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MLL: mixed-lineage leukemia 

MMP10: Matrix Metallopeptidase 10 

MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

MYTP1: myosin phosphatase targeting protein 

NAD: nicotinamide adenine dinucleotide  

N-CoR: nuclear receptor co-repressor 1 

NFƘβ: nuclear factor kappa-light-chain-enhancer of activated B cells 

NGIB/Nur77: nerve growth factor IB 

NuRD: nucleosome remodelling and deacetylation complex 

NK: natural killers 

N-terminal: amino-terminal 

OCT4: octamer-binding transcription factor 4 

OR: odds ratio 

ORF: open reading frame 
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p53/TP53: tumor protein 53 

p73/TP73: tumoral protein 73 

PAX5: paired box protein 5 

PC: plasma cells 

PD-L1: programmed death ligand 1 

PKD: protein kinase D 

piRNA: piwi-interacting RNA 

PP2A: protein phosphatase 2 

PP1β: protein phosphatase 1β 

Pre-B: precursor B cells 

Pre-miRNA: precursor micro-RNA 

Pro-B: progenitor B cells 

PTM: post-translational modifications 

RAG: recombination activating genes 

RIP-seq: RNA immunoprecipietation and sequencing 

RISC: RNA-induced silencing complex 

RNA: ribonucleic acid 

RUNX1: runt-related factor 1 

SAHA: suberoylanilide hydroxamic acid 

SHM: somatic hypermutation 

SINE: short interspersed nuclear element 

SIRT: sirtuin 

SMC3: structural maintenance of chromosomes 3 

SMRT: silencing mediator f retinoid and thyroid hormone receptors 

STAT3: signal transducer and activator of transcription 3 

SUV39h1: histone-lysine N-methyltransferase 

SVA: SINE-VNTR-Alu elements 

TCF7:  transcription factor 7 

TDG: thymine DNA glycosylase 

TE: transposable elements 

TET: ten-eleven translocation 

TGF-β: transforming growth factor beta  
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TF: transcription factor 

Tfh: T follicular helper cells 

TIRs: terminal inverted repeats 

TMB: 3,3’,5,5’,-tetramethylbenzidine 

TPRT: target-primed reverse transcription 

Treg: T regulatory cells 

TSA: trichostatin A 

TSS: transcription start site 

Tyr: tyrosine 

UHRF2: E3 ubiquitin-protein ligase 

UTR: untranslated region 

WT: wild-type 

Y: tyrosine 

YY1: Ying Yang 1 

ZNF423: zinc finger protein 423 
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Thesis abstract 

B lymphopoiesis is the result of several cell lineage choices and differentiation steps whose 

perturbation leads to B cell malignancies. Cellular transitions for B cell generation have 

been associated with gene activation and silencing by networks of B cell specific 

transcription factors (TFs) and dynamic changes in DNA methylation. How gene repression 

is established and which lineage-specific transcriptional repressors are involved during B 

cell lymphopoiesis is still not totally understood. The Cellular Differentiaion group had 

previously reported that the transcriptional repressor HDAC7 is highly expressed in B cell 

progenitors (pro-B cells) and B cell precursors (pre-B cells) but not in myeloid cells such as 

macrophages.  

Here, we have demonstrated that HDAC7 is essential for early B cell development and the 

acquisition of proper B cell identity. There is a block of pro-B to pre-B cell stages transition 

and a significant increase of cell death rate upon HDAC7 deletion in these populations. We 

found that HDAC7 represses myeloid and T lymphocyte genes in pro-B cells through 

specific interaction with the TF MEF2C. Chromatin immunoprecipitation (ChIP) experiments 

revealed that HDAC7 is recruited to the promoters and enhancers of lineage inappropriate 

genes in normal pro-B, leading to their transcriptional silencing.  

Notably, by using in vivo and in vitro experimental approaches, we found that HDAC7 

represses Tet2 in pro-B. On one hand, microarray and RT-qPCR analysis showed that Tet2 

expression is up-regulated in pro-B cells from HDAC7-deficient mice. On the other hand, 

we found that HDAC7 is down-regulated during the conversion of pre-B cells into 

macrophages and its exogenous expression blocks the up-regulation of Tet2. Similarly to 

the case of other lineage inappropriate lineage genes, HDAC7 is recruited to the promoter 

and enhancer of the Tet2 gene in pro-B cells and its absence leads to an increase and a 

decrease in active and repressive histone marks, respectively. Additionally, we observed 

that the absence of HDAC7 from pro-B cells results in a significant increase in the 

percentage of global 5-hydroxymethylation (5-hmC). To definitively prove the role of 

HDAC7 in 5-hmC, we performed a genome-wide experimental approach. hMeDIP-

sequencing experiments revealed an increase in the enrichment of this epigenetic 

modification at many loci related to lineage inappropriate genes in the absence of HDAC7. 

Interestingly, we observed 5-hmC enrichment at retrotransposon elements (LINE-1) in 

HDAC7 deficient pro-B cells, suggesting a potential protector function of HDAC7 against 

chromatin instability and DNA damage. Additonal results revealed that 5-hmC enrichment 

at microRNAs and their expression was also regulated by HDAC7. Several miRNAs 
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involved in normal and aberrant hematopoiesis changed their expression levels depending 

on the presence of HDAC7 in pro-B cells. 

Finally, we found that HDAC7 is expressed at very low levels in certain hematological 

malignancies, such as Burkitt lymphoma and B cell acute lymphoblastic leukemia (B-ALL) 

cell lines. In fact, induction of HDAC7 expression in these tumoral cells led to the activation 

of apoptotic processes, reducing significantly their viability, and to the reduction of 

oncogene c-MYC expression. Importantly, those effects were observed by interaction with 

the TF MEF2C and independently of the class I HDAC3 function. These results suggest an 

anti-oncogenic role for HDAC7 in some types of B cell malignancies. 

Altogether, our results demonstrate that HDAC7 is an essential transcriptional repressor 

during early B cell development that silences lineage or functionally inappropriate genes at 

multiple levels. It exerts its function by direct recruitment to target genes through specific 

TF, by regulating LINE-1 and miRNA expression and by controlling the expression levels of 

a critical epigenetic regulator such as TET2 demethylase enzyme.  
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1. B lymphocyte development 

1.1 Overview 

B lymphocyte generation is the result of several cell lineage choices and differentiation 

steps which are tightly regulated at the transcriptional level. During embryo 

development, first hematopoietic stem cells (HSCs) arise from endothelial cells that 

undergo endothelial-to-hematopoietic transition (EHT). This is a very dynamic process 

in which there is a progressive silencing of endothelial specific genes and activation of 

HSC genes. EHT is regulated by a huge set of epigenetic and post-transcriptional 

factors, considering that this transition is essential for the future generation and 

preservation of all blood cell types  (Guibentif et al., 2017; Kasper and Nicoli, 2018). 

Once in the bone marrow, HSCs differentiate into lymphoid-primed multipotent 

progenitors (LMPPs), which can give rise to both myeloid and lymphoid lineages 

(Adolfsson et al., 2005; Yoshida et al., 2006; Nimmo et al., 2015). LMPPs generate 

common lymphoid progenitors (CLPs), which can differentiate into T cells, B cells and 

Natural Killer cells (NK). LMPPs can also give rise to common myeloid progenitors 

(CMPs), which can either differentiate into granulocyte/macrophage progenitors (GMP) 

or either megakaryocyte/erythrocyte progenitors (MEPs) (Molawi and Sieweke, 2013; 

Shortman et al., 2013). During early B cell development in the bone marrow, CLPs 

differentiate into B cell progenitors (pro-B cells). pro-B cells will further differentiate into 

B cell precursors (pre-B cells), which in turn will give rise to immature B cells (Kondo et 

al., 1997; Cobaleda and Busslinger, 2008). Then immature B cells leave the bone 

marrow and migrate to secondary lymphoid organs such as the spleen and lymph 

nodes in order to complete B cell differentiation and, consequently, the acquisition of a 

proper humoral immune response. Briefly, resting naïve B cells are activated and 

become germinal center (GC) cells by generating high-affinity antibodies in response to 

antigens presented by T-helper cells. Finally, B cells exit the GC and differentiate into 

memory B cells or antibody-secreting plasma cells (PC) (Victora and Nussenzweig, 

2012). 

During early B cell development, every cellular transition and differentiation step is 

characterized by the activation of a new lineage-specific genetic program and the 

repression of the previous one, both regulated by complex networks of transcription 

factors (TFs) in association with dynamic changes in DNA methylation, histone 

modifications and chromatin conformation changes (Cobaleda & Busslinger, 2008; 

Kieffer-Kwon et al., 2017; Méndez & Mendoza, 2016; Parra M, 2009). Notably, 

deregulation of these specific transcriptional programs underlying B lymphopoiesis may 
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lead to the development of B cell malignancies such as leukemia and lymphoma. In the 

last years, many groups have focused their research on the study of the hematopoietic 

system and its regulation. Several studies, including single cell approaches and 

transplantation assays, have established that HSC are an heterogeneous population 

with different lineage priming at the same time and that lymphoid genes become 

expressed once cells arise LMPP stage (Figure 1A) (Adolfsson et al., 2005; Nimmo et 

al., 2015). Strikingly, recent single cell RNA sequencing studies have proposed a 

model for hematopoiesis in which cellular transitions are diffused in dynamic 

expression pattern changes, creating then a landscape of continuous differentiation 

(Watcham et al., 2019; Laurenti and Göttgens, 2018). These results support the 

representation of the hematopoietic development with continuum lines or channels in 

which cells flow until they reach their differentiated state (Figure 1B), questioning the 

validity of more classical representations. However, the understanding of the molecular 

mechanisms involved in such dynamic gene expression and functional changes during 

cellular transitions has not been completed yet. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Representation of the hematopoietic system. (A). “Classical” representation of hematopoietic 

cell differentiation based on circles and narrows to define cell stages and differentiation decisions, 

respectively. HSC niche is represented in grey. MPP (multipotent progenitors), LMPP (lymphoid-primed 

progenitors), CMP (common myeloid progenitors), MEP (megakaryocyte-erythroid progenitors), GMP 

(granulocyte-monocyte progenitors), CLP (common lymphoid progenitors). (B) Representation based on 

single cell transcriptomic studies, in which cells undergo continuum differentiation. Grey circles represent 

cells, and colored circles represent the same cellular stage as in A. (Figure modified from Nimmo R et al 

2015 (A) and Laurenti & Göttgens, 2018 (B)). 
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1.2 Transcriptional regulation in early B cell development 

 

1.2.1. Transcription factors (TFs) 

Early B cell development comprises all those developmental stages that take place in 

the bone marrow. At the LMPP stage, there are three main TFs involved in the choice 

towards lymphocyte development instead of the myeloid lineage: IKAROS, PU.1 and 

MEF2C (Parra M, 2009; Ramírez, Lukin, & Hagman, 2010). Later stages of B cell 

lineage development in the bone marrow depend on additional TFs, including E2A, 

EBF1 and PAX5, which act together to activate some early B cell specific genes such 

as mb-1 (Figure 2 and Figure 3) (Parra M, 2009; Ramírez et al., 2010; Sigvardsson et 

al., 2002). 

IKAROS 

IKAROS is encoded by Ikfz1 gene and is characterized by two highly conserved 

domains that allow them to form dimers and multimers with other IKAROS family 

members (Georgopoulos et al., 1992). IKAROS is involved in the generation of different 

cell lineages (GMPs, CMPs and CLPs) and its absence in Ikaros-null mice results in 

the alteration of HSCs, prevents the generation of several hematopoietic cell types 

such as B and T lymphocytes and erythrocytes, among others, and leads to the 

generation of lymphocytic leukemia (Heizmann et al., 2013; Kastner et al., 2013; T. 

Yoshida et al., 2006).  

