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1 Introduction

Cooperative game theory provides tools to study situations in which the coalitions

are the main actors. In a cooperative game the details of the underlying interaction

among players are omitted to build a robust model. The focus is on what coalitions

will emerge and how to share the benefits of the cooperation. Even if these games

are as old as game theory itself1 their applications to economics have not been as

successful as the ones of their non-cooperative counterpart (Maskin, 2016). The

fact that, traditionally externalities have been overlooked in the literature may be a

reason. Indeed, externalities are present in most economic examples where coalitions

are the fundamental elements. For instance, when firms merge in a cartel or after

a takeover bid, the expected profit will depend on the potential merging carried

out by the rest of firms in the market. Jelnov and Tauman (2009) use games with

externalities to study the coalition formation in a Cournot market where there is a

patent holder.

Thrall and Lucas (1963) introduced games in partition function form to describe

situations in which coalitions generate externalities on one another. In this model,

the main ingredient are not just coalitions but embedded coalitions, that consist of

a coalition and a partition of the rest of agents. In this way, a coalition can have

different values depending on what partition it is embedded in. More recently, many

important contributions have been published, most of them focusing on the problem

of how to share the benefits of the cooperation. For instance, Macho-Stadler et al.

(2007), de Clippel and Serrano (2008), McQuillin (2009), and Dutta et al. (2010)

address the issue of how to extend the Shapley value and Kóczy (2007) and Bloch

and van den Nouweland (2014) propose generalizations of the core to games with

externalities. Fewer papers have explored the properties of the game itself. Hafalir

(2007) notes that extending the classic properties of superadditivity and convexity

is not a trivial task. He shows that superadditivity, as defined by Maskin (2003) is

not a sufficient condition for the efficiency of the grand coalition in situations with

negative externalities. Abe (2016) proposes alternative definitions of superadditivity

that do the work when externalities are either positive or negative. Hafalir (2007)

1Their origin dates back to Von Neumann and Morgenstern (1944).
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also introduced a notion of convexity that guarantees that the grand coalition is

the most efficient configuration. With a different purpose Abe (2019) introduced

another notion of convexity, logically independent to the previous one. A different

branch of the literature follows a non-cooperative approach to study situations with

coalitional externalities. For instance, Ray and Vohra (1999) use an extensive form

bargaining game to find out the coalition structures that are likely to arise.

Here, we rely on a partial order among embedded coalitions implicitly defined

by de Clippel and Serrano (2008). Alonso-Meijide et al. (2017) analyze the set of

embedded coalitions endowed with this partial order and show that it has a lattice

structure. Then, it is very natural to interpret the supremum and the infimum of two

embedded coalitions as their union and intersection, respectively. The supremum

is obtained taking the union of the coalitions and the intersection of the partitions,

more precisely their infimum in the lattice of partitions of a finite set. That is, the

two coalitions whose worth is being evaluated are merged while the rest of agents

form the partition obtained by keeping the divisions of the two original partitions.

The infimum works just the other way around, intersection of coalitions and union

of partitions, which results in only keeping the divisions in which the two partitions

agree. These operations allow us to generalize the classic definitions of superaddi-

tivity and convexity to games with externalities in a natural way.

To start with, we see that our properties imply the superadditivity proposed by

Maskin (2003) and the convexity studied by Hafalir (2007). Our main result is the

characterization of convexity through a condition that requires the contributions to

embedded coalitions to be non decreasing with respect to size. To define what is a

contribution to an embedded coalition in a game with externalities we use the lattice

structure again. Alonso-Meijide et al. (2019) introduce these contributions to build

a super family of Shapley values that contains the ones proposed in the previous

references. Some intermediate results that we use are interesting on their own. For

instance, we show that a convex game can only have negative externalities. Which

means that coalitions’ worth decrease when the partition of the complement becomes

coarser. Finally, we also obtain some interesting implications of our property with

respect to certain core notions.

The rest of the paper is organized as follows. Section 2 presents some discrete
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mathematical terms that we will employ. Then, the partial order among embedded

coalitions in which we ground our results is introduced. Finally, we revise some

of the results of Alonso-Meijide et al. (2017) to adapt them to our framework. In

Section 3 we introduce our notions of essential, superadditive, and convex game

with externalities and discuss their implications. Next, we present some interesting

lemmata followed by our main result. Section 4 concludes with some additional

results on the cores of convex games with externalities. The proof of the main result

is relegated to the Appendix.

2 A lattice of embedded coalitions

Let (L,≤) be a partially ordered set, with L being a finite set and x, y ∈ L.2 The

supremum, denoted by x ∨ y, is the unique element of L such that x, y ≤ x ∨ y and

if z ∈ L is such that z ≥ x, y, then z ≥ x ∨ y. The infimum, denoted by x ∧ y, is

the unique element of L such that x ∧ y ≤ x, y and if z ∈ L is such that z ≤ x, y,

then z ≤ x ∧ y.3 A finite lattice is a finite partially ordered set in which every pair

of elements have supremum and infimum. From now on, we assume that (L,≤) is a

finite lattice. The top, denoted by 1̂, is the element of L such that x ≤ 1̂ for every

x ∈ L. Similarly, the bottom, denoted by 0̂, is the element of L such that 0̂ ≤ x for

every x ∈ L.

A key notion for our paper is the covering relation. We say that x is covered by

y or y covers x if x < y and there is no z ∈ L such that x < z < y. A chain C

(between x0 and xk) is an ordered subset of L, C = {x0, x1, . . . , xk} such that xl+1

covers xl, for every l = 0, . . . , k−1. If x ≤ y, we denote by [x, y]L the set of elements

z ∈ L such that x ≤ z ≤ y. If no confusion arises, we may just write [x, y]. Notice

that [x, y] is also a lattice. A lattice satisfies the Jordan-Dedekind condition if all

chains between a pair of elements have the same length. The height of x ∈ L is the

length of the chains between the bottom element and x. The height of the lattice is

the length of every chain that joins the bottom and the top elements. We say that

(L,≤) is distributive if x∧ (y∨z) = (x∧y)∨ (x∧z) and x∨ (y∧z) = (x∨y)∧ (x∨z),
2We write x = y if x ≤ y and y ≤ x. Also, x < y means that x ≤ y but x 6= y.
3The definition of supremum and infimum is extended to any finite subset of elements of L in

the usual way.
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for every x, y, z ∈ L. (L,≤) is lower semimodular if whenever x ∨ y covers both x

and y, then both x and y cover x ∧ y, for every x, y ∈ L. (L,≤) is semimodular or

upper semimodular if whenever both x and y cover x ∧ y, then x ∨ y covers both x

and y, for every x, y ∈ L.

The classic notion of convexity (Shapley, 1971) is the supermodularity of the

characteristic function, which is a real function on the Boolean lattice of subsets. In

general, a real function on (L,≤), f , is said to be supermodular (submodular) if for

every x, y ∈ L, f(x) + f(y) ≤ (≥)f(x ∧ y) + f(x ∨ y).

Let N be a finite set, n = |N |, S ⊆ N , and i ∈ N . We denote S ∪ {i} by

S ∪ i and S \ {i} by S \ i. The family of partitions of N is denoted by Π(N). Let,

P ∈ Π(N). We denote by |P | the number of non-empty elements of P , called blocks.

The partition P−S of N \ S is given by {T \ S : T ∈ P}. The partition of singletons

of S, {{i} : i ∈ S}, is denoted by bSc and the partition of S in one block, {S}, is

denoted by dSe. If P ∈ Π(N \ i), we also denote {{i}}∪P by {i}∪P . A well-known

partial order on Π(N) is the following:

P � Q if and only if for every S ∈ P there is some T ∈ Q such that S ⊆ T.

It is known that (Π(N),�) is a semimodular lattice. The height of an element,

P ∈ Π(N) is given by r(P ) = n − |P |. If P,Q ∈ Π(N), we denote by P
∧
Q the

infimum of P and Q; the supremum of P and Q is denoted by P
∨
Q.

An embedded coalition of N is a pair (S;P ) with S ⊆ N and P ∈ Π(N \ S),

i.e., {S} ∪ P ∈ Π(N). In particular, (∅;P ) with P ∈ Π(N) is also an (empty)

embedded coalition. If all agents form the grand coalition we write (N ; ∅). That

is, we consider that ∅ is the only partition in Π(∅). For simplicity we denote by

(S;N \ S) the embedded coalition (S; dN \ Se), for every S ⊆ N . The family of all

embedded coalitions of N is denoted by ECN .

