes sp5 AI893	0.062	0.004	0.058	0.007
Scarodytes malickyi AF139	0.063	0.005	0.058	0.007
Scarodytes nigriventris IR157	0.062	0.005	0.058	0.007
Scarodytes pederzanii AH168	0.062	0.004	0.058	0.007
Scarodytes roberti RA204	0.065	0.006	0.059	0.007
Scarodytes ruffoi AF62	0.062	0.004	0.058	0.007
Scarodytes savinensis cercyrae RA219	0.065	0.006	0.060	0.007
Scarodytes savinensis savinensis AI135	0.065	0.006	0.060	0.007
Scarodytes sp1 Al304	0.063	0.005	0.059	0.007
Scarodytes sp2 IR653	0.063	0.005	0.058	0.007
Sekaliporus kriegi GBK	0.060	0.003	0.057	0.007
Siettitia avenionensis AI897	0.060	0.003	0.058	0.007
Sternopriscus alligatorensis GBK	0.061	0.004	0.058	0.007
Sternopriscus alpinus GBK	0.348	0.104	0.238	0.056
Sternopriscus aquilonaris GBK	0.061	0.004	0.058	0.007
Sternopriscus balkei GBK	0.061	0.004	0.058	0.007
Sternopriscus barbarae GBK	0.348	0.104	0.238	0.056
Sternopriscus browni GBK	0.060	0.003	0.057	0.007
Sternopriscus clavatus IR698	0.061	0.003	0.058	0.007
Sternopriscus eikei GBK	0.060	0.003	0.057	0.007
Sternopriscus emmae GBK	0.061	0.003	0.058	0.007
Sternopriscus goldbergi GBK	0.061	0.004	0.058	0.007
Sternopriscus hansardii IR698	0.061	0.003	0.058	0.007
Sternopriscus marginatus GBK	0.060	0.003	0.057	0.007
Sternopriscus meadfootii GBK	0.348	0.104	0.238	0.056
Sternopriscus minimus GBK	0.063	0.005	0.058	0.007
Sternopriscus montanus GBK	0.348	0.104	0.238	0.056
Sternopriscus multimaculatus GBK	0.061	0.004	0.057	0.007
Sternopriscus mundanus GBK	0.348	0.104	0.238	0.056
Sternopriscus storeyi GBK	0.060	0.003	0.057	0.007
Sternopriscus tarsalis GBK	0.348	0.104	0.238	0.056
Sternopriscus tasmanicus GBK	0.348	0.104	0.238	0.056
Sternopriscus wallumphilia GBK	0.061	0.003	0.058	0.007
Sternopriscus wattsi GBK	0.060	0.003	0.057	0.007
Sternopriscus weckwerthi GBK	0.348	0.104	0.238	0.056
Sternopriscus wehnckei GBK	0.305	0.093	0.205	0.050
Sternopriscus weiri GBK	0.061	0.003	0.058	0.007
Sternopriscus williamsi GBK	0.348	0.104	0.238	0.056
Stictonectes abellani PA312	0.060	0.003	0.058	0.007
Stictonectes azruensis IR661	0.062	0.004	0.059	0.007
Stictonectes canariensis AF114	0.061	0.003	0.058	0.007
Stictonectes epipleuricus AH73	0.063	0.004	0.059	0.007

Table S5. (continued)

	Speciation	Extinction	Diversification	sd	
Stictonectes escheri AH107	0.060	0.003	0.058	0.007	
Stictonectes formosus AH108	0.060	0.003	0.058	0.007	
Stictonectes lepidus AI632	0.060	0.003	0.058	0.007	
Stictonectes occidentalis IR529	0.063	0.004	0.059	0.007	
Stictonectes sp MsCC	0.062	0.004	0.059	0.007	
Stictonectes optatus AI1089	0.063	0.004	0.059	0.007	
Stictonectes rebeccae AH72	0.063	0.004	0.059	0.007	
Stictonectes rufulus AI1299	0.060	0.003	0.058	0.007	
Stictonectes samai AF142	0.060	0.003	0.058	0.007	
Stictotarsus duodecimpustulatus IR42	0.060	0.003	0.058	0.007	
Stictotarsus maghrebinus IR236	0.060	0.003	0.058	0.007	
Stictotarsus procerus Al1116	0.060	0.003	0.058	0.007	
Stygoporus oregonensis GBK	0.060	0.004	0.057	0.006	
Tiporus alastairi GBK	0.060	0.003	0.057	0.007	
Tiporus centralis GBK	0.060	0.003	0.057	0.007	
Tiporus collaris GBK	0.060	0.003	0.057	0.007	
Tiporus emmae GBK	0.060	0.003	0.057	0.007	
Tiporus giuliani GBK	0.060	0.003	0.057	0.007	
Tiporus josepheni IR550	0.060	0.003	0.057	0.007	
Tiporus lachlani GBK	0.060	0.003	0.057	0.007	
Tiporus tambreyi GBK	0.060	0.003	0.057	0.007	
Tiporus undecimmaculatus GBK	0.060	0.003	0.057	0.007	
Trichonectes otini IR29	0.061	0.005	0.055	0.006	
Zaitzevhydrus formaster formaster Al1102	0.060	0.003	0.057	0.007	
Zaitzevhydrus formaster ulanulana RA1170	0.060	0.003	0.057	0.007	

Figure S1. Phylogeny obtained with RAxML. Numbers in nodes, bootstrap support values.

Figure S2. Collapsed phylogeny for clades with homogeneous habitat.

Figure S3. Consensus topology obtained in Beast, including genera and tribes names. Numbers in nodes, posterior probability.

General Discussion

General discussion

Through the six chapters of this thesis we examined how habitats guided the history of some lineages of aquatic beetles, and how saline environments are more diverse than expected. Most of our results matched our prior hypotheses, but others shed light on novel findings that will be the basis of future research.

Molecular phylogenies to understand relationships between taxa

As noted in the general introduction, molecular phylogenies are useful tools to disentangling evolutionary histories and to provide an appropriate understanding of the relationships between taxa. The main example of the advantageous of these tools can be found on Chapter 1, where the choice of unreliable complex morphological characters has led to conflicts between the extant systematics of Hygrotini tribe and its true history. The new classification of Hygrotini agrees with some simple morphological aspects, as the general body shape, and recognised relationships previously ignored, as the highly modified *Hygrotus descarpentriesi* being considered as a member of the genus *Hygrotus* and not a monotypic genus (*Heroceras*), as in previous classifications. Other disagreements can be found in Chapter 6, where previously related genera were found to not being monophyletic, such as *Hydroporus* (paraphyletic with *Hydrocolus*) and *Neoporus* (paraphyletic with *Heterosternuta* and *Haideoporus*). Several examples can be found of disagreements between morphological and molecular classifications in the literature, not only within insects (Mugleston *et al.*, 2013) but also in other lineages, like birds (Sweet *et al.*, 2017).

But molecular phylogenies are also useful in combination with morphological analyses, as demonstrated in Chapter 3. Prior beliefs suggested more species groups within Ochthebiini based on morphological similarities, and the molecular analysis reinforces those ideas, leading to the establishment of new species groups. However, discordance between molecular and morphological information can also be found, for example, within *Micragasma* subgenus (Chapter 4 and 5). While two previously described species seem to form a monophyletic clade, and despite the morphological resemblance of *O*. (*M*.) *minoicus* with *O*. (*M*.) *paradoxum*, our results question the monophyly of the subgenus. One likely explanation of this issue is the morphological convergence due to similar habitats (Losos *et al.*, 1998; Harmon *et al.*, 2005), a common phenomenon affecting species under selection pressures - like the one for species associated with coastal environments affected by saline water or other still unknown ecological factors.

A novel approach addressed by this thesis was the combination of sequences

obtained by classical Sanger sequencing with others obtained by Metagenomic tools. Metagenomic tools make use of Next Generation Sequencing technologies to produce high number of short sequences that can be easily assembled with bioinformatic tools at a reduced cost (Goodwin *et al.*, 2016). A direct comparison of classical analysis and this new approach can be found in the Ochthebiini/*Ochthebius* phylogenies (Chapters 3 and 5 respectively), where the addition of 42 partial or complete mitogenomes increased the support of most of the basal nodes like the position of the clade formed by *Enicocerus* plus *Hughleechia* or *Aulacochthebius* as sister to *Asiobates*. This approach was also used for Chapter 6, leading again to a fully supported backbone of the tree.

Evolution of saline environments and their long-term consequences

Following with environments linked to saline waters, one of the main goals of this thesis was to increase the knowledge about these environments. Until last decades, ecosystems affected by saline waters did not receive the deserved attention, but this trend is gradually changing. More research related with specimens living in saline environments is being published, like the description of new species, e.g. *Ochthebius lanthanus* (Ribera and Foster, 2018), the physiological aspects that make possible to tolerate saline water (Pallarés *et al.*, 2016; 2017b), the fundamental capabilities of saline water species (Arribas *et al.*, 2018) and how diversification takes places in saline environments (Mitterboeck *et al.*, 2016).

The research accomplished by this thesis for Dytiscidae and Hydraenidae families (Hygrotini and Ochthebiini, Chapters 2 and 5 respectively) complements the findings about the origin and evolution of tolerance to saline waters in family Hydrophilidae (Arribas *et al.*, 2014; Pallarés *et al.*, 2017a), and fulfils comprehensive understanding of salinity tolerance in the three most speciose families. In all cases, tolerance to saline waters had been acquired multiple times, but with slightly different evolutionary trends: Dytiscidae evolved the traits gradually, whilst Hydraenidae and specially Hydrophilidae (Arribas *et al.*, 2014) present some direct transitions from freshwater to hypersaline waters. However, a more recent study on Hydrophilidae (Pallarés *et al.*, 2017a) reconstructed tolerance to saline waters using a continuous variable under a Brownian Motion evolutionary model, finding a more gradual evolution of this trait in *Enochrus bicolor* group. Furthermore, direct transitions in Ochthebiini are always found in fairly isolated clades associated with coastal rockpools (Chapter 5).

Extreme specialization to saline waters (i.e. tolerance to hypersaline waters) was

found to be irreversible in all cases. Results in chapter 5 shown that tolerance to slightly saline waters may be a synapomorphic trait in *Ochthebius*, which is in agreement with the most recent comprehensive review by Arribas *et al.* (2018). Arribas *et al.* discovered that tolerance to salinity does not act as a trade-off as was though by others authors (e.g. Herbst, 2001; Latta *et al.*, 2012), so species inhabiting saline waters are generalist in their fundamental niches with similar fitness than freshwater species in freshwater environments, even if they only inhabit saline waters. These results may open a scenario where tolerance to some degree of salinity remained in most of the taxa within our study groups, so freshwater species may be able to persist in brackish waters (i.e. fundamental niches being larger than their realized niches, see Soberón and Arroyo-Peña, 2017 for a review on this hypothesis) in a similar mode than species currently living there.

Even if tolerance to hypersaline waters was irreversible - as expected for an evolutionary dead-end (Kelley and Farrel, 1998), we did not find evidence of differential diversification associated with freshwater, mesosaline or hypersaline species. Similar diversification patterns can be found for other expected dead-ends like cave adaptations, both in aquatic environments (Stern *et al.*, 2017) or in terrestrial ones (Cieslak *et al.*, 2014). These results confirm that extreme ecological adaptations may operate as diversification boost, such as the one found within *Cobalius* subgenus. This subgenus is well-adapted to hypersaline waters, and a core diversification shift (accelerating its diversification rate) was detected in Chapter 5 for species living in the eastern Mediterranean islands during the last five million years. We proposed that the increased habitat availability after the emergence of those islands may represent an ecological opportunity to diversification, even for this extremely adapted species (Stroud and Losos, 2016).

Moreover, all studied groups displayed a likely connection between periods of global aridification and the origin of tolerance to saline/hypersaline waters. The aridification events may accelerate diversification of lineages (Pepper *et al.*, 2011; Deepak and Karanth, 2018; Gutiérrez-Ortega *et al.*, 2018), but most of the lineages exhibit a pattern of gradual evolution through time with limited direct transitions to hypersaline waters.

Evolutionary patterns of habitat transitions between standing and running waters

Our prior hypotheses about diversification patterns across standing and running waters were eminently influenced by the habitat specialization hypothesis reviewed by Ribera (2008). In this work, several inferences were made about the expected evolutionary

outcomes, but the ones linked to differential diversification between habitats were not well defined. This thesis tried to fill the gaps in that hypothesis, finding whether diversification rates are determined by species habitats or habitat transitions. Some of the consequences of habitat stability on diversification were studied by Letsch et al. (2016) and Désamoré et al. (2018) with Odonata and Dytiscidae respectively, but their conclusions are limited because of their very incomplete sampling (as detailed in Chapter 6). We found similar diversificarion patterns among habitats, with overlapping posterior distributions. These posterior distributions were found to be slightly higher for species living in standing waters, in agreement with the findginds in Letsch et al. (2016). We also recovered similar results in the state speciation and extinction analyses (SSE). Additionally, diversification core shifts were detected in clades living in lentic environments (Sternopriscus and Boreonectes) or in heterogeneous clades were lotic species were outnumbered by the other habitat preference categories (Hydroporus plus Hydrocolus). Based on the habitat specialization hypothesis, speciation and extinction rates should be higher for lotic species, but there was not prediction about net diversification rates. Based on these result, we did not find clear evidence of differential net diversification rate, but slight differencias may indicate a positive role of lentic environments in the diversification in aquatic Coleoptera (although not conclusive). The absence of reliable methodologies to decouple speciation and extinction rates did not allow us to test the hypothesized higher speciation and extinction rates of lotic species.

We also analysed the relationship between habitat preference and body size evolution, with smaller species in more specialized habitat (lotic) and larger species in the less specialized habitat (those of category 'Both'). This gradient matched the habitat constraint on size predicted by Ribera and Nilsson (1995), and confirmed also by Pallarés *et al.* (2018) for *Hydroporus* and *Graptodytes* as well when they tested the Bergmann's rule in water beetles. The novelty of our approach allowed us to identify that body size evolution was directional to optimum values (i.e. an Ornstein-Uhlenbeck model), and that it was mostly associated to the evolution of lineages in a particular habitat and not in the transitions to a different one.

The reconstruction of ancestral habitat preference estimated the most common recent ancestor of Hydroporini as lotic, but the absence of outgroups may compromise this finding. In any case, transitions from lotic environments had a similar probability than those from lentic environments, demonstrating that lotic environments, a more specialized habitat according to Ribera (2008), are not displaying the irreversibility expected if they were acting as an evolutionary dead-end (Kelley and Farrel, 1998).

General highlights of diversification patterns for water beetles

In addition to the results about the diversification estimates discussed previously, more general patterns can be extracted from this thesis. A recent review (Bilton *et al.*, 2019) considered the research of diversification patterns a future issue to be address in water beetles due to the limiting sampling available to reconstruct comprehensive molecular phylogenies. Bloom *et al.* (2014) and Désamoré *et al.* (2018) tried to identify diversification patterns on Hydrophilidae and Dytiscidae respectively, but could not provide general conclusions due to their incomplete sampling (less than 4 % of the species were included in the phylogenies). As we showed during the introduction, the use of limited sampling during phylogenetic reconstruction affect the number of speciation events and the topology of phylogenies (Barraclough and Nee, 2001).

The use of comprehensive phylogenies in this thesis provide novel knowledge that shed light about how diversification rates have been evolving, and which methodologies are useful for that studies. One of the most criticized methodologies for estimate diversification rates is Bayesian Analysis of Macroevolutionary Mixtures (BAMM, Rabosky, 2014; see Chapter 6 for more information), but our results suggest similar rates estimates than another methodology widely used (Methods of Moments - Magallón and Sanderson, 2001). Most of the differences obtained between analyses were due to incompletely sampled clades or to isolated clades with small number of species, just as predicted by Rabosky (2019) in his defence of BAMM.

Conclusions

Conclusions

Chapter 1

- The tribe Hygrotini is monophyletic based on molecular data. The former five genera classification (sensu Miller & Bergsten, 2016) was not supported, revealing para- or polyphyly in all genera except for *Hyphoporus* Sharp.
- The definition of Hygrotini did not truly rely on unambiguous synapomorphic characters. A new character was presented with the intention to serve that role: the second carina at the base of the scape where it is articulated.
- Hygrotini is currently divided into two monophyletic genera: *Clemnius* Villastrigo et al. and *Hygrotus* Stephens, the former newly erected.
- *Clemnius* is a morphological heterogeneous genus distributed mainly in the Nearctic regions except for *Clemnius decoratus* Gyllenhal. *Clemnius* is divided into two subgenera: *Cyclopius* Villastrigo et al. and *Clemnius* s.str. *Cyclopius* is a well delimited subgenus whereas *Clemnius* s.str. is in turn divided into two groups based on morphological resemblance but not supported by molecular data.
- *Hygrotus* is widely distributed and comprise 4 subgenera: *Coelambus* Thomson, *Hygrotus* s.str., *Hyphoporus* and *Leptolambus* Villastrigo et al. *Hygrotus* s.str. is assembled by a combination of species from the former genera *Herophydrus* Guignot, *Heroceras* Guignot and *Hygrotus*.

Chapter 2

- The origin of Hygrotini is dated in the Paleocene, with primary splits that defined current taxonomic ranks during the first half of the Eocene.
- Multiple origins of tolerance to saline waters appeared in independent lineages in Hygrotini, whilst species able to tolerate hypersaline waters are concentrated in two clades, one in the Palaearctic and another in the Nearctic regions.
- The mode of evolution of tolerance to saline waters in Hygrotini was gradual, without direct transitions from freshwater to hypersaline habitats. There were reversal transitions from slightly saline waters to freshwater habitats, but hypersaline specialization is not reversible.
- · There is not a clear link between aridification and tolerance to saline waters in

Hygrotini. However, the oldest transitions to saline waters that lead to the highest number of hypersaline species took place at the same period as a global decrease in temperature and precipitations, which can imply a connection between aridification and tolerance to saline waters.

Chapter 3

• The tribe Ochthebiini is monophyletic. It includes six genera: *Meropathus* Enderlein, *Ochthebius* Leach, *Protochthebius* Perkins, *Prototympanogaster* Perkins, *Tympallopatrum* Perkins and *Tympanogaster* Perkins. The genus *Ochthebius* comprise nine subgenera in addition to the nominal subgenus: *Angiochthebius* Jäch & Ribera, *Asiobates* Thomson, *Aulacochthebius* Kuwert, *Cobalius* Rey, *Enicocerus* Stephens, *Gymnanthelius* Perkins stat.n., *Gymnochthebius* Orchymont, *Hughleechia* Perkins stat.n., and *Micragasma* Sahlberg.

• New relationships between subgenera were discovered: *Aulacochthebius* as closely related to *Asiobates*, *Gymnochthebius* as closely related to *Gymnanthelius*, and a possible relationship between *Hughleechia* and *Enicocerus*. Surprisingly, *Micragasma* was not a basal lineage within *Ochthebius*, and the two rockpool lineages (*quadricollis* group and *Cobalius* subgenera) living mainly in the Mediterranean basin plus the Macaronesia were not related between them.

• We identified 17 species groups within *Ochthebius* s.str., four of them newly described (*corrugatus*, *nitidipennis*, *peisonis* and *sumatrensis* groups) and two of them (*atriceps* and *rivalis* groups) were created from the division of other species groups (*foveolatus* and *metallescens* groups respectively).

• Two subspecies of *Ochthebius* were elevated to species rank: *O. fallaciosus* Ganglbauer stat.n. and *O. deletus* Rey stat.rest.

Chapter 4

• Ochthebius (Micragasma) minoicus from Crete is described as a new species.

• *Micragasma* is a poorly known subgenus with only 3 species recorded in 7 localities.

• Although the habitat of *Micragasma* species is unknown, mostly all localities are placed in the coast. In the case of *O*. (*M*.) *minoicus*, it was found to be linked to coastal rockpools.

Chapter 5

• The most frequent transitions among habitat salinity in Ochthebiini are found from mesosaline species. Despite the reconstructed freshwater ancestor of Ochthebiini, the high frequency of transition may support an early origin of tolerance to saline waters.

• Tolerance to hypersaline waters is an irreversible trait in Ochthebiini and it was originated multiple independent times. Hypersalinity tolerance appeared during the Paleocene-Eocene thermal maximum (PETM), a period associated with increased temperatures and decreased precipitation likely linked with a reduction of freshwater habitat availability.

• Two core shifts were detected on diversification rates linked with *Asiobates* and the species of *Cobalius* inhabiting eastern Mediterranean islands that arose 20 million years ago. This increased habitat availability likely promote diversification in *Cobalius*.

 Hypersalinity tolerance was not correlated with a decrease in diversification rates, implying that extreme habitat specialization is not an evolutionary dead-end.
Despite the likely influence of tolerance to saline waters on diversification rates, there is no evidence of it being the main factor promoting diversification.

Chapter 6

• Hydroporini exhibit heterogeneous diversification rates across lineages, with two to three core diversification shifts. Diversification shifts were detected within *Boreonectes*, *Sternopriscus* and the clade formed by *Hydrocolus* plus *Hydroporus*, all of them with a majority the species linked to lentic environments.

• We found similar diversification pattern between lotic and lentic habitats. The overlapping posterior distributions of both habitats showed a slightly higher rate for species living in lentic habitats. In any case, lotic environments did not follow an evolutionary dead-end pattern, as they showed similar transitions rates than lentic species.

• Body size evolution showed strong phylogenetic signal following an Ornstein-Uhlenbeck evolutionary model. Species living in lotic environments have the smallest body sizes, followed by lentic species and species in category 'both'. This trend implies a negative correlation between body size and habitat specialization. • Evolution of body size take place during the evolution of lineages within a habitat and it was not linked to habitat transitions.

References

- Abadi, S., Azouri, D., Pupko, T., Mayrose, I. (2019). Model selection may not be a mandatory step for phylogeny reconstruction. *Nature communications*, **10(1)**, 1–37.
- Abellán, P., Gómez-Zurita, J., Millán, A., Sánchez-Fernández, D., Velasco, J., Galián, J., Ribera, I. (2007). Conservation genetics in hypersaline inland waters: Mitochondrial diversity and phylogeography of an endangered Iberian beetle (Coleoptera: Hydraenidae). *Conservation Genetics*, **8**, 79–88.
- Abellán, P., Millán, A., Ribera, I. (2009). Parallel habitat-driven differences in the phylogeographical structure of two independent lineages of Mediterranean saline water beetles. *Molecular Ecology*, **18**, 3885–3902.
- Abellán, P., Ribera, I. (2011). Geographic location and phylogeny are the main determinants of the size of the geographical range in aquatic beetles. *BMC Evolutionary Biology*, **11**, 1–15.
- Alarie, Y., Michat, M.C. (2007). Phylogenetic analysis of Hydroporinae (Coleoptera: Dytiscidae) based on larval morphology, with description of first instar of *Laccornellus lugubris*. *Annals of the Entomological Society of America*, **100**, 655–665.
- Andújar, C., Serrano, J., Gómez-Zurita, J. (2012). Winding up the molecular clock in the genus *Carabus* (Coleoptera: Carabidae): assessment of methodological decisions on rate and node age estimation. *BMC Evolutionary Biology*, **12**, 40.
- Andújar, C., Arribas, P., Ruzicka, F., Crampton-Platt, A., Timmermans, M.J.T.N., Vogler, A.P. (2015). Phylogenetic community ecology of soil biodiversity using mitochondrial metagenomics. *Molecular Ecology*, **24**, 3603–3617.
- Arribas, P., Andújar, C., Abellán, P., Velasco, J., Millán, A., Ribera, I. (2014). Tempo and mode of the multiple origins of salinity tolerance in a water beetle lineage. *Molecular Ecology*, **23**, 360–373.
- Arribas, P., Gutiérrez-Cánovas, C., Botella-cruz, M., Cañedo-Argüelles, M., Carbonell, J.A., Millán, A., Pallarés, S., Velasco, J., Sánchez-Fernández, D. (2018). Insect communities in saline waters consist of realised but not fundamental niche specialists. *Philosophical Transactions of the Royal Society B*, 374(1764), p20180008.
- Bameul, F. (1989). Redéfinition des *Meropathus* Enderlein, 1901 des archipels subantarctiques de l'Océan Indien, et notes sur les autres espèces et la biogéographie du genre (Coleoptera, Hydraenidae). *Nouvelle Revue d'Entomologie (N.S.)*, 6, 219–229.
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. *Journal of computational biology*, **19**, 455–477.

- Barraclough, T.G., Nee, S. (2001). Phylogenetics and speciation. *Trends in Ecology and Evolution*, **16**, 391–399.
- Beaulieu, J.M., O'Meara, B.C. (2016). Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. *Systematic Biology*, **65**, 583–601.
- Benton, M.J., Donoghue, P.C.J., Asher, R.J. (2009). Calibrating and Constraining the Molecular Clock. *Journal of Vertebrate Paleontology*, **29**, 89A-89A.
- Benton, M.J., Wills, M.A., Hitchin, R. (2000). Quality of the fossil record through time. *Nature*, **403**, 1–4.
- Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., Stadler, P.F. (2013). MITOS: Improved de novo metazoan mitochondrial genome annotation. *Molecular Phylogenetics and Evolution*, **69**, 313–319.
- Bilton, D.T., Freeland, J.R., Okamura, B. (2001). Dispersal in freshwater invertebrates. *Annual review of ecology and systematics*, **32(1)**, 159–181.
- Bilton, D.T., Ribera, I., Short, A.E.Z. (2019). Water Beetles as Models in Ecology and Evolution. *Annual Review of Entomology*, **64**, 359-377.
- Bloom, D.D., Fikáček, M., Short, A.E.Z. (2014). Clade age and diversification rate variation explain disparity in species richness among water scavenger beetle (Hydrophilidae) lineages. *PLoS ONE*, **9(6)**, e98430.
- Boisvert, S., Raymond, F., Godzaridis, É., Laviolette, F., Corbeil, J. (2012). Ray Meta: Scalable de novo metagenome assembly and profiling. *Genome Biology*, **13(12)**, R122.
- Bolger, A.M., Lohse, M., Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics*, **30**, 2114–2120.
- Brown, W.M., George, M., Wilson, A.C. (1979). Rapid evolution of animal mitochondrial DNA. *Proceedings of the National Academy of Sciences*, **76**, 1967–1971.
- Brusatte, S.L., Carr, T.D. (2016). The phylogeny and evolutionary history of tyrannosauroid dinosaurs. *Scientific Reports*, **6**, 1–8.
- Caetano, D.S., O'Meara, B.C., Beaulieu, J.M. (2018). Hidden state models improve state-dependent diversification approaches, including biogeographical models. *Evolution*, **72**, 2308–2324.
- Calosi, P., Bilton, D.T., Spicer, J. (2007). The diving response of a diving beetle: Effects of temperature and acidification. *Journal of Zoology*, **273**, 289–297.
- Carle, F.L., Kjer, K.M., May, M.L. (2015). A molecular phylogeny and classification of Anisoptera (Odonata). *Arthropod Systematics and Phylogeny*, **73**, 281–301.
- Chen, S., Zhou, Y., Chen, Y., Gu, J. (2018). Fastp: An ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics*, **34**, i884–i890.
- Chen, Y.C., Wang, C.T., Lees, D.C., Wu, L.W. (2018). Higher DNA insert fragment sizes improve mitogenomic assemblies from metagenomic pyrosequencing datasets: an example using Limenitidinae butterflies (Lepidoptera, Nymphalidae). *Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis*, **29**, 840–845.
- Cieslak, A., Fresneda, J., Ribera, I. (2014). Life-history specialization was not an evolutionary dead-end in Pyrenean cave beetles. *Proceedings. Biological sciences / The Royal Society*, **281**, 20132978.
- Cooper, S.J.B., Hinze, S., Leys, R., Watts, C.H.S., Humphreys, W.F. (2002). Islands under the desert: molecular systematics and evolutionary origins of stygobiontic water beetles (Coleoptera: Dytiscidae) from central Western Australia. *Invertebrate Systematics*, 16, 589–598.
- Crampton-Platt, A., Andújar, C., Vogler, A.P., Timmermans, M.J.T.N., Arribas, P., Ruzicka, F. (2015). Phylogenetic community ecology of soil biodiversity using mitochondrial metagenomics. *Molecular Ecology*, **24**, 3603–3617.
- Crampton-Platt, A., Yu, D.W., Zhou, X., Vogler, A.P. (2016). Mitochondrial metagenomics: letting the genes out of the bottle. *GigaScience*, **5**, 15.
- Cyriac, V.P., Kodandaramaiah, U. (2018). Digging their own macroevolutionary grave: fossoriality as an evolutionary dead end in snakes. *Journal of Evolutionary Biology*, **31**, 587–598.
- Day, E.H., Hua, X., Bromham, L. (2016). Is specialization an evolutionary dead end? Testing for differences in speciation, extinction and trait transition rates across diverse phylogenies of specialists and generalists. *Journal of evolutionary biology*, 29, 1257–1267.
- Deepak, V., Karanth, P. (2018). Aridification driven diversification of fan-throated lizards from the Indian subcontinent. *Molecular Phylogenetics and Evolution*, **120**, 53–62.
- Désamoré, A., Laenen, B., Miller, K.B., Bergsten, J. (2018). Early burst in body size evolution is uncoupled from species diversification in diving beetles (Dytiscidae). *Molecular Ecology*, **27**, 979–993.
- Drummond, A.J., Ho, S.Y.W., Phillips, M.J., Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. *PLoS Biology*, **4**, 699–710.
- Eldredge, N., Gould, S.J. (1972). Punctuated equilibria: an alternative to phyletic gradualism, *In*: Essential Readings in Evolutionary Biology. pp. 82–115.
- Endress, P.K. (2011). Evolutionary diversification of the flowers in angiosperms. *American Journal of Botany*, **98**, 370–396.

- Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a Maximum Likelihood approach. *Journal of Molecular Evolution*, **17**, 368–376.
- Fitzjohn, R.G. (2012). Diversitree: Comparative phylogenetic analyses of diversification in R. *Methods in Ecology and Evolution*, **3**, 1084–1092.
- Garcia-Porta, J., Simó-Riudalbas, M., Robinson, M., Carranza, S. (2017). Diversification in arid mountains: biogeography and cryptic diversity of *Pristurus rupestris rupestris* in Arabia. *Journal of Biogeography*, **44**, 1694–1704.
- Gavrilets, S., Losos, J.B. (2009). Adaptive Radiation: Contrasting theory with data. *Science*, **323**, 732–737.
- Gioria, M. (2014). Habitats, in: Yee, D.A. (Eds.), Ecology, systematics, and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae). Springer Netherlands, Hattiesburg, pp. 307–362.
- Goodwin, S., McPherson, J.D., McCombie, W.R. (2016). Coming of age: ten years of next-generation sequencing technologies. *Nature Reviews Genetics*, **17**, 333–351.
- Gutiérrez-Ortega, J.S., Yamamoto, T., Vovides, A.P., Pérez-Farrera, M.A., Martínez, J.F., Molina-Freaner, F., Watano, Y., Kajita, T. (2018). Aridification as a driver of biodiversity: A case study for the cycad genus *Dioon* (Zamiaceae). *Annals of Botany*, **121**, 47–60.
- Haag-Liautard, C., Coffey, N., Houle, D., Lynch, M., Charlesworth, B., Keightley, P.D. (2008). Direct estimation of the mitochondrial DNA mutation rate in *Drosophila melan*ogaster. PLoS Biology, 6, 1706–1714.
- Haeckel, E. (1866). *Generelle morphologie der organismen*. Georg Reimer, Berlin, Germany.
- Harmon, L.J., Kolbe, J.J., Cheverud, J.M., Losos, J.B. (2005). Convergence and the multidimensional niche. *Evolution*, **59**, 409–421.
- Harmon, L.J., Losos, J.B., Jonathan Davies, T., Gillespie, R.G., Gittleman, J.L., Bryan Jennings, W., Kozak, K.H., McPeek, M.A., Moreno-Roark, F., Near, T.J., Purvis, A., Ricklefs, R.E., Schluter, D., Schulte, J.A., Seehausen, O., Sidlauskas, B.L., Torres-Carvajal, O., Weir, J.T., Mooers, A.T. (2010). Early bursts of body size and shape evolution are rare in comparative data. *Evolution*, **64**, 2385–2396.
- Hasegawa, M., Kishino, H., Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. *Journal of Molecular Evolution*, **22**, 160–174.
- Helmstetter, A.J., Papadopulos, A.S.T., Igea, J., Van Dooren, T.J.M., Leroi, A.M., Savolainen, V. (2016). Viviparity stimulates diversification in an order of fish. *Nature Communications*, 7, 1–7.

- Henao Diaz, L.F., Harmon, L.J., Sugawara, M.T.C., Miller, E.T., Pennell, M.W. (2019). Macroevolutionary diversification rates show time dependency. *Proceedings of the National Academy of Sciences of the United States of America*, 201818058.
- Hennig, W. (1965). Phylogenetic systematics. Annual review of entomology, 10, 97–116.
- Herbst, D.B. (2001). Gradients of salinity stress, environmental stability and water chemistry as a templet for defining habitat types and physiological strategies in inland salt waters. *Hydrobiologia*, **466**, 209–219.
- Herrera-Alsina, L., van Els, P., Etienne, R.S. (2019). Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. *Systematic Biology*, 68, 317–328.
- Hof, C., Brändle, M., Brandl, R. (2006). Lentic odonates have larger and more northern ranges than lotic species. *Journal of Biogeography*, **33**, 63–70.
- Hoff, M., Orf, S., Riehm, B., Darriba, D., Stamatakis, A. (2016). Does the choice of nucleotide substitution models matter topologically? *BMC Bioinformatics*, **17**, 1–13.
- Howarth, F.G. (2009). Cave Insects, In: Encyclopedia of Insects. Elsevier Inc., pp. 139-143.
- Hutchinson, G.E. (1957). Concluding remarks, *In*: Cold Spring Harbor Symposium on Quantitative Biology 22. pp. 415–427.
- Jablonski, D. (2008). Species selection: theory and data. *Annual Review of Ecology, Evolution, and Systematics*, **39**, 501–524.
- Jäch, M.A., Balke, M. (2008). Global diversity of water beetles (Coleoptera) in freshwater. *Hydrobiologia*, **595(1)**, 419–442.
- Jackson, D.J. (1952). Observations on the capacity for flight of water beetles. *Physiological Entomology*, **27**, 57–70.
- Jukes, C., Cantor, T. (1969). Evolution of protein molecules, *In*: Munro, H. (Ed.), Mammalian Protein Metabolism. Academic Press, New York, pp. 21–132.
- Kaliontzopoulou, A., Adams, D.C. (2016). Phylogenies, the comparative method, and the conflation of tempo and mode. *Systematic Biology*, **65**, 1–15.
- Kelley, S.T., Farrell, B.D. (1998). Is specialization a dead end ? The phylogeny of host use in *Dendroctonus* bark beetles. *Evolution*, **52**, 1731–1743.
- Kodandaramaiah, U., Murali, G. (2018). What affects power to estimate speciation rate shifts? *PeerJ*, **6**, e5495.
- Kozak, K.H., Wiens, J.J. (2010). Accelerated rates of climatic-niche evolution underlie rapid species diversification. *Ecology Letters*, **13**, 1378–1389.

- Kubo, T., Iwasa, Y. (2006). Inferring the rates of branching and extinction from molecular phylogenies. *Evolution*, **49**, 694.
- Lande, R. (1976). Natural selection and random genetic drift in phenotypic evolution. *Evolution*, **30**, 314–334.
- Lanfear, R., Ho, S.Y.W., Jonathan Davies, T., Moles, A.T., Aarssen, L., Swenson, N.G., Warman, L., Zanne, A.E., Allen, A.P. (2013). Taller plants have lower rates of molecular evolution. *Nature Communications*, **4**, 1–7.
- Langille, B.L., Tierney, S.M., Austin, A.D., Humphreys, W.F., Cooper, S.J.B. (2018). How blind are they? Phototactic responses in stygobiont diving beetles (Coleoptera: Dytiscidae) from calcrete aquifers of Western Australia. *Austral Entomology*.
- Larsen, B.B., Miller, E.C., Rhodes, M.K., Wiens, J.J. (2017). Inordinate fondness multiplied and redistributed: the number of species on Earth and the new pie of life. *The Quarterly Review of Biology*, **92**, 229–265.
- Larson, D.J., Alarie, Y., Roughley, R.E. (2000). Predaceous diving beetles (Coleoptera: Dytiscidae) of the Nearctic Region with emphasis on the fauna of Canada and Alaska. NRC Research Press, Ottawa.
- Latta, L.C., Weider, L.J., Colbourne, J.K., Pfrender, M.E. (2012). The evolution of salinity tolerance in *Daphnia*: A functional genomics approach. *Ecology Letters*, **15**, 794–802.
- LeGrice, R.J., Tezanos-Pinto, G., de Villemereuil, P., Holwell, G.I., Painting, C.J. (2019). Directional selection on body size but no apparent survival cost to being large in wild New Zealand giraffe weevils. *Evolution*.
- Letsch, H., Gottsberger, B., Ware, J.L. (2016). Not going with the flow: A comprehensive time-calibrated phylogeny of dragonflies (Anisoptera: Odonata: Insecta) provides evidence for the role of lentic habitats on diversification. *Molecular Ecology*, 25, 1340– 1353.
- Leys, R., Watts, C.H.S. (2008). Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on *Carabhydrus*. *Invertebrate Systematics*, **22**, 217–225.
- Li, H., Wiens, J.J. (2019). Time explains regional richness patterns within clades more often than diversification rates or area. *The American naturalist*, **193(4)**.
- Linard, B., Crampton-Platt, A., Moriniere, J., Timmermans, M.J., Andújar, C., Arribas, P.,
 Miller, K.E., Lipecki, J., Favreau, E., Hunter, A., Gomez-Rodriguez, C., Barton, C., Nie,
 R., Gillett, C.P., Breeschoten, T., Bocak, L., Vogler, A.P. (2018). The contribution of
 mitochondrial metagenomics to largescale data mining and phylogenetic analysis of
 Coleoptera. *Molecular phylogenetics and Evolution*, **128**, 280792.

- Losos, J.B., Jackman, T.R., Larson, A., Queiroz, K. De, Rodriguez-schettino, L. (1998). Contingency and determinism in replicated adaptive radiations of island lizards. *Science*, **279**, 2115–2118.
- Madden, T.L., Camacho, C., Ma, N., Coulouris, G., Avagyan, V., Bealer, K., Papadopoulos, J. (2009). BLAST+: architecture and applications. *BMC Bioinformatics*, **10**, 421.
- Maddison, W.P., Midford, P.E., Otto, S.P. (2007). Estimating a binary character's effect on speciation. *Systematic biology*, **56**, 701–710.
- Magallón, S., Sanderson, M.J. (2001). Absolute diversification rates in Angiosperm clades. *Evolution*, **55**, 1762–1780.
- Malmstrøm, M., Matschiner, M., Tørresen, O.K., Star, B., Snipen, L.G., Hansen, T.F., Baalsrud, H.T., Nederbragt, A.J., Hanel, R., Salzburger, W., Jakobsen, K.S., Stenseth, N.C., Jentoft, S. (2016). Evolution of the immune system influences speciation rates in teleost fishes. *Nature Genetics*, **48**, 1204–1210.
- May, M.R., Moore, B.R. (2016). How well can we detect lineage-specific diversification-rate shifts? A simulation study of sequential AIC methods. *Systematic Biology*, **65**, 1076– 1084.
- Mckenna, D.D., Wild, A.L., Kanda, K., Bellamy, C.L., Beutel, R.G., Caterino, M.S., Farnum, C.W., Hawks, D.C., Ivie, M.A., Jameson, M.L., Leschen, R.A.B., Marvaldi, A.E., Mchugh, J. V., Newton, A.F., Robertson, J.A., Thayer, M.K., Whiting, M.F., Lawrence, J.F., Slipinski, A., Maddison, D.R., Farrell, B.D., Ślipiński, A., Maddison, D.R., Farrell, B.D., Slipinski, A., Maddison, D.R., Farrell, B.D. (2015). The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. *Systematic Entomology*, 40, 835–880.
- Mcpeek, M.A., Brown, J.M. (2007). Clade age and not diversification rate explains species richness among animal taxa. *The American Naturalist*, **169(4)**, E97-E106.
- Meyer, A.L.S., Román-Palacios, C., Wiens, J.J. (2018). BAMM gives misleading rate estimates in simulated and empirical datasets. *Evolution*, **72(10)**, 2257–2266.
- Meyer, A.L.S., Wiens, J.J. (2018). Estimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shifts. *Evolution*, **72**, 39–53.
- Meyer, J.R., Kassen, R. (2007). The effects of competition and predation on diversification in a model adaptive radiation. *Nature*, **446**, 432–435.
- Millán, A., Velasco, J., Gutiérrez-Cánovas, C., Arribas, P., Picazo, F., Sánchez-Fernández, D., Abellán, P. (2011). Mediterranean saline streams in southeast Spain: What do we know? *Journal of Arid Environments*, **75**, 1352–1359.

Miller, K.B., Bergsten, J. (2016). Diving beetles of the world: Systematics and biology of the

Dytiscidae. JHU Press.

- Mitterboeck, T.F., Chen, A.Y., Zaheer, O.A., Ma, E.Y.T., Adamowicz, S.J. (2016). Do saline taxa evolve faster? comparing relative rates of molecular evolution between freshwater and marine eukaryotes. *Evolution*, **70(9)**, 1960-1978.
- Moen, D., Morlon, H. (2014). Why does diversification slow down? *Trends in Ecology and Evolution*, **29**, 190–197.
- Monaghan, M.T., Gattolliat, J.L., Sartori, M., Elouard, J.M., James, H., Derleth, P., Glaizot, O., De Moor, F., Vogler, A.P. (2005). Trans-oceanic and endemic origins of the small minnow mayflies (Ephemeroptera, Baetidae) of Madagascar. *Proceedings of the Royal Society B: Biological Sciences*, **272**, 1829–1836.
- Moore, B.R., Huelsenbeck, J.P., Rannala, B., May, M.R., Höhna, S. (2016). Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. *Proceedings of the National Academy of Sciences*, **113**, 9569–9574.
- Mugleston, J.D., Song, H., Whiting, M.F. (2013). A century of paraphyly: A molecular phylogeny of katydids (Orthoptera: Tettigoniidae) supports multiple origins of leaf-like wings. *Molecular Phylogenetics and Evolution*, **69**, 1120–1134.
- Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J., Kravitz, S.A., Mobarry, C.M., Reinert, K.H.J., Remington, K.A., Anson, E.L., Bolanos, R.A., Chou, H.-H., Jordan, C.M., Halpern, A.L., Lonardi, S., Beasley, E.M., Brandon, R.C., Chen, L., Dunn, P.J., Lai, Z., Liang, Y., Nusskern, D.R., Zhan, M., Zhang, Q., Zheng, X., Rubin, G.M., Adams, M.D., Venter, J.C. (2000). A whole-genome assembly of Drosophila. *Science*, **287**, 2196–2204.
- Nilsson, A.N., Holmes, M. (1995). The aquatic Adephaga (Coleoptera) of Fennoscandia and Denmark, Volume II. Dytiscidea. Brill.
- Pallarés, S., Arribas, P., Bilton, D.T., Millán, A., Velasco, J., Ribera, I. (2017a). The chicken or the egg? Adaptation to desiccation and salinity tolerance in a lineage of water beetles. *Molecular Ecology*, **26(20)**, 5614-5628.
- Pallarés, S., Botella-cruz, M., Arribas, P., Millán, A., Velasco, J. (2017b). Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation. *The Journal of Experimental Biology*, **220**, 1277–1286.
- Pallarés, S., Lai, M., Abellán, P., Ribera, I., Sánchez-Fernández, D. (2018). An interspecific test of Bergmann's rule reveals inconsistent body size patterns across several lineages of water beetles (Coleoptera: Dytiscidae). *Ecological Entomology*, 44(2), 249-254.
- Pallarés, S., Velasco, J., Millán, A., Bilton, D.T., Arribas, P. (2016). Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting ha-

bitat preferences? PeerJ, 4, e2382.

- Parker, A.R., Lawrence, C.R. (2001). Water capture by a desert beetles. *Nature*, **414**, 33–34.
- Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L. (2012). IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. *Bioinformatics*, 28, 1420–1428.
- Pepper, M., Fujita, M.K., Moritz, C., Keogh, J.S. (2011). Palaeoclimate change drove diversification among isolated mountain refugia in the Australian arid zone. *Molecular Ecology*, **20**, 1529–1545.
- Perkins, P.D. (2007). A revision of the Australian intertidal water beetle genus *Hughleechia* Perkins (Coleoptera: Hydraenidae). *Zootaxa*, **1527**, 17–29.
- Perkins, P.D. (2006). A revision of the Australian humicolous and hygropetric water beetle genus *Tympanogaster* Perkins, and comparative morphology of the Meropathina (Coleoptera: Hydraenidae). *Zootaxa*, **1346**, 1–396.
- Philippe, H., Brinkmann, H., Lavrov, D. V., Littlewood, D.T.J., Manuel, M., Wörheide, G., Baurain, D. (2011). Resolving difficult phylogenetic questions: Why more sequences are not enough. *PLoS Biology*, **9**, e1000602.
- Polak, S. (2005). Importance of discovery of the first cave beetle *Leptodirus hochenwartii* Schmidt, 1832. *Endins*, **28**, 71–80.
- Prum, R.O., Brush, A.H. (2002). The evolutionary origin and diversification of feathers. *The Quarterly Review of Biology*, **77**, 261–294.
- Quince, C., Walker, A.W., Simpson, J.T., Loman, N.J., Segata, N. (2017). Shotgun metagenomics, from sampling to analysis. *Nature Biotechnology*, **35**, 833–844.
- Rabosky, D.L. (2009). Ecological limits and diversification rate: Alternative paradigms to explain the variation in species richness among clades and regions. *Ecology Letters*, **12**, 735–743.
- Rabosky, D.L. (2014). Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. *PLoS ONE*, **9(2)**, e89543.
- Rabosky, D.L. (2018). BAMM at the court of false equivalency: A response to Meyer and Wiens. *Evolution*, **72(10)**, 2246–2256.
- Rabosky, D.L. (2019). Phylogenies and diversification rates: Variance cannot be ignored. *Systematic Biology*.
- Rabosky, D.L., Mitchell, J.S., Chang, J. (2017). Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. *Systematic Biology*, **66**,

477-498.

- Reznick, D.N., Ricklefs, R.E. (2009). Darwin's bridge between microevolution and macroevolution. *Nature*, **457**, 837–842.
- Ribera, I. (2008). Habitat constraints and the generation of diversity in freshwater macroinvertebrates, *In*: Lancaster, J., Briers, R.A. (Eds.), *Aquatic Insects: Challenges to Populations: Proceedings of the Royal Entomological Society's 24th Symposium.* pp. 289–311.
- Ribera, I., Barraclough, T.G., Vogler, A.P. (2001). The effect of habitat type on speciation rates and range movements in aquatic beetles: Inferences from species-level phylogenies. *Molecular Ecology*, **10**, 721–735.
- Ribera, I., Foster, G.N. (2018). Report of Frank Balfour-Browne's collecting in Gran Canaria and Madeira (1932-1933), with the description of *Ochthebius* (*Cobalius*) *lanthanus* sp. nov. (Coleoptera, Hydraenidae). *Zootaxa*, 4524(1), 65-76.
- Ribera, I., Foster, G.N., Vogler, A.P. (2003). Does habitat use explain large scale species richness patterns of aquatic beetles in Europe? *Ecography*, **26**, 145–152.
- Ribera, I., Nilsson, A.N. (1995). Morphometric patterns among diving beetles (Coleoptera: Noteridae, Hygrobiidae, and Dytiscidae). *Canadian Journal of Zoology*, **73**, 2343–2360.
- Ribera, I., Reboleira, A.S.P.S. (2019). The first stygobiont species of Coleoptera from Portugal, with a molecular phylogeny of the Siettitia group of genera (Dytiscidae, Hydroporinae, Hydroporini, Siettitiina). *ZooKeys*, **813**, 21–38.
- Ribera, I., Vogler, A.P. (2000). Habitat type as a determinant of species range sizes: the example of lotic – lentic differences in aquatic Coleoptera. *Biological Journal of the Linnean Society*, **71**, 33–52.
- Ricklefs, R.E. (2007). Estimating diversification rates from phylogenetic information. *Trends in Ecology and Evolution*, **22**, 601–610.
- Rodrigues, J.F.M., Diniz-Filho, J.A.F. (2016). Ecological opportunities, habitat, and past climatic fluctuations influenced the diversification of modern turtles. *Molecular Phylogenetics and Evolution*, **101**, 352–358.
- Rolland, J., Condamine, F.L., Jiguet, F., Morlon, H. (2014). Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. *PLoS Biology*, **12**.
- Salichos, L., Rokas, A. (2013). Inferring ancient divergences requires genes with strong phylogenetic signals. *Nature*, **497**, 327–331.

Sánchez-Fernández, D., Lobo, J.M., Millán, A., Ribera, I. (2012). Habitat type mediates

equilibrium with climatic conditions in the distribution of Iberian diving beetles. *Global Ecology and Biogeography*, **21**, 988–997.

- Schmieder, R., Edwards, Ro. (2011). Quality control and preprocessing of metagenomic datasets. *Bioinformatics*, **27**, 863–864.
- Short, A.E.Z. (2018). Systematics of aquatic beetles (Coleoptera): current state and future directions. *Systematic Entomology*, **43**, 1–18.
- Silvestro, D., Antonelli, A., Salamin, N., Quental, T.B. (2015). The role of clade competition in the diversification of North American canids. *Proceedings of the National Academy of Sciences*, **112**, 8684–8689.
- Soberon, J., Arroyo-Peña, B. (2017). Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. *PLoS ONE*, **12**, 1–14.
- Southwood, T.R.E. (1988). Tactics, strategies and templets. Oikos, 52, 3–18.
- Steiper, M.E., Seiffert, E.R. (2012). Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. *Proceedings of the National Academy of Sciences*, **109**, 6006–6011.
- Stern, D.B., Breinholt, J., Pedraza-Lara, C., López-Mejía, M., Owen, C.L., Bracken-Grissom, H., Fetzner, J.W., Crandall, K.A. (2017). Phylogenetic evidence from freshwater crayfishes that cave adaptation is not an evolutionary dead-end. *Evolution*, **71**, 2522–2532.
- Stork, N.E. (2018). How many species of insects and other terrestrial arthropods are there on Earth? *Annual Review of Entomology*, **63**, 31–45.
- Stroud, J.T., Losos, J.B. (2016). Ecological opportunity and adaptive radiation. *Annual Review of Ecology, Evolution, and Systematics*, **47**, 507–532.
- Sweet, A.D., Maddox, J.D., Johnson, K.P. (2017). A complete molecular phylogeny of Claravis confirms its paraphyly within small New World ground-doves (Aves: Peristerinae) and implies multiple plumage state transitions. *Journal of Avian Biology*, **48**, 459–464.
- Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., Willerslev, E. (2012). Towards next-generation biodiversity assessment using DNA metabarcoding - Buscar con Google. *Molecular Ecology*, **21**, 2045–2050.
- Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. *Lectures on Mathematics in the Life Sciences*, **17**, 57–86.
- Title, P.O., Rabosky, D.L. (2018). Diversification rates and phylogenies: what are we estimating, and how good are the estimates?. *Methods in Ecology and Evolution*.
- Toussaint, E.F.A., Hendrich, L., Escalona, H.E., Porch, N., Balke, M. (2016). Evolutionary

history of a secondary terrestrial Australian diving beetle (Coleoptera, Dytiscidae) reveals a lineage of high morphological and ecological plasticity. *Systematic Entomology*, **41**, 650–657.

- Valladares, L.F., Díaz, J.Á., Garrido, J., Sáinz-Cantero, C.E., Delgado, J.A. (2018). Fauna Ibérica. Volumen 44. Coleoptera. Hydraenidae.
- Villastrigo, A., Jäch, M.A., Cardoso, A., Valladares, L.F., Ribera, I. (2019). A molecular phylogeny of the tribe Ochthebiini (Coleoptera, Hydraenidae, Ochthebiinae). Systematic Entomology, 44, 273–288.
- Wagner, G.P., Lynch, V.J. (2010). Evolutionary novelties. Current Biology, 20, 48-52.
- Wang, Y. Yang, Z. (2014). Priors in Bayesian phylogenetics, *In*: Chen, M.H., Kuo, L., Lewis P.O. (Eds.), *Bayesian Phylogenetics: Methods, algorithms, and applications*. CRC Press, pp. 5-24.
- Watts, C.H.S., Humphreys, W.F. (2006). Twenty-six new Dytiscidae (Coleoptera) of the genera *Limbodessus* Guignot and *Nirripirti* Watts & Humphreys, from underground waters in Australia. *Transactions of the Royal Society of South Australia*, **130**, 123–185.
- Wiens, J.J. (2017). What explains patterns of biodiversity across the Tree of Life?: New research is revealing the causes of the dramatic variation in species numbers across branches of the Tree of Life. *BioEssays*, **39**, 1–10.
- Williams, W.D. (2002). Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. *Environmental Conservation*, **29**, 154–167.
- Wright, S.I., Kalisz, S., Slotte, T. (2013). Evolutionary consequences of self-fertilization in plants. *Proceedings of the Royal Society B: Biological Sciences*, **280**.
- Yoder, A.D., Yang, Z. (2000). Estimation of primate speciation dates using local molecular clocks. *Molecular Biology and Evolution*, **17**, 1081–1090.
- Zhang, S.-Q., Che, L.-H., Li, Y., Dan, L., Pang, H., Ślipiński, A., Zhang, P. (2018). Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. *Nature Communications*, **9**, 1–11.
- Zhang, Z.-Q. (2011). Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. *Zootaxa*, **3148**, 1–237.
- Zuckerkandl, E., Pauling, L. (1965). Evolutionary divergence and convergence in proteins, in: Evolving Genes and Proteins. Academic Press, pp. 97–166.

Supplements

Article

http://doi.org/10.11646/zootaxa.4317.3.4 http://zoobank.org/urn:lsid:zoobank.org:pub:5FD492A4-D41D-4F37-A121-FFA680E7E778

A new classification of the tribe Hygrotini Portevin, 1929 (Coleoptera: Dytiscidae: Hydroporinae)

ADRIÁN VILLASTRIGO¹, IGNACIO RIBERA¹, MICHAËL MANUEL², ANDRÉS MILLÁN³ & HANS FERY⁴ ¹Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain. E-mails: adrian.villastrieo@ibe.upf-csic.es. jenacio.ribera@ibe.upf-csic.es

²Sorbonne Universités, UPMC Univ Paris 06, CNRS, Evolution Paris-Seine UMR7138, Institut de Biologie Paris-Seine, Case 05, 7 quai St Bernard, 75005 Paris, France. E-mail: michael.manuel@upmc.fr

³Department of Ecology and Hydrology, University of Murcia, Campus de Espinardo 30100 Murcia, Spain. E-mail: acmillan@um.es ⁴Räuschstraβe 73, 13509 Berlin, Germany. E-mail: hanfry@aol.com

Abstract

The tribe Hygrotini Portevin, 1929 is currently composed of four genera, Heroceras Guignot, 1950, Herophydrus Sharp, 1880, Hygrotus Stephens, 1828 (with two subgenera, Coelambus Thomson, 1860, and Hygrotus s. str.), and Hyphoporus Sharp, 1880. A recent molecular phylogeny of the tribe with ca. 45% of the 137 described species of Hygrotini, including the type species of all genus-level taxa, revealed extended para- or polyphyly of the current genera and subgenera (Villastrigo et al., Zoologica Scripta, in press), for which reason a new classification of the tribe Hygrotini is proposed. Within Hygrotini only two genera are recognised: Clemnius n. gen. (with two subgenera: Clemnius s. str. with type species Hyphydrus decoratus Gyllenhal, 1810, and Cyclopius n. subgen. with type species Hydroporus acaroides LeConte, 1855) and Hygrotus (with four subgenera: Coelambus, Hygrotus s. str., Hyphoporus n. stat. and Leptolambus n. subgen. with type species Dytiscus impressopunctatus Schaller, 1783). Two genera are synonymised under Hygrotus s, str., Herophydrus n. syn. and Heroceras n. syn. The following 67 new combinations, for species thus far treated under the genera Heroceras, Herophydrus, Hygrotus and Hyphoporus, result from the new classification: Clemnius (s. str.) berneri (Young & Wolfe, 1984) n. comb., Clemnius (s. str.) decoratus (Gyllenhal, 1810) n. comb., Clemnius (s. str.) hydropicus (LeConte, 1852) n. comb., Clemnius (s. str.) laccophilinus (LeConte, 1878) n. comb., Clemnius (s. str.) sylvanus (Fall, 1917) n. comb., Clemnius (Cyclopius) acaroides (LeConte, 1855) n. comb., Clemnius (Cyclopius) farctus (LeConte, 1855) n. comb., Clemnius (Cyclopius) marginipennis (Blatchley, 1912) n. comb., Hygrotus (s. str.) assimilis (Régimbart, 1895) n. comb., H. (s. str.) bilardoi (Biström & Nilsson, 2002) n. comb., H. (s. str.) capensis (Régimbart, 1895) n. comb., H. (s. str.) confusus (Régimbart, 1895) n. comb., H. (s. str.) descarpentriesi (Peschet, 1923) n. comb., H. (s. str.) discrepatus (Guignot, 1954) n. comb., H. (s. str.) endroedyi (Biström & Nilsson, 2002) n. comb., H. (s. str.) gigantoides (Biström & Nilsson, 2002) n. comb., H. (s. str.) gigas (Régimbart, 1895) n. comb., H. (s. str.) goldschmidti (Pederzani & Rocchi, 2009) n. comb., H. (s. str.) gschwendtneri (Omer-Cooper, 1957) n. comb., H. (s. str.) hyphoporoides (Régimbart, 1895) n. comb., H. (s. str.) ignoratus (Gschwendtner, 1933) n. comb., H. (s. str.) inquinatus (Boheman, 1848) n. comb., H. (s. str.) janssensi (Guignot, 1952) n. comb., H. (s. str.) kalaharii (Gschwendtner, 1935) n. comb., H. (s. str.) morandi (Guignot, 1952) n. comb., H. (s. str.) muticus (Sharp, 1882) n. comb., H. (s. str.) natator (Biström & Nilsson, 2002) n. comb., H. (s. str.) nigrescens (Biström & Nilsson, 2002) n. comb., H. (s. str.) nodieri (Régimbart, 1895) n. comb., H. (s. str.) obscurus (Sharp, 1882) n. comb., H. (s. str.) obsoletus (Régimbart, 1895) n. comb., H. (s. str.) ovalis (Gschwendtner, 1932) n. comb., H. (s. str.) pallidus (Omer-Cooper, 1931) n. comb., H. (s. str.) pauliani (Guignot, 1950) n. comb., H. (s. str.) quadrilineatus (Régimbart, 1895) n. comb., H. (s. str.) reticulatus (Pederzani & Rocchi, 2009) n. comb., H. (s. str.) ritsemae (Régimbart, 1889) n. comb., H. (s. str.) rohani (Peschet, 1924) n. comb., H. (s. str.) rufus (Clark, 1863) n. comb., H. (s. str.) sjostedti (Régimbart, 1908) n. comb., H. (s. str.) spadiceus (Sharp, 1882) n. comb., H. (s. str.) sudanensis (Guignot, 1952) n. comb., H. (s. str.) travniceki (Šťastný, 2012) n. comb., H. (s. str.) tribolus (Guignot, 1953) n. comb., H. (s. str.) variabilis secundus (Régimbart, 1906) n. comb., H. (s. str.) variabilis variabilis (Guignot, 1954) n. comb., H. (s. str.) verticalis (Sharp, 1882) n. comb., H. (s. str.) vittatus (Régimbart, 1895) n. comb., H. (s. str.) wewalkai (Biström & Nilsson, 2002) n. comb., Hygrotus (Hyphoporus) anitae (Vazirani, 1969) n. comb., H. (Hyphoporus) aper (Sharp, 1882) n. comb., H. (Hyphoporus) bengalensis (Severin, 1890) n. comb., H. (Hyphoporus) bertrandi (Vazirani, 1969) n. comb., H. (Hyphoporus) caliginosus (Régimbart, 1899) n. comb., H. (Hyphoporus) dehraduni (Vazirani, 1969) n. comb., H. (Hyphoporus) elevatus (Sharp, 1882) n. comb., H. (Hyphoporus) geetae (Vazirani, 1969) n. comb., H. (Hyphoporus) josephi (Vazirani, 1969) n. comb., H. (Hyphoporus) kempi (Gschwendtner, 1936) n. comb., H. (Hyphoporus) montanus (Régim-

Accepted by M. Toledo: 7 Jul. 2017; published: 5 Sept. 2017

bart, 1899) **n. comb.**, *H. (Hyphoporus) nilghiricus* (Régimbart, 1903) **n. comb.**, *H. (Hyphoporus) oudomxai* (Brancucci & Biström, 2013) **n. comb.**, *H. (Hyphoporus) pacistanus* (Guignot, 1959) **n. comb.**, *H. (Hyphoporus) pugnator* (Sharp, 1890) **n. comb.**, *H. (Hyphoporus) severini* (Régimbart, 1892) **n. comb.**, *H. (Hyphoporus) subaequalis* (Vazirani, 1969) **n. comb.**, *H. (Hyphoporus) tonkinensis* (Régimbart, 1899) **n. comb**.