PU.1 

PU.1 belongs to the Ets family of TFs encoded by the Sfpi gene. It is required for 

erythroid, lymphoid and myeloid lineages, and its expression levels dictate its influence 

in generating one cell type or another (Mak et al., 2011; Scott et al., 1994). High levels 

of PU.1 leads to macrophage generation, while lower concentrations direct lymphocyte 

or granulocyte differentiation (DeKoter and Singh, 2000; Dahl and Simon, 2003; Mak et 

al., 2011). In the case of T cells, PU.1 is required for initial T cell development but 

practically undetectable in later stages (Rothenberg et al., 2019). Notably, embryonic 

disruption of PU.1 expression affects the maintenance of HSCs, the generation of T 

cells and neutrophils, and prevents completely the differentiation of B cells and 

macrophages (Iwasaki et al., 2005; McKercher et al., 1996). Mice lacking PU.1 die 

approximately 2 days after birth due to serious septicemia. Mutations of Sfpi gene that 

do not annul completely but reduces its expression give rise to myeloid leukemia 

development (Rosenbauer et al., 2004; Kastner and Chan, 2008). Recent studies 

supported that PU.1 is crucial for B lymphoid differentiation in the earliest stages 
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(transition of LMPPs to CLPs), but further differentiation steps do not require its activity 

(Pang et al., 2018). 

MEF2C 

Myocyte enhancer factor 2C (MEF2C) was discovered in 1989 in skeletal muscle, but it 

is also expressed in other cell types such as neural, endothelial or immune (especially 

in B lymphocytes) cells (Gossett et al., 1989). The N-terminal domain of MEF2 factors 

has a highly conserved MADS-box and a MEF2 domain, which allow them to form 

homo- or heterodimers between MEF2 family members, DNA binding and interaction 

with co-factors such as GATA proteins or EBF1 (Swanson et al., 1998; Black and 

Olson, 1998; Morin et al., 2000; Kong et al., 2016). In lymphoid cells, Mef2c is a 

transcriptional target of PU.1 during B lymphocyte development. MEF2C is not only 

involved in the activation of several lymphoid-lineage genes such as Foxo1, Myb, Ets1 

and IL7r, it also mediates the silencing of myeloid characteristic genes. Conditional 

deletion of MEF2C in pro-B cells causes a significant decrease in B cell numbers and B 

cell development is blocked at the pre-B cell stage (Stehling-Sun et al., 2009; Gerstein, 

2009; Debnath et al., 2013; Herglotz et al., 2016; Kong et al., 2016). 

E2A 

The TF E2A is encoded by the Tcfe2a gene that can give rise to two different loop-helix 

proteins equally important for B cell commitment, E12 and E47, through alternative 

splicing mechanisms (Bain et al., 1997, 1994). In vitro, E2A controls the initiation of 

early B cell development but it is not essential for its maintenance, as E2A-deficient 

pre-B cells do not suffer a complete loss of its target genes expression (Zhuang et al., 

1994; Lazorchak et al., 2006). However, in vivo experiments revealed that E2A is 

continuously necessary for commitment into the B cell lineage, pro-B cell generation 

and further differentiation, including BCR formation and GC reaction in secondary 

lymphoid organs. In fact, loss of E2A leads to an arrest in development at the pre-pro-B 

cell stage, impairs the expression of PAX5, EBF1 and their target genes and also 

promotes the expression of alternative lineage genes in lymphoid progenitors (Dias et 

al., 2008; Kwon et al., 2008). E2A in cooperation with EBF1 and PAX5 regulates Cd19, 

Iυ, λ5, mb-1, Il7r, and Vpreb gene expression. Additionally, Foxo1 is regulated by E2A 

and HEB. Finally, coordinated action of FOXO1, FOXP1 and E2A mediate RAG gene 

expression, essential genes for V(D)J  recombination and consequent immunoglobulin 

(Ig) assembly in B cells (Borghesi et al., 2005; Welinder et al., 2011; Chen et al., 2011). 
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EBF1 

Early B cell factor 1 (EBF1) is another TF crucial for early B cell development, which 

was discovered in 1991 as a DNA-binding regulator of mb-1 expression in the B cell 

lineage (Hagman et al., 1991, 1993). Similarly to E2A, loss of EBF1 expression leads 

to complete pre-pro-B cell stage blockage and a failure in pro-B cell proliferation. 

However, forced expression of EBF1 in HSCs favors cellular commitment to B 

lymphocytes and, consequently, detriments the generation of other hematopoietic 

lineage cells (Lin and Grosschedl, 1995; Zhang et al., 2003; Györy et al., 2012; 

Åhsberg et al., 2013). EBF1 expression is initiated by the coordinated action between 

E2A and FOXO1, and its activity is subsequently maintained by IL7 signaling and 

positive feedback loops that include other TFs such as PAX5 and FOXO1. Importantly, 

reciprocal activation between FOXO1 and EBF1 at the CLP stage is essential for 

further differentiation. In addition, recent studies showed that EBF1 and MEF2C 

interact and co-occupy a set of genes at the pre-B cell stage. EBF1 targets several 

components of the pre-BCR complex, such as Vpreb1-3 and mb-1 (Sigvardsson et al., 

1997; Tsapogas et al., 2011; Mansson et al., 2012; Kong et al., 2016). Recent studies 

demonstrated that EBF1 possess a “pioneer” function through its C-terminal domain. In 

fact, EBF1 is able to induce changes in chromatin architecture in order to restrict B cell 

lineage and its binding to inaccessible chromatin regions is independent of the activity 

of other TFs. In order to achieve this dynamism in chromatin positioning, EBF1 recruits 

multiple chromatin modifiers (Treiber et al., 2010; Boller et al., 2016; Li et al., 2018b).  

 

FOXO1 

The relevance of FOXO1 in early B cell development was discovered few years later 

than the above described TFs. This protein plays an important role in many stages of B 

lymphopoiesis, as it is involved in the preservation of HSC pool, the development of B 

cell progenitors and precursors, DNA rearrangement and pre-BCR signaling, cellular 

tolerance, cell cycle and terminal differentiation (Inoue et al., 2017b; Szydłowski et al., 

2014; Schmidt et al., 2002). B cells present different functional or genetic alterations 

depending on the stage in which FOXO1 has been deleted. In fact, complete loss of 

FOXO1 expression involves embryonic lethality (Furuyama et al., 2004). Knockout of 

FOXO1 at earliest stages produce a block in the pro-pre B cell stage and these cells 

can produce neither IgM nor IgD. In later stages such as late pro-B cells, FOXO1 

absence lead to a block in pre-B cell stage due to a decrease in RAG proteins 

expression, impairing DNA rearrangement (Amin and Schlissel, 2008; Dengler et al., 

2008). Foxo1 is activated by E2A and both, FOXO1 and E2A together promote EBF1 

expression. FOXO1 and EBF1 mediate a reciprocal positive activation. Computational 
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studies discovered that these three TFs generate a global network that is essential to 

orchestrate B cell development. In coordination with other TFs such as PU.1 they 

activate Pax5, another crucial factor implicated in preserving B cell identity (Boller and 

Grosschedl, 2014; Decker et al., 2009; Lin et al., 2010a; Welinder et al., 2011). 

PAX5 

PAX5 is considered “the guardian of B cell identity” for continuous maintaining B cell 

identity and establishment of B cell commitment (Cobaleda et al., 2007b). It is 

expressed at the pro-B cell stage in early B cell development and its activity is 

maintained during the following B cell stages until cells differentiate into plasma cells 

(Delogu et al., 2006; Horcher et al., 2001). The specific set of PAX5 target genes 

changes at every stage, which reflects how much dynamic is the genetic landscape 

reorganization across cellular differentiation (Revilla-i-Domingo et al., 2012). PAX5 

regulates several chromatin and epigenetic modulators, in addition to key factors 

involved in B cell signaling, structural proteins implicated in cell migration and 

adhesion, and relevant TFs of later stages that mediate antigen presentation and 

germinal center formation (Schebesta et al., 2007; Cobaleda et al., 2007b). Pax5-null 

mice present a blockage of differentiation at the pro-B cells, which can differentiate into 

other hematopoietic lineages. Strikingly, PAX5-deficient pro-B cells do not progress in 

B cell differentiation until the expression of this TF is recovered, as it is essential to 

determine their cellular fate  (Nutt et al., 1997; Rolink et al., 1999; Schaniel et al., 

2002). These results suggest that PAX5 is not only involved in the activation of B 

lineage genes, but also in the repression of lineage inappropriate genes. In addition, 

many studies have defined Pax5 as a tumor suppressor gene and have observed 

evidences that correlate PAX5 alterations (e.g. translocations or fusion proteins) to 

lymphomagenesis and leukemia development (Cobaleda et al., 2007b; Pridans et al., 

2008; Liu et al., 2014; Smeenk et al., 2017; Bastian et al., 2019).  

 

 

 

  

 

 

 

 

 

 

 

Figure 2. Transcription factors networks 

involved in early B cell development. 

Activating pathways are represented in a 

lymphocyte-like drawing. 
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1.2.2. Transcriptional repression 

As mentioned above, lymphocyte-specific TFs do not only induce the expression of B 

cell specific genes. TFs are also involved in the silencing of lineage or functionally 

inappropriate genes ensuring the proper acquisition of the identity of B lymphocytes.  

E2A, EBF1, PAX5, MEF2C are clear examples of this “double” function. These TFs are 

implicated in both the activation of B cell specific genes and in the repression of 

alternative-lineage genes (Ikawa et al., 2004; Nutt and Kee, 2007; Pongubala et al., 

2008; Stehling-Sun et al., 2009; Boller and Grosschedl, 2014; Ramírez et al., 2010). In 

particular, E2A is involved in the repression of alternative hematopoietic genes such as 

Tcf and Gata-1. E2A-deficient pro-B cells maintain a pluripotency status and are unable 

to undergo further B cell differentiation (Ikawa et al., 2004). In addition, many non-B cell 

specific genes, including Tcf7, Id2, Flt3 and Gata-3, are occupied and repressed by 

EBF1 at progenitor and precursor cell stages in order to preserve B cell fate and avoid 

promiscuous transcription (Pongubala et al., 2008; Treiber et al., 2010; Lukin et al., 

2010; Nechanitzky et al., 2013; Banerjee et al., 2013). In fact, EBF1-mediated 

repressive function is associated to its transient occupancy at target chromatin regions, 

preceding transcriptional silencing. The collaboration of chromatin modifiers, epigenetic 

factors and other TFs after EBF1 occupancy, by either factor replacement or 

competitive displacement, is supported by the fact that some silenced genes are co-

occupied by EBF1 and other TFs such as PAX5. However, detailed mechanisms of 

chromatin regulation are still under study (Revilla-i-Domingo et al., 2012; Boller et al., 

2016; Li et al., 2018b). 

On the other hand, PAX5 deficient pro-B cells undergo down-regulation of B cell genes 

and up-regulation of lineage inappropriate genes. In fact, these cells are able to 

transdifferentiate in vitro into cells from other lineages, such as macrophages, 

osteoclasts and granulocytes (Delogu et al., 2006; Medvedovic et al., 2011; Pridans et 

al., 2008; Schebesta et al., 2007; Nutt et al., 1999). Similarly, conditional deletion of 

PAX5 in mature and peripheral B cells results in the de-differentiation and conversion 

of B into functional T cells in spite of the advanced differentiation stage of these cells 

(Cobaleda et al., 2007a). 

MEF2C plays a crucial role in earliest stages of B lymphopoiesis (LMPP) and, as the 

other mentioned TFs, it is also involved in both repressor and activator functions. In 

fact, its deficiency in multipotent stage leads to myeloid lineage “drifting”. Specifically, 

MEF2C deficiency produces C/EBPα up-regulation, a key regulator of myeloid genes 

(Stehling-Sun et al., 2009; Debnath et al., 2013). 
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All these findings support the fact that transcriptional silencing is as relevant as 

transcriptional activation for correct B lymphocyte generation. However, detailed 

mechanisms of gene repression and the identification of specific transcriptional 

repressors that take part in this process are still under research.  