Alonso-Meijide et al. (2017) studied the partial order outlined in de Clippel and

Serrano (2008) over the set (ECN \ {(∅;P ) : P ∈ Π(N)})∪ {⊥}, being ⊥ a fictitious

bottom element. Here we consider this partial order over the whole set ECN . It

is convenient to extend some of the results in Alonso-Meijide et al. (2017) to this

framework. Next, we introduce the partial order formally.
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Definition 2.1. Let (S;P ), (T ;Q) ∈ ECN . We define the inclusion among embedded

coalitions as follows:

(S;P ) v (T ;Q) if and only if S ⊆ T and Q � P−T .4 (1)

Remark 2.1. Let (S;P ), (T ;Q) ∈ ECN . Definition 2.1 can be rephrased as

(S;P ) v (T ;Q) if and only if S ⊆ T and Q ∪ bT \ Sc � P. (2)

Sometimes it will be convenient to use this formulation.

In the remainder of this section we describe some properties of the algebraic

structure
(
ECN ,v

)
.

Proposition 2.1. Let (S;P ), (T ;Q) ∈ ECN . Then,

1. (S;P ) ∨ (T ;Q) = (S ∪ T ;P−T
∧
Q−S).

2. (S;P ) ∧ (T ;Q) = (S ∩ T ;M), with M = (P ∪ bS \ T c)
∨

(Q ∪ bT \ Sc).

Proof.

1. The first item can be proven in the same way as Item 1 of Proposition 1 in

Alonso-Meijide et al. (2017).

2. Take (S ∩ T ;M) with

M = (P ∪ bS \ T c)
∨

(Q ∪ bT \ Sc).

Then, (S ∩ T ;M) v (S;P ) and (S ∩ T ;M) v (T ;Q). Let (R;M ′) ∈ ECN

such that (R;M ′) v (S;P ) and (R;M ′) v (T ;Q) then, it is easy to see that

(R;M ′) v (S ∩ T ;M).

�

From Proposition 2.1 we conclude that
(
ECN ,v

)
is a lattice. The bottom element

of this structure is (∅;N) and the top is (N ; ∅). The next example illustrates that

the lattice is not distributive.

4As usual, (S;P ) @ (T ;Q) means that (S;P ) v (T ;Q) and (S;P ) 6= (T ;Q).
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Example 2.1. Let N = {1, 2, 3, 4, 5, 6, 7}, (S;P ) = ({2, 3}; {{1, 4}, {5, 6}, {7}}),

(T ;Q) = ({1, 2}; {{3, 5}, {4, 6, 7}}), and (L;M) = ({1, 3}; {{2}, {4, 5}, {6, 7}}). Then

(T ;Q) ∧ (L;M) = ({1}; {{2}, {3, 4, 5, 6, 7}}),

(S;P ) ∨ ((T ;Q) ∧ (L;M)) = ({1, 2, 3}; {{4}, {5, 6}, {7}}),

(S;P ) ∨ (T ;Q) = ({1, 2, 3}; bN \ {1, 2, 3}c),

(S;P ) ∨ (L;M) = ({1, 2, 3}; bN \ {1, 2, 3}c), and

((S;P ) ∨ (T ;Q)) ∧ ((S;P ) ∨ (L;M)) = ({1, 2, 3}; bN \ {1, 2, 3}c).

Then, (S;P ) ∨ ((T ;Q) ∧ (L;M)) 6= ((S;P ) ∨ (T ;Q)) ∧ ((S;P ) ∨ (L;M)).

Besides, (S;P )∧ ((T ;Q)∨ (L;M)) 6= ((S;P )∧ (T ;Q))∨ ((S;P )∧ (L;M)) as we

see next:

(T ;Q) ∨ (L;M) = ({1, 2, 3}; b4, 5c ∪ {6, 7}}),

(S;P ) ∧ ((T ;Q) ∨ (L;M)) = ({2, 3}; {{1, 4}, {5, 6, 7}}),

(S;P ) ∧ (T ;Q) = ({2}; dN \ {2}e),

(S;P ) ∧ (L;M) = ({3}; dN \ {2, 3}e ∪ {2}), and

((S;P ) ∧ (T ;Q)) ∨ ((S;P ) ∧ (L;M)) = ({2, 3}; dN \ {2, 3}e).

The next result implies that
(
ECN ,v

)
is a graded lattice.

Proposition 2.2. The lattice
(
ECN ,v

)
satisfies the Jordan-Dedekind condition.

Moreover, the height of any (S;P ) ∈ ECN is given by h(S;P ) = |P |+ 2|S| − 1.

Proof. The result follows immediately if |N | ≤ 2. Let us assume that |N | ≥ 3

and (S;P ) ∈ ECN . First, we prove that all chains joining (∅;N), the bottom element,

and (S, P ) have length |P |+ 2|S| − 1. We proceed by induction on k, the length of

such a chain.

If k = 0, then (S;P ) = (∅;N) and h(∅;N) = 0 = |P | + 2|S| − 1. Let us

take k = 1. That is, we consider a chain of length k = 1 joining (S;P ) and

(∅;N), this implies that (S;P ) covers (∅;N). Then, (S;P ) = (∅; {T,N \ T}) for

some T /∈ {∅, N}, there is only one chain from the bottom element to (S;P ), and

h(S;P ) = h(∅; {T,N \ T}) = 1 + h(∅;N) = |P |+ 2|S| − 1.

Suppose that the result holds for every (S;P ) such that there is a chain of length

k > 0 from the bottom element to (S;P ). Let (S;P ) ∈ ECN such that there is a
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chain of length k joining (S;P ) and (∅;N). We distinguish two cases.

First, if |P | ≤ 1, we have |S| > 0 because k > 0. Then, (S;P ) only covers

embedded coalitions of type (S \ i;P ∪ {i}), for every i ∈ S and there is a chain

of length k − 1 from the bottom element to (S \ i;P ∪ {i}). By the induction

hypothesis, all chains from the bottom element to (S \ i;P ∪{i}) have length k−1 =

h(S \ i;P ∪ {i}). Since (S;P ) covers (S \ i;P ∪ {i}),

k = h(S;P ) = 1 + h(S \ i;P ∪ {i}) = 1 + 1 + |P |+ 2|S \ i| − 1 = |P |+ 2|S| − 1.

Second, let us assume that |P | > 1 and take P = {P1, . . . , Pm}, with m ≥ 2.

Then, we can have |S| = 0 or |S| > 0. If |S| = 0, then (S;P ) only covers embedded

coalitions of type
(
∅;P−Pj∪Pl

∪ dPj ∪ Ple
)

for every j, l ∈ {1, . . . ,m} with j 6= l and

there is a chain of length k− 1 from the bottom element to (∅;P−Pj∪Pl
∪ dPj ∪Ple).

By induction, all chains from the bottom element to (∅;P−Pj∪Pl
∪ dPj ∪ Ple) have

length k−1 = h(∅;P−Pj∪Pl
∪dPj ∪Ple). Since (S;P ) covers (∅;P−Pj∪Pl

∪dPj ∪Ple),

k = h(S;P ) = 1+h(∅;P−Pj∪Pl
∪dPj ∪Ple) = 1+(|P |−1)+2|S|−1 = |P |+2|S|−1.

Finally, if |S| > 0, (S;P ) covers embedded coalitions of two types, (S \i;P ∪{i}), for

every i ∈ S and (S;P−Pj∪Pl
∪dPj ∪Ple) for every j, l ∈ {1, . . . ,m} with j 6= l. Using

the induction hypothesis as before for each of the types of embedded coalitions we

obtain that k = h(S;P ) = |P |+ 2|S| − 1.

To conclude, take (S;P ) v (T ;Q). Notice that any chain joining (T ;Q) and

(S;P ) can be completed with a chain that joins (S;P ) with the bottom element.

Since all chains that start at the bottom element have the same length, the chains

from (T ;Q) to (S;P ) also have a common length. �

Then, the height of the lattice is h(N ; ∅) = 2n − 1. Notice that the height of

every embedded coalition (S;P ) ∈ ECN can be described by means of the height

of S in the Boolean lattice, |S|, and the height of P ∪ bSc in the partition lattice,

r(P ∪ bSc) as follows:

h(S;P ) = n− 1− r(P ∪ bSc) + |S|. (3)
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Since (Π(N),�) is a graded and semimodular lattice, the height is a submodular

function. This fact and Equation (3) are used to prove the following result.

Proposition 2.3. Let (S;P ), (T ;Q) ∈ ECN . Then,

h((S;P ) ∨ (T ;Q))− h(T ;Q) ≥ h(S;P )− h((S;P ) ∧ (T ;Q)). (4)

Proof. Let (S;P ), (T ;Q) ∈ ECN . First, recall that (S;P )∨(T ;Q) = (S ∪ T ;P−T
∧
Q−S)

and (S;P ) ∧ (T ;Q) = (S ∩ T ; (P ∪ bS \ T c)
∨

(Q ∪ bT \ Sc)). Using Equation (3),

Inequality (4) is equivalent to

r(Q ∪ bT c)− r
((
P−T

∧
Q−S

)
∪ bS ∪ T c

)
≥ r

(
(P ∪ bS \ T c)

∨
(Q ∪ bT \ Sc) ∪ bS ∩ T c

)
− r(P ∪ bSc).