Key words: Coleoptera, Dytiscidae, Hydroporinae, Hygrotini, phylogeny, new classification, new genus, new subgenera, new combinations, new synonyms

Introduction

The diving beetle tribe Hygrotini (Dytiscidae: Hydroporinae) is a relatively small and homogeneous lineage, with 137 species currently included in four genera: *Heroceras* Guignot, 1950, *Herophydrus* Sharp, 1880, *Hyphoporus* Sharp, 1880, and *Hygrotus* Stephens, 1828, the latter with two subgenera, *Hygrotus* s. str. and *Coelambus* Thomson, 1860 (Nilsson & Hájek 2017a). They have a predominantly Holarctic and Ethiopian distribution, with some species reaching the Oriental and the north of the Neotropical regions (Nilsson & Hájek 2017a).

The taxonomic history of Hygrotini has experienced several modifications since the original description of the tribe by Portevin (1929). Previous to this author, Sharp (1882: 389) listed *Coelambus* (in which he included species currently in *Hygrotus* and *Herophydrus*) as well as *Herophydrus* and *Hyphoporus* (both erected two years earlier) as the three first genera in his "Group Hydroporini". Portevin (1929: 180) excluded from Hydroporini the genera *Oxynoptilus* Schaum, 1867 (junior ojective synonym of *Hydrovatus* Motschulsky, 1853), *Hyphydrus* Illiger, 1802, and *Hygrotus*, and erected for these three genera the tribe Hygrotini, based on the common presence of an oblique epipleural carina near the elytral shoulders which separates the smaller anterior part (the genicular area or fossa, which receives the front- and midleg knees when the legs are folded; cf. Sharp 1882: 242) from the longer posterior part of the elytral epipleura. However, most authors continued to include *Hygrotus* and allied genera within the wider tribe Hydroporini as defined by Sharp (1882). Nilsson & Holmen (1995: 30) reinstated the tribe Hygrotini, and Hydrovatini respectively), but including the genus *Pseudhydrovatus* Peschet, 1924, which subsequently was shown to be a junior synonym of *Hydrovatus* (see Biström 2002).

The generic concepts within Hygrotini also suffered multiple changes. Thomson (1860) realised that *Hygrotus* sensu Stephens (1828) comprised two different morphological groups according to the aspect of the anterior margin of clypeus, establishing the genus *Coelambus* for the species without clypeal rim. The status of both *Coelambus* and *Hygrotus* has generated controversy among different authors, as the character of the clypeal rim in fact shows considerable variation (see Falkenström 1933, Balfour-Browne 1934, Anderson 1971, or Biström & Nilsson 2002, and the Appendix for a detailed discussion). Sharp (1882) considered *Coelambus* as a genus divided into different groups according to the morphology of the anterior part of the head and the clypeus, with *Dytiscus inaequalis* Fabricius, 1777 (the type species of the genus *Hygrotus*) included in his Group I. Other authors followed his criterion (e.g. Fall 1919), but Balfour-Browne (1940) and Hatch (1953) (among others) considered again *Coelambus* as a subgenus of *Hygrotus*, a treatment that has prevailed since then (although Miller & Bergsten 2016 recently re-established *Coelambus* as a valid genus, but without detailed discussion).

As for the other genera currently included in Hygrotini, Sharp (1880: cxlviii) erected within Hydroporini the new genus *Herophydrus* for what was known as *Hydroporus hyphydroides* Perris, 1864 (= *Hyphydrus guineensis* Aubé, 1838), plus five undescribed species from Africa and Madagascar, and the new genus *Hyphoporus* for *Hydroporus solieri* Aubé, 1838, and two other undescribed species. Two years later, Sharp (1882: 997; nec Branden 1885: 39) synonymised *H. hyphydroides* with *H. guineensis* and described the species mentioned in Sharp (1880) as new, five in *Herophydrus* and two in *Hyphoporus*. It is notable that in Sharp (1882) the current *Herophydrus musicus* (Klug, 1834) was maintained in the genus *Coelambus*.

The identity of the genera of Hygrotini has been problematic ever since. Guignot (1950) was the first author who characterised *Hyphoporus* and *Herophydrus* by using as main character the morphology of the male genitalia, asymmetric in the first and symmetric in the second. Finally, *Heroceras* was erected by Guignot (1950) for a species from Madagascar (*Herophydrus descarpentriesi* Peschet, 1923) with some peculiar characters (such as e.g. dilated antennae, see below).

Until recently the internal phylogeny of Hygrotini has only been addressed as part of wider studies on the

phylogeny of Dytiscidae, or the revision of particular genera. Remarkably, all published studies failed to recover the respective monophyly of *Hygrotus* and *Herophydrus*, either using molecular (Ribera *et al.* 2002, 2008; Abellán *et al.* 2013; Miller & Bergsten 2014) or morphological data, both of larvae (Alarie & Michat 2007) and adults (Miller 2001; Biström & Nilsson 2002). The phylogenetic position of the genera *Hyphoporus* and *Heroceras* has only been addressed using morphological data by Biström & Nilsson (2002), who found *Hyphoporus* as sister to the studied species of *Coelambus*, and *Heroceras* as sister to the species of *Herophydrus* plus *Hygrotus*.

In a previous work by the same authors (Villastrigo *et al.*, in press) we reconstructed the evolution of the tolerance to salinity within tribe Hygrotini, which includes some of the few diving beetles able to live at salt concentrations more than double that of seawater (e.g. *Hygrotus salinarius* (Wallis, 1924) or *H. pallidulus* (Aubé, 1850); Timms & Hammer 1988, Picazo *et al.* 2010). With that purpose, a molecular phylogeny of the tribe was estimated, including ca. 45% of the described species. Results revealed that two of the four currently recognised genera of Hygrotini and one subgenus were para- or polyphyletic (*Hygrotus, Herophydrus* and subgenus *Coelambus*), and the monotypic *Heroceras* was deeply nested within a clade of Madagascan *Herophydrus*. The need of a new classification of Hygrotini in order to reconcile the taxonomic ordination of the tribe with its phylogeny was clear, but it was considered more appropriate to present the corresponding taxonomic changes in a separate work.

Material and methods

Phylogenetic data. We used the phylogeny of Hygrotini obtained in Villastrigo *et al.* (in press), which included sequence data from 99 specimens of 61 species representing all four currently recognised genera of Hygrotini (Table 1). Most importantly, the phylogeny included the type species of all nine genus-group names within Hygrotini (Nilsson & Hájek 2017a). Outgroups included a selection of species of Hydroporini, and trees were rooted on *Laccornis* Gozis, 1914, considered to be outside Hydroporini and Hygrotini and in a basal position within Hydroporinae (Ribera *et al.* 2008; Miller & Bergsten 2014).

For a detailed explanation of the methods used to obtain the molecular data and the phylogeny see Villastrigo *et al.* (in press). In summary, the phylogeny was built using fragments of seven genes in six sequencing reactions, three mitochondrial: (1) 5' end of cytochrome c oxidase subunit 1 (COI-5, the "barcode" fragment, Hebert *et al.* 2003), (2) 3' end of cytochrome c oxidase subunit 1 (COI-3), (3) 5' end of 16S RNA plus the Leucine tRNA plus 5' end of NADH dehydrogenase subunit I (16S); and three nuclear: (4) an internal fragment of the large ribosomal unit 28S RNA (28S), (5) an internal fragment of the small ribosomal unit, 18S RNA (18S) and (6) an internal fragment of Histone 3 (H3). Vouchers and DNA samples of all specimens used in the phylogeny are kept in the collections of the Institute of Evolutionary Biology (IBE, Barcelona) and Museo Nacional de Ciencias Naturales (MNCN, Madrid).

To reconstruct the phylogeny, sequences were aligned using the online version of MAFFT 7 with the G-INS-I algorithm (Katoh *et al.* 2009) and a fast Maximum Likelihood (ML) heuristic algorithm in RAxML-HPC2 (Stamatakis 2006) in the CIPRES Science Gateway (Miller *et al.* 2010), using a partition by genes with a GTR+G evolutionary model independently estimated for each partition and assessing node support with 100 pseudoreplicas with a rapid bootstrapping algorithm (Stamatakis *et al.* 2008).

Morphological data. Specimens were studied with an Olympus SZX16 stereomicroscope. For the figures, stacks of micrographs were made with a Canon EOS 650D camera attached to the stereomicroscope. These stacks were subsequently treated with the image stacking software Helicon Focus Pro version 6.4.1. For the SEM-micrographs, specimens were placed on stubs and coated with gold (Sputter Coater, Quorum Technologies Ltd., Ashford, England). Micrographs were taken with an ESEM XL30 (Philips, Amsterdam, The Netherlands) and Scandium FIVE software (Olympus, Münster, Germany) in the Phyletisches Museum (Jena, Germany). Adobe Photoshop CS5 software was used to retouch micrographs and ink drawings. Most ink drawings are reproduced from Fery (2003) with the permission of M.A. Jäch (Vienna, Austria); this is not mentioned in the legends of the figures.

To estimate the likely phylogenetic relationships of the species for which no molecular data could be obtained, and to complete the taxonomic rearrangement of the tribe Hygrotini (see below), we studied all described species of the subgenera *Hygrotus* and *Coelambus* with the only exceptions of *H. (Coelambus) artus* (Fall, 1919), known

only from the holotype and considered to be possibly extinct (see Anderson 1983), and *H. (Coelambus) femoratus* (Fall, 1901), which is likely a junior synonym of *H. (Coelambus) nubilus* (LeConte, 1855) (see Anderson 1983). Additionally, we have studied a selection of species of *Herophydrus* and *Hyphoporus* (see Table 1 for the studied material).

Species for which no molecular data were available were considered to be closely related to those showing a high morphological similarity, based both on external characters and on the female and male genitalia. For species without obvious close relatives we identified diagnostic characters or character combinations for the main clades in the phylogeny, and placed these species according to the presence or absence of these characters. We used Mesquite v3.20 (Maddison & Maddison 2017) to manually place all species in their estimated position in the phylogenetic tree (used as a backbone tree), and collapsed uncertain nodes to create polytomies.

Throughout the text of the present work, we follow the classification and nomenclature of Nilsson & Hájek (2017a, b) until we introduce our new classification. The following abbreviations are used in the text: TL (total length) and MW (maximum width); MNHN is used for "Muséum National d'Histoire Naturelle, Paris, France" and FSCA for "Florida State Collection of Arthropods, Gainesville, Florida, USA".

A new classification of the tribe Hygrotini

According to the phylogenetic results of Villastrigo *et al.* (in press) the monophyly of Hygrotini is recovered with strong support, as well as the division of Hygrotini into two clades (see Fig. 1, in which the former generic and subgeneric names are still used): (A) three Nearctic and one Palaearctic species of subgenera *Hygrotus* and *Coelambus* and (B) the remaining species of the tribe. The latter was in turn divided into four further clades: (B1) a group of Palaearctic species of *Coelambus* including *Hygrotus* (*Coelambus*) *confluens* (Fabricius, 1787) (the type species of *Coelambus*), (B2) the two sampled species of *Hyphoporus* (including its type species, *H. solieri*), (B3) a large group of species including *Heroceras*, all sampled *Herophydrus* (including its type species *H. guineensis*) and most species of *Hygrotus* s. str. (including its type species *H. inaequalis*) and (B4) the remaining species of *Coelambus*, in turn divided into two sister clades, one with mostly Palaearctic species and a second with mostly Nearctic species. The internal phylogeny of the main clades was in general in good agreement with the recognised species groups among *Hygrotus* and *Coelambus* based on morphology (see e.g. Anderson 1971, 1976, 1983; Fery 1992, 1995, 2003).

Given the para- or polyphyly of the genera *Hygrotus* and *Herophydrus* and of the subgenus *Coelambus* in their current concepts, we provide here a new classification of the tribe with the aim to avoid para- or polyphyletic genera and subgenera. This section includes brief descriptions of the principal diagnostic characters of the newly classified taxa, which were delimited according to the main clades of the phylogeny (see Table 1 for a complete checklist of the species of the tribe, and Fig. 2 for a dendrogram representing graphically the new classification).

Tribe Hygrotini Portevin, 1929: 180, as tribe of subfamily Hydroporinae.

Type genus: Hygrotus Stephens, 1828: 38.

Diagnosis. Within Hydroporinae, species of Hygrotini are usually characterised by the following combination of characters:

- metepisternum (metepiventrite in Miller & Bergsten 2016: 139) reaching mesocoxal cavities, not separated by mesepimeron (in contrast to members of Vatellini);
- apices of elytra and last abdominal ventrite not acuminate (in contrast to members of Methlini);
- prosternal process elongate with apex narrowly pointed or rounded (in contrast to members of Hydrovatini);
- dorsal (anterior) margin of metafemur separated from metacoxal lobe by metatrochanter (in contrast to members of Laccornellini and Laccornini);
- humeral portion of epipleuron with oblique carina delimiting genicular fossa (character shared with members of Hydrovatini, Hyphydrini and genus *Rhithrodytes* Bameul, 1989 in Hydroporini; cf. Fery 2013, 2016; see Fig. 53 for *Rhithrodytes agnus* Foster, 1992, and Figs 49–52 for some *Hygrotus* species).

502 · Zootaxa 4317 (3) © 2017 Magnolia Press

metatarsal claws equal in length, with exception of members of *C. saginatus*-group (see Fery 1992, 1995, 2003) and in contrast to members of Hyphydrini and Pachydrini (see e.g. Pederzani 1995; Miller & Bergsten 2016).

None of these characters is, however, an unambiguous synapomorphy of the group. We introduce here a potentially unambiguous synapomorphy of tribe Hygrotini, recognised by one of us (H.F.). In many members of Hydroporinae the antennal cavities in the fronto-lateral part of the head are rather deep and more or less conical (much flatter e.g. in Hyphydrini), allowing the movement of the first antennomere (the scape). These cavities are delimited dorsally by the anterior border of the clypeus ("b" in Figs 3–6). Inside each cavity there is a capsule in which the base of the scape (the condyle) is articulated. This capsule is delimited by a distinct more or less circular carina ("a" in Figs 3–6). In all studied species of Hygrotini there is an additional–more or less semicircular–carina ("c" in Figs 4–6) which is closer to the border of the clypeus and surrounds in part the other carina. In the species of Hydroporini this additional carina is not present (see Fig. 3 for *Hydroporus dorsalis* (Fabricius, 1787) or fig. 33 in Fery & Bouzid 2016 for *Tassilodytes parisii* (Gridelli, 1939)). In a few species of Hygrotini the second carina is difficult to observe or is very narrow (as in e.g. *Heroceras descarpentriesi* and *Hygrotus (Coelambus) salinarius*), but is nevertheless clearly perceptible when the specimens are properly illuminated and orientated. However, in most specimens studied of *Hygrotus (Coelambus) masculinus* (Crotch, 1874), the second carina is reduced to a short piece near the mandible.

According to the phylogeny reconstructed in Villastrigo *et al.* (in press) the tribe Hygrotini is divided into two well supported monophyletic lineages, which are considered here with generic rank. Each of these two lineages is in turn divided into generally well supported clades, which are treated as subgenera. In some cases these clades have lower support in the molecular phylogeny, and are also not well defined morphologically (see below and Appendix for a discussion on the clypeal bead, the main character used so far to differentiate genera and subgenera within Hygrotini), so we opted for a subgeneric rather than a generic rank.

Due to the new classification 67 species are for the first time included in the genus *Clemnius* **n**. gen. or in *Hygrotus*, thus their names becoming new combinations. We have listed all these species in Table 1 marked with "**n**. comb." These changes have also generated some homonymies which will be resolved in a separate work (H. Fery, manuscript in preparation).

The genera and subgenera are treated below in the same order as in Fig. 2, starting from the lower part of the figure.

Genus Clemnius n. gen.

Type species: Hyphydrus decoratus Gyllenhal, 1810: XVI, by present designation.

The new genus *Clemnius* **n. gen**. includes eight described species distributed in the Nearctic (including the north of Mexico, sometimes treated as Neotropical) and in the Palaearctic zoogeographical region (Fig. 2 and Table 1).

Diagnosis. In the new classification *Clemnius* **n. gen**. is one of two genera of the tribe Hygrotini. All species of this and the second genus *Hygrotus* have two carinae in each antennal cavity (see Figs 4–6), a unique character among the entire subfamily Hydroporinae. The new genus—which corresponds to clade A in Fig. 1—is a heterogeneous assembly of relatively small species with different morphological characters. It is subdivided into two sister-clades each treated as a subgenus: *Cyclopius* **n. subgen.** and *Clemnius* s. str. **n. subgen.** (see Fig. 2).

Subgenus Cyclopius n. subgen.

Type species: *Hydroporus acaroides* LeConte, 1855: 294, by present designation.

The subgenus *Cyclopius* **n. subgen.** contains three species of the former subgenus *Hygrotus* (see Fig. 2 and Table 1).

Coelambus	Hygrotus	Leptolambus	Hygrotus	Hygrotus	curvilobus
Coelambus	Hygrotus	Leptolambus	Hygrotus	Hydroporus	corpulentus
1	Herophydrus	Hygrotus	Hygrotus	Herophydrus	confusus
Coelambus	Hygrotus	Coelambus	Hygrotus	Dytiscus	confluens
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	compar
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	collatus
1	Herophydrus	Hygrotus	Hygrotus	Hydroporus	cleopatrae
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	chinensis
Coelambus	Hygrotus	Coelambus	Hygrotus	Hydroporus	caspius
I	Herophydrus	Hygrotus	Hygrotus	Herophydrus	capensis
	Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	caliginosus
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	bruesi
Ι	Herophydrus	Hygrotus	Hygrotus	Herophydrus	bilardoi
	Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	bertrandi
Coelambus	Hygrotus	Clemius	Clemius	Hygrotus	ретеп
I	Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	bengalensis
	Herophydrus	Hygrotus	Hygrotus	Herophydrus	assimilis
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	artus
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	armeniacus
I	Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	aper
I	Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	anitae
Coelambus	Hygrotus	Coelambus	Hygrotus	Hygrotus	ahmeti
Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	aequalis
Hygrotus	Hygrotus	Cyclopius	Clemnius	Hydroporus	acaroides

et al

504 · Zootaxa 4317 (3) © 2017 Magnolia Press

VILLASTRIGO ET AL.

and the set of the second						
	I	Herophydrus	Hygrotus	Hygrotus	Herophydrus	heros
	Ι	Herophydrus	Hygrotus	Hygrotus	Hyphydrus	guineensis
		Herophydrus	Hygrotus	Hygrotus	Herophydrus	gschwendmeri
		Herophydrus	Hygrotus	Hygrotus	Herophydrus	goldschmidti
		Herophydrus	Hygrotus	Hygrotus	Herophydrus	gigas
	I	Herophydrus	Hygrotus	Hygrotus	Herophydrus	gigantoides
		Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	geetae
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	fumatus
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	fresnedai
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Hydroporus	fratemus
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Hygrotus	fontinalis
	Coelambus	Hygrotus	Coelambus	Hygrotus	Hydroporus	flaviventris
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	femoratus
	Hygrotus	Hygrotus	Cyclopius	Clemnius	Hydropoms	farctus
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	falli
	Coelambus	Hygrotus	Coelambus	Hygrotus	Hydroporus	enneagramms
	I	Herophydrus	Hygrotus	Hygrotus	Herophydrus	endroedyi
		Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	elevatus
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Hygrotus	diversipes
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Hydropons	dissimilis
		Herophydrus	Hygrotus	Hygrotus	Herophydrus	discrepatus
		Heroceras	Hygrotus	Hygrotus	Herophydrus	descarpentriesi
		Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	dehraduni
	Hygrotus	Hygrotus	Clemnius	Clemius	Hyphydrus	decoratus
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	curvipes

NEW CLASSIFICATION OF HYGROTINI

Zootaxa 4317 (3) $\, \mathbb{O} \,$ 2017 Magnolia Press $\, \cdot \, 505$

continued on the next page						
	I	Herophydrus	Hygrotus	Hygrotus	Herophydrus	natator
	I	Herophydrus	Hygrotus	Hygrotus	Coelambus	muticus
	I	Herophydrus	Hygrotus	Hygrotus	Hydroporus	musicus
	I	Herophydrus	Hygrotus	Hygrotus	Herophydrus	morandi
	I	Hyphoporus	Hyphoporus	Hygrotus	snıodoyddi	montanus
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Hydroporus	masculinus
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Hyphydrus	marklini
	Hygrotus	Hygrotus	Cyclopius	Clennius	Coelambus	marginipennis
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Hydroporus	lutescens
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Hydroporus	lernaeus
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	lagari
	Coelambus	Hygrotus	Clemnius	Clemius	Hydroporus	laccophilinus
	I	Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	kempi
		Herophydrus	Hygrotus	Hygrotus	Herophydrus	kalaharii
		Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	josephi
	I	Herophydrus	Hygrotus	Hygrotus	Herophydrus	janssensi
	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Coelambus	intermedius
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	inscriptus
		Herophydrus	Hygrotus	Hygrotus	Hydroporus	inquinatus
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	infuscatus
	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Dytiscus	inaequalis
	Coelambus	Hygrotus	Leptolambus	Hygrotus	Dytiscus	impressopunctatus
	I	Herophydrus	Hygrotus	Hygrotus	Herophydrus	ignoratus
	Ι	Herophydrus	Hygrotus	Hygrotus	Herophydrus	hyphoporoides
	Hygrotus	Hygrotus	Clemnius	Clemius	Hydroporus	hydropicus

VILLASTRIGO ET AL.

I	Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	pugnator
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	polonicus sahlbergi
Coelambus	Hygrotus	Leptolambus	Hygrotus	Hydroporus	polonicus polonicus
Coelambus	Hygrotus	Leptolambus	Hygrotus	Hydroporus	picatus
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	pedalis
Coelambus	Hygrotus	Coelambus	Hygrotus	Hydroporus	pectoralis
I	Herophydrus	Hygrotus	Hygrotus	Herophydrus	pauliani
Coelambus	Hygrotus	Leptolambus	Hygrotus	Hydroporus	patruelis
Coelambus	Hygrotus	Leptolambus	Hygrotus	Dytiscus	parallellogrammus
I	Herophydrus	Hygrotus	Hygrotus	Herophydrus	pallidus
Coelambus	Hygrotus	Coelambus	Hygrotus	Hydroporus	pallidulus
1	Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	pacistanus
1	Herophydrus	Hygrotus	Hygrotus	Herophydrus	ovalis
I	Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	oudomxai
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	orthogrammus
1	Herophydrus	Hygrotus	Hygrotus	Herophydrus	obsoletus
1	Herophydrus	Hygrotus	Hygrotus	Herophydrus	obscurus
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	obscureplagiatus
Coelambus	Hygrotus	Leptolambus	Hygrotus	Hydroporus	nubilus
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	novemlineatus
I	Herophydrus	Hygrotus	Hygrotus	Coelambus	nodieri
Ι	Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	nilghiricus
Coelambus	Hygrotus	Coelambus	Hygrotus	Hyphydrus	nigrolineatus
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	nigrescens
1	Herophydrus	Hygrotus	Hygrotus	Herophydrus	nigrescens

Ι	Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	tonkinensis
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	thermarum
Coelambus	Hygrotus	Clemnius	Clemnius	Coelambus	sylvanus
Coelambus	Hygrotus	Leptolambus	Hygrotus	Hydroporus	suturalis
Ι	Herophydrus	Hygrotus	Hygrotus	Herophydrus	sudanensis
I	Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	subaequalis
Coelambus	Hygrotus	Leptolambus	Hygrotus	Hygrotus	stefanschoedli
	Herophydrus	Hygrotus	Hygrotus	Herophydrus	spadiceus
I	Hyphoporus	Hyphoporus	Hygrotus	Hydroporus	solieri
Ι	Herophydrus	Hygrotus	Hygrotus	Herophydrus	sjostedti
	Hyphoporus	Hyphoporus	Hygrotus	Hyphoporus	severini
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	semivittatus
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	semenowi
Coelambus	Hygrotus	Leptolambus	Hygrotus	Hydroporus	sellatus
Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	sayi
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	sanfilippoi
Coelambus	Hygrotus	Leptolambus	Hygrotus	Coelambus	salinarius
Coelambus	Hygrotus	Leptolambus	Hygrotus	Hydroporus	saginatus
I	Herophydrus	Hygrotus	Hygrotus	Hyphydrus	rufus
I	Herophydrus	Hygrotus	Hygrotus	Herophydrus	rohani
I	Herophydrus	Hygrotus	Hygrotus	Herophydrus	ritsemae
I	Herophydrus	Hygrotus	Hygrotus	Herophydrus	reticulatus
Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hyphydrus	quinquelineatus
1	Herophydrus	Hygrotus	Hygrotus	Herophydrus	quadrilineatus
Coelambus	Hygrotus	Coelambus	Hygrotus	Coelambus	punctilineatus

VILLASTRIGO ET AL.

Ι	I	Coelambus	Coelambus	Coelambus	Coelambus	I	I	I	Hygrotus	I	I	Coelambus	I	Coelambus
Herophydrus	Herophydrus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Herophydrus	Herophydrus	Herophydrus	Hygrotus	Herophydrus	Herophydrus	Hygrotus	Herophydrus	Hvgrotus
Hygrotus	Hygrotus	Leptolambus	Leptolambus	Leptolambus	Leptolambus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Leptolambus	Hygrotus	Leptolambus
Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hygrotus	Hverotus
Herophydrus	Herophydrus	Coelambus	Hydroporus	Hydroporus	Coelambus	Herophydrus	Herophydrus	Hygrotus	Dytiscus	Herophydrus	Herophydrus	Hydroporus	Herophydrus	Hverotus
travniceki	tribolus	tumidiventris	turbidus	unguicularis	urgensis	variabilis secundus	variabilis variabilis	vaziranii	versicolor	verticalis	vittatus	wardii	wewalkai	zigetangco

Zootaxa 4317 (3) © 2017 Magnolia Press · 509

FIGURE 1. Phylogeny of Hygrotini, modified from Villastrigo et al. (in press). Numbers above nodes are bootstrap support values. Note that here the former generic and subgeneric names are still used.

510 · Zootaxa 4317 (3) © 2017 Magnolia Press

VILLASTRIGO ET AL.

FIGURE 2. Dendrogram showing the new classification of Hygrotini. A number of species without molecular data (no voucher number) have been inserted near morphologically similar species with molecular data. Acronyms refer to biogeographical regions.

NEW CLASSIFICATION OF HYGROTINI

Zootaxa 4317 (3) © 2017 Magnolia Press · 511

FIGURES 3-4. Antennal cavities of: (3) Hydroporus dorsalis (Hydroporini) and (4) Hygrotus (Leptolambus) lagari (Fery, 1992) (a: carina delimiting capsule for scape; b: fronto-lateral border of clypeus; c: second carina).

Diagnosis. Body shape subglobose (TL/MW ca. 1.35–1.6); body size small (TL 2.1–2.6 mm) (cf. Fig. 7 for *Clemnius* (*Cyclopius*) acaroides). Head with anterior clypeal margin truncate and slightly emarginated, border not produced forwards; bead broadly interrupted medially (*C.* (*Cyclopius*) acaroides and *C.* (*Cyclopius*) marginipennis (Blatchley, 1912)) or absent (*C.* (*Cyclopius*) farctus (LeConte, 1855)); antennomeres simple, not broadened. Elytra with margin in lateral view rather strongly ascending to shoulder (similar to Fig. 54); epipleuron comparably broad, broader than mesotibia distally; carina meeting inner margin of epipleuron forming a comparably small angle (< ca. 135°; similar to Fig. 49). Colour pattern of elytra variable, from yellowish with dark vittae to more or less uniformly dark brownish or blackish; venter brownish to dark brownish, partly paler.

512 · Zootaxa 4317 (3) © 2017 Magnolia Press

Males with last abdominal ventrite with deep medial depression, its anterior margin with two long spines projecting backwards and more posteriorly with two rather short ones directed perpendicular to surface (see fig. 24B in Larson *et al.* 2000), a unique character in Hygrotini and also in Dytiscidae. Median lobe symmetric, robust in *C. (Cyclopius) acaroides* (Fig. 19) and *C. (Cyclopius) marginipennis*, but very thin in *C. (Cyclopius) farctus*. Parameres with condylar process short, forming an obtuse angle with distal part (see Fig. 29; cf. figs. 10–12 in Anderson 1971). Male metatarsal claws of equal length.

FIGURES 5–6. SEM micrographs with details of head and antennal cavities of: (5) *Hygrotus (Leptolambus) impressopunctatus* (frontal view) and (6) *Hygrotus* (s. str.) *inaequalis* (oblique ventral view) (a, b and c as in Figs 3–4; d: clypeal stripe; e: labrum).

NEW CLASSIFICATION OF HYGROTINI

Zootaxa 4317 (3) © 2017 Magnolia Press · 513

FIGURES 7–12. Habitus of: (7) Clemnius (Cyclopius) acaroides, (8) Hygrotus (s. str.) inaequalis, (9) Hygrotus (Coelambus) confluens, (10) Clemnius. (s. str.) decoratus, (11) Clemnius (s. str.) laccophilinus and (12) Clemnius (s. str.) berneri (male holotype and labels).

VILLASTRIGO ET AL.

FIGURES 13–18. Habitus of: (13) *Hygrotus (Leptolambus) impressopunctatus,* (14) *H. (Leptolambus) orthogrammus,* (15) *H. (Leptolambus) obscureplagiatus,* (16) *H.* (s. str.) *guineensis,* (17) *H.* (s. str.) *descarpentriesi* (male syntype and labels) and (18) *H. (Hyphoporus) solieri* (Figs 14 and 18 are reproduced from Fery *et al.* 2012 with the permission of F. Gusenleitner, Linz, Austria).

NEW CLASSIFICATION OF HYGROTINI

Zootaxa 4317 (3) © 2017 Magnolia Press · 515

FIGURES 19–28. Median lobe in ventral and lateral view of: (19) Clemnius (Cyclopius) acaroides, (20) Clemnius (s. str.) berneri, (21) Clemnius (s. str.) decoratus, (22) Hygrotus (s. str.) inaequalis, (23) H. (Coelambus) enneagrammus, (24) H. (Coelambus) confluens, (25) H. (Leptolambus) parallellogrammus, (26) H. (Leptolambus) impressopunctatus, (27) H. (s. str.) guineensis and (28) H. (Hyphoporus) tonkinensis (Fig. 28 is a modified reproduction of figs 3 and 4 in Brancucci & Biström 2013).

Etymology. From the Greek χύκλος (kyklos = circle), referring to the semicircular shape of the clypeus of the species of the subgenus. The gender of the name is masculine.

Distribution. Nearctic: Canada and USA.

Main habitat types. Species of this subgenus are typically known from lentic freshwater habitats; Blatchley (1912: 330) reported *C. (Cyclopius) marginipennis* from "shallow brackish ponds".

516 · Zootaxa 4317 (3) © 2017 Magnolia Press

VILLASTRIGO ET AL.

FIGURES 29–40. Left paramere of: (29) Clemnius (Cyclopius) acaroides, (30) Clemnius (s. str.) berneri, (31) Clemnius (s. str.) decoratus, (32) Hygrotus (s. str.) inaequalis, (33) H. (Leptolambus) fresnedai, (34) H. (Leptolambus) impressopunctatus, (35) H. (Leptolambus) parallellogrammus, (36) H. (Leptolambus) nubilus, (37) H. (Coelambus) enneagrammus, (38) H. (Coelambus) confluens, (39) H. (s. str.) guineensis and (40) H. (Hyphoporus) tonkinensis (Fig. 40 is a modified reproduction of fig. 5 in Brancucci & Biström 2013).

Subgenus Clemnius s. str. n. subgen.

Type species: Hyphydrus decoratus Gyllenhal, 1810: XVI, by present designation.

NEW CLASSIFICATION OF HYGROTINI

The subgenus *Clemnius* **n**. **subgen**. contains five species of the former genus *Hygrotus*, subgenera *Hygrotus* and *Coelambus* (see Fig. 2 and Table 1).

Diagnosis. Body shape oval, either almost globose (TL/MW ca. 1.6) (see Fig. 10 for *C*. (s. str.) *decoratus*) or more elongated, "navicular" (TL/MW 1.7–1.8) (see Fig. 11 for *C*. (s. str.) *laccophilinus* (LeConte, 1878)), with MW short behind pronotum and distinctly before mid-length (still somewhat more elongated in *C*. (s. str.) *berneri* Young & Wolfe, 1984, with TL/MW ca. 2.05; see Fig. 12 for holotype and its labels; FSCA); body size small (TL 2.1–3.3 mm). *Clemnius* (s. str.) *decoratus* and *C*. (s. str.) *hydropicus* (LeConte, 1852) with anterior clypeal margin evenly and semicircularly rounded, with border produced forwards and bead complete as in subgenus *Hygrotus* s. str. In contrast *Clemnius* (s. str.) *laccophilinus*, *C*. (s. str.) *berneri* and *C*. (s. str.) *sylvanus* (Fall, 1917) with anterior clypeal margin truncate and slightly emarginated, with border not produced forwards and bead absent. Antennomeres simple, not broadened. Elytra with margin in lateral view moderately ascending to shoulder (similar to Fig. 55); epipleuron comparably broad, broader than mesotibia distally; carina meeting inner margin of epipleuron forming a comparably small angle (< ca. 135°; similar to Fig. 49). Elytra either dark, uniformly testaceous or with yellowish-brown dots, but not vittate; venter brown or testaceous. Last abdominal ventrite without deep depression.

Aedeagus with median lobe symmetric, robust in *C*. (s. str.) *decoratus* (Fig. 21) and *C*. (s. str.) *hydropicus* (cf. fig. 13 in Anderson 1971) or distally very narrow in *C*. (s. str.) *berneri* (Fig. 20), *C*. (s. str.) *laccophilinus* and *C*. (s. str.) *sylvanus* (cf. also figs 1A and 2A in Anderson 1976). Parameres with condylar process rather short and forming an obtuse angle with distal part (Figs 30 and 31; cf. also figs 1B and 2B in Anderson 1976). Male metatarsal claws of equal length.

Etymology. From the Greek $\chi\lambda\epsilon\mu\mu\delta\varsigma$ (klemmys = tortoise); referring to the almost hemispherical body shape of most species. The gender of the generic name is masculine.

Distribution. Palaearctic (Europe, Russia and Kazakhstan), Nearctic and Neotropical (northern part of Mexico).

Main habitat types. The subgenus includes species typical of lentic freshwater environments.

Notes: Within the subgenus there are two clear groups of species according to body shape and genital morphology, one formed by *C*. (s. str.) *decoratus* and *C*. (s. str.) *hydropicus* (body shape more globular, aedeagus robust with short medial lobe), and the other by *C*. (s. str.) *berneri*, *C*. (s. str.) *laccophilinus* and *C*. (s. str.) *sylvanus* (body shape more elongated, "navicular", aedeagus slender with elongated median lobe). The phylogenetic relationships of the species for which molecular data were available are poorly supported (Fig. 1), but in any case we never recovered these two groups as respectively monophyletic. We thus refrain from splitting *Clemnius* **n**. **subgen.** into two taxa corresponding to these two groups, at least until more evidence becomes available.

Genus Hygrotus Stephens, 1828

Type species: Dytiscus inaequalis Fabricius, 1777: 239, by subsequent designation of Curtis (1835: pl. 531).

The genus *Hygrotus* as here defined includes 129 described species (two of them bitypic) distributed in the Nearctic (including the north of Mexico), Palaearctic, Afrotropical and Oriental zoogeographical regions (Fig. 2 and Table 1). One Nearctic species was introduced to Hawaii (see below), which belongs to the Pacific region.

Diagnosis. In the new classification *Hygrotus* is the second of two genera of the tribe Hygrotini. As in *Clemnius* **n. gen**. all species of the genus have two carinae in each antennal cavity (see Figs 4–6).

According to the two main clades in the phylogeny of Hygrotini and several morphological characters, the genus (which corresponds to Clade B in Fig. 1) is subdivided into four clades corresponding to the following four subgenera: clade B1 = subgenus *Coelambus*, clade B2 = subgenus *Hyphoporus*, clade B3 = subgenus *Hygrotus* s. str. and clade B4 = *Leptolambus* **n. subgen**.

Subgenus Coelambus Thomson, 1860

Type species: Dytiscus confluens Fabricius, 1787: 193, by subsequent designation of Zaitzev (1953: 129).

518 · Zootaxa 4317 (3) © 2017 Magnolia Press

FIGURES 41–48. Head with details of clypeal rim of (41) *Hygrotus (Leptolambus) impressopunctatus*, (42) *H. (Hyphoporus) solieri*, (43) *H. (s. str.) guineensis*, (44) *H. (s. str.) inaequalis*, (45) idem in lateral view, (46) *H. (Coelambus) confluens* (the lighter area before the anterior border of the clypeus is the "clypeal stripe"; see Appendix), (47) *H. (Leptolambus) masculinus* and (48) idem in lateral view.

NEW CLASSIFICATION OF HYGROTINI

Zootaxa 4317 (3) © 2017 Magnolia Press · 519

FIGURES 49–55. (49–53): Epipleuron with oblique epipleural carina and genicular fossa of: (49) *Clemnius* (s. str.) *berneri*, (50) *Hygrotus (Leptolambus) polonicus polonicus*, (51) *H. (Coelambus) caspius*, (52) *H. (Leptolambus) impressopunctatus* and (53) *Rhithrodytes agnus*; epipleural carina (c) and inner margin of epipleuron (m) including angle mentioned in diagnoses of subgenera. (54–55): Elytral margin in lateral view of: (54) H. (Coelambus) caspius (strongly ascending to shoulder) and (55) *Clemnius* (s. str.) *berneri* (moderately ascending to shoulder) (Figs 52 and 53 are reproduced from Fery 2013 and from Fery 2016 with the permissions of F. Gusenleitner, Linz, Austria, and G. Foster, Ayr, UK, respectively).

The subgenus *Coelambus* contains eight Palaearctic and one Nearctic species (*Hygrotus* (*C.*) *punctilineatus* (Fall, 1919)).

Diagnosis. Body shape moderately to elongate oval (TL/MW ca. 1.7–2.0); small to medium sized species (TL 3.0–4.5 mm) (see Fig. 9 for *H. (Coelambus) confluens*). Head with anterior clypeal margin truncate and slightly emarginated, border not produced forwards; bead absent. Antennomeres simple, not broadened. Elytra with margin in lateral view strongly ascending to shoulder (see Fig. 54 for *H. (Coelambus) caspius* (Wehncke, 1875)); epipleuron comparably narrow, narrower than mesotibia distally; carina meeting inner margin of epipleuron forming a comparably wide angle (< ca. 150°; similar to Fig. 51). Elytra light yellowish (more yellowish brown in *H. (Coelambus) ahmeti* Hájek, Fery & Erman, 2005), distinctly vittate (in some species/individuals vittae strongly reduced in anterior half). Venter usually black, but females of some species (e.g. *H. (Coelambus) pallidulus*) with abdomen at least in part yellow or brownish. Last abdominal ventrite without deep depression.

Aedeagus with median lobe elongate, very slender (distal half very thin in lateral view), symmetric or almost symmetric (e.g. in *H. (Coelambus) enneagrammus* (Ahrens, 1833), and *H. (Coelambus) confluens*; see Figs 23 and

24). Parameres with condylar process rather long and forming an almost right angle with distal part (Figs. 37 and 38 for *H. (Coelambus) enneagrammus* and *H. (Coelambus) confluens*, respectively). Male metatarsal claws of equal length.

Distribution. Mainly Palaearctic, with one species in Canada and northern USA (*Hygrotus* (*Coelambus*) *punctilineatus*).

Main habitat types. The subgenus includes species typical of both lentic and lotic habitats, with varied salinity tolerance going from freshwater to hypersaline.

Subgenus Hyphoporus Sharp, 1880 n. stat.

Type species: Hydroporus solieri Aubé, 1838: 554, by monotypy.

The subgenus *Hyphoporus* contains 19 species distributed in the Oriental and Palaearctic regions (see Fig. 2 and Table 1).

Diagnosis. Body shape short oval (TL/MW ca. 1.6–1.7), rather globose; small to medium sized species (TL 3.5–5.6 mm) (see Fig. 18 for *H. (Hyphoporus) solieri*). Head with anterior clypeal margin truncate, straight or slightly emarginated, border not produced forwards; bead continuous, middle part narrowed in most species (see Fig. 42 for *H. (Hyphoporus) solieri*); (except *H. (Hyphoporus) bengalensis* (Severin, 1890) with continuous bead). Antennomeres simple, not broadened. Elytra with margin in lateral view moderately ascending to shoulder (similar to Fig. 55); epipleuron comparably broad, broader than mesotibia distally; carina meeting inner margin of epipleuron forming a comparably small angle (< ca. 135° ; similar to Fig. 50). Elytra with interrupted vittae or dotted (in some species very darkened); venter black or brown. Last abdominal ventrite without deep depression. Aedeagus with median lobe robust, asymmetric (see Fig. 28 for *Hygrotus (Hyphoporus) tonkinensis* (Régimbart, 1899); in *H. bengalensis* median lobe more or less symmetric; see Vazirani 1969 for several further figures);

parameres with condylar process of diverse length, forming an obtuse angle with distal part (see Fig. 40 for *H.* (*Hyphoporus*) tonkinensis). Male metatarsal claws of equal length.

Distribution. Palaearctic and Oriental, from Iran to India and south-east Asia; one species–*H.* (*Hyphoporus*) *solieri*–from Iran to the Arabian Peninsula and Egypt.

Main habitat types. There is no information on the habitat of most of the species of the subgenus, although they are likely to be mostly associated with freshwater environments. However, it shall be mentioned that Hájek (2006: 48) illustrated a rest-pool in a wadi (Pir Sohrab, Iran) where he has collected *H. (Hyphoporus) aper* (Sharp, 1882) together with *Neptosternus circumductus* Régimbart, 1899.

Subgenus Hygrotus Stephens, 1828

Type species: Dytiscus inaequalis Fabricius, 1777: 239, by subsequent designation of Curtis (1835: pl. 531).

Herophydrus Sharp, 1880: cxlviii; type species: Hydroporus hyphydroides Perris, 1864: 277 (= Herophydrus guineensis (Aubé 1838: 455)), by monotypy. n. syn.

Dryephorus Guignot, 1950: 150; type species: Coelambus nodieri Régimbart, 1895: 37, by original designation of Guignot (1950: 150). n. syn.

Heroceras Guignot, 1950: 150; type species: Herophydrus descarpentriesi Peschet, 1923: 176, by original designation of Guignot (1950: 150). n. syn.

The newly defined subgenus *Hygrotus* s. str. includes six species previously included in the former subgenus *Hygrotus* s. str., the single species of former genus *Heroceras* (*H. descarpentriesi*) and all 44 species (one of them bitypic) of the former genus *Herophydrus* (see Fig. 2 and Table 1).

Diagnosis. Body shape short oval to moderately elongate oval (TL/MW ca. 1.7–1.8); species of former *Hygrotus* s. str. and *Heroceras* small (TL 2.8–3.6 mm) (see Fig. 8 for *H*. (s. str.) *inaequalis* and Fig. 17 for *H*. (s. str.) *descarpentriesi*) and species of former *Herophydrus* small to large (TL 2.6–7.4 mm) (see Fig. 16 for *H*. (s. str.) *guineensis*). Head of species of former *Hygrotus* with anterior clypeal margin evenly and semicircularly rounded, border produced forwards and with complete bead (see Figs 44 and 45 for *H*. (s. str.) *inaequalis*); species of former

Herophydrus and *Heroceras* with anterior clypeal margin truncate, straight or slightly emarginated, border not produced forwards; bead present, but in many species narrowed in medial part (see Fig. 43 for *H.* (s. str.) *guineensis*), in others medially obsolete or widely reduced except before eyes (cf. Appendix). Antennomeres simple, not broadened except in *H.* (s. str.) *descarpentriesi*, with antennomeres of both sexes, but especially males, strongly dilated (Fig. 17). Elytra with margin in lateral view rather strongly ascending to shoulder (similar to Fig. 54); epipleuron comparably broad, broader than mesotibia distally; carina meeting inner margin of epipleuron forming a comparably small angle (< ca. 135°; similar to Fig. 49). Elytral pattern diverse (vittate, dotted or uniform); venter black or brown. Last abdominal ventrite without deep depression.

Aedeagus with median lobe robust, distal part very diverse in ventral view, more or less symmetric (see Figs 22 and 27 for *H*. (s. str.) *inaequalis* and *H*. (s. str.) *guineensis*) or at most slightly asymmetric in some former *Herophydrus* (see figures in Biström & Nilsson 2002); parameres with condylar process generally short, forming an obtuse angle with distal part (see Fig. 32 and 39 for *H*. (s. str.) *inaequalis* and *H*. (s. str.) *guineensis*). Male metatarsal claws of equal length.

Distribution. Palaearctic, Nearctic, Ethiopian and Oriental. Species of the former subgenus *Hygrotus* (the *H.* (*Hygrotus*) *inaequalis*-group in Fig. 2) are distributed in Europe, northern Africa, Asia and northern America (reaching northern Mexico); species of former *Herophydrus* occur mainly in Africa, with five species in the Palaearctic, one (*H.* (s. str.) *musicus*) reaching the Oriental region and *H.* (s. str.) *morandi* (Guignot, 1952) known from Cambodia only; *H.* (s. str.) *descarpentriesi* is endemic to mountainous regions in south-eastern Madagascar.

Main habitat types. The subgenus includes species typical of lentic and lotic freshwater environments; some species can be found in inland mineralised or coastal brackish waters, such as for example *H*. (s. str.) *musicus* (Millán *et al.* 2006). The latter species can also be found in mineral and thermal spring-pools (pers. communication by J. Hájek, Prague, Czech Republic). The habitat of most African species of the subgenus is poorly known.

Subgenus Leptolambus n. subgen.

Type species: Dytiscus impressopunctatus Schaller, 1783: 312, by present designation.

The subgenus includes 51 species (one of them bitypic), all previously included in the former subgenus *Coelambus* (see Fig. 2 and Table 1). Notes: *Coelambus hudsonicus* Fall, 1919 is treated by us as junior subjective synonym of *Hygrotus (Leptolambus) novemlineatus* (Stephens, 1829) (according to Nilsson & Hájek 2017a). We are aware that some authors (e.g. Foster *et al.* 2016) accepted subspecific rank for this taxon and others (e.g. Alarie *et al.* 1999) specific rank, but all without giving any justification for their proceeding.

Diagnosis. Body shape moderately to elongate oval (TL/MW ca. 1.75-2.05); small to medium sized species (TL 2.7-5.8 mm) (see Figs 13-15 for H. (Leptolambus) impressopunctatus, H. (Leptolambus) orthogrammus (Sharp, 1882) and H. (Leptolambus) obscureplagiatus (Fall, 1919)). Head with anterior clypeal margin truncate and emarginated (see Fig. 41 for H. (Leptolambus) impressopunctatus); in some species medially at least less curved than near eyes (see Fig. 47 for H. (Leptolambus) masculinus); border not produced forwards and bead absent (except in H. (Leptolambus) masculinus and H. (Leptolambus) salinarius; cf. Appendix). Antennomeres simple, not broadened. In most species elytral margin in lateral view somewhat less ascending to shoulder than in Fig. 54; in species of Anderson's (1976) group III (H. (Leptolambus) bruesi (Fall, 1928), H. (Leptolambus) compar (Fall, 1919), H. (Leptolambus) nigrescens (Fall, 1919), H. (Leptolambus) dissimilis (Gemminger & Harold, 1868), and H. (Leptolambus) turbidus (LeConte, 1855)) margin only moderately ascending (similar to Fig. 55); in most species epipleuron comparably broad, broader than mesotibia distally; carina meeting inner margin of epipleuron forming a comparably small angle (ca. 135°; similar to Fig. 50 or Fig. 52). In four species of Anderson's (1983) group IV (H. (Leptolambus) diversipes (Leech, 1966), H. (Leptolambus) fontinalis Leech, 1966, H. (Leptolambus) pedalis (Fall, 1901), and H. (Leptolambus) thermarum (Darlington, 1928)) epipleuron narrower and carina meeting inner margin of epipleuron forming a comparably wide angle (> ca. 150°; similar to Fig. 51). In H. (Leptolambus) curvipes (Leech, 1938) (belonging also to group IV in Anderson 1983) epipleuron slightly broader and carina meeting inner margin of epipleuron forming an angle of ca. 140°; however, in these five species of Anderson's (1983) group IV elytral margin not as strongly ascending as in species of newly defined subgenus Coelambus (see Fig. 54 for H. (Coelambus) caspius). Elytra pattern diverse (vittate, diffuse-vittate or "cloudlike") (see Anderson

522 · Zootaxa 4317 (3) © 2017 Magnolia Press

VILLASTRIGO ET AL.
1983; see also Fig. 15 of *H. (Leptolambus) obscureplagiatus* as an example for diffuse-vittate or "cloudlike" elytral pattern); venter black. Last abdominal ventrite without deep depression.

Aedeagus with shape of median lobe diverse, from robust to very slender; symmetric in ventral view (see Figs 25 and 26 for *H. (Leptolambus) parallellogrammus* (Ahrens, 1812), and *H. (Leptolambus) impressopunctatus)*. Species of *H. (Leptolambus) saginatus*-group (see Fig. 2) with distal part of parameres strap-like and condylar process also forming an almost right angle with distal part (see Fig. 33 for *H. (Leptolambus) fresnedai* (Fery, 1992)). Species of *H. (Leptolambus) parallellogrammus*-group (see Fig. 2) with parameres more or less triangular and condylar process indistinct and not forming an angle with distal part (see Fig. 35 for *H. (Leptolambus) parallellogrammus*-group (see Fig. 2) with parameres more or less triangular process forming an almost right angle with distal part of parameres triangular or broadly strap-like and condylar process forming an almost right angle with distal part (see Fig 34 for *H. (Leptolambus) impressopunctatus*) or with very unusually shaped parameres (see Fig. 36 for *H. (Leptolambus) nubilus*; cf. also fig. 7B in Anderson 1976 for *H. (Leptolambus) dissimilis*). Male metatarsal claws of equal length except in species of *H. (Leptolambus) saginatus*-group (only four species of all Hygrotini with metatarsal claws of unequal length).

Etymology. From Greek $\lambda \epsilon \pi \tau \delta \varsigma$ (= leptos = narrow) and "lambus" in reference to *Coelambus*. The gender of the generic name is masculine.

Distribution. The subgenus is divided into two main clades, one with mostly Palaearctic distribution except for the Holarctic *H. (Leptolambus) impressopunctatus* and the Nearctic *H. (Leptolambus) picatus* (Kirby, 1837), and a second with mostly Nearctic species, except for *H. (Leptolambus) marklini* (Gyllenhal, 1813), *H. (Leptolambus) novemlineatus*, and *H. (Leptolambus) unguicularis* (Crotch, 1874) which are Holarctic. Some species of the Nearctic clade reach northern Mexico: *H. (Leptolambus) fraternus* (LeConte, 1852), *H. (Leptolambus) lutescens* (LeConte, 1852), *H. (Leptolambus) nubilus*, and *H. (Leptolambus) nubilus*, and *H. (Leptolambus) nubilus*, and *H. (Leptolambus) fraternus* (LeConte, 1852), *H. (Leptolambus) nubilus*, and *H. (Leptol*

Main habitat types. Many species of this subgenus are found in mostly lentic freshwaters, but several in the Nearctic clade, as well as the species of the *H*. (*Leptolambus*) *parallellogrammus*-group, can tolerate from slightly saline to hypersaline waters (Villastrigo *et al.*, in press). The subgenus includes the most salt-tolerant species of the tribe, *H*. (*Leptolambus*) *salinarius* and *H*. (*Leptolambus*) *masculinus*.

Discussion

The phylogenetic results of Villastrigo *et al.* (in press) revealed the need of a thorough systematic rearrangement of the tribe Hygrotini. The close relationships between the former *Hygrotus*, *Herophydrus* and *Heroceras* had already been previously noted by several authors (see the Introduction and the Appendix), and suggested by the incomplete molecular and morphological phylogenies available prior to our study (Miller 2001; Biström & Nilsson 2002; Ribera *et al.* 2002, 2008; Alarie & Michat 2007; Abellán *et al.* 2013; Miller & Bergsten 2014).

Species of *Hyphoporus* have always been considered to be related to species of *Herophydrus*, from which they differ mainly by the male genital shape (e.g. Biström & Nilsson 2002; Miller & Bergsten 2016). We opted for maintaining *Hyphoporus* as a valid subgenus, not only based on our phylogenetic results, but also due to the distinctiveness of their male genitalia. It is, however, possible that in further analyses with a more complete sampling *Hyphoporus* proves to be a derived clade within the wider subgenus *Hygrotus* s. str.

Hygrotus descarpentriesi, formerly considered in its own genus *Heroceras*, is a morphologically very deviating species when compared with its closest relatives from Madagascar as resolved in the molecular phylogeny (Fig. 1). The habitus is more elongated, the elytral surface is smooth in the male and reticulated (although not matt) in the female (a character not found in any other Malagasy species of *Hygrotus*), the clypeal bead is almost absent (see the Appendix), and-the most apparent character–both sexes, but especially the males, have strongly dilated antennae. The latter character is present occasionally in other groups of Dytiscidae (e.g. in the genera *Agabus* Leach, 1817, *Limbodessus* Guignot, 1939, *Hydrovatus*, *Rhithrodytes*, *Exocelina* Broun, 1886, *Lioporeus* Guignot, 1950, and others; see e.g. Miller & Bergsten 2016 for some examples and Fig. 17), but still exceptional within Hygrotini. Despite all these peculiarities, *H*. (s. str.) *descarpentriesi* was originally described in *Herophydrus*, and found at least to be related to this genus by the morphological phylogenetic analysis of Biström & Nilsson (2002).

The most unexpected result of the phylogeny was the division of Hygrotini into two clades (A and B in Fig. 1), the former (our *Clemnius* **n. gen.**) including a small number of species previously considered belonging in part to former subgenus *Hygrotus* s. str. and in part to former subgenus *Coelambus*. The species of *Clemnius* **n. gen**. had never been suggested to be closely related to each other within Hygrotini. They all share some likely plesiomorphic characters of body shape and colouration. Most of them are also similar in terms of male genitalia shape, which is in general simpler and more similar to those of other related tribes of Hydroporinae.

Of the two subgenera recognised within *Clemnius* **n**. gen., *Cyclopius* **n**. subgen. is well characterised by the special morphology of the male last abdominal ventrite, but we could not recognise any clear unambiguous synapomorphy for *Clemnius* **n**. subgen. The relationships within the latter are still poorly defined, and need further morphological and molecular studies to be clarified.

Although a formal biogeographic analysis is out of the scope of our paper, it is interesting to note that most of the recognised clades have a well-defined distribution within one of the main biogeographic regions:

- *Clemnius* **n. gen.** is Nearctic with the only exception of one species, the widespread Palaearctic *Clemnius* (s. str.) *decoratus* (see Nilsson & Hájek 2017a, b).
- Subgenus *Coelambus* is almost exclusively Palaearctic, with only one exception, the Nearctic *C. punctilineatus*. However, this species is extremely similar to the Palaearctic species *C. nigrolineatus* (Steven, 1808) (this has not been recognised before), including the shape of the male protarsal claws. Their male and female genitalia show only some slight differences and their general shape could be considered virtually identical. Additionally, females of both species have the upper side dull. It is thus most likely that *C. punctilineatus* has very recently colonised the Nearctic region from a Palaearctic ancestor.
- Subgenus *Hygrotus* s. str., as here defined, is largely of Afrotropical distribution (and likely origin), with only some species reaching the southern Palaearctic region and a small clade–the *H*. (s. str.) *inaequalis*-group–in the Palaearctic regions (Fig. 2).
- Subgenus *Hyphoporus* is mostly Oriental, with some species reaching the Palaearctic region in China (Yunnan), Afghanistan, northern India (Uttar Pradesh), Pakistan and in the west until Iran and Egypt.
- Subgenus Leptolambus n. subgen. is divided into two clades, one mostly Palaearctic and one mostly Nearctic (see above and Fig. 2). Only some northern species of Leptolambus n. subgen. have likely recently expanded their geographic range to the whole Holarctic, and three species have a discordant distribution: H. (Leptolambus) picatus is a Nearctic species in the Palaearctic clade, and H. (Leptolambus) polonicus (Aubé, 1842) and H. (Leptolambus) zigetangco Fery, 2003 are Palaearctic species likely to be in the Nearctic clade (see Fig. 2), although for the last two species there are no molecular data and thus their phylogenetic position is uncertain.