1.3 Transcriptional regulation in late B cell differentiation Terminal B 

cell differentiation is a critical process for the humoral immune response in vertebrates, 

which is based on the production of high affinity antibodies that recognize limitless 

antigens. It is mainly achieved by coordinated action of several TFs in response to 

antigen recognition and extracellular signals produced by T CD4+ cells (Janeway, 

2001). This process takes place in germinal centers (GCs), leading to the generation of 

higher affinity memory B cells and plasma cells. The GC reaction involves somatic 

hypermutation (SHM) and class switch recombination (CSR) processes, which consist 

on the clonal expansion of antigen-specific B lymphocytes and the generation of B-cell 

sub-clones with related antigen specificities. The cells expressing immunoglobulins 

with improved affinity for the antigen are then positively selected (Victora and 

Nussenzweig, 2012). BCL6 is the main regulator of the process and is also essential 

for T follicular helper (Tfh) cells function. After GC reaction, activated B cells 

differentiate into antibody-secreting plasmatic cells (PC) and memory cells. B mature 

cell TFs such as PAX5 that define plasma cell origins must be silenced to initiate its 

differentiation (Shaffer et al., 2002). BLIMP-1 is considered the master regulator of 

plasma cell differentiation (Figure 3) (Angelin-Duclos et al., 2000).  

 

 

Figure3. Transcription factors expression during B lymphopoiesis. Representation of B cell early and 

terminal differentiation. Degraded bars represent the expression levels of transcription factors at each 

developmental stage. Darker color indicates higher level of expression. Initial step of stem cells is not 

represented. LMPPs (lymphoid-primed MPPs), CLPs (common lymphoid progenitors). Figure adapted 

from Ramirez J et al. 2010. 
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2. Epigenetic mechanisms 

Epigenetic modifications comprise those inherited reversible changes in gene 

expression that do not depend on the DNA sequence, including DNA methylation, 

histone modifications, microRNA expression, nucleosome positioning and 3D 

chromatin architecture. The dsDNA is packaged by histone proteins into generally 

compact chromatin that prevents accessibility of DNA-binding proteins. The basic unit 

of chromatin is called nucleosome. This is basically composed of DNA and four core 

histones, which present specific characteristics depending on the context and cell type 

in higher eukaryotes and change its position and structure dynamically during 

regulation of genes expression. The regulation of genomic DNA depending on 

nucleosomes establish the base of epigenetic regulation (Koyama and Kurumizaka, 

2018).  In this section we describe the epigenetic mechanisms central to the studies 

performed during my doctoral thesis 

2.1. DNA methylation 

2.1.1. Overview 

DNA methylation is one the best characterized epigenetic modification and, in the last 

years, it has been defined as essential for transcriptional regulation and critical for 

many developmental and pathological processes in mammals (Jin et al., 2011; Smith 

and Meissner, 2013). DNA methylation consists of the transfer of a methyl group by a 

DNA methyltransferase enzyme (DNMT) to the 5th position of a cytosine that mainly 

belongs to a CG dinucleotide. There are three principal enzymes which catalyze these 

reactions (DNMT3A, DNMT3B and DNMT1). DNMT3A and DNMT3B are mainly 

involved in de novo methylation during embryonic development and in germ cells. In 

fact, their expression becomes down-regulated after differentiation in somatic cells. 

DNMT1 maintains the methylation patterns during DNA replication that takes place 

during cell division (Okano et al., 1999; Bestor, 2000; Edwards et al., 2017; Zeng and 

Chen, 2019). 

CG dinucleotides are mainly located in regions called CpG islands (CGIs) (200bp 

genomic regions with higher GC percentage that are mainly located in DNA repetitive 

regions and GC-poor promoter regions of coding mammalian genes). Methylation of 

these dinucleotides has been associated to transcriptional repression (Weber et al., 

2007; Deaton and Bird, 2011). The transcriptional silencing mediated by CGIs 

methylation can be explained by two molecular mechanisms. First, methylation of DNA 

can block the accessibility of chromatin and prevent the recruitment of TFs to their 

DNA-binding sites (DBS). Second, DNA methylation leads to the recruitment of 5-
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methyl-CpG-binding proteins (MeCPs and MBDs) such as MeCP2, which associates 

with a co-repressor complex containing histone deacetylases (HDACs). Polycomb 

repressive complexes are also linked with DNA methylation by direct association with 

DNMTs (Nan et al., 1998; Viré et al., 2006; Jin et al., 2011).  

2.1.2. CGIs and DNA methylation across the genome 

In the mammalian genome, methylated regions are correlated to their higher CG 

dinucleotide frequency, since somatic cells possess methylation marks in 

approximately 80% of CpG sites. One relevant exception is CGIs that are mostly 

located in un-methylated regions. In fact, they are not methylated in germ cells, the 

early stages of embryo and in most somatic cell types. Most of them mark a gene 

promoter or its 5’ region, as 70% of promoters contain CGIs. Their methylation leads to 

stable gene silencing in either physiological conditions such as X-chromosome 

inactivation or in pathological conditions such as cancer (Lokk et al., 2016; Deaton and 

Bird, 2011; Li and Zhang, 2014). 

Histone modifications are closely related to DNA methylation patterns in the 

mammalian genome. Regarding promoter regions, acetylated histones have been 

linked to active transcription since first studies of chromatin. However, genome-wide 

analyses have also associated the histone mark H3K4me3 to active CGI promoters 

(Mikkelsen et al., 2007; Struhl K, 1998). CGIs from promoters are generally protected 

from methylation by different mechanisms. First, TFs prevent methylation of CGIs in a 

sequence depending manner. Second, demethylase enzymes (TET proteins) bind to 

CpG rich regions of DNA, preventing their methylation. Third, DNA binding proteins 

containing a CXXC domain, such as CFP1 and KDM2, recognize un-methylated CGIs, 

recruit additional proteins in order to keep cytosines in an unmodified status and 

prevent the binding of DNMT enzymes (Jeltsch et al., 2018; Blackledge et al., 2013). 

Isolated CGIs that are not associated to TSS are called “orphans”. It has been revealed 

that these CGIs regulate expression of far promoters and act under strict regulation 

(Sarda et al., 2017; Deaton and Bird, 2011).  

Strikingly, methylation can also occur in non-CpG sites, such as CpA, CpT and CpC in 

a tissue specific manner. Given that this process is asymmetrical, de novo methylation 

is required after each cell replication. Further studies are needed in order to elucidate 

in detail the mechanisms involved in non-CpG methylation and its biological relevance 

in mammalian development. Experimental approaches based on disruption of DNMT 

activity cannot distinguish the biological consequences of one epigenetic modification, 
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since DNMT enzymes catalyze both CpG and non-CpG methylation (Patil V et al. 

2014; Jang HS et al. 2017).  

Despite there are still gaps of knowledge regarding the influence of DNA methylation in 

mammalian biology, recent state-of-the-art epigenetic techniques that analyze the 

detailed methylome of multiple cell types at the single cell level and at single base 

resolution allow researchers to investigate specific DNA methylation patterns in normal 

development and pathological situations (Li and Zhang, 2014).  

2.1.3. DNA Methyltransferase enzymes 

As mention above, there are three main DNA methytransferases (DNMTs) in mammals 

which are classified into two families; DNMT1 and DNMT3, which contains members 

DNMT3A and DNMT3B. DNMT3L will not be explained, as it has no catalytic function 

by itself. It acts as cofactor of DNMT3A in germ cells (Jurkowska et al., 2011; Edwards 

et al., 2017).  

Methylation maintenance  

DNMT1 was the first identified DNA methyltransferase in mammals. It is involved in 

maintaining DNA methylation, as this enzyme have preference for hemimethylated 

CGs containing regions that results from DNA replication rather than un-methylated 

regions (Figure 4). Thus, DNMT1 is critical for preserving DNA methylation patterns 

during cellular divisions (Bestor et al., 1988; Goyal et al., 2006). DNMT1 is ubiquitously 

expressed in cells under division, especially in somatic tissues, but its expression 

decreases in non-proliferating cells (Robertson et al., 1999). It is also essential in early 

development, as DNMT1 deficiency in mice leads to lethality at embryonic stages, 

specifically after gastrulation stage (Jurkowska et al., 2011).  

De novo methylation 

De novo methylation is critical in both early and late mammalian development. DNMT3 

A and B have no-overlapping functions, as defect of one of the two enzymes produce 

lethal disorders during mouse embryonic development. DNMT3B appears to be more 

relevant in early embryonic development, while DNMT3A has target genes that are 

crucial for late development and after birth (Okano et al., 1999). DNMT3A and B are 

highly expressed in mammalian embryonic tissues and embryonic stem cells (ESCs), 

while they become down-regulated in differentiated somatic cells. Both enzymes have 

also substrate preference for CpGs (Figure 4), as these enzymes do not show 

enzymatic activity on DNA regions containing already methylated CpGs and other non-

methylated cytosines (Okano et al., 1998; Chen et al., 2002; Baubec et al., 2015).  
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Structure  

The structure of DNMTs basically consists of a large N-terminal domain with regulatory 

functions and a smaller C-terminal domain which possesses catalytic activity. The first 

domain regulates nuclear localization of the enzymes and their interaction with other 

proteins, chromatin and DNA, and the second domain contains the catalytic core 

(which is conserved among eukaryotes and prokaryotes) and a DNA specific 

recognition region (Cheng and Blumenthal, 2008). 

Clinical relevance  

Epigenetic dynamics in pathological contexts adds another layer of complexity and 

their understanding is essential to unveil affected mechanisms and design effective 

therapies.  De-regulation of DNA methylation pattern in cells can be caused by several 

factors, including alterations in DNMTs expression or function, and this is strongly 

associated to several pathologies including cancer. Loss-of-function of DNMTs can 

lead to a DNA hypomethylation pattern and overexpression can produce 

hypermethylation. In particular, hypomethylation of DNA repetitive regions can lead to 

genome instability and increased transposon activity, while hypermethylation in CG 

sites from promoter of tumor suppressor genes give rise to tumorigenic development 

and worse prognosis in some types of cancer (Esteller, 2008; Feinberg & Vogelstein, 

1983; Herman & Baylin, 2003; Zhang W and Xu J, 2017). 

 

Loss of function 

In particular, DNMT1 deficiency can produce alterations during murine mitotic division, 

e.g. Dnmt1-null mouse fibroblasts undergo p53-dependent apoptosis after several cell 

divisions (Jackson-Grusby et al., 2001), and is also associated to human neurological 

disorders (Baets et al., 2015). Additionally, DNMT1 deficiency is associated to 

chromosome instability and tumorigenic development such as T-cell lymphoma (Peters 

et al., 2013). Regarding DNMT3 enzymes, combined loss of A/B proteins increases 

invasive properties and aggressiveness of squamous carcinomas and mutations of 

DNMT3A is associated with worse prognosis in patients with acute myeloid leukemia 

(Rinaldi et al., 2017; Hou et al., 2012). 

Overexpression 

DNMT1 overexpression can also lead to aberrant DNA methylation patterns and 

contribute to worse prognostic in some malignancies (Saito et al., 2003). DNMT1 and 

DNMT3B have been found to be overexpressed in a MYC oncogene-depending 

manner in some T-cell leukemia and Burkitt’s lymphoma, in order to maintain the 

tumorigenesis (Poole et al., 2017). 
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Figure 4 De novo and maintaining methylation of CpGs. Figure adapted from Laisné M et al. 2018. 

DNMT3A/B catalyzes de novo methylation in unmethylated DNA, whereas maintaining methylation of 

hemimethylated DNA resulted from DNA replication is catalyzed by DNMT1.  