Taking P ∪ bSc, Q ∪ bT c ∈ Π(N), it happens that

• (P ∪ bSc)
∧

(Q ∪ bT c) = (P−T
∧
Q−S) ∪ bS ∪ T c, and

• (P ∪ bSc)
∨

(Q ∪ bT c) = (P ∪ bS \ T c)
∨

(Q ∪ bT \ Sc) ∪ bS ∩ T c.

Using the fact that the height of an element on the the partition lattice is a sub-

modular function and taking P ∪ bSc, Q ∪ bT c ∈ Π(N), we obtain

r(P ∪ bSc) + r(Q ∪ bT c)

≥ r
(

(P−T
∧
Q−S) ∪ bS ∪ T c

)
+ r

(
(P ∪ bS \ T c)

∨
(Q ∪ bT \ Sc) ∪ bS ∩ T c

)
and the result follows. �

As a consequence of Proposition 2.3
(
ECN ,v

)
is a lower semimodular lattice.

3 Superadditiviy and convexity

In this section, we extend some of the most important properties of classic games

to situations with coalitional externalities. Let N be a finite set. A game (with

externalities) with player set N is defined by a partition function v : ECN −→ R

10



such that v(∅;P ) = 0, for every P ∈ Π(N). We denote by GN the class of all games

with player set N . Any partition function v satisfying v(S;P ) = v(S;Q), for every

S ⊆ N and P,Q ∈ Π(N \ S) is called a classic game. To begin with, we introduce

the notion of superadditive game with externalities inspired by the inclusion relation

studied in Section 2.

Definition 3.1. Let v ∈ GN . We say that v is superadditive if and only if

v((S;P ) ∨ (T ;Q)) ≥ v(S;P ) + v(T ;Q),

for every (S;P ), (T ;Q) ∈ ECN such that S ∩ T = ∅.

That is, for every pair of embedded coalitions whose intersection is an empty

one, the worth of their supremum in (ECN ,v) is greater or equal to the joint worths

of the two embedded coalitions. Recall that (S;P ) ∨ (T ;Q) = (S ∪ T ;P−T
∧
Q−S).

In other words, if we evaluate the worths of two disjoint coalitions, each embedded

in an arbitrary partition, this amount is weakly less than the worth of the union of

the two coalitions embedded in the partition obtained by keeping all the divisions

in the original partitions.

Definition 3.1 extends the classic notion of superadditivity of a game without

externalities. The extension is not trivial because, as the next example shows there

are superadditive games which are not classic games.

Example 3.1. Let N = {1, 2, 3} and consider the partition function v defined by

v(N ; ∅) = 8, v({1}; d2, 3e) = 3, v({1}; b2, 3c) = 0,

v({i}; bN \ ic) = v({i}; dN \ ie) = 2, for every i ∈ N \ 1, and

v({i, j};N \ {i, j}) = 5, for every i, j ∈ N, i 6= j.

An important property of a game with externalities is the efficiency of the grand

coalition. Let v ∈ GN . We say that v is efficient for the grand coalition if for every

P ∈ Π(N), ∑
S∈P

v(S;P−S) ≤ v(N ; ∅).

It is easy to check that if a game is superadditive, then it is also efficient for the grand

coalition. Hafalir (2007) points out that this fact does not happen with Maskin’s
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definition of superaditivity (Maskin, 2003): v ∈ GN is superadditive if for every

S, T ⊆ N with S ∩ T = ∅ and P ∈ Π(N \ (S ∪ T )),

v(S ∪ T ;P ) ≥ v(S; dT e ∪ P ) + v(T ; dSe ∪ P ).

It is clear that any superadditive game in our sense is also a superadditive game in

Maskin’s sense, but the reverse does not hold.

Example 3.2. Let N = {1, 2, 3} and v ∈ GN such that

v(N ; ∅) = 7, v({1}; d2, 3e) = 3, v({1}; b2, 3c) = 0,

v({i}; bN \ ic) = v({i}; dN \ ie) = 2, for every i ∈ N \ 1, and

v({i, j};N \ {i, j}) = 4, for every i, j ∈ N, i 6= j.

Then, it is easy to check that v is superadditive in Maskin’s sense. However, it is not

superadditive according to Definition 3.1 as we can see taking (S;P ) = ({2}; d1, 3e)

and (T ;Q) = ({1}; d2, 3e).

Next, we formulate our notion of convexity for games with externalities as the

supermodularity of a function on the lattice
(
ECN ,v

)
.

Definition 3.2. Let v ∈ GN . We say that v is convex if for every (S;P ), (T ;Q) ∈

ECN it holds

v((S;P ) ∨ (T ;Q)) + v((S;P ) ∧ (T ;Q)) ≥ v(S;P ) + v(T ;Q) (5)

That is, for every pair of embedded coalitions, the sum of their worths is less than

or equal to the sum of the worths of their supremum and infimum in
(
ECN ,v

)
. It is a

very natural generalization of the classic definition (Shapley, 1971) if the supremum

and infimum in
(
ECN ,v

)
are understood as the union and intersection of embedded

coalitions, respectively. As it happens when there are no externalities, any convex

game is a superadditive game. In the literature there are several definitions of

convexity for games with externalities. An important conceptual difference of our

property is the fact that it applies to coalitions which are embedded in potentially

different partitions. In a sense, we evaluate worths of coalitions that have different

expectations about the organization of the complementary coalition.
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Let us review the convexity notion of Hafalir (2007) and analyze its relationship

with Definition 3.2. The game v ∈ GN is Hafalir convex if and only if

v(S ∪T ;P ) + v(S ∩T ;P ∪ dS \T e ∪ dT \Se) ≥ v(S;P ∪ dT \Se) + v(T ;P ∪ dS \T e)

for every S, T ⊆ N and P ∈ Π(N \ (S ∪ T )). Notice that for every S, T ⊆ N and

P ∈ Π(N \ (S ∪ T )), we have (S;P ∪ dT \ Se) ∨ (T ;P ∪ dS \ T e) = (S ∪ T ;P ) and

(S;P ∪ dT \ Se) ∧ (T ;P ∪ dS \ T e) = (S ∩ T ;P ∪ dS \ T e ∪ dT \ Se). This implies

that our convexity implies Hafalir convexity. In the example below we show that

the reverse implication does not hold.

Example 3.3. Let N = {1, 2, 3, 4} and v ∈ GN be defined as follows:

v(N ; ∅) = 12; v({1, 2, 3}; {4}) = 7, v({1, 2, 4}; {3}) = 6, v({1, 3, 4}; {2}) = 3,

v({2, 3, 4}; {1}) = 6, v({1, 2}; b3, 4c) = 4, v({2, 3}; d1, 4e) = 4,

v({1, 3}; b2, 4c) = 2, v({1}; b2, 3, 4c) = 1, v({2}; b1, 3, 4c) = 2,

v(S;P ) = 0, otherwise.

This game is superadditive and Hafalir convex. But, it does not satisfy Inequal-

ity (5). For instance, if we take (S;P ) = ({1, 2}; b3, 4c), (T ;Q) = ({2, 3}; d1, 4e),

then (S;P ) ∨ (T ;Q) = ({1, 2, 3}; {4}), (S;P ) ∧ (T ;Q) = ({2}; {{1, 4}, {3}}), and

v({1, 2, 3}; {4})+v({2}; {{1, 4}, {3}}) = 7+0 < 4+4 = v({1, 2}; b3, 4c)+v({2, 3}; d1, 4e).

The next example illustrates that our notion of convexity is not obvious because

there are convex games which are not classic games.

Example 3.4. Let N = {1, 2, 3} and v ∈ GN defined as follows:

v(N ; ∅) = 15, v(N \ i; {i}) = 10, for every i ∈ N,

v(N \ {i, j}; bi, jc) = 5, for every i, j ∈ N, i 6= j,

v(N \ {i, j}; di, je) = 4, for every i, j ∈ N, i 6= j,

v(∅;N) = 0.

In order to present our main result we first have to generalize the contribution
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of an agent to a coalition to environments with externalities.5 To that end, we use

the lattice studied in Section 2. In classic games the contributions correspond to a

link in the Boolean lattice of subsets
(
2N ,⊆

)
. Then, we consider that each link in

the lattice
(
ECN ,v

)
corresponds to a contribution to the embedded coalition on the

top. Note that this leads to two kinds of contributions. The first is the movement of

a player from being a singleton in the partition to join the coalition. The second is

the movement of a block in the partition that splits in two. Next, we present these

contributions that were introduced in Alonso-Meijide et al. (2019) and define what

it means for a game to have non-decreasing contributions.

Let v ∈ GN and (S;P ) ∈ ECN such that {i} ∈ P for some i ∈ N . Then, we call

agent i’s contribution to the difference v (S ∪ i;P−i) − v(S;P ). Moreover, we say

that agents’ contributions are non-decreasing in v if

v(T ∪ i;Q−i)− v(T ;Q) ≥ v (S ∪ i;P−i)− v(S;P ), (6)

for every i ∈ N , (S;P ), (T ;Q) ∈ ECN with (S;P ) v (T ;Q) 6= (N ; ∅) and {i} ∈ P .