Acknowledgments

We cordially thank Rolf Beutel (Jena, Germany) for giving us access to the SEM microscope of the "Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena". We thank also M.A. Jäch (Vienna, Austria), F. Gusenleitner (Vienna, Austria) and G.N. Foster (Ayr, UK) for permission to use numerous figures published previously in other works. Antoine Mantilleri (MNHN) and P. E. Skelley (FSCA) are warmly thanked for loan of material. We thank also J. Hájek (Prague, Czech Republic) and an anonymous reviewer for comments on previous versions of the manuscript. This work was partly funded by an FPI grant to A.V., and projects CGL2013-48950-C2-1-P and CGL2013-48950-C2-2-P (AEI/FEDER, UE) to I.R. and A.M. respectively.

References

Abellán, P., Sánchez-Fernández, D., Picazo, F., Millán, A., Lobo, J.M. & Ribera, I. (2013) Preserving the evolutionary history of freshwater biota in Iberian National Parks. *Biological Conservation*, 162, 116–126. https://doi.org/10.1016/j.biocon.2013.04.001

Alarie, Y., Nilsson, A.N. & Hendrich, L. (1999) Larval morphology of the Palaearctic genera Deronectes Sharp and Scarodytes

524 · Zootaxa 4317 (3) © 2017 Magnolia Press

Gozis (Coleoptera: Dytiscidae: Hydroporinae), with implications for the phylogeny of the *Deronectes*-group of genera. *Entomologica Scandinavica*, 30, 173–195. https://doi.org/10.1163/187631200X00237

- Alarie, Y. & Michat, M.C. (2007) Phylogenetic analysis of Hydroporinae (Coleoptera: Dytiscidae) based on larval morphology, with description of first instar of *Laccornellus lugubris*. *Annals of the Entomological Society of America*, 100, 655–665. https://doi.org/10.1603/0013-8746(2007)100[655:PAOHCD]2.0.CO;2
- Anderson, R.D. (1971) A revision of the Nearctic representatives of Hygrotus (Coleoptera: Dytiscidae). Annals of the Entomological Society of America, 64 (2), 503–512.
 - https://doi.org/10.1093/aesa/64.2.503
- Anderson, R.D. (1976) A revision of the Nearctic species of *Hygrotus* groups II and III (Coleoptera: Dytiscidae). Annals of the Entomological Society of America, 69 (4), 577–584. https://doi.org/10.1093/aesa/69.4.577
- Anderson, R.D. (1983) Revision of the Nearctic species of *Hygrotus* groups IV, V and VI (Coleoptera: Dytiscidae). Annals of the Entomological Society of America, 76 (2), 173–196. https://doi.org/10.1093/aesa/76.2.173
- Aubé, C. (1838) Hydrocanthares et gyriniens. In: Dejean, P.F.M.A. Species général des coléoptères de la collection de M. le Comte Dejean. Vol. 6. Méquignon Père et Fils, Paris, xvi + 804 pp.
- Balfour-Browne, F. (1934) Systematic notes upon British aquatic Coleoptera. Part II. The Hydroporinae (Hygrotus & Coelambus). The Entomologist's Monthly Magazine, 70, 146–150.
- Balfour-Browne, F. (1940) British water beetles. Vol I. London: Ray Society, xix + 375 pp., 5 pls.
- Biström, O. (2002) Pseudhydrovatus Peschet, 1924, junior synonym of Hydrovatus Motschulsky, 1853 (Coleoptera, Dytiscidae). Aquatic Insects, 24, 53–54.
 - https://doi.org/10.1076/aqin.24.1.53.4911
- Biström, O. & Nilsson, A.N. (2002) *Herophydrus* Sharp: cladistic analysis, taxonomic revision of the African species, and world check list (Coleoptera: Dytiscidae). *Koleopterologische Rundschau*, 72, 15–111.
- Blatchley, W.S. (1912) On some undescribed forms of Florida Coleoptera. The Canadian Entomologist, 44, 330–332. https://doi.org/10.4039/Ent44330-11
- Brancucci, M. & Biström, O. (2013) Review of the Hydrovatini, Hygrotini and Hyphydrini in Laos (Coleoptera, Dytiscidae). Entomologica Basiliensia et Collectionis Frey, 34, 89–102.
- Branden, C. van den (1885) Catalogue des coléoptères carnassiers aquatiques (Haliplidae, Amphizoidae, Pelobiidae et Dytiscidae). Annales de la Société Entomologique de Belgique, 29 (1), 5–118.
- Curtis, J. (1835) British entomology; being illustrations and descriptions of the genera of insects found in Great Britain and Ireland. Vol. 12. J. Curtis, London, pls. 530–577.
- Fabricius, J.C. (1777) Genera Insectorum eorumque characteres naturales secundum numerum, figuram, situm et proportionem omnium partium oris adiecta mantissa speciorum nuper detectarum. M.F. Bartschii, Chilonii, xvi + 310 pp.
- Fabricius, J.C. (1787) Mantissa Insectorum sistens species nuper detectas adiectis characteribus genericis, differentiis specificis, emendationibus, observationibus. Vol. 1 & Vol. 2. C.G. Proft, Hafniae, xx + 348 + 382 pp.
- Falkenström, G.A. (1933) Schwedisch-chinesische wissenschaftliche Expedition nach den nordwestlichen Provinzen Chinas, unter Leitung von Dr. Sven Hedin und Prof. Sü Ping-chang. Insekten, gesammelt vom schwedischen Arzt der Expedition Dr. David Hummel 1927–1930. 15. Coleoptera. 1. Haliplidae und Dytiscidae. Arkiv för Zoologi, 27 A (1), 1–22.
- Fall, H.C. (1919) The North American species of Coelambus. Privately printed, Mount Vernon, New York, 20 pp.
- Fery, H. (1992) Revision der saginatus-Gruppe der Gattung Coelambus Thomson (Coleoptera: Dytiscidae). Linzer Biologische Beiträge, 24, 339–358.
- Fery, H. (1995) Ergänzungen zur saginatus-Gruppe sowie Bemerkungen zu weiteren Arten der Gattung Coelambus Thomson (Coleoptera, Dytiscidae). Linzer Biologische Beiträge, 27, 1045–1061.
- Fery, H. (2003) Dytiscidae: V. Taxonomic and distributional notes on *Hygrotus* Stephens, with emphasis on the Chinese fauna and a key to the Palearctic species (Coleoptera). *In*: Jäch, M.A. & Ji, L. (Eds.), *Water Beetles of China. Vol. 3*. Zoologisch-Botanische Gesellschaft in Österreich and Wiener Coleopterologenverein, Wien, pp. 133–193.
- Fery, H. (2013) Rhithrodytes-are we all blind? Latissimus, 34, 13-15.
- Fery, H. (2016) Notes on *Rhithrodytes* Bameul, 1989, with the description of *R. minimus* nov. sp. from Algeria (Coleoptera, Dytiscidae. Hydroporini, Siettitiina). *Linzer Biologische Beiträge*, 48, 431–450.
- Fery, H. & Bouzid, S. (2016) Notes on *Graptodytes* Seidlitz, 1887, re-instatement of *G laeticulus* (Sharp, 1882) as valid species and description of *Tassilodytes* nov.gen. from Algeria (Coleoptera, Dytiscidae, Hydroporinae, Siettitiina). *Linzer Biologische Beiträge*, 48 (1), 451–481.
- Fery, H. & Challet, G. (2015) *Hygrotus (Coelambus) nubilus* (LeConte, 1855) on Mauna Kea (Hawaii)–first record of the genus from the Pacific zoogeographical region (Coleoptera: Dytiscidae). *Linzer Biologische Beiträge*, 47, 1303–1309.
- Fery, H., Pešić, V. & Darvishzadeh, I. (2012) Faunistic notes on some Hydradephaga from the Khuzestan, Hormozgan and Sistan & Baluchestan provinces in Iran, with descriptive notes on the female of *Glareadessus franzi* Wewalka & Biström 1998 (Coleoptera, Dytiscidae, Noteridae). *Linzer Biologische Beiträge*, 44 (2), 1057–1070.
- Foster, G.N., Bilton, D.T. & Nelson, B.H. (2016) *Atlas of the predaceous water beetles (Hydradephaga) of Britain and Ireland.* FSC Publications, Telford, x + 370 pp.

NEW CLASSIFICATION OF HYGROTINI

Zootaxa 4317 (3) © 2017 Magnolia Press · 525

Guignot, F. (1950) Trentième note sur les hydrocanthares (Col.). Bulletin de la Société Entomologique de France, 54 (1949), 146–153.

Guignot, F. (1959) Revision des hydrocanthares d'Afrique (Coleoptera Dytiscoidea). 2. Annales du Musée Royal du Congo Belge, Série 8vo (Sciences Zoologiques), 78, 323–648.

- Gyllenhal, L. (1810) Insecta Suecica descripta. Classis I. Coleoptera sive Eleutherata. Vol. 1. Part 2. F.J. Leverentz, Scaris, 660 pp. [pp. III–XIX (Addenda ad partem prima) + 1 + 660 pp.]
- Hájek, J. (2006) The westernmost record of *Neptosternus circumductus*, and a review of Dytiscidae (Coleoptera) of Baluchistan (Iran, Pakistan). *Acta Entomologica Musei Nationalis Pragae*, 46, 43–56.
- Hatch, M.H. (1953) The beetles of the Pacific Northwest. Part I: Introduction and Adephaga. University of Washington Publications in Biology, 16, 1–340.
- Hebert, P.D., Ratnasingham, S. & De Waard, J. R. (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. *Proceedings of the Royal Society B: Biological Sciences*, 270, S96–S99. https://doi.org/10.1098/rsbl.2003.0025
- Katoh, K., Asimenos, G. & Toh, H. (2009) Multiple alignment of DNA sequences with MAFFT. Methods in Molecular Biology, 537, 39–64.
 - https://doi.org/10.1007/978-1-59745-251-9_3
- Larson, D.J., Alarie, Y. & Roughley, R.E. (2000) Predaceous diving beetles (Coleoptera: Dytiscidae) of the Nearctic Region, with emphasis on the fauna of Canada and Alaska. NRC Research Press, Ottawa, 982 pp.
- LeConte, J.L. (1855) Analytical table of the species of *Hydroporus* found in the United States, with descriptions of new species. Proceedings of the Academy of Natural Sciences of Philadelphia, 7, 290–299.
- Maddison, W.P. & Maddison, D.R. (2017) Mesquite: a modular system for evolutionary analysis. Version 3.2. Available from: http://mesquiteproject.org/ (accessed 22 March 2017)
- Millán, A., Abellán, P., Ribera, I., Sánchez-Fernández, D. & Velasco, J. (2006) The Hydradephaga of the Segura basin (SE Spain): Twentyfive years studying water beetles (Coleoptera). *Memorie della Società Entomologica Italiana*, 85, 137–158. https://doi.org/10.4081/memorieSEI.2006.137
- Miller, K.B. (2001) On the phylogeny of the Dytiscidae (Insecta: Coleoptera) with emphasis on the morphology of the female reproductive system. *Insect Systematics and Evolution*, 32, 45–92.
- https://doi.org/10.1163/187631201X00029 Miller, K.B. & Bergsten, J. (2014) The phylogeny and classification of predaceous diving beetles. *In*: Yee, D.A. (Ed.), *Ecology*,
- Systematics and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae). Springer, Berlin, pp. 49–172. Miller, K.B. & Bergsten, J. (2016) Diving beetles of the world: Systematics and biology of the Dytiscidae. Johns Hopkins University Press, Baltimore, ix + 320 pp.
- Nilsson, A.N. & Hájek, J. (2017a) A world catalogue of the Family Dytiscidae, or the diving beetles (Coleoptera, Adephaga). Internet Version 31.I.2017. Available from: http://www.norrent.se/ & http://www.waterbeetles.eu/ (accessed 25 May 2017).
- Nilsson, A.N. & Hájek, J. (2017b) Catalogue of Palaearctic Dytiscidae (Coleoptera). Internet version 1.I.2017. Available from: http://www.waterbeetles.eu (accessed 28 May 2017)
- Nilsson, A.N. & Holmen, M. (1995) The aquatic Adephaga (Coleoptera) of Fennoscandia and Denmark. II. Dytiscidae. Fauna Entomologica Scandinavica, 32, 1–192.
- Pederzani, F. (1995) Keys to the identification of the genera and subgenera of adult Dytiscidae (sensu lato) of the world (Coleoptera Dytiscidae). *Atti dell'Accademia Roveretana degli Agiati*, Ser. VII, a. 244, 4B (1994), 5–83.
- Perris, É. (1864) Description de quelques espèces nouvelles de coléoptères et notes diverses. Annales de la Société Entomologique de France, Series 4, 4, 275–310.
- Peschet, R. (1923) Dyticidae et Haliplidae nouveaux (Col.). Bulletin de la Société Entomologique de France, 1923, 175-181.
- Picazo, F., Moreno, J.L. & Millán, A. (2010) The contribution of standing waters to aquatic biodiversity: the case of water beetles in southeastern Iberia. *Aquatic Ecology*, 44, 205–216. https://doi.org/10.1007/s10452-009-9279-y
- Portevin, G. (1929) Histoire naturelle des coléoptères de France. Vol. 1. Adephaga–Polyphaga: Staphylinoidea. Encyclopédie Entomologique (A) vol. 12. Paris: Paul Lechevalier, 649 pp., 4 pls.
- Régimbart, M. (1895) Révision des Dytiscidae et Gyrinidae d'Afrique et Madagascar et îles voisines. Mémoires de la Société Entomologique de Belgique, 4, 1–244.
- Ribera, I., Hogan, J.E. & Vogler, A.P. (2002) Phylogeny of hydradephagan water beetles inferred from 18S rRNA sequences. Molecular Phylogenetics and Evolution, 23, 43–62. https://doi.org/10.1006/mpev.2001.1080
- Ribera, I., Vogler, A.P. & Balke, M. (2008) Phylogeny and diversification of diving beetles (Coleoptera: Dytiscidae). *Cladistics*, 24, 563–590.

https://doi.org/10.1111/j.1096-0031.2007.00192.x

Schaller, J.G. (1783) Neue Insekten. Abhandlungen der Hallischen Naturforschenden Gesellschaft, 1 (13), 217–332.

Sharp, D. (1880) Avis préliminaire d'une nouvelle classification de la famille des Dytiscidae. Annales de la Société Entomologique de Belgique, 23 (Comptes Rendus), cxlvii-cli.

Sharp, D. (1882) On aquatic carnivorous Coleoptera or Dytiscidae. The Scientific Transactions of the Royal Dublin Society, 2,

526 · Zootaxa 4317 (3) © 2017 Magnolia Press

VILLASTRIGO ET AL.

179–1003, pls. 7–18.

- Stamatakis, A. (2006) RAxML-VI-HPC: Maximum Likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics*, 22, 2688–2690.
 - https://doi.org/10.1093/bioinformatics/btl446
- Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57, 758–771.
 - https://doi.org/10.1080/10635150802429642
- Stephens, J.F. (1828–1829) Illustrations of British entomology. Mandibulata. Vol. 2. Baldwin & Cradock, London, 200 pp. [pp. 1–112 in 1828, pp. 113–200 in 1829]
- Thomson, C.G. (1860) Skandinaviens Coleoptera, synoptiskt bearbetade. Vol. II. Lundbergska Boktryckeriet, Lund, 304 pp.
- Timms, B.V. & Hammer, U.T. (1988) Water beetles of some saline lakes in Saskatchewan, Canada. Canadian Field-Naturalist, 102, 246–250.
- Vazirani, T.G. (1969) Contribution to the study of aquatic beetles (Coleoptera). V. Revision of Indian species of *Hyphoporus* Sharp (Dysticidae). *Bulletin du Muséum National d'Histoire Naturelle*, Series 2, 41, 203–225.
- Villastrigo, A., Fery, H., Manuel, M., Millán, A. & Ribera, I. (2017) Evolution of salinity tolerance in the diving beetle tribe Hygrotini (Coleoptera, Dytiscidae). Zoologica Scripta. [in press]
 - https://doi.org/10.1111/zsc.12255
- Zaitzev, F.A. [Ph.] (1953) Nasekomye zhestkokrylye. Plavuntsovye i vertyachki. Fauna SSSR, New Series, 4 (58), 1–376. [in Russian]

Zimmermann, A. (1919) Die Schwimmkäfer des Deutschen Entomologischen Museums in Berlin-Dahlem. Archiv für Naturgeschichte, 83 (1917), 68–249.

Zimmermann, A. (1930) Monographie der paläarktischen Dytisciden. I. Noterinae, Laccophilinae, Hydroporinae (1. Teil). Koleopterologische Rundschau, 16, 35–118.

APPENDIX

Note: The generic and subgeneric names cited in the Appendix are those of the new classification unless stated otherwise.

Detailed description of the clypeus in Hygrotini.

The presence and the shape of the clypeal bead (often also called "clypeal rim" or "raised clypeal margin") are used by many authors to separate genera or subgenera within the tribe Hygrotini, mainly the former subgenus *Hygrotus* from former subgenus *Coelambus* and both from the former genera *Herophydrus* and *Hyphoporus* (see Table 1 for the authors and dates of all taxa mentioned here, as well as their past and new classification). Unfortunately, a determination is not always reliable or even impossible because the respective character states are not well recognisable in several species or are present in species which due to other characters, both morphological and molecular, should better be included in another genus or subgenus. Thus, the usefulness of the "clypeal bead" has been debated since long time. This clypeal bead is present in more than half of all members of Hygrotini, and varies considerably in shape. Although in the light of the results of the molecular phylogeny it is clear that the clypeal bead is a highly labile character, without much phylogenetic significance, a detailed description of its structure is necessary to understand the historical classification of Hygrotini, and it can nevertheless have some usefulness to identify some groups of species.

Former subgenera Hygrotus and Coelambus

The more common character state in members of the former subgenus Coelambus as recognised prior to this study (Nilsson & Hájek 2017a, b) is the absence of a clypeal bead (as in e.g. H. (Coelambus) confluens, Fig. 46, and H. (Leptolambus) impressopunctatus, Fig. 41). The anterior part of the clypeus descends anteriad more or less evenly or in a slightly convex shape to the labrum (see Figs 5e and 6e). In almost all species of former Coelambus the anterior margin of the clypeus is bordered (directly before reaching/contacting the labrum) with a very narrow rim, which we here call the "clypeal line" (see Fig. 5d for H. (Leptolambus) impressopunctatus and Fig. 6d for H. (s. str.) inaequalis; see also below for more details). A rather broad transverse band posterior to this line (reaching more or less until the clypeal grooves) is often somewhat less reticulate (and thus more shiny) and more sparsely and finely punctured than the rest of the clypeus posterior to this band (e.g. recognisable "under the arrows" in Fig. 5 for H. (Leptolambus) impressopunctatus). Thus, this band might be interpreted as a separate part of the clypeus and-also due to the depressed clypeal grooves posterior to the band-can appear as if it was somewhat vaulted (although it is not), which might be interpreted as a (flat) bead. The structure of this band can vary considerably even among specimens of the same population of a species-in one specimen the band can appear as a flat bead, in another one found at the same locality the illusion of a bead is lacking. In all these typical members of the former subgenus Coelambus the anterior border of the clypeus (where it reaches/contacts the labrum) and that "clypeal line" (if present) can be recognised when the clypeus is viewed perpendicularly. Additionally, in this view it can be recognised that the anterior border of the clypeus of all these species of former subgenus Coelambus is not evenly rounded, but truncate and somewhat emarginated.

NEW CLASSIFICATION OF HYGROTINI

Zootaxa 4317 (3) © 2017 Magnolia Press · 527

In members of the former subgenus *Hygrotus* the anterior border of the clypeus is evenly rounded in perpendicular view (see Fig. 44 for *H*. (s. str.) *inaequalis*). Additionally, the clypeus does not descend directly to the labrum, but is strongly and almost sharply produced forwards (see Figs. 6 and 45 for *H*. (s. str.) *inaequalis*), so that it reaches so far over the labrum that the real anterior border of the clypeus (where it reaches/contacts the labrum) cannot be recognised when the clypeus is viewed perpendicularly, as the anteriorly produced part of the clypeus covers most of the labrum and in particular the "clypeal line" (if that line is present at all). This is the reason why in species of the former subgenus *Hygrotus* it is necessary to differentiate between the anterior border of the clypeus and its anterior end, the latter being situated posterior (!) to the former. Short behind and parallel to its evenly curved anterior border the clypeal" is depressed over the entire distance between the eyes; this line and the anterior border an evenly curved "clypeal" bead is formed which has more or less the same width over its entire length.

There are two species of the former subgenus *Coelambus* that have a clypeus with almost exactly the same structure as the species of former subgenus *Hygrotus*, something that has confused generations of dytiscid specialists: *Hygrotus* (*Leptolambus*) salinarius and *H*. (*L*.) masculinus (see Figs 47 and 48 for *H*. (*L*.) masculinus). However, in contrast to members of the former subgenus *Hygrotus*, these two species have the anterior border of the clypeus truncate (in several specimens of *H*. (*L*.) masculinus at least less curved centrally than near the eyes) and also somewhat emarginated in *H*. (*L*.) salinarius—being in this respect typical *Hygrotus* (*Coelambus*) and not *Hygrotus* s. str.

Former genera Hyphoporus and Herophydrus

Members of former genera *Herophydrus* and *Hyphoporus* have a different structure of the anterior part of the clypeus. Whilst all former *Hyphoporus* have a complete clypeal bead which is mostly narrowed medially (see Fig. 42 for *Hygrotus* (*Hyphoporus*) solieri), in former *Herophydrus* some species have a complete bead, some a medially shortly interrupted bead (see Fig. 43 for *Hygrotus* (s. str.) guineensis) as well as others with a medially broadly interrupted bead and *Hygrotus* (s. str.) rohani (Peschet, 1924) with a hardly delimited bead (cf. Biström & Nilsson 2002). In those species with incomplete bead, the situation in the middle of the clypeal border is similar to that in typical *Hygrotus* (*Leptolambus*)—the anterior part of the clypeal line" are not hidden by the anterior part of the clypeus. Left and right of the bead interruption, the clypeus is widely vaulted and sometimes slightly produced forwards, however never as strongly produced as in former subgenus *Hygrotus*. The two parts of the bead re backwards either delimited by a more or less distinct line or by an anteriorly rather sharply delimited depression (as in the *inaequalis*-group of *Hygrotus* s. str.).

In members of subgenus *Hyphoporus* and those of former genus *Herophydrus* with complete bead, the anterior border of the clypeus is medially also widely vaulted and thus a little produced anteriorly. This is why in perpendicular view an eventually existing "clypeal line" and a very small posterior part of the labrum are covered by the vaulted anterior border of the clypeus. It must, however, be emphasised that these structures are totally different from those in members of former subgenus *Hygrotus*—in all these species the clypeus is by far not as strongly and not as sharply produced forwards as in the latter. Additionally, the bead or its two lateral parts are considerably broader left and right of the middle, whilst it is of more or less of equal width over its entire length in members of the former subgenus *Hygrotus*.

Species of former *Herophydrus* and *Hyphoporus* have the anterior margin of the clypeus truncate and emarginated in perpendicular view (see Fig. 43 for *guineensis*; in some species, however, this emargination is only rather indistinct), but we must concede that we have not been able to study all species and must rely in part on the figures given in Biström & Nilsson (2002).

The separation of former *Herophydrus* from *Hyphoporus* by morphological characters has been debated since long time (see e.g. Guignot 1950: 149, Vazirani 1969: 203–205, Biström & Nilsson 2002: 20–21). We did not find any satisfying solution for this problem and believe that a final classification can only be given once the molecular data of all species of these two genera are known. So far we must refer on what was given by Vazirani (1969: 204) in his key to these two genera, but add some exceptions.

According to Guignot (1950: 149; more or less repeated by Vazirani 1969: 204) in former genus *Herophydrus* the punctation of the head reaches an imaginary line connecting the hind margins of the eyes, but on a small band posterior to this line (on the vertex) this punctation is absent or at most replaced by a few much smaller punctures. In former genus *Hyphoporus* the punctation of the head reaches distinctly beyond this imaginary line and is not replaced by finer punctation. Additionally, both authors note that in *Herophydrus* the median lobe is (more or less) symmetric and in *Hyphoporus* it is not. On the other hand, Guignot (1959: 339) himself conceded that "lack of punctation in that band on the vertex" [our translation from French] does not really hold in *H.* (s. str.) *musicus* and *H.* (s. str.) *rufus*, and we must concede that we were not able to use this character for reliable identifications.

In what refers to the symmetry of the median lobe we want to underline that *Hygrotus* (*Hyphoporus*) bengalensis has a more or less symmetric median lobe, and on the other hand that many former *Herophydrus* have a median lobe which is at least not strictly symmetric (as can be appreciated e.g. in some figures in Biström & Nilsson 2002).

Former genus Heroceras

Hygrotus (s. str.) descarpentriesi is a species not well represented in collections; thus, some of the very few descriptions in the literature may not rely on careful studies of specimens. It is more or less known as a "Herophydrus with widened antennae"

(cf. Guignot 1950: 150 and Pederzani 1995: 35). Guignot (1959: 372) provided for this species: "Tête bourrelet clypéal ininterrompu, ..." [= head with clypeal bead not interrupted ...] and "... bourrelet clypéal peu marqué ..." [= ... clypeal bead not well marked ...]. Miller & Bergsten (2016: 204) gave "... having the anterior clypeal margin broadly bordered."

We have studied one male and one female syntype of this species (coll. Peschet, MNHN; see Fig. 17), one additional female from the coll. Guignot (MNHN), and several further specimens collected recently by one of us (M.M.). To our great surprise, at first glance we were not able to detect any distinct clypeal bead. Only when adequately illuminated it was possible to see that in the female syntype the clypeus is very slightly vaulted before the anterior margin. In the male syntype a few transversely stretched punctures indicate a posterior margin of a bead—however, only on the right side of the clypeus. In particular, there are absolutely no traces of a bead recognisable before the eyes. The latter observation is surprising, because even *H*. (s. str.) *nodieri*, with a very broadly interrupted clypeal bead, shows laterally distinct rests of a bead next to the eyes. Similar observations were made with the recently collected material. Additionally, we want to state that only a small posterior part of the labrum is covered by the vaulted anterior border of the clypeus—this being in contrast to Biström & Nilsson (2002: 18, 19) who stated labrum "not visible from above". On the other hand, our observation that the clypeal bead is practically lacking in former *Heroceras* is supported by Biström & Nilsson (2002: 18, 19, table 1) who gave the anterior margin of the clypeus (character 1 on p. 18) with state 0 (= without bead). These authors, however, did not comment this feature.

It shall be mentioned here that the almost total lack of a medial clypeal bead was the reason for Guignot (1950) to create his subgenus *Dryephorus* of genus *Herophydrus*. Similarly, other species of former *Herophydrus* show only rests of a bead before each eye, such as *Hygrotus* (s. str.) *heros* (Sharp, 1882) (cf. Zimmermann 1919: 150). Although in a different subgenus, *Hygrotus* (*Leptolambus*) *polonicus polonicus* (Aub, 1842) and its subspecies *sahlbergi* (Sharp, 1882) have the clypeus anteriorly somewhat vaulted (cf. Zimmermann 1930: 96). Zimmermann (1919: 150) claimed that also *Hygrotus* (*Leptolambus*) *unguicularis* might be ranged under *Hygrotus* s. str. "... wegen der feinen, aber wenigstens in der Mitte deutlichen Clypeusrandung ..." [= because of the fine, but at least medially distinct beading]. We have studied numerous specimens of *H. unguicularis* and can state that Zimmermann (1919) must have been misguided: most probably he mixed up what in Hygrotii is usually called clypeal "bead" (and which is rather broad) with what we call here "clypeal line".

Falkenström (1933: 12) noted that on the one hand *Hygrotus* (s. str.) *versicolor* (Schaller, 1783) should be ranged in *Herophydrus* due to the shape of the clypeal border (meaning a medially reduced width of the clypeal bead), but on the other hand refused this classification.

The "clypeal stripe"

As mentioned above, in many species of Hygrotini, and in particular in species of former subgenus *Coelambus*, the anterior border of the clypeus is provided with a "clypeal line". This line is in some species rather distinct, in others irregularly interrupted and in some not recognisable or absent. The distinctness of this line seems to show also some individual variation within a species. Balfour-Browne (1934: 150) pointed to a special feature of *Hygrotus* (*Coelambus*) confluens: at the base of the labrum, before the anterior border of the clypeus there is a flat, transverse stripe which is rather shiny, not reticulate, provided with only a very few punctures, broadest in middle and evenly tapering to the sides (Fig. 46). We interpret this "clypeal stripe" as a broadened "clypeal line". Such stripe can be also found in *H.* (*C.*) pallidulus, *H.* (*C.*) caspius, *H.* (*C.*) pectoralis (Motschulsky, 1860) (stripe very thin), *H.* (*C.*) nigrolineatus, *H.* (*C.*) punctilineatus, *H.* (*C.*) confluens and in *H.* (*C.*) flaviventris (Motschulsky, 1860), but in all latter species this stripe is by far not as broad as in *H.* (*C.*) admeti this "clypeal stripe" is in fact reduced to a line of more or less even width. We have found such medially very slightly broadened stripe/line also in a few other species, such as *H.* (Leptolambus) marklini, *H.* (*L.*). fraternus, *H.* (*L.*). patruelis (LeConte, 1855), and *H.* (*L.*). pedalis.

Finally, we want to emphasise, that this "clypeal stripe" is by no means homologous to the "clypeal bead" found in species of former *Herophydrus*, *Hyphoporus* and subgenus *Hygrotus*.

NEW CLASSIFICATION OF HYGROTINI

Received: 2 April 2017 Accepted: 3 July 2017

DOI: 10.1111/zsc.12255

ORIGINAL ARTICLE

WILEY Zoologica Scripta

Evolution of salinity tolerance in the diving beetle tribe Hygrotini (Coleoptera, Dytiscidae)

Adrián Villastrigo ¹	Hans Fery ²	Michaël Manuel ³		Andrés Millán ⁴	
Ignacio Ribera ¹					

¹Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain

²Räuschstraße 73, Berlin, Germany

³UPMC Univ Paris 06, CNRS, Evolution Paris-Seine UMR7138, Institut de Biologie Paris-Seine, Sorbonne Universités, Paris, France

⁴Department of Ecology and Hydrology, University of Murcia, Murcia, Spain

Correspondence

Ignacio Ribera, Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain. Email: ignacio.ribera@ibe.upf-csic.es

Funding information

Ministerio de Economía y Competitividad, Grant/Award Number: CGL2013-48950-C2-1-P and CGL2013-48950-C2-2-P; FPI Grant/Award Number: BES-2014-069398 Some species of the diving beetle tribe Hygrotini (subfamily Hydroporinae) are among the few insects able to tolerate saline concentrations more than twice that of seawater. However, the phylogenetic relationships of the species of Hygrotini, and the origin and evolution of tolerance to salinity in this lineage, are unknown. In this work, we aim to reconstruct how many times salinity tolerance did evolve in Hygrotini, whether this evolution was gradual or if tolerance to hypersalinity could evolve directly from strictly freshwater (FW) species, and to estimate the probabilities of transition between habitats. We build a phylogeny with ca. 45% of the 137 species of Hygrotini, including all major lineages and almost all of the known halophile or tolerant species. We used sequence data of four mitochondrial (COI-5', COI-3', 16S + tRNA and NADH1) and three nuclear (28S, 18S and H3) gene fragments, plus ecological data to reconstruct the history of the salinity tolerance using Bayesian inference. Our results demonstrate multiple origins of the tolerance to salinity, although most saline and hypersaline species were concentrated in two lineages. The evolution of salinity was gradual, with no direct transitions from FW to hypersaline habitats, but with some reversals from tolerant to FW species. The oldest transition to saline tolerance, at the base of the clade with the highest number of saline species, was dated in the late Eocene-early Oligocene, a period with decreasing temperature and precipitation. This temporal coincidence suggests a link between increased aridity and the development of tolerance to saline waters, in agreement with recent research in other groups of aquatic Coleoptera.

1 | INTRODUCTION

Hydroporinae is the most diverse of the subfamilies of diving beetles (Dytiscidae) (Nilsson & Hájek, 2017a) and its species also display a large variety of ecologies and life habits (Miller & Bergsten, 2016). Many species of Hydroporinae live in extreme or unusual environments for diving beetles, such as subterranean aquifers, forest litter or hypersaline waters. While the origin and evolution of subterranean and terrestrial lifestyles have received recent attention (e.g., Leys & Watts, 2008; Tierney et al., 2015; Toussaint, Hendrich, Escalona, Porch, & Balke, 2016), the origin of the species of diving beetles able to sustain extreme salt concentration has never been addressed in a phylogenetic context, whereas for other families of aquatic Coleoptera, such as Hydrophilidae or Hydraenidae, comparative studies on the evolution of saline tolerance are already available (Arribas et al., 2014; Sabatelli et al., 2016).

Within Hydroporinae, species which are exclusively halophile or which can tolerate saline or hypersaline waters have independently evolved in three tribes, Bidessini, Hydroporini and Hygrotini (Miller & Bergsten, 2016). The latter includes some of the most extreme examples of saline tolerance, with some species able to sustain concentrations above 70 g/L, twice that of seawater (Picazo, Moreno, & Millán, 2010; Timms & Hammer, 1988). The physiological mechanism of

64 WILEY – Zoologica Scripta

salt tolerance of *Hygrotus (Coelambus) salinarius* (Wallis, 1924) has been studied by Tones (1978). However, the species' phylogenetic relationships are unknown, and in consequence whether it may be related to other saline tolerant species of *Hygrotus* Stephens, 1828 or what could have been the origin of its saline tolerance.

With this work we aim to investigate the phylogenetic relationships among salt tolerant species of Hygrotini, and their relationships with the rest of the species of the tribe. This will allow to answer some basic questions such as: (i) how many times did salinity tolerance evolve in Hygrotini? (ii) was this evolution gradual (i.e., from FW to intermediate salinities to hypersaline), or could tolerance to hypersalinity have evolved directly from strictly FW species? (iii) which were the probabilities of transitions between habitats in the evolution of Hygrotini? and (iv) are there any general patterns in the geographic and temporal origin of salinity tolerance in Hygrotini?

To answer these questions we built a molecular phylogeny with almost half of the 137 known species of the tribe, including all genera and recognised main species groups (Nilsson & Hájek, 2017a,b), and compiled data on the ecological tolerances of all described species from the literature and our own observations. In addition, our results demonstrated that two of the four currently recognised genera of Hygrotini and one subgenus are para- or polyphyletic, revealing the need of a new classification of the tribe, which will be presented in a separate paper (Villastrigo, Ribera, Manuel, Millán, & Fery, 2017).

2 | MATERIALS AND METHODS

2.1 | Molecular data

We obtained molecular data from 101 specimens of 64 species, including all four currently recognised genera of Hygrotini: *Heroceras* Guignot, 1950, *Herophydrus* Sharp, 1880, *Hygrotus* (with two subgenera, *Hygrotus* and *Coelambus* Thompson, 1860) and *Hyphoporus* Sharp, 1880 (Nilsson & Hájek, 2017a,b; see Table S1). We used as outgroups a selection of 12 species from four genera belonging to Hydroporini, shown to be related to Hygrotini (Ribera, Vogler, & Balke, 2008). Trees were rooted on *Laccornis* Gozis, 1914, considered to be outside Hydroporini and Hygrotini and in a basal position within Hydroporinae (Miller & Bergsten, 2014; Ribera et al., 2008).

2.2 | DNA extraction and sequencing

Specimens were collected in the field and preserved in absolute ethanol. DNA was extracted using commercial kits (mostly DNeasy Tissue Kit, Qiagen, Hilden, Germany) following the instructions of the manufacturers. Vouchers and VILLASTRIGO ET AL.

DNA samples are kept in the collections of the Institute of Evolutionary Biology (IBE, Barcelona) and Museo Nacional de Ciencias Naturales (MNCN, Madrid). We sequenced fragments of seven genes in six sequencing reactions, three mitochondrial: (i) 5' end of cytochrome c oxidase subunit 1 (COI-5, "barcode" fragment of Hebert, Ratnasingham, & De Waard, 2003), (ii) 3' end of cytochrome c oxidase subunit 1 (COI-3), (iii) 5' end of 16S RNA plus the Leucine tRNA plus 5' end of NADH dehydrogenase subunit I (16S); three nuclear fragments: (iv) an internal fragment of the large ribosomal unit 28S RNA (28S), (v) an internal fragment of the small ribosomal unit, 18S RNA (18S) and (vi) an internal fragment of Histone 3 (H3). Details on primers used and typical polymerase chain reaction (PCR) conditions are provided in Table S2. Sequences were assembled and edited with Geneious v6.0.6 (Kearse et al., 2012); new sequences have been submitted to the EMBL database with accession numbers LT882773-LT883126 (Table S1).

2.3 | Phylogenetic analyses

Edited sequences were aligned using the online version of MAFFT 7 with the G-INS-I algorithm (Katoh, Asimenos, & Toh, 2009). For one species (*Hygrotus (Coelambus) pedalis* (Fall, 1901)) we pooled sequences of two specimens in a chimera to complete the data set (Table S1), after testing their monophyly with COI-3. We used PartitionFinder v1.1.1 (Lanfear, Calcott, Ho, & Guindon, 2012) to estimate the best fitting evolutionary model initially using one partition for each gene fragment except for COI (split in COI-5 and COI-3) and 16S and tRNA (pooled in a single partition), and applied Akaike Information Criterion (AIC) scores as selected criteria.

We used BEAST 1.8 (Drummond & Rambaut, 2007) for Bayesian phylogenetic analyses, using the partition and evolutionary models selected by PartitionFinder and a molecular-clock approach for estimating divergence times. We applied an uncorrelated lognormal relaxed clock to estimate substitution rates and a Yule speciation process as the tree prior. We calibrated the tree using rates estimated in Andújar, Serrano, and Gómez-Zurita (2012) for a genus of Carabidae (Carabus), in the same suborder Adephaga (rate of 0.0113 [95% confidence interval 0.0081-0.0147] substitutions per site per million years (subst/s/Ma) for COI-5; 0.0145 [0.01-0.0198] subst/s/Ma for COI-3 and 0.0016 [0.001–0.0022] subst/s/Ma for 16S + tRNA). Analyses were run for 100 million generations, assessing that convergence was correct and estimating the burn-in fraction with Tracer v1.6 (Drummond & Rambaut, 2007). We also used a fast maximum likelihood (ML) heuristic algorithm in RAxML-HPC2 (Stamatakis, 2006) in the CIPRES Science Gateway (Miller, Pfeiffer, & Schwartz, 2010), using the same partition scheme as in BEAST with a GTR + G evolutionary model

VILLASTRIGO ET AL

independently estimated for each partition and assessing node support with 100 pseudoreplicas with a rapid bootstrapping algorithm (Stamatakis, Hoover, & Rougemont, 2008).

2.4 | Morphological data

To estimate the likely phylogenetic relationships of the species for which no molecular data could be obtained, we studied all described species of subgenera *Hygrotus* and *Coelambus* with the only exceptions of *H*. (*C*.) *artus* (Fall, 1919), known only from the holotype and considered to be possibly extinct (see Anderson, 1983), and *H*. (*C*.) *femoratus* (Fall, 1901), which is likely a junior synonym of *H*. (*C*.) *nubilus* (LeConte, 1855) (Anderson, 1983). We have also studied a large selection of species of *Herophydrus* and *Hyphoporus* (see Table S3 for the studied material).

The taxonomic classification of Hygrotini has suffered multiple changes, and some of the characters used to define genera (such as e.g., the morphology of the clypeus) are difficult to interpret and characterise (see e.g., Anderson, 1971; Balfour-Browne, 1934; Biström & Nilsson, 2002; Falkenström, 1933; Villastrigo et al., 2017). Species for which no molecular data were available were thus considered to be closely related to those showing a high morphological similarity, based both on external characters and on the female and male genitalia. We also recognised diagnostic characters or character combinations of the different clades of the molecular phylogeny and tested their presence in the species without molecular data (see Villastrigo et al., 2017 for more details). We used Mesquite v3.20 (Maddison & Maddison, 2017) to manually place all species in their most likely position in the phylogenetic tree, and collapsed uncertain nodes to create polytomies.

2.5 | Salinity tolerance data

We compiled ecological data on habitat preferences of all species of Hygrotini from bibliography and from our own observations (Table S3). Recent work on salinity tolerance in aquatic Coleoptera has recognised six different categories of habitat preferences: (i) FW (<0.5 g/L); (ii) mineralised (0.5–5 g/L); (iii) hyposaline (\geq 5–20 g/L); (iv) mesosaline (\geq 20–40 g/L); (v) hypersaline (\geq 40–80 g/L); (vi) extreme

-Zoologica Scripta 🖗 👘 🚳 — WILEY 📕 65

hypersaline (>80 g/L) (Arribas et al., 2014). As quantitative observations in species of Hygrotini were very scarce we reduced these categories to three: (i) species strictly bounded to FW environments (approximately <0.5 g/L), corresponding to category (i) above; (ii) species that can tolerate a wide range of salinities (approximately 0.5-40 g/L), corresponding to categories (ii-iv) above; and (iii) hypersaline species (approximately >40 g/L), corresponding to categories (v) and (vi) above. To reconstruct the evolution of saline tolerance we pruned the data set to one specimen per species and deleted the outgroups, using salinity tolerance as a qualitative trait. This reduced matrix was analysed in BEAST using the same settings as for the phylogenetic reconstruction, with an asymmetric substitution model for the trait reconstruction and dating the ancestral node according to the results of the previous analysis (with a Gamma distribution with shape 30 and scale 2.227). We also reconstructed the evolution of saline tolerance in the extended phylogeny, including species for which no molecular data were available, using parsimony in Mesquite.

3 | RESULTS

3.1 | Molecular phylogeny

The best partition schemes selected by PartitionFinder pooled the two fragments of COI and several of the nuclear genes, and favoured the most complex evolutionary models for most partitions (Table 1). The topological differences between the Bayesian analysis and the ML searches were minimal and always affected poorly supported nodes (Figures 1, S1), associated with the position of three species: *Hygrotus* (*Coelambus*) fumatus (Sharp, 1882), *Hygrotus* (*Coelambus*) urgensis (Jakovlev, 1899) and *Hygrotus* (*Hygrotus*) hydropicus (LeConte, 1852). In all cases, the monophyly of Hygrotini was recovered with strong support, as were most of the internal nodes (Figures 1, S1).

In all analyses, Hygrotini was divided into two lineages (posterior probability [pp] = 1; bootstrap support [BS] = 98): (A) three Nearctic and one Palaearctic species of subgenera *Hygrotus* and *Coelambus* and (B) the remaining species of the tribe (Fig. 1). The latter was in turn divided into four clades: (B1) a group of Palaearctic species of subgenus

TABLE I	Best partition schemes and
optimal evolution	onary models as estimated
with PartitionFin	nder

Comp	lete data set		Redu	iced data set	
Р	Genes	Model	Р	Genes	Model
#1	COI-5 + COI-3	GTR + I + G	#1	COI-5 + COI-3	GTR + I + G
#2	16S + NAD1	GTR + I + G	#2	16S + NADH	GTR + I + G
#3	18S + 28S + H3	GTR + I + G	#3	18S + 28S	GTR + I
			#4	H3	GTR + I + G

P, partition.

VILLASTRIGO ET AL.

-Zoologica Scripta 🖉 🦉 — WILEY 🥼

FIGURE 1 Best maximum likelihood (ML) phylogram obtained in RAxML with the extended dataset of Hygrotini (including outgroups and multiple terminals per species). Black circles, nodes with bootstrap support in RAxML (BS) >70 and posterior probability (pp) in BEAST >0.95; when support values were lower: numbers above nodes, BS; numbers below nodes, pp. X, nodes not recovered in the BEAST analyses (Fig. S1). See Table S1 for details on the specimens. For clarity, only the subgenus name is given in *Hygrotus* s.str. and *Coelambus*. Habitus photograph: *Hygrotus* (*Coelambus*) *lagari* (Fery, 1992) (from Millán et al., 2014)

Coelambus, (B2) the two sampled species of *Hyphoporus*, (B3) a large group of species including *Heroceras*, all sampled *Herophydrus* and most species of *Hygrotus* s. str., and (B4) the remaining species of subgenus *Coelambus*, in turn divided into two sister clades, one with mostly Palaearctic species and a second with mostly Nearctic species.

The monophyly of all clades had strong support in both Bayesian and ML analyses except for clade B3 (Fig. 1). This clade included the genus *Herophydrus* as paraphyletic with respect to *Heroceras* and most species of the subgenus *Hygrotus*, the latter grouped in a monophyletic lineage. *Heroceras* and the sampled species of *Herophydrus* from Madagascar with the exception of *H. spadiceus* Sharp, 1882 formed a strongly supported clade (pp = 1, BS = 100), in turn placed (with lower support) inside a lineage with most of the remaining sampled African *Herophydrus* (Fig. 1).

The internal phylogeny of the main clades was generally in good agreement with the recognised species groups among subgenera *Hygrotus* and *Coelambus* based on morphology (see e.g., Anderson, 1971, 1976, 1983; Fery, 1992, 1995, 2003), although not with the phylogeny of *Herophydrus* obtained by Biström and Nilsson (2002).

3.2 | Evolution of tolerance to salinity

Differences between the analyses of the complete and reduced data set referred mostly to the position of *Hyphoporus* (clade B2). In the complete data set it was placed as sister to clade B3, and both sister to clade B1, with very strong support (Fig. 1). In the reduced data set, without outgroups and with only one terminal per species, it was placed as sister to clade B4, but with low support (Fig. 2). However, the uncertainty in the phylogenetic position of *Hyphoporus* (clade B2) did not have any effect on the reconstruction, as the two possible sister clades, B3 (Fig. 1) or B4 (Figures 2, S2), were reconstructed to have a FW ancestor, and thus, their common ancestor was also reconstructed as living in FW habitats.

According to the Bayesian reconstruction in the reduced data set, tolerance to salinity emerged independently from a FW ancestor at least ten times within three of the main lineages of Hygrotini: B1, B3 and B4 (Fig. 2). There were five subsequent independent transitions from tolerant to hypersaline (mainly in the Nearctic lineage of clade B4), although in some cases these transitions affected only the terminal branches in our phylogeny. Four of the transitions from FW to salinity tolerant and one of the transitions to hypersalinity led to clades with more than one species, and in only one clade

(B4) there have been three reversal transitions from tolerant to FW. No direct transitions from FW to hypersaline habitats were found in the reconstruction (Fig. 2).

The oldest transition to salinity tolerance, at the base of the clade with the highest number of saline species, was dated to the late Eocene-early Oligocene. Three of the transitions to hypersalinity tolerance were estimated to have occurred during the Oligocene, one of them with a further diversification in the early Pleistocene, including *H.* (*C.*) salinarius and Hygrotus (Coelambus) masculinus (Crotch, 1874; Fig. 2). Other transitions to hypersalinity tolerance affecting single species occurred in the middle Miocene (Hygrotus (Coelambus) diversipes Leech, 1966) and the Pleistocene (Hygrotus (Coelambus) fontinalis Leech, 1966; see Fig. 2).

The highest estimated transition rate was from FW to tolerant (1.97 transitions/branch/My [t/b/My]), followed by tolerant to hypersaline (1.45 t/b/My, Table 2). Direct transition from FW to hypersaline waters had the lowest rate (0.23 t/b/My), even lower than that estimated for reversal from hypersaline tolerance to FW (0.37 t/b/My, Table 2).

For most species without molecular data a close relative included in the phylogeny could be identified based on similarities in the genitalia or the external morphology, although in a few cases no obvious relatives could be identified, and the species were placed in an unresolved polytomy in the less inclusive clade to which they could be ascribed (Fig. S2). The parsimony reconstruction of salinity tolerance in this extended phylogeny gave similar results to the reconstruction using only the molecular data. The last common ancestor of Hygrotini was a FW species, as was the reconstructed ancestors of clades A, B2 and B3. For nodes including species with the three states of the trait, such as in clades B1 and B4, the ancestral reconstruction was ambiguous in the parsimony analysis (Fig. S2). On the contrary, in the Bayesian analysis of the reduced data set they were reconstructed as FW with a high probability (Fig. 2). Most of the tolerant or hypersaline species were included within clades with at least some other tolerant species, in agreement with the results obtained with the phylogeny using only species with molecular data (Figures 2, S2).

4 | DISCUSSION

4.1 | Molecular phylogeny

We obtained a robust phylogeny of *Hygrotini*, with good support for most internal nodes except for the monophyly of

FIGURE 2 Reconstruction of the evolution of tolerance to salinity in the reduced data set of Hygrotini (excluding outgroups and with only one terminal per species) in BEAST. Letters above nodes: reconstructed state of the trait (FW, freshwater, green; T, tolerant, yellow; HS, hypersaline, red); numbers inside parentheses: posterior probability of the reconstructed discrete state; numbers below nodes: node support (pp); numbers inside nodes: 95% interval of the reconstructed age of selected nodes. For clarity, only the subgenus name is given in *Hygrotus* s.str. and *Coelambus*. See Tables S1 and S3 for details on the specimens and the ecological typification of the species, respectively. Geographic distribution: AF: Afrotropical; H: Holarctic; NA: Nearctic; NT: Neotropical (northern Mexico); OR: Oriental; PL: Palaearctic

	Freshwater	Tolerant	Hypersaline
Freshwater	-	1.97 (0.33–3.99)	0.23 (<0.001–0.72)
Tolerant	1.23 (0.09–2.83)	-	1.4 (0.03–3.02)
Hypersaline	0.37 (<0.001-1.17)	0.73 (<0.001-1.9)	_

 TABLE 2
 Estimated transition rates in

 BEAST between the discrete states of
 tolerance to salinity

In brackets, 95% confidence interval.

clade B3 and its relationship with *Hyphoporus*. Our species sampling was also very dense except for *Herophydrus* and for *Hyphoporus*, of which we could obtain fresh material of

only two species. These two species, however, belong to the two different morphological groups recognised in the revision of the genus by Vazirani (1969).

VILLASTRIGO ET AL

The most unexpected result of our phylogeny was the deep division of Hygrotini in two clades, one of them formed by a small number of species. Despite the lack of clear synapomorphies, these species share some presumably plesiomorphic characters of body shape, colouration and male genitalia, the latter being in general simpler and more similar to those of other related tribes of Hydroporinae. The internal relationships within clade A are still poorly defined, and would need further morphological and molecular studies to be clarified. Within clade B3, the close relationships of Hygrotus s. str., Herophydrus and Heroceras had been previously noted by many authors (Abellán et al., 2013; Alarie & Michat, 2007; Biström & Nilsson, 2002; Miller & Bergsten, 2014; Ribera, Hogan, & Vogler, 2002; Ribera et al., 2008), and suggested by the (incomplete) molecular and morphological phylogenies available prior to our study. Species of Hyphoporus have always been considered to be related to the species of Herophydrus, of which they differ mostly in the male genital shape (e.g., Biström & Nilsson, 2002; Miller & Bergsten, 2016). The non-monophyly of genera Hygrotus and Herophydrus and subgenera Hygrotus and Coelambus requires a revised classification of the tribe, which will be formalised in a separate paper (Villastrigo et al., 2017).

4.2 | Evolution of the tolerance to salinity in Hygrotini

We found several independent origins for the salinity tolerance in the tribe Hygrotini, with at least 10 transitions from FW to saline ecosystems both in the Palaearctic and the Nearctic. The multiple origin of saline species was expected, as they were included in different morphologically well characterised subgenera or species groups, but the number of transitions was lower than anticipated, as some of the saline species in clade B4 that were not thought to be related (as e.g., Hygrotus (Coelambus) marklini (Gyllenhall, 1813) and H. (C.) salinarius) were grouped in the same monophyletic radiation. In other families of aquatic Coleoptera, species that were apparently not closely related were also found to have a common origin of their tolerance to salinity, as for example in the genera Ochthebius Leach, 1815 (Hydraenidae; see Sabatelli et al., 2016) and Enochrus Thomson, 1859 (Hydrophilidae; see Arribas et al., 2014).

We did not find any direct transition from FW to hypersaline habitats, a transition that had the lowest estimated probability, suggesting that in Hygrotini the adaptation to salinity has been a gradual process. The only possible exception was *Hygrotus (Coelambus) pallidulus* (Aubé, 1850), sister to a group of tolerant species, but the clade was reconstructed as having a FW ancestor with high probability. However, *H. (C.) pallidulus* together with its tolerant sisters are included in a wider lineage with several other tolerant species of which no molecular data could be obtained, rendering the Zoologica Scripta

condition of their common ancestor ambiguous (as can be seen in Fig. S2). This gradual evolution is in contrast to the direct transitions from FW to hypersaline tolerance found in a group of Mediterranean species of Enochrus (Arribas et al., 2014). These transitions were associated with periods of aridification of the climate, leading to the hypothesis that saline tolerance may have been a by-product (an exaptation) of adaptation to desiccation (Arribas et al., 2014; Pallarés, Velasco, Millán, Bilton, & Arribas, 2016). The capability to produce hyperosmotic excreta is a plesiomorphic character in insects, likely linked to the necessary adaptations to a terrestrial environment (Bradley, 2008; Bradley et al., 2009; Cloudsley-Thompson, 2001). In the only species for which the salinity tolerance mechanism is known, H. (C.) salinarius, adults maintain a hyposmotic haemolymph also with hyperosmotic excreta (Tones, 1978), with no evidence of any additional mechanism particular to this species. However, larvae of H. (C.) salinarius maintain a hyperosmotic haemolymph even at high saline concentrations (Tones, 1978), suggesting a different mechanism to that of adults. Although there is an increasing knowledge of the physiological basis of salinity tolerance in adult Coleoptera (e.g., Céspedes, Pallarés, Arribas, Millán, & Velasco, 2013; Pallarés, Arribas, Bilton, Millán, & Velasco, 2015; Pallarés, Arribas, Céspedes, Millán, & Velasco, 2012), the physiology of larval tolerance to salinity is still unknown. However, both the different characteristics of the cuticle (less sclerotised and without the protection of the elytra) and the biology (usually more strictly linked to the aquatic environment) suggest that the existence of different mechanisms to salinity tolerance in adults and larvae may be frequent.

In any case, it must be noted that we have data only on the ecological preferences of the species of Hygrotini, not on their physiological tolerances. If tolerance to salinity is an exaptation derived from a plesiomorphic adaptation to terrestrial environments (as hypothesised by Arribas et al., 2014; see Pallarés, Botella-Cruz, Arribas, Millán, & Velasco, 2017 for an experimental confirmation of the link between salinity and desiccation tolerance), tolerance to at least certain degree of salinity may be widespread even in species commonly found in FW habitats, as has been demonstrated to be the case in other groups of aquatic Coleoptera (Céspedes et al., 2013; Pallarés et al., 2015). Our ecological typification was also in most cases based on qualitative descriptions, without quantitative data. For some species there are few, if any, reports on their habitat, and in some cases we have assumed a FW habitat when the information was not very precise, as when species are found in saline or hypersaline habitats this is usually reported. In some cases qualitative reports can be ambiguous, such as for example when species are considered "halophile" or "halobiont" when they occur in slightly mineralised waters in a landscape otherwise lacking any true saline or hypersaline habitat, such as for example Hygrotus

366

70 WILEY Zoologica Scripta

(*Hygrotus*) *inaequalis* (Fabricius, 1777) or *H.* (*Coelambus*) *impressopunctatus* (Schaller, 1783) in some areas in central and northern Europe (e.g., Bellstedt, 2008).

In Hygrotini, the transitions to saline habitats were estimated to have occurred in different periods, from the late Eocene to the Plio- and Pleistocene, without a clear pattern of associations to arid periods, in contrast to what happened in the genus *Enochrus* in the Mediterranean region (Arribas et al., 2014). However, the oldest transition to saline habitats in Hygrotini, and the one leading to the higher number of saline species, occurred at the end of the Eocene in clade B4 in the Nearctic region, coincident with a global decrease in temperatures and the onset of the first Oligocene glaciations (Liu et al., 2009; Zachos, Pagani, Sloan, Thomas, & Billups, 2001). In North America, this decrease in temperature was associated with a decrease in precipitation (Retallack, 2007), leaving open the possibility that this transition to saline habitats was also a response to an increased aridification in this lineage.

ACKNOWLEDGEMENTS

We would like to thank all colleagues mentioned in Table S1 for sending valuable material for study, as well as Ana Izquierdo (MNCN), Rocío Alonso and Anabela Cardoso (IBE) for laboratory work. M. Manuel is grateful to Andriamirado T. Ramahandrison for help during field work in Madagascar, in the context of the RicciaTeam expedition led by Catherine Reeb. We also thank Josefa Velasco and Susana Pallarés (Universidad de Murcia) and Paula Arribas (Instituto de Productos Naturales y Agrobiología-CSIC) for comments on the origin and evolution of salinity tolerance, and three anonymous referees for their comments and suggestions. This work was partly funded by an FPI grant to A.V., and projects CGL2013-48950-C2-1-P and CGL2013-48950-C2-2-P (AEI/FEDER, UE) to I.R. and A.M., respectively.

REFERENCES

- Abellán, P., Sánchez-Fernández, D., Picazo, F., Millán, A., Lobo, J. M., & Ribera, I. (2013). Preserving the evolutionary history of freshwater biota in Iberian National Parks. *Biological Conservation*, 162, 116–126.
- Alarie, Y., & Michat, M. C. (2007). Phylogenetic analysis of Hydroporinae (Coleoptera: Dytiscidae) based on larval morphology, with description of first instar of *Laccornellus lugubris*. *Annals of* the Entomological Society of America, 100, 655–665.
- Anderson, R. D. (1971). A revision of the Nearctic representatives of *Hygrotus* (Coleoptera: Dytiscidae). *Annals of the Entomological Society of America*, 64(2), 503–512.
- Anderson, R. D. (1976). A revision of the Nearctic species of Hygrotus groups II and III (Coleoptera: Dytiscidae). Annals of the Entomological Society of America, 69(4), 577–584.
- Anderson, R. D. (1983). Revision of the Nearctic species of *Hygrotus* groups IV, V and VI (Coleoptera: Dytiscidae). *Annals of the Entomological Society of America*, 76(2), 173–196.