2.1.4. DNA methylation in the immune system 

The differentiation of HSCs into cells of the different lineages implies multiple fate 

choices that are dictated by several coordinated regulatory events including DNA 

methylation, which plays a critical role in those decisions. Thus, the DNA methylome 

“tattle” the cell identity and its differentiation stage. Cellular commitment of multiple 

progenitors (MPPs) towards the myeloid or lymphoid lineage is influenced by the 

degree of methylation in DNA regulatory regions. In fact, GMPs possess lower levels of 

methylation on regulatory regions close to CpG islands than lymphoid progenitors in 

physiological and pathological conditions, as alteration of DNMT1 function results in 

disruption of lymphoid specification but myeloid lineage cells are not affected. DNA 

methylation differences, especially at gene promoters, are closely related to differential 

enrichment of histone modifications, lineage-specific TFs expression and chromatin 

architecture (Ji et al., 2010; Bock et al., 2012). For instance, Bock and colleagues 

observed higher levels of the enhancer associated histone mark H3K27ac in lymphoid 

cells compared to myeloid cells (Farlik et al., 2016). Additionally, Corces et al. reported 

that cells from each hematopoietic stage are characterized by a unique profile of 

chromatin accessibility regions and, therefore, a specific chromatin positioning in the 

nucleus (Corces et al., 2016b). Regarding B cell lineage, whole genome bisulfite 

sequencing experiments reported that approximately 30% of the DNA undergoes 

methylation changes during B cell differentiation, being the cellular lineage with the 
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most dynamic methylome of the organism (Kulis et al., 2015). Most of methylation 

changes during B cell differentiation are principally located in polycomb repressed 

regions, DNA repetitive regions and nuclear lamina associated domains (Martin-Subero 

and Oakes, 2018).  

 

2.2. DNA demethylation 

2.2.1. Passive and active DNA demethylation 

DNA methylation is a reversible epigenetic mark, since it is established and maintained 

by DNMT enzymes but modified cytosines can be demethylated by either passive or 

active mechanisms. Passive demethylation is normally associated to a functional 

failure in DNMTs involved in methylation maintenance, either by inhibition or by loss-of-

function mutations. Thus, 5’-methylcytosine (5-mC) can be progressively lost during 

cell replication. For example, pharmacological treatment with demethylating agents 

such as 5-Aza-2′-deoxycytidine (DAC) or 5-azacitidine (AZA) leads to DNMT1 

inhibition, loss of methylation maintenance and consequent genetic instability and 

aneuploidy (Costa et al., 2016; Wu and Zhang, 2017). Additionally, in several 

tumorigenic processes in which DNMTs present mutations, DNA repetitive regions 

undergo hypomethylation that leads to sever chromosomal and genetic instability 

(Esteller, 2008; Sheaffer et al., 2016). Conversely, active demethylation is mediated by 

ten-eleven translocation (TET) enzymes. TETs proteins are dyoxigenase proteins that 

catalyze the oxidation of 5-mC into 5-hydroxymethylcytodine (5-hmC), 5-formylcytosine 

(5-fC) and 5-carboxylcytosine (5-caC). Then, thymine DNA glycosylase (TDG) 

mediates excision of 5-fC and 5-caC by base excision repair (BER), which will finally 

result in DNA demethylation and gene expression. Researchers have proposed other 

possible mechanisms of TET-mediated demethylation independent of TDG activity but 

the described model is the most accepted. Curiously, given that 5-hmC mark is less 

stable for DNMT1, methylation maintenance catalyzed by this enzyme is hindered and 

tend to be diluted during replication (Hashimoto et al., 2012; Weber et al., 2016; Wu 

and Zhang, 2017).  

 

2.2.2. TET proteins  

DNA demethylation is catalyzed by the TET protein family, which comprises TET1, 

TET2 and TET3 (Wu and Zhang, 2017).  

Structure 

TET proteins contain two major domains: the C-terminal domain possesses catalytic 

activity and the large N-terminal domain contains a CXXC DNA binding domain (Figure 
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5). TET2 suffered a chromosomal inversion during evolution and the CXXC domain 

became a new separated protein called IDAX. DNA binding through CXXC domain 

regulates TET enzymatic activity, so IDAX modulates Tet2 expression and its catalytic 

function (Ko et al., 2013; Wu and Zhang, 2017). It is reported that CXXC DNA binding 

domain, including IDAX, is preferentially recruited at CpG rich regions, especially at 

gene promoters. Un-methylated cytosines are slighter preferred than methylated 

cytosines, preventing de novo methylation (Rasmussen and Helin, 2016; Wu et al., 

2011b). Notably, TET enzymes have preference for methylated cytosines in a CpG 

context, as they present lower activity when methylated cytosines are not followed by a 

guanine base. In addition, it is reported that 5-mCs are preferable substrates than 5-

hmC or 5-fC. Then, 5-hmC marks become more stable and less predisposed to suffer 

further oxidative reactions, suggesting that they may be relevant for regulatory 

functions (Hu et al., 2015; Wu and Zhang, 2017). 

TET1 CXXC domain binds to CpG sequences independently of their epigenetic mark, 

maybe due to its lack of lysine-phenylalanine-glycine-glycine (KFGG) motif, which allow 

TET1 to bind easier to methylated cytosines that the other family members (Pastor et 

al., 2013). TET1 presents a full-length isoform in early ESCs and in primordial germ 

cells, whereas a shorter truncated form that does not possess the CXXC DNA binding 

domain is expressed in more differentiated cells. The truncated form has weaker 

demethylase activity but it still targets CGIs and is overexpressed in several types of 

cancer (Good et al., 2017; Zhang et al., 2016b). Regarding other relevant domain of 

TET proteins, the C-terminal domain contains a catalytic core that adopts a double 

stranded B helix (DSBH) fold and possesses a cysteine (cys)-rich region which helps to 

target recognition (Figure 5) (Pastor et al., 2013). In fact, there are two zinc fingers that 

put the Cys-rich region and DSBH fold together in order to form a stable catalytic 

domain (Hu et al., 2013). 

 

 

Figure 5. Representation of the structure of TET proteins. The N-terminal domain of TET1 and TET3 

contains a CXXC DNA binding domain that recognizes un-methylated CpGs. In the case of TET2, the 

IDAX protein is required to bind DNA through its CXXC domain. The C-terminal domain contains the 

catalytic core of the protein that displays oxygenase activity and is positioned as double stranded beta 

helix (DSBH) and a Cys-rich region that is characteristic of this family of proteins. Figure adapted from Li & 

Zhang, 2014. 
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TET-TDG mediated demethylation 

As mentioned above, several mechanisms have been proposed for TET-mediated DNA 

demethylation. However, the most accepted one consists of gradual TET-TDG-

mediated demethylation in which 5-methylated cytosines are 5-hydroxymethylated (5-

hmC), further oxidized (5-fC and 5-caC) and finally excised by base excision repair 

(BER) in order to preserve genome integrity (Figure 6) (Wu and Zhang, 2017; Jacobs 

and Schär, 2012). A recent study reported that this mechanism requires a direct 

physical interaction between TET proteins and TDG through both the N- and C- 

terminal domains of TET enzymes and the catalytic activities of both proteins are also 

equally needed during this process (Weber et al., 2016). Indeed, knockout mouse 

models for TDG results in epigenetic instability due to aberrancies in DNA methylation, 

compromising viability of mice at embryonic stages (Cortázar et al., 2011; Shen et al., 

2013). Interestingly, despite TET proteins can target two symmetrically 5-mC in the 

dsDNA, the base excision process occurs in a sequential manner in order to avoid the 

generation of double strand breaks (DSB)  (Weber et al., 2016). 

Crystal structures of TDG interacting with artificial and stable substrates that mimic 5-

fC and 5-caC with the enzyme revealed that Tyr-152 from TDG establishes tight polar 

bonds with oxygen from oxidized cytosines that do not take place with 5-mC or 5-hmC 

(Pidugu et al., 2016; Zhang et al., 2012).  

 

 

 

 

 

 

 

  

 

Figure 6. DNA demethylation mediated by TET proteins. Cytosine (C) methylation is calatyzed by 

DNMT proteins. 5-mC is then oxidized to 5-hmC, a stable modified state. Passive demethylation is 

represented in orange narrows, as 5-hmC is less accessible for DNMT1-mediated methylation, leading to 

progressive dilution of methylation mark during replication steps. DNMT block also leads to progressive 

demethylation. Alternatively, 5-hmC can be further oxidized to 5-formylcytosine (5-fC) and 5-

carboxylcytosine (5-caC). These modified cytosines are eliminated by TDG by base excision repair (BER), 

resulting in un-methylated cytosine. Figure adapted from Tsagaratou et al. 2017.  
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Expression pattern 

The three TET enzymes show specific expression patterns among different cell types 

and undergo dynamic changes during development under strict regulation. In 

particular, TET1 is mainly expressed in ESCs, either human or murine, and then 

becomes dow-nregulated in more differentiated cells. Conversely, despite TET2 is also 

expressed in murine stem cells, TET2 and TET3 are low expressed in human and 

mouse ESCs, respectively (Melamed, Yosefzon, David, Tsukerman, & Pnueli, 2018; 

Wu, Li, & Xie, 2018). 

TET1 presents a full length isoform in early ESCs and in primordial germ cells, 

whereas a shorter truncated form is expressed in more differentiated cells and is 

overexpressed in several malignancies (Good et al., 2017; Zhang et al., 2016b). TET2 

is highly expressed in specific somatic tissues, especially in the hematopoietic system 

and neuronal lineages. TET3 show expression oscillations, since it is highly expressed 

in zygotes and oocytes, fall sharply at two-cell embryonic stages and is up-regulated 

again in neuroectoderm-derived embryonic cells and primary neurons (Li et al., 2015; 

Shen et al., 2014; Li et al., 2011). Interestingly, Zhang and colleagues recently 

demonstrated that oxidation induced by TET3, in coordination with neuronal TFs, 

directs the conversion of mouse fibroblasts into functional neurons avoiding multipotent 

cell states (Zhang et al., 2016a). 

TET’s function can be regulated by several post-translational modifications (PTM), 

including ubiquitination and acetylation. In fact, the activity of TET2 becomes increased 

when acetylated by histone acetyl transferases (HATs) such as p300 in order to 

preserve protein stability in oxidative stress conditions. In addition of PTMs, TET 

enzymes are also regulated by microRNAs (miRNAs). For instance, miR-29 family 

members regulate TET1 in ESC and its repression increases progressively during 

differentiation of embryonic cells (Cui et al., 2016; Zhang et al., 2017). TET2 is 

regulated by several of miRNAs, including miR-125b and miR-29b/c, and the de-

regulation of these miRNAs leads to hematological malignancies (Cheng et al., 2013).  

Finally, Tet3 is regulated in neural progenitor cells by miR-15b, promoting neuronal 

differentiation. Equilibrated balance between mir-15b and TET3 expression is essential 

for correct neurogenesis, maintaining the pool of neural progenitor cells (Lv et al., 

2014). 

TET-loss related disorders 

TET proteins have an essential role in gene transcription during development and 

cellular lineage specification. Thus, their deficiency (either by silenced expression or 
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impaired activity) lead to a blockage in cell differentiation in several lineages, such as 

those included in brain and hematopoietic system (Lio and Rao, 2019; Rasmussen and 

Helin, 2016). 

For instance, TET2 is a common mutated gene in hematological malignancies in 

humans, including cases with lymphoid and myeloid origins such as diffuse large B cell 

lymphoma (DLBCL) and acute myeloid leukemia (AML). In adult mice, the deletion of 

both TET2 and TET3 in hematopoietic precursor cells results in aggressive AML with 

impairment to produce several hematopoietic lineages, failure in DNA damage repair 

and severe disruption of the spleen architecture and function (An et al., 2015). In fact, 

alterations in the 5-hmC profile at gene bodies correlate with multiple AML models 

(Han et al., 2016b). Regarding neural development, TET2 loss in neural progenitor 

cells leads to a sever impairment in cognitive function, affecting hippocampal-

dependent learning and memory acquisition (Gontier et al., 2018). 

2.2.3. 5-hmC distribution across the genome 

The genomic pattern of 5-hmC, as well as TET proteins activity, changes dynamically 

during cell differentiation and has been correlated with active transcription. 5-hmC 

levels can oscillate from lower than 0.1% to approximately 0.7% in different cell types, 

reaching the highest levels in those from the central nervous system (CNS) and ESCs. 