Let v ∈ GN , (S;P ) ∈ ECN , and P ′ ∈ Π(N \S) covering P . Then, we call external

contribution to the difference v(S;P ) − v(S;P ′).6 Moreover, we say that external

contributions are non-decreasing in v if

v(T ;Q)− v(T ;Q′) ≥ v(S;P )− v(S;P ′), (7)

for every (S;P ), (T ;Q) ∈ ECN such that (S;P ) v (T ;Q) 6= (N ; ∅), P ′ ∈ Π(N \ S)

covering P , Q′ ∈ Π(N \ T ) covering Q, and (S;P ′) v (T ;Q′).

We state some auxiliary results that will be used to prove Theorem 3.1.

Lemma 3.1. Let v ∈ GN such that the external contributions are non-decreasing.

Then, v(S;P ) ≤ v(S;M), for every (S;P ), (S;M) ∈ ECN such that (S;P ) v

(S;M).

That is, a game in which the external contributions are non-decreasing exhibits

a monotonicity property in the sense that the worth of a coalition grows as the

5Many authors call this a marginal contribution.
6Notice that the external contribution is just the externality effect on the worth of coalition S

when a coalition of N \ S splits in two.
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coalitions in the complement get more divided. In other words, it is a game with

negative externalities (Hafalir, 2007).

Lemma 3.2. Let v ∈ GN such that the external contributions are non-decreasing.

Then,

v
(
T ;P

∧
Q
)

+ v
(
T ;P

∨
Q
)
≥ v(T ;P ) + v(T ;Q), (8)

for every (T ;P ), (T ;Q) ∈ ECN .

That is, for a fixed coalition T the partition function of a game with non-

decreasing external contributions is a supermodular function on Π(N \ T ).

Lemma 3.3. Let v ∈ GN such that agents’ contributions are non-decreasing. Then,

v(T ;Q)− v(S;Q ∪ bT \ Sc) ≥ v(T ;P )− v(S;P ∪ bT \ Sc), (9)

for every S ⊆ T and P,Q ∈ Π(N \ T ), with Q � P .

The above result states that when agents’ contributions are non-decreasing in

a game, the incorporation of several agents that were singletons in the partition is

more beneficial for larger embedded coalitions.

Lemma 3.4. Let v ∈ GN such that agents’ contributions are non-decreasing. Then,

v(S∪T ;P )+v(S∩T ;P ∪bS\T c∪bT \Sc∪P ) ≥ v(S;P ∪bT \Sc)+v(T ;P ∪bS\T c),

(10)

for every S, T ⊆ N and P ∈ Π(N \ (S ∪ T )).

Notice that Equation (10) is very similar to Hafalir convexity. The only difference

is the fact that here we consider that agents who only participate in one of the two

coalitions are singletons.

We are now ready to present our main result, which is a characterization of con-

vexity by non-decreasing contributions. That is, we generalize the characterization

of classic convex games by Shapley (1971) to environments with externalities.

Theorem 3.1. Let v ∈ GN . The following three items are equivalent.

i) v is a convex game.
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ii) Let (S;P ), (T ;Q) ∈ ECN \ {(N ; ∅)} such that (T ;Q) covers (S;P ). Then,

1. For every i ∈ N with {i} ∈ P , we have

v(T ∪ i;Q−i)− v(T ;Q) ≥ v (S ∪ i;P−i)− v(S;P ) (11)

2. For every P ′ ∈ Π(N \ S) covering P and Q′ ∈ Π(N \ T ) covering Q such

that (T ;Q′) covers (S;P ′), we have

v(T ;Q)− v(T ;Q′) ≥ v(S;P )− v(S;P ′) (12)

iii) v has non-decreasing agents’ and external contributions.

Proof. First, we proof that i) implies ii). Let v ∈ GN . Let us assume that v is

a convex game. Take (S;P ), (T ;Q) ∈ ECN such that (S;P ) v (T ;Q) 6= (N ; ∅) and

(T ;Q) covers (S;P ). If there is {i} ∈ P , then {i} ∈ Q since (S;P ) v (T ;Q). Notice

that (T ;Q)
∨

(S ∪ i;P−i) = (T ∪ i;Q−i) and (T ;Q)
∧

(S ∪ i;P−i) = (S;P ). Applying

Inequality (5) to (T ;Q) and (S ∪ i;P−i) and rearranging terms, we obtain

v (T ∪ i;Q−i)− v(T ;Q) ≥ v (S ∪ i;P−i)− v(S;P ).

Let us take P ′ ∈ Π(N \ S), Q′ ∈ Π(N \ T ) such that P ′ covers P , Q′ covers Q,

and (T ;Q′) covers (S;P ′). Then, (S;P ) covers (S;P ′) and (T ;Q) covers (T ;Q′).

Besides, (S;P )
∨

(T ;Q′) = (T ;Q) and (S;P )
∧

(T ;Q′) = (S;P ′). Then, applying

Inequality (5) to (S;P ) and (T ;Q′) and rearranging terms, we obtain

v(T ;Q)− v
(
T ;Q′

)
≥ v(S;P )− v

(
S;P ′

)
.

Second, we prove that ii) implies iii). Let (S;P ), (T ;Q) ∈ ECN with (S;P ) v

(T ;Q) 6= (N ; ∅). If h(T ;Q) − h(S;P ) = 0, then Inequalities (6) and (7) hold

immediately because (S;P ) = (T ;Q). If h(T ;Q) − h(S;P ) = 1, Inequalities (6)

and (7) hold because v satisfies Inequalities (11) and (12). In the following, we

assume that h(T ;Q) − h(S;P ) > 1. We divide the proof in two parts, the first to

check Inequality (6) and the second to check Inequality (7). Figure 1 illustrates the

scheme of the proof of the first part. Let us assume that h(T ;Q)−h(S;P ) = k > 1.
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If there is some {i} ∈ P , then {i} ∈ Q. Take a chain bT \ Sc ∪ Q = Q0 ≺ Q1 ≺

. . . ≺ Qm = P with m > 1 in the lattice of partitions (Π(N),�). Notice that

{i} ∈ Qj , for every j = 0, . . . ,m. Note also that for every j = 0, . . . ,m − 1,

(S;Qj) covers (S;Qj+1). Then, we can apply Inequality (11) to (S;Qj+1) and

(S;Qj) to get v (S ∪ i; (Qj)−i) − v(S;Qj) ≥ v (S ∪ i; (Qj+1)−i) − v(S;Qj+1), for

every j = 0, . . . ,m− 1. Thus,

m−1∑
j=0

[v (S ∪ i; (Qj)−i)− v(S;Qj)] ≥
m−1∑
j=0

[v (S ∪ i; (Qj+1)−i)− v(S;Qj+1)] ,

which yields

v (S ∪ i; bT \ Sc ∪Q−i)− v(S; bT \ Sc ∪Q) ≥ v (S ∪ i;P−i)− v(S;P ). (13)

If T \S = ∅, Inequality (13) is Inequality (6) and the proof is finished. If T \S 6= ∅, let

us assume that T \S = {i1, . . . , ir} and take Rj = {i1, . . . , ij}, for every j = 1, . . . , r

andR0 = ∅. Now, for every j ∈ {0, . . . , r−1}, (S ∪Rj ∪ i; bT \ (S ∪Rj)c ∪Q−i) cov-

ers (S ∪Rj ; bT \ (S ∪Rj)c ∪Q) . We apply Inequality (11) to (S ∪Rj ; bT \ (S ∪Rj)c ∪Q) v

(S ∪Rj ∪ i; bT \ (S ∪Rj)c ∪Q−i) and ij+1 ∈ T \ S, obtaining

v(S ∪Rj+1 ∪ i; bT \ (S ∪Rj+1)c ∪Q−i)− v(S ∪Rj ∪ i; bT \ (S ∪Rj)c ∪Q−i)

≥ v(S ∪Rj+1; bT \ (S ∪Rj+1)c ∪Q)− v(S ∪Rj ; bT \ (S ∪Rj)c ∪Q).

Adding up these r inequalities, we get

v(T ∪ i;Q−i)− v(S ∪ i; bT \ Sc ∪Q−i) ≥ v(T ;Q)− v(S; bT \ Sc ∪Q). (14)

Adding up Inequalities (13) and (14), and rearranging terms, we obtain

v(T ∪ i;Q−i)− v(T ;Q) ≥ v(S ∪ i;P−i)− v(S;P ).

Then, Inequality (6) holds.