- Andújar, C., Serrano, J., & Gómez-Zurita, J. (2012). Winding up the molecular clock in the genus *Carabus* (Coleoptera: Carabidae): Assessment of methodological decisions on rate and node age estimation. *BMC Evolutionary Biology*, 12, 40.
- Arribas, P., Andújar, C., Abellán, P., Velasco, J., Millán, A., & Ribera, I. (2014). Tempo and mode of the multiple origins of salinity tolerance in a water beetle lineage. *Molecular Ecology*, 23, 360–373.
- Balfour-Browne, F. (1934). Systematic notes upon British aquatic Coleoptera. Part II. The Hydroporinae (*Hygrotus & Coelambus*). *The Entomologist's Monthly Magazine*, 70, 146–150.
- Bellstedt, R. (2008). Wasserkäfer & Langbeinfliegen (aquatische Coleoptera & Diptera: Dolichopodidae) in vier Binnensalzstellen Nordthüringens von 2005 bis 2007. Mitteilungen des Thüringer Entomologenverbandes, 15, 124–141.
- Biström, O., & Nilsson, A. N. (2002). *Herophydrus* Sharp: Cladistic analysis, taxonomic revision of the African species, and world check list (Coleoptera: Dytiscidae). *Koleopterologische Rundschau*, 72, 15–111.
- Bradley, T. J. (2008). Saline-water insects: Ecology, physiology and evolution. In J. Lancaster, & R. A. Briers (Eds.), *Aquatic insects: Challenges to populations* (pp. 20–35). Wallingford: CAB International Publishing.
- Bradley, T. J., Briscoe, A. D., Brady, S. G., Contreras, H. L., Danforth, B. N., Dudley, R., ... Yanoviak, S. P. (2009). Episodes in insect evolution. *Integrative and Comparative Biology*, 49, 590–606.
- Céspedes, V., Pallarés, S., Arribas, P., Millán, A., & Velasco, J. (2013). Water beetle tolerance to salinity and anionic composition and its relationship to habitat occupancy. *Journal of Insect Physiology*, 59, 1076–1084.
- Cloudsley-Thompson, J. L. (2001). Thermal and water relations of desert beetles. *Naturwissenschaften*, 88, 447–460.
- Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.
- Falkenström, G. A. (1933). Schwedisch-chinesische wissenschaftliche Expedition nach den nordwestlichen Provinzen Chinas, unter Leitung von Dr. Sven Hedin und Prof. Sü Ping-chang. Insekten, gesammelt vom schwedischen Arzt der Expedition Dr. David Hummel 1927–1930. 15. Coleoptera. 1. Haliplidae und Dytiscidae. Arkiv för Zoologi, 27A(1), 1–22.
- Fery, H. (1992). Revision der saginatus-Gruppe der Gattung Coelambus Thomson (Coleoptera: Dytiscidae). Linzer Biologische Beiträge, 24, 339–358.
- Fery, H. (1995). Ergänzungen zur saginatus-Gruppe sowie Bemerkungen zu weiteren Arten der Gattung Coelambus Thomson (Coleoptera, Dytiscidae). Linzer Biologische Beiträge, 27, 1045–1061.
- Fery, H. (2003). Dytiscidae: V. Taxonomic and distributional notes on *Hygrotus* Stephens, with emphasis on the Chinese fauna and a key to the Palearctic species (Coleoptera). In M. A. Jäch, L. Ji (Eds.), *Water beetles of China*, Vol. 3 (pp. 133–193). Wien: Zoologisch-Botanische Gesellschaft in Österreich and Wiener Coleopterologenverein.
- Hebert, P. D., Ratnasingham, S., & De Waard, J. R. (2003). Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. *Proceedings of the Royal Society B: Biological Sciences*, 270, S96–S99.
- Katoh, K., Asimenos, G., & Toh, H. (2009). Multiple alignment of DNA sequences with MAFFT. *Methods in Molecular Biology*, 537, 39–64.
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., ... Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics*, 28, 1647–1649.

VILLASTRIGO ET AL.

- Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology* and Evolution, 29, 1695–1701.
- Leys, R., & Watts, C. H. (2008). Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on *Carabhydrus. Invertebrate Systematics*, 22, 217–225.
- Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., ... Pearson, A. (2009). Global cooling during the Eocene-Oligocene climate transition. *Science*, 325, 1187–1190.
- Maddison, W. P., & Maddison, D. R. (2017). Mesquite: a modular system for evolutionary analysis. Version 3.2. Retrieved from http:// mesquiteproject.org (last access March 2017).
- Millán, A., Sánchez-Fernández, D., Abellán, P., Picazo, F., Carbonell, J. A., Lobo, J. M., & Ribera, I. (2014). Atlas de los coleópteros acuáticos de España peninsular. Madrid: Ministerio de Agricultura, Alimentación y Medio Ambiente.
- Miller, K. B., & Bergsten, J. (2014). The phylogeny and classification of predaceous diving beetles. In D. A. Yee (Ed.), *Ecology, systematics* and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae) (pp. 49–172). Berlin: Springer.
- Miller, K. B., & Bergsten, J. (2016). Diving beetles of the world: Systematics and biology of the Dytiscidae. Baltimore: Johns Hopkins University Press.
- Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE) (pp. 1–8). New Orleans.
- Nilsson, A. N., & Hájek, J. (2017a). A world catalogue of the family Dytiscidae, or the diving beetles (Coleoptera, Adephaga). Internet Version 31.I.2017. Retrieved from http://www.norrent.se and www. waterbeetles.eu (last access March 2017).
- Nilsson, A. N., & Hájek, J. (2017b). Catalogue of Palaearctic Dytiscidae (Coleoptera). Internet version 31.I.2017. Retrieved from http:// www.norrent.se and www.waterbeetles.eu (last access March 2017).
- Pallarés, S., Arribas, P., Bilton, D. T., Millán, A., & Velasco, J. (2015). The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae). *PLoS ONE*, 10(4), e0124299.
- Pallarés, S., Arribas, P., Céspedes, V., Millán, A., & Velasco, J. (2012). Lethal and sublethal behavioural responses of saline water beetles to acute heat and osmotic stress. *Ecological Entomology*, 37, 508–520.
- Pallarés, S., Botella-Cruz, M., Arribas, P., Millán, A., & Velasco, J. (2017). Aquatic insects in a multistress environment: Crosstolerance to salinity and desiccation. *Journal of Experimental Biology*, 220, 1277–1286.
- Pallarés, S., Velasco, J., Millán, A., Bilton, D. T., & Arribas, P. (2016). Aquatic insects dealing with dehydration: Do desiccation resistance traits differ in species with contrasting habitat preferences? *PeerJ*, 4, e2382.
- Picazo, F., Moreno, J. L., & Millán, A. (2010). The contribution of standing waters to aquatic biodiversity: The case of water beetles in southeastern Iberia. *Aquatic Ecology*, 44, 205–216.
- Retallack, G. J. (2007). Cenozoic paleoclimate on land in North America. *The Journal of Geology*, 115, 271–294.

- Zoologica Scripta 💷 👘 🐨 — WILEY 🕂 71

- Ribera, I., Hogan, J. E., & Vogler, A. P. (2002). Phylogeny of hydradephagan water beetles inferred from 18S rRNA sequences. *Molecular Phylogenetics and Evolution*, 23, 43–62.
- Ribera, I., Vogler, A. P., & Balke, M. (2008). Phylogeny and diversification of diving beetles (Coleoptera : Dytiscidae). *Cladistics*, 24, 563–590.
- Sabatelli, S., Audisio, P., Antonini, G., Solano, E., Martinoli, A., & Trizzino, M. (2016). Molecular ecology and phylogenetics of the water beetle genus *Ochthebius* revealed multiple independent shifts to marine rockpools lifestyle. *Zoologica Scripta*, 45, 175–186.
- Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics*, 22, 2688–2690.
- Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. *Systematic Biology*, 57, 758–771.
- Tierney, S. M., Cooper, S. J. B., Saint, K. M., Bertozzi, T., Hyde, J., Humphreys, W. F., & Austin, A. D. (2015). Opsin transcripts of predatory diving beetles: A comparison of surface and subterranean photic niches. *Royal Society Open Science*, 2, 140386.
- Timms, B. V., & Hammer, U. T. (1988). Water beetles of some saline lakes in Saskatchewan, Canada. *Canadian Field-Naturalist*, 102, 246–250.
- Tones, P. I. (1978). Osmoregulation in adults and larvae of *Hygrotus salinarius* Wallis (Coleoptera, Dytiscidae). *Comparative Biochemistry and Physiology Part A*, 60, 247–250.
- Toussaint, E. F. A., Hendrich, L., Escalona, H. E., Porch, N., & Balke, M. (2016). Evolutionary history of a secondary terrestrial Australian diving beetle (Coleoptera, Dytiscidae) reveals a lineage of high morphological and ecological plasticity. *Systematic Entomology*, 41, 650–657.
- Vazirani, T. G. (1969). Contribution to the study of aquatic beetles (Coleoptera). V. Revision of Indian species of *Hyphoporus* Sharp (Dysticidae). *Bulletin du Muséum National d'Histoire Naturelle*, (2) 41(1), 203–225.
- Villastrigo, A., Ribera, I., Manuel, M., Millán, A., & Fery, H. (2017). A new classification of the tribe Hygrotini Portevin, 1929 (Coleoptera: Dytiscidae: Hydroporinae). *Zootaxa*, in press.
- Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. *Science*, 292, 686–693.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Villastrigo A, Fery H, Manuel M, Millán A, Ribera I. Evolution of salinity tolerance in the diving beetle tribe Hygrotini (Coleoptera, Dytiscidae). *Zool Scr.* 2018;47:63–71. https://doi.org/10.1111/zsc.12255

Evolution of salinity tolerance in the diving beetle tribe Hygrotini (Coleoptera, Dytiscidae)

ADRIÁN VILLASTRIGO, HANS FERY, MICHAËL MANUEL, ANDRÉS MILLÁN & IGNACIO RIBERA

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. Material studied in the molecular study, with voucher numbers, locality data and accession numbers of the sequences.

Table S2. A) Primers used in the amplifying and sequencing reactions and B) standard PCR conditions for the amplification of the studied fragments.

Table S3. Checklist of the species of Hygrotini (following Nilsson & Hàjek 2017a, b) with the typical habitat and the species for which material could be studied. (AF,

Afrotropical; H, Holarctic; NA, Nearctic; NT, Neotropical; OR, Oriental; PL, Palaearctic)

Fig. S1. Time-calibrated majority rule consensus tree obtained in BEAST with the complete dataset. Number in nodes: posterior probability values.

Fig. S2. Reconstructed evolution of salinity tolerance in the tribe Hygrotini, using parsimony with the estimated relationships of species for which no molecular data were available.

28S	LT882958		LT882959		LT882960				LT882961	LT882962	LT882963			17001064	L1002304				LT882966		LT882967			LT882968			LT882969	17003070	LT882971						LT882972	LT882973			17882974	LT882975		LT882976		LT882977	LT882979				LT882980	1002001		LT882982	LT882983			
H3	LT883058	L1883Ub8	LT883059		LT883060		LT883061	EF670206	LT883062	LT883063	LT883064		LT883065	EF6/0204	CL0/0702	KJ548799	LT883067		LT883066	00000001	L1003003	LT883070	LT883072	EF670207		KJ548765	EF670208	00002333	LT883073	KJ548766	LT883074		LT883075		LT883076	LT883077	LT883078	0100000	17883079		LT883081	LT883080	LT883082	L1883U83	LT883085	LT883086			L1883087	LIBOSUGA	LT883089	LT883090	LT883091	LT883092	LT883093	
18S	LT882897	LI 882904	LT882898		LT882899			AJ318731	LT882900	LT882901	LT882902			A1850520	TZENCORY				LT882903	1.7001001	LT882905		LT882907	AJ850522		101000	AJ318735	A IOEACOO	LT882908		LT882909		LT882910		LT882911	LT882912		concernant increases	4/85/053//EF6/0302		LT882915	LT882914		LI 882915 I T882917	LT882918	LT882919			L1882920 17882921	11006741	LT882922	LT882923	LT882924	LT882925	L1882926	
16S	LT883018	LI883U2U H0381465	LT883047		LT883046	LT883053	LT883043	AJ850384	LT883054	LT883007	LT883036	LT883030		AJ850382	1 T 0 2 0 1 0	KJ548382			LT883029	10381464	LT883026	HF931520	HF931495	AJ850385	LT883044	0548332	AJ850386	A 10E0307	LT883011	U548333	HF931487	LT883056	HF931494	HE931325	LT883004	LT883009	LT883035	LT883052	1283075	LT883022	LT883049	HF931382	HF931465	L1883038	HF931518	HF931467	LT883055	HF931510	LI883010	NOCTOLI	HF931490	HF931523	LT883028	HF931407	LT883U37	CLECC.
ō	LT882791	LI882/93	LT882823	LT882794	LT882822	LT882828	LT882818	AJ850634	LT882829	LT882776	LT882811	LT882804	LT882781	A1850632	CC00C004	KJ548554		HQ383502	LT882803	10382802	LT882800	HF931283	HF931259	AJ850635	LT882819	U548527	AY250964	A 1050507	LT882780	KJ548528	HF931251	LT882831	HF931258	HE931108	LT882773	LT882778	LT882810	LT882827	AJ850653	LT882796	LT882825	HF931163	HF931236	L1882813	HF931281	HF931237	LT882830	HF931273	LI882//9	LT882806	HF931254	HF931286	LT882802	HF931184	LT882812	
BAK	LT882848	15828811			LT882884					LT882838	LT882866			L1882886	1 T002071	KJ548554	LT882849		LT882856		LT882855		LT882881	LT882894		KJ548527	LT882890	17002002	LT882842		LT882877		LT882880	HF947982	LT882835	LT882840			17882854			LT882862		L1882869	LT882889	LT882876			L1882841	L1002001	LT882879	LT882896		LT882868	LT88286/	
י	M. Manuel & Rahamandrison	IVI. IVIanuel & Kanamanorison	S. Bouzid	D.J. Mann	I. Ribera & A. Cieslak	I. Ribera & A. Cieslak	I. Ribera	I. Ribera	I. Ribera & A. Cieslak	R.B. Angus	G. Wewalka	G. Wewalka	D.T. Bilton	U.J. Mann	M. Manual 8. Dahamandrison		M. Manuel & Rahamandrison		R. Vila	0 X 1	U.K. Ettilari i. Rihera	H. Ferv	I. Ribera & A. Cieslak	A.N. Nilsson	A.E.Z. Short	1 81	I. Ribera	I. KUDETA OL A. CIESIAK	A.W. NIISSOII P. Abellán		A.E.Z. Short	A.N. Nilsson	I. Ribera & A. Cieslak	G. Challet R.R. Anglis	1. Ribera & A. Cieslak	I. Ribera & A. Cieslak	T. Berendonk	I. Ribera & A. Cieslak	I. KIDEFA & A. CIESIAK I. Rihara	Pešić	Y. Alarie	Y. Alarie	I. Ribera & A. Cieslak	I. KIDETA & A. CIESIAK I. Rihera & A. Rudov	I. Ribera & A. Cieslak	A.E.Z. Short	A.N. Nilsson	I. Ribera & A. Cieslak	G. Challet T. Berendonk	1. Berendonk	A.E.Z. Short	I. Ribera	Darvishzadej	A. Millán & col.	L. Hendrich	
	Prov. Hanarantsoa / ca 4.5 km WSW Antrainforsky. Andringitra Massif. / 252309:11.9" (45-5155): 27.127 m. Drov. Pramatersoa / ca 4.5 km WSW Antrainforsky. / Andringitra Massif. / 252309:11.9" (45-5155): 27.127 m.	Prov. Hanaranisoa / ca 4.5 km w5w Antanirotsy / Andringtra Massir./ 522 U8 11.9 E40 5155.5 / 2,127 m. Beef (1)	Rami-Souk (putt) / N 36° 47,494′ E 008° 31.326 / 101.19 m		W Cape / Prince Albert Road / pond in junction R407 with N1	W Cape / Wilderness NP, Swartvlei / Montmere, ditch by the lake	SINOP / rd. 785 btw Sarayd üzü & Boyabat / slow stream 5 km S of Yesilyurt / 440m / N41°23'42.5" E34°49'51"	Albacete, Hellin, Charca de los Patos	5) Moya, Bco. de Azuaje	Crete Potamies	Shewa Prov. / 25 km N Addis Ababa, Solutta / 2800m	Shewa Prov. / 40-60 km N Addis Ababa / 2500m	Kwazulu-Natal/ iSimangalis Wetland Park / False Bay site 3 / Woodland pool	111 Canad I Du Tajka Ukadé ad M11 J anad and dinas M64 ja anadé	W cape? Dui tots Noro); u: nat. Point attin treet with the source. Deven, Areamanika, Z.a. & Jewa MKNV Masanahona. Uhitu Mascil.		Prov. Antananarivo / ca. 13 km W Ambatolampy / Ankaratra Massif / S19*21'42.8" E47*18'53.8" / Alt: 1,737 m.	Ref (1)	Northern Province / Kapisha / 5011*10'09.4 E031*36'01.6 / 1440 m	Ref (1) 5	erzeurun; yau Frimirum / Tronskkalakövü / slow stream in erascland / 717á m / Md0 14 279 FA0 59 16 7	erstand in y operatively that are account in generation of a set of the set o	Mono Co. / Long Valley. Owens river Rd. / tributary r. Owen		Tov / Ondorshireet / Tuul River ~1.5 km W of Tuul Ovoot bridge, downstream of road to Arvayheer / N47.31096 E105.27119 / 1042 m	Ref (2)	Sa. Da Ericela Torre / lagoon La contral contral contraction of any and any any any a	Tercetra 2 or unigale entrophic region / 36 41 44:50 1/2 / 3 2/1.2 W / 39011 Artestade Abbert / Disconded / Etaboon i Jac 41 44:50 1/2 / 3 2/1.2	Astraniari Outast / Pringsowa / steppe lake two or village Soda Lake (near Baken / 3599'19"N 11696'22"W		Tov / Ondorshireet / Tuul River ~1.5 km W of Tuul Ovoot bridge, downstream of road to Arvayheer / N47.31096 E105.27119 / 1042 m		Mono Co. / Long Valley, Owens river Rd. / tributary r. Owen	l Wonto Cu. 7 up al anali nate are to entron trossing. To Secondia / non-dic baside cross: of herbuean dataes. Oreco de los Herreros SG723 and Secondia-Villacastin M110.	Degevier / points beside close to between Address Sectore to static to 5 25745 and Segovier minectant MAAO.	Mendocino Co. / Rd. 1 Manchester / pond S City		Rd. 22,5 km S Longview	Carterization 2012 Lioute Andreas Automatical Automatical Automatical Control Cont	Son Kol Lake area / rheoholcrenic spring 2 / 3069 m / 4155.720' N, 75912.057' E	Manitoulin island, Ck. At Hwy 540, 20 km E Little Curreny	Manitoulin island, Ck. At Hwy 540, 20 km E Little Curreny	Zaragoza / Chiprana pond rd. 5. Marcos / 41'14'30'N 0'09'27''W/ 120m	Udanatajara 21. Podo de unenas / podo na cross truztuxz.11.z / n4uz47 05.6 M 1238 30.1 Dobustan / onnde in bazeh / 20175138 g/b, 2025713 6.715 / 3012	B.C. / RG. 5A, Stump Lake/ ponds by road	Zavkhan Aimag, Telmen Soum,Ideriin Gol~15 km SSW of Telmen / Ovogdii / N48.53255,597,52093 / 1823 m	Volgograd oblast / SW Lake of Elton / steppe pond with much vegetation	Mono Co. / Long Valley, Owens river Rd. / saline lagoons	Mono Co. / stream outlet or big akali lake at benton crossing road	N53839,346 W110558,922	Arkhangay / Bulgan / Urd Tamir Gol braid upstream of bridge, ~63 km SW of Tsetserleg / N47.11192 E101.01048 / 2066 m	E. Sutherland, Loch Brora	Khuzestan / 5 km SW Bandare Emam, -21 m / 30 5714N 49 0524E	Alcolea de las Peñas / arroyo salino / 30TWL 1775762735 / 992 m / 5al: 37,1 gr/l	IMecklenburg-Vorbom, Hiddensee, N writte St. 4 013×005 26°E 54×3434°N	
country	Madagascar	Madagascar	Algeria	Vamibia	South Africa	South Africa	Furkey	Spain	Sran Canaria (E	Crete (GR)	Ethiopia	Ethiopia	South Africa	Vamibia	Madagascar	Zambia	Madagascar	Madagascar	Zambia	Madagascar	Furkey	Furkey	JS (CA)	Russia	Mongolia	(Y.V) SL	ortugal	azores (POL.)	JS (CA)	(VV) SU	Mongolia	Russia	JS (CA)	(A) cu	Spain	JS (CA)	Canada (AL)	Canada (AL)	Lorsica (FK) reland	<pre></pre>	Canada (ON)	Canada (ON)	Spain	opain Azerhailan	Canada (BC)	Mongolia	Russia	JS (CA)	(AJ) (LA)	Canada (AL)	Mongolia	JK (SC)	ran	Spain	Sermany	
T	Yes	Vac N	Yes A	No	4 Yes 5	No	No	No	No	Yes (0 Yes I	No	Yes :	Yes	- 163 -	Yes 2	Yes I	Yes	Yes	Yes -	Vec 1	No	Yes L	Yes I	No	Yes	Yes	100	Yes L	2 ON	I Yes I	No	Yes		Yes 5	Yes L	52 NO (°N :	N0 N	No	No	5 Yes (0N	Vac 4	Yes	Yes	- N	No	Vac C	NO C	Yes L	Yes L	Yes	Yes :	TYes IV	1
	IBE-AV58	GENRANK	MNCN-HI10	IBE-AV62	MNCN-DM4	NHM-IR620	MNCN-AI815	NHM-IR36	NHM-IR638	IBE-AV10	MNCN-AI122	IBE-RA704	BE-AV32	NHM-IK242	DE-AV60	GENBANK	IBE-AV59	GENBANK	IBE-RA703	GENBANK	IRF-RA544	NHM-IR540	MNCN-AI983	NHM-IR688	MNCN-A963	GENBANK	NHM-IR59	PLEATER 14	IBE-AV25	GENBANK	MNCN-AI964	NHM-IR685	MNCN-AI982	MNCN-AC19	IBE-AN36	IBE-AV23	MNCN-AI116	NHM-IR489	IRE-RA270	IBE-RA1205	NHM-IR473	MNCN-AI112	MNCN-AI85	IRF-AN68	NHM-IR519	MNCN-AI89	NHM-IR682	NHM-IR290	MANCN-AI115	IBE-RA878	MNCN-AI970	NHM-IR714	IBE-RA701	MNCN-AI216	Varia-NONN'	
	lescarpentriesi	r. sp scimilie	uineensis	ruineensis	inquinatus	inquinatus	nusicus	nusicus	nusicus	nusicus	muticus	nuticus	nigrescens	nodieri	aticulatus	ohani	d	padiceus	ribolus	Jerticalis	rmeniacus	rmeniacus	ruesi	aspins	aspius	compar	confluens	organters	iversines	liversipes	laviventris	^c laviventris	ontinalis	ontmans	resnedai	umatus	mpressopunctatus	mpressopunctatus	mpressopunctatus	mpressopunctatus	accophilinus	accophilinus	agari	agari	utescens	marklini	narklini	masculinus	iarecrenc	viarescens	vigrolineatus	overnlinea tus	orthogrammus	pallidulus	- and reproducing the second s	
0					~	~	-	-	-	-	-	-	-					-1	Ĩ	i and an advector of	optambus c	pelambus 6	oelambus L	oelambus t	oelambus (oelambus (oelambus	outranta in a	oelambus (oelambus 6	oelambus J	oelambus J	oelambus)	andmbiad	oelambus 1	oelambus)	oelambus I	oelambus I	i sudmbiao	oelambus i.	oelambus I	oelambus I	oelambus I	- sudmbiad	oelambus I	oelambus I	oelambus 1	oelambus I	 Sudmbiao sudmbiao 	oelambus I	oelambus I	oelambus I	oelambus (oelambus I	onumning of	normina h
2	1 Heroceras	2 Herophydrus	4 Herophydrus	5 Herophydrus	6 Herophydrus	7 Herophydrus	8 Herophydrus	9 Herophydrus	10 Herophydrus	11 Herophydrus	12 Herophydrus	13 Herophydrus	14 Herophydrus	15 Heropnydrus	17 Harophydric	18 Herophydrus	19 Herophydrus	20 Herophydrus	21 Herophydrus	22 Herophydrus	23 Huarotus C	25 Hvarotus C	26 Hygrotus C.	27 Hygrotus C	28 Hygrotus C	29 Hygrotus C	30 Hygrotus C	21 Interneting C	32 Hydrotus C	34 Hydrotus C	35 Hygrotus C	36 Hygrotus C	37 Hygrotus C	36 Huarotus C	40 Hygrotus C	41 Hygrotus C	42 Hygrotus C	43 Hygrotus C	44 Hygrotus C	46 Hydrotus C.	47 Hygrotus C	48 Hygrotus C	49 Hygrotus C	51 Huarotus C	52 Hvarotus C	53 Hygrotus C	54 Hygrotus C	55 Hygrotus C	50 Hygrotus C	58 Hvarotus C	59 Hygrotus C	60 Hygrotus C	61 Hygrotus C	62 Hygrotus C	63 HUGTOTUS II.	ching of the second

Evolution of salinity tolerance in the diving beetle tribe Hygrotini (Coleoptera, Dytiscidae) adráwviu.4578160, Hans Ferx, MicHaët, MANUEL, ANDRÉS MILLÁN & IGNACIO RIBERA

Table 51. Material studied in the molecular sturk, with voucher numbers, locality data and accession numbers of the sequences. In hold, newly obtain

LT883095	LT883096	LT883097 LT882984	LT883098			LT883099 LT882985	EF670211 LT882986	LT883100	LT883101 LT882987	KJ548769	LT883102 LT882988	KF575392	EF670212 LT882991		LT883103	LT883104 LT882989		LT883105 LT882990	LT883106 LT882992	17003107 17003003	KEC75361	LT883108 LT882994		LT883109 LT882995	LT882996	LT883110 LT882997		LT883111 LT882998	LT883112 LT882999		LT883113 LT883000	LT883114	LI883115 LI883001	17882136	LT883123	LT883125	LN995142	LN995151	LT883116	LT883119	8 EF670157	LT796550	LT883122 LT883003	LT883121 LT883002	KF575363	Lacon rest
LT882927	LT882928	LT882929				LT882930	AJ850524	LT882931	LT882932		LT882933		AJ850525		LT882934	LT882935		LT882936	LT882937	1 1002020	1005300	LT882939		LT882940	AJ318737	LT882941		LT882942	LT882943		LT882944	L1882945	L1882946	17882057	LT882954	LT882956	LT882949	LT882948	LT882947	LT882950	F670271/EF67029	LT882951	LT882953	LT882952		A IOTOF AC
82787 LT883015	31157 HF931376	82821 LT883045	82789	LT883016	LT883050	31280 HF931517	50639 AJ850389	82784 LT883014	82774 LT883005	48531 KJ548335	31123 HF931342	75509 KF575573	50640 AJ850390	82788	31260 HF931496	82777 LT883008	82824 LT883048	82790 LT883017	131253 HF931489	82826 LI883U31	75A82 KE5755A2	31235 HF931464	82832 LT883057	82785	56611 EF056681	82798 LT883024	82820	31268 HF931506	31164 HF931383	82786	031285 HF931522	82801 LT883027	82805 L1883031	87782 17883013	82797 LT883023	82817 LT883042	95072 LN995176	10188 LN995185	10191 HF931361	31173 HF931393	70064 EF670030 E	31232 HF931461	031118 HF931335	82815 LT883040	75484 KF575544	LOCCC ADDAAD
882845 LT8	882861 HF9	882882 LT8	882846 LTE			382887 HF9	3FV 268288.	LT8	382836 LT8	548531 KJ5	882834 HFS	KFG	382888 AJS	LT8	HFG	882839 LT8	Ë	882847 LT8	882878 HF		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-14 2070 U	LT.	882844 LTE	EF	882853 LTE	LT8	882883 HF9	882863 HFS	5	882895 HFG		R11 /58288	521 2020200	882852 LTE	882873 LTE	1995103 LNS	1995112 HE6	382860 HE6	882865 HFS	882885 EF6	882874 HF9	882833 HFS	882871 LT8	KFR	
TT. Berendonk	A.E.Z. Short	I. Ribera & A. Cieslak	P. Abellán L1	P. Abellán	Y. Alarie	I. Ribera & A. Cieslak	A.N. Nilsson	A. Millán, I. Ribera, J. Velasco & A. Villastrigo	I. Ribera & A. Rudoy	2	H. Fery & M. Toledo		I. Ribera & A. Cieslak	T. Berendonk	I. Ribera & A. Cieslak	I. Ribera & A. Cieslak	I. Ribera & A. Cieslak	P. Abellán	A.E.Z. Short	I. KIDETA & A. CIESIAK		I. Ribera	1. Ribera	M. Caterino & A.E.Z. Short	I. Ribera	H. Fery & L. Hendrich	A.E.Z. Short	A.N. Nilsson	A.E.Z. Short	T. Berendonk	I. Ribera	Darvishzadej	5. Keqing	A Millán I Bihera I Velasco & A Villastrian II	H. Ferv & L. Hendrich	I. Ribera	I. Ribera	A. Castro	Pešić	Y. Alarie Li	I. Ribera	I. Ribera	Z. Csabai et al.	I. Ribera & A. Cieslak		
	Zavkhan / Tosontsengel / Ideriin Gol ~15 km SSW of Telmen/Ovogdii / N48.53255 E97.52093 / 1823 m	Mono Co. / Long Valley, Owens river Rd. / tributary r. Owen	Amargosa River in Durnont Dunes / 35941'45''N, 116'815'5''W	Coal Oil Point Reserve (Slough road) / 34824'47''N,119852'31''W	Manitoulin island, Ck. At Hwy 540, 20 km E Little Curreny	Waterton lakes Nat. Park / junc. Rd. 5&6	Astrakhan oblast / Kharabali / flooded margin of Volga just S of city	Paralimni / ditch with reed / 35%02'22.7"N 33%57'38.6"E / 81m	Qobustan / ponds in beach / 40°5'38.9"N 49°25'19.5"E /26m	Ref (2)	Sassari prov. / S Stintino (NW Porto Torres) / Stagno di Casaraccio (brakish pond, 0 m) / 40.91403N 8.23021E	Ref (3)	Waterton lakes Nat. Park / Junc. Rd. 5&6		Mono Co. / Long Valley, Owens river Rd. / tributary r. Owen	Mono Co. / Long Valley, Owens river Rd. / saline lagoons	Mono Co. / Yosemite Ntal. Park / Rd. 120 Dana Meadows	Amargosa River in Dumont Dunes / 35º41'45''N,116º15'5''W	Arkhangay / Bugan / Urd Tamir Gol braid upstream of bridge, ~63 km SW of Tsetserleg / N47,11192 E101.01048 / 2066 m	Two Levels Nat. Fark Junc. 40, 280 Two LONGershears L'Arul Bluer. 40, 280 Two LONGershears L'Arul Bluer S. Swb	16 (2) De	ver (z) Norfolk / Ludham / How Hill March	Voraberz / Rheintal. Bodensee. Hard Rheinvorland / 400 m / N47e29'48" E 9239'59"	Monterrey Co., 35.9518*N 121.3017*W / Nacimiento-Ferguson rd.	Girona, Capmany, Estanys inferior	NE Peloponnese, Stymfalia Lake / open swamps, ca. 6 km ENE Lafka, net & bottle traps / 37.84411N 22.45478E / 610 m	Zavkhan / Tosontsengel / Ideriin Gol~15 km SSW of Telmen/Ovogdii / N48.53255 E97.52093 / 1823 m	Västerbotten prov. / Åmsele / Vindelälven river lagoon / 64º31'04"N, 19º20'52"E	Tompkins Co. / Marsh on Eillis Hollow Road, 4 mi. E of Pine Tree Road		Voralberg, Pfänderstock, Bodensee	kturzestan / 8 km SW Abadan, 8 m / 30.341N 48 Z.547 / pond	Vunnan Xii piig Mamusin Vun 11.2.M. 2011.V.2.V. N249.L21 EUUZ.1282. Kata Taraka Zanamaya Nin Sanaha Juna Vanaka Vinzakarizi EUUZ.1282.	Lautz, Jania Zuenani zwi wie zna wa tako zna 1. 2000 in 2000 2000 w 2000 2000 in 2000 2000 in 2000 2000 in 2000 Aventrizi Jania Zuenalizaci 2. 2002 in 2020 in 2020 2000 in 2000 2000	Peloponnese / Afrodisio Mts / ca. 5 km NE Kondovazena / small spring / ca. 37.82044N 21.93570E / ca. 1098 m	D02CE / Rd. to Kartalkaya from Caydurt / small stream with vegetation / 1191m / N40P42'29" E31945'56"	Guarda district / Sabugueiro (Serra da Estrela)	Córdova province / Sierra Morena	Haskovo province / Madjarovo (Eastern Rhodope mountains)		Sa. Da Estrela, Torre, lagoon	DÜZCE / Rd. to Kartalkaya from Çaydurt / pools in mountain pass / 1700m / N40º40'20" E31º47'05"	Heraklion, Arkalohori, Tsoutsouros / stream 34"59'05" 25"11'07'	Corte, river Restonica, 2	Ref (3)	
es Canada	res Mongolia	(es US (CA)	Vo US (CA)	Vo US (CA)	Vo Canada (ON)	(es Canada (AL)	res Russia	Vo Cyprus	res Azerbaijan	(es US (WY)	(es Sardinia (IT)	res US (WY)	(es Canada (AL)	Vo Canada	Vo US (CA)	(es US (CA)	Vo US (CA)	(es US (CA)	es Mongolia	vo canada (AL)		(es UK (EN)	Vo Austria	(es US (CA)	Vo Spain	fes Greece	Vo Mongolia	res Sweden	(es US (NY)	Vo Canada	res Austria	res Iran	res China	do Cynrus	Vo Greece	Vo Turkey	Vo Portugal	Vo Spain	Vo Bulgaria	Vo US (CA)	Vo Portugal	Vo Turkey	Vo Crete (GR)	Vo Corsica (FR)	VO US (NY)	
E-AV53	1NCN-AI1101	1NCN-AI985	3E-AV55 It	3E-AV57	IHM-IR474	HM-IR481	HM-IR684	3E-AV43	3E-AN67	ENBANK	3E-AF204	ENBANK .	HM-IR482	3E-AV54 I	1NCN-AI984	3E-AV22	1HM-IR346	3E-AV56	ANCN-AI968	INCN-N462		INCN-AI841	HM-IR711	TE-AV51	HM-IR19 1	3E-RA208	4NCN-AI979	1NCN-DM4	1NCN-AI1149	3E-AV52	HM-IR691	3E-KA/00	3E-KA/69	TTUMANN	TE-RA206	1NCN-AI770	1NCN-AI731	1NCN-AI629	1NCN-A11002	1NCN-A11208	HM-IR22	1NCN-A1829	3E-AF140 I	1NCN-AI702	ENBANK I	TILLA IDCOM
ruelis IIB	toralis N	talis N.	talis IE	tatis IE	atus N	atus N	inatus N	inatus nr IE	inatus nr IE	inarius G	filippoi IE	nivittatus G	uralis N	uralis lE	nidiventris N	nidiventris IE	bidus N	bidus IE	guicularis N	guicularis IN	indiac G	oratus N	oratus N	tropicus IB	equalis N	equalis IE	'n quelinea tus	inquelinea tus	2	4 IE	sicolor N	ieri It	Numensis II.	vi III	oletus IB	sellatus N	rugineus N	ttrinus N	Ibergi N	ereus N	ricus N	erae N	vicorum IE	rtinii N	formis G	100
pelambus pat	pelambus pec	pedambus pec	relambus per	pelambus per	oelambus pic.	<i>pic pic</i>	oelambus sag	oelambus sag	relambus sag	belambus sal.	<i>Delambus</i> sar.	oelambus ser.	pelambus sut	oelambus sut.	oelambus tur.	oelambus tur.	oelambus tur.	oelambus tur	oelambus un	valombus un	income aco	varotus dec	varotus dec	varotus hyc	vgrotus ina	vgrotus ina.	vgrotus qui	vgrotus qui	vgrotus say	vgrotus say	vgrotus ver	201	101	bu.	op	tes	fer	ndo	sal.	fun	ibe	rib	am	ma	difi	
66 Hvarotus Co	67 Hygrotus Co	68 Hygrotus Co	69 Hygrotus Co	70 Hygrotus Co	71 Hygrotus Cc	72 Hygrotus Cc	73 Hygrotus Cc	74 Hygrotus Cc	75 Hygrotus Co	76 Hygrotus Cc	77 Hygrotus Cc	78 Hygrotus Cc	79 Hygrotus Cc	80 Hygrotus Cc	81 Hygrotus Cc	82 Hygrotus Cc	83 Hygrotus CL	84 Hygrotus Ct	85 Hygrotus C	27 Hurdrotus Co	88 Humbrie Hu	89 Hvarotus Hv	90 Hvarotus Hv	91 Hydrotus Hy	93 Hygrotus Hy	94 Hygrotus Hy	95 Hygrotus H	96 Hygrotus H	97 Hygrotus H	98 Hygrotus Hy	99 Hygrotus H	100 Hypnoporus	101 Hypnoporus	102 Hudroporus	104 Hydroporus	105 Hydroporus	106 Deronectes	107 Deronectes	108 Deronectes	109 Boreonectes	110 Boreonectes	111 Boreonectes	112 Nebrioporus	113 Nebrioporus	114 Lacconis	AAT Announce

Table S2:

A) Primers used in the amplifying and sequencing reactions.

gene	primer	sequence	ref.
COI-3'	Jerry (5')	CAACATTTATTTTGATTTTTTGG	6
	Pat (3')	TCCAATGCACTAATCTGCCATATTA	6
	Chy (5')	T(A/T)GTAGCCCA(T/C)TTTCATTA(T/C)GT	4
	Tom (3')	AC(A/G)TAATGAAA(A/G)TGGGCTAC(T/A)A	4
COI-5'	Uni LepF1b	TAATACGACTCACTATAGGGATTCAACCAATCATAAAGATATTGGAAC	2
	Uni LepR1	ATTAACCCTCACTAAAGTAAACTTCTGGATGTCCAAAAAATCA	2
16S+trnL+nad1 / 16S	16SaR (5')	CGCCTGTTTAACAAAAACAT	6
	ND1 (3')	GGTCCCTTACGAATTTGAATATATCCT	6
	16Sb	CCGGTCTGAACTCAGATCATGT	6
18S	18S 5'	GACAACCTGGTTGATCCTGCCAGT(1)	5
	18S b5.0	TAACCGCAACAACTTTAAT(1)	5
Н3	H3aF (5')	ATGGCTCGTACCAAGCAGACRCG	1
	H3aR (3')	ATATCCTTRGGCATRATRGTGAC	1
28S	ka	ACACGGACCAAGGAGTCTAGCATG	3
	kb	CGTCCTGCTGTCTTAAGTTAC	3
	kb	CGTCCTGCTGTCTTAAGTTAC	3

B) Standard PCR conditions for the amplification of the studied fragments.

step	time	temperature
1	3'	96°
2	30"	94°
3	30"-1'	47-50° *
4	1'	72°
5	Go to step 2 and repeat 34-40 x	
6	10'	72°

* Depending on the annealing temperatures of the primers pair used

References

- Colgan, D. J., McLauchlan, A., Wilson, G. D. F., Livingston, S. P., Edgecombe, G. D., Macaranas, J., Cassis, G. & Gray, M. R. (1998). Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. *Australian Journal of Zoology*, 46, 419-437.
- Hebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly *Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States* of America, 101(41), 14812-14817.
- Monaghan, M. T., Inward, D. J., Hunt, T., & Vogler, A. P. (2007). A molecular phylogenetic analysis of the Scarabaeinae (dung beetles). *Molecular Phylogenetics and Evolution*, 45(2), 674-692.

- Ribera, I., Fresneda, J., Bucur, R., Izquierdo, A., Vogler, A.P., Salgado, J.M. & Cieslak, A. (2010). Ancient origin of a Western Mediterranean radiation of subterranean beetles. *BMC Evolutionary Biology*, 10, 29.
- Shull, V.L., Vogler, A.P., Baker, M.D., Maddison, D.R. & Hammond, P.M. (2001). Sequence alignment of 18S ribosomal RNA and the basal relationships of Adephagan beetles: evidence for monophyly of aquatic families and the placement of Trachypachidae. *Systematic Biology*, *50*, 945–969.
- Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. *Annals of the Entomological Society of America*, 87, 651-701.

Evolution of salinity tolerance in the diving beetle tribe Hygrotini (Coleoptera, Dytiscidae) Adrián VILLASTRIGO, HANS FERY, MICHAËL MANUEL, ANDRÉS MILLÁN & IGNACIO RIBERA

Table S3

Checklist of the species of Hygrotini (following Nilsson & Hàjek 2017a,b) with the typical habitat and the species for which material could be studied. AF, Afrotropical; H, Holarctic; NA, Nearctic; NT, Neotropical; OR, Oriental; PL, Palaearctic

	Genus	Subgenus	Species	Authors	Distribution	habitat	data type studied
10	Genus	Jubgenus	species	(Deschath 1022)	DISTIDUTION	nabitat	
	Heroceras		descarpentriesi	(Peschet, 1923)	AF	(morphological & molecular
2	Herophydrus		assimilis	Régimbart, 1895	AF	?	morphological & molecular
3	Herophydrus		bilardoi	Biström & Nilsson, 2002	AF	?	only literature
	Horophydruo		onnonoio	Désimbert 1805	ΛΓ	2	only literature
4	Herophydrus		caperisis	Regimbart, 1695	AF	1	Only literature
5	Herophydrus		cleopatrae	(Peyron, 1858)	PL	?	morphological
6	Herophydrus		confusus	Régimbart, 1895	AF	?	only literature
7	Heronhydrus		discrenatus	Guignot 1954	AF	Tolerant	only literature
-	Horophydruc		androadvi	Pictröm & Nilscon 2002	AE	Freehwater	only literature
0	Heropityulus		enuibeuyi		AF	riesiiwatei	Unity interacture
9	Herophydrus		gigantoides	Biström & Nilsson, 2002	AF	7	only literature
10	Herophydrus		gigas	Régimbart, 1895	AF	Freshwater	morphological
11	Herophydrus		aoldschmidti	Pedernazi & Rocchi, 2009	AF	?	only literature
12	Herophydrus		aschwendtneri	Omer-Cooper 1957	AE	2	only literature
10	rieropityurus		yschwendthen				only incracure
13	Herophyarus		guineensis	(Aube, 1838)	AF, PL	Freshwater	morphological & molecular
14	Herophydrus		heros	Sharp, 1882	AF	Freshwater	morphological
15	Herophydrus		hyphoporoides	Régimbart, 1895	AF	?	only literature
16	Heronhydrus		ignoratus	Gschwendtner 1933	AF	?	only literature
17	Horophydruc		inquinatuc	(Pohoman 1949)	AE	Erochwator	morphological & molocular
17	Heropityulus		inquinatus	(Borieman, 1848)	AF	riesiiwatei	morphological & molecular
18	Herophydrus		janssensi	Guignot, 1952	AF	7	only literature
19	Herophydrus		kalaharii	Gschwendtner, 1935	AF	?	only literature
20	Herophydrus		morandi	Guignot, 1952	OR	?	only literature
21	Herophydrus		musicus	(Klug 1834)	AF OR PI	Tolerant	morphological & molocular
	Lieropriyurus		musicus	(charme 1002)	AL, UN, PL	Tarahua '	
22	Herophydrus		muticus	(Snarp, 1882)	Ar	Freshwater	Imorphological & molecular
23	Herophydrus		natator	Biström & Nilsson, 2002	AF	?	only literature
24	Herophydrus		nigrescens	Biström & Nilsson, 2002	AF	Tolerant	morphological & molecular
25	Herophydrus	1	nodieri	(Régimbart 1895)	AF	Freshwater	morphological & molecular
-20	Horophydids		abaaurua	Charp 1992	A.F.	Telerent	marphalagical 9
26	neropnyarus		ouscurus	Silaip, 188∠	Ar	rolerant	morphological & molecular
_ 27	Herophydrus		obsoletus	Régimbart, 1895	AF	?	only literature
28	Herophydrus		ovalis	Gschwendtner, 1932	AF	?	only literature
20	Herophydrus		nallidus	Omer-Cooper 1931	٨F	2	only literature
20	11erophydrus		paniuus	Cuirmat 1050		2	
30	Heropnyarus		pauliani	Guignot, 1950	AF	?	only literature
31	Herophydrus		quadrilineatus	Régimbart, 1895	AF	?	morphological
32	Herophydrus		reticulatus	Pederzani & Rocchi, 2009	AF	Freshwater	morphological & molecular
33	Heronhydrus		ritsemae	Régimbert 1889	ΔF	Freshwater	only literature
33	Harranahurdhurd		nt3emae	Deschat 1024		Freehwater	
34	Herophyarus		ronani	Peschet, 1924	AF	Freshwater	molecular
35	Herophydrus		rufus	(Clark, 1863)	AF	?	morphological
36	Herophydrus		sjostedti	Régimbart, 1908	AF	?	only literature
37	Heronhydrus		snadiceus	Sharn 1882	ΔF	Tolerant	molecular
20	Horophydrus		oudononoio	Cuignot 10F2	AF	Freehwater	anhy literature
30	Herophydrus		sudarierisis	Guighot, 1952	AF	Freshwater	only illerature
39	Herophydrus		travniceki	Sťastný, 2012	AF	?	morphological
40	Herophydrus		tribolus	Guignot, 1953	AF	Freshwater	morphological & molecular
41	Heronhydrus		variahilis secundus	Régimbart 1906	ΔF	2	only literature
42	1 lene a la valava		variabilis venisbilis	Cuirmat 1054	45	2	
42	Herophyarus		variadilis variadilis	Guignot, 1954	AF	!	only literature
43	Herophydrus		vaziranii	(Nilsson, 1999)	PL	?	only literature
44	Herophydrus		verticalis	Sharp, 1882	AF	Freshwater	morphological & molecular
45	Herophydrus		vittatus	Régimbart, 1895	AF	?	only literature
16	Horophydruc		wowalkai	Pictröm & Nilscon 2002	AE	2	only literature
40	Heropityulus	0 1 1	WEWaikai		AF	-	only incrature
47	Hygrotus	Coelambus	ahmeti	Hajek, Fery & Erman, 2005	PL	Freshwater	morphological & molecular
48	Hygrotus	Coelambus	armeniacus	(Zaitzev, 1927)	PL	Tolerant	morphological & molecular
49	Hygrotus	Coelambus	artus	(Fall, 1919)	NA	Tolerant (2)	only literature
50	Hvarotus	Coelambus	berneri	Young & Wolfe, 1984	NA	?	morphological
55	Hydrotuc	Coelambuc	bruesi	(Fall 1928)	NA	Tolerant	morphological & molocular
51	i iyyi otus		010001	(1 a), 1320/	11/A		morphological & molecular
52	нуgrotus	coelambus	caspius	(wenncke, 1875)	rl	Freshwater	morphological & molecular
53	Hygrotus	Coelambus	chinensis	(Sharp, 1882)	PL	?	morphological
54	Hygrotus	Coelambus	collatus	(Fall, 1919)	NA	?	morphological
55	Hvarotus	Coelambus	compar	(Fall, 1919)	NA	Tolerant	morphological & molecular
50	Lugrotuc	Coolombuc	confluonc	(Eabricius 1797)	DI	Tolorant	morphological & molecular
- 30	inygrocus		comuens				morphological & molecular
57	нуgrotus	coelambus	corpuientus	(Schaum, 1864)	rl	ſ	morphological & molecular
_ 58	Hygrotus	Coelambus	curvilobus	Fery, Sadeghi & Hosseinie, 2005	PL	?	morphological
59	Hygrotus	Coelambus	curvipes	(Leech, 1938)	NA	?	morphological
60	Hyarotus	Coelambus	dissimilis	(Geminger & Harold 1868)	NA	2	morphological
	Lugrature	Coolomb	diversines		NA	l hunoroglin -	mambalagiaal 9
61	nygrotus	coeiamous	uversipes	Leech, 1900	INA	nypersaline	morphological & molecular
62	Hygrotus	Coelambus	enneagrammus	(Ahrens, 1833)	PL	Iolerant	morphological
63	Hygrotus	Coelambus	falli	(Wallis, 1924)	NA	?	morphological
64	Hvarotus	Coelambus	femoratus	(Fall 1901)	NA	2	only literature
65	Lugrotus	Coolombus	flavivontria	(Motechulelov, 1860)	DI	Tolorant	morphological 9 malaguita
60	nygrotus	COEIAITIDUS	navivenuis	(MOLSCHUISKY, 1860)	r L		morphological & molecular
66	Hygrotus	Coelambus	tontinalis	Leech, 1966	NA	Hypersaline	morphological & molecular
67	Hygrotus	Coelambus	fraternus	(LeConte, 1852)	NA	?	morphological
68	Hvarotus	Coelambus	fresnedai	(Ferv. 1992)	PL	Freshwater (3)	morphological & molecular
60	Hydrotuc	Coelamburg	fumatus	(Sharp 1882)	NA	Freshwator	morphological & molocular
- 30	Livere:	Castani	immatus	(C-h-ll-r, 1702)	1974	Freedowalter	
10	нуgrotus	coelambus	Impressopunctatus	(Schaller, 1783)	н	Freshwater (3)	morphological & molecular
71	Hygrotus	Coelambus	infuscatus	(Sharp, 1882)	NA	Tolerant	morphological
72	Hvarotus	Coelambus	inscriptus	(Sharp, 1882)	PL	Hypersaline	morphological
72	Hyarotus	Coelambus	lacconhilinus	(LeConte 1878)	ΝΔ	Freshwater	morphological & molecular
13	Livere:	Castani	lanari	(5	DI	Talanan	
14	nygrotus	coeiamous	iagari	(reiy, 1992)	rL	Tolerant	morphological & molecular
L_75	Hygrotus	Coelambus	lernaeus	(Schaum, 1857)	PL	Tolerant	morphological & molecular
76	Hygrotus	Coelambus	lutescens	(LeConte, 1852)	NA	Tolerant	morphological & molecular

77	Hvarotus	Coelambus	marklini	(Gyllenhal 1813)	н	Tolerant (4)	morphological & molecular
78	Hygrotus	Coelambus	masculinus	(Crotch 1874)	NΔ	Hypersaline	morphological & molecular
70	Hygrotus	Coelambus	niarescens	(Eall 1919)	NA	Freshwater	morphological & molecular
19	Hygrotus	Coelembus	nigrelineetue	(Fall, 1919) (Staylog, 1909)	DI DI	Telerent	morphological & molecular
00	Hygrotus	Coelambus	nigronneatus	(Steven, 1808)		Tolerant	morphological & molecular
01	Hygrotus	Coelambus	noveniineatus	(Stephens, 1829)		1 Olerani	morphological & molecular
82	Hygrotus	Coelambus	nubilus	(Leconte, 1855)	NA, NI	()	morphological
83	Hygrotus	Coelambus	obscureplagiatus	(Fall, 1919)	NA	<u> </u>	morphological
84	Hygrotus	Coelambus	orthogrammus	(Sharp, 1882)	PL	lolerant	morphological & molecular
85	Hygrotus	Coelambus	pallidulus	(Aubé, 1850)	PL	Hypersaline (1)	morphological & molecular
86	Hygrotus	Coelambus	parallellogrammus	(Ahrens, 1812)	PL	Tolerant	morphological & molecular
87	Hygrotus	Coelambus	patruelis	(LeConte, 1855)	NA	Tolerant	morphological & molecular
88	Hygrotus	Coelambus	pectoralis	(Motschulsky, 1860)	PL	Tolerant	morphological & molecular
89	Hygrotus	Coelambus	pedalis	(Fall, 1901)	NA	Tolerant	morphological & molecular
90	Hygrotus	Coelambus	picatus	(Kirby, 1837)	NA	Freshwater	morphological & molecular
91	Hygrotus	Coelambus	polonicus polonicus	(Aubé, 1842)	PL	Tolerant	morphological
92	Hvarotus	Coelambus	polonicus sahlbergi	(Sharp, 1882)	PL	Tolerant	morphological
93	Hvarotus	Coelambus	nunctilineatus	(Fall 1919)	NA	Tolerant	morphological
94	Hyarotus	Coelambus	saninatus	(Schaum 1857)	PI	Tolerant	morphological & molecular
95	Hygrotus	Coelambus	calinarius	(Wallis 1924)	NA	Hypercoline	morphological & molecular
33	Lugrotus	Coolombus	canfilinnoi	(Fon: 1992)	DI	Tolorant	morphological & molecular
96	nygrotus	Coolomk	saillillippul	(LeCente 1966)		Telerent	morphological & molecular
97	nygrotus	cueramous	seilatus	(Leconte, 1866)	INA Di	Tolerant	morphological
98	Hygrotus	Coelambus	semenowi	(Jakoviev, 1899)	PL	Freshwater	morphological
99	Hygrotus	Coelambus	semivittatus	(Fall, 1919)	NA	Tolerant	morphological & molecular
100	Hygrotus	Coelambus	stefanschoedli	Fery, Sadeghi & Hosseinie, 2005	PL	?	morphological
101	Hygrotus	Coelambus	suturalis	(LeConte, 1850)	NA	Freshwater	morphological & molecular
102	Hygrotus	Coelambus	sylvanus	(Fall, 1917)	NA	Freshwater	morphological
103	Hygrotus	Coelambus	thermarum	(Darlington, 1928)	NA	?	morphological
104	Hygrotus	Coelambus	tumidiventris	(Fall, 1919)	NA	Hypersaline	morphological & molecular
105	Hvarotus	Coelambus	turbidus	(LeConte, 1855)	NA	Freshwater	morphological & molecular
106	Hvarotus	Coelambus	unquicularis	(Crotch, 1874)	н	Tolerant	morphological & molecular
107	Hvarotus	Coelambus	urgensis	(lakovlev 1899)	PI	Freshwater	morphological & molecular
108	Hyarotus	Coelambus	wardii	(Clark 1862)	NA NT	?	morphological
100	Hygrotus	Coelambus	ziaetanaco	Een/ 2003	DI	2	morphological
110	Hygrotus	Lugrotuc	acaroidoc	(LoConto, 1955)		Erochwator	morphological & molocular
111	Hygrotus	Hygrotus	acarolic	(Leconte, 1855)	DI	Freshwater	morphological & molecular
112	Hygrotus	Hygrotus	aequalis	Faikenstrom, 1932	PL DI	Freshwater	
112	Hygrotus	Hygrotus	decoratus	(Gyllennal, 1810)	PL	Freshwater	morphological & molecular
113	Hygrotus	Hygrotus	farctus	(LeConte, 1855)	NA	7	morphological
114	Hygrotus	Hygrotus	hydropicus	(LeConte, 1852)	NA	?	morphological & molecular
115	Hygrotus	Hygrotus	inaequalis	(Fabricius, 1777)	PL	Freshwater	morphological & molecular
116	Hygrotus	Hygrotus	intermedius	(Fall, 1919)	NA	Freshwater	morphological
117	Hygrotus	Hygrotus	marginipennis	(Blatchley, 1912)	NA	Tolerant	morphological
118	Hygrotus	Hygrotus	quinquelineatus	(Zetterstedt, 1828)	PL	Freshwater	morphological & molecular
119	Hygrotus	Hygrotus	sayi	J. Balfour-Browne, 1944	NA	Tolerant	morphological & molecular
120	Hygrotus	Hygrotus	versicolor	(Schaller, 1783)	PL	Freshwater	morphological & molecular
121	Hyphoporus	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	anitae	Vazirani, 1969	PL	Freshwater	only literature
122	Hyphonorus		aper	Sharp, 1882	OR. PL	?	only literature
123	Hyphoporus		hengalensis	Severin 1890	OR	?	morphological
124	Hyphoporus		hertrandi	Vazirani 1969	PI	Freshwater	only literature
124	Hyphoporus		caliginosus	Págimbart 1899	OP	2	only literature
120	Lyphoporus		dobraduni	Vazirani 1969	DI	2	
120	nyprioporus			Vaziidili, 1909		:	
127	нурпоporus		elevatus	Snarp, 1882	UK, PL	(morphological
128	Hyphoporus		geetae	Vazıranı, 1969	OK	7	only literature
129	Hyphoporus		josephi	Vazirani, 1969	OR	?	only literature
130	Hyphoporus		kempi	Gschwendtnet, 1936	OR, PL	Tolerant	only literature
131	Hyphoporus		montanus	Régimbart, 1899	OR	?	only literature
132	Hyphoporus		nilghiricus	Régimbart, 1903	OR, PL	Freshwater	only literature
133	Hyphoporus		oudomxai	Brancucci & Biström, 2013	OR	?	only literature
134	Hyphoporus		pacistanus	Guignot, 1959	PL	?	only literature
135	Hyphoporus		pugnator	Sharp, 1890	OR	?	only literature
136	Hyphoporus		severini	Régimbart, 1892	OR. PL	Tolerant	morphological
137	Hyphonorus		solieri	(Aubé, 1838)	PL	Freshwater	morphological & molecular
139	Hyphoporus		suhaenualie	Vazirani 1969	OR	?	only literature
120	Hyphoporus		tonkinensis	Págimbart 1899	OR	2	morphological & molocular
139	nyprioporus		LUIIKIIIEIISIS	regimualt, 1033	UN	:	morphological & molecular

Notes
1 Although regularly found in low mineralized environments, it can tolerate hypersaline waters, in which it can be found in large numbers
2 Characterized as tolerant based on data of the type locality (the only known locality of the species)
3 Occasionally can be found in more mineralized environments, but their typical habitat is freshwater
4 In south Europe only found in freshwater habitats

Fig. S1. Time-calibrated majority rule consensus tree obtained in BEAST with the complete dataset. Number in nodes: posterior probability values.

376

Fig. S2. Reconstructed evolution of salinity tolerance in the tribe Hygrotini, using parsimony with the estimated relationships of species for which no molecular data were available.