5-hmC is mainly found in gene bodies and enhancers of active genes, promoters and 

TF binding regions (Bachman et al., 2014; Kriaucionis and Heintz, 2009; Globisch et 

al., 2010; Wu et al., 2010; Khare et al., 2012; Iurlaro et al., 2013). 

Genome-wide analysis of 5-hmC genome distribution in murine ESCs revealed that 

approximately 60% of the 5-hmC peaks were located in gene bodies, whose regions 

contained a CG medium density. As expected, 5-hmC enrichment correlated with TET1 

bound genes. However, 5-hmC modification is found in both activated and repressed 

genes depending on the context. Wu et al. reported the presence of 5-hmC at 

promoters of TET1-silenced genes and in gene bodies of TET1-actively transcribed 

genes. Thus, DNA hydroxymethylation is a complex epigenetic mark that requires a 

tight regulation independent of 5-mC and its regulatory function depends on its location 

and the specific target gene (Neri et al., 2013; Wu et al., 2011a). However, later studies 

on human ESCs attributed dual functions of 5-hmC enrichment in gene promoters 

during neural differentiation, rather than exclusive repressive activity. Additionally, it 

has been reported recently 5-hmC enrichment is correlated with promoter activation, as 

it overlaps with H3K4me3 peaks during differentiation of human ESCs to pancreatic 
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cells. These results corroborate the complexity of epigenetic regulation underlying this 

cytosine modification (Kim et al., 2014; Li et al., 2018a). 

Several studies are consistent with the correlation between 5-hmC enrichment in gene 

bodies and active transcription, independently of the cell type or developmental stage. 

For instance, 5-hmC enrichment in gene bodies correlates with progressive loss of the 

repressive histone mark H3K27me3 during neuronal differentiation. Thus, 5-hmC in 

gene bodies may be a relevant mark for active transcription by recruiting specific 

transcriptional regulators and cell-cycle mediators such as UHRF2 (Hahn et al., 2013; 

Wu et al., 2018, 2010; Spruijt et al., 2013; Kim et al., 2014). In fact, multiple TFs 

involved in differentiation processes are recruited by TET proteins, such as PU.1, E2A 

and EBF1 in hematopoietic cells (Han et al., 2016b). Additionally, 5-hmC is also 

enriched in other protein-DNA interaction sites, such as OCT4 and NANOG binding 

motifs (Stroud et al., 2011). 

While TET1 principally facilitates promoter demethylation, TET2 and TET3 

preferentially catalyze enhancer demethylation. In fact, TET2/3 proteins facilitate 

chromatin accessibility at enhancer regions by promoting TF binding and 5-hmC mark 

location is associated to specific enhancer-associated histone modifications, such as 

H3K27ac and H3K4me1 (C.-W. J. Lio & Rao, 2019; C.-W. Lio et al., 2016; Hong GC et 

al. 2014; Mostoslavsky et al., 2006; Stroud et al., 2011). This modification is principally 

enriched at tissue-specific enhancers in cells from the hematopoietic system and 

cardiac muscle. For instance, Tsagaratou et al. found that 5-hmC is enriched in 

enhancers of most active specific T cell genes that exert a key regulatory function, as 

5-hmC location is strongly correlated with enhancer activity (Greco et al., 2016; 

Tsagaratou et al., 2014; Han et al., 2016a).  

2.2.4. TETs role in the immune system 

Considering that TET2 is the most relevant member of TET protein’s family in the 

hematopoietic system, the following section will be principally focused on the role of 

this enzyme.  

Lymphoid lineage 

B cells 

DNA demethylation, especially in enhancer regions, is an important event in the 

commitment of CLPs towards the B lymphoid lineage that continues progressively 

during the entire differentiation process. Indeed, almost half of the enhancers of genes 

involved in B cell differentiation undergo methylation changes. These regions also 
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contain B cell specific TF binding sites, such as PAX5, EBF1 or E2A. For instance, 

EBF1 contributes to chromatin accessibility and DNA demethylation through its C-

terminal domain at the pre-pro-B cell stage (Kulis et al., 2015; Boller et al., 2016; 

Martin-Subero and Oakes, 2018). Interestingly, Beck and colleagues postulated that 

TET2 activity in such tissue-specific manner could be explained by interaction with 

tissue-specific TFs. In fact, their study obtained a potential interaction between EBF1 

and TET2 in some cancer types such as AML (Guilhamon et al., 2013). Then, TET2 

recruitment via EBF1 cannot be discarded in the context of physiological B 

lymphocytes development (Martin-Subero and Oakes, 2018). 

PU.1, another pioneer factor involved in B cell differentiation, binds to Igk enhancers in 

pro-B cells and recruits TET2 and TET3 proteins in order to facilitate accessibility of the 

chromatin and the recruitment of additional TFs (Lio et al., 2016). TET2 has also been 

reported to be involved in CSR and plasma cell generation, as TET2 deficiency lead to 

decreased AID and BLIMP1 expression (Dominguez et al., 2018). However, depending 

on the cell stage in which TET2 is deleted, cells can differentiate normally. Thus, 

several studies support that TET proteins, especially TET2, are relevant in the 

regulation of early B cell development and late B cell differentiation. Their specific role 

depending on the cellular stage, the cellular environment and the physiological context 

add one additional step of complexity in regulation of DNA methylation in the immune 

system (Lio and Rao, 2019). 

T cells 

Given that TET2 and TET3 are expressed at higher levels than TET1 in somatic 

tissues, they are responsible for most of 5-hmC modifications in thymocytes and 

peripheral T cells. In fact, Tsagaratou and colleagues reported that double knockout of 

TET2 and TET3 in T cells produce an aberrant and excessive proliferaton that results 

in mice death at 8 weeks of age. During the pathological process, mice suffered a 

dramatic decrease in double positive T cells, failure in T regulatory cells (Treg) function 

and uncontrolled response to stress and inflammation (Tsagaratou et al., 2014, 2017). 

Thus, TET proteins are also essential for Treg cells function, as TET2 and TET3 are 

required for Foxp3 expression, a specific TF of this cell type (Yue et al., 2016). 5-hmC 

epigenetic mark in gene bodies correlates with active expression of specific T cell 

genes, supporting that TET proteins play an important role in regulating differentiation 

of naïve T cells into multiple types of peripheral T cells (Tsagaratou et al., 2014). 

Myeloid lineage 

The role of TET2 in the myeloid lineage has generated some controversy depending on 

the effect of TET deficiency towards different hematopoietic populations. On one hand, 
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it has been reported that disruption of TET2 at HSC or progenitor stages results in a 

dramatic fall of 5-hmC in HSC and an expansion of granulocyte and monocyte 

populations at the expense of erythrocytes, T and B lymphocytes generation. TET2 is 

also essential for the correct differentiation, proliferation and function of mast cells, and 

its deficiency leads to impaired differentiation and an up-regulation of C/EBP TFs family 

members. Given that C/EBPα is an essential TF for myeloid genes expression that 

represses other cell lineage genes, these results agree with myeloid expansion in 

TET2 deficiency conditions (Avellino and Delwel, 2017; Lio and Rao, 2019; Montagner 

et al., 2016). However, the Graf laboratory reported few years ago that TET2 

contributes to the de-repression of myeloid genes in pre-B cells during a trans-

differentiation system into macrophage-like functional cells depending on C/EBPα 

expression (Bussmann et al., 2009; Kallin et al., 2012). This process does not imply 

notable changes in DNA methylation, which correlates with the fact that myeloid 

differentiation requires less epigenetic reorganization than other lineages, but remarks 

the relevance of C/EBPα and TET2 in acquiring macrophage cell identity (Rodríguez-

Ubreva et al., 2012; Lio and Rao, 2019). Additionally, PU.1, a TF that cooperates with 

C/EBPα in the activation of myeloid genes, recruits TET2 to the promoter of genes 

during the differentiation of monocytes to osteoclasts (de la Rica et al., 2013; Laiosa et 

al., 2006).  In any case, myeloid abnormalities caused by TET2 deletion or loss-of-

function mutations at hematopoietic progenitor stages confirm that this enzyme plays 

an important role in myeloid lineage specification. For instance, in vivo approaches 

showed that TET2 loss in progenitors give rise to progressive blockage of myeloid 

proliferation and acquisition of phenotypes similar to human chronic myelomonocytic 

leukemia (CMML) (Moran-Crusio et al., 2011; Rasmussen et al., 2015). 

Erythroid lineage 

The role of TET proteins in erythropoiesis has been practically unknown until very 

recently. A study based on zebrafish model reported that TET2 regulates the correct 

generation of erythroid progenitors by demethylating lineage-specific genes and that its 

deletion gives rise to erythrocyte dysplasia and anemia (Ge et al., 2014). Recent 

studies reported that TET2 and TET3, but not TET1, are expressed in human 

erythrocytes. Deletion of both enzymes results in an impaired differentiation of 

erythrocyte progenitors but they exert different functions. TET3 deletion increases cell 

death by apoptosis whereas TET2 deletion produces hyper-proliferation of progenitors. 

This second case with uncontrolled cell proliferation is closely related to hematological 

malignancies such as myelodysplastic syndromes (MDS) (Yan et al., 2017). These 

recent evidences establish another link between TET proteins and cancer and provide 

relevant information in order to study potential targets for tumor therapies. 
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2.2.5. Retrotransposons and DNA methylation 

Transposable elements (TE) consist of DNA sequences that may change its location 

within a genome either by transposition or retrotransposition. They comprise a large 

fraction of eukaryotic genomes, reaching 50% of occupancy in human genomes, and 

contribute to the diversity in genome structure and function along evolution (Parisod et 

al., 2010; Sotero-Caio et al., 2017).  

When discovered, these elements were thought to have no function and were defined 

as simple “parasites” able to jump within the genome. However, their prevalence in 

vertebrate genomes and their specific non-random conservation along evolution 

contributed to their study in the last years. Recent studies have elucidated some of 

their contributions to the host genome structure and function, such as their participation 

in the regulation of the transcriptional network involved in interferon (IFN)-response 

(Orgel and Crick, 1980; Chuong et al., 2017; Lynch et al., 2015). 

TEs can be divided into two major classes based on their mechanism of transposition: 

retrotransposons and DNA transposons. Retrotransposons amplify themselves through 

a ‘copy-and-paste’ mechanism, in which they are transcribed to RNA, this intermediate 

is reverse-transcribed to cDNA as a copy and is inserted again in the host genome 

(Finnegan, 2012). On the other hand, the amplification of DNA transposons does not 

require an RNA intermediate. Instead of “copy”, their mechanism of action is mainly 

based on “cut-and-paste”, avoiding replication (Bourque et al., 2018). 

Retrotransposons are further subdivided into two groups depending on their 

mechanism of chromosome insertion. One group of retrotransposons is flanked by long 

terminal repeats (LTR) and its mechanism of activation is similar to retroviruses. The 

other group of TEs contains long and short interspersed elements (LINEs and SINEs) 

and SINE/VNTR/Alu (SVA) elements.  

LINEs are the most active and abundant autonomous TEs in the mammalian genome 

and LINE-1 (L1) elements are the most abundant in humans, comprising approximately 

a 17% of the genome. They mobilize by a mechanism called target-primed reverse 

transcription (TPRT). Briefly, L1 endonuclease usually split host DNA sequence in an 

A-T rich specific region, setting a hydroxyl group free that is used as a primer for 

reverse transcription of L1 RNA (Luan et al., 1993; Luning Prak and Kazazian, 2000; 

Morrish et al., 2002; Han, 2010). Despite L1 elements preferentially target A-T rich non-

coding DNA regions, they can also be inserted within genes, causing damaging 

insertions for the host organism. Most of L1-related diseases are caused by aberrant 
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splicing or mutagenesis insertion, in which gene function is completely nulled or altered 

(Hancks et al., 2016).  

In order to preserve host genomic stability, multiple silencing mechanisms are known to 

enforce the transcriptional silencing of the huge amount of transposons and 

retroviruses that have accumulated in the mammalian genome, including genomic CpG 

methylation. 