We check that Inequality (7) also holds. Figure 2 illustrates the scheme of the

proof. Let P ′ be a partition that covers P in (Π(N \ S),�), Q′ be a partition

that covers Q in (Π(N \ T ),�), such that (S;P ′) v (T ;Q′). Take a pair of chains
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(S; bT \ Sc ∪ Q)

(
S ∪ i; bT \ Sc ∪ Q−i

)

(T ;Q)

(
T ∪ i;Q−i

)

(
S ∪ i;P−i

)

(S;P )

Figure 1: Inequality (6). Solid line: one link; dashed line: one or more links.

Q0 = bT \Sc∪Q ≺ Q1 ≺ . . . ≺ Qm = P andQ′0 = bT \Sc∪Q′ ≺ Q′1 ≺ . . . ≺ Q′m = P ′

in the lattice of partitions (Π(N),�), such that Q′j covers Qj , for every j = 0, . . . ,m

with m > 1. Notice that both chains have the same length because P ′ covers P , Q′

covers Q, Q ≺ P−T , and Q′ ≺ P ′−T . For every j = 0, . . . ,m, (S;Qj) covers (S;Q′j).

Then we apply Inequality (12) to (S;Qj+1) v (S;Qj), Q
′
j+1, and Q′j , obtaining

v(S;Qj) − v(S;Q′j) ≥ v(S;Qj+1) − v(S;Q′j+1), for every j = 0, . . . ,m − 1. Adding

up these m inequalities, we get

v(S; bT \ Sc ∪Q)− v(S; bT \ Sc ∪Q′) ≥ v(S;P )− v(S;P ′). (15)

If T \S = ∅, we finish the proof. If T \S 6= ∅, we proceed as we did above in order to

obtain Inequality (14) with (S; bT \ Sc ∪Q′) v (S; bT \ Sc ∪Q) until we get (T ;Q′)

and (T ;Q). Hence,

v(T ;Q)− v(S; bT \ Sc ∪Q) ≥ v(T ;Q′)− v(S; bT \ Sc ∪Q′) (16)

Adding up Inequalities (15) and (16), we get v(T ;Q)−v(T ;Q′) ≥ v(S;P )−v(S;P ′),

concluding the proof.

Finally, we check that iii) implies i) using Lemma 3.3, Lemma 3.4, and Lemma 3.2.

Let (S;P ), (T ;Q) ∈ ECN . If (S;P ) v (T ;Q) it is trivial to check Inequality (5).
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(
S; bT \ Sc ∪ Q′

)

(S; bT \ Sc ∪ Q)

(
T ;Q′

)
(T ;Q)

(S;P )

(
S;P ′

)

Figure 2: Inequality (7). Solid line: one link; dashed line: one or more links.

Let us assume (S;P ) and (T ;Q) are not comparable. We prove Inequality (5) using

the disaggregation of the Hasse diagram among (S;P ), (T ;Q), (S;P ) ∧ (T ;Q), and

(S;P ) ∨ (T ;Q) depicted in Figure 3. Label I corresponds to a situation analized in

Lemma 3.3, label II corresponds to a situation analized in Lemma 3.2, and label

III corresponds to a situation analized in Lemma 3.4.

I.1 Apply Lemma 3.3 to S∩T ⊆ S, bT \Sc∪(P−T
∨
Q−S), and P

∨
(bT \Sc∪Q−S)

because bT \ Sc ∪ (P−T
∨
Q−S) � P

∨
(bT \ Sc ∪Q−S). Then,

v(S; bT \ Sc ∪ (P−T
∨
Q−S)) + v(S ∩ T ; bS \ T c ∪ (P

∨
(Q−S ∪ bT \ Sc)) ≥

v(S;P
∨

(bT \ Sc ∪Q−S)) + v(S ∩ T ; bS \ T c ∪ bT \ Sc ∪ (P−T
∨
Q−S)).

(17)

I.2 Apply Lemma 3.3 to S∩T ⊆ T , bS\T c∪(P−T
∨
Q−S), and Q

∨
(bS\T c∪P−T )

because bS \ T c ∪ (P−T
∨
Q−S) � Q

∨
(bS \ T c ∪ P−T ). Then,

v(T ; bS \ T c ∪ (P−T
∨
Q−S)) + v(S ∩ T ; bT \ Sc ∪ (Q

∨
(P−T ∪ bS \ T c)) ≥

v(T ;Q
∨

(bS \ T c ∪ P−T )) + v(S ∩ T ; bS \ T c ∪ bT \ Sc ∪ (P−T
∨
Q−S)).

(18)

I.3 Apply Lemma 3.3 to S ⊆ S ∪ T , P−T , and P−T
∨
Q−S because P−T �
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II.1

II.4

II.2 II.3

I.3 I.4

I.1 I.2

III

(
S ∪ T;P−T

∧
Q−S

)

(S ∪ T ;Q−S)
(S ∪ T ;P−T )

(S ∪ T ;P−T
∨

Q−S)
(T ; bS \ Tc ∪ Q−S)

(S; bT \ Sc ∪ P−T )

(T ; bS \ Tc ∪ (P−T
∨

Q−S))(S; bT \ Sc ∪ (P−T
∨

Q−S))

(T;Q)
(S;P)

(T ;Q
∨
(bS \ Tc ∪ P−T ))

(S;P
∨
(bT \ Sc ∪ Q−S))

(S ∩ T ; bT \ Sc ∪ bS \ Tc ∪ (P−T
∨

Q−S))

(S ∩ T ; bT \ Sc ∪ (Q
∨
(bS \ Tc ∪ P−T )))

(S ∩ T ; bS \ Tc ∪ (P
∨
(bT \ Sc ∪ Q−S)))

(S ∩ T; (bS \ Tc ∪ P)
∨
(bT \ Sc ∪ Q))

Figure 3: The structure of the proof.

P−T
∨
Q−S . Then,

v(S∪T ;P−T )+v(S; bT\Sc∪(P−T
∨
Q−S)) ≥ v(S∪T ;P−T

∨
Q−S)+v(S; bT\Sc∪P−T ).

(19)

I.4 Apply Lemma 3.3 to T ⊆ S ∪ T , Q−S , and P−T
∨
Q−S because Q−S �

P−T
∨
Q−S . Then,

v(S∪T ;Q−S)+v(T ; bS\T c∪(P−T
∨
Q−S)) ≥ v(S∪T ;P−T

∨
Q−S)+v(T ; bS\T c∪Q−S).

(20)

II.1 Apply Lemma 3.2 to (S ∪ T ;P−T ) and (S ∪ T ;Q−S). Then,

v(S∪T ;P−T
∧
Q−S)+v(S∪T ;P−T

∨
Q−S) ≥ v(S∪T ;P−T )+v(S∪T ;Q−S).

(21)
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II.2 Apply Lemma 3.2 to (S;P ) and (S; bT \ Sc ∪ (P−T
∨
Q−S)). Then,

v(S; bT\Sc∪P−T )+v(S;P
∨

(bT\Sc∪Q−S)) ≥ v(S;P )+v(S; bT\Sc∪(P−T
∨
Q−S)).

(22)

II.3 Apply Lemma 3.2 to (T ;Q) and (T ; bS \ T c ∪ (P−T
∨
Q−S)). Then,

v(T ; bS\T c∪Q−S)+v(T ;Q
∨

(bS\T c∪P−T )) ≥ v(T ;Q)+v(T ; bS\T c∪(P−T
∨
Q−S)).

(23)

II.4 Apply Lemma 3.2 to (S ∩ T ; bT \ Sc ∪ (Q
∨

(P−T ∪ bS \ T c)) and (S ∩ T ; bS \

T c ∪ (P
∨

(Q−S ∪ bT \ Sc)). Then,

v(S ∩ T ; bS \ T c ∪ bT \ Sc ∪ (P−T
∨
Q−S)) + v(S ∩ T ; (bS \ T c ∪ P )

∨
(bT \ Sc ∪Q)) ≥

v(S ∩ T ; bT \ Sc ∪ (Q
∨

(P−T ∪ bS \ T c)) + v(S ∩ T ; bS \ T c ∪ (P
∨

(Q−S ∪ bT \ Sc)).
(24)

III Apply Lemma 3.4 to S, T , and P−T
∨
Q−S . Then,

v(S ∪ T ;P−T
∨
Q−S) + v(S ∩ T ; (bS \ T c ∪ bT \ Sc) ∪ (P−T

∨
Q−S)) ≥

v(S; bT \ Sc ∪ (P−T
∨
Q−S)) + v (T ; bS \ T c ∪ (P−T

∨
Q−S)) .