377

Systematic Entomology (2018), DOI: 10.1111/syen.12318

A molecular phylogeny of the tribe Ochthebiini (Coleoptera, Hydraenidae, Ochthebiinae)

ADRIÁN VILLASTRIGO¹⁽⁰⁾, MANFRED A. JÄCH², ANABELA CARDOSO¹, LUIS F. VALLADARES³ and IGNACIO RIBERA¹⁽⁰⁾

¹Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain, ²Naturhistorisches Museum Wien, Vienna, Austria and ³Departamento de Biodiversidad y Gestión Ambiental (Zoología), Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, Spain

Abstract. Ochthebiinae, with c. 650 species distributed worldwide, are the second most speciose subfamily of the aquatic beetle family Hydraenidae. They are ecologically the most diverse hydraenid subfamily, with terrestrial species as well as species in almost all types of aquatic habitats, including hypersaline waters. Ochthebiinae include the tribes Ochtheosini (four species in three genera) and Ochthebiini. We provide here the first comprehensive phylogeny of the tribe Ochthebiini, based on 186 species and four subspecies from most genera, subgenera and species groups. We obtained sequence data for a combination of mitochondrial and nuclear gene fragments including the 5' and 3' ends of the cytochrome c oxidase subunit 1, the 5' end of 16S RNA plus the leucine tRNA transfer plus 5' end of NADH dehydrogenase subunit I, and internal fragments of the large and small ribosomal units. The analyses with maximum likelihood (ML) and Bayesian probabilities consistently recovered a generally well supported phylogeny, with most currently accepted taxa and species groups as monophyletic. We provide a new classification of the tribe based on our phylogenetic results, with six genera: Meropathus Enderlein, Ochthebius Leach, Protochthebius Perkins, Prototympanogaster Perkins, Tympallopatrum Perkins and Tympanogaster Janssens. The genus Ochthebius is here divided into nine subgenera in addition to Ochthebius s.s.: (1) O. (Angiochthebius) Jäch & Ribera; (2) O. (Asiobates) Thomson; (3) O. (Aulacochthebius) Kuwert; (4) O. (Cobalius) Rey; (5) O. (Enicocerus) Stephens; (6) O. (Gymnanthelius) Perkins comb.n.; (7) O. (Gymnochthebius) Orchymont; (8) O. (Hughleechia) Perkins comb.n.; and (9) O. (Micragasma) Sahlberg. Within Ochthebius s.s., 17 species groups are proposed, five of them newly established (3, 9, 11, 13 and 16): (1) andraei; (2) atriceps; (3) corrugatus; (4) foveolatus; (5) kosiensis; (6) lobicollis; (7) marinus; (8) metallescens; (9) nitidipennis; (10) notabilis; (11) peisonis; (12) punctatus; (13) quadricollis; (14) rivalis; (15) strigosus; (16) sumatrensis; and (17) vandykei. We elevated to species rank two subspecies of Ochthebius: O. fallaciosus Ganglbauer stat.n. (former subspecies of O. viridis Peyron) and O. deletus Rey stat.rest. (former subspecies of O. subpictus Wollaston).

Introduction

Ochthebiinae, with *c*. 650 species and 11 subspecies described, are the second most diverse subfamily of the water beetle family Hydraenidae (Hansen, 1998; Jäch & Balke, 2008; Tables 1, S1

in File S1). They occur in all biogeographic regions, including the Antarctic islands of Kerguelen and Heard, where they are the only Hydraenidae present (Hansen, 1998). Ochthebiinae are the ecologically most diverse hydraenid subfamily, with terrestrial species, species living in the interface between land and water, as

1

Systematic Entomology

Correspondence: Ignacio Ribera, Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain. E-mail: ignacio.ribera@ibe.upf-csic.es

© 2018 The Royal Entomological Society

2 A. Villastrigo et al.

well as in most types of aquatic environments (Jäch *et al.*, 2016). A large number of species are tolerant to hypersaline waters, living in coastal rockpools (e.g. *Cobalius* Rey or *Calobius* Wollaston; Antonini *et al.*, 2010; Sabatelli *et al.*, 2016), coastal or inland saltpans or inland hypersaline streams (especially the *O. notabilis* group, but also many other species in different groups; Abellán *et al.*, 2009; Millán *et al.*, 2011).

The external morphology of the species of Ochthebiinae is more heterogeneous than in other Holarctic lineages of Hydraenidae [e.g. Hydraena Kugelann (Trizzino et al. 2013) or Linnebius Leach (Rudoy et al., 2016)]. This has resulted in a more complex taxonomy, with mostly all of the described genera or subgenera with uncertain relationships. Thus, the genus Ochthebius Leach was divided into 16 subgenera by Kuwert (1887), but all of them, with the exception of Aulacochthebius Kuwert, were later synonymized (see Tables 1, S2 in File S1 for a complete checklist of Ochthebiini).

Ochthebiinae were divided by Perkins (1980) into two tribes, Ochthebiini and Ochtheosini, the latter for the single terrestrial genus Ochtheosus Perkins, with two species. The monotypic genera Edaphobates Jäch & Díaz and Ginkgoscia Jäch & Díaz, for which we could not obtain fresh material for DNA extraction, were tentatively hypothesized to be related to Ochtheosus by Jäch & Díaz (2003, 2004) and thus we consider them within Ochtheosini, Perkins (1997) divided Ochthebiini into five newly defined subtribes: Enicocerina (for the single genus Enicocerus Stephens), Meropathina (Meropathus Enderlein, Tympallopatrum Perkins, Tympanogaster Perkins and the recently described Prototympanogaster Perkins; Perkins, 2018), Neochthebiina (Neochthebius Orchymont), Ochthebiina (Ochthebius, Gymnochthebius Orchymont, Hughleechia Perkins, Gymnanthelius Perkins, Aulacochthebius and Micragasma Sahlberg) and Protochthebiina (Protochthebius Perkins). Enicocerus was treated as a subgenus by several subsequent authors (e.g. Jäch, 1998; Ribera et al., 2010; Jäch & Skale, 2015), and Neochthebius was treated as a synonym of Ochthebius s.s. by Jäch & Delgado (2014b), leaving ten genera in Ochthebiini, most of them described in the 20th century (Table 1). Ochthebius is the oldest available generic name (Leach, 1815; Hansen, 1998; Table 1), grouped into four recognized subgenera with mostly Palaearctic distribution: Asiobates Thomson, Calobius, Enicocerus and Ochthebius (Jäch & Skale, 2015; Tables 1, S1 in File S1; see the detailed taxonomic history of subgenera and species groups in the Discussion). Within Ochthebius s.s., the most diverse subgenus, several informal species groups have been defined, which have undergone important modifications through their taxonomic history (Tables S1, S2 in File S1).

The classification and proposed relationships within Ochthebiini have also experienced many modifications during the last four decades. Perkins (1980) revised the by then known American species, and proposed a phylogeny derived from the examination of some morphological characters. *Gymnochthebius* was placed as sister to the remaining taxa, which were divided in two lineages: (i) *Meropathus* plus *Neochthebius* (currently a synonym of *Ochthebius*; Table S2 in File S1) and (ii) *Ochthebius* plus *Asiobates*. Subsequently, Perkins (1997) synonymized four subgenera with Ochthebius (Calobius, Cobalius, Liochthebius Sahlberg and Notochthebius Orchymont), and described three additional genera (Tables 1, S2 in File S1). Based mostly on the exocrine secretion delivery system (ESDS), he divided the subfamily in two tribes, Ochtheosini for the newly described Ochtheosus and Ochthebiini, divided in turn into subtribes, with unresolved relationshipa among them. Ochtheosus was considered to have some plesiomorphic characters similar to some southern African genera (e.g. antennae with 11 antennomeres, as in many Prosthetopinae; Perkins, 1997; see also Beutel et al., 2003), and did not share several of the most characteristic synapomorphies with the remaining Ochthebiinae, in particular the structure of the tentorial arms, galea and lacinia.

The first formal cladistic analysis of the family Hydraenidae was published by Beutel et al. (2003), but sampling was too incomplete to resolve internal relationships within Ochthebiinae other than the sister relationship of Meropathus with Ochthebius + Gymnochthebius. There is no published global molecular phylogeny of the entire family Hydraenidae or subfamily Ochthebiinae, but in recent years some detailed molecular phylogenies for some lineages have been published, such as the Ochthebius notabilis group (Abellán et al., 2009) and Enicocerus (Ribera et al., 2010). In Abellán et al. (2013) an extensive phylogeny of Ochthebius and some related genera using only mitochondrial markers was used to estimate the phylogenetic diversity of the Iberian fauna. The sampling of some geographical areas was, however, very incomplete, as the intention was not to produce a phylogenetic study. Still, most Palaearctic lineages were represented, which allowed us to establish the monophyly of most of the included genera/subgenera and of the recognized species groups, although internal groups had poor relationships between them. Sabatelli et al. (2016) used these data to study the origin of species typical of rockpools, recovering basically the same relationships and establishing a new species group for the South African O. capicola Péringuey. In the same paper, the subgenus Cobalius was found to be outside Ochthebius s.s., but Calobius nested within it, referring to it as the 'Calobius' lineage.

In this study we provide a comprehensive phylogeny of Ochthebiini, based on mitochondrial and nuclear sequence data, including representatives of most lineages. We introduce several changes in the taxonomic classification to accommodate our phylogenetic results, and provide a complete checklist based on our new classification (Table S1 in File S1).

Material and methods

Taxon sampling

We studied 186 species and four subspecies of the 641 described species and 11 described subspecies of Ochthebiini, plus 29 specimens corresponding to undetermined or still undescribed species (Tables S1, S3 in File S1). For two species with an isolated or unsupported placement (*O. plesiotypus* Perkins and *O. peisonis* Ganglbauer) we sequenced two specimens to test for possible sequencing mistakes. We included examples

379

Phylogeny of Ochthebiini 3

 Table 1. Synopsis of the genus-level classification of Ochthebiini, with notes of the former status of the taxa (following Jäch & Skale, 2015, Jäch et al., 2016 and Perkins, 2018), total number of species and species included in the phylogeny (see Table S1 in File S1 for a complete checklist and Table S2 in File S1 for synonyms and type species). In brackets, number of subspecies. Species of uncertain identification included in the phylogeny noted after '+'.

New status	Former status	No. sp. (ssp.)	DNA sp. (ssp.)
Genus Meropathus Enderlein, 1901	Genus	8	1
Genus Ochthebius Leach, 1815	Genus	540 ^a (9)	186 + 27(2)
Subgenus Angiochthebius Jäch & Ribera, 2018	Subgenus of Ochthebius	3	1
Subgenus Asiobates Thomson, 1859	Subgenus of Ochthebius	105 (3)	34 + 6
Subgenus Aulacochthebius Kuwert, 1887	Genus	13	4 + 6
Subgenus Cobalius Rey, 1886	Synonym of Ochthebius s.s.b	9 (2)	6
Subgenus Enicocerus Stephens, 1829	Subgenus of Ochthebius	16	9+1
Subgenus Gymnanthelius Perkins, 1997	Genus	8	2
Subgenus Gymnochthebius Orchymont, 1943	Genus	58	7 + 1
Subgenus Hughleechia Perkins, 1981	Genus	2	1
Subgenus Micragasma Sahlberg, 1900	Genus ^c	3	1
Subgenus Ochthebius Leach, 1815	Subgenus of Ochthebius	322 (4)	121 + 13(2)
Genus Protochthebius Perkins, 1997	Genus	7	0
Genus Prototympanogaster Perkins, 2018	Genus	1	0
Genus Tympallopatrum Perkins, 1977	Genus	4	0
Genus Tympanogaster Janssens, 1967	Genus	84	3
Subgenus Hygrotympanogaster Perkins, 2006	Subgenus of Tympanogaster	36	1
Subgenus Plesiotympanogaster Perkins, 2006	Subgenus of Tympanogaster	2	0
Subgenus Topotympanogaster Perkins, 2006	Subgenus of Tympanogaster	8	0
Subgenus Tympanogaster Janssens, 1967	Subgenus of Tympanogaster	38	2

^aIncludes one species 'incertae sedis'.

^bConsidered as a subgenus of Ochthebius by Sabatelli et al. (2016) and Jäch & Delgado (2017a).

^cConsidered as a subgenus of Ochthebius by Hernando et al. (2017), based on the results of this study.

of eight of the 11 genera currently recognized in the tribe, all subgenera but two (within genus *Tympanogaster*), and all recognized species groups within the genus *Ochthebius* but one (*O. kosiensis* group, Tables 1, S1, S3 in File S1). The three missing genera, *Tympallopatrum* (Australia), *Protochthebius* (Asia) and *Prototympanogaster* (Lord Howe Island), have four, seven and a single species, respectively (Table S1 in File S1).

We used as outgroups 31 species of other Hydraenidae genera (*Hydraena, Laeliaena* Sahlberg and *Limnebius*) and of Ptiliidae. Trees were rooted in the split between Hydraenidae and Ptiliidae, considered to be sister groups both based on molecular (e.g. Hunt *et al.*, 2007; McKenna *et al.*, 2015; Zhang *et al.*, 2018) and morphological evidence (Hansen, 1997; Lawrence *et al.*, 2011).

DNA extraction and sequencing

Specimens were killed and preserved in absolute ethanol. DNA was extracted with a standard phenol-chloroform extraction or by commercial extraction kits (mostly Quiagen DNeasy Tissue Kit, Hildesheim, Germany) following the manufacturers' instructions. DNA samples and voucher specimens are kept in the collections of the Institute of Evolutionary Biology (IBE, Barcelona, Spain), Museo Nacional de Ciencias Naturales (MNCN, Madrid, Spain) and Naturhistorisches Museum Wien (NMW, Vienna, Austria). We sequenced fragments of six genes in five sequencing reactions, three mitochondrial [(i) 5' end of the cytochrome *c* oxidase subunit I (the standard barcode, Hebert *et al.*, 2003) (COI-5'); (ii) 3' end of cytochrome c oxidase subunit I (COI-3'); (iii) 5' end of 16S RNA (16S) plus the leucine tRNA transfer (tRNA-Leu) plus 5' end of NADH dehydrogenase subunit I (NAD1)]; and two nuclear [(iv) an internal fragment of the large ribosomal unit, 28S RNA (28S) and (v) an internal fragment of the small ribosomal unit, 18S RNA (18S)] (see Table S4 in File S1 for details on primers used and typical PCR conditions). Sequences were assembled and edited with GENEIOUS v10.1 (Kearse *et al.*, 2012); new sequences (a total of 897) were deposited in the ENA database with accession numbers LT990690–LT991586.

Phylogenetic analyses

Edited sequences were aligned using the online version of MAFFT v.7 with the G-INS-I algorithm (Katoh *et al.*, 2009). We used PARTITIONFINDER v1.1.1 (Lanfear *et al.*, 2012) to estimate the evolutionary model that best fitted the data, using one partition for each gene fragment (six partitions in total), and using Akaike information criterion (AIC) scores as selection criteria. Phylogenetic analyses were made using Bayesian probabilities in BEAST 1.8 (Drummond & Rambaut, 2007), using the partition and evolutionary models selected by PARTITION-FINDER, with a Yule speciation process as tree prior. There are few fossils usable for calibrating the phylogeny of Hydraenidae. The oldest recognized members of the family are *Ochthebiites*

4 A. Villastrigo et al.

Ponomarenko, from the Jurassic (Arnol'di et al., 1991; Ponomarenko & Prokin, 2015; Yamamoto et al., 2017), but they cannot confidently be placed in any extant lineage. One of the best-preserved hydraenid fossils is Archaeodraena cretacea Jäch & Yamamoto from Upper Cretaceous Burmese amber (c. 99 Ma, Yamamoto et al., 2017), which probably belongs to the crown Hydraenidae. Both fossils are compatible with an estimate of c. 170 Ma for the split between Hydraenidae and Ptiliidae obtained in recent molecular phylogenies calibrated with a range of fossils (Hunt et al., 2007; McKenna et al., 2015). We thus used this estimation to calibrate our tree, with a normal distribution with a standard deviation of 1 Ma and an uncorrelated lognormal relaxed clock. A Middle Jurassic separation between Hydraenidae and Ptiliidae is considerably younger than the estimation of Toussaint et al. (2017) (Middle Triassic, 243 Ma), but older than the more recent estimation of Zhang et al. (2018) (Upper Jurassic, c. 150 Ma), both of which we consider to be less plausible. In any case, it must be noted that the main objectives of our study do not require an absolute calibration of the phylogeny of Ochthebiini, which is done only as a preliminary exploration.

We ran the analyses for 100 million generations, logging results for every 5000, and checked convergence to estimate the burn-in fraction with TRACER v1.6 (Drummond & Rambaut, 2007). We ran an additional ML phylogenetic reconstruction with RAXML-HPC2 (Stamatakis, 2006) in the CIPRES portal (Miller *et al.*, 2010), using the same partition scheme as in BEAST with a GTR+G model estimated independently for each partition. Node support values were estimated with 100 pseudoreplicas using a rapid bootstrapping algorithm (Stamatakis *et al.*, 2008). The same ML analysis was repeated only with the nuclear sequence (18S and 28S).

Results

The final matrix included 252 terminals with 3656 aligned characters. Protein-coding regions had no indels except for the 3' end of COI-3, where some species had an additional codon. The best partitioning scheme obtained with PARTITIONFINDER had six partitions corresponding to: (i) COI-5, (ii) COI-3, (iii) 16S+tRNA-Leu, (iv) NAD1, (v) 18S and (vi) 28S. The optimal evolutionary model was GTR+I+G for all partitions except for NAD1 (best model TMV) and 28S (best model SYM). The BEAST run implementing the best models did not converge properly, however, mostly due to the parameters related to the estimation of the branch lengths, especially for the genes NAD1, 18S and 28S. We therefore did a second run with simpler models for these genes (HKY+G+I), which converged adequately. The topologies of the two Bayesian analyses were, however, almost identical (Figs 1, S1 in File S1), and unless specified we report only the results of the analyses with the better parameter convergence (i.e. with the simpler evolutionary models).

Molecular phylogeny

The topologies obtained in the ML and the two Bayesian analyses were very similar, differing only in some poorly supported nodes (Figs 1, S1, S2 in File S1), most notably in the position of *Hughleechia* (see below). The ML tree with the nuclear sequence only had a topology very similar to that obtained with the combined data, although with a generally lower resolution and support. The main difference was the recovery of Ochthebiini as paraphyletic, with the genus *Hydraena* as sister to *Tympanogaster* plus *Meropathus*, although with very low support (bootstrap support, BS = 53%; Fig. S3 in File S1). Genera, subgenera and most species groups were, however, recovered as monophyletic with strong support, with internal topologies very similar to that of the combined ML tree (Figs S2, S3 in File S1).

In the ML and Bayesian trees with the combined nuclear and mitochondrial data, the monophyly of Ochthebiini was strongly supported, as well as their separation into two clades, (i) *Meropathus* plus *Tympanogaster* and (ii) *Ochthebius* s.l. *Meropathus* was nested within a paraphyletic *Tympanogaster* in the ML tree (combined and nuclear only) and in the Bayesian tree with the best models, and sister to *Tympanogaster* with low support in the Bayesian tree with simpler models (posterior probability, PP = 0.63; Figs 1a, S1, S2 in File S1).

Within Ochthebius s.l., Asiobates and Aulacochthebius were sister groups in the Bayesian tree with low support (PP = 0.85), and both sisters to the rest of Ochthebiini. In the ML analysis, Asiobates and Aulacochthebius were paraphyletic with respect to the rest of Ochthebiini, also with low support (BS < 50%) (Figs 1a, S2 in File S1). In both analyses Ochthebiini minus Asiobates and Aulacochthebius were monophyletic with strong support (BS = 80%; PP = 1; Fig. 1a).

The remaining Ochthebiini were divided into a series of well-supported clades corresponding to traditionally recognized genera or subgenera, but with poorly resolved relationships among them: (i) Enicocerus, strongly supported and with well-resolved internal relationships, sister to the Australian Hughleechia in ML and the Bayesian analysis with the simpler models (BS = 81%, PP = 0.76; Figs 1b, S2 in File S1); in the Bayesian analysis with the best models Hughleechia was sister to the clade formed by Micragasma and Cobalius, with low support (PP = 0.88; Fig. S1 in File S1); (ii) a clade including Gymnochthebius and Gymnanthelius, the latter as sister to Angiochthebius Jäch & Ribera (Gymnochthebius plesiotypus group of Perkins, 1980; see Jäch & Ribera, 2018) (BS = 94%, PP = 0.96); within Gymnochthebius, the Australian and American species were respectively monophyletic and sisters, with very strong support in both the ML and Bayesian trees (Figs 1b, S2 in File S1); (iii) Cobalius, with a strongly supported monophyly (BS = 98%, PP = 1) and sister to the only sequenced species of Micragasma, also with strong support (BS = 100%, PP = 1) (Figs 1b, S2 in File S1); (iv) Ochthebius s.s., including Calobius, strongly supported in both the ML (BS = 94%) and Bayesian (PP = 1) trees (Figs 1b, S2 in File S1).

Within *Ochthebius* s.s. the most established Palaearctic species groups were recovered as monophyletic (see Discussion; Figs 1b, c, S2 in File S1). Their monophyly was strongly supported in the ML and Bayesian trees, with the only exception of the group of species related to the *O. atriceps* and *O. notabilis* groups in the ML analyses. The main difference with

381

Phylogeny of Ochthebiini 5

Fig. 1. Majority rule consensus tree obtained with BEAST for the phylogeny of Ochthebiini, with the simple evolutionary models (see text). Numbers in nodes, posterior probabilities/bootstrap support values in RAXML. Names in nodes refer to the new classification. Habitus photographs correspond to species used in the analyses, with the addition of *Limnebius papposus* Mulsant, *Hydraena riparia* Kugelann (a), *Ochthebius* (s.s.) *bernhardi* Jäch & Delgado and *O. (Micragasma) minoicus* Hernando, Villastrigo & Ribera (b).[Colour figure can be viewed at wileyonlinelibrary.com].

6 A. Villastrigo et al.

Fig. 1. Continued.

established groups was the expansion of the *O. marinus* group to include the South African *O. capicola* and the American *O. biincisus, bisinuatus* and *interruptus* groups of Perkins (1980). The *O. foveolatus* group of Jäch (1991) was split in three clades: (i) *O. foveolatus* group, sister to the *O. metallescens* group with strong support in both ML and Bayesian trees (BS = 71%, PP = 0.99); (ii) *O. atriceps* group; and (iii) *O. corrugatus* group. The latter two formed a clade with the species of the *O. notabilis* and *O. andraei* groups, strongly supported in the Bayesian tree (PP = 1) but not in the ML tree (BS < 50%), in which the group

Phylogeny of Ochthebiini 7

Fig. 1. Continued.

also included one of the two sampled species of the *O. rivalis* group (Figs 1c, S2 in File S1). Two coastal lineages, *Calobius* and the *O. vandykei* group (formerly genus *Neochthebius*), were nested within *Ochthebius* s.s., the former as sister to the *O. lobicollis* + *O. strigosus* groups (BS < 50%, PP = 0.92) and the latter as sister to the *O. marinus* group (BS < 50%, PP = 0.97) (Figs 1b, c, S2 in File S1).

According to our calibration scheme, with a separation between Hydraenidae and Ptiliidae at 170 Ma, the estimated age of crown Hydraenidae was 106 Ma [highest posterior density (HPD): 122.8–90.2 Ma], and that of the crown Ochthebiini was 93 Ma (HPD: 109.7–80.8 Ma). The basal diversification of Ochthebiini was reconstructed as having occurred in a relatively short temporal window, with genera, subgenera and most species

8 A. Villastrigo et al.

Table 2. Estimated evolutionary rates of the different partitions (substitutions per site per Ma per lineage) and 95% high posterior density interval (HPD) in the Bayesian analysis with simple evolutionary models (see text).

Partition	Mean rate	95% HPD interval
COI-5	0.0085	[0.0070, 0.0102]
COI-3	0.0111	[0.0091, 0.0133]
16S + tRNA	0.0024	[0.0020, 0.0029]
NAD1	0.0039	[0.0030, 0.0048]
18S	0.00014	[0.000 10, 0.000 17]
285	0.00052	[0.00040, 0.00064]

groups with an origin in the range of c. 87–60 Ma (Fig. 1; see Table 2 for the estimated evolutionary rates of all partitions).

Discussion

Our results strongly support the monophyly of Ochthebiini, but our sampling did not allow us to test for the monophyly of Ochthebiinae, or its position within Hydraenidae. Within Ochthebiini our results recover two well-supported clades: *Meropathus* plus *Tympanogaster*, and *Ochthebius* s.l. (Fig. 2; see below for a detailed discussion of the taxonomic classification of Ochthebiini). We did not find evidence to support the five subtribes proposed by Perkins (1997), which are therefore not considered here.

We did not find evidence for a clear separation between the studied species of Tympanogaster and Meropathus, in agreement with previous studies (Hansen, 1991). However, we could not obtain material of the genera Prototympanogaster and Tympallopatrum, considered to be closely related to Tympanogaster by Perkins (1997, 2018), and two of the subgenera of Tympanogaster (Plesiotympanogaster Perkins and Topotympanogaster Perkins), so until more data become available we refrain from any taxonomic change and consider Prototympanogaster, Tympallopatrum and Tympanogaster as valid genera (Tables 1, S1 in File S1; Fig. 2) (see Perkins, 2006 for a discussion on the subgeneric classification of Tympanogaster). The species of Meropathus, Prototympanogaster, Tympallopatrum and Tympanogaster are found in the Australian Region, on two Antarctic islands (Kerguelen and Heard) and on several Subantarctic islands, such as Campbell Island, Crozet Islands, Prince Edward Island and Falkland Islands.

The second lineage, genus Ochthebius s.l., included all the non-Australian Ochthebiini, as well as several Australian species. Our results agree remarkably well with the currently recognized subgenera and many of the established species groups, which were recovered as monophyletic with general strong support (Fig. 2). The relationships between these lineages, however, do not confirm some previous hypotheses on their relationships. Thus, Aulacochthebius, as proposed in Hansen (1991), but to Asiobates; Micragasma and Hughleechia were not among the basal lineages and

Cobalius and Calobius were not closely related, as hypothesized in Perkins (1997). Novel relationships found here are the possible sister relationship between Hughleechia and Enicocerus, and the close relationship between Gymnochthebius and Gymnanthelius. Interestingly, within the clade Gymnochthebius + Gymnanthelius + Angiochthebius there are two cladogenetic events separating American from Australian species: one within Gymnochthebius, dated at 73 Ma (95% HPD: 87-60 Ma), and another separating the Australian Gymnanthelius and the Chilean Angiochthebius, dated at 60 Ma (95% HPD: 78-51 Ma). Although a detailed biogeographic analysis is outside the scope of this paper, it is interesting to note that these estimations are too recent for a tectonic split between Australia and South America (i.e. west and east Gondwana), dated at c. 130 Ma (McIntyre et al., 2017). Our calibration would thus require a different scenario, probably through the colonization of some southern islands or the Antarctica. An older age for these nodes is unlikely, given that our rate estimations are already slower than most recent estimations for the same genes in other groups of Coleoptera (Table 2; see e.g., Papadopoulou et al., 2010; Andújar et al., 2012; Cieslak et al., 2014).

Taxonomic classification of Ochthebiini Thomson, 1859

Genus Meropathus Enderlein, 1910

Type species: *Meropathus chuni* Enderlein, 1910, by monotypy. *Meropathus* was described as genus, considered as subgenus of *Ochthebius* by Orchymont (1938) and reinstated again as genus by Jeannel (1940). Bameul (1989) redescribed the genus and recognized 12 species (in two species groups), transferring *Ochthebius schizolabrus* Deane to *Meropathus*. Hansen (1991) noted the difficulty in establishing clear distinctions within the *Meropathus–Tympanogaster* complex. *Meropathus* includes seven New Zealand, Antarctic and Subantarctic species plus *M. labratus* Deane from Queensland (Table S1 in File S1). They are all found in coastal habitats, usually among debris and algae (Bameul, 1989).

Genus Prototympanogaster Perkins, 2018

Type species: *Prototympanogaster lordhowensis* Perkins, 2018, by original designation.

Prototympanogaster was described by Perkins (2018) as a monotypic genus based on two males collected in 2003 in Lord Howe Island (Australia). This genus seems to be closely related to *Tympanogaster*, but without its characteristic glabrous tabella in the metaventrite (Perkins, 2018).

Genus Tympallopatrum Perkins, 1997

Type species: *Tympallopatrum longitudum* Perkins, 1997, by original designation.

Tympallopatrum was described by Perkins (1997) as a monotypic genus within Meropathina. Subsequently, Perkins (2004a) revised the genus and described three additional species, all of them from western Australia (Table S1 in File S1). We could not

Phylogeny of Ochthebiini 9

Fig. 2. Summary tree of the phylogenetic relationships of the Ochthebiini main lineages. The width of the triangles reflects the number of species of the respective clade in the tree. Symbols in nodes: circles, congruent topology in the maximum likelihood and Bayesian analyses; triangles, incongruent topologies; in black, nodes with good support (Bayesian posterior probability > 0.95 and maximum likelihood bootstrap support > 70%) in both analyses; in grey, in one analysis only; in white, not supported nodes. Pie charts reflect the geographical distribution of the species of the respective clades.

10 A. Villastrigo et al.

obtain any representative of this genus for our study, and thus its phylogenetic placement remains untested.

Genus Tympanogaster Janssens, 1967

Type species: Tympanogaster deanei Perkins, 1979 (replacement name for Ochthebius longipes Deane, 1931), by monotypy.

Described by Janssens (1967) as a monotypic genus for *O. longipes* (= *T. deanei* Perkins), Perkins (1997) redescribed *Tympanogaster* and transferred some species from *Meropathus*. Perkins (2006) revised the genus and described three subgenera and 76 new species, raising the total number of the species in the genus to 84 (Tables 1, S1 in File S1), all distributed in Australia and Tasmania.

Subgenus Hygrotympanogaster Perkins, 2006. Type species: Tympanogaster maureenae Perkins, 2006, by original designation.

Hygrotympanogaster Perkins was described by Perkins (2006) as a subgenus of *Tympanogaster*, to include mostly hygropetric species in southwestern Australia. Currently it includes 36 species (Perkins, 2006) (Table S1 in File S1).

Subgenus Plesiotympanogaster Perkins, 2006. Type species: Tympanogaster thayerae Perkins, 2006, by original designation. Plesiotympanogaster was described by Perkins (2006) as a subgenus of Tympanogaster to include the type species plus Ochthebius costatus Deane (Table S1 in File S1). Both species were considered to have plesiomorphic characters within the genus.

Subgenus Topotympanogaster Perkins, 2006. Type species: Tympanogaster crista Perkins, 2006, by original designation.

Topotympanogaster was described by Perkins (2006) as a subgenus of *Tympanogaster* to include eight Australian species, all described in Perkins (2006) (Table S1 in File S1). We could not obtain any representative of this and the previous subgenus for our study, and thus their phylogenetic placement remain untested.

Subgenus Tympanogaster Janssens, 1967. Type species: Tympanogaster deanei Perkins, 1979 (replacement name for Ochthebius longipes Deane, 1931), by monotypy.

Tympanogaster s.s. was revised by Perkins (2006), raising the total number of the species to 38 (Tables 1, S1 in File S1), all distributed in Australia and Tasmania.

Genus Ochthebius Leach, 1815

Type species: *Helophorus marinus* Paykull, 1798, fixed by Orchymont (1942).

The second well-supported lineage within Ochthebiini includes the remaining genera/subgenera with, in some cases, uncertain relationships among them. We consider *Ochthebius* a single genus with 540 species and nine subspecies in ten well-supported subgenera, corresponding in most cases to currently recognized taxa (Fig. 2). One additional species, *O. eremita* Knisch from Fiji, cannot be confidently placed in any of the described subgenera, and it is left as incertae sedis within the genus *Ochthebius* (Hansen, 1998; Table S1 in File S1).

Subgenus Angiochthebius Jäch & Ribera, 2018. Type species: Gymnochthebius plesiotypus Perkins, 1980, by original designation.

The subgenus Angiochthebius was created for the Gymnochthebius plesiotypus species group (sensu Perkins, 1980), which now includes three South American species (Jäch & Ribera, 2018; Table S1 in File S1). The species of the *G. plesiotypus* group were included within *Gymnochthebius* by Perkins (1980) as they share a bifid apex of the aedeagus, but external characters (e.g. the pubescent fifth abdominal ventrite) and some aedeagal characters (Jäch & Ribera, 2018) as well as molecular data (Figs 1b, S2 in File S1) warrant their removal from *Gymnochthebius* and their status as a distinct subgenus of *Ochthebius*.

Subgenus Asiobates Thomson, 1859. Type species: Ochthebius rufimarginatus Stephens, 1829 (= O. bicolon Germar, 1824), by monotypy.

Originally described as a genus, but downgraded to subgenus by Seidlitz (1875), and treated as such by most authors (e.g. Jäch, 1990a; Hansen, 1991; Perkins, 1997). Jäch (1990a) divided the Palaearctic species in the bicolon and minimus groups, which were recovered as respectively monophyletic with strong support. The sampled American species were divided in the puncticollis group of Perkins (1980), with only one sampled species being sister to the rest of the subgenus with strong support (BS = 88%, PP = 1; Figs 1a, S2 in File S1), plus the discretus group of Perkins (1980). The placement of the studied Nearctic species of the A. discretus group and two of the Afrotropical species (O. andreiini Régimbart and O. andronius Orchymont) was uncertain in both the ML and the Bayesian trees (Figs 1a, S2 in File S1). We provisionally consider them within the A. minimus group due to the similarities in their aedeagi and the morphology of the pronotum (Orchymont, 1948; Perkins, 1980; Jäch, 1990a). The subgenus Asiobates currently includes 105 described species and three subspecies occurring in all biogeographical regions, except the Oriental and Australian Realms. While the puncticollis group is restricted to the Nearctic Region, the bicolon and minimus groups are more widespread. The former occurs in the Palaearctic and (with several undescribed species) Afrotropical regions, and the latter occurs in the Nearctic, Neotropical, Palaearctic, and Afrotropical regions. Many additional species of Asiobates await description, several of them included in our phylogeny (Table S3 in File S1).

Subgenus Aulacochthebius Kuwert, 1887. Type species: Ochthebius exaratus Mulsant, 1844, by monotypy.

Considered as a subgenus until Perkins (1997) raised it to genus level. There are no species groups defined within this subgenus, and our sampling is too incomplete to draw firm conclusions. Currently the subgenus includes 13 Palaearctic, Oriental and Afrotropical species (Table S1 in File S1), although the taxonomy of the subgenus is in clear need of revision and it

is expected that the number of species will increase considerably (Table S3 in File S1).

Subgenus Cobalius Rey, 1886. Type species: Ochthebius lejolisii Mulsant & Rey, 1861, fixed by Jäch (1989b).

Described as a subgenus of *Ochthebius* by Rey (1886), synonymized by Perkins (1997) with *Ochthebius* s.s. and considered again as subgenus by Sabatelli *et al.* (2016). We recovered it here as a strongly supported monophyletic lineage clearly outside *Ochthebius* s.s., confirming its status as subgenus. Its nine recognized species and two subspecies occur along the coasts of the Mediterranean Sea, the Black Sea and the eastern Atlantic Ocean from Cape Verde to Scotland (Jäch, 1989b; Jäch & Skale, 2015; Jäch & Delgado, 2017a). Its taxonomy is in need of revision (Sabatelli *et al.*, 2016; Jäch & Delgado, 2017a; I. Ribera *et al.*, unpublished data).

Subgenus Enicocerus Stephens, 1829. Type species: Enicocerus viridiaeneus Stephens, 1829 (= Ochthebius exsculptus Germar, 1824), by monotypy.

Enicocerus was originally described as a genus, downgraded to subgenus of Ochthebius by Chenu (1851), reinstated again as genus by Perkins (1997) (within its own subtribe, Enicocerina), but treated as a subgenus by subsequent authors (e.g. Jäch, 1998; Ribera et al., 2010; Jäch & Skale, 2015). Our results support the exclusion of the East Palaearctic and Oriental species, confirming Jäch (1998) and Skale & Jäch (2009), and are in agreement with the phylogeny of Ribera et al. (2010). Enicocerus in its current sense includes 16 species with a mostly Mediterranean distribution, with some species reaching the British Isles, Central Europe, the Middle East and the Caucasus. One species from eastern North America, Ochthebius benefossus LeConte, not included in our phylogeny, is here tentatively placed in Enicocerus (following Perkins, 1980); it might, however, instead belong to the O. (s.s.) nitidipennis group, or to a species group of its own.

Subgenus Gymnanthelius Perkins, 1997 comb.n. Type species: Ochthebius hieroglyphicus Deane, 1933, by original designation.

The genus *Gymnanthelius* was introduced by Perkins (1997) for *O. hieroglyphicus*. Subsequently, Perkins (2004b) revised the genus and transferred to *Gymnanthelius* two other Australian species described by Deane (1931, 1937) within *Ochthebius* (Table S1 in File S1). The eight described species are distributed mostly in southeastern Australia, with some reaching as far north as Queensland (Perkins, 2004b).

Subgenus Gymnochthebius Orchymont, 1943. Type species: Ochthebius nitidus LeConte, 1850 by original designation.

Gymnochthebius was originally described as a subgenus of *Ochthebius* (Orchymont, 1943) to place several American species described under *Ochthebius* that could not be placed in any of the described subgenera, which had been established mostly for Palaearctic species. Orchymont (1943) also included three Australian species for which he could examine the aedeagus and confirmed that they had the same general structure as the

Phylogeny of Ochthebiini 11

American species. Perkins (1980) revised the American species and Perkins (2005) the Australian and Papuan species, recognizing another four species in addition to the three previously noted by Orchymont (1943) and raising the total number of species in the subgenus to 58 (Table S1 in File S1). The Australian and the American species of the subgenus form two well-supported clades, the *O. australis* and *O. fossatus* groups, with 36 and 22 species, respectively (Table S1 in File S1).

Subgenus Hughleechia Perkins, 1981 comb.n. Type species: Hughleechia giulianii Perkins, 1981, by original designation.

Originally described as a monotypic genus (Perkins, 1981), a second species was described by Perkins (2007a). Both species inhabit coastal rockpools in southern Australia and Tasmania, in the intertidal zone and (most frequently) above the tide (Perkins, 2007a).

Subgenus Micragasma Sahlberg, 1900. Type species: Micragasma paradoxum Sahlberg, 1900, by monotypy.

Described as a monotypic genus for *M. paradoxum* (Sahlberg, 1900). Jäch (1997a) redescribed the genus and transferred *O. substrigosus* Reitter to *Micragasma*. A third species was recently described from Crete (Hernando *et al.*, 2017), and there are two additional undescribed species from Central Asia (M.A. Jäch *et al.*, unpublished data). Our results clearly show that *Micragasma* is nested within *Ochthebius* s.l., and thus we consider it a subgenus of *Ochthebius*.

Subgenus Ochthebius Leach, 1815. Type species: Helophorus marinus Paykull, 1798, fixed by Orchymont (1942).

Within Ochthebius s.s. we recovered, with strong support, most of the currently recognized species groups as monophyletic. Most species groups are entirely Palaearctic, or with mostly Palaearctic species, and thus the basis for the taxonomy of the subgenus is the revisionary work of Jäch (e.g. Jäch, 1989a, 1990a, 1991, 1992a), who distinguished 13 groups and subgroups. With only one exception (O. jengi group), they were all, with some modifications, recovered as monophyletic. According to our results, the 322 described species and four subspecies of Ochthebius s.s. are separated in 17 species groups, five of them newly established herein (Fig. 2). A few species still have an uncertain phylogenetic placement. This is particularly the case for O. belucistanicus Ferro, O caudatus Frivaldszky, O. fissicollis Janssens and O. pierottii Ferro, which presently cannot be confidently included in any of the recognized species groups, mainly because their original descriptions lack information about relevant characters (Table S1 in File S1).

(1) O. andraei group: Defined and revised in Jäch (1992a), with additional species described in Jäch (2002) and Jäch & Delgado (2010). Currently this group includes six species and one subspecies of Palaearctic distribution (Table S1 in File S1), typical of saline or hypersaline habitats. We could study a single species (O. patergazellae Jäch & Delgado, Table S3 in File S1), included in a clade together with the species of the O. notabilis, corrugatus and atriceps groups (Fig. 1). The close relationship between the species of the O. andraei, corrugatus, notabilis and atriceps groups were already suggested in Jäch (1991, 1992a).
12 A. Villastrigo et al.

(2) O. atriceps group: In Jäch (1991) the species of the O. foveolatus group were divided in two subgroups: (A) foveolatus subgroup, sharing some characters with the species of the O. metallescens group; and (B) atriceps subgroup, sharing some characters with the species of the O. notabilis group. We recovered both subgroups as respectively monophyletic, and confirmed the suspected relationships proposed by Jäch (1991) (see below). Ochthebius burjkhalifa Jäch & Delgado and O. despoliatus Jäch & Delgado, both from the UAE and of uncertain affinities, although hypothesized to be related to the O. atriceps group (Jäch & Delgado, 2014a), were found to be sister to the rest of the species of the group, with strong support in the Bayesian analysis (PP = 0.95) but weaker in the ML (BS = 55%) (Figs 1, S2 in File S1). With the inclusion of these two species, the O. atriceps group includes 20 species and one subspecies (Table S1 in File S1). They have a mostly Palaearctic distribution but extending to East Africa (Djibouti) (Jäch & Delgado, 2017b).

(3) O. corrugatus group: Jäch (1992a) suggested that O. corrugatus Rosenhauer, despite being related to the species of the O. andraei and notabilis groups, could not be included in either of them. Our results confirm this hypothesis, but extend the O. corrugatus group to include two additional Mediterranean species previously included in the O. atriceps subgroup (Jäch, 1991; Table S1 in File S1).

(4) *O. foveolatus* group: the *O. foveolatus* group as here defined corresponds to the *O. foveolatus* subgroup of Jäch (1991), recovered as sister of the *O. metallescens* group with strong support (Fig. 1). After the additions and corrections of Delgado & Jäch (2009) and Jäch & Delgado (2010, 2014b) it currently includes 27 species, all Palaearctic (Fig. 1; Table S1 in File S1).

(5) O. kosiensis group: Jäch (1997b) established this group for O. kosiensis Champion, described within Ochthebius but originally not placed in any subgenus (Champion, 1920). Knisch (1924) placed it in Asiobates due to the resemblance of the general habitus, although the male genitalia do not correspond to those of the species of Asiobates (Jäch, 1997b). Jäch (2003) recognized the similarity between O. kosiensis, O. strigosus and related species, and included both species in the strigosus subgroup of the metallescens group. The study of some undescribed species deposited in the NMW (M.A. Jäch, unpublished data) suggests that the strigosus subgroup as defined in Jäch (2003) should be divided in the kosiensis and strigosus groups, with two and 16 described species respectively (see below; Table S1 in File S1). We could not obtain any species of the kosiensis group suitable for DNA extraction, and thus their phylogenetic relationships (and composition) remain untested. Based on described and undescribed species the group is so far known from the Himalaya and Myanmar.

(6) *O. lobicollis* group: Jäch (1990b) revised the *lobicollis* group, with subsequent additions by Jäch (1994) and Jäch *et al.* (1998). It currently includes 11 species with a West Palaearctic distribution (Table S1 in File S1; Fig. 1b).

(7) O. marinus group: the Palaearctic species of the O. marinus group, the most speciose within Ochthebius s.s., were revised by Jäch (1992b). According to our results it includes

the species of the *O. jengi* group sensu Jäch (1998) and also species from the Nearctic and Neotropical regions (*O. biincisus, bisinuatus* and *interruptus* groups of Perkins, 1980); the Afrotropical Region (*O. extremus* and *salinarius* groups of Perkins & Balfour-Browne, 1994; Perkins, 2011; *O. capicola* group of Sabatelli *et al.*, 2016), including Madagascar (*O. alluaudi* Régimbart; Perkins, 2017); the Oriental Region (*O. masatakasatoi* Jäch; Jäch, 1992b; Jäch & Delgado, 2017a); and the Australian Region (*O. queenslandicus* Hansen; Jäch, 2001a; Perkins, 2007b).

Two of the studied subspecies were not recovered as sisters to the nominal subspecies in any of the analyses: *O. viridis fallaciosus* Ganglbauer (sister to *O. arefniae* Jäch & Delgado and another specimen probably representing an undescribed species), and *O. subpictus deletus* Rey (sister to *O. marinus* plus *O. auropallens* Fairmaire), in both cases with strong support (Figs 1, S1, S2; Table S1 in File S1). We thus upgrade the two subspecies to species, *O. fallaciosus* Ganglbauer, 1901 **stat.n.** and *O. deletus* Rey, 1885 **stat.rest.** (see Jäch, 1992b and Jäch & Delgado, 2008 for a detailed description of the species). The *O. marinus* group as here defined includes 78 species, plus one species of uncertain adscription (Table S1 in File S1). Most of these species seem to be associated to lentic habitats, frequently saline, and especially those outside the Palaearctic, coastal.

(8) *O. metallescens* group: the *O. metallescens* group was revised by Jäch (1989a). It is well defined morphologically, but many species have variable isolated populations, making species recognition and diagnosis difficult. This difficulty is reflected in the complex taxonomic history of the group, with multiple changes in the status of some species (e.g. Jäch, 1989a, 1999, 2001b). A number of species are typical of hygropetric habitats covered by a thin film of water, such as seepages or the marginal areas of stony surfaces in streams. The species (Table S1 in File S1). Due to the somewhat cryptic habits and restricted geographic ranges of many species, it is expected that this number will increase considerably.

(9) O. nitidipennis group: we include in the O. nitidipennis group the Asian species formerly included in the subgenus Enicocerus. As suggested by previous authors (Jäch, 1989b; Skale & Jäch, 2009; Yoshitomi & Satô, 2001), morphological similarities between these species and those of Enicocerus are the result of evolutionary convergence, probably due to occupying similar microhabitats on the surface of rocks and stones partially submerged in streams. The group currently includes 12 species in the Himalaya Region and East Asia (Table S1 in File S1).

(10) *O. notabilis* group: Jäch (1992a) recognized the *O. notabilis* group for species formerly included in the subgenus *Doryochthebius* Kuwert, establishing its synonymy with *Ochthebius* s.s. and differentiating the members of this group from the species of *Calobius* (see below). The group includes 13 Palaearctic species, all typical of saline or hypersaline habitats.

(11) *O. peisonis* group: *Ochthebius peisonis* was included in the *O. marinus* group by Jäch (1992b). Our results, however, place the species in a very isolated and uncertain position within *Ochthebius* s.s. We provisionally consider it in its

own group, until additional evidence clarifies its phylogenetic relationships.

(12) *O. punctatus* group: the *punctatus* group was defined by Jäch (1992c) to include the species formerly considered under subgenus *Bothochius* Rey, with irregular elytral punctation (Jäch, 1989c), and a series of species with similar morphological characters but with regular elytral striae. The *Ochthebius punctatus* group includes 53 species and one subspecies, mostly Palaearctic (reaching the Oriental Region) but with some Afrotropical species, among them the *namibiensis* group of Perkins & Balfour-Browne (1994) (Jäch, 1992c; Hansen, 1998; Perkins, 2011; Jäch & Delgado, 2017b; Table S1 in File S1).

(13) O. quadricollis group: the O. quadricollis group corresponds to the genus Calobius, described for C. heeri Wollaston from Madeira. The concept of Calobius was expanded by subsequent authors to include species now in different species groups (e.g. Reitter, 1886 included among them O. notabilis Rosenhauer and O. quadrifoveolatus Wollaston), and was usually treated as a subgenus. It was revised by Jäch (1993), who still considered it a subgenus, but was synonymized with Ochthebius s.s. by Perkins (1997), who considered it to be closely related to Cobalius. Its status remained uncertain, however, with some authors treating it as a genus (e.g. Audisio et al., 2010) or subgenus (e.g. Jäch & Skale, 2015). Finally, Sabatelli et al. (2016) provided evidence of the phylogenetic position of Calobius, demonstrating its derived status within Ochthebius s.s. and considering it as the 'Calobius' lineage, named here the O. quadricollis group for consistency with other species groups within Ochthebius s.s. Sabatelli et al. (2016) also found that the group includes more than the five species currently recognized (Table S1 in File S1), in agreement with previous results from the Italian species (e.g. Urbanelli & Porretta, 2008; Audisio et al., 2010). Our results support this impression, as happens with the subgenus Cobalius, which is also in need of taxonomic revision. All species of the O. quadricollis group are found in coastal rockpools in the Mediterranean basin and the islands of Madeira and the Canaries.

(14) *O. rivalis* group: *Ochthebius rivalis* Champion and two similar species were originally considered to be a subgroup of the *O. metallescens* group (Jäch, 2003). Our results, however, do not support a close relationship with the species of the *O. metallescens* group, but with *O. peisonis* and the *O. notabilis, corrugatus* and *andraei* groups (Figs 1, S2 in File S1), with low support. In the Bayesian analysis, the two sampled species of the group were sister with strong support (PP=1), but in the ML analysis they were not placed together, although with low support (BS < 50%) (Fig. S2 in File S1). Currently the group includes four Asian species (including *O. himalayae* Jäch, originally described within the *O. metallescens* group, Jäch, 1989a), distributed from the Himalaya to Hainan Island (Table S1 in File S1).

(15) Ochthebius strigosus group: Ochthebius strigosus Champion, described as Ochthebius s.s., was included in the subgenus Asiobates by Jäch (1989b) based on the study of female specimens only. After the discovery of males of a related

Phylogeny of Ochthebiini 13

species (*O. strigoides* Jäch) they were placed in their own subgroup within the *O. metallescens* group (Jäch, 1998). We found the only sequenced species of the group to be sister of the *O. lobicollis* group with low support (BS = 56%, PP = 0.87), and we consider it here as a distinct species group within *Ochthebius* s.s. The *O. strigosus* group currently includes 16 described plus some undescribed species, one of them included here (voucher IBE-RA617). The group is distributed in the eastern Palaearctic, including Taiwan (Jäch, 2003; Table S1 in File S1).

(16) Ochthebius sumatrensis group: in the original description, O. sumatrensis Jäch could not be placed in any of the by then described groups, although some similarities with O. jengi Jäch (currently in the marinus group) were noted (Jäch, 2001a). Several undescribed species similar to O. sumatrensis have been collected in recent years (M.A. Jäch et al., unpublished data), among them the one from Hong Kong included here (specimen voucher MNCN-AC16; Table S1 in File S1), recovered as sister to the rest of the species of Ochthebius s.s. with low support in the ML analysis (BS < 50%; Fig. S2 in File S1) and as sister to the punctatus group in the Bayesian analysis, also with low support (PP < 0.5; Fig. 1). They live in hygropetric surfaces, which makes them prone to evolutionary convergence with nonrelated species sharing the same habitat, thus obscuring their relationships. The group is distributed from the Himalayas to eastern China and southward to Sumatra, where it is the only known species of Ochthebius s.s.

(17) O. vandykei group: the species of the O. vandykei group correspond to the former Neochthebius, originally described as subgenus but raised to genus (within its own subtribe, Neochthebina) by Perkins (1997) based on peculiarities of their antennae and the lack of ESDS. Jäch & Delgado (2014b), based on unpublished molecular data and on aedeagal characters, synonymized Neochthebius and considered it as a species group within Ochthebius s.s. The group currently includes eight species from the northern Pacific coast, seven in Asia and one in North America (Jäch & Delgado, 2014b; Table S1 in File S1). They are all typical of rocky seashores or other coastal microhabitats.

Genus Protochthebius Perkins, 1997

Type species: *Protochthebius satoi* Perkins, 1997, by original designation.

The genus *Protochthebius* was described by Perkins (1997) for *P. satoi* and *O. jagthanae* Champion, who erected also the subtribe Protochthebiina based on peculiarities of the antennae and the ESDS. Subsequently, Jäch (1997b) and Perkins (1998) described another two and three species, respectively. All seven known species of *Protochthebius* are found in the Himalaya Region, Meghalaya and Laos (Table S1 in File S1). Some of them have been found by sifting forest litter or moss (Jäch, 1997b; Perkins, 1998).

We could not obtain molecular data of any of the species of *Protochthebius*, and thus the phylogenetic placement of the genus remains uncertain. Perkins (1997) noted some presumably plesiomorphic characters of the pronotum and postocular area of the head. The species of the genus also have a reduced

14 A. Villastrigo et al.

ESDS system (Perkins, 1997), but this might be a secondary loss due to their microhabitat preferences. Their male genitalia are, however, typical of *Ochthebius* s.s., and when molecular data become available, the taxonomic status of *Protochthebius* may have to be changed to a subgenus of *Ochthebius* or a species group within *Ochthebius* s.s., in which case *P. satoi* would become a junior homonym.

Supporting Information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

File S1. Supporting Information file.

Acknowledgements

We thank all collectors mentioned in Table S3 in File S1 for allowing us to study their material, Ana Izquierdo (MNCN) and Rocío Alonso (IBE) for laboratory work and three anonymous referees for comments to previous versions of the manuscript. AV has a FPI-MINECO PhD grant from the Spanish Government. This work has been partly funded by project CGL2013-48950-C2 (AEI/FEDER, UE) to IR

References

- Abellán, P., Millán, A. & Ribera, I. (2009) Parallel habitat-driven differences in the phylogeographical structure of two independent lineages of Mediterranean saline water beetles. *Molecular Ecology*, 18, 3885–3902. https://doi.org/10.1111/j.1365-294X.2009.04319.x.
- Abellán, P., Sánchez-Fernández, D., Picazo, F., Millán, A., Lobo, J.M. & Ribera, I. (2013) Preserving the evolutionary history of freshwater biota in Iberian National Parks. *Biological Conservation*, 162, 116–126. http://dx.doi.org/10.1016/j.biocon.2013.04.001.
- Andújar, C., Serrano, J. & Gómez-Zurita, J. (2012) Winding up the molecular clock in the genus *Carabus* (Coleoptera: Carabidae): assessment of methodological decisions on rate and node age estimation. *BMC Evolutionary Biology*, **12**, 40. https://doi.org/10.1186/ 1471-2148-12-40.
- Antonini, G., Audisio, P., Mancini, E., de Biase, A., Tronci, C., Rossetti, G. & Trizzino, M. (2010) Molecular phylogeography of two Italian sibling species of *Calobius* (Coleoptera, Hydraenidae, Ochthebiinae) inhabiting Mediterranean marine rock-pools. *Marine Biology*, **157**, 371–381. https://doi.org/10.1007/s00227-009-1324-9.
- Arnol'di, L.V., Zherikhin, V.V., Nikritin, L.M. & Ponomarenko, A.G. (1991) Mesozoic Coleoptera. Oxonian Press, New Dehli.
- Audisio, P., Trizzino, M., de Biase, A., Rossetti, G., Mancini, E. & Antonini, G. (2010) Molecular and morphological evidence of a new sibling species of *Calobius* (Coleoptera: Hydraenidae) of the *C. quadricollis* complex from peninsular Italy. *Italian Journal of Zoology*, **77**, 29–37. https://doi.org/10.1080/11250000902845738.
- Bameul, F. (1989) Redéfinition des *Meropathus* Enderlein, 1901 des archipels subantarctiques de l'Océan Indien, et notes sur les autres espèces et la biogéographie du genre (Coleoptera, Hydraenidae). *Nouvelle Revue d'Entomologie (N.S.)*, 6, 219–229.
- Beutel, R.G., Anton, E. & Jäch, M.A. (2003) On the evolution of adult head structures and the phylogeny of Hydraenidae (Coleoptera, Staphyliniformia). *Journal of Zoological Systematics and Evolutionary Research*, **41**, 256–275. https://doi.org/10.1046/j.1439-0469 .2003.00224.x.

- Champion, G.C. (1920) Some Indian Coleoptera (3). Entomologist's Monthly Magazine, 56, 165–175.
- Chenu, J. (1851) *Encyclopedie d'Histoire naturelle*. Coleoptera I. 312 pp., 12 + 28 pl. Maresq et Co, Paris.
- Cieslak, A., Fresneda, J. & Ribera, I. (2014) Life-history specialization was not an evolutionary dead-end in Pyrenean cave beetles. *Proceedings of the Royal Society B, Biological Sciences*, 281, 20132978. https://doi.org/10.1098/rspb.2013.2978.
- Deane, C. (1931) Australian Hydrophilidae; notes and new species. Proceedings of the Royal Society of Victoria, 43, 166–176.
- Deane, C. (1937) [Descriptions of two new species of beetles]. In Melhuish, C.A. & Deane, C. Victorian Cave Pools. *Victorian Naturalist*, 54, 56–59.
- Delgado, J.A. & Jäch, M.A. (2009) Revision of the Palearctic species of the genus Ochthebius Leach XXVII. Revisional notes on the O. (s. str.) foveolatus subgroup (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 79, 39–57.
- Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. *BMC Evolutionary Biology*, 7, 214. https://doi.org/10.1186/1471-2148-7-214.
- Hansen, M. (1991) A review of the genera of the beetle family Hydraenidae (Coleoptera). *Steenstrupia*, 17, 1–52.
- Hansen, M. (1997) Phylogeny and classification of the staphyliniform beetle families (Coleoptera). *Biologiske Skrifter*, 48, 1–339.
- Hansen, M. (1998) World Catalogue of Insects, Vol. 1. Apollo Books, Stenstrup.
- Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. *Proceedings of the Royal Society B, Biological Sciences*, 270, 313–321. https://doi.org/ 10.1098/rspb.2002.2218.
- Hernando, C., Villastrigo, A. & Ribera, I. (2017) A new species of *Micragasma J.* Sahlberg, 1900 (Coleoptera: Hydraenidae) from Crete. Aquatic Insects, 38, 185–196. https://doi.org/10.1080/ 01650424.2017.1384024.
- Hunt, T., Bergsten, J., Levkanicova, Z. *et al.* (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. *Science*, **318**, 1913–1916. https://doi.org/10.1126/science .1146954.
- Jäch, M.A. (1989a) Revision of the palearctic species of the genus Ochthebius Leach III. The metallescens-group (Hydraenidae, Coleoptera). Linzer Biologische Beiträge, 21, 351–390.
- Jäch, M.A. (1989b) New and little known Himalayan species of the genus Ochthebius Leach (Coleoptera, Hydraenidae). Acta Coleopterologica, 1, 15–20.
- Jäch, M.A. (1989c) Revision of the Palearctic species of the genus Ochthebius Leach I. The so-called subgenus "Bothochius". Koleopterologische Rundschau, 59, 95-126.
- Jäch, M.A. (1990a) Revision of the Palearctic species of the genus Ochthebius Leach V. The subgenus Asiobates (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 60, 37–105.
- Jäch, M.A. (1990b) Revision of the Palearctic species of the genus Ochthebius Leach IV. The lobicollis group. Entomologische Blätter, 86, 26–40.
- Jäch, M.A. (1991) Revision of the Palearctic species of the genus Ochthebius VII. The foveolatus group (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 61, 61–94.
- Jäch, M.A. (1992a) Revision of the Palearctic species of the genus Ochthebius Leach, 1815. IX. The andraei and notabilis species groups (Coleoptera, Hydraenidae). Nachrichtenblatt der Bayerischen Entomologen, 41, 7–21.
- Jäch, M.A. (1992b) Revision of the Palearctic species of the genus Ochthebius Leach VI. The marinus group (Hydraenidae, Coleoptera). Entomologica Basiliensia, 14, 101–145.