In the earliest stages of mammalian embryo, a global DNA demethylation is needed in 

order to activate the genetic program of embryonic development. This event could give 

transposons a break to amplify themselves and move across the genome, but 

additional mechanisms contribute to the control of retrotransposition.  In fact, the 

enrichment of 5-hmC in L1 from mouse ESCs attribute to TET enzymes a role in 

regulating L1 activity in pluripotent cells, both the adapted (or exapted) and mutagenic 

elements (de la Rica et al., 2016; Gerdes et al., 2016). 

Genome alterations caused by transposons are especially critical in germ cells, as 

these modifications will be inherited. DNA methylation, in combination with non-coding 

Piwi-interacting RNA (piRNA) system and repressive histone modifications like 

H3K9me3, mediates the retrotransposon silencing in male germ cell development, 

especially in the later stages. Importantly, DNA methylation only represses the 

expression of selected types of retrotransposon such as L1 elements. Hence, the 

coordination between transcriptional and post-transcriptional regulators during 

development of male germ cells reveal that retrotransposon silencing is essential for 

both genomic and transcriptomic integrity, enabling a correct meiotic recombination in 

these cells (Pezic et al., 2014; Zamudio et al., 2015; Yang and Wang, 2016; Inoue et 

al., 2017a) 

Additionally, it has been recently reported that DNA methylation represses L1 

insertions during human neuronal differentiation by differing methylation patterns 

dynamically in order to protect host genome from L1 accumulation (Rohrback et al., 

2018; Salvador-Palomeque et al., 2019).  

Thus, DNA methylation is crucial for TE regulation in pluripotent, germ and some 

somatic cells, but the detailed mechanisms in coordination with other epigenetic events 

are still unknown. 
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2.3. microRNAS 

2.3.1. Brief introduction 

microRNAs (miRNAs) integrate an extensive family of approximately 22nt RNAs that 

regulate gene expression post-transcriptionally. They were discovered 20 years ago 

and researchers observed that were highly conserved among vertebrates and 

invertebrates, suggesting that regulatory mechanisms through small RNAs were more 

general than expected (Lagos-Quintana et al., 2001; Lee and Ambros, 2001). The 

number of characterized functional miRNAs and their potential targets has dramatically 

increased in the last years due to up-to-date cloning and computational technologies.  

 

2.3.2. Biogenesis and regulation 

miRNA sequences can be located in different genomic contexts. In humans, most of 

miRNAs are encoded by introns of non-coding or coding genes, but some of them are 

encoded by exonic regions. In addition, some miRNA loci that are in close proximity to 

each other are transcribed as a polycistronic unit (Hutvagner et al., 2001; Lee et al., 

2002). miRNA transcription is performed by RNA Polymerase II and is controlled by 

RNA Pol II-associated TFs and other regulatory elements (Lee et al., 2004).  

In mammals, miRNAs are first transcribed as 1kb-long primary transcripts called pri-

miRNAs. Depending on the proximal position of miRNA sequences in the genome, the 

primary transcript can contain multiple miRNA stem loops. The nuclear RNAse III 

Drosha, in association with its Microprocessor complex partner DGCR8, is recruited to 

split the pri-miRNA transcript into a 70nt hairpin-shaped RNA called precursor-miRNA 

(pre-miRNA) (Denli et al., 2004; Han et al., 2004; Gregory et al., 2004; Ha and Kim, 

2014). This precursor is then exported out of the nucleus by Exportin-5 for further 

processing (Yi et al., 2003; Lund et al., 2004). Once in the cytoplasm, the terminal loop 

of pre-miRNA is cleaved by the RNAse III Dicer, leading to a mature miRNA duplex. 

The directionality of the miRNA strand determines the name of the mature miRNA 

form. Each mature miRNA strand is called depending on its original position in pre-

miRNA, as 5p miRNAs belong to 5’ premiRNA fragment and 3p miRNAs belong to 3’ 

pre-miRNA fragment. In order to exert its repressive function, one selected strand of 

mature miRNAs (guide or active strand) need to be loaded into an Argonaute protein 

(AGO), generating this way the RNA-induced silencing complex (RISC). Notably, the 

strand selection and the assembly of this complex is not a simple binding. Several and 

tightly regulated steps are required for proper RISC function and strand selection 

depends on the cell type, the developmental stage and the pathological context. Briefly, 

miRNA guides AGO proteins to target sites in 3’ or 5’ regions from mRNAs. If the 
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complementarity of miRNA with its target is imperfect, translation of the target is 

inhibited, deadenylation machinery cleaves poly-A tail and, subsequently, the mRNA is 

degraded by exonucleases. Alternatively, if the complementarity is perfect, the mRNA 

target is destroyed by endonuclease AGO (Meijer et al., 2014; O’Brien et al., 2018; 

Nakanishi, 2016; Kobayashi and Tomari, 2016; Dueck et al., 2012). All the steps 

involved in the processing and the maturation of miRNAs are tightly regulated in order 

to prevent diseases such as cancer or developmental disorders associated to 

deregulation of miRNAs expression. Interestingly, some miRNAs regulate themselves 

indirectly by targeting TFs that regulate them in order to prevent their excessive 

accumulation (Inukai et al., 2018; Davis and Hata, 2009).  

Once miRNAs are included in miRISC complex in association with Argonaute proteins, 

cellular mechanisms can dissolve the complex and expose miRNAs to exonuclease-

mediated degradation (Wang et al., 2008b). This coordinated and balanced expression 

between targets and miRNAs might serve to prevent under-expression or 

overexpression of cell-type-specific miRNAs and to guarantee correct gene expression 

programs during development and to prevent disease (Gulyaeva and Kushlinskiy, 

2016).  

 

2.3.3. miRNAs and the immune system 

miRNAs, in coordination with TFs and epigenetic modifications, play an important role 

in the regulation of the cellular differentiation of HSCs into all hematopoietic lineages, 

preserving HSC pool maintenance, directing cell commitment and preventing 

hematological disorders. It is well established that miRNAs can act as downstream and 

upstream effectors of TFs functions. Several studies have determined their expression 

profiles in specific immune cell types in order to elucidate different miRNA roles during 

hematopoiesis (Kim et al., 2019).  

At the top of the hematopoietic hierarchy, miR-146 regulates HSC maintenance. Its 

deficiency in mouse models lead to cellular stress in HSCs and loss of HSC population 

(Zhao et al., 2013). 

In B lymphopoiesis, the miRNAs repertoire is lineage-specific and changes dynamically 

at each cellular stage of differentiation. In fact, the aberrant expression of miRNAs 

involved in the differentiation of other cell lineages or the premature expression of 

some miRNAs can block B cell development, e.g. miR-34a and miR-150 respectively 

(Rao et al., 2010; Zhou et al., 2007). The de-regulation of miRNA expression either by 

negative feedback loops or by TFs and other regulators can lead to the development of 
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hematological malignancies, such as leukemia (Chaudhuri et al., 2012). The relevance 

of miRNAs function in the proper development and differentiation of hematopoietic cells 

from all lineages and the aberrant phenotypes upon their de-regulation point them as 

critical therapeutic targets in blood cancers (Stavast et al., 2018; Weiss and Ito, 2017). 

Finally, during murine T cell differentiation and maturation, there is an increased 

expression of miR-150 and miR-146, especially in Th1cells. In fact, miR146 target 

genes involved in activation of naïve T cell, such as CD40L and STAT1 (Torri et al., 

2017).   

2.4. Histone/ Protein Deacetylases 

2.4.1. Overview 

Histone post-translational modifications (PTMs) are one of the main types of epigenetic 

events and determine the structural conformation of chromatin. They include 

acetylation, methylation, phosphorylation, ubiquination and rybosilation, among others. 

More recently described modifications are crotonylation, propyonilation and butyrylation 

(Chen et al., 2017; Tan et al., 2011; Chen et al., 2007; Portela and Esteller, 2010). 

Histone acetylation, which is carried out by histone acetyltransferases (HATs), is 

generally associated to gene activation. HATs add an acetyl group to the ε-amino of 

lysines on the histone tails leading to the relaxation of chromatin and increasing the 

number of reachable binding sites for transcriptional activators (Marmorstein and Zhou, 

2014). On the other hand, histone deacetylation catalyzed by histone deacetylases 

(HDACs) promotes chromatin compaction and is related to transcriptional repression 

(Gregoretti et al., 2004; Li and Seto, 2016a) (Figure 7).  

 

 

 

 

 

 

 

 

Figure 7. Representation of chromatin status depending HAT and HDAC enzymes mediation. In 

most cases, acetylation of lysine residues leads to open chromatin, TF recruitment and consequent gene 

activation, while deaceylation of lysine produce gene repression. 
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HDACs have emerged as critical transcriptional repressors in several physiological and 

pathological systems, such as oligodendrocyte differentiation, cardiac growth and 

morphogenesis, cancer, interstitial fibrosis, autoimmunity, aging, and metabolism 

disorders (Heideman et al., 2014). The first HDAC was discovered approximately 50 

years ago (Inoue and Fujimoto, 1969) and, since then, a huge number of studies have 

been focused on the elucidation of the role of HDACs in gene regulation.  

 

2.4.2. Family’s classification 

To date, 18 human HDACs have been identified and classified into four different 

classes according to their sequence homology to yeast proteins. There are numbered 

according to their date of discovery (Figure 8).  

Class I HDACs 

Class I HDACs (HDAC1, 2, 3 and 8) are enzymes ubiquitously expressed that play 

critical roles in differentiation, proliferation, and cancer. They have sequence similarity 

to the yeast transcriptional regulator Rpd3 (Taunton et al., 1996).  They are 

predominantly localized in the nuclear compartment of the cell as components of 

multiple chromatin remodeling complexes, which are crucial for the regulation of gene 

expression (Hayakawa and Nakayama, 2011). Class I HDACs are basically composed 

by a conserved deacetylase domain flanked by short N- and C-terminal domains 

(Haberland et al., 2009). 

 

HDAC1 and 2 highly are similar proteins that present overlapping functions in different 

cell types, except for few cases such as early embryogenesis, brain development and 

erythroblast differentiation. In fact, the deletion of both proteins in vivo is required to 

observe a severe biological effect, as in most cases, the specific deletion of one of the 

proteins is compensated by the up-regulation of the other. In mice, the double 

conditional knockout of HDAC1/2 in the hematopoietic system leads to a failure in 

megakaryocytes and erythrocytes development, generating a severe thrombocytopenia 

(Wilting et al., 2010; Heideman et al., 2014). Both HDACs act often together within 

three multiprotein repressor complexes: Sin3 complex, NuRD (nucleosome remodeling 

and deacetylation) and CoREST (co-repressor for element-1-silencing transcription 

factor) (Hassig et al., 1997; Feng and Zhang, 2003; Kelly and Cowley, 2013). HDAC1/2 

activity and complex formation is regulated by several PTMs, which have a critical role 

in coordinating redundant and specific functions of HDACs depending on the context 

and the cell type (David et al., 2002; Segré and Chiocca, 2011). 
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HDAC3 is also expressed in several cell types and, despite possessing both nuclear 

and export signals, it is mainly located in the nucleus (Ruijter et al., 2003). HDAC3 

requires the interaction with SMRT or N-CoR co-repressors and phosphorylation by 

protein kinase CK2 in order to form an active repressor-complex with deacetylase 

activity that is directed to promoters of their target genes in vitro. In vivo, the 

knockdown of catalytic subunits of CK2 results in a reduction of HDAC3 activity during 

mitosis. In fact, the role of HDAC3 over stability of G2-M phase-related protein cyclin 

dependent kinase 1(CDK1) propose a feedback loop in which HDAC3 activates CDK1, 

which in turn activates CK2 and it phosphorylates HDAC3  (Guenther et al., 2001; 

Zhang, 2005; Patil et al., 2016). HDAC3 knockout mice are embryonic lethal (Bhaskara 

et al., 2008). Finally, HDAC8 has not been linked to a repressor complex yet, but it is 

involved in the recycling of SMC3, a subunit of cohesin, and required for optimal 

murine fertility (Deardorff et al., 2012; Singh et al., 2019).  