(25)

Adding up Inequalities (19), (21), and (22), we obtain

v(S ∪T ;P−T
∧
Q−S) + v(S;P

∨
(bT \Sc∪Q−S)) ≥ v(S ∪T ;Q−S) + v(S;P ). (26)

Adding up Inequalities (17), (20), and (25), we obtain

v(S ∪ T ;Q−S) + v(S ∩ T ; bS \ T c ∪ (P
∨

(Q−S ∪ bT \ Sc)) ≥

v(T ; bS \ T c ∪Q−S) + v(S;P
∨

(bT \ Sc ∪Q−S)).
(27)

Adding up Inequalities (18), (23), and (24), we obtain

v(T ; bS \ T c ∪Q−S) + v(S ∩ T ; (bS \ T c ∪ P )
∨

(bT \ Sc ∪Q))

≥ v(T ;Q) + v(S ∩ T ; bS \ T c ∪ (P
∨

(Q−S ∪ bT \ Sc)).
(28)
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Finally, adding up Inequalities (26), (27), and (28), we obtain

v
(
S ∪ T ;P−T

∧
Q−S

)
+v
(
S ∩ T ; (bS \ T c ∪ P )

∨
(bT \ Sc ∪Q)

)
≥ v(S;P )+v(T ;Q).

Summarizing all the previous results, we have the characterization of convexity

for games with externalities given in Theorem 3.1. �

Observe that condition ii) is a weakening of iii) as it is only applied when the

embedded coalition (T ;Q) covers (S;P ), in point 2. it is also required that (T ;Q′)

covers (S;P ′). This is parallel to the characterization of classic convex games where

it is sufficient to check that the contributions are non-decreasing when one player

is incorporated to the coalition. Hafalir (2007) also considered a weakening of his

notion of convexity, which is obtained by requiring Inequality (10) only when |T\S| =

|S \T | = 1. However, as he points out, this condition alone is not even sufficient for

the efficiency of the grand coalition. Abe (2016) shows that for games with negative

externalities, the weak version of Hafalir convexity is sufficient. From Theorem 3.1

we can also conclude that it is enough to check that contributions are non-decreasing

to coalitions that are just one link away from one another to guarantee that the grand

coalition is efficient.

4 Convexity and the core

In this section we include some comments on the core of the optimistic and the

pessimistic games7 associated to a convex game. Both of them are classic games.

First we recall the notion of the core of a classic game. Let w ∈ GN be a classic

game. The core of w is given by

Core(w) =

{
x ∈ Rn :

∑
i∈N

xi = w(N),
∑
i∈S

xi ≥ w(S), for every S ⊆ N

}
.

In general, Core(w) can be empty, but every convex classic game has a non-empty

core. Besides, it is quite easy to describe its extreme points. Let the set of per-

7Which are essentially the α-core and β-core (Hart and Kurz, 1983). More recently Dutta et al.
(2010), Bloch and van den Nouweland (2014), and Abe (2016) also use these games.
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mutations of N be denoted by Θ(N), i.e., σ ∈ Θ(N) if and only if σ is a bijective

mapping σ : N −→ {1, . . . , n}. Let σ ∈ Θ(N) and i ∈ N . The set of predecessors of

i is Pr(σ, i) = {j ∈ N : σ(j) < σ(i)} and the set of followers of i is F (σ, i) = {j ∈

N : σ(j) > σ(i)}. The vector of marginal contributions with respect to σ is given by

mσ(w) ∈ Rn such that mσ
i (w) = w(Pr(σ, i)∪ i)−w(Pr(σ, i)), for every i ∈ N . It is

well known that if w is a classic convex game, then the vectors of marginal contri-

butions are the vertices of the core, i.e., Core(w) = conv {mσ(w) : σ ∈ Θ(N)}.

Let v ∈ GN . The optimistic game, denoted by vmax, is the classic game defined

by vmax(S) = max{v(S;P ) : P ∈ Π(N \ S)}, for every S ⊆ N . The pessimistic

game, denoted by vmin, is the classic game defined by vmin(S) = min{v(S;P ) : P ∈

Π(N \ S)}, for every S ⊆ N . Notice that vmax(S) ≥ vmin(S), for every S ⊆ N

and vmax(N) = vmin(N) = v(N ; ∅). Then, Core(vmax) ⊆ Core(vmin). Abe (2016)

proved that if v has negative externalities and satisfies the weak convexity condition,

then Core(vmax) is non-empty as well as Core(vmin). Since a convex game according

to Definition 3.2 satisfies the weak convexity condition, we already known that both

Core(vmax) and Core(vmin) are non-empty sets when v is a convex game.

Definition 4.1. Let v ∈ GN . For every P ∈ Π(N), we define the classic game vP

by vP (S) = v(S;P−S), for every S ⊆ N .

Notice that vP is defined for every S ⊆ N even if S is not a block in P . Besides,

vP (S) = vQ(S), for every P,Q ∈ Π(N) and S ⊆ N with P−S = Q−S . The optimistic

game can then be defined by vmax(S) = max{vP (S) : P ∈ Π(N)}, analogously for

the pessimistic game by vmin(S) = min{vP (S) : P ∈ Π(N)}, for every S ⊆ N .

Proposition 4.1. Let v ∈ GN . Then,

Core (vmax) =
⋂

P∈Π(N)

Core
(
vP
)
.

Proof. Let x ∈ Core(vmax) and P ∈ Π(N). Then,

∑
i∈N

xi = v(N ; ∅) = vP (N).
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For every S ⊆ N , ∑
i∈S

xi ≥ vmax(S) ≥ vP (S).

Then, x ∈ Core
(
vP
)
. Let x ∈

⋂
P∈Π(N)

Core
(
vP
)
. Let (S,Q) ∈ ECN be such that

vmax(S) = v(S;Q). Take, for instance, P = Q ∪ dSe. It is clear that P−S = Q and

vP (S) = v(S;Q) = vmax(S). Since x ∈ Core
(
vP
)
, we have

∑
i∈S

xi ≥ vP (S) = v(S;Q) = vmax(S).

Thus, x ∈ Core(vmax). �

Next, we characterize the extreme points of the core of vmax and the core of vmin

of a convex game.

Theorem 4.1. Let v ∈ GN be a convex game.

1. Let P,Q ∈ Π(N) such that Q � P . Then, Core
(
vQ
)
⊆ Core

(
vP
)
.

2. For every S ⊆ N , vmax(S) = vbNc(S) and vmin(S) = vdNe(S).

3. vmax is a convex classic game and

Core (vmax) = Core
(
vbNc

)
= conv

{
mσ
(
vbNc

)
: σ ∈ Θ(N)

}
,

with mσ
(
vbNc

)
∈ RN defined for every i ∈ N by

mσ
i

(
vbNc

)
= vbNc(Pr(σ, i) ∪ i)− vbNc(Pr(σ, i))

= v(Pr(σ, i) ∪ i; bF (σ, i)c)− v(Pr(σ, i); bF (σ, i) ∪ ic)

Proof. Let v ∈ GN be a convex game.

1. Let P,Q ∈ Π(N) such that Q � P . Recall that, vP (N) = vQ(N). Let

x ∈ Core
(
vQ
)
, then

xS =
∑
i∈S

xi ≥ v(S;Q−S) ≥ v(S;P−S),
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where the first inequality follows because x ∈ Core(vQ) and the second inequal-

ity because (S;P−S) v (S;Q−S) and Lemma 3.1 holds. Then, x ∈ Core(vP ).

2. Let S ⊆ N . Since v is convex and according to Lemma 3.1, we have v(S;Q) ≥

v(S;P ), for every (S;P ), (S;Q) ∈ ECN with (S;P ) v (S;Q). Notice that

(S; dN \ Se) v (S;Q) v (S; bN \ Sc), for every (S;Q) ∈ ECN and there is no

(S;M) ∈ ECN such that (S;M) @ (S; dN \ Se) v (S;Q) nor (S;M ′) ∈ ECN

with (S;Q) v (S; bN \Sc) @ (S;M ′). As a consequence of all this, vmax(S) =

max
{
vQ(S) : Q ∈ Π(N)

}
= vbNc(S) and vmin(S) = min

{
vQ(S) : Q ∈ Π(N)

}
=

vdNe(S).

3. First, we see that vmax = vbNc is a convex game. Let i ∈ N , S ⊆ T ⊆ N \ i.

We prove that

vbNc(T ∪ i)− vbNc(T ) ≥ vbNc(S ∪ i)− vbNc(S). (29)

Notice that {i} ∈ bNc−S and (S; bN \Sc) v (T ; bN \T c) 6= (N ; ∅). According

to Item iii.1) in Theorem 3.1, we have v (T ∪ i; bN \ (T ∪ i)c)−v(T ; bN \T c) ≥

v(S ∪ i; bN \ (S ∪ i)c)− v(S; bN \Sc), or equivalently, vbNc(T ∪ i)− vbNc(T ) ≥

vbNc(S ∪ i)− vbNc(S). Thus, Inequality (29) holds and vbNc is a convex game.

�

As a consequence of Theorem 4.1, if v is convex the Externality-free value (de Clippel

and Serrano, 2008) is the average of the extreme points of the core of vmax and it

also belongs to the core of vmin. Notice that our definition of convexity is not

enough to guarantee the convexity of the classic game vmin. We illustrate this using

Example 3.4. In this case, we have

vmin(N) = 15, vmin(S) = 10, for every S ⊂ N with |S| = 2, and

vmin(S) = 4, for every S ⊂ N with |S| = 1.