391 ⁄

- Jäch, M.A. (1992c) Revision of the Palearctic species of the genus Ochthebius Leach X. the punctatus species group (Hydraenidae: Coleoptera). Bulletin et Annales de la Société royale belge d'entomologie, 128, 167–195.
- Jäch, M.A. (1993) Revision of the Palaearctic species of the genus Ochthebius XI. The subgenus Calobius Wollaston, 1854 (Insecta: Coleoptera: Hydraenidae). Reichenbachia, 30, 4–7.
- Jäch, M.A. (1994) Revision der paläarktischen Arten der Gattung Ochthebius Leach. XIII. Beschreibung neuer Arten aus Spanien, der Türkei, Rußland und China (Insecta: Coleoptera: Hydraenidae). Annalen des Naturhistorischen Museums in Wien, Serie B, 96, 199–208.
- Jäch, M.A. (1997a) Synopsis of the genus *Micragasma* Sahlberg, 1900 (Insecta: Coleoptera: Hydraenidae). Annalen des Naturhistorischen Museums in Wien, Serie B, 99, 313–318.
- Jäch, M.A. (1997b) Notes on Asian Ochthebiinae (Insecta: Coleoptera: Hydraenidae). Annalen des Naturhistorischen Museums in Wien, Serie B, 99, 303–312.
- Jäch, M.A. (1998) Hydraenidae: II. The Taiwanese and Japanese species of Ochthebius Leach (Coleoptera). Water Beetles of China, Vol. II (ed. by M.A. Jäch and L. Ji), pp. 173–193. Zoologisch-Botanische Gesellschaft in Österreich and Wiener Coleopterologenverein, Wien.
- Jäch, M.A. (1999) Revision of the Palearctic species of the genus Ochthebius Leach (Coleoptera: Hydraenidae) XVI. Additional notes on the metallescens group. Koleopterologische Rundschau, 69, 83–98.
- Jäch, M.A. (2001a) Ochthebius s. str. Leach in Indonesia and Australia (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 71, 101–104.
- Jäch, M.A. (2001b) Revision of the Palearctic species of the genus Ochthebius XVIII. The European species of the O. semisericeus complex (Coleoptera: Hydraenidae). Entomological Problems, 32, 45–53.
- Jäch, M.A. (2002) Revision of the Palearctic species of the genus Ochthebius Leach XXI. Taxonomic notes on the O. andraei species group (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 72, 159–160.
- Jäch, M.A. (2003) Hydraenidae: II. Synopsis of Ochthebius Leach from Mainland China, with descriptions of 23 new species (Coleoptera). Water Beetles of China, Vol. III (ed. by M.A. Jäch and L. Ji), pp. 313–369. Zoologisch-Botanische Gesellschaft in Österreich and Wiener Coleopterologenverein, Wien.
- Jäch, M.A. & Balke, M. (2008) Global diversity of water beetles (Coleoptera) in freshwater. *Hydrobiologia*, 595, 419–442.
- Jäch, M.A. & Delgado, J.A. (2008) Revision of the Palearctic species of the genus Ochthebius Leach XXV. The superspecies O. (s.str.) viridis Peyron and its allies (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 78, 199–231.
- Jäch, M.A. & Delgado, J.A. (2010) Order Coleoptera, family Hydraenidae. Arthropod Fauna of the UAE (ed. A. Harten), p. 700. Vol. 3, pp. 173–194. Multiply Marketing Consultancy Services, Abu Dhabi.
- Jäch, M.A. & Delgado, J.A. (2014a) Order Coleoptera, family Hydraenidae. An update of the hydraenid fauna of the United Arab Emirates. *Arthropod Fauna of the UAE* (ed. A. A. van Harten), Vol. 5, pp. II + [1] + 744. Department of The President's Affairs, Abu Dhabi.
- Jäch, M.A. & Delgado, J.A. (2014b) Revision of the Palearctic species of the genus Ochthebius Leach XXIX. The Asian species of the O. vandykei group (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 84, 81–100.
- Jäch, M.A. & Delgado, J.A. (2017a) Revision of the Palearctic species of the genus *Ochthebius* Leach, 1835 XXXIII. *Ochthebius* (*Cobalius*)

Phylogeny of Ochthebiini 15

biltoni sp.n. from Sicily (Italy). Koleopterologische Rundschau, 87, 85-88.

- Jäch, M.A. & Delgado, J.A. (2017b) Hydraenidae of Djibouti, with description of two new species (Coleoptera: Hydraenidae). *Koleopterologische Rundschau*, 87, 51–84.
- Jäch, M.A. & Díaz, J.A. (2003) Hydraenidae: I. Edaphobates puetzi gen. et sp. n. from Sichuan (Coleoptera). Water Beetles of China, Vol. III (ed. by M.A. Jäch and L. Ji), pp. 301–311. Zoologisch-Botanische Gesellschaft in Österreich and Wiener Coleopterologenverein, Wien.
- Jäch, M.A. & Díaz, J.A. (2004) Ginkgoscia relicta gen.n. et sp.n. from China (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 74, 279–286.
- Jäch, M.A. & Ribera, I. (2018) Angiochthebius subg.n., a new subgenus of Ochthebius Leach, 1815 from the southern Neotropical Region (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 88.
- Jäch, M.A. & Skale, A. (2015) Family Hydraenidae. Catalogue of Palaearctic Coleoptera. Volume 1, Revised and updated edition. Hydrophiloidea–Staphylinoidea (ed. by I. Löbl and D. Löbl), pp. 130–162. Brill, Leiden.
- Jäch, M.A., Ribera, I. & Aguilera, P. (1998) Revision of the Palearctic species of the genus *Ochthebius* Leach XXI (Coleoptera: Hydraenidae) XV. Additional notes on the *lobicollis* group. *Aquatic Insects*, **20**, 197–202.
- Jäch, M.A., Beutel, R.G., Delgado, J.A. & Díaz, J.A. (2016) 14.1 Hydraenidae Mulsant, 1844. *Handbook of Zoology. Arthropoda: Insecta. Coleoptera, Beetles: Morphology and Systematics*, 2nd edn, Vol. 1 (ed. by R.G. Beutel and R.A.B. Leschen), pp. 316–345. Walter de Gruyter, Berlin.
- Janssens, E. (1967) Sur quelques Hydraenidae de la faune Australe. Bulletin de l'Institut Royal Des Sciences Naturelles de Belgique, 43, 1–13.
- Jeannel, R. (1940) Coléoptères. Croisiere du Bougainville aux iles australes françaises (ed. by R. Jeannel), pp. 63–202. Mémoires du Muséum National d'histoire naturelle, nouvelle series, Paris.
- Katoh, K., Asimenos, G. & Toh, H. (2009) Multiple alignment of DNA sequences with MAFFT. *Methods in Molecular Biology*, 537, 39–64.
- Kearse, M., Moir, R., Wilson, A. et al. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics*, 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199.
- Knisch, A. (1924) Neue neotropische Palpicornier (Col. Hydrophilidae. - Op. 16.). Wiener Entomologische Zeitung, 41, 114–140.
- Kuwert, A. (1887) Übersicht der europäischen Ochthebius-Arten. Deutsche Entomologische Zeitschrift, 31, 369–401.
- Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012) Partition-Finder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology and Evolution*, 29, 1695–1701. https://doi.org/10.1093/molbev/mss020.
- Lawrence, J.F., Ślipiński, A., Seago, A.E., Thayer, M.K., Newton, A.F. & Marvaldi, A.E. (2011) Phylogeny of the Coleoptera based on morphological characters of adults and larvae. *Annales Zoologici*, 61, 1–217. https://doi.org/10.3161/000345411X576725.
- Leach, W.E. (1815) Entomology. *The Edinburgh Encyclopaedia* (ed. by D. Brewster), pp. 57–172. Balfour, Edinburgh.
- McIntyre, S.R.N., Lineweaver, C.H., Groves, C.P. & Chopra, A. (2017) Global biogeography since Pangaea. *Proceedings of the Royal Society B, Biological Sciences*, 284, 20170716. https://doi.org/10.1098/rspb .2017.0716.
- McKenna, D.D., Wild, A.L., Kanda, K. et al. (2015) The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Systematic Entomology, 40, 835–880. https://doi.org/10.1111/syen.12132.

16 A. Villastrigo et al.

- Millán, A., Velasco, J., Gutiérrez-Cánovas, C., Arribas, P., Picazo, F., Sánchez-Fernández, D. & Abellán, P. (2011) Mediterranean saline streams in Southeast Spain: what do we know? *Journal of Arid Environments*, **75**, 1352–1359. https://doi.org/10.1016/j.jaridenv.2010.12 .010.
- Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. *Proceedings of the Gateway Computing Environments Workshop (GCE)*. New Orleans, Louisiana, 14 November 2010, pp. 1–8.
- Orchymont, A. d' (1938) Voyage de M. E. Aubert de la Rue aux iles Kerguelen: Palpicornia. *Revue française d'entomologie*, 5, 78–91.
- Orchymont, A. d' (1943) Faune du Nord-Est Bresilien (récoltes du Dr. O. Schubart). Palpicornia. Mémoires du Musée royal d'Histoire naturelle de Belgique (2), 28, 1–85.
- Orchymont, A. d' (1948) Mission scientifique de l'Omo. Coleoptera XV. Hydraenidae. Mémoires du Muséum national d'histoire naturelle, Paris (nouvelle series), 27, 29–62.
- Papadopoulou, A., Anastasiou, I. & Vogler, A.P. (2010) Revisiting the insect mitochondrial molecular clock: the mid-aegean trench calibration. *Molecular Biology and Evolution*, 27, 1659–1672. https://doi .org/10.1093/molbev/msq051.
- Perkins, P.D. (1980) Aquatic beetles of the family Hydraenidae in the western hemisphere: classification, biogeography and inferred phylogeny. *Quaestiones Entomologicae*, 16, 3–554.
- Perkins, P.D. (1981) Hughleechia giulianii, a new genus and new species of intertidal beetle from Australia (Coleoptera: Hydraenidae). Pan-Pacific Entomologist, 57, 295–302.
- Perkins, P.D. (1997) Life on the effective bubble: exocrine secretion delivery systems (ESDS) and the evolution and classification of beetles in the family Hydraenidae (Insecta: Coleoptera). Annals of the Carnegie Museum, 66, 89–207.
- Perkins, P.D. (1998) New Nepalese Protochthebius, and comparative notes on the genus (Coleoptera: Hydraenidae). Oriental Insects, 32, 279–285. https://doi.org/10.1080/00305316.1998.10433780.
- Perkins, P.D. (2004a) A revision of the Australian endemic humicolous beetle genus *Tympallopatrum* Perkins (Coleoptera: Hydraenidae). *Zootaxa*, **672**, 1–16.
- Perkins, P.D. (2004b) A revision of the Australian endemic water beetle genus *Gymnanthelius* Perkins (Coleoptera: Hydraenidae). *Zootaxa*, 585, 1–39.
- Perkins, P.D. (2005) A revision of the water beetle genus *Gymnochthebius* Orchymont (Coleoptera: Hydraenidae) for Australia and Papua New Guinea. *Zootaxa*, **1024**, 161.
- Perkins, P.D. (2006) A revision of the Australian humicolous and hygropetric water beetle genus *Tympanogaster* Perkins, and comparative morphology of the Meropathina (Coleoptera: Hydraenidae). *Zootaxa*, **1346**, 1–396.
- Perkins, P.D. (2007a) A revision of the Australian intertidal water beetle genus *Hughleechia* Perkins (Coleoptera: Hydraenidae). *Zootaxa*, 1527, 17–29.
- Perkins, P.D. (2007b) A review of the coastal marsh water beetle Ochthebius queenslandicus Hansen (Coleoptera: Hydraenidae). Zootaxa, 1625, 35–42.
- Perkins, P.D. (2011) New species and new collection records of aquatic beetles in the genus *Ochthebius* Leach from southern Africa (Coleoptera: Hydraenidae). *Zootaxa*, 3093, 1–34.
- Perkins, P.D. (2017) Hydraenidae of Madagascar (Insecta: Coleoptera). Zootaxa, 4342, 1–264.
- Perkins, P.D. (2018) A new genus and new species of Meropathina from Lord Howe Island (Coleoptera: Hydraenidae). Zootaxa, 4444, 409–420.
- Perkins, P.D. & Balfour-Browne, J. (1994) A contribution to the taxonomy of aquatic and humicolous beetles of the family Hydraenidae

in Southern Africa. *Fieldiana Zoology*, **77**, 1–159. https://doi.org/10 .1017/CBO9781107415324.004.

- Ponomarenko, A.G. & Prokin, A.A. (2015) Review of paleontological data on the evolution of aquatic beetles (Coleoptera). *Paleontological Journal*, 49, 1383–1412.
- Reitter, E. (1886) Über die Ochthebius-Arten aus der Gruppe des O. Lejolisii Muls. Wiener Entomologische Zeitung, 5, 156–157.
- Rey, C. (1886) Histoire naturelle des coléoptères de France (suite). Annales de la Société Linnéenne de Lyon, 32, 1–187.
- Ribera, I., Castro, A. & Hernando, C. (2010) Ochthebius (Enicocerus) aguilerai sp.n. from central Spain, with a molecular phylogeny of the Western Palaearctic species of Enicocerus (Coleoptera, Hydraenidae). Zootaxa, 2351, 1–13.
- Rudoy, A., Beutel, R.G. & Ribera, I. (2016) Evolution of the male genitalia in the genus *Limnebius* Leach, 1815 (Coleoptera, Hydraenidae). *Zoological Journal of the Linnean Society*, **178**, 97–127. https://doi .org/10.1111/z0j.12402.
- Sabatelli, S., Audisio, P., Antonini, G., Solano, E., Martinoli, A. & Trizzino, M. (2016) Molecular ecology and phylogenetics of the water beetle genus *Ochthebius* revealed multiple independent shifts to marine rockpools lifestyle. *Zoologica Scripta*, 45, 175–186. https:// doi.org/10.1111/zsc.12141.
- Sahlberg, J. (1900) Coleoptera mediterranea et rosso-asiatica nova et minus cognita. Öfversigt af Finska Vetenskaps-Societetens FÖrhandlingar, 42, 174–208.
- Skale, A. & Jäch, M.A. (2009) Revision of the Palearctic species of the genus Ochthebius Leach (Insecta: Coleoptera: Hydraenidae) XXVI. A new species of Enicocerus Stephens from Iran. Annalen des Naturhistorischen Museums in Wien, Serie B, 110, 51–56.
- Stamatakis, A. (2006) RAxML-VI-HPC: Maximum Likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics*, 22, 2688–2690.
- Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57, 758–771.
- Toussaint, E.F.A., Seidel, M., Arriaga-Varela, E. *et al.* (2017) The peril of dating beetles. *Systematic Entomology*, **42**, 1–10.
- Trizzino, M., Jäch, M.A., Audisio, P., Alonso, R. & Ribera, I. (2013) A molecular phylogeny of the cosmopolitan hyperdiverse genus *Hydraena* Kugelann (Coleoptera, Hydraenidae). *Systematic Entomol*ogy, **38**, 192–208. https://doi.org/10.1111/j.1365-3113.2012.00654 .x.
- Urbanelli, S. & Porretta, D. (2008) Evidence of reinforcement of premating isolation between two species of the genus *Ochthebius* (Coleoptera: Hydraenidae). *Evolution*, **62**, 1520–1527. https://doi .org/10.1111/j.1558-5646.2008.00381.x.
- Yamamoto, S., Jäch, M.A. & Takahashi, Y. (2017) Discovery of the first hydraenid beetle in amber, with description of a new genus and species (Coleoptera: Staphylinoidea: Hydraenidae). *Cretaceous Research*, **78**, 27–33.
- Yoshitomi, H. & Satô, M. (2001) Discovery of the genus Ochthebius Leach from the Ryukyu Islands, with description of a new species (Coleoptera: Hydraenidae). Koleopterologische Rundschau, 71, 105–110.
- Zhang, S.-Q., Che, L.-H., Li, Y., Liang, D., Pang, H., Ślipiński, A. & Zhang, P. (2018) Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. *Nature Communications*, 9, 205. https://doi.org/10.1038/s41467-017-02644-4.

Accepted 20 June 2018

A molecular phylogeny of the tribe Ochthebiini (Coleoptera, Hydraenidae, Ochthebiinae)

ADRIÁN VILLASTRIGO, MANFRED A. JÄCH, ANABELA CARDOSO, LUIS F. VALLADARES, and IGNACIO RIBERA

Supporting Information

Table S1: Checklist of the species of Ochthebiini, with the current (following Jäch & Skale, 2015 and Jäch *et al.*, 2016) and new classifications. In bold, type species. phyl, species included in the phylogeny (in brackets, species for which the sequenced specimen was a female). Distribution: PAL, Palaearctic; AFR, Afrotropical; AUR, Australian; NAR, Nearctic; NTR, Neotropical; ORR, Oriental; ANR, Antarctic. In brackets, specimens considered to have a Palaearctic distribution in Jäch & Skale (2015), but including the Oriental or Afrotropical Regions in Hansen (1998).

Table S2: Current classification of Ochthebiini, with synonymies and type species (following Jäch & Skale, 2015 and Jäch *et al.*, 2016). In bold, taxa included in the phylogeny.

Table S3: List of material used in the molecular phylogeny, including voucher numbers, accession numbers of the sequences and locality data. In bold, newly obtained sequences.

Table S4: (A) primers used for DNA amplification and sequencing reactions; (B) Typical conditions for the polymerase chain reaction.

Fig. S1: Majority rule consensus tree obtained with BEAST for the phylogeny of Ochthebiini with the best partition models. Numbers in nodes, posterior probabilities.

Fig. S2: Phylogeny obtained with RAxML, including current Ochthebiini classification. Numbers in nodes, bootstrap support values.

Fig. S3: Phylogeny obtained with RAxML with the nuclear genes only. Numbers in nodes, bootstrap support values.

No leaversification No leavers	snecies proup	suecies Isu	ubspecies author	taxonomic act original genus	current classification	uhenus lohs	Inthul: PAI AFR	ALLE NAR NTR ORR AND	~
1 Meropathus		aucklandicus	Ordish, 1971	Meropathus	Meropathus			x	
2 Meropathus		campbellensis	Brookes, 1951	Meropathus	Meropathus			×	
3 Meropathus		chuni	Enderlein, 1901	Meropathus	Meropathus			× ,	Т
4 Meropatrus 5 Meronathus		Jonnsi	Ordisn, 1971 Deape 1933	Ochthahine	Meropathus				Т
6 Meronathus		randi	leannel. 1953	Meronathus	Meronathus		*		Т
7 Meropathus		vectis	Perkins, 1980	Meropathus	Meropathus			×	Г
8 Meropathus		zelandicus	Ordish, 1984	Meropathus	Meropathus		1	×	П
9 Ochthebius Angiochthebius		jensenhaarupi	Knisch, 1924	Ochthebius	Gymnochthebius			* :	Т
11 Ochthehius Angoortucedus Angiochthehius		nlecintvaus	Perkins, 1980 Perkins, 1980	Gymnochthe blus	Gumochthehius		-	< >	Т
12 Ochthebius Asiobates	bicolon	abeillei	Guille beau, 1896	Ochthobius	Ochthebius	Asiobates	×	:	Т
13 Ochthebius Asiobates	bicolon	amplicollis	Champion, 1925	Ochthebius	Ochthebius	Asiobates	×		Г
14 Ochthebius Asiobates	bicolon	annae	Ferro, 1979	Ochthebius	Ochthebius	Asiobates	×		П
15 Ochthebius Asiobates	bicolon	arator	Ertorun & Jäch, 2014	Ochthebius	Ochthebius	Asiobates	1 X		
16 Ochthebius Asiobates	bicolon	atricapillus	Reitter, 1901	Ochthebius	Ochthebius	Asiobates	×		
17 Ochthebius Asiobates	bicolon	auriculatus	Rey, 1886	Ochthobius	Ochthebius	Asiobates	1 X		Т
18 Ochthebius Asiobates	bicolon	avdati	Delgado & Jäch, 2007	Ochthebius	Ochthebius	Asiobates	× :		Т
20 Ochthobius AsioDates	bicolon	binen	Kuwert, 1887	Ochthobius	Ochthobius	asio dates	T +		Т
21 Ochthebius Asiouates	hirolon	honnairei	Guille hear 1896	Ochthohits	Ochthehius	Asiobates	< × ×		Т
22 Ochthebius Asiobates	bicolon	cantabricus	Balfour-Browne. 1979	Ochthebius	Ochthebius	Asiobates	< ×		Т
23 Ochthebius Asiobates	bicolon	corcyraeus	Jach, 1990	Ochthebius	Ochthebius	Asiobates	. ×		T
24 Ochthebius Asiobates	bicolon	corsicus	Sainte-Claire Deville, 1908	Ochthebius	Ochthebius	Asiobates	11 X		Г
25 Ochthebius Asiobates	bicolon	crenulatus	Mulsant & Rey, 1850	Ochthebius	Ochthebius	Asiobates	1 X		
26 Ochthebius Asiobates	bicolon	cyprensis	Kuwert, 1890	Ochthebius	Ochthebius	Asiobates	×		Т
27 Ochthebius Asiobates	bicolon	cyrenaeus	Ferro, 1985	Ochthebius	Ochthebius	Asiobates	×		Т
28 Ochthebius Asiobates	bicolon	czwa linae	Kuwert, 1887	Ochthebius	Ochthebius	Asiobates	×		Т
29 Ochthobius Asionates	bicolon	depressus	SanDerg, 1900	Ochthobius	Ochthobius	asio dates	× >		Т
30 Octimedius Asiobates	hicolon	dilucidus	Dichimont 1040	Ochtholius	Ochthebius Ochthebius	450 Udtes	~ ~		Т
31 Octifications Asionates 32 Octifications Asionates	hirolon	ferganensis	Dicitymont, 1340	Ochthebus	Ochthehius	Asiobates	< >		Т
33 Ochthebius Asiobates	bicolon	ferroi	Fresheda, Lagar & Hernando, 1993	Ochthebius	Ochthebius	Asiobates	1 X		T
34 Ochthebius Asiobates	bicolon	figueroi	Garrido, Valladares & Régil, 1992	Ochthebius	Ochthebius	Asiobates	1 X		1
35 Ochthebius Asiobates	bicolon	flagellifer	Jäch, 2003	Ochthebius	Ochthebius	Asiobates	X		
36 Ochthebius Asiobates	bicolon	gagliardii	Orchymont, 1940	Ochthebius	Ochthebius	Asiobates	1 X		
37 Ochthebius Asiobates	bicolon	haberfelneri	Reitter, 1890	Ochthebius	Ochthebius	Asiobates	×	_	Т
38 Ochthebius Asiobates	DICOION bicolon	haeli	Ferro, 1983	Ochthebius	Ochthebius	Asiobates	* >		Т
AD Orthobius Asioustes	hicolon	huhlamaiorie	Corro 1006	Ochtholia Ochtholia	Ochthobius Ochthobius	Asiobates Asiobates	4		Т
41 Ochthehius Asiouates	hicolon	immaculatus	Rieft 1908	Ochthebits	Ochthehius	Asinhates	× ×		Т
42 Ochthebius Asiobates	bicolon	impressipennis	Rey, 1886	Ochthobius	Ochthebius	Asiobates	× ×		Г
43 Ochthebius Asiobates	bicolon	irenae	Ribera & Millán, 1999	Ochthebius	Ochthebius	Asiobates	11 X		
44 Ochthebius Asiobates	bicolon	italicus	Jäch, 1990	Ochthebius	Ochthebius	Asiobates	×		Г
45 Ochthebius Asiobates	bicolon	jaimei	Delgado & Jách, 2007	Ochthebius	Ochthebius	Asiobates	1 X		П
46 Ochthebius Asiobates	bicolon	kaninensis	Poppius, 1909	Ochthebius	Ochthebius	Asiobates	×		Т
47 Ochthebius Asiobates	bicolon	khnzoriani	Janssens, 1974	Ochthebius	Ochthebius	Asiobates	× ;		Т
48 Ochthebius Asiobates	Dicolon bisedee	kiesenwetteri	Kuwert, 1887	Ochtholius	Ochthebius	Asiobates	×		Т
50 Ochthehius Asiouates	hirolon	laticollic	Pankow 1986	Octiments	Ochthehius	Asionates	< >		Т
51 Ochthebius Asiobates	bicolon	lederi	Jäch, 1990	Ochthebius	Ochthebius	Asiobates			Т
52 Ochthebius Asiobates	bicolon	lenkoranus	Reitter, 1885	Ochthebius	Ochthebius	Asiobates	1 X		Г
53 Ochthebius Asiobates	bicolon	limbicollis	Reitter, 1885	Ochthebius	Ochthebius	Asiobates	×		П
54 Ochthebius Asiobates	bicolon	maculatus	Reiche, 1872	Ochtheblus	Ochthebius	Asiobates	×		Т
55 Ochthebius Asiobates	bicolon	montanus	Frivaldszky, 1881	Ochthebius	Ochthebius	Asiobates	1 ×		Т
56 Ochthebius Asiobates	bicolon	monychus	Orchymont, 1941	Ochthebius	Ochthebius	Asiobates	×		Т
5/ UCITITEDIUS ASIOUATES	hicolon	naxianus	Iterlişted, 1905 Isch Vasanoğlu & Erman 2003	AskUbites Orehthiokiur	Ochthebius	45/0 Dates	< >		Т
59 Ochthebius Asiobates	bicolon	olicinium	Jach, Resepuedu & Littleri, 2003	Ochthebius	Ochthebius	Asiobates			Т
60 Ochthebius Asiobates	bicolon	opacus	Baudi, 1882	Ochthebius	Ochthebius	Asiobates	1 X		Г
61 Ochthebius Asiobates	bicolon	peregrinus	Orchymont, 1941	Ochthebius	Ochthebius	Asiobates	1 X		
62 Ochthebius Asiobates	bicolon	perkinsi	Pankow, 1986	Ochthebius	Ochthebius	Asiobates	×		
63 Ochthebius Asiobates	bicolon	pui	Perkins, 1979	Ochthebius	Ochthebius	Asiobates	* >		Т
54 Ochthobius Asiobates	bicoton	r Ni Del II	Jach, 1990	Ochrebius	Ochthebius Ochthebius	asio dates	× >		Т
66 Orhthahius Asiobates	bicolon	sardus etriatue	Lach, 1990 Castalnau, 1840	Ochtrebus	Ochthabius	Asio bates	× ^		Т
67 Ochthebius Asiobates	bicolon	stygialis	Orchymont, 1937	Ochthebius	Ochthebius	Asiobates	< < T		Т
68 Ochthebius Asiobates	bicolon	subopacus	Reitter, 1885	Ochthebius	Ochthebius	Asiobates	×		П
69 Ochthebius Asiobates	bicolon	tadilatus	Jäch, 1990	Ochthebius	Ochthebius	Asiobates	×;	-	Т
70 Ochthebius Asiobates 71 Arthebius Asiobates	bicolon	thraciae	Jäch, 1990 Iäch 1 990	Ochthebius	Ochthebius	Asio bates		-	Т
72 Orththehius Asiobates	minimus	adventicius	Jacci, 1990	Ochthehius	Ochthebius	Acinhatac		-	Т
			And a firme		OUT IN THE OWNER			-	٦

Table 31: Checklist of the species of Octimentiani, with the current (folkwing Jach & Stale, 2015 and Jach rat., 2016) and have classifications. In bold, type species, phyl, species included in the phylogeny (in brackets, species for which the sequenced specimen was a formable). Distribution: PML, Phalearctic ARF, Africtoripical NuR, Nearctic, NTR, Neertopical ORB, Orlental, ANR, Artarctic, In backets, specimens considered to have a Palaearctic distribution in Jach & Stale, 2015, but including the Orienal or Africtoripical Regions in Hansen (1998).

Supplements

73 Ochthebius Asiobates	minimus aene	ns	Ste	phens, 1835		Ochthebius	Ochthebius	Asiobates		1 X				
74 Ochthebius Asiobates	minimus akbu	Iti	Jăc	h, Kasapoğlu & Erman, 2003		Ochthebius	Ochthebius	Asiobates		× :				
75 Ochthebius Asiobates 76 Ochthebius Asiobates	minimus alpin minimus ande	us sinii andre	inii Ré	iștea, 1979 rim hart 1 005		Homalochthebius Ochthebius	Ochthebius	Asiobates Acinhates			*		1	T
77 Ochthebius Asiobates	minimus andre	einii andris	scus	hymont, 1948		Ochthebius	Ochthebius	Asiobates		4	< ×			
78 Ochthebius Asiobates	minimus andre	einii andro	osthenus On	thymont, 1948	-	Ochthebius	Ochthebius	Asiobates			×			
79 Ochthebius Asiobates	minimus andro	onius	ō	hymont, 1948	-	Ochthebius	Ochthebius	Asiobates		1	×	1		
80 Ochthebius Asiobates	minimus apad	lic	49	KINS, 1980		Ochthebius	Ochthabius	Asio Dates Acinhates				× × ×		Ţ
82 Ochthebius Asiobates	minimus brevi	pennis	Pe	kins, 1980		Ochthebius	Ochthebius	Asiobates				×		
83 Ochthebius Asiobates	minimus brow	ic .	Pe	kins, 1980		Ochthebius	Ochthebius	Asiobates			;	×		
85 Ochthahius Asiobates 85 Ochthahius Asiohates	minimus bupu	nctus	9 0	Kins, 2011 humoot 1975		Ochthebius	Ochthebius	Asiobates Acinhates			×		*	
86 Ochthebius Asiobates	minimus	collis	5 ja	onte. 1850		Ochthebius	Ochthebius	Asiobates				×	<	
87 Ochthebius Asiobates	minimus discr	etus	le(onte, 1878		Ochthebius	Ochthebius	Asiobates		1		×		
88 Ochthebius Asiobates	minimus flavip	es	Da	la Torre, 1877		Ochthebius	Ochthebius	Asiobates		1 ×				
89 Ochthebius Asiobates	minimus form	osanus	Jäc	h, 1998	-	Ochthebius	Ochthebius	Asiobates		×				
90 Ochthebius Asiobates	minimus furca	tus	hd	1958		Ochthebius	Ochthebius	Asiobates		× >			-	
92 Ochthehius Asionates	minimus hiber	DIIS	Per	1, 1963 kins: 1980		Ochthebius	Ochthehius	Asinhates		<		×		
92 Ochthebius Asiouates	minimus hokk	airlensis		h 1998		Ochthehius	Ochthehius	Asinhates		×		<		
94 Ochthebius Asiobates	minimus hung	aricus	Ē	drödv-Younga. 1967		Ochthebius	Ochthebius	Asiobates		< ×				
95 Ochthebius Asiobates	minimus lurug	osus	Jäc	h, 1998		Ochthebius	Ochthebius	Asiobates		×				
96 Ochthebius Asiobates	minimus mexi	canus	Pe	kins, 1980	-	Ochthebius	Ochthebius	Asiobates				×		
97 Ochthebius Asiobates	minimus mimi	cus	Brc	wn, 1933	-	Ochthebius	Ochthebius	Asiobates				×		
98 Ochthebius Asiobates	minimus mine	rvius miner	vius On	hymont, 1940		Ochthebius	Ochthebius	Asiobates		× :				
99 Ochthebius Asiobates	minimus mine	rvius seme	chonitis Jäc	h, 1998		Ochthebius	Ochthebius	Asiobates		× >				
01 Ochthebius Asiouates	minimus mom	icola	č	humont. 1948		Ochthehius	Ochthehius	Asinhates		<	*		ļ	
02 Ochthebius Asiobates	minimus	ginta	Jäc	h, 1998		Ochthebius	Ochthebius	Asiobates		×	:			
03 Ochthebius Asiobates	minimus orbu:	2	Pei	kins, 1980		Ochthebius	Ochthebius	Asiobates				×		
04 Ochthebius Asiobates	minimus otava	lensis	An	Jerson, 1983		Ochthebius	Ochthebius	Asiobates				×		
05 Ochthebius Asiobates	minimus perdi	urus	Re	tter, 1899		Ochthebius	Ochthebius	Asiobates		× >				
20 OctimeDius Asiobates 17 Ochthehius Asiobates	minimus piigir minimus nutro	amensis	Bla	n, 1990 tchlev 1910		Ochthehius	Ochthehius	Asinhates Asinhates		<		×		
08 Ochthebius Asiobates	minimus regin	harti	w.	sch, 1924		Ochthebius	Ochthebius	Asiobates			×			
39 Ochthebius Asiobates	minimus remo	tus	Re	tter, 1885	-	Ochthebius	Ochthebius	Asiobates		1				
10 Ochthebius Asiobates	minimus retici	locostus	Per	kins, 1980		Ochthebius	Ochthebius	Asiobates		,		×		
12 Ochthehius Asionates	minimus rugu	usus	V.A.	lidsturi, 1007 Jadares & Jäch, 2008		Ochthebius	Ochthehius	Asinhates		< ×				
13 Ochthebius Asiobates	minimus simili	s	Shi	rp, 1882		Ochthebius	Ochthebius	Asiobates		4		×		
14 Ochthebius Asiobates	minimus unim	aculatus	h	1958		Ochthebius	Ochthebius	Asiobates		×				
15 Ochthebius Asiobates	minimus yunn	anensis	o	hymont, 1925		Ochthebius	Ochthebius	Asiobates		×				
16 Ochthebius Asiobates	puncticollis angu	aridus	Pe	kins, 1980		Ochthebius	Ochthebius	Asiobates				×		
17 Ochthebius Asiobates	puncticollis leech	- 3	NC NC	od & Perkins, 1978		Ochthebius	Ochthebius Ochthebius	Asiobates				× >		
18 Ochthabius Asiobates	puncticollis mart	DI Picolie	141	, 1919 Souta 1853		Ochthabius Ochthabius	Ochthebius Ochthebiur	Asiobates		-		> × >		
20 Ochthebius Aulacochthebius	alien	us and	50	thymont, 1929		Ochthebius	Aulacochthebius			4	×	<		
21 Ochthebius Aulacochthebius	amri	i,	W	khan, 2004		Ochthebius	Ochthebius	Ochthebius	possibly a synonym of O. asiaticus		:		×	
22 Ochthebius Aulacochthebius	asiati	cus	ō	hymont, 1929		Ochthebius	Aulacochthebius						×	
23 Ochthebius Aulacochthebius	conti	nentalis	5	hymont, 1929		Ochthebius	Aulacochthebius				×		,	
24 UCITITIED IUS AUBCOCITIED IUS 25 Ochthahius 25 Ochthahius	dens	LS Phile	5 W	nymont, 1929 Icant 1844		Ochthebius	Aulacochthebius			-	*		×	
26 Ochthebius Autocontreolus	huna	nensis	ā	1958		Ochthebius	Aulacochthebius			< ×	<			
27 Ochthebius Aulacochthebius	libert	arius	Ag	ilera, Ribera & Hernando, 1998	comb.n.	Aulacochthebius	Aulacochthebius			1 X				
28 Ochthebius Aulacochthebius	mani	purensis	ō	hymont, 1929		Ochthebius	Aulacochthebius			2			×	
20 Ochthebius Aulacochthebius 30 Ochthebius Aulacochthebius	Derla	evis	Pe	kins. 2017	comb.n.	Ochtreature Aulacochthebius	Aulacochthebius			< 1 F	×			
31 Ochthebius Aulacochthebius	plicic	ollis	Fai	maire, 1898		Ochthebius	Aulacochthebius				×			
32 Ochthebius Aulacochthebius	tenui	punctus	Ré	çim bart, 1906		Ochthebius	Aulacochthebius				×			
33 Ochthebius Cobalius	adria	ticus adriat	ticus Re	tter, 1886		Ochthebius	Ochthebius	Ochthebius		× >				
34 Ochthebius Coballus 35 Ochthebius Cobalius	adria	ticus more:	alis Rei	then, 1929 then 1886		Ochthebius	Ochthebius	Ochthebius		<				
36 Ochthebius Cobalius	algice	ola	Wc	llaston, 1871		Ochthebius	Ochthebius	Ochthebius		×				
37 Ochthebius Cobalius	balfo	urbrownei	Jäc	h, 1989		Ochthebius	Ochthebius	Ochthebius			×			
38 Ochthebius Cobalius	biltor	-	140	h & Delgado, 2017		Ochthebius	Ochthebius	Cobalius		× >				
40 Ochthebius Cobalius	frevi	-	opr G	n, 1969 hymont, 1940		Ochthebius	Ochthebius	Ochthebius		× ×				
41 Ochthebius Cobalius	lejoli	si	M	Isant & Rey, 1861		Ochthebius	Ochthebius	Ochthebius		1 ×				
42 Ochthebius Cobalius	serra	tus	Ro	enhauer, 1856	-	Ochthebius	Ochthebius	Ochthebius		1				
43 Ochthebius Cobalius	Subir	teger	W	Isant & Rey, 1861		Ochthebius Ochthebius	Ochthebius Ochthebius	Ochthebius Feisesere		× >				
45 Ochthebius Enicocerus	agui	icus	26	era, casulo et rierriariau), 2010 hymont, 1941		Ochthebius	Ochthebius	Enicocerus		< ×				
46 Ochthebius Enicocerus	anato	olicus	Jar	ssens, 1963	-	Ochthebius	Ochthebius	Enicocerus		×				
47 Ochthebius Enicocerus	ange	linii	Fer	ro, 2008		Ochthebius	Ochthebius	Enicocerus		~ ~				
49 Ochthabius Enicocerus 49 Ochthabius Enicocerus	COIVE	ranus	- He	ro, 1979 Datter 1990		Ochthehius	Ochthehius	Enicocerus		× ×				
50 Ochthebius Enicocerus	exso	Iptus	Ge	mar, 1824		Ochthebius	Ochthebius	Enicocerus		× ×			F	
		-												

× × × × × ×
• • •
Profession and and
Out the shire
Contraction of
_
la Torre, 1877 glbauer, 1901
1-1-0
montenegrinus
ц.
nicocerus

																																																											_		
								_								>	<		×																																										×
1 X	: ×	×	×	×	××	. ×	1 X	1 *	1 × ×	×	1 X	1 X	1 X	×	× >	<	>	< ×	1	×	×	×	T		1 X	1 X	1	* >	<	1 X	1 X	1 X	× >	~ ~	< ×	1 X		< ×	1 X	×	×	× ×	1 X	×	11 X	1 X	×	×	11 X	< ×	(1) X	1 X	11 ·	1 ×	1 ×	1 X	× :	7 7 7		×	×
	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthabius Ochthabius	Ochthahius Ochthahius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthahius Ochthahius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthabius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthabius	Ochthebius	Ochthebius	Ochthebius	Ochthebius		Ochthebius	Ochthebius Ochthebius
Micragasma	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthablus Ochthablus	Ochthabius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthobius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthehius	Ochthebius	Ochthebius	Ochthebius Ochthabius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthabius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthobius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthabius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	O de televitorio	Ochthebius	Ochthebius
Micragasma	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthabius Ochthabius	Ochthabius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Uchthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Uchthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Hymenodes	Humenodes	Ochthebius	Ochthebius	Ochthobius Hyme nordes	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthabius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthabius	Ochthebius	Ochthebius	Ochthebius	Ochthebius		Ochthebius	Ochthebius Ochthebius
			-										-							-																				-							-					-								_	
berg, 1900	. 1920	ymont, 1937	1992	berg, 1903	2002	& Deleado. 2010	& Castro, 1999	our-Browne, 1979	& Delgado, 2014	our-Browne, 1951	1885	1991	& Delgado, 2014	1991	p, 1887	Igillollit, 1940	0.1086	1991	& Delgado, 2017	1991	1991	berg, 1900	0, 1984	or 1965 sens. 1965	nhauer, 1856	rimhoff, 1924	0, 1985	1991	berg. 1900	nar,1824	& Delgado, 2014	& Delgado, 2010	tea, 1988 • ****	1991	our-Browne, 1951	ado & Jäch, 2009	1886	1991	0, 1985	1991	ado & Jäch, 2009	ert, 1887 ado & läch, 2009	ert, 1887	0, 1982	ane, 1965 ert 1887	iymont, 1942	1991	auer, 1986	0, 1986 2002	mpion, 1920	, 1915	. Ribera & Aguilera, 1998	1994	1990	atton. 1864	1885	1990	0. 1984	4000	naire, 1883	maire, 1883 mbart, 1903
Sahl	andraei Breit	explanatus Orch	Jäch	Sahl	Jach	Jäch	Jäch	Balfo	Jäch	Balfo	Rey,	Jäch	Jäch	Jäch	Shar	DIC	Ears	18ch	Jäch	Jäch	Jäch	Sahl	baeticus Ferre	lans	Rose	Peye	Ferr	Jach	Sahl	Gem	Jäch	Jäch	lenis	lanic	Balfo	Delg	Rey,	läch	Ferre	Jäch	Delg	Kuw De la	Kuw	Ferr	Naki	Orch	Jäch	Heb	Fern	Char	Fiori	Jäch	Jäch.	Mude	Ilow	Rey,	Jäch	Ferre	To las	Lair	Régi
paradoxus	andraei	andraei	caspius	cupricollis	ine legans madli	pate rgaze llae	andalusicus	anxifer	burjkhalifa	cameroni	dentifer	depre ssionis	despoliatus	falcatus	fausti	hacmanida c	Parasui Parasui	lacustatta	loulae	praetermissus	recurvatus	sculpturatus	tacapasensis +acapasensis	thermalis	corrugatus	gauthieri	perpusillus	argnanicus	elicae	foveolatus	hajeki	harteni	hellenicus	indicus	innexus	magnannulatus	marginalis	medius	merinidicus	mutatus	pakistanicus	palliguius narvannulatus	pedicularius	pudilaceris	satoi elemine	sidanus	speculator	uskubensis	virgula	kosiensis	basilicatus	caesaraugustae	delga doi	eyrei fossulatus	lapidicola	lobicollis	mauretanicus	tivelunus	scole tions	verutinas	alluaudi
	andraei	andraei	andraei	andraei	andraei	andraei	atriceps	atriceps	atriceps	atriceps	atriceps	atriceps	atriceps	atriceps	atriceps	atriceps	atricans	atriceps	atriceps	atriceps	atriceps	atriceps	atriceps	atriceps	corrugatus	corrugatus	corrugatus	foveolatus fourceletus	foreolatus	foveolatus	foveolatus	foveolatus	foveolatus	foreolatus	foveolatus	foveolatus	foveolatus forreolatus	foreolatus	foveolatus	foveolatus	foveolatus	foreolatus	foveolatus	foveolatus	foreolatus formalatus	foveolatus	foveolatus	foveolatus	foreolatus	kosiensis kosiensis	lobicollis	lobicollis	lobicol lis	In bicollis	lo bicol lis	lobicollis	lobicollis	labical lis	Letter with a	IO DI COI II S	marinus
Aicragasma	chthebius	chthebius	chthebius	hchthebius	chthebius chthebius	chthebius	chthebius	ochthebius stateshing	chthebius	chthebius	chthebius	Achthebius	hchthebius	Ichthebius	chthebius chthohius	chthebius	chthahius	chthebius	chthebius	chthebius	chthebius	hchthebius	onthebius obthobius	chthebius	chthebius	chthebius	hchthebius	Achthebius shitkehius	chthebius	chthebius	chthebius	Achthebius	Achthebius	chthehius	chthebius	chthebius	Achthebius chthebius	chthebius	chthebius	chthebius	hchthebius	chthehius	chthebius	chthebius	Achthebius chthebius	chthebius	chthebius	hchthebius	chthebius chthobius	chthebius	chthebius	chthebius	Achthebius	of the birds	chthebius	chthebius	ochthebius	chthebius	altholding	cititientins	chthebius
chthebius N	hthebius 0	hthebius G	chthebius C	chthebius C	chthebius C	chthebius 0	chthebius G	chthebius C	chthebius 0	chthebius G	chthebius G	chthebius C	chthebius C	chthebius C	thebius C	hthehine O	hthehius O	hthebius 0	hthebius G	thebius C	chthebius C	Chthebius C	hthebius C	chthebius 0	chthebius 0	chthebius C	Chthebius C	chthebius C	chthehius O	chthebius 0	thebius C	chthebius C	thebius C	hthehine O	hthebius 0	hthebius C	hthebius C	hthebius	hthebius 0	hthebius C	hthebius C	hthehius C	hthebius 0	hthebius C	hthebius C	Chthebius 0	thebius G	Chthebius C	hthebius C	hthebius 0	chthebius G	chthebius C	hthebius C	hthebius C	hthebius 0	hthebius G	thebius C	chthebius O	A MARINE OF	urienus 0	chthebius C

Ththebius Ththebius Chthebius Chthebius Chthebius Chthebius Chthebius Chthebius Chthebius Chthebius	Octritteblus mm Cottitteblus mm Octritteblus mm Octritteblus mm Octritteblus mm Octritteblus mm Octritteblus mm Octritteblus mm	rinus rinus arinus arinus	attritus auropallens bactrarus bate soni belistecti	Earmaine, 1378 Earmaine, 1379 Sharp, 1887 Sharp, 1887 Janssens, 1962 Jans, 1962 Jans, 1962	Ochthe Ochthe Ochthir Ochthir	blus Ocht blus Ocht blus Ocht blus Ocht blus Ocht blus Ocht blus Ocht	ebius Ochthebius lebius Ochthebius lebius Ochthebius lebius Ochthebius ebius Ochthebius			× × × × ×
Anthrebius Anthrebius Chthebius Anthrebius Anthrebius Anthrebius Anthrebius Anthrebius Anthrebius	Ochtheblus mi Ochtheblus mi Ochtheblus mi Ochtheblus mi Ochtheblus mi Ochtheblus mi Ochtheblus mi	rinus rrinus arinus	auropallens aztecus batesoni belistechi	Fairnaire, 1879 Fairnaire, 1887 Janssens, 1962 Blair, 1933 Jäch, 1992	Ochthe Ochthe Ochthr	blus Ocht blus Ocht blus Ocht blus Ocht blus Ocht blus Ocht	ebius Ochthebius ebius Ochthebius tebius Ochthebius ebius Ochthebius			× × ×
7) Threebus 7) Threebus 7) Threebus 7) Threebus 7) Threebus 7) Threebus 7) Threebus 7) Threebus 7) Threebus 7) Threebus	Octmebuus ma Octhtebius mu Octhtebius mu Octhtebius m Octhtebius m Octhtebius m	rinus arinus	aztecus bactrianus batesoni belistedti	Interformer 1962 Interformer 1962 Black 1933 Interformer 1962	00000 00000 00000 00000	blus 0cht blus 0cht blus 0cht blus 0cht blus 0cht ablus 0cht	ebius Ocntrebius rebius Ochthebius Achtus Ochthebius		1 1 7 × ×	× × ×
7.1110-0003 2.1110-003 Chthebius Chthebius Chthebius Chthebius Chthebius Chthebius Chthebius	Ochthebius mi Ochthebius mi Ochthebius mi Ochthebius mi Ochthebius m	urinus	batesoni belistedti	Blair, 1992 Blair, 1933 Bloir, 1992	Ochthe Ochthe Ochthe	blus Ocht blus Ocht blus Ocht blus Ocht	rebius Ochthebius		< × ×	×
Atthebius Atthebius Atthebius Atthebius Atthebius Atthebius Atthebius Atthebius	Ochthebius m Ochthebius m Ochthebius m		bellstedti	Jach, 1992	Ochthe	bius Ocht bius Ocht bius Ocht			× ;	-
Athebius Athebius Athebius Athebius Athebius Athebius Athebius	Ochthebius m Ochthebius m	rinus			4400	bius Ocht bhius Ocht	VPDILS ICCREDING	-	. ,	-
hthebius chthebius chthebius chthebius chthebius chthebius chthebius	Ochthebius m:	rinus	bernhardi	Jäch & Deigado, ZUUS	Inninol	shius Ocht	ebius Ochthebius		×	
Ththebius ththebius chthebius chthebius chthebius		rinus	bicomicus	Perkins, 2011	Ochthe	-	nebius Ochthebius		×	
ththebius chthebius chthebius chthebius	Ochthebius m.	irinus	biincisus	Perkins, 1980	Ochthe	sbius Ocht	ochthebius Ochthebius			×
chthebius chthebius chthebius	Ochthebius m.	rinus	bisinuatus	Perkins, 1980	Ochthe	sbius Ocht	nebius Ochthebius		(1)	×
chthebius chthebius	Ochthebius m.	arinus	borealis	Perkins, 1980	Ochthi	ebius Ocht	nebius Ochthebius			×
Chthebius	Ochthebius	arinus	calitornicus	Perkins, 1980	Ochth,	ebius Ocht	Donthebius		;	×
200 U Dillo	Ochthebius	arinus	capicola	Peringuey, 1892	Hydrae	ena Ocht	Dorthebius		1 	
Cutterius	Ochthebius	arinus	chappulsi	Orchymont, 1948	Ochth	ebius Ocht	Dorthebius		(I) X	;
cntnebius	Ocritebius	arinus	costatellus	Keitter, 189/	Ocnth	Plus Oct	Teblus Ocntreblus		×	* `
cutnebius	Ochthebius	arinus	costipennis	Fall, 1901	Ocnth	spins Ocm	Lebius Ocnthebius			× :
chthebius	Ochthebius	Irinus	crassalus	Perkins, 1980	Ochthi	Sbius Ocht	Dochthebius			× ::
cnthebius	Ochthebius	ILLING	crenatus	Hatch, 1965	Ochth	Sblus Ocht	Debius Ochthebius		;	×
cnthebius	Ochthebius	ILLING	deletus	Rey, 1885	stat.rest. Ocnth.	Sblus Ocht	Diebius Ochthebius	currently a subspecies of O. subpictus	1 X	
chthebius	Ochthebius	arinus	delhensis	Jach, 1992	Ochth	ebius Ocht	ochthebius		; ×	×
cutnepius	Ochtheolus	arinus	endroedyi	Perkins, 2011	Contri	solus ocm	ieolus Ocntreolus		*	
contriences	Ocmitedius	arinus	erzerumi	KUWEIT, 1887	Ocnth	Points Octim	Teblus Ocntreolus		× >	
contined us	Ocmredius	arinus	evanescens	Saniberg, 1875	Contri	Solus Octiv	Teblus Ocntreolus		, x	
citureorus		1110	extremus	C1	Tryui at	110 Oct 10	-Fire Octiments	-1141-1	<	
chinebius	Ocircebius International Inter	arinus rious	Tallaciosus	Doubler 2011	stat.n. Ocnur.	bius Octi	chius Ochmenus	currently a subspecies of O. Viridas	^ < T	
-hthehius	Octifications III	rinus	granumus	Derkins, 2011	Ochthe	hine Ocht	ahire Ochthahire		< -	>
whether the state of the state	Octifications	rinus	bainanancis	FEIXIIS, 1200	Ochthe	hive Och	abite Ochthabite		>	<
whether the state of the state	Ochthabius Ochthabius	rinus	internation	laConta 1953	Ochthe	bine Ocht	abiur Ochthabiur		ر ۲	>
-hthehius	Ochthabile m	rinus	imolatus	Derkine 2011	Ochthe	white Ochi	ahire Ochthahire		*	< <
-hthehine	Ochthebius	rinus	ianscensi	Ferro 1083	Ochthe	blue Ocht	ahite Ochthahite		, ×	
rhthehius	Ochthebius	rinus	ienzi	läch, 1998	Ochthe	vhius Ocht.	-philis Ochthebilis		: ×	
chthebius	Ochthebius	rinus	kuwerti	Reitter. 1897	Ochthe	bius Ocht	ebius Ochthebius		: ×	
chthebius	Ochthebius m	rinus	lecontei	Perkins. 1980	Ochthe	bius Ocht	ebius Ochthebius			×
chthebius	Ochthebius mi	rinus	lenensis	Poppius, 1907	Ochthe	bius Ocht	ebius Ochthebius		×	
chthebius	Ochthebius m.	rinus	lineatus	Le Conte, 1852	Ochthe	bius Ocht	nebius Ochthebius		1	×
chthebius	Ochthebius m.	irinus I	lividipennis	Peyron, 1858	Ochthe	sbius Ocht	Distribution Ochthebius		1 X	
chthebius	Ochthebius m.	rinus	madrensis	Perkins, 1980	Ochthe	sbius Ocht	ebius Ochthebius			×
chthebius	Ochthebius m.	rinus	marinus	Paykull, 1798	Elophc	rus Ocht	ebius Ochthebius		1 ×	×
chthebius	Ochthebius	Irinus	masatakasatoi	Jäch, 1992	Ochthi	Sbius Ocht	Dochthebius		;	×
chthebius	Ocrithebius	arinus	mendionalis	Rey, 1885	Ochth	PDIUS OCH	Donthebius		×	,
-http://www.	Ocircienus Ochthohius	rinus	mercurutire	Device 1000	Ochtho Ochtho	hiur Ochi	chius Oculueolus		-	
-hthehius	Octification III	rinus	minahansis	Ferrin 1083	Ochthe	bine Ocht	ahire Ochthahire		*	<
chthebius	Ochthebius m:	rinus	mongolensis	Janssens, 1967	Ochthe	bius Ocht	ebius Ochthebius		- ×	
chthebius	Ochthebius	rinus	nipponicus	Jäch, 1998	Ochthe	bius Ocht	ebius Ochthebius	Ryukyu	1 ×	
chthebius	Ochthebius mi	rinus	pacificus	Perkins, 1980	Ochthe	bius Ocht	ebius Ochthebius	on Boom Boo		×
chthebius	Ochthebius mi	rinus	pauli	Perkins, 1980	Ochthe	bius Ocht	ebius Ochthebius			×
chthebius	Ochthebius mi	rinus	pedals	Balfour-Browne, 1954	Ochthe	vbius Ocht.	ebius Ochthebius		1 ×	
chthebius	Ochthebius	rinus	pusillus	Stephens. 1835	Ochthe	bius Ocht	ebius Ochthebius		1 ×	
chthebius	Ochthebius mi	rinus	queenslandicus	Hansen, 1998	Ochthe	bius Ocht	ebius Ochthebius		1	×
chthebius	Ochthebius m.	rinus	recticulus	Perkins, 1980	Ochthe	sbius Ocht	Dchthebius Ochthebius			×
chthebius	Ochthebius m.	rinus	rectus	Le Conte, 1878	Ochthe	sbius Ocht	nebius Ochthebius		1	×
chthebius	Ochthebius m.	vrinus	rectusalsus	Perkins, 1980	Ochthe	sbius Ocht	nebius Ochthebius			×
chthebius	Ochthebius m.	rinus	richmondi	Perkins, 1980	Ochthe	sbius Ocht	nebius Ochthebius			×
chthebius	Ochthebius m	arinus	rubripes	Boheman, 1860	Ochthe	sbius Ocht	Distribution Ochthebius		× ;	
chinebius	OcirceBuus m	arinus cione	samarus sedeteider	Dation 1000 Pc. 1994	Och the	bius Octi	chius Ochmenus		<	>
-hthehius	Octitieuus Ochthehius m	rinus	sculptores	retkiits, 1200 lefonte 1878	Ochthe	hius Och	Phine Ochthehine		-	< ×
chthebius	Ochthebius	rinus	sharpi	lach. 1992	Ochthe	bius Ocht	-ebius Ochthebius			×
chthebius	Ochthebius	rinus	sierrensis	Perkins, 1980	Ochthe	bius Ocht	ebius Ochthebius			×
chthebius	Ochthebius	rinus	sitiensis	Perkins, 2011	Ochthe	bius Ocht	ebius Ochthebius		×	
chthebius	Ochthebius mi	rinus	spanglerorum	Wood & Perkins, 1978	Ochthe	bius Ocht	ebius Ochthebius			×
chthebius	Ochthebius m.	rinus	spinasus	Perkins & Balfour-Browne, 1994	Ochthe	bius Ocht	iebius Ochthebius		1 ×	
chthebius	Ochthebius m _k	rinus	subaeneus	Janssens, 1967	Ochthe	sbius Ocht	nebius Ochthebius		×	
chthebius	Ochthebius	irinus	subpictus	Wollaston, 1857	Ochthe	sbius Ocht	Dochthebius Ochthebius		1 X	
chthebius	Ochthebius m.	rinus	tubus	Perkins, 1980	Ochthe	ebius Ocht	nebius Ochthebius			×
chthebius	Ochthebius m.	arinus	uniformis	Perkins, 1980	Ochthe	ebius Ocht	Dorhthebius		(1)	×
chthebius	Ochthebius m	arinus	virens	Jach, 1992	Ochth	bius Ocht	Ochthebius		× >	
chinebius	OcirceBlus m	arinus rious	VITIOESCENS	1e115tea, 1966	Och the	this Och	chius Ochmenus		< >	
-hthehine	Ochthehius ma	rinus	romanicus	reyrut, topo lenistea 1968	Ochthe	white Ocht	ahire Ochthahire		< ×	
chthebius	Ochthebius	tallescens	albacetinus	Ferro. 1984	Ochthe	bius Ocht	ebius Ochthebius		1 ×	
chthebius	Ochthebius	tallescens	anaxagoras	Jach, 1999	Ochthe	bius Ocht	ebius Ochthebius		×	
chthebius	Ochthebius m	tallessens	aristoteles	Ideh. 1999	Ochthe	vhius Ocht	ehius Ochthebius		×	