Class II HDACs 

Class II HDACs are divided into two subclasses, class IIa (HDAC4, 5, 7, 9) and class 

IIb (HDAC6 and 10), according to sequence homology and domain organization. 

 

Class IIa HDACs 

Class IIa HDACs have unique features that do not share with other HDACs, which will 

be explained in more detail in the net section. Briefly, they are expressed in a tissue-

specific manner and play important roles in differentiation and developmental 

processes. HDAC4, 5 and 9 are abundantly expressed in heart, skeletal muscle and 

brain. HDAC5 is also highly expressed in vascular endothelium acting as a specific 

negative regulator of angiogenesis (Urbich et al., 2009; Verdin et al., 2003; Parra, 

2015). In the case of HDAC9, its expression in brain has generated some controversy. 

To date, studies support the fact that this protein is not expressed in neuronal stem 

cells and other brain cell types but it is required in mature neurons to exert its function 

properly (Lang et al., 2012). Furthermore, HDAC9 is also expressed in Treg cells and 

control their suppressive function (de Zoeten et al., 2010).  

HDAC7 is mainly expressed in B lymphocytes, T lymphocytes, NK cells, heart, lung 

and vascular endothelium. HDAC7 deficiency in mice results in embryonic lethality due 

to a rupture of blood vessels (Kasler et al., 2011; Parra, 2015; Chang et al., 2006b; Lei 

et al., 2017). Additionally, class IIa HDACs possesses a long N-terminal that contains 

binding sites for tissue-restricted TFs such as MEF2 family members (Fig.8). This N-

terminal region also determines their subcellular localization (nucleus or cytoplasm), 

which is crucial for their function (Parra and Verdin, 2010; Yang and Seto, 2008).  
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Class IIb HDACs 

Class IIb HDACs have two catalytic domains, in N- and C-terminal regions, a unique 

feature that does not possess other HDACs. However, the leucine-rich catalytic domain 

of HDAC10 is not functional and HDAC6 harbors a C-terminal zinc finger domain. 

HDAC6 and HDAC10 can be localized in both cytoplasm and nucleus but mainly found 

in the cytoplasm (Kao et al., 2002; Zhang et al., 2008; Delcuve et al., 2012; Seto and 

Yoshida, 2014). Due to its cytoplasmic localization, HDAC6 known targets comprise 

cytoskeletal proteins such as α-tubulin and cortactin, transmembrane proteins such as 

the interferon receptor IFNαR, and chaperones  (Hubbert et al., 2002; Haberland et al., 

2009; Kaluza et al., 2011) . HDAC10 is known to interact with other HDACs from 

classes I and II such as HDAC3 and SMRT co-repressor, but its main function had 

been classified as a simple recruiter rather than a deacetylase enzyme (Tong et al., 

2002). Interestingly, recent studies defined HDAC10 as a polyamine deacetylase 

enzyme (Hai et al., 2017). Finally, HDAC10 (together with HDAC9) has been implicated 

in DNA repair by homologues combination (Kotian et al., 2011). 

 

Class III HDACs or Sirtuins 

Class III HDACs or Sirtuins comprise seven proteins (SIRT1, 2, 3, 4, 5, 6 and 7) and 

show no homology to class I and II proteins. Sirtuins are classified as Nicotinamide-

Adenine Dinucleotide (NAD+) dependent protein decatylases. They possess three 

domains: a large domain that contains a Rossman-fold and a small zinc-binding 

domain are flanking a “gap” containing the deacetylase catalytic domain in which the 

substrate interacts with NAD. Unlike other HDACs, the catalytic domain of sirtuins has, 

in addition, mono-ADP-ribosyltransferase activity (Min et al., 2001; Avalos et al., 2004; 

Yoshida et al., 2017). Remarkably, the larger space in SIRT5 substrate binding region 

confers to this protein additional functions such as desuccinylase and demalonylase 

activities (Du et al., 2011). 

Sirtuins have an especial pattern of cellular sub-localization. SIRT1 and 2 can be in 

both nucleus and cytoplasm; SIRT6 and SIRT7 are only localized in the nucleus. 

Finally, SIRT3, SIRT4, and SIRT5 are located in the mitochondria (Huang JY et al., 

2010; Kiran et al., 2013; Liszt, Ford, Kurtev, & Guarente, 2005).  

These enzymes are important for cell homeostasis through mediation between cell and 

its environment, as well as they play a relevant role in DNA damage repair and in 

preserving genomic stability under stressing conditions. Indeed, sirtuins deficiency in 

different cell types and in the whole organism leads to an increased stress during 
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replication, accumulation of DNA damage (e.g. R-loops), an accelerated organism 

aging and, consequently, its compromised viability (Kobayashi et al., 2005; 

Mostoslavsky et al., 2006; Serrano et al., 2013; Song, Hotz-Wagenblatt, Voit, & 

Grummt, 2017; Vazquez et al., 2016; Wang RH et al., 2008).  Sirtuins reduce cellular 

stress and avoid cellular death by interacting with proteins involved in stress resistance 

such as FOXO family members (Kobayashi et al., 2005), helicase DDX21 (Song et al., 

2017), helicase ku70 (Zhang L, Bai, Ren, Sun, & Si, 2018), among others, and by 

repressing proteins involved in cellular apoptosis, such as p53-related protein p73 (Dai 

et al., 2007; Kiran et al., 2015). 

Class IV HDACs 

Class IV HDACs only includes HDAC11, which is homologous to class I and II 

enzymes, and is involved in the regulation of development of different immune cells 

including neutrophils, myeloid derived suppressor cells and T-cells. T-cells from 

HDAC11 knockout mice undergo increased proliferation, production of pro-inflamatory 

cytokines and expressions of molecules involved in effector function. Considering its 

role on anti-inflammatory cytokine IL-10 suppression, HDAC11 activity is important for 

the balance between immune activation and immune tolerance (Seto and Yoshida, 

2014; Sahakian et al., 2017; Yanginlar and Logie, 2018; Woods et al., 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Classification of HDAC’s family in four different classes. Most relevant domains are colored and 

defined. Figure modified from Barneda-Zahonero et al. 2012 and Heideman MR et al. 2014. 
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2.4.3. Mechanism of action 

As mentioned above, HDACs are often located in multiprotein complexes, either with 

other HDACs (e.g. HDAC1 and HDAC2) or with other types of proteins. While some 

HDACs such as HDAC6 exert its function in a TF-independent manner, most of HDACs 

are recruited to their target genes by interaction with specific TFs. The best 

characterized TFs partners of class IIa HDACs are MEF2 proteins, which are involved 

in cell differentiation, cell growth, morphogenesis, tissue maintenance and survival 

(McKinsey et al., 2000; Grégoire et al., 2007; Pon and Marra, 2016; Seigneurin-Berny 

et al., 2001). 

The ability of HDACs to interact with different binding partners forming macromolecular 

structures has an important role in the correct chromatin positioning and modification. 

In this regard, class I HDACs can form different multiprotein repressor complexes 

depending on their associated partners and class IIa HDACs associate with HDAC3 in 

order to exert their repressive activity (Fischle et al., 2002; Ruijter, 2003; Kelly and 

Cowley, 2013). Protein complexes formed by HDAC1/2 have been recently connected 

to Repo-man phosphatase in order to maintain gene repression (de Castro et al., 

2017). HDAC4 and 5 are also associated to heterochromatin protein 1 (HP1), which 

produces the recruitment of histone methyltransferases such as SUV39h1 and 

mediates the transcriptional repression (Zhang et al., 2002b).  

Importantly, the identification of substrate specificity in HDACs is a relevant factor in 

the elucidation of their mechanism of action. In contrast to HATs, the study of HDACs 

is much more difficult due to three main obstacles. First, some HDACs possess almost 

undetectable enzymatic activity when purified. Second, functional redundancy of some 

HDACs does not allow to unravel their specific targets, as the lack of one HDAC is 

compensated by the action of another. Finally, many HDACs are included in more than 

one complex, which have different substrate preferences (Marmorstein and Zhou, 

2014; Seto and Yoshida, 2014). 

Histone substrates 

Histones are characterized by a basic charged that is caused by the high proportion of 

positively charged lysine and arginine residues. DNA, which is negatively charged, 

interacts with histone regions that contain those residues. Thus, histone modifications 

at multiple lysine residues regulate DNA-protein interactions by changing aminoacids 

charges and acts as indicators of chromatin states and gene expression (Kouzarides, 

2007; Bannister and Kouzarides, 2011).  
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In neurons, HDAC1 deacetylates H3K9, leading to an increase in memory formation, 

and HDAC2 is involved in the deacetylation of H3K56, protecting mouse brain from 

DNA damage (Bahari-Javan et al., 2012; Miller et al., 2010). 

However, the search for specific histone substrates for Class I, II and IV HDACs has 

been challenging for the researchers. The best example is the case of HDAC3. On one 

hand, HDAC3 shows specificity for H4K5 and H4K12, since Hdac3-null hepatocytes 

show high levels of acetylation marks on these lysines and, consequently, there is a 

loss of heterochromatin, an increase in DNA double strand breaks and less 

proliferation (Bhaskara et al., 2010). On the other hand, HDAC3 just partially 

deacetylates H3, H2B, H4K8, and H4K16. In addition, HDAC3 is included in 

multiprotein co-repressor complexes that contain other HDACs (e.g. class IIa HDACs), 

causing difficulties to distinguish between HDAC3-specific substrate and other 

complex-member HDAC target (Johnson et al., 2002).  

Class IV HDAC11 specifically deacetylases H3K9/K14, which is related to 

oligodendrocyte development and specific gene expression (Liu et al., 2009). 

HDAC6, SIRT4 and SIRT5 do not deacetylase histones because of their exclusive 

cytoplasmic and mitochondrial localizations, respectively. Sirtuins have easier 

detectable substrates than classical HDACs. SIRT1, 2 and 3 have preference for 

H4K16 (Vaquero et al., 2006). SIRT6 was initially restricted to exclusive mono-ADP-

ribosyltransferase activity, but later studied revealed that it also deacetylates H3K9 and 

H3K56, modulating correct telomere metabolism and function (Liszt et al., 2005; 

Michishita et al., 2008). SIRT7 is a nuclear highly selective H3K18 deacetylase that 

plays a crucial role in oncogenic transformation (Barber et al., 2012). 

Non-histone substrates 

Interestingly, HDACs deacetylation is not only restricted to lysine residues from 

histones, as several articles in the literature have established that there are also non-

histone substrates, such as TFs, structural proteins or viral proteins. Upon 

deacetylation, these proteins undergo alteration in activation, subcellular localization, 

complex formation, among others effects (Glozak et al., 2005; Singh et al., 2010). One 

of the first discovered non-histone substrates was p53, a DNA binding transcription 

factor that have tumor suppressor activity. Its acetylation by p300 facilitates its 

stabilization, but its deacetylation by HDAC1 or SIRT1 produces a decrease in its 

activity (followed by protein degradation) and subsequent reestablishment of the cell 

cycle and DNA repair (Gu and Roeder, 1997; Luo et al., 2001; Vaziri et al., 2001). 

SIRT1-p53 has been extensively studied for its close relation with tumorigenesis 
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processes. Deacetylation of a tumor repressor defines SIRT1 as a potential oncogene, 

but other studies support its function as a tumor suppressor in specific malignancies. 

Thus, this protein can exert both roles depending on the specific cell type and 

pathology (Deng, 2009; Lee and Gu, 2013). 