For instance, if we take S = {1} ⊆ T = {1, 2} and i = 3, we have

vmin(N)− vmin(T ) = 15− 10 = 5 < 6 = 10− 4 = vmin(S ∪ i)− vmin(S).
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5 Final remarks

Finally, we compare our definition of superadditivy with optimistic superadditiv-

ity (optimistic-SA) as defined by Abe (2016). A game v ∈ GN is optimistic-

superadditive if vmax is a superadditive classic game. It is clear that any convex

game according to Definition 3.2 is also optimistic-superadditive as a consequence

of Theorem 4.1. Nevertheless, there are games with negative externalities that are

optimistic-superadditive but not superadditive according to Definition 3.1. We il-

lustrate this with the following example.

Example 5.1. Let N = {1, 2, 3, 4} and v ∈ GN defined as follows:

v(N ; ∅) = 60, v(N \ i; bic) = 45, for every i ∈ N,

v({i, j}; dh, ke) = 29 and v({i, j}; bh, kc) = 30, for every {i, j, h, k} = N,

v({i};P ) = 15, for every ({i};P ) ∈ ECN .

This game is an adaptation of Example 3.8 in Abe (2016). It is still superadditive

in Maskin’s sense, but it is not superadditive according to Definition 3.1 because, for

instance,

v({1}; {{2, 3}, {4}}) + v({4}; dN \ 4e) = 15 + 15 = 30 > v({1, 4}; d2, 3e) = 29.

The optimistic game associated to it, given by

vmax(N) = 60, vmax(N \ i) = 45, for every i ∈ N,

vmax(S) = 30, if |S| = 2,

vmax(S) = 15, if |S| = 1,

is a classic superadditive game.

Figure 4 illustrates the relationship between our concepts of superadditive and

convex games with the concepts of efficient and optimistic-superadditive games in

the framework of games with negative externalities.
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Efficient

Superadditive

Optimistic-SA

Weak convex

Hafalir’s convex

Convex

Figure 4: Relationship among several families of games with negative externalities.

References

Abe, T. (2016). Efficiency and the core in games with positive and negative exter-

nalities. Technical report, WINPEC Working Paper Series,(April).

Abe, T. (2019). Population monotonic allocation schemes for games with externali-

ties. International Journal of Game Theory, https://doi.org/10.1007/s00182-019-

00675-3.
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Appendix.

Proof of Lemma 3.1. Let (S;P ), (S;M) ∈ ECN , such that (S;P ) v (S;M)

and (S;P ) 6= (S;M). If S ∈ {∅, N} or P = M , v(S;P ) = v(S;M) and the

result follows immediately. Then, suppose that S /∈ {∅, N} and P 6= M . Since

(S;P ) v (S;M) 6= (N ; ∅) and (S;P ) 6= (S;M), M ≺ P holds. Take a chain

M = Q0 ≺ Q1 ≺ · · · ≺ Qk = P . Then, Qr covers Qr−1, for every r = 1, . . . , k.

Take the family of embedded coalitions {(∅; bSc ∪ Qr) : r = 0, . . . , k}. Let r ∈

{0, . . . , k−1}. Then, bSc∪Qr+1 covers bSc∪Qr and (∅; bSc∪Qr) v (S;Qr) 6= (N ; ∅).

Applying Inequality (7) to (∅; bSc∪Qr) v (S;Qr), bSc∪Qr+1, and Qr+1, we obtain

v(S;Qr)− v(S;Qr+1) ≥ v(∅; bSc ∪Qr)− v(∅; bSc ∪Qr+1). Since v(∅; bSc ∪Qr+1) =

v(∅; bSc ∪Qr) = 0, we get v(S;Qr) ≥ v(S;Qr+1). Thus,

v(S;M) = v(S;Q0) ≥ v(S;Q1) ≥ · · · ≥ v(S;Qk−1) ≥ v(S;Qk) = v(S;P ).

�

Proof of Lemma 3.3. Take S ⊆ T , P,Q ∈ Π(N \ T ) with Q � P . We proceed

by induction on |T \ S|. If |T \ S| = 0, Inequality (9) follows immediately. Let us

assume that |T \ S| = 1, i.e., T \ S = {i} for some i ∈ N . Then, (S; {i} ∪ P ) v

(S; {i} ∪Q). Applying Inequality (6) to i, (S; {i} ∪ P ), and (S; {i} ∪Q) we get

v(S ∪ i;Q)− v(S; {i} ∪Q) ≥ v(S ∪ i;P )− v(S; {i} ∪ P ).

Now, let us assume that the result holds for every S ⊆ T , P,Q ∈ Π(N \ T ) with

Q � P and |T \ S| < k. Take S ⊆ T , P,Q ∈ Π(N \ T ) with Q � P and |T \ S| = k.

Take i ∈ T \ S, (T \ i; {i} ∪ P ), and (T \ i; {i} ∪ Q). It is clear that T \ {i} ⊆ T ,

{i} ∪Q � {i} ∪ P and |T \ (T \ {i})| = 1. As we have just seen

v(T ;Q)− v(T \ i; {i} ∪Q) ≥ v(T ;P )− v(T \ i; {i} ∪ P ). (30)
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Notice that S ⊆ T \ i. Take P ′ = {i} ∪ P , and Q′ = {i} ∪Q. Since |T \ (S ∪ i)| =

k − 1 < k, {i} ∈ P ′, and Q′ � P ′, applying the induction hypothesis we get

v(T \ i;Q′)− v(S; bT \ Sc ∪Q) ≥ v(T \ i;P ′)− v(S; bT \ Sc ∪ P ). (31)

Adding up Inequalities (30) and (31) we get the result. �

Proof of Lemma 3.4. Let S, T ⊆ N , P ∈ Π(N \ (S ∪ T )). If S ∈ {∅, N}

or T = ∅, Inequality (10) follows immediately. Let us assume that both S and T

are proper non-empty subsets of N . If S ⊆ T , Inequality (10) follows immediately.

Then, let us assume that S and T are not comparable and S \ T = {i1, . . . , ir}. Let

A0 = S ∩ T and B0 = T . For each j = 1, . . . , r, take

• (Aj ;P
′
j) ∈ ECN given by Aj = Aj−1 ∪ {ij}, P ′j = P ∪ bT \ Sc ∪ bS \Ajc, and

• (Bj ;Q
′
j) ∈ ECN given by Bj = Bj−1 ∪ {ij}, Q′j = P ∪ bS \Bjc.

For every j = 0, . . . , r, we have (Aj ;P
′
j) v (Bj ;Q

′
j). Thus, for every j = 0, . . . , r−1,

applying Inequality (6) to ij+1, (Aj ;P
′
j) and (Bj ;Q

′
j), we obtain v(Bj∪{ij+1};Q′j+1)−

v(Bj ;Q
′
j) ≥ v(Aj ∪ {ij+1};P ′j+1)− v(Aj ;P

′
j). Adding up these r inequalities, we get

r−1∑
j=0

[v(Bj ∪ {ij+1};Q′j+1)− v(Bj ;Q
′
j)] ≥

r−1∑
j=0

[v(Aj ∪ {ij+1};P ′j+1)− v(Aj ;P
′
j)].

Hence,

v(S ∪T ;P )− v(T ; bS \T c∪P ) ≥ v(S; bT \Sc∪P )− v(S ∩T ; bT \Sc∪ bS \T c∪P ),

concluding the proof. �

Proof of Lemma 3.2. Take (T ;P ), (T ;Q) ∈ ECN . If T ∈ {N, ∅} ∪ {N \ i :

i ∈ N} or (T ;P ) v (T ;Q), Inequality (8) follows immediately. Let us assume that

(T ;P ) and (T ;Q) are not comparable, 0 < |T | < n − 1, and w.l.o.g we assume

h(T ;Q) ≥ h(T ;P ). Then, |Q| ≥ |P | and P
∨
Q 6∈ {P,Q}. Let P

∧
Q = P0 ≺

P1 ≺ . . . ≺ Pk ≺ Pk+1 = P , with k ≥ 1, be a chain that joins P
∧
Q and P , and
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P
∧
Q = Q0 ≺ Q1 ≺ . . . ≺ Qr ≺ Qr+1 = Q, with r ≥ 1, be a chain that joins

P
∧
Q and Q. Notice that Pj and Ql are not comparable for every j = 1, . . . , k+ 1,

l = 1, . . . , r + 1. We distinguish four cases.

1. h(T ;P
∧
Q)− h(T ;P ) = 1, h(T ;P

∧
Q)− h(T ;Q) = 1. That means both P

andQ cover P
∧
Q. Figure 5 illustrates the situation. Since Π(N\T ) is semimodular,

P
∨
Q covers both P and Q. Then, (T ;P )∨ (T ;Q) = (T ;P

∧
Q) covers both (T ;P )

and (T ;Q). Since (ECN ,v) is lower semimodular, then (T ;P ) and (T ;Q) both

cover (T ;P ) ∧ (T ;Q) = (T ;P
∨
Q). Applying Inequality (7) to (T ;P ), (T ;P

∧
Q),

(T ;P
∨
Q), and (T ;Q) we get Inequality (8).