×

Ochthebi

läch & Delgado

arefnia

marinus

307 Ochthebius Ochthebius 308 Ochthebius Ochthebius

S Ochthahiuc	Achthahius	matallacranc	ciliciae	15ch 1080	40	thahise	Orhthahine	Ochthahius	
Ochthebius C	Dehthehius	metallescens	colchicus	Janssens. 1963	Dch	thebius	Ochthebius	Ochthebius	
7 Ochthebius C	Ochthebius	metallescens	dalmatinus	Ganglbauer, 1904	Och	thebius	Ochthebius	Ochthebius	
3 Ochthebius C	Dchthebius	metallescens	decianus	Orchymont, 1942	Och	thebius	Ochthebius	Ochthebius	×
9 Ochthebius	Ochthebius	metallescens	diazi	Jäch, 1999	0 ch	thebius	Ochthebius	Ochthebius	1 X
1 Ochthebius	Ochthebius Ochthebius	metallescens	empedocles	Jacn, 1999	50	thebius	Ochthebius Ochthebius	Ochthebius	
2 Ochthebius C	Ochthebius	metallescens	gestroi	Gridelli, 1926	Oct	thebius	Ochthebius	Ochthebius	
3 Ochthebius C	Ochthebius	metallescens	griotes	Ferro, 1985	Och	thebius	Ochthebius	Ochthebius	1 X
4 Ochthebius C	Ochthebius	metallescens	hans hebaueri	Jäch, 1994	Och	thebius	Ochthebius	Ochthebius	×
5 Ochthebius (Dchthebius Dchthebius	metallescens metallescens	hatayensis hkrae	Jäch, 1989 Išch Irani & Dalmado. 2013	50	thebius	Ochthebius Ochthebius	Ochthebius Ochthebius	
7 Ochthebius	Ochthebius	metallescens	hofratvukovitsi	Jacri, II all & Degaro, 2013 Jäch, 1994	0	thebius	Ochthebius	Ochthebius	
8 Ochthebius C	Ochthebius	metallescens	huberti	Jäch, 1989	Och	thebius	Ochthebius	Ochthebius	
9 Ochthebius C	Dchthebius	metallescens	insidiosus	Jäch, 1999	Och	thebius	Ochthebius	Ochthebius	×
Ochthebius	Dchthebius	metallescens	ite muptialis	Jäch, 2001	0ch	thebius	Ochthebius	Ochthebius	× >
Dochthebius	Donthebius	metallescens	Javieri	Jach, 2000 Polimido 8, Hich, 2007	00	thebius	Ochthebius Ochthobius	Ochthebius	
3 Ochthebius	Dohthebius	metallescens	khuzestanicus	Pergauo & Jacri, 2007	50	thebius	Ochthebius	Ochthebius	
1 Ochthebius C	Ochthebius	metallescens	kieneri	Jäch, 1999	Och	thebius	Ochthebius	Ochthebius	
6 Ochthebius C	Ochthebius	metallescens	kirschenhoferi	Jäch, 1994	Och	thebius	Ochthebius	Ochthebius	
5 Ochthebius C	Ochthebius	metallescens	kurdistanicus	Jäch, 1989	Och	thebius	Ochthebius	Ochthebius	×
7 Ochthebius	Ochthebius	metallescens	latinorum	leniștea, 1988	Och	thebius	Ochthebius	Ochthebius	× ?
S Ochthebius	Ochthebius Vehitebius	metallescens	levantinus Itikoans	Jach, 1989	0 du	thebius	Ochthebius	Ochthebius	×)
Ochthehius C	Dehthehius	metallecrenc	marijanmatoki	Jacii & Dalgado 2015	50	thehius	Ochthehine	Ochthehine	
Ochthebius C	Ochthebius	metallescens	maxfischeri	Jacri & Pergauo, 2010	Och	thebius	Ochthebius	Ochthebius	
2 Ochthebius C	Ochthebius	metallescens	metallescens metallescen	s Rosenhauer, 1847	Och	thebius	Ochthebius	Ochthebius	1 X
3 Ochthebius C	Dchthebius	metallescens	metallescens plato	Jäch, 1999	Och	thebius	Ochthebius	Ochthebius	1 X
1 Ochthebius (Ochthebius	metallescens	metallicus	Orchymont, 1942	Och	thebius	Ochthebius	Ochthebius	x
Ochthebius	Donthebius	metallescens	metarius	Orchymont, 1942	OCH OCH	thebius	Ochthebius Ochthobius	Ochthebius Ochthebius	
7 Ochthebius	Ochthebius	metallescens	moretti	Pirisinu. 1974	Deh	thebius	Ochthebius	Ochthebius	
8 Ochthebius C	Ochthebius	metallescens	pedroi	Jäch, 2000	Och	thebius	Ochthebius	Ochthebius	
0 Ochthebius	Ochthebius	metallescens	poweri	Rye, 1869	Och	thebius	Ochthebius	Ochthebius	
Ochthebius C	Ochthebius	metallescens	preissi	Jäch, 2001	Och	thebius	Ochthebius	Ochthebius	1 X
Ochthebius	Dehthebius	metallescens	pretneri	Jach, 1999	00	thebius	Ochthebius Ochthebius	Ochthebius Ochthebius	× >
Ochthobius	Ochthebius Debthebius	metallescens	puberulus	Ketter, 1885	50	thebius	Ochthobius	Ochthobius	
Ochthebius C	Ochthebius	metallescens	schoedli	Jäch. 1999	Och	thebius	Ochthebius	Ochthebius	
Ochthebius C	Ochthebius	metallescens	schuberti	Jäch, 1999	Och	thebius	Ochthebius	Ochthebius	
Ochthebius C	Dchthebius	metallescens	scitulus	Ferro, 1982	Och	ithebius	Ochthebius	Ochthebius	x
Ochthebius (Ochthebius	metallescens	scopuli	Köhler, Jäch & Delgado, 2016	Och	thebius	Ochthebius	Ochthebius	1 X
Ochthebius C	Ochthebius	metallescens	semisericeus	Sainte-Claire Deville, 1914	00	thebius	Ochthebius	Ochthebius	× ,
Ochthebius C	Ochthebius	metallescens	semptonius	Orchymont, 1942 Orchymont, 1942	50	thebius	Ochthebius	Ochthebius	
Ochthebius C	Dchthebius	metallescens	sennius	Orchymont, 1942	Oct	thebius	Ochthebius	Ochthebius	
Ochthebius C	Ochthebius	metallescens	serpentinus	Jäch, 1989	Och	thebius	Ochthebius	Ochthebius	1 X 1
Ochthebius C	Dchthebius	metallescens	smymensis	Sahlberg, 1908	Och	thebius	Ochthebius	Ochthebius	x
Ochthebius (Dchthebius	metallescens	trapezuntinus	Jäch, 1999	Oct	thebius	Ochthebius	Ochthebius	× ;
Ochthebius C	Ochthebius Achthebius	metallescens	ustaogiui vootovoi	Form 100Xara, Jacn & Kasapogiu, 2011	50	thebius	Ochthebius Ochthebius	Ochthebius	
Ochthebius C	Ochthebius	metallescens	viganoi	Pirisinu, 1974	Oct	thebius	Ochthebius	Ochthebius	
Ochthebius C	Ochthebius	metallescens	wurayah	Jäch & Delgado, 2010	Och	thebius	Ochthebius	Ochthebius	1 X
Ochthebius (Ochthebius	nitidipennis	amami	Yoshitomi & Satô, 2001	Och	thebius	Ochthebius	Enicocerus	Ryukyu
Ochthabius C	Dehthebius	nitidipennis	championi	Jacn, 1969	50	thebius	Ochthabius Ochthabius	Contrebius	
Ochthebius C	Ochthebius	nitidipennis	hasegawai	Nakane & Matsui. 1986	Och	thebius	Ochthebius	Ochthebius	
Ochthebius C	Ochthebius	nitidipennis	ilanensis	Jäch, 1998	Och	thebius	Ochthebius	Ochthebius	x
Ochthebius	Ochthebius	nitidipennis	japonicus	Jäch, 1998	Och	thebius	Ochthebius	Ochthebius	1 X
Ochthebius (Ochthebius	nitidipennis	nakanei	Matsui, 1986	50	thebius	Ochthebius	Enicocerus	x 3
Ochthebius C	Ochthebius Achthebius	nitidipennis	ngrasperulus	Jach, 2003 Chamnion 1930	50	thebius	Ochthebius Ochthebius	Enicocerus	
Ochthebius C	Ochthebius	nitidipennis	obesus	Literuption, 1920	Och	thebius	Ochthebius	Enicocerus	
Ochthebius C	Dchthebius	nitidipennis	rotundatus	Jäch, 2003	Och	thebius	Ochthebius	Enicocerus	
Ochthebius C	Ochthebius	nitidipennis	scintillans	Champion, 1920	Och	thebius	Ochthebius	Enicocerus	x
Ochthebius C	Dchthebius	notabilis	eburneus	Sahlberg, 1900	Och	thebius	Ochthebius	Ochthebius	× ::
Ochthabius C	Donthebius Donthebius	notabilis notabilis	elburzi	Ferro, 1987	500	thebius	Ochthabius Ochthabiur	Ochthabius	× >
Ochthebius C	Dehthehius	notabilis	glaber	Montes & Soler. 1988	Dch	thebius	Ochthebius	Ochthebius	
Ochthebius	Ochthebius	notabilis	halophilus	Ertorun & Jäch, 2014	Och	thebius	Ochthebius	Ochthebius	
Ochthebius	Dchthebius	notabilis	jermakovi	Orchymont, 1933	Och	thebius	Ochthebius	Ochthebius	× :
Ochthebius C	Dchthebius	notabilis	lanarotis	Ferro, 1985	50	thebius	Ochthebius Ochthobius	Ochthebius Ochthebius	
Ochthehius C	Dehthehius	notabilis	normandi	Jacri, 1992 Jäch 1992	Deb	thebius	Ochthebius	Ochthebius	
Ochthebius C	Ochthebius	notabilis	notabilis	Rosenhauer, 1856	Och	thebius	Ochthebius	Ochthebius	
Ochthebius C	Dchthebius	notabilis	ponticus	leniștea, 1956	Och	thebius	Ochthebius	Ochthebius	possibly a synonym of O. Jermakovi (Jäch & Delgado 2014a) X
Ochthebius C	Ochthebius	notabilis	salinator	Peyerimhoff, 1924	och	thebius	Ochthebius	Ochthebius	

LUS LUS LUS
bius Ochthebius Dius Ochthebius Achthebius
blus Iocntrearus blus Ochtheblus hlus Ochtheblus hlus Ochtheblus
Ochtheblus Ochtheblus Ochtheblus Ochtheblus Ochtheblus
t 1905 5.5 8.7 8.4 0.1893 0.1893
Kuwert, 1887 Ferro, 1984 Guillebeau, 1 Nakane, 1990
caucasicus criftidills cuprescens damio
punctatus ca punctatus ca punctatus cu nunctatus cu
OCMThebius Ochthebius Ochthebius Ochthebius Ochthebius

401

				×											×		>	<	8	×							I																																					Ŧ		F	
_	+	+							,	<	+													+								+	+	+						+	+	+	+	╞					+					+								+	+	╀		+	_
																	T					×	×	×	× ;	< >	< >	< ×	: ×	×	×	×	× ;	× >	< >	< ×	×	×	×	×	× >	< >	< >	< ×	×	×	× :	× >	< >	×	×	×	×	× ;	< >	< ×	< ×	×	×	×	×	×	× ,	× ×	< >	· ×	×
_					~				_				~	_			_						-	+		_		+				-	+	+	+					+	+	+	+	+										+	_							+	+	+		_	_
Î			-		Â			Ŷ	-		1	Â	Â					Î	Ê		Î																													1														+		-	_
Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthehius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	incertae sedis											the state of the s	Hygrotympanogaster Hygrotympanogaster	Hverotymnanogaster	Hverotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotym nan og st er	Hverotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster Hygrotymnanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hvørotympanogaster Hvørotymnanogaster	Hvgrotympanogaster	Plesiotympanogaster	Plesiotympanogaster	Topotympanogaster	Topotympanogaster	Topotympanogaster	Topotympanogaster	Topotympanogaster	Tonotymnanogaster	Tonotympanogaster	Tympanogaster
Ochthebius	Ochthebius	Ochthabius Ochthabius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthehine	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Protochthebius	Protochthebius Dectochthebius	Protochthehius	Protochthebius	Protochthebius	Protochthebius	Prototympanogaster	Tympallopatrum	Tympallopatrum	Tympallopatrum	Tympailopatrum	Tympanogaster	Tymnanngaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster Tympanogaster	Tympanogaster	Tympan.gaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster Tympanogaster	Tymnanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	1ympanogaster	Tymnanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster Tympanogaster	Tymnanogaster	Tympanogaster	Tympanogaster							
Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthehius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Protochthebius	Ocntrebius Dest selvt hobins	Protochthehius	Protochthebius	Protochthebius	Protochthebius	Prototympanogas ter	Tympanopatrum	Tympanopatrum	Tympanopatrum	Tympaliopatrum	Tympanogaster	Tymnanngaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster Tympanogaster	Tympanogaster	1ympanogaster Ochthobiur	Tymnanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Ochthebius Transcretes	Tympanogaster	Ochthebius	Tympanogaster	Tympanogaster	Ochthebius	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Ochthebius	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster Tympanogaster	Tympanogaster	Tympanogaster	Tympanogaster						
	921				do, 2014	do, 2014	do, 2014	do, 2014	do, 2014	do 2014	50 50 FM	.883	0				176																			22												396																		-	
Jäch, 1998	Champion, 19	Jach, 2003	undescribed	Jäch, 2001	Jäch & Delgad	Jäch & Delgad Sath 1063	Jäch & Delgad	Jäch & Delgad	Jäch & Delgad	NIISUI, 1924	Ferro, 1948	Frivaldszky, 1	Janssens, 197	Ferro, 1979	Knisch, 1922	Perkins, 1998	Criampion, 15	Perkins 1998	Perkins, 1997	Jäch, 1997	Perkins, 1998	Perkins, 2018	Perkins, 2004	Perkins, 2004	Perkins, 2004	Perkins, 1997	Perkins, 2006 Devkins 2006	Derkins 2006	Perkins, 2006	Perkins, 2006	Perkins, 2006	Perkins, 2006	Perkins, 2006	Perkins, 2006 Perkins, 2006	Perkins, 2006	Janssens, 196	Perkins, 2006	Derkins 2006	Perkins, 2006	Perkins, 2006	Perkins, 2006	Perkins, 2006	Blackburn, 18 Doubles 2006	Perkins, 2000 Perkine 2006	Deane, 1933	Perkins, 2006	Perkins, 2006	Deane, 1933	Perkins, 2006	Perkins, 2006	Perkins, 2000 Perkins 2006	Perkins, 2006	Deane, 1933	Perkins, 2006	Perkins, 2006	Perkins, 2006	Perkins, 2006	Perkins, 2006	Perkins, 2000	Perkins, 2000 Perkins, 2006	Perkins, 2006	Perkins, 2006					
strigoides	strigosus	wangmiaoi	MNCN-AC16	sumatrensis	ahni	asanoae aranuhouo	hayashii	matsudae	parki	variuyker	belucistanicus	caudatus	fissicollis	pierottii	eremita	convexus	Jaguande	Inehli	satoi	schillhammeri	smetanai	lordhowensis	aureolum	callosum	curvicostum	Iongitudum	arcuata	harronensk	bondi	bryosa	buffalo	canobolas	cascadensis	clandes tina choose	crypedia	cornutus	cudgee	decepta	duobifida	grampians	gushi	KUranda	maireenae	megamorpha	merrijg	nargun	newtoni	novicia	porcrit	schizolabra	spicerensis	storeyi	subcostata	tabula	tallawarra	truncata	wahroonga	costata	thayerae	crista	dorsa	finniganensis	intricata	Juga monteithi	narallela	summa	aldinga
strigosus	strigosus	strigosus	sumatrensis	sumatrensis	vandykei	vandykei	vandykei	vandykei	vandykei	vandvikei	incertae sedis	incertae sedis	incertae sedis	incertae sedis																										+		+																						+			
Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthehius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	incertae sedis												Hverotympanogaster	Hverohvmnannøster	Hverotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hverotympanogaster	Hvgrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hverotympanogaster	Hverotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hverotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hygrotympanogaster	Hverotympanogaster	Hvgrotympanogaster	Plesiotympanogaster	Plesiotympanogaster	Topotympanogaster	Topotympanogaster	Topotympanogaster	Topotympanogaster	Topotympanogaster	Tonotympanogaster	Topotympanogaster	Tympanogaster
541 Ochthebius	542 Ochthebius	543 Ochthebius 544 Ochthebius	545 Ochthebius	546 Ochthebius	547 Ochthebius	548 Ochthebius	550 Ochthebius	551 Ochthebius	552 Ochthebius	554 Ochthahius	555 Ochthebius	556 Ochthebius	557 Ochthebius	558 Ochthebius	559 Ochthebius	560 Protochthebius	501 Protochthobius	563 Protochthehius	564 Protochthebius	565 Protochthebius	566 Protochthebius	567 Prototympanogaste.	568 Tympallopatrum	569 Tympallopatrum	570 Tympallopatrum	5/1 lympallopatrum	572 Trimpanogaster	574 Tymnannøster	575 Tympanogaster	576 Tympanogaster	577 Tympanogaster	578 Tympanogaster	579 Tympanogaster	580 Tympanogaster	587 Trimpanogaster	583 Tympanogaster	584 Tympanogaster	585 Tympanogaster	586 Tympanogaster	587 Tympanogaster	588 Tympanogaster	589 Iympanogaster	501 Trimpanogaster	592 Tympanogaster	593 Tympanogaster	594 Tympanogaster	595 Tympanogaster	596 Tympanogaster	598 Tymnanogaster	599 Tympanogaster	600 Tympanogaster	601 Tympanogaster	602 Tympanogaster	603 Tympanogaster	for the start of t	606 Tvmnanngaster	607 Tympanogaster	608 Tympanogaster	609 Tympanogaster	610 Tympanogaster	611 Tympanogaster	612 Tympanogaster	613 Tympanogaster	614 Tympanogaster 615 Tympanogaster	616 Tymnanngaster	617 Tympanogaster	618 Tympanogaster

gaster	amaroo	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanoga ster		×	_
	ambigua	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	bluensis	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	cardwellensis	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	cooloogatta	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	cunninghamensis	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	darlingtoni	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	deanei	Perkins, 1979	Ochthebius	Tympanogaster	Tympanogaster	1	×	
	dingabledinga	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	dorrigoensis	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	eungella	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
-	foveova	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanoga ster		×	
	hypipamee	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	illawarra	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
2	jaechi	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	lamingtonensis	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	magarra	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
st	millaamillaa	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
_	modulatrix	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster	1	×	
_	moondarra	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	mysteriosa	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	obcordata	Deane, 1931	Ochthebius	Tympanogaster	Tympanogaster		×	
2	ovipennis	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
_	pagetae	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
_	perpendicula	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
_	plana	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
د ا	precariosa	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		X	
	protecta	Perkins, 2006	Tympanogaster	Tympanogaster	Tymp anoga ster		×	
st	ravenshoensis	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
_	robinae	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	serrata	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	tenax	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	tora	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	volata	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
	wattsi	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
er	weiri	Perkins, 2006	Tympanogaster	Tympanogaster	Tympanogaster		×	
_	a dala ana la ana a dala a	Darkine 2006	Tumphonetor	Transporter	The second se			

genus	subgenus	structures	type species
Aulacochthebius Kuwert, 1887: 376		Chirochthebius Kuwert, 1887: 383	Ochthebius exaratus Mulsant, 1844 Ochthebius narentinus Reitter, 1885
		Eochirochthebius Ienistea, 1988: 220	Ochthebius narentinus Reitter, 1885
Gymnanthelius Perkins, 1997: 139			Ochthebius hieroglyphicus Deane, 1931
Gymnochthebius Orchymont, 1943: 38			Ochthebius nitidus LeConte, 1850
Hughleechia Perkins, 1981: 300			Hughleechia giulianii Perkins, 1981
Meropathus Enderlein, 1901: 121			Meropathus chuni Enderlein, 1901
Micragasma Sahlberg, 1900: 199			Micragasma paradoxum Sahlberg, 1900
Ochthebius Leach, 1815: 95	Asiobates Thomson, 1859: 15		Ochthebius rufimarginatus Stephens, 1829 (=bicolon Germar, 1824)
		Trymochthebius Kuwert, 1887: 380	Ochthebius bicolon Germar, 1824
		Homalochthebius Kuwert, 1887: 383	Helophorus minimus Fabricius, 1792
		Lunzochthebius Ieniștea, 1988: 220	Ochthebius haberfelneri Reitter, 1890
	Calobius Wollaston. 1854: 92 ¹	Mimasiobares leniștea, 1988: 220	Ochtnebuts montanus Erivaloszky, 1881 Calobius heeri Wollaston. 1854
		Calochthebius Kuwert, 1887: 372	Ochthebius quadricollis Mulsant, 1844
	Enicocerus Stephens, 1829: 196		Enicocerus viridiaeneus Stephens, 1829 (=exsculptus Germar, 1824)
		Henicocerus Agassiz, 1846: 178	Enicocerus viridiaeneus Stephens, 1829 (=exsculptus Germar, 1824)
		Cyrtochthebius Kuwert, 1887: 371	Ochthebius exsculptus Germar , 1824
		Sphaerochthebius Kuwert, 1887: 371	Ochthebius gibbosus Germar , 1824
		Eosphaerochthebius Ieniștea, 1988: 218	Ochthebius gibbosus Germar , 1824
	Ochthebius Leach, 1815: 95 ²		Helophorus marinus Paykull, 1798
		Hymenodes Mulsant, 1844: 68	Ochthebius punctatus Stephens, 1829
		Cobalius Rey, 1886: 24 ³	Ochthebius lejolisii Mulsant & Rey, 1861
		Bothochius Rey, 1886: 53	Ochthebius nobilis Villa & Villa, 1835
		Ochthobius Rey, 1886: 14	<i>Helophorus marinus</i> Paykull, 1798
		Doryochthebius Kuwert, 1887: 373	Ochthebius notabilis Rosenhauer , 1856
		Prionochthebius Kuwert, 1887: 373	Ochthebius lejolisii Mulsant & Rey, 1861
		Cheilochthebius Kuwert, 1887: 374	Ochthebius metallescens Rosenhauer , 1856
		Camptochthebius Kuwert, 1887: 377	Ochthebius nobilis Villa & Villa, 1835
		Odontochthebius Kuwert, 1887: 377	Ochthebius bifoveolatus Walth, 1835
		Colpochthebius Kuwert, 1887: 379	Ochthebius punctatus Stephens , 1829
		Eccoptochthebius Kuwert, 1887: 379	Ochthebius difficilis Mulsant, 1844
		Acanthochthebius Kuwert, 1887: 383	Ochthebius serratus Rosenhauer , 1856
		Pseudhydraena Acloque, 1896: 96	Helophorus marinus Paykull, 1798
		Liochthebius Sahlberg, 1900: 198	Ochthebius eburneus Sahlberg, 1900
		Neochthebius Orchymont, 1932: 43	Hydraena vandykei Knisch, 1924
		Notochthebius Orchymont, 1933: 408	<i>Hydraena capicola</i> Péringuey, 1892
		Nyxochthebius Orchymont, 1933: 408	Ochthebius rubripes Boheman, 1860
		Neohymenodes Ieniștea, 1988: 218	Ochthebius pedicularius Kuwert, 1887
		Parahymenodes Ienistea, 1988: 218	Ochthebius metallescens Rosenhauer , 1856

Table S2: Current classification of Ochthebiini, with synonymies and type species (following Jäch & Skale, 2015 and Jäch *et al.*, 2016). In bold, taxa included in the phylogeny.

[eniştea, 1988: 219 Ochthebius punctatus Stephens, 1829 miştea, 1988: 219 Ochthebius semisericeus Sainte-Claire Deville, 1914 eniştea, 1988: 220 Ochthebius quadrifoveolatus Wollaston, 1854 Ieniştea, 1988: 220 Ochthebius lindbergi Balfour-Browne, 1976 (=balfourbrownei Jäch	Protochthebius satoi Perkins, 1997	Prototympanogaster lordhowensis, Perkins, 2018	Tympallopatrum longitudum Perkins, 1997	Tympanogaster maureenae Perkins, 2006	Tympanogaster thayerae Perkins, 2006	Tympanogaster crista Perkins, 2006	Ochthebius longipes Deane, 1931 (=deanei Perkins, 1979)	
Eocolpochthebius Metahymenodes le Chaetochthebius I Balfourochthebius				Hygrotympanogaster Perkins, 2006: 11	Plesiotympanogaster Perkins, 2006: 12	Topotympanogaster Perkins, 2006: 11	Tympanogaster Janssens, 1967: 8	
	Protochthebius Perkins, 1997: 154	Prototympanogaster Perkins, 2018	Tympallopatrum Perkins, 1977: 147	Tympanogaster Janssens, 1967: 8				

Considered as the "Calobius lineage" of Ochthebius s.str. by Sabatelli et al. (2016).
 The subgenus Angiochthebius was described by Jäch & Ribera (2018).
 Considered as a subgenus of Ochthebius by Sabatelli et al. (2016).

all family subfamily genus subg	genus specie:	s group species	subspecies	voucher	locality	52	COI-5	COI-3	16S 18S	285
1 Hydraenidae Hydraeninae Hydraena Holo	ohydraena	arenicola		MNCN-AI504	California (USA); Trinity Co., Forest Glen, Rattlesnake Creek 22.6.2000	Ribera & A. Cieslak	LT991251	HM588381 HM	I588525 HM58858	1 HM588441
2 Hydraenidae Hydraeninae Hydraena Holc	ohydraena	ngosa		MNCN-AI392	Spain; Palencia, Castil de Vela 5.2005	F. Valladares	HE970908	HM588366 HM	I588510 HM58857	5 HM588432
3 Hydraenidae Hydraeninae Hydraena Hydr	aena	altamirensis		MNCN-AI425	Spain; Ciudad Real, Navas de Estena, Rio Estena 18.8.2005	Castro	HF947944	HM588371 HM	588515 HM58857	8 HM588435
4 Hydraenidae Hydraeninae Hydraena Hydr	aena	croatica		IBE-RA52	Corfu (Greece); South Corfu, 2 km S Lefkimi, stream 20.7.2009 [M.A	1.A. Jäch	LT991252	HE970794 HE	971027 HE97093	HE970982
5 Hydraenidae Hydraeninae Hydraena Hydr	aena	dochula		MNCN-AI518	Bhutan; Timphu, 12 km east Timphu Town, stream 24,11.2005	1.A. Jäch	LT991253	FM946170 +FM	9461724 FM94617	FM946175
7 Underenidae Inydraeninae Inydraena Inydr	aena	Ind yds fill		MINUN-AIDAL	Japan; Porsnu, Snimane Pret, Mitara-taki, Jinji river 19.2.2000 Austria: Niodozăstosolch: Schura-sochach: Scole Vole an dor Călcor 6 0 2005	Li Hayashi Dihoro 8. A. Ciorlati				
8 Hvdraenidae Hvdraeninae Hvdraena Hvdr	aena	riberai		MNCN-AI568	Austria, Neuerosterretori, Surwarzeriuacu, Sainkt Veit an uer Goiserro. Su 2003 Morocco: Assif-Dumarhouz. Oued Massa 25.4.2000	NUCEI & A. CRESIAN Ribera	LT991255	NH 885838H	588532 HM5885	6 HM588446
9 Hydraenidae Hydraeninae Hydraena Hydr	aenopsis	palawanensis		MNCN-AH133	Philippines; North Palawan, Taytay, Manguao Stream 2007 H. F	. Freitag	LT991256	HM588309 HM	I588454 HM58854	5 HM588403
10 Hydraenidae Hydraeninae Hydraena Mon	iomadraena	impressicollis		MNCN-AI541	Madagascar; Montagne d'Ambre, Petit Cascade 12.2004 M. E	1. Balke	LT991257	HE970850 HE	971081 HE97096	. HE970998
11 Hydraenidae Hydraeninae Hydraena Phot	chydraena	atrata		MNCN-AI314	Spain; Albacete, Robledo, Laguna del Arquillo 2.6.2002	Ribera & A. Cieslak	HE970895	HM588344 HM	588488 HM58856	8 HM588425
12 Hydraenidae Hydraeninae Hydraena Phot	chydraena	putearius		IBE-RA95	Oman; Al-Akhdar, Ghul 5.4.2010 I. Ri	Ribera, C. Hernando & A. Cieslak	LT991258	LT991448 HE	971029 HE61024	. HE610244
13 Hydraenidae Limnebinae Laeliaena		sahlbergi		MNCN-HI19	India; Uttarakhand, 15 km north Bageshwar, River Falda 14.11.2006	1.A. Jäch	LN995192	LN995232 LN	995260 LN99528	LT991039
14 Hydraenidae Limnebinae Limnebius Bilin	neus	acupunctus		MNCN-AI582	Australia; South Australia, Cudlee Creek, River Torrens 14.1.2006	.H.S. Watts	LN995196	LN995238 LN	995266 LN99529	LN995353
15 Hydraenidae Limneolinae Limneolus Billin 16 Hydrawidao Limnakinaa Limnakine Dilim	neus	dioscoridus extraneur		IBC-KA/28	Socora (remen); waarAynart 8.11.2010 Sosis: Uuolva Endinarola Dio Barranno Edo 26.7.36.7.4000	Hajek Dihora	LN995198	UN995239 LI	990690 LN99531	1 LN995555
17 by defined binnedine binnedine binnedine	ueus	extraileus pollov		IDC-0403	opeiri, ruerva, circiiasola, No barrenco Frio 2077.2030 Mauritius: La Douca: C Doct Louis 2013-2013	NUDE14	LINDOE 201	I TODIAND IN	100001 1000000	VCCCCCNI :
18 Hvdraenidae Jumneolinae Limneolus Billin 18 Hvdraenidae Timnebiirae Timnebius Billim	neus	pollex		IBE-KATU19 IRE-RA108	Mauricius; Le Pouce, S Port Louis 29.11.2012 Oman: AL Akhdar wadi Bani Awf 6.4.2010	I.A. Jacn Rihara C Harnando & A Ciaslak	LN995201	INGG5241 IN	95266 LN99229	1 N995365
10 Hydraenidae Limnebiinae Limnebiis Dim	ureus ahius	aranicoluc		MNCN-A466	California (TISA): Trinity Co Ecrect Glan Pattlecnake Creek 22.6.2000	Ribera & A. Cieciak	1 NG05 2 20	HEQ31204 HP	031429 IN00534	2005CEENIT
20 Hvdraenidae IIimnehiinae IIimnehiis IIimn	Philis	cordohaniis		IRE-PA275	Conjour Tenuel Receite river Matarranya El Parrical 3.6.2006	Ribera	17991259	HF931292 HP	931527 IN99531	1N995368
21 Hydraenidae Limnebiinae Limnebius	rebius	crinifer		IBE-AR55	Sweden: Öland. Möckelmossen. ponds 22.5.2011	Ribera	LN995221	LN 995255 LN	995281 LN99530	LN995400
22 Hydraenidae Limnebiinae Limnebius Limn	hebius	doderoi		MNCN-AI1174	Corsica (France): Cap Corse. Bettolacce 21.9.1999	Ribera & A. Cieslak	LN995222	HF931170 HF	931389 LN99534	LN995401
23 Hvdraenidae Limnebiinae Limnebius Limn	rebius	hieronymi		IBE-AR22	Italy: Abruzzo National Park, Pescasseroli, Fiume Sangro 26.7.2010	Ribera & A. Cieslak	LN995212	LN 995249 LN	995276 LN99530	LN995381
24 Hydraenidae Limnebiinae Limnebius Limn	rebius	levantinus		IBE-RA731	Iran; Fars, Arzhan oak nature reserve 29.4.2010 A. S	Skale	LN995206	LT991450 LN	995273 LN99529	LN995376
25 Hydraenidae Limnebiinae Limnebius Limn	rebius	millani		MNCN-AI920	Spain; Albacete, Paterna del Madera, Arroyo de la Fuenfría 30.7.1998	Ribera	LT991260	HE610235 HP	931476 LT99083	LN995389
26 Hydraenidae Limnebiinae Limn	rebius	zaerensis		MNCN-AC14	Morocco; Rommani, tributary Oued Korifia 10.4.2007	Ribera, P. Aguilera & C. Hernando	LT991261	EU365868 +EU	365866+ HE97093	HE970984
27 Hydraenidae Ochthebilnae Meropathus		zelandicus		MNCN-AI715	New Zealand; South Island, Papatowai, beach 7.12.2005	1. Thayer, A. Newton & J. Nunn	LT991262	LT991451 LT	990691 LT99083	LT991040
28 Hydraenidae Ochthebilnae Tympanogaster Hygr	otympanogaster	schizolabra		IBE-AF167	Australia; Victoria, Beech Forest below Hopetoun Falls 21.7.2009	Ribera & A. Cieslak	LT991263	LT991452 LT	990692 LT99083	LT991041
29 Hydraenidae Ochthebilnae Tympanogaster Tym,	panogaster	deanei		MNCN-AI372	Australia; Queensland, 40 km SSE Brisbane, Cedar Creek Road, above Cedar Creek Falls 22.8.2004 M.A	1.A. Jäch	LT991264	LT991453 LT	990693 LT99083	LT991042
30 Hydraenidae Ochthebiinae Tympanogaster Tym,	panogaster	modulatrix		IBE-AN 183	Australia; Queensland, Lamington NP, Morans falls 26.4.2014 J. M	Maté	LT991265	LT991454 LT	990694 LT99083	LT991043
31 Hydraenidae Ochthebilnae Ochthebius Angi	ochthebius	plesiotypus		MNCN-AI502	Chile; IX Región, Termas de Río Blanco 8.2.2001 M. C	1. Guerrero	LT991266	LT991455 LT	990695 LT99083	LT991044
32 Hydraenidae Ochtheblinae Ochtheblus Angl	ochthebius	plesiotypus		MNCN-AI562	Chile; Region Metropolitana, Alto Cantillana 8.1.2001	1. Guerrero	LT991267	LT991456 LT	990696 LT99084	LT991045
33 Hydraenidae Ochtheblinae Ochtheblus Asio	bates bicolor	arator		IBE-AN 185	Turkey; Uşak, Çatalbayır vilage 19.6.2012	. Ertorun	11991268	LT991457	LT99084	L1991046
34 Hydraenidae Ocntreblinae Ocntreblus Asio	Dates DICOIOL	auriculatus		MINUN-AH154	England (UK); S Devon, Dawlish Warren Saltmarsn 29.9.2007	.1. Bitton	69716611	HF931134 HF	931352 L199084	199104/
35 Hydraenidae Ocntreblinae Ocntreblus Asio	bates bicolor	Dellier		IBE-AN 290	Spain, Albacete, Paterna dei Madera, Arroyo de la Fueniria 30.7.1998	KIDEra T Dikoo	11991270	LI 991458 LI	190060 1100064	L1991048
27 Hudrashidas Ochthobilias Ochthobilis Asia	hater hicolor	honairai		NAMENLALIA 11277	Lingterin (DN), N DEVOIT, a Miria Trentrerin Query, succerti 20.7.2020 Sociari taón: Santiano da la Econda - Dío Zumata 16.6.2006	Adillán 9. sollaborators	11001272	GHT 211221	1000011 000100	17001050
38 Hvdraenidae Ochthebiinae Ochthebius Asiol	hates hicolor	cantabricus of		MNCN-AI1027	Turkev: Kastamonu. Acadi Kavi 27.4.2006	Castro	17991273	HF931145 HP	931364 LT99084	LT991051
39 Hvdraenidae Ochthebiinae Ochthebius Asiol	bates bicolor	n corsicus		IBE-AN 159	Corsica (France): Col de Bavella 14.5.2014 R.V	Vila	LT991274	LT991460 LT	990699 LT99084	LT991052
40 Hydraenidae Ochthebiinae Ochthebius Asio	bates bicolor	n crenulatus		MNCN-AH159	Sicily (Italy); Parco dei Nebrodi, trail Lago Urio - Portella dell'Obolo 13.6.2007 [P. A	. Abellán & F. Picazo	LT991275	HF931136 HF	931353 LT99084	LT991053
41 Hydraenidae Ochthebiinae Ochthebius Asioi	bates bicolor	n dilatatus		MNCN-AI792	Turkey; Bartin, between Topallar & Çakraz, calcareous stream 25.4.2006 [1. Ri	Ribera	LT991276	HF931227 HF	931456 LT99084	LT991054
42 Hydraenidae Ochthebiinae Ochthebius Asio	bates bicolor	n ferroi		IBE-PB28	Spain; Huesca, Sta. Cruz de Serós, Barranco Carbonera 3.8.2013 I. Es	Esteban	HG915303	LT991461 LT	390700 LT99085	LT991055
43 Hydraenidae Ochthebiinae Ochthebius Asio	bates bicolor	n figueroi		IBE-AN 23	Spain; Cantabria, Río Soto 15.7.2014 [D.T.	.T.Bilton	LT991277	LT991462 LT	90701 LT99085	LT991056
44 Hydraenidae Ochthebiinae Ochthebius Asio	bates bicolor	n gagliardii		IBE-RA121	Italy; Toscana, Lorenzana, Gello Mattaccino, pond 26.5.2008	Ribera	LT991278	HF931301 LT	990702 LT99085	LT991057
45 Hydraenidae Ochthebiinae Ochthebius Asio	bates bicolor	heydeni		MNCN-AI390	Spain; Ourense, Sierra de Queixa, river San Lázaro 9.7.2005	Ribera & A. Cieslak	LT991279	HF931194 HF	931419 LT99085	LT991058
46 Hydraenidae Ochthebiinae Ochthebius Asio	bates bicolor	immaculatus		IBE-AN434	Mallorca (Spain); Mallorca, Salines de Llevant 28.3.2016	Ribera & A. Cieslak	LT991280	LT991463 LT	990703 LT99085	LT991059
47 Hydraenidae Ocntrebiliae Ocnthebilis Asio	bates bicolor hatas hicolor	Irenae		IVIIVUN-MI900	Spain: Navarra, Ludela, dittri ritear baisa de Purguer 20.7.2004 Sosio: Alicanta: Alicatara 12-5, 2012	NUPER & A. CHESIAK Estaban	11001001	HG015207 17	200204 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17001061
49 Hydraenidae Ochthebilnae Ochthebilus Asiol	bates bicolor	lederi		IBE-AN63	Azerhalian: Alshanili. 7 km NE Masaliv 8.5.2014	Ribera & A. Rudov	LT991282	LT991464 LT	200617 20/06	LT991062
50 Hydraenidae Ochthebiinae Ochthebius Asiol	bates bicolor	h lenkoranus		IBE-AN 75	Azerbaijan; Gosmalijion, stream 7.5.2014 []. Ri	Ribera & A. Rudoy	LT991283	LT991465 LT	390706 LT99085	LT991063
51 Hydraenidae Ochthebiinae Ochthebius Asiot	bates bicolor	n montanus		IBE-AN 207	Greece; Evvola, Seta, mountain stream 8.4.2013 I. Ri	Ribera & A. Cieslak	LT991284	LT991466 LT	390707 LT99085	LT991064
52 Hydraenidae Ochthebilnae Ochthebius Asio	bates bicolor	n opacus		MNCN-AI389	Italy; Liguria, 2 km E Coslo di Arroscia 31.7.2005	Ribera & A. Cieslak	LT991285	HF931193 HP	931418 LT99086	LT991065
53 Hydraenidae Ochthebiinae Ochthebius Asio	bates bicolor	n peregrinus		IBE-AN 206	Greece; Sterea Ellada, Fokida, Itea, stream E of Kirra 7.4.2013	Ribera & A. Cieslak	LT991286	LT991467 LT	990708 LT99086	LT991066
54 Hydraenidae Ochthebiinae Ochthebius Asio.	bates bicolor	n sp.		IBE-AN74	Azerbaijan; Elabad, road to Garaybayli, stream 4.5.2014	Ribera & A. Rudoy	LT991287	LT991468 LT	990709 LT99086	LT991067
55 Hydraenidae Ochthebiinae Ochthebius Asio	bates bicolor	n striatus		MNCN-AI787	Turkey; Bartın, between Amasra & Inpiri, spring & stream 25.4.2006	Ribera	LT991288	HF931226 HF	931455 LT99086	LT991068
56 Hydraenidae Ochthebiinae Ochthebius Asio	bates bicolor	n stygialis		IBE-AN 160	Turkey; Antalya, 1 km N Haciyusuflar 24.6.2014 D.T.	.T. Bilton	LT991289	LT991469 LT	990710 LT99086	LT991069
57 Hydraenidae Ocntreblinae Ocntheblus Asio	bates minimu	aeneus		MINCN-AI914	Moroccco; Ou-Magnous, Amagnouz 24.4.2000	Kibera, P. Aguilera, C. Hernando & A. Millan	LT991290	HF931240 HF	9314/2 L199086	L1991070
58 Hydraenidae Ocntreblinae Ocntreblus Asio	bates minimu	alpinus 		IBC-RALLIA	Belarus; Berezinsky Biosphere Reserve 24.6.2013	KIDERA Value el tralación	11991291	LI991470 LI	100011 TT0006	11016611
60 Hydraenidae Ochthebiinae Ochthebius Asio	hates minimu	andrainii cf		IBE-AN 104	cuirupiai, Muniarai, SU Kuri Ne Gasireria 13.0.2014 Febrionis: Oromia: Bala Mountains: Goba Eordert: Todona Rivar 22:2:2014	. Vila ox G. Ialavela 1. A. Išch	LI 331232	1 1 2274/1 FI	1000 11 1199060	1 T991073
61 Hvdraenidae Ochthebinae Ochthebius Asiol	bates minim	us andronius		MNCN-AI498	South Africa: West Cape. Prince Albert Road, nond 23.3.2001	Ribera & A. Cieslak	LT991294	LT 991473 LT	90714 LT99086	LT991074
62 Hydraenidae Ochthebiinae Ochthebius Asioi	bates minimu	us discretus		MNCN-AI503	California (USA); Trinity Co., Forest Glen, Rattlesnake Creek 22.6.2000	Ribera & A. Cieslak	LT991295	LT991474 LT	90715 LT99087	LT991075
63 Hydraenidae Ochthebiinae Ochthebius Asio	bates minimu	us flavipes		IBE-RA437	Slovakia; Hámske tŕstie, near Číčov, dítch 7.6.2009	Ribera	LT991296	HF931315 LT	90716 LT99087	LT991076
64 Hydraenidae Ochthebiinae Ochthebius Asio	bates minimu	us hokkaidensis		IBE-AF213	Japan; Hokkaido, Togeshita, Rumoi-shi 18.7.2007 H. Y	. Yoshitomi		HF931125 HP	931344 LT99087	LT991077
65 Hydraenidae Ochthebiinae Ochthebius Asio	bates minimu	us minimus		MNCN-AI447	Slovakia; Banská Bystrica Region, Cerovo 2005	ia R.G. Beutel	HE970917	HE970842 HE	971074 HE97095	HE970995
66 Hydraenidae Ocntneblinae Ocnthebilion Asia	bates fromm	remotus	-	MNUN-ALLUSU	Turkey; Karabuk, stream in Çayorenguney z8.4.2006	. Castro Rite 0 & Cinclet	1921291	HF951148 nr	93130/ LIYYUD/	LI991070
o/lutarenidae Ocntheuniae pounteurus poin	Dates	ansonngnu sr		ININCIN-MINOV	oran canaria (spain); iwoya, barranco de Azuaje 15.4.2001	NUPER & A. CIESIAR	LI 3944.30	LIND 121212 ILL	1000CC11 / 1122001	L1994015

Table 53: List of material used in the molecular phylogeny, including voucher numbers, accession numbers of the sequences and locality data. In bold, newly obtained sequences.

Asiobates minim	nus	anabrensis	MNCN-AH75	Spain: Zamora. Paroue Natural Lago Sanabria. Laguna de la Yegua 4.7.2007	L.F. Valladares	LT991299	EU660055	HF931357	LT99108
minim	s snu.	ġ	IBE-AN 292	Alberta (Canada); 2 km W Lundbreck 27.6.2000	I. Ribera & A. Cieslak	LT991300	LT991475	LT990717 LT9	30875 LT99108
minim	snm	p.	IBE-AN97	Ethiopia; Oromia, Jemjem Forest, small stream 25.2.2014 M	M.A. Jäch	LT991301	LT991476	LT990718 LT9	30876 LT99108
ninim minim	+inoilie	p.	IBE-AN93 MANCH-A11272	Ethiopia; Amhara, Debark, Simien Mountains 18.6.2014 R. California (11SA): Santa Bachara: Co. Sadrawick Besorie 6.7.2006	R. Vila & G. Talavera A E 7 short	LT991302	LT991477	LT990719 LT9	90877 LT99108
		exaratus	MNCN-AI453	Tunisia; road Jendouba-Makthar, 1 km NW crossroad to Mt. Kebbouch 24, 10,2001	I. Ribera & A. Cieslak	LT991304	HF931202	HF931427 LT9	30878 LT99108
		bertarius	MNCN-AI421	Morocco; Ou-Maghous, Amaghouz 24, 4.2000	I. Ribera, P. Aguilera, C. Hernando & A. Millán	LT991305	HF931196	HF931421 LT9	90879 LT99108
		erlaevis	MNCN-AI548	NUVARIAS, SILUUETIKA, MUUAVA TIVET J.C.2003 Madagascar; Ankarana, Ier Canyon, river 12.2004 N	n. nuera M. Balke	LT991307	HF931211	HF931437 LT9	90881 LT99108
		p.	IBE-AN 390	South Africa; West Cape, Baardskeerdersbos, Boesmans River 10.5.2010	J. Den Heijer & A. Hidalgo-Galiana	LT991308	LT991479	FT9	90882 LT99108
			MNCN-AI501	South Africa; West Cape, 5 km SE Franscrindek 25.5.5.00.1 South Africa: Eastern Cape, Kareedouwberg, river in Skoop Drif 23.3.2001	I. KIDERA & A. CIESIAK I. Ribera & A. Cieslak	LI 991309 LT 991310	HF931207	HF931432 LT9	90884 LT99105
	~	, d	MNCN-AI519	Bhutan; Sarpang, 11 km NW Sarpang, Bhur Khola river 27.11.2005	M.A. Jäch	LT991311	LT991481	LT990722 LT9	90885 LT99109
		.d	MNCN-AI520	Bhutan; Punakha, 16 km NW Punakha, Mo Chhu river 28.11.2005	M.A. Jäch	LT991312	LT991482	LT990723 LT9	90886 LT99109
	-1 10	p. edriaticus adria	aticus IBE-AN 787	Ianzania, Mwanza Kegion, near Kasnisni, ponos 24.7.2010 Croatia: Trsteno. rockoools 5.5.2017	K. Sites & A. Mbogno A. Faille: J. Fresneda & I. Ribera	LI 991313 LT 991314	LT 991483	LT990725 LT9	90888 LT99105
		celatus	IBE-AN441	Cyprus; Akamas peninsula, Lara beach 29.4.2016	A. Millán, I. Ribera, J. Velasco & A. Villastrigo	LT991315	LT991485	LT990726 LT9	90889 LT99109
	-	reyi	IBE-RA1197	Azores (Portugal); Terceira, São Pedro, rockpools 4.9.2012	I. Ribera	LT991316	LT991486	LT990727 LT9	90890 LT99109
	-	ejolisii	MNCN-AI513	Spain; Pontevedra, Nigran, Playa Patos 3.10.2005	J. Garrido	LT991317	HF931208	HF931433 LT9	90891 LT99109
		erratus	MINCN-ALITI92	Morocco; El Ouedaya, Oued Seot 18.4,2006	A. Millan & Collaborators I Bihora & A Ciaclab	LI 991318	HF9311/1 HE931200	HF931391 LI9	90892 L199109
	., 10	aulierai	MNCN-AI387	Subject transe, dep corse, not us centuri 20.3.2000 Spain: Avila: Arenas de San Pedro, río Pelavo 15.5.2005	L Ribera & A. Cresian	HF947939	GU143761 (GU143728 GU1	43770 GU1437
		olveranus	MNCN-AI791	Turkey: Bartin, between Topallar & Cakraz, calcareous stream 25.4.2006	I. Ribera	LT991320	GU143744 0	SU143733 GU1	43768 GU1437
		exsculptus	MNCN-AI374	Spain; Barcelona, Guardiola del Berguedà, torrent Gavarrós 25.7.2005	I. Ribera	LT991321	GU143763 (3U143741 GU1	43772 GU1437
		exsculptus cf.	MNCN-AI925	Spain; Albacete, Sierra de Segura, 10 km NYeste, Rio Tús 10.4.2003	V. Assing & P. Wunderle	LT991322	GU143750 (GU143737 LT9	90894 LT99110
	30	gibbosus	MNCN-AI365	Italy; Plemonte, Móngia, torrente Móngia 31.7.2005	I. Ribera & A. Cieslak	LT991323	GU143755 (3U143727 GU1	43769 GU1437
		granulatus	MNCN-AI427	Austria; Niederösterreich, Kleiner Otscherbach, Langau 25.9.2005	M.A. Jäch	LT991324	GU143765 0	5U143725 GU1	43774 GU1437
		paionensis	MNCN-AI507	- Italy, crima nomagna, bosco, romence ramia 24.5.2.000 Snain: León. Puerto de Panderrueda 12.7.2005	L. NUCEI d L. F. Valladares	HF947941	GU143762 0	100 05/57 001	43771 GU1437
		nelanescens	MNCN-AI344	Austria, Niederösterreich, Schwarzenbach, Sankt Veit an der Gölsen 6.8.2005	I. Ribera & A. Cieslak	HE970900	GU143766 (SU143743 GU1	43775 GU1437
	2	aboorii	IBE-RA739	Iran; Mazandaran, near Nowshar, Kheiroud Kenar Forest 2.5.2010	A. Skale	LT991326		LT990728 LT9	90895 LT99110
		pacicollis	IBE-AF162 IPE-AF164	Australia; Victoria, Allambee, 19 km N Leongatha 8.7.2009 Australia: Victoria: Tarra-Bulia: ND - Buize Tarra 0.7.2000	I. Kibera & A. Cieslak I. Bihora & A. Cieslak	LT 99132/ 17001370	LT991487	LT990/29 LT9	90896 LT99110
us austra	alis a	australis	MNCN-AI583	Australia: South Australia, 1 km W Cudlee Creek, River Torrens 14.1.2006	C.H.S. Watts	LT991329	LT991489	LT990731 LT9	0116611 (6006
us austra	ralis li	ividus	IBE-AF163	Australia; Victoria, Tarra-Bulga NP, River Tarra 9.7.2009	I. Ribera & A. Cieslak	LT991330	LT991490	LT990732 LT9	90899 LT99110
us austra	ralis F	robus	MNCN-AI584	Australia; South Australia, 1 km W Cudlee Creek, River Torrens 14.1.2006	C.H.S. Watts	LT991331	LT991491	LT990733 LT9	90900 LT99110
us austra	tralis 4	etosus	IBE-AF165	Australia; Victoria, Tarra-Bulga NP, River Tarra 9.7.2009	I. Ribera & A. Cieslak A. Dolor Homóndoz, M. Eitrómb & M. Gimmol	LT991332	LT991492	LT990734 LT9	90901 LT99110
ius fossat	tus g	termaini	MNCN-A1454	Chile: IX Región, 5 km E Lonauimay. road to Lolén 26.1.1999	1. Ribera & M. Guerrero	LT991334	LT991494	LT990736 LT9	1119011 LT9911
bius fossat	atus F	beruvianus	MNCN-A1689	Peru; San Clemente, km 222 Panamericana Sur 31.8.2005	P. Aguilera	LT991335	LT991495	LT990737 LT9	90904 LT99111
bius fossat	atus	Ū.	MNCN-AI569	Chile; Chiloé, 6 km E Huillinco, river in Notuco 3.2.1999	I. Ribera & M. Guerrero	LT991336	LT991496	LT990738 LT9	1119011 10000
		guliani	MINUN-AI/16	Australia; West Australia; Peron Point 2.10.2003	C.H.S. & G.A. Watts	LI 991337	LI 99149/	LI990/39 LI9	116611 9060
andra	iae	arauoxum ateroa zellae	IBE-AFILO IRF-RA735	kussia; vogograuskaya Obiasi, Lake Eitön, resioual pools 17.4.2005 I Inited Arah Emirates: Aiman salt water nools NF Aiman Chv 25.1.2010	M A Bich	11991336	1 T991498	IT990740 IT9	11991 10906
atrice	eps	Indalusicus	IBE-PA296	Spain; Cádiz, Salinas de Hortales 10.11.2003	A. Millán & collaborators	LT991340	HF931297	LT990741 LT9	119010 LT9911
atrice	eps	inxifer	MNCN-AI945	Morocco; Immouzzer Ida Ou Tanane, Assif Tanit 21.4.2001	I. Ribera & A. Cieslak	LT991341	HF931247	HF931482 LT9	90910 LT9911
atrice	eps 5	itriceps	IBE-AN210	Tunisia; road Jendouba-Makthar, 1 km NW crossroad to Mt. Kebbouch 24.10.2001	I. Ribera & A. Cieslak	LT991342	LT991499	LT990742 LT9	90911 LT9911
atrice	ane	burjknalita Jentifer	IBE-KA/3/ IBE-DA200	United Arab Emirates; Ajman, satt water pools NE Ajman City 25.1.2010 Conity: Navierra: Barranco Salado de Mendavia 2010 2008	M.A. Jach A. Millón & collaborators	LI 991343	L1991500	L1990/43 L19	116611 7160412
atrice	sue of	lanraccionic	IBE-17230	ppanii, vavaria, bariarico barado de iveridavia 50/10/2005 Russia: Volgooradekava Ohlasti Tako Fitoni or Lantsug Rivor 14.4.2008	A. Ivrillari & corradoratoris A. Prokin	LI 331344	HF931122	HE931340 170	TT6611 51606
atrice	eps	oulae	IBE-AN476	Dibouti: 50 km W Dikhil, Lac Abbé, thermal springs 2.2.2016	M.A. Jäch	LT837919	LT991501	LT990745 LT9	0915 LT99112
atrice	eps t	acapasensis baet	icus IBE-AN365	Spain; Málaga, Laguna de Fuente de Piedra 3.5.2011	A. Millán & collaborators	LT991346	LT991502	LT990746 LT9	90916 LT99112
atrice	eps t	hermalis	IBE-AN451	Cyprus; Larnaka, saline coastal pond 25.4.2016 A	A. Millán, I. Ribera, J. Velasco & A. Villastrigo	LT991347	LT991503	LT990747	LT99112
athce	eps r	bespoliatus	IBE-KA/35 MMCNLATEG	United Arab Emirates; Ajman, satt water pools NE Ajman City 25.1.2010 Mailores (Secie): Mailores Secienced Housed 15.10.2004	M.A. Jach Dihors 2. A Cinclet		LT991504	LT9	119917 L19911
COLLIN	igatus p	sauthieri	MNCN-AI55	Trunisia road Kehili-Tozeur. 37 km SF Tozeur. salines 26.10.2001	L Ribera & A. Ciestak		HF931212	6L1 OCETEC	CI16611 01606
corrug	igatus p	berpusillus	IBE-AN323	Morocco; Ouezzane, Sidi Kacem, Oued Khendek 18.4.2006	A. Millán & collaborators		LT991505	617	30920 LT99112
foveol	olatus é	elisae	IBE-RA746	Iran; Khuzestan, Behbahan, Morvarid spring 4.9.2010	E. Irani	LT991348	LT991506	LT9	90921 LT9911
foveol	olatus f	oveolatus	MNCN-AI801	Turkey: Kastamonu, Çocukören 26.4.2006	I. Ribera	LT991349	HF931228	HF931457 LT9	90922 LT9911
foveo	olatus	ajeki	IBE-RA1231	Socotra (Yernen); Dixam plateau, Firmihin, Dracaena woodland 15.6.2012	J. Hájek - Ritere C. Hernerde S. Similer	LT991350	LT991507	LT990748 LT9	90923 LT9911
10VE01	olatus	arten maganoulatur	IBE-KA/U5	Uman), Al-Akndar, Bania, wadi in city 5.4.2010 Buliosity institution and 27.5 2015	I. KIDEra, C. Hernanoo & A. Clesiak	LI 991351	L1991508	L1990/49 L19	10924 L19911
foven	oldtus Matus	nagitatifutus	IBE-AN 520	buigaria, nouari, river Arua 27.5.2013 France: Drôma river Máourae 2016	L RUPEra	11991352	11991510	L1990/50 L19	119911 51000
foveol	olatus	nediterraneus	MNCN-AI422	Morocco; Ou-Maghous, Amaghouz 24.4.2000	I. Ribera, P. Aguilera, C. Hernando & A. Millán	LT991354	HF931197	HF931422 LT9	90927 LT99113
foveol	olatus r	merinidicus	IBE-RA1023	Spain; Albacete, River Mundo, Azud de Liétor 26.7.2012	A. Millán & collaborators	LT991355	LT991511	LT990752 LT9	90928 LT9911
foveol	olatus F	edicularius	IBE-AN 809	Italy; Udine, Flagogna 9.4.2017 A	A. Eckelt	LT991356	LT991512	LT990753 LT9	90929 LT9911
foveol	olatus s	atoi	IBE-AF210 IBE-AF132	Japan; Hokkaido, Taiki 11.7.2009 Halvi Emilia Pomanna Bocco Torranta Parma 24 5 2008	H. Yoshitomi Dihara	LT991357	HF931124 HE021115	HF931343	LT9911
foveol	olatus v	rirgula	IBE-AF134	Italy; Emilia Romagna, Vigoleno, Parco dello Stirone, Torrente Stirone 25.5.2008	. Ribera	LT991359	HF931116	HF931333 LT9	110031 LT99114
lobico	ollis E	basilicatus	IBE-AN 801	Sardinia (Italy); Cabras, Stagno di Cabras 10.4.2017	I. Ribera & A. Cieslak	LT991360	LT991513	LT990754 LT9	90932 LT99114
lobico	ollis	aesaraugustae	MNCN-AI1195	5 Spain; Zaragoza, Medianan de Aragón, saline river 20.7.2006	A. Millán & collaborators	LT991361	HF931172	HF931392 LT9	90933 LT99114
lobico	ollis	Jelgadoi	IBE-AN 364	Spain; Murcia, Rambla del Reventón 9.3.2012	A. Millán & collaborators	LT991362	LT991514	LT990755 LT9	90934 LT99114