Other TFs targeted by HDACs are GATA proteins by HDAC3 (Ozawa et al., 2001), 

STAT3 by HDAC3 and SIRT1 (Yuan et al., 2005; Gupta et al., 2012a), members of 

FOXO family by SIRT1-3 (Wang et al., 2007; Motta et al., 2004; Jacobs et al., 2008), 

and YY1 by HDAC2 (Glenn et al., 2009). STAT3 dimerization, nuclear translocation 

and consequent activity depend on the acetylation of Ly685. HDAC3 and SIRT1 

deacetylation blocks STAT3 activity and represses activation of its targets genes. The 

relation between SIRT1/HDAC3, STAT3 and NFKB signaling has been studied in 

different types of cancer such as lymphoma, leukemia and gastric cancer (Bernier et 

al., 2011; Gupta et al., 2012b; Hu et al., 2014). 

HDAC6 is considered the major cytoplasmic deacetylase with non-histones substrates. 

It is involved in the regulation of microtubule-dependent cell motility, vessel formation, 

cellular migration and ciliary disassembly by deacetylating α-tubulin and cortactin 

(Hubbert et al., 2002; Kaluza et al., 2011; Mihaylova and Shaw, 2013; Ran et al., 

2015). 

Finally, as mentioned above, some viral proteins are also regulated by acetylation and 

deacetylation reactions. For instance, acetylation of lysine 239 from adenoviral E1A 

protein, on one hand, blocks its interaction with C-terminal binding protein (CtBP) and 

produces the disruption of repressor complexes leading to gene activation, and, on the 

other hand, arrests E1A in the cytoplasm due to a blockage of nuclear import (Zhang et 

al., 2000; Madison et al., 2002). 

 

Novel PTMs 

Recent studies have revealed novel PTMs on lysine residues in addition to acetylation, 

such as propionylation, butyrylation, succinylation, manolynation, crotonylation and 

glutarylation. (Chen et al., 2007; Tan et al., 2011; Xu et al., 2016; Yoshida et al., 2017). 

Most of studies have focused on histone crotonylation due to its relation with gene 

activation and its shared effector with acetylation, p300. This highly evolutionary 

conserved mark is specifically enriched in active promoters and predicted enhancers 

regions, and is proposed to function as a specific mark of male specific gene 

expression after meiosis. HDAC1/2 complexes are proposed as main responsible of 

de-crotonylation reactions (Kelly RWD et al., 2018; Tan et al., 2011). Manolytaion in 

H2A has been recently related to chromosome segregation during mitosis and meiosis, 
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but the roles of histone propionylation, butyrylation, succynilation, malonylation in 

mammalian epigenetic gene regulation are still poorly understood (Ishiguro et al., 2018; 

Yoshida M et al., 2017).  

2.4.4. Clinical Relevance 

Abnormal expression of several HDACs has been observed in human disease, in 

particular several types of cancer. Despite Sirtuins activity has been associated to 

stress and aging “fighting” and HDACs loss in some cell types can lead to severe 

disorders such as bone marrow failure (Heideman et al., 2014; Grabowska et al., 

2017), there is a well-established correlation between HDACs and acquisition of 

pathological and malignant phenotypes (Barneda-Zahonero and Parra, 2012; Li and 

Seto, 2016b; Yoon and Eom, 2016). 

Regarding class I HDACs, the recruitment of the Sin3 repressor complex in order to 

repress the expression of adhesion proteins such as E-cadherin and the relation 

between HDAC1 and TGF-β during Epithelial-to-Mesenchymal-Transition (EMT) 

connect HDAC1 and HDAC2 to tumor invasiveness (Peinado et al., 2004; Lei et al., 

2010; Serrano-Gomez et al., 2016). In addition, HDAC3 inhibition leads to PD-L1 up-

regulation and, consequently, increases immunotherapy success in several cancers 

(Deng et al., 2019; Hu et al., 2019). HDAC8 has also been overexpressed in a variety 

of human cancers. Interestingly, HDAC8 inhibitors offer beneficial effects in the 

treatment of both solid and hematological tumors (Adhikari et al., 2018) . 

Recent studies demonstrated that class IIa HDACs inhibition results in breast tumor 

reduction and metastasis prevention by modulating the innate response (Guerriero et 

al., 2017). HDAC6 has been principally linked to autophagy processes due to its 

cytoplasmic localization, this protein has also been related to expansion of malignant 

cells in pancreatic and breast cancers (Lee JY et al., 2010; Seo et al., 2014). 

Sirtuins, especially SIRT1, are also related to metastasis, but their role in suppressing 

or promoting invasiveness and cancer cells motility depends on the cancer type (Li and 

Seto, 2016b). 

The pathologies mentioned above are few examples of malignant situations related to 

HDACs overexpression. Thus, HDAC’s specific inhibitors (HDI) have arised as crucial 

therapeutic agents and allow the study of biological relevance of these enzymes. In 

basic research, the first used inhibitor was discovered 40 years ago: n-butyrate 

(Rubenstein et al., 1979). TSA emerged few years later and became a key chemical 

agent for studying the role of histone acetylation in several biological contexts 
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(Yoshida, Kijima, Akita, & Beppu, 1990). Despite the list of used HDI in basic research 

have been increasing during the last years, only four inhibitors have been approved by 

FDA for tumoral therapies: vorinostat (SAHA, Zolinza) (Richon et al. 1998), romidepsin 

(FK228, Istodax) (Nakajima et al., 1998), belinostat (PXD101) and panobinostat 

(LBH589) (Chan et al., 2013). However, in basic research and clinical trials, treatments 

with HDAC inhibitors are still not specific enough and may produce biological side 

effects because off unrestrained action on other enzymes (Barneda-Zahonero & Parra, 

2012; Yoshida et al., 2017). 

2.5. Class IIa HDACs: a peculiar family 

 

2.5.1. Unique features 

As previously stated, class IIa HDACs present unique features. First, they are 

expressed in a tissue-specific manner and exert their transcriptional repressive 

functions in skeletal and cardiac muscle, the bone, the immune system and the 

vascular system (Parra, 2015). Second, in contrast to other HDACs, class IIa enzymes 

possess an N-terminal domain that mediates their interactions with specific TFs, such 

as MEF2 family members. Class IIa HDACs are recruited to their target genes through 

interaction with MEF2 proteins and other TFs on specific genomic regions to perform 

transcriptional repression (McKinsey et al., 2000; Di Giorgio and Brancolini, 2016). 

Third, the signaling-dependent phosphorylation of conserved serine residues in their N-

terminal regulatory domain (Figure 9) mediates their shuttle between nucleus and 

cytoplasm and, therefore, their transcriptional repressive activity (Grozinger and 

Schreiber, 2000; Parra, 2015; Parra et al., 2007; Parra and Verdin, 2010). Last, 

although class IIa HDACs have a highly conserved catalytic domain, they have minimal 

deacetylase activity on acetylated histones. Strikingly, class I HDACs possess a 

tyrosine (Y) residue present in the catalytic domain crucial for the deacetylation of 

histones that is substituted by a histidine (H) residue in class IIa HDACs. Mutation of 

the H residue into Y confers class IIa HDACs with a high deacetylase activity on 

histones (Clocchiatti, Florean, & Brancolini, 2011; Lahm et al., 2007). These findings 

give rise to speculate that class IIa HDACs substrates may are no histones, but, to 

date, no histone or other protein substrates for class IIa HDACs have been identified. It 

was established that their enzymatic activity depends on their recruitment into a 

multiprotein repressor complex including HDAC3 and SMRT/N-CoR, categorizing them 

as simple co-factors but not real enzymes (Fischle et al., 2002). However, recent 

studies have focused on unveiling catalytic potential of these proteins and their 

implication in other novel lysine post-translational modifications such as crotonylation, 
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explained above (Lahm et al., 2007; Schuetz et al., 2008; Bottomley et al., 2008). Thus, 

further studies are needed to explore whether class IIa HDACs are real enzymes in 

their physiological context.  

 

 

 

 

 

 

 

Figure 9.  Schematic representation of Class IIa HDACs domains. From left to right, N-terminal domain 

containing the MEF2 binding region is represented in red, NSL in black and the serine residues subject to 

phosphorylation reaction in orange and C terminal catalytic domain containing binding regions to co-

repressors. Figure extracted from (Parra, 2015) . 

 

2.5.2 Role of class IIa HDACs in physiology and pathology 

Null mice of each class IIa HDAC help to decipher their role in both physiology and 

pathology. All these mouse models present important defects in differentiation and 

developmental processes, since some of them die at embryonic stages. 

HDAC4-deficient mice display a failure in osteogenesis and control of bone 

hypertrophy, resulting in premature calcification (Bradley et al., 2015; Vega et al., 

2004). This phenotype was initially attributed to altered regulation of RUNX2 

expression, but later studies demonstrated that a proper balance of expression 

between HDAC4 and MEF2C is essential for correct bone formation and development 

(Arnold et al., 2007). HDAC4, alternatively, is also implicated in regulating neuronal 

homeostasis, as it is involved in genetic response to denervation, synaptic plasticity 

and memory impairment (Fitzsimons, 2015). Abnormal nuclear accumulation of HDAC4 

can trigger neurotoxicity, damage in dendritic architecture an affectation maturation of 

neural precursor cells (Litke et al., 2018; Trazzi et al., 2016; Q. Wu Q et al., 2017). 

HDAC5 and/or HDAC9 null mice exhibit cardiomegaly in response to stress produced 

by artificially induced aortic stenosis, suggesting that HDAC5 and HDAC9 are 

modulators of cardiac response in stress conditions via MEF2 repression (Zhang et al., 

2002a; Haberland et al., 2009; Chang et al., 2004). Notably, recent studies reported 

that HDAC5 is essential for HDAC1/Sin3a co-repressor complex recruitment, since 
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cardiac cells from HDAC5 knockout mice results present impaired interaction and 

subsequent de-regulation of cardiac genes such as Ncx1 and Bnp (Harris et al., 2016). 

In addition, HDAC5 is also involved in the regulation of myogenesis in skeletal muscle. 

In this case, HDAC5 interacts with MEF2 and represses it, preventing the differentiation 

of myoblasts into myotubes. Its regulation through phosphorylation is a dynamic 

process in order to preserve a correct stress response (Lu et al.,2000; McGee & 

Hargreaves, 2004).  

Mice lacking HDAC7 show embryonic lethality at day 11 resulting from a failure to form 

cell-to-cell junctions in the developing circulatory system and rupture of blood vessels. 

HDAC7 represses MMP10 (a critical regulator for blood vessel formation and 

extracellular matrix degradation) through MEF2 interaction. Thus, this HDAC is 

essential for maintaining vascular integrity (Chang et al., 2006a). In the hematopoietic 

system, HDAC7 overexpression inhibits apoptosis of T cells in response to activation 

signals, while conditional knockout mice in thymocytes have defective generation of 

CD4+ T cells (Kasler et al., 2011; Dequiedt et al., 2003b). 

HDAC9 has been related to the neuronal system in addition to cardiac muscle, by 

regulating gene expression and dendritic growth in cortical neurons in a dynamic 

signal-dependent manner. HDAC9-deficient neurons have altered dendritic branches 

and an increased sensitivity to denervation. Additionally, recent studies demonstrated 

that the nucleocytoplasmic shuttling of HDAC9 plays a critical role in axon branching 

(Méjat et al., 2005; Sugo and Yamamoto, 2016; Sugo et al., 2010; Alchini et al., 2017). 

Finally, HDAC9 overexpression in B cells is related to some Non-Hodgkin lymphomas 

such as diffuse large B cell lymphoma (DLBCL) (Gil et al., 2016). 

2.5.3 The class IIa HDACs-MEF2 axis 

The N-terminal domain of class IIa HDACs is a distinctive mark for this group of 

proteins. It consists of 450-600 aa and just 40% of them present homology with the rest 

of HDACs (Martin et al., 2007). This domain contains motifs involved in subcellular 

localization, several residues implicated in post-translational modifications such as 

ubiquitination, and conserved binding motifs that mediate interaction with tissue-

specific transcription factors e.g. MEF2 (Han, He, Wu, Liu, & Chen, 2005; Lu et al., 

2000; Martin M, Kettmann, & Dequiedt, 2009).  

It is well-established that class IIa HDACs mediate transcriptional silencing of their 

target genes when located in the nucleus through