(T ;P
∧

Q)

(T ;Q)(T ;P )

(T ;P
∨

Q)

Figure 5: Case 1. solid line: one link.

2. h(T ;P
∧
Q) − h(T ;Q) = 1, but h(T ;P

∧
Q) − h(T ;P ) > 1. Using Proposi-

tion 2.3 and the fact that (T ;P ) and (T ;Q) are not comparable, h(T ;P )−h(T ;P
∨
Q) =

1. Then, P
∨
Q covers P , Q covers P

∧
Q, but P does not cover P

∧
Q and

P 6= P
∧
Q. Figure 6 illustrates the situation. Take a chain P

∧
Q = P0 ≺ P1 ≺

. . . ≺ Pk ≺ Pk+1 = P , with k ≥ 1. Notice that Q ≺ Q
∨
P1 ≺ . . . ≺ Q

∨
Pk ≺

Q
∨
Pk+1 = Q

∨
P , with k ≥ 1 is a chain from Q to P

∨
Q. Let j ∈ {0, . . . , k}.

Then, Pj
∧
Q = P

∧
Q and using Proposition 2.3 we have

1 = h
(
T ;P

∧
Q
)
−h(T ;Q) = h

(
T ;Pj

∧
Q
)
−h(T ;Q) ≥ h(T ;Pj)−h

(
T ;Pj

∨
Q
)
.

Since Pj 6= Pj
∨
Q, h(T ;Pj) − h(T ;Pj

∨
Q) = 1. Besides, (Pj

∨
Q)
∧
Pj+1 = Pj .

Using that (Π(N),�) is semimodular, (Pj
∨
Q)
∨
Pj+1 = Pj+1

∨
Q covers both
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Pj
∨
Q and Pj+1. Then, using Item 1, we have

v(T ;Pj) + v
(
T ;Pj+1

∨
Q
)
≥ v(T ;Pj+1) + v

(
T ;Pj

∨
Q
)
.

Summing up the inequalities given above, we get

k∑
j=0

[
v(T ;Pj) + v

(
T ;Pj+1

∨
Q
)]
≥

k∑
j=0

[
v(T ;Pj+1) + v

(
T ;Pj

∨
Q
)]
.

Rearranging this inequality, we obtain Inequality (8).

(T ;P1)

(T ;P1
∨

Q)

(T ;P
∧

Q)

(T ;Q)

(T ;P )

(T ;P
∨

Q)

Figure 6: Case 2. solid line: one link; dashed line: more than one link.

3. h(T ;P )−h(T ;P
∨
Q) = 1, but h(T ;P

∧
Q)−h(T ;Q) > 1. This means P

∨
Q

covers P , but Q does not cover P
∧
Q. Figure 7 illustrates the situation. Since

h(T ;Q) ≥ h(T ;P ) and h(T ;P
∧
Q)−h(T ;Q) > 1, we have h(T ;P

∧
Q)−h(T ;P ) >

1. Take P
∧
Q = P0 ≺ Q1 ≺ . . . ≺ Qr ≺ Qr+1 = Q, with r ≥ 1, a chain that joins

P
∧
Q and Q. By the choice of Q1, we have

• (T ;Q1) v (T ;P
∧
Q), (T ;P ) v (T ;P

∧
Q), h(T ;P

∧
Q)− h(T ;Q1) = 1 , and

the fact that (T ;P ) and (T ;Q1) are not comparable imply that (T ;P
∧
Q) =

(T ;P
∧
Q1).

• (T ;P
∨
Q) v (T ;P

∨
Q1) v (T ;P ) and h(T ;P ) − h(T ;P

∨
Q) = 1. Then,

P = P
∨
Q1 or P

∨
Q1 = P

∨
Q. If P = P

∨
Q1 we have Q1 � P and
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(T ;P ) v (T ;Q1), but this fact contradicts that (T ;P ) and (T ;Q1) are not

comparable. Then, (T ;P
∨
Q) = (T ;P

∨
Q1).

As a consequence of all this, applying Item 2 to (T ;P ) and (T ;Q1), we obtain

v
(
T ;P

∧
Q
)

+ v
(
T ;P

∨
Q
)
≥ v(T ;P ) + v(T ;Q1) (32)

Since v satisfies Inequality (7) and Q1 ≺ Q, using Lemma 3.1, we get v(T ;Q1) ≥

v(T ;Q) and

v
(
T ;P

∧
Q
)

+ v
(
T ;P

∨
Q
)
≥ v(T ;P ) + v(T ;Q),

concluding the proof of this item.

(T ;P1)

(T ;P1
∨

Q1)
(T ;Q)

(T ;P1
∨

Q)

(T ;P
∧

Q)

(T ;Q1)

(T ;P )

(T ;P
∨

Q)

Figure 7: Case 3. solid line: one link; dashed line: one or more links.
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4. h(T ;P )−h(T ;P
∨
Q) > 1 and h(T ;P

∧
Q)−h(T ;Q) > 1. Then, h(T ;P

∧
Q)−

h(T ;P ) ≥ h(T ;P
∧
Q) − h(T ;Q) > 1. That means P

∨
Q does not cover P nor

does Q cover P
∧
Q. Figure 8 illustrates the situation. We proceed by induction

on h(T ;P ) − h(T ;P
∨
Q). The case h(T ;P ) − h(T ;P

∨
Q) = 1 corresponds to

Item 3. Let us assume that the result holds if 1 ≤ h(T ;P ) − h(T ;P
∨
Q) < l.

Take (T ;Q) and (T ;P ) with h(T ;P ) − h(T ;P
∨
Q) = l. Take P

∧
Q = P0 ≺

P1 ≺ . . . ≺ Pk ≺ Pk+1 = P , with k ≥ 1, a chain that joins P
∧
Q and P and

P
∧
Q = Q0 ≺ Q1 ≺ . . . ≺ Qr ≺ Qr+1 = Q, with r ≥ 1, a chain that joins P

∧
Q and

Q. Applying Item 1 to (T ;P1)) and (T ;Q1) because (T ;P1)∨ (T ;Q1) = (T ;P
∧
Q),

h(T ;P
∧
Q)− h(T ;P1) = 1 = h(T ;P

∧
Q)− h(T ;Q1), we get

v
(
T ;P

∧
Q
)

+ v
(
T ;P1

∨
Q1

)
≥ v(T ;P1) + v(T ;Q1) (33)

Due to the choice of P1 and Q1, we have (T ;Q)∨ (T ;P1
∨
Q1) = (T ;Q1), h(T ;Q1)−

h(T ;P1
∨
Q1) = 1, and h(T ;Q1)−h(T ;Q) ≥ 1. Then, applying Item 1 if h(T ;Q1)−

h(T ;Q) = 1 and applying Item 2 if h(T ;Q1)− h(T ;Q) > 1 we get

v(T ;Q1) + v
(
T ;P1

∨
Q
)
≥ v(T ;Q) + v

(
T ;P1

∨
Q1

)
. (34)

In a similar way if we take (T ;P ) and (T ;P1
∨
Q1), we get

v(T ;P1) + v
(
T ;P

∨
Q1

)
≥ v(T ;P ) + v

(
T ;P1

∨
Q1

)
. (35)

Finally, we take (T ;P1
∨
Q) and (T ;P

∨
Q1). Then, (T ;P1

∨
Q) ∧ (T ;P

∨
Q1) =

(T ;P
∨
Q) and (T ;P

∨
Q1) ∨ (T ;P1

∨
Q) v (T ;P1

∨
Q1). Besides, h(T ;P

∨
Q1) −

h(T ;P
∨
Q) = l − 1 < l. We apply the induction hypothesis and obtain

v
((
T ;P

∨
Q1

)
∨
(
T ;P1

∨
Q
))

+v
(
T ;P

∨
Q
)
≥ v

(
T ;P

∨
Q1

)
+v
(
T ;P1

∨
Q
)
.

(36)

Adding up Inequalities (33), (34), (35), and (36), and using Lemma 3.1 applied to

(T ;P
∨
Q1) ∨ (T ;P1

∨
Q) v (T ;P1

∨
Q1), we obtain

v
(
T ;P

∧
Q
)

+ v
(
T ;P

∨
Q
)
≥ v(T ;P ) + v(T ;Q),
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concluding the proof. �

(T ;P1)

(T ;P1
∨

Q1)

(T ;Q)

(T ;P1
∨

Q)

(T ;P
∧

Q)

(T ;Q1)

(T ;P )

(T ;P
∨

Q1)

(T ;P
∨

Q)

(T ;P1
∨

Q)
∨
(T ;P

∨
Q1)

Figure 8: Case 4. solid line: one link; dashed line: more than one link.
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