407

1 T991144	LT991145	LT991146	LT991147	LT991148	LT991149	LT991150	L1991151	17991153	LT991154	LT991155	LT991156	LT991157	LT991158	LT991159	LT991160	LT991161	LT991162	LT991163	L1991164	17991166		17991167	17991168	LT991169	LT991170	LT991171	LT991172	LT991173	LT991174	LT991175	LT991176	11102001	17001170	17991179	LT991180	LT991181	LT991182	LT991183	LT991184	LT991185	1001186	L199118/	17001180	LT991190	LT991191	1991192	1 L1991193	LT991195	LT991196	LT991197	1 L1991198	LT991200	LT991201	LT991202	LT991203	LT991204	CU21991205	17991205	LT991208	LT991209	LT391211	1.T991212	
11990935	7 LT990936	4 LT990937	8 LT990935	0 LT990935	9 LT99094C	0	1 LI990941	3 1 T990943	4 LT990944	5 LT990945	6 LT990946	7 LT990947	8 LT990948	9 LT990945	15 LT990950	0 LT990951		1 LT990952	2 LI99095	8 17990955		3 1T990956	4 1 T990957	5 LT990958	5	6 LT990959	7 LT990960	8 LT990961	C LT990962	0 LT990963	1 LT990964	10020011	2 1 TOONOGE	0 LT990967	4 LT990968	4 LT990969	5 LT99097G	6 LT990971	7 LT990972	30 LT990973	12000071	2/60601 0	A 1790077	1	2 LT990978	13 LT990975	5 I T990981	6 LT990982	0 LT990983	7 LT990984	28606611 80	9 LT990987	0 LT990988	1 LT990985	2 LT99099C	11090001	14 L1990994	5 LT990944	7 LT990995	.6 LT990996	8 11334331	9 1 T990998	
5 I T99075	6 LT99075	8 HF93153	7 LT99075.	5 HF93142	8 LT99075	9 LT99076	1 L1990/6	7 1T99076	3 LT99076	4 LT99076.	5 LT99076	6 LT99076	7 LT99076	8 LT99076	1 HF93153	9 LT99077	9	1 LT99077	LI990/1	3 HF93153		7709PT1 0	4 LT99077	6 HF93136	5 LT99077.	6 LT99077	7 LT99077	8 LT99077.	9 LT99077	0 LT99078	1 LT99078	Z L1990/8	2 1 T00/101	4 HF93153	2 HF93147	4 LT99078	16 LT99078.	5 LT99078	9.066LT	5 HF93148	17 LT99078	8 L1990/8	1 HE031A1	0 LT99079	1 LT99079.	2 LT99075	1 1T99079	7 LT99079	1 HF93137	05 LT99079	5 1T00070	5 LT99079	7 LT99080	8 LT99080	0 LT99080	6 LT99080	4 L199060	1 1799080	5 LT99080	7 HF93141	0 LT99080	TOOOOT 1	
1799151	LT99151	HF93130	LT99151	HF93119	LT99151	LT99151	LI 99152	1790157	LT99152	LT99152	LT99152	LT99152	LT99152	LT99152	HF93131	LT99152	LT99153	LT99153		HF02121	1790153	HF93127	1T99153	HF93114	LT99153	LT99153	LT99153	LT99153	LT99153	LT99154	LT99154	LI99154	1 T00154	HF93131	HF93124	LT99154	HG91530	LT99154	LT99154	HF93124	LT99154	L199154	HE03110	LT99155	LT99155	LT99155	1799155	LT60265	HF93115	HG9153C	HF95122	LT99155	LT99155	LT99155	HF93130	F19441/	1194421	FIG4425	FJ94427	F194410	LT99156	1 T00156	
11991363		LT991364		LT991365	LT991366	LT991367	LI 991368	17991369	LT991370	LT991371	LT991372	LT837918	LT991373	LT991374	LT991375	LT991376	LT991377	010 000	LI 9913/8	11991380		17991381	17991382	LT991383	LT991384	LT991385	LT991386	LT991387	LT991388	LT991389	LT991390	11991391	11001203	LT991393	LT991394	LT991395	LT991396	HF948001	LT991397	LT991398	LT991399	LI 991400	LI 991407	LT991403	LT991404	LT991405	LI 991406	LT602656			LI 991408		LT991410	LT991411		LT991412	HF9480U2	LI 991413 17991414	LT991415	LT991416	LT991418	17991419	
C Guttérrez-Cánovas	R. Lyszkowski	I. Ribera & A. Cieslak	A. Millán & collaborators	I. Ribera & A. Cieslak	I. Ribera & A. Rudoy	A. Millán, I. Ribera, J. Velasco & A. Villastrigo	W.D. Snepard	P. Abellán	P. Aguilera	W.D. Shepard	D.T.Bilton	M.A. Jäch	T. Berendonk	 Ribera & A. Rudoy 	I. Ribera & J. Bergsten	P. Abellán	P. Abellán	A.E.Z. Short, M. Garcia & L. Joly	I. KIDETA & A. KUGOY	I. Ribera D. Acrillera & C. Hernando	M Brujer	N. Hikida	G Challet	A. Castro	J. Maté	I. Ribera & A. Cieslak	A.E.Z. Short & M. Caterino	 Ribera & A. Cieslak 	 Ribera & A. Cieslak 	P. Abellán	G. Challet	II. KIDERA & A. CIESIAK	I. NUCLA & A. CRESIAN	I. Ribera & A. Ciestak	I. Ribera	I. Ribera & A. Cieslak	D.T. Bilton	D.T. Bilton	D.T. Bilton	I. Ribera & A. Cieslak	E. Irani A. T. Diteau	D.T. BITON	M A Biton	I. Ribera & A. Cieslak	D.T. Bilton	I. Ribera	D.I. Bitton A Millán I Rihera I Velasco & A Villactrigo	J. Köhler	I. Ribera & A. Cieslak	D.T. Bilton	I. KIDEra I. Dihara S. A. Durdovi	II. Nucera us co. nucury M.A. Jäch	N. Havashi	Y. Kamite	I. Ribera & A. Cieslak	P. Abellán & F. Picazo	A. Millan & collaborators	I . Soylemez A. Millán & collaborators	S. Bouzid	I. Ribera & A. Cieslak	I. Kubera & A. Ciesiak A. Prokin	Princesson Budger	II. RIDETA & A. RUGOV
BE-AN600 Striv/(#ak)- Palarmo Firma Salco 28.7.2008	BE-AN126 Tenenfe (Spain): Puerto de la Cruz, Roque Grande, 9.4.2015	BE-RA242 Menorca (Spain); Cap de Favàritx 26.2.2010	MNCN-A1226 Spain; Guadalajara, Alcolea de las Peñas 21.5.2005	VINCN-A1420 Morocco; Agarzane, tributary of Oued Dråa 17.4.2001	BE-AN72 Az erbaijan; road Budzhakah-Bash-Dashagyi, ponds 5.5.2014	BE-AN 446 Cyprus; Loukrounou, upstream of Evretou reservoir 29.4.2016	BE-AN1// ANIZONA (USA); YAVAPAI UO., Agua FINA KIVEY 22.0.2007 DE AN1217 Trunicia: cond Knimman Enfedt 13 Jan Ministrum Jamman 27.10.2001	BE-AN 222 California (1)SAV-Invo Co. Shochone. Amaraosa River 8.4.2008	MICN-A1690 Peru: San Clemente, km 222 Panamericana Sur 31.8.2005	BE-AN 153 California (USA); Mendocino Co., circa 5 mi W Davis Creek 9.6.2007	BE-RA854 South Africa; West Cape, West Cape NP, Tsaarsbank, rookpools 2.10.2011	BE-AN475 DJIbouti; 50 km W Dikhil, Lac Abbé, thermal springs 2.2.2016	BE-RA1119 Alberta (Canada); Alberta, Derwent, circa Lac Coté 2000	BE-AN66 Azerbaijan; Alishanli, 7 km NE Masally 8.5.2014	BE-RA304 California (USA); Riverside Co., Morongo Valley, Whitewater river 12.12.2010	BE-AN219 California (USA); Santa Barbara Co., Coal Oil Point Reserve (Slough road) 26.3.2008	BE-AN 223 [California (USA); Inyo Co., Ballarant, Post Office Spring 10.4.2008	BE-RA1129 Venezuela; Guárico state, Rio San Antonio 4.2.2010	BE-AN / J AZErbaljan; road buznakan-basn-basnagyi, ponds 7.5.2014 Anton Areas feasia: Mandrid A mainer caliane 4.3.2006	RE-RA373 Monorco- Moulay Pouseelham Dued Dradar 12 & 2007	BE-RA58 Costa Rica: Cartago 7 8 km SF Turrialha Río Tuis 15 3 2009	MCN-H127 Itanan' Honshii Iharaki Pref. Kohodihana. Ohmika-machi Hitachi 41.27.7.2006	MNCN-AH9R South Africa: West Cane Panendorn hrackish nond 23.8.2006	MNCN-AI1028 Turkev: Sinop. road Saravdüzü-Bovabat. stream 5 km S. Yesilvurt 27.4.2006	BE-AN 18 Australia: Queensland, Brisbane, Shorncliffe 2.5.2014	MNCN-AI464 California (USA); Mono Co., Long Valley, Owens River road 19.6.2000	BE-AN 152 California (USA); Ventura Co., Los Padres National Forest, Upper Sespe Creek 1.7.2006	BE-AN 291 Alberta (Canada); 2 km W Lundbreck 27.6.2000	BE-AN79 South Africa; West Cape, Wilderness NP, road to Swartvlei, stream 22.3.2001	BE-AN 221 California (USA); Inyo Co., Tecopa, Amargosa River 8.4.2008	dNCN-AH100 South Africa; West Cape, Berg River, saline stream 3.9.2006	BE-AN433 Mailorca (spain); Mailorca, Salines de Levant 28.3.2016	MINCIPATING E FLAILOR DOUCHES OU MINUTE, SAIIT-DE-STIAU 2577,2003 BE. AMA27 California (TISA): Mandorino Co. Manchastar 20.6.2000	BE-MM457 Valid UTING (VUM), INTERNATION VV. INTERNATIONEL JUVILIAN RE-RAAD Strain 7 anaptys. Cinco Villas, Estancia de Castiliscan 1.11.2009	MICN-A1918 Morocco: Azrou. Lac Afenourir 29.4.2000	BE-AN5 Turkey; izmir, 6 km E Foça, head of reservoir 26.7.2014	BE-RA1181 Spain; Jaén, Río Madera 7.9.2013	BE-RA595 Spain; Cádiz, 15 km W Los Barrios, Arroyo del Tiradero 22.6.2011	BE-AN311 Portugal; Algarve, Caldas de Monchique 11.6.2015	MNCN-AI943 Morocco; Immouzzer Ida Ou Tanane, Assif Tanit 21.4.2001	BE-KA744 Iran; Khuzestan, Benbahan, Morvarid spring 4.9.2020 or passed for the rest of the rest of the second spring 4.9.2020	BE-KALL79 Spain; Albacete, Chorros del Nio Mundo 7.9.2013 DE AN164 Truckov, Antoloci d'Eco Mi Hockworditic 24.6.2014	DE-AVA JO4 IUTREY; AILIGIYG, A KITI N FIGUYUSULIGI 24,0.2014 ANCN_A1376 Austria: Niadaröstarraich Lunz 2002	BE-RA1057 Greece; Peloponnese, Achaea, 1.5 km NE Kleitor 3.4.2013	BE-RA1173 Italy; Liguria, Imperia, 1 km S Pigna 7.7.2013	Bt-R41082 Mailorca (spain); Sa Calobra, Font de sa Mata 8.5.2013	MINUN-ALZ6 England (UK); S DEVOR, Ladram Bay, seepage 4.7.2007 BF-AMA48 Contro: Toukroundir river Kahoura 28.4.2016	BE-AN382 Sardinia (ItaM): Golf of Orosei. Cala Mariolu 12.10.2015	MNCN-A11064 Spain; Teruel, Beceite, river Matarranya, El Parrisal 7.8.2006	BE-RA1180 Spain; Albacete, Chorros del Río Mundo 7.9.2013	MNCN-AI819 JUrkey; Kastamonu, road Agil-Azdavay 28.4.2006 BF. AN77 Azarbailan: Gaemalillon, etraam 7.5.3014	BE-RA733 Itinited Arab Emirates: Fujairah (north), Haiar Mountains. Wadi Wuravah 24.1.2010	MICN-A11289 Japan: Honshu, Shimane Pref., Mt. Sentsu, Okuizumo 15.7,2006	MNCN-HI26 Japan; Shikoku, Ehime Pref., Oda-gawa, Mizumoto, Uchiko-chô 30.9.2006	BE-RA118 Tunisia; road Safax-Gabes, Wadi 7 km N Hachichina 25.10.2001	MNCN-PA141 Sicily (Italy); Caltanissetta, Torto Valley 11.6.2007	VINCN-PA30 Spain; Cordoba, Prego de Cordoba, Nio Salado de Priego 21.7.2000 قد ۲۸۲۵۰ Truture: الاستانية المالية المناطقة المناطقة المناطقة المالية المالية المالية المالية المالية المالية	BE-AN 22 I IURREY; KIRIKKAIE, DEICE ÇOğUI SAIL POND 14-0.2012 ANCN-PA32 MArrocco: Oliezzane Sidi Karem, Olied Khendek 18.4.2006	MNCN-PA253 Algeria; Blida, Mellaha 23.8.2007	MNCN-AI38 Spain; Albacete, Pinilla, Salinas de Pinilla 2.6.2002	MINUN-ATJ33 – TUTNISIA; TOad neurit-tuzeur, 37 Kitt 35 Füzeur, 34ittes 26.40.2004 BE-AF168 – Russia: Volgogradskava Oblast, Lake Etton, residual pools 17,4.2008		RF-AN64 IA7-Prhallan: Alshanii. 7 km NE Masaliy 8.5.2014
al		8	M	Σ	8	<u>e</u> :	2 9	2 4	Σ	8	8	8	8	18	8	≞	-	99	22	2 9	2 4	2 2	Σ	Σ	9	Σ	8	8	8	8	Σ	eletus IB		<u>;</u>	allaciosus M	iridis IB	8	8	8	Σ	29	2 9	notalloccone M	lato IB	8	=:	Σď	-	Σ	<u> </u>	Σª	1	įΣ	Σ	8	Σ	2 9	₽ ≥	×	23	5 🕾		
iroi	pidicola	bicollis	uadrifossulatus	velunus	refniae	refniae cf.	rizonicus	therits	atesoni	isinuatus	apicola	happuisi cf.	ostatellus cf.	vanescens	ruwelli	terruptus	neatus	neatus cplx	viaipennis	iaridionalic	Percamericanus	nonicus	adalic	usillus	ueenslandicus	Actus	actus cplx	actus cplx	alinarius	culptoides	pinasus	uppictus	alformic 5	ridecens	ridis	iridis	bacetinus	iazi	ayosoi	riotes	Ivae	Juffichori	idXIISCITET	netallescens p	norettii	edroi	oweri	copuli	emisericeus	emotus	erpentinus	uravah	asegawai	ponicus	prrugatus cf.	ereckei	aber	alopnilus	ormandi	otabilis	eisonis		
Inhinallis	lobicollis	Iobicollis k	lobicollis c	Iobicollis t	marinus a	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	marinus	metallescens a	metallescens	metallescens	metallescens	metallescens	metallescens	metallecrens	metallescens	metallescens	metallescens	metallescens p metallescens	metallescens	metallescens	metallescens	metallescens s	metallescens	nitidipennis	nitidipennis	notabilis	notabilis 8	notabilis	notabilis	notabilis	notabilis	notaurits a		InelSONIS
Ochthahius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthobius	Ochthehius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthobius	Ochthahius	Ochthehius	Ochthehius	Ochthehius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthahius	Ochthehius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthobius	Ochthabius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthabius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochtnebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	0.111-11-0	ormnepius .
Chthahius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius -	Ochthebius	Ochthobius	Ochthehius	Ochthebius	Ochthebius	Ochthebius -	Ochthebius	Ochthebius	Ochthebius -	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Octreeolus	Ochthahius	Ochthehius V	Ochthehius V	Ochthehius V	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius -	Ochthebius -	Ochthebius	Ochthebius	Ochthebius	Ochthabius	Orththehius	Ochthebius	Ochthebius	Ochthebius	Ochthebius -	Ochthebius	Ochthebius	Ochthebius	Ochthobius	Ochthabius	Ochthebius	Ochthebius -	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthabius	Ochthebius	Ochthebius	Ochthebius	Ochthebius -	Ochthebius	Ochtnebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius		Ochthebius -
chthehinae [chthebiinae	chthebiinae (chthebiinae (Chthebiinae	Achthebiinae	Chthebiinae	chthobinae	chthehinae (chthebinae (chthebiinae (chthebiinae (chthebiinae (Chthebiinae	Chthebiinae	Chthebiinae	Chthebiinae	Chthebiinae .	ochthebiinae	chthebinae	chthehinae f	chthehinae (chthehinae (chthehinae (chthebiinae	chthebiinae C	chthebiinae (chthebiinae (chthebiinae (chthebiinae v	Achthebiinae	Chtheblinae	Cutheblinae	chthahinaa /	chthehiinae (chthebiinae c	chthebiinae (chthebiinae (chthebiinae (Achthebiinae	Achthebiinae	ochtheblinae	chthobinae	chthehinae f	chthebiinae	Chthebiinae c	chtheblinae	chthebinae (chthebiinae	chthebiinae (chthebiinae	chthabiinae	chthebiinae (chthebiinae C	chthebiinae	Chthebiinae t	chthebiinae	Chtheblinae	chthebiinae (chthebiinae (chthebiinae	chthebiinae		whthe binae In
140 Hvdraenidae 10	141 Hydraenidae O	142 Hydraenidae O	143 Hydraenidae O	144 Hydraenidae O	145 Hydraenidae O	146 Hydraenidae 0	147 Hydraenidae U	149 Hvdraenidae	150 Hvdraenidae	151 Hydraenidae O	152 Hydraenidae O	153 Hydraenidae O	154 Hydraenidae O	155 Hydraenidae O	156 Hydraenidae O	157 Hydraenidae 0	158 Hydraenidae C	159 Hydraenidae O	150 Hydraenidae	162 Hvdraenidae	163 Hvdraenidae	164 Hvdraenidae	165 Hvdraenidae	166 Hydraenidae O	167 Hvdraenidae O	168 Hydraenidae O	169 Hydraenidae O	170 Hydraenidae O	171 Hydraenidae O	172 Hydraenidae O	173 Hydraenidae O	1/4 Hydraenidae C	176 Hydraenidae	177 Hvdraenidae	178 Hvdraenidae	179 Hydraenidae O	180 Hydraenidae O	181 Hydraenidae O	182 Hydraenidae O	183 Hydraenidae O	184 Hydraenidae C	185 Hydraenidae U	187 Hydraenidae	188 Hydraenidae O	189 Hydraenidae O	190 Hydraenidae C	191 Hydraenidae C	193 Hydraenidae O	194 Hydraenidae O	195 Hydraenidae 0	195 Hydraenidae	198 Hvdraenidae	199 Hydraenidae O	200 Hydraenidae O	201 Hydraenidae O	202 Hydraenidae IC	203 Hydraenidae Iu	205 Hydraenidae C	206 Hydraenidae O	207 Hydraenidae 0	209 Hvdraenidae O	0	/ TUNHVOLAEDIDAE IO

1 LT991214	LT991215	LT991216	1 LT991217	1 LT991218	LT991219	LT991220	LT991221	1 LT991222	1 LT991223	1 LT991224	LT991225	LT991226	1 LT991227	1 LT991228	: LT991229	1 LT991230	· LT991231	1 LT991232	1 LT991233	LT991234	LT991235	LT991236	LT991237	1 LT991238	5 LT991239	5 LT991240	LT991241	t LT991242	1 LT991243	1 LT991244	LT991245	LT991246	LT991247	1 LT991248	LT991249		 LT991250 	9 HE970997	7 HE971004	
8 LT991000	1 LT991001	1 LT991002	2 LT991005	2 LT991004	9 LT991005	3 LT991006	4 LT991007	2 LT991008	5 LT991005	6 LT991010	1 LT991011	9 LT991012	7 LT991015	8 LT991014	9 LT991015	0 LT991016	1 LT991017	6 LT991016	6 LT991015	2 LT991020	3 LT991021	4 LT991022	0 LT991025	5 LT991024	6 LT991025	4 LT991026	7 LT991025	4 LT991028	5 LT991025	8 LT991030	9 LT991031	0 LT991032	1 LT991035	LT991034	LT991035	2 LT991036	3 LT991037	9 HE970955	7 HE97096;	LT991035
HF93152	HF93148	LT99081	HF93144	LT99081	. HF93133	LT99081	LT99081	HF93153	LT99081	LT99081	HF93143	HF93152	LT99081	LT99081	LT99081	LT990820	LT99082:	HF93144	HF93136	LT99082	LT99082	LT990824	HF93143	LT99082	LT99082	HF93142	LT99082	HF93143	HF93143	LT99082	LT99082	LT99083	LT99083			LT99083	LT99083	HE97107	HE97108	
HF931293	HF931246	LT991563	HF931216	LT991564	HF931121	LT991565	LT991566	HF931304	LT991567	HF931302	HF931206	HF931294	LT991568	LT991569	LT991570	LT991571	HF93131C	HF931218	HF931147	LT991572	LT991573	LT991574	HF931205	LT991575	LT991576	HF931195	LT991577	HF931205	HF93121C	LT991578	LT991579	LT991580	LT991581	LT991582	LT991583	LT991584	LT991585	HE970847	HE970857	LT991586
LT991420	LT991421	LT991422	LT991423		LT991424	LT991425	LT991426	LT991427	LT837917	LT991428			LT991429	LT991430	LT991431	LT991432	LT991433	LT991434	LT991435	LT991436	LT991437	LT991438	HF948004	LT991439	LT991440	LT991441	LT991442	LT991443	LT991444				LT991445					LT991446	LT991447	
I. Ribera & A. Cieslak	I. Ribera & A. Cieslak	I. Ribera & A. Rudoy	I. Ribera & A. Cieslak	N. Hikida	A. Prokin	M.A. Jäch	I. Ribera & A. Cieslak	I. Ribera, C. Hernando & A. Cieslak	M.A. Jäch	I. Ribera, C. Hernando & A. Cieslak	A. Millán & collaborators	I. Ribera & A. Cieslak	D.T. Bilton	I. Ribera	 Ribera & A. Cieslak 	 A. Millán & collaborators 	I. Ribera	 Ribera & A. Cieslak 	A. Castro	A. Millán & collaborators	 Ribera, C. Hernando & A. Cleslak 	M.A. Jäch	 Ribera & A. Cieslak 	A. Millán, I. Ribera, J. Velasco & A. Villastrigo	R. Lyszkowski	 Ribera & A. Cieslak 	J. Sánchez-Meca	J. Garrido	M.A. Jäch	M.A. Jäch	M.A. Jäch	M. Balke & J. Hájek	J. Maté	M. Caterino	H. Yoshitomi	R.G. Beutel	V.V. Grebennikov	I. Ribera & A. Cieslak	A. Castro	V.V. Grebennikov
76 Tunisia; road Tozeur-Gafsa, 24 km SW Gafsa, Oued El Melah 16.10.2001	AI944 Morocco; Immouzzer Ida Ou Tanane, Assif Tanit 21.4.2001	6 Azerbaijan; Gosmalijion, stream 7.5.2014	Al616 Spain; Madrid, Aranjuez, salinas 11.2.2006	95 Japan; Honshu, Ibaraki Pref., Kobodihana, Ohmika-machi, Hitachi-shi 22.7.2006	69 Russia; Volgogradskaya Oblast, Lake Elton, residual pools 17.4.2008	A11269 Bhutan; Timphu, Taba, Wang Chhu river 23.11.2005	04 Greece: Arkadia, Astros, Lake Moustou 6.4.2013	26 Oman; 1 km W Qalhat, residual pools in wadi 9.4.2010	74 Djibouti; Arta, wadi Alloulli (oasis), Oued Kalou 31.1.2016	24 Oman; 15 km SW Sur, residual pools in wadi 9.4.2010	1491 Spain; Murcia, Caravaca, Rambla Pozo Enmedio 2.6.2005	77 Morocco; Âit-Rahhal, Oued Akka 17.2.2001	AH76 Ireland; Clare, Lough Gealáin 31.7.2007	33 Italy; Emilia Romagna, Bosco, Torrente Parma 24.5.2008	AI497 South Africa; West Cape, Prince Albert Road, pond 23.3.2001	63 Spain; Cádiz, Bahía de Cádiz 27:4.2011	86 Ireland; Clare, Finavarra, Lough Muree 23.5.2010	VI636 Gran Canaria (Spain); Moya, Barranco de Azuaje 15.4.2001	A11029 Turkey; Sinop, road Saraydūzū-Boyabat, stream 5 km S Yeşilyurt 27.4.2006	021 Morocco; Tan-Tan, Oued Drâa 3.4.2007	04 Oman; Al-Akhdar, source of wadi Bani Awf 6.4.2010	91 Bhutan; Sarpang, 11 km NW Sarpang, Bhur Khola river 27.11.2005	AI467 Spain; Guadalajara, Salinas de Imón 22.5.2005	40 Cyprus; Akamas peninsula, Lara beach 29.4.2016	00 Tenerife (Spain); Tenerife, La Orotava, rookpools in El Barco 4.4.2015	AI431 Corsica (France); Cap Corse, Port de Centuri 20.9.2000	.1 Spain; Murcia, La Manga del Mar Menor, Punta del Cocedor 10.10.2009	AI514 Spain; Pontevedra, Nigran, Playa Patos 3.10.2005	AI517 Greece; Halkidiki, Kassandra 29.6.2002	A11270 Bhutan; Timphu, Taba, Wang Chhu river 23.11.2005	1 India; Uttarakhand, 10 km SW Rudraprayag, River Alaknanda 11.11.2006	17 [China; Shaanxi, 110 km ENE Xian, Huayin vill., Hija Mt. 10.5.2011	AC16 Hong-Kong (China); Hong Kong Island, hygropetric 19.2.2007	59 [California (USA); San Luis Obispo Co., Rancho Marino Res. 28.6.2008	21 Japan; Hokkaido, Shirakami, Matsumae-chô 14.7.2006	1413 Germany; Thuringia, Jena, Pennickental 19.7.2005	AI564 Ontario (Canada); Eastern Ontario, circa Westport 25.7.2005	VI515 Morocco; Immouzzer Ida Ou Tanane, Assif Tanit 21.4.2001	Al649 Spain; Córdoba, Cabra, La Nava 22.1.2006	1415 Tanzania: Ulueuru Mts between Tchenzema vil. and Lukvaneule Plateau 19-21.10.2002
IBE-PA2	MNCN-	IBE-AN	MNCN-	IBE-RA7	IBE-AF1	MNCN-	IBE-AN	IBE-RA1	IBE-AN	IBE-RA1	MNCN-	IBE-PA2	MNCN-	IBE-AF1	MNCN-	IBE-AN	IBE-RA2	-NNCN-	MNCN-	IBE-RA1	IBE-RA1	IBE-AF1	MNCN-	IBE-AN	IBE-AN:	MNCN-	<1 IBE-AN	MNCN- MNCN- C	MNCN-	MNCN-	BE-AF8	IBE-RA6	MNCN-	IBE-AF1	IBE-AF1	MNCN	MNCN-	MNCN-	MNCN-	IMNCN-
cuprescens	difficilis	difficilis cplx	grandipennis	inermis	joosti	klapperichi	lanuginosus	mahmoodi	micans	monseti	montesi	nanus	nilssoni	nobilis	pagotrichus	pilosus	punctatus	quadrifoveolatu	ragusae	siffverbergi	sp.	sp.	tudmirensis	brevicollis	heeri	quadricollis	quadricollis cpl)	quadricollis cpl	steinbuehleri	himalayae	rivalis	sp.	sp.	vandykei	yoshitomii	sp.	dy basi	pusillum	sp.	Intrancia
punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	punctatus	quadricollis	quadricollis	quadricollis	quadricollis	quadricollis	quadricollis	rivalis	rivalis	strigosus	sumatrensis	vandykei	vandykei					
Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius		15			
Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	 Ochthebius 	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	Ochthebius	 Ochthebius 	Ochthebius	 Ochthebius 	 Ochthebius 	 Ochthebius 	 Ochthebius 	 Ochthebius 	 Ochthebius 	Ochthebius	Ochthebius	 Ochthebius 	 Ochthebius 	 Ochthebius 	 Ochthebius 	 Ochthebius 	Ochthebius	Acrotrichis	Cylindroselloides	Ptenidium	Ptiliolum	Rioneta
Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae	Ochthebiinae					
212 Hydraenidae	213 Hydraenidae	214 Hydraenidae	215 Hydraenidae	216 Hydraenidae	217 Hydraenidae	218 Hydraenidae	219 Hydraenidae	220 Hydraenidae	221 Hydraenidae	222 Hydraenidae	223 Hydraenidae	224 Hydraenidae	225 Hydraenidae	226 Hydraenidae	227 Hydraenidae	228 Hydraenidae	229 Hydraenidae	230 Hydraenidae	231 Hydraenidae	232 Hydraenidae	233 Hydraenidae	234 Hydraenidae	235 Hydraenidae	236 Hydraenidae	237 Hydraenidae	238 Hydraenidae	239 Hydraenidae	240 Hydraenidae	241 Hydraenidae	242 Hydraenidae	243 Hydraenidae	244 Hydraenidae	245 Hydraenidae	246 Hydraenidae	247 Hydraenidae	248 Ptiliidae	249 Ptiliidae	250 Ptiliidae	251 Ptiliidae	252 Ptiliidae

Table S4: (A) primers used for DNA amplification and sequencing reactions; (B) Typical conditions for the polymerase chain reaction.

(A)

-

Gene	Primer	F/R	Sequence	Ref.
COL 51	UniLep F1b	F	TAATACGACTCACTATAGGGATTCAACCAATCATAAAGATATTGGAAC	1
COI-5	UniLep R1	R	ATTAACCCTCACTAAAGTAAACTTCTGGATGTCCAAAAAATCA	1
	Jerry	F	CAACATTTATTTTGATTTTTTGG	5
COL 27	Pat	R	TCCAATGCACTAATCTGCCATATTA	5
COI-5	Chy	F	T(A/T)GTAGCCCA(T/C)TTTCATTA(T/C)GT	3
	Tom	R	AC(A/G)TAATGAAA(A/G)TGGGCTAC(T/A)A	3
	16sAr	F	CGCCTGTTTAACAAAAACAT	5
16S	ND1 A	R	GGTCCCTTACGAATTTGAATATATCCT	5
	16Sb	R	CCGGTCTGAACTCAGATCATGT	5
200	ka	F	ACACGGACCAAGGAGTCTAGCATG	2
285	kb	R	CGTCCTGCTGTCTTAAGTTAC	2
100	18S 5'	F	GACAACCTGGTTGATCCTGCCAGT(1)	4
185	18S b5.0	R	TAACCGCAACAACTTTAAT(1)	4

(B)

COI-	3' / 18S		16S /	28S	
Step	Time	Temperature	Step	Time	Temperature
1	3'	96°	1	3'	96°
2	30"	94°	2	30"	94°
3	30"	50°	3	1"	48°
4	1'	72°	4	1'	72°
5	Go to step 2 and repeat 39		5	Go to step 2 and repeat 34	
	х			Х	
6	10'	72°	6	10'	72°

COI-5'

Step	Time	Temperature
1	3'	96°
2	40"	94°
3	40"	48°
4	1'	72°
5	Go to step 2 and repeat 4x	
6	40"	94°
7	40"	51°
8	1'	72°
9	Go to step 6 and repeat 29x	
10	10'	72°

References

 Hebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly *Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States* of America, 101(41), 14812-14817.

- Monaghan, M. T., Inward, D. J., Hunt, T., & Vogler, A. P. (2007). A molecular phylogenetic analysis of the Scarabaeinae (dung beetles). *Molecular Phylogenetics and Evolution*, 45(2), 674-692.
- Ribera, I., Fresneda, J., Bucur, R., Izquierdo, A., Vogler, A.P., Salgado, J.M. & Cieslak, A. (2010). Ancient origin of a Western Mediterranean radiation of subterranean beetles. *BMC Evolutionary Biology*, 10, 29.
- Shull, V.L., Vogler, A.P., Baker, M.D., Maddison, D.R. & Hammond, P.M. (2001). Sequence alignment of 18S ribosomal RNA and the basal relationships of Adephagan beetles: evidence for monophyly of aquatic families and the placement of Trachypachidae. *Systematic Biology*, *50*, 945–969.
- Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. *Annals of the Entomological Society of America*, 87, 651-701.

Figure S1: Majority rule consensus tree obtained with BEAST for the phylogeny of Ochthebiini with the best partition models. Numbers in nodes, posterior probabilities. Part 1 of 3.

Figure S1: Majority rule consensus tree obtained with BEAST for the phylogeny of Ochthebiini with the best partition models. Numbers in nodes, posterior probabilities. Part 2 of 3.

413

Figure S1: Majority rule consensus tree obtained with BEAST for the phylogeny of Ochthebiini with the best partition models. Numbers in nodes, posterior probabilities. Part 3 of 3.

Ochthebius gruwelli RA304 Ochthebius arizonicus AN177 Ochthebius sculptoides AN221 Ochthebius bisinuatus AN153 Ochthebius aztecus AN222 – Ochthebius interruptus AN219 -Ochthebius rectus cplx AN291 Ochthebius rectus cplx AN152 Ochthebius rectus cplx AN1:
 Ochthebius rectus AI464
 Ochthebius uniformis AN437
 Ochthebius uniformis AN437
 Ochthebius arefniae AN72
 Ochthebius arefniae AN72
 Ochthebius arefniae cf. AN446 Ochthebius viridis fallaciosus Al918 - Ochthebius viridis viridis AN5 - Ochthebius viridescens RA40 Ochthebius pusillus Al1028 Ochthebius evanescens AN66 *marinus* group Ochthebius evanescens AN66
 Ochthebius lineatus cplx RA1129
 Ochthebius lineatus AN223
 Ochthebius lividipennis AN71
 Ochthebius costatellus d. RA1119
 Ochthebius nipp icus HI27 Ochthebius chappuisi cf. AN475
 Ochthebius salinarius AN79
 Ochthebius mesoamericanus RA58
 Ochthebius queenslandicus AN18 Ochthebius meridionalis RA373 Ochthebius marinus Al615 Ochthebius auropallens AN217 Ochthebius subpictus deletus AN433 Ochthebius subpictus subpictus Al452 Ochthebius pedalis AH98 Ochthebius spinasus AH100
 Ochthebius capicola RA854
 Ochthebius yoshitomii AF121
 Ochthebius prothebits ndykei group Ochthebius vandykei AF159 Ochthebius peisonis AF168 Ochthebius peisonis AN64 peisonis group Ochthebius grandipennis Al616 — Ochthebius lanuginosus AN204 — Ochthebius tudmirensis Al467 ° Ochthebius joosti AF169 Ochthebius klapperichi Al1269 Ochthebius sp. RA104 Ochthebius quadrifoveolatus Al636 Ochthebius ragusae Al1029 Ochthebius nobilis AF133 Ochthebius nobilis AF133
 Ochthebius punctatus group AF191
 Ochthebius inermis RA795
 Ochthebius monseti RA124 punctatus group Ochthebius montesi Al491 Ochthebius micresi Al491
 Ochthebius micresi Al491
 Ochthebius mahmoodi RA126
 Ochthebius difficilis Al944
 Ochthebius difficilis cplx AN76 94 Ochthebius nilssoni AH76 Ochthebius hissofii AP76
 Ochthebius bifoveolatus AN381
 Ochthebius silfverbergi RA1021
 Ochthebius cuprescens PA276
 Ochthebius nanus PA277 Ochthebius pagotrichus AI497
 Ochthebius hasegawai A11289
 Ochthebius hasegawai A11289
 Ochthebius japonicus H126
 Ochthebius himalayae A11270 100 *itidipennis* group rivalis group 99 Ochthebius tacapasensis baeticus AN365 Ochthebius thermalis AN451 Ochthebius dentifer PA290
 Ochthebius andalusicus PA290
 Ochthebius andalusicus PA296
 Ochthebius loulae AN476
 Ochthebius atriceps AN210 riceps group Ochthebius anxifer Al945
 Ochthebius depressionis AF171
 Ochthebius despoliatus RA736
 Ochthebius burjkhalifa RA737 0chthebius corrugatus AI56 Ochthebius corrugatus cf. RA118 corrugatus group Ochthebius perpusilus AN323 Ochthebius gauthieri AI55 Ochthebius rivalis AF81 Ochthebius patergazellae RA735 *rivalis* group andraei group Ochthebius normandi PA253
 Ochthebius lanarotis PA32 Ochthebius Ianarotis F
 Ochthebius notabilis Al38
 Ochthebius glaber PA30
 Ochthebius gereckei PA141
 Ochthebius halophilus AN22
 Ochthebius salinator Al53 otabilis group

Figure S2: Phylogeny obtained with RAxML, including current Ochthebiini classification. Numbers in nodes, bootstrap support values. Part 1 of 3.

415

Figure S2: Phylogeny obtained with RAxML, including current Ochthebiini classification. Numbers in nodes, bootstrap support values. Part 2 of 3.

Figure S2: Phylogeny obtained with RAxML, including current Ochthebiini classification. Numbers in nodes, bootstrap support values. Part 3 of 3.

417

Figure S3: Phylogeny obtained with RAxML with the nuclear genes only. Numbers in nodes, bootstrap support values. Part 1 of 3.

Figure S3: Phylogeny obtained with RAxML with the nuclear genes only. Numbers in nodes, bootstrap support values. Part 2 of 3.

Figure S3: Phylogeny obtained with RAxML with the nuclear genes only. Numbers in nodes, bootstrap support values. Part 3 of 3.

AQUATIC INSECTS, 2017 VOL. 38, NO. 4, 185–196 https://doi.org/10.1080/01650424.2017.1384024

() Check for updates

A new species of *Micragasma* J. Sahlberg, 1900 (Coleoptera: Hydraenidae) from Crete

Carles Hernando^a, Adrián Villastrigo^b and Ignacio Ribera^b

^aP.O. Box 188, Badalona, Catalonia, Spain; ^bInstitute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain

ABSTRACT

We describe a new species of *Micragasma* J. Sahlberg, 1900 (Coleoptera, Hydraenidae), which is here treated as a subgenus of *Ochthebius* Leach, 1815. The new species, *O. (Micragasma) minoicus* sp. n., was found at the margins of a coastal rockpool in the island of Crete. The species differs from the other two known species of *Micragasma* in both external and genital characters, but shares with them the presence of small setiferous tubercles on the surface of the head, pronotum and elytra, and a strong medial gibbosity on the head. In some characters, such as the structure and shape of the aedeagus, *O. (M.) minoicus* sp. n. is similar to other species of the genus *Ochthebius*, in particular of the subgenus *Cobalius* Rey, 1886, typical of coastal rockpools.

http://zoobank.org/urn:lsid:zoobank.org:act:BCEAE1EE-7C5E-4017-A753-559738221502

ARTICLE HISTORY

Received 26 July 2017 Accepted 14 September 2017 First published online 22 November 2017

KEYWORDS

Coleoptera; Hydraenidae; *Micragasma*; new species; rockpools; Crete

Introduction

Micragasma J. Sahlberg, 1900, one of the most elusive and lesser known genera of European aquatic Coleoptera, was described for a single species, *M. paradoxum* J. Sahlberg, 1900 from the island of Corfu. In the original description, Sahlberg (1900) reported collecting several specimens in December, 1895 amongst flooded vegetation in the mouth of the Potamos River and some additional specimens in November, 1898 again amongst flooded grasses in the Kalichiopulo [= Calichiopulo] Lagoon. The species had not been collected again until 1993 when a small series (three specimens) was collected in Puglia, southern Italy (Figure 1), amongst plant debris not far from the sea. Subsequently, a larger series was collected in the same area by sifting sand amongst *Salicornia* L. next to the coast (Ferro, Audisio, and De Biase 1996). Jäch (1997) redescribed the genus and transferred *Ochthebius substrigosus* Reitter, 1897 to *Micragasma*. This species was described from a small series collected in the upper part of the mouth of the Kura River, in Azerbaijan (Figure 1), although no details on the habitat were given in the original description (Reitter 1897). The species has never been reported again. More recently, *M. paradoxum* has been found in the surroundings of Lake Elton, in Volgograd Province, Russia (Makarov,

CONTACT Ignacio Ribera ignacio.ribera@ibe.upf-csic.es © 2017 Informa UK Limited, trading as Taylor & Francis Group 186 😉 C. HERNANDO ET AL.

Figure 1. Distribution of the known species of *Micragasma J.* Sahlberg, 1900: circles, *Ochthebius (M.) paradoxus (J. Sahlberg, 1900); triangle, O. (M.) substrigosus* Reitter, 1897; hexagon, O. (M.) *minoicus* sp. n.

Matalin, and Komarov 2009; Prokin, Litovkin, and Jäch 2016), in saline ditches and pools, and in two localities on the north coast of the Black Sea, in detritus or in overgrown grass puddles (Shatrovskiy 2015) (Figure 1). There are no other published records of *Micragasma*.

The phylogenetic affinities of Micragasma are also not well understood. Reitter (1897) described O. substrigosus within subgenus Chirochthebius Kuwert, 1887, currently a synonym of Aulacochthebius Kuwert, 1887 (Jäch and Skale 2015), noting its resemblance to A. narentinus (Reitter, 1885). Sahlberg (1900) compared the newly described genus with species of Ochthebius Leach, 1815, and, in his revision of Hydraenidae genera, Hansen (1991) noted that it is a distinct and apparently well-justified genus. However, Jäch (1997), after including O. substrigosus in the genus Micragasma, noted the similarity between Micragasma and Ochthebius, questioning its status as a separate genus. In Beutel, Anton, and Jäch (2003), some peculiarities of the head of *Micragasma* were noted in reference to other species of Ochthebius or the wider Hydraenidae (absence of ocelli in M. paradoxum, a shield-like clypeus with distinctly raised lateral margin), but the genus was not included in the phylogenetic analysis and nothing was said about its possible relationships. Unpublished molecular data place Micragasma as sister to the species of Cobalius Rey, 1886, treated as a synonym of Ochthebius s.str. in the last reference catalogues (e.g., Jäch and Skale 2015). Here we treat both Micragasma and Cobalius as subgenera of Ochthebius; a more detailed discussion on the phylogenetic relationships of both taxa will be published in a forthcoming work.

<u>,</u> 422

AQUATIC INSECTS 😓 187

The close relationship between *Micragasma* and *Cobalius* suggested by molecular data may appear surprising, given the strong differences in external morphology. This relationship seems to be more likely in the light of the species newly described here, found during a recent trip to Crete at the margins of a rock pool in the south western coast of the island.

Material and methods

We studied one specimen of O. (M.) paradoxus labelled 'RUSSIA: 17.4.2008, Volgogradskaya Oblast, 49°07′43.6″N/46°47′39.5″E, Lake Elton, –18 m below sea level, residual pools of temp. water course, leg. A. Prokin', 'Voucher IBE-AF116' (one of the specimens reported in Prokin et al. 2016). The DNA of one paratype of the new species was extracted non-destructively (voucher IBE-AN770, see below) with commercial kits (DNeasy Tissue Kit, Qiagen, Hilden, Germany).

The specimen used for DNA extraction (voucher IBE-AN770) was subsequently used for SEM observation. After the extraction process, it was mounted on a stub with doublesided carbon conductive tab and coated with gold in a Quorum Q150R S sputter coater unit (Quorum Technologies Ltd., UK). The sample was observed using a Hitachi S3500N scanning electron microscope (Hitachi High-Technologies Co. Ltd., Japan) operated at 4 kV in the Electron Microscopy Service of the Institute of Marine Sciences (CSIC), in Barcelona (Spain).

Specimens are deposited in the following collections: CHB, collection of C. Hernando, Badalona, Spain; IBE, Institute of Evolutionary Biology, Barcelona, Spain; MNCN, Museo Nacional de Ciencias Naturales, Madrid, Spain; NMW, Naturhistorisches Museum Wien, Austria.

Taxonomy

Ochthebius (Micragasma) minoicus sp. n.

Figures 2–10.

Type locality

Greece, Crete, Elafonisi, $35^{\circ}16'9.2''N$, $23^{\circ}32'42''E$ (Figure 1).

Type material

Holotype. 3° 22 Crete, Elafonisi 20.iv.2017/rockpools on calcareous bed/35°16'9.2"N 23°32'42"E 0m/Hernando, Ribera & Villastrigo leg' (NMW); aedeagus dissected and mounted in DMHF on a transparent card, pinned with the specimen; plus red holotype label. *Paratypes.* 6 3° , 3 9° , same data as holotype, with paratype labels (IBE, CHB, NMW, MNCN). DNA of one paratype female extracted (voucher number IBE-AN770).

Description

Total length 1.68–1.73 mm, maximum width 0.65–0.70 mm, without apparent differences between males and females. Body shape oval (Figures 2 and 3). Body colour dark brown; head, disk of pronotum and elytra darker, appendages paler (Figure 2).

188

Figure 2. Habitus of the holotype of *Ochthebius (M.) minoicus* sp. n. Photo by M. Brojer. Scale bar 0.5 mm.

Head (Figures 4 and 5). Labrum deflexed, deeply emarginated; surface smooth, with a shallow reticulation; with sparse small setae. Clypeus trapezoidal, narrower distally; surface rugose, with small tubercles, with sparse setiferous punctures with small setae; finely bordered; fronto-clypeal suture well marked. Frons expanded laterally, with a medial gibbosity; two lateral elongated excavations bordering the gibbosity joining posteriorly, without pubescence or tubercles (in most specimens, these excavations are not visible due to salt concretions, but are clearly visible in the specimen used for DNA extraction). Margins of head only slightly elevated. Head covered with small tubercles with very robust, short, recurved silverish-whitish setae, almost squamiform; as observed with the SEM, setae are lanceolate, wider in the middle and with lateral expansions (specially on the elytra, see below), with rugose surface. Eyes widely separated, laterally very prominent. Ocelli absent.

Thorax. Pronotum transverse, with margins explanate (Figures 5 and 6); disc elevated, with a medial irregular longitudinal sulcus; central area covered with small, very dense setiferous tubercles; lateral area rugose; with two basal elevated areas forming a 'V'. Lateral
```
AQUATIC INSECTS 😔 189
```


Figure 3. SEM habitus of a paratype of *Ochthebius (M.) minoicus* sp. n. (voucher IBE-AN770). Scale bar 0.5 mm.

margins irregular, but uniformly arched, elevated, with a fringe of denser setae; anterior margin with a narrow hyaline expansion; posterior margin constricted, with postero-lateral hyaline expansion following the contour of the pronotum; postero-lateral hyaline expansions densely covered with setae; posterior margin of pronotum covering base of elytra, partly covering the scutellum.

Elytra elongated, oval (Figures 2 and 3); apparently fused; shoulders with a strong gibbosity; apex acuminate; margins slightly explanate, with a fringe of denser setae. With 10 very regular rows of punctures on each elytron, with smaller punctures distributed irregularly, some of them with smaller setae; main sculpture composed of a large puncture with a tubercle on the anterior margin, with a seta on top (Figure 7); surface rugose190 😉 C. HERNANDO ET AL.

Figure 4. Head of Ochthebius (M.) minoicus sp. n. (voucher IBE-AN770), dorsal view.

chagrinated (not as rugose as pronotum and head); setae as on pronotum and head; apex of elytra and, to a lesser extent, marginal areas with an irregular surface, with tubercles united forming small carinae (Figure 8). Apterous (observed in one paratype).

Hypomera with deep antennal grooves, with a hyaline margin. Metaventrite short, covered with hydrophobe pubescence except on medial part, which is covered with a longer

Figure 5. Head and pronotum of Ochthebius (M.) minoicus sp. n. (voucher IBE-AN770), frontal view.

AQUATIC INSECTS 😉 191

Figure 6. Pronotum of Ochthebius (M.) minoicus sp. n. (voucher IBE-AN770), dorsal view.

Figure 7. Detail of the elytral disk of Ochthebius (M.) minoicus sp. n. (voucher IBE-AN770).

and more robust pubescence; prosternum and mesoventrite glabrous, with a rugose surface; mesoventrite with a small anterior longitudinal carina, with an acuminate apophysis.

Legs short, robust; tarsi short, specially protarsi, without natatory setae; with spiniform setae.

Abdomen. Ventrites 1-5 with short hydrophobe pubescence and longer and recurved sparse setae, denser on the medial part (Figure 9); last ventrites without hydrophobe

192 😉 C. HERNANDO ET AL.

Figure 8. Apex of the elytra of Ochthebius (M.) minoicus sp. n. (voucher IBE-AN770), dorsal view.

pubescence, with short, straight spiniform setae. Surface irregular, with a chagrinated aspect. Last ventrite with a row of 7–9 long, explanate setae.

Aedeagus as in Figure 10, asymmetrical, medial lobe slightly arched; distal piece elongated, widest in the middle.

Figure 9. Surface of the abdominal ventrite 2 of Ochthebius (M.) minoicus sp. n. (voucher IBE-AN770).

AQUATIC INSECTS 👄 193

Figure 10. Aedeagus of Ochthebius (M.) minoicus sp. n. (paratype), lateral view.

Females

Pronotum with anterior angles more rounded and lateral margins more arched than in males.

Etymology

Named in reference to the Minoan civilisation of Crete. The name is an adjective in the nominative singular.

Distribution

So far known only from the type locality.

Habitat

Specimens were collected at the margins of a rock pool close to the seashore, with saline water over rocky substratum with gravel and sand on the margins and with a tuft of vegetation (Figure 11). They were dislodged from the shore and the tuft of vegetation by splashing water. Specimens were collected in association with *Bledius* sp. (Staphylinidae), *Ochthebius (Cobalius) adriaticus moreanus* Pretner, 1929, *O. (Cobalius) subinteger* Mulsant and Rey, 1861 and *O. (Calobius) steinbuehleri* Reitter, 1886.

Discussion

Of the characters listed by Jäch (1997) as diagnostic for the genus *Micragasma* based on the two only known species at the time (O. (M.) *paradoxus* and O. (M.) *substrigosus*), potential synapomorphies are the presence of small tubercles covering most of the surface of the body and the presence of a well-developed medial gibbosity on the vertex surrounded by more or less impressed foveae. As already noted by Jäch (1997), all other characters occur in various species of *Ochthebius*. In O. (M.) *minoicus* sp. n., the shape of the labrum is more similar to other species of *Ochthebius*, not as strongly deflexed as in O. (M.) *paradoxus* and less transverse. The head is also less transverse and less explanate, without the strong lateral elevations present in O. (M.) *paradoxus*. The pronotum of O.

194 😉 C. HERNANDO ET AL.

Figure 11. Type locality of *Ochthebius (M.) minoicus* sp. n.: rockpool in Elafonisi, Crete. Note the edge of the pool with some vegetation, from where specimens were flushed.

(M.) minoicus sp. n. is also less explanate, with the marginal areas less flat and with a more rugose surface. Other differences refer to the general shape and size, more elongated in O. (M.) minoicus sp. n. (the studied specimen of O. (M.) paradoxus, a female, is 1.58 mm long and 0.75 mm wide), with a darker body colour, and a more dense and robust pubescence, with a more regular appearance on the elytra. The studied specimen of O. (M.) paradoxus is brachypterous, with a non-functional small stump only slightly longer than the metaventrite, but the elytra are not fused.

The aedeagus of O. (M.) minoicus sp. n. has the same general structure as that of other species of the subgenus, but without the strongly deviating features of O. (M.) paradoxus, and with a simpler distal piece than O. (M.) substrigosus (see Jäch 1997; Figures 2 and 3). This results in an aedeagus that is surprisingly similar to those of the species of Cobalius,

AQUATIC INSECTS 😓 195

in particular to that of O. (C.) celatus Jäch, 1989 (see Jäch 1989; Figure 7). Some species of Cobalius have also very regular elytral striae with strong setae, and deep fossae on the head (but without gibbosity) (e.g., O. (C.) subinteger). Although the ecology of the species of Micragasma is still poorly known, they are undoubtedly associated with coastal saline habitats, with the only known exception of the population of O. (M.) paradoxus near Lake Elton (Prokin et al. 2016). They seem to be, however, less linked to water than the species of Cobalius, as suggested also by some morphological features (shorter legs, more robust pubescence), and some specimens seem to have been found in a fully terrestrial environment (e.g., Shatrovskiy 2015). When washed into the water, specimens of O. (M.) minoicus sp. n. floated upside down with a film of air attached to the ventrites, as happens with other species of Ochthebius (including those of Cobalius), suggesting that the ventral pubescence may be hydrophobic. It is interesting to note, however, that the dorsal surface is extremely hydrophilic: when dry specimens were touched with a wet brush, the whole dorsal surface was immediately covered by a film of water, maybe through the capillary effect of the tubercles and setae, or perhaps due to a possible strong hydrophilic effect of the highly modified expanded setae. The potential function of a hydrophilic dorsal surface in combination with a hydrophobic ventral surface is unknown, but it may be related with respiration or to avoid dehydration in the sometimes extreme saline and dry environment in which the species may be found.

Acknowledgements

We thank Anabela Cardoso (IBE) for laboratory work, J.M. Fortuño (ICM) for help with the SEM observations, Michaela Brojer (NMW) for the habitus photograph, M.A. Jäch (NMW) and A. Prokin for making available the specimen of *O*. (*M*.) *paradoxus* for study and M.A. Jäch for useful comments to the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The work was funded by project AEI/FEDER, UE [CGL2013-48950-C2-1-P] to Ignacio Ribera.

References

- Beutel, R.G., Anton, E., and Jäch, M.A. (2003), 'On the Evolution of Adult Head Structures and the Phylogeny of Hydraenidae (Coleoptera, Staphyliniformia)', *Journal of Zoological Systematics and Evolutionary Research*, 41, 256–275.
- Ferro, G., Audisio, P., and De Biase, A. (1996), 'Presenza in Italia di *Micragasma paradoxum* (Coleoptera, Hydraenidae)', *Bollettino dell'Associazione Romana di Entomologia*, 50, 3–5.
- Hansen, M. (1991), 'A Review of the Genera of the Beetle Family Hydraenidae (Coleoptera)', *Steenstrupia*, 17, 1–52.
- Jäch, M.A. (1989), 'Revision of the Palearctic Species of the Genus Ochthebius Leach. II. The Subgenus Cobalius Rey (Hydraenidae, Coleoptera)', Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen, 41, 41–51.

196 👄 C. HERNANDO ET AL.

- Jäch, M.A. (1997), 'Synopsis of the Genus Micragasma', Annalen des Naturhistorischen Museums in Wien, Series B, 99, 313–318.
- Jäch, M.A. and Skale, A. (2015), 'Hydraenidae', in Catalogue of Palaearctic Coleoptera, Volume 2/1. Hydrophiloidea, Staphylinoidea (revised and updated ed.), eds. I. Löbl and D. Löbl, Leiden: Brill, pp. 130–162.
- Kuwert, A. (1887), 'Übersicht der europäischen Ochthebius-Arten', Deutsche Entomologische Zeitschrift, 32, 113–123.
- Leach, W.E. (1815), 'Entomology', in *The Edinburgh Encyclopaedia* (Vol. 9), ed. D. Brewster, Balfour: Edinburgh, pp. 57–172.
- Makarov, K.V., Matalin, A.V., and Komarov, E.V. (2009), 'Fauna of Beetles (Coleoptera) of Elton Lake Vicinities', in Animals of Clayey Semidesert in Transvolga Region (Fauna Conspecta and Ecological Characteristics), ed. A.A. Tishkov, Moscow: KMK Scientific Press, pp. 95–134. [In Russian].
- Prokin, A.A., Litovkin, S.V., and Jäch, M.A. (2016), 'New Records of Hydraenidae and Elmidae (Coleoptera) from Russia and Adjacent Countries', *Fragmenta Faunistica*, 58, 99–110.
- Reitter, E. (1885), 'Neue Coleopteren aus Europa und den angrenzenden Ländern, mit Bemerkungen über bekannte Arten. Theil 1', *Deutsche Entomologische Zeitschrift*, 29, 353–392.
- Reitter, E. (1897), 'Dreiβig neue Coleopteren aus russisch Asien und der Mongolei', *Deutsche Ento*mologische Zeitschrift, 2, 209–228.
- Rey, C. (1886), 'Histoire naturelle des coléoptères de France (suite)', *Annales de la Société Linnéenne de* Lyon, 32, 1–187, pl. 1–2.
- Sahlberg, J. (1900), 'Coleoptera Mediterranea et Rosso-Asiatica Nova vel Minus Cognita Itineribus Annis 1895–1896 et 1898–1899 Collecta', Öfversigt af Finska Vetenskaps-Societetens Förhandlingar, 42, 174–208.
- Shatrovskiy, A.G. (2015), 'Micragasma Sahlberg, 1900 (Coleoptera: Hydraenidae) a new for Ukraine genus of Halophilic Minute Moss Beetle', Kharkov Entomological Society gazette, 23, 13-15. [In Russian with English title and abstract].

Biosketch

My name is Adrián and I was born in León in 1987. I studied biology at University of León, where I acquired a love for nature. I was lucky to be supervised by Dr. Francisco García-Criado during Summer 2012 as part of an internship at Area of Ecology, learning for the first time about macroinvertebrate communities in aquatic environments. I finished the degree in Biology in 2013, with a final project focused on aquatic macroinvertebrates in streams. After that, I spent 3 months with a fellowship at Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad (IMARENABIO), studying other water inhabitants: diatoms. My academic training continued with another project on aquatic communities, but this time on a mountain lake. That project lead to a publication entitled "Response of a littoral macroinvertebrate assemblage to a persistent hydrological drought in a permanent mountain shallow lake from northwestern Spain", published during 2017 (as corresponding author).

In 2015, I obtained an FPI grant supervised by Ignacio Ribera and Andrés Millán under the project "The evolution of habitat transitions in aquatic Coleoptera" (CGL2013-48950-C2). The research during this PhD was undertaken mainly at Institute of Evolutionary Biology (CSIC-UPF), but also at University of Murcia. During this PhD I have been able to attend several European and International meetings and conferences: Balfour Browne Meeting (León, Spain – 2014; Chefchaouen, Morocco - 2018), European Meeting of PhD Student (Visby, Sweden – 2016), Iberian Congress of Biological Systematics (Palma de Mallorca, Spain – 2018) and Annual meeting of the Willi Hennig Society (Barcelona, Spain – 2018; Berkeley, CA, USA - 2019).

During the last years, I have done two short stays in recognised research institutions. I visited Brent Emerson's lab (Instituto de Productos Naturales y Agrobiología, CSIC, La Laguna, Tenerife) in 2017, under the supervision of Paula Arribas and Carmelo Andújar. I obtained the knowledge required to perform mitochondrial metagenomics technique, essential in both chapters 5 and 6, and in my personal development as a scientist. In 2018, I visited The University of Adelaide (Australia) under the supervision of Dr. Steven Cooper, where I learnt about groundwater fauna in Western Australia and developed molecular phylogenies (part of chapter 6).

Additionally, a lot of fieldwork has been carried out to accomplish the objectives of this PhD, with major sampling in Cyprus (Spring 2016), Crete (Spring 2017), Morocco (Spring 2018) and Malta (Autumn 2018), but also minor fieldwork in south-eastern Spain (Murcia, Albacete and Cuenca, Autumn 2015), Tenerife (summer 2017), La Palma (summer 2017), Gran Canaria (spring 2018), Australia (Western Australia, Queensland and Kangaroo Island, Summer 2018), Girona (Spring 2019) and Lanzarote (Spring 2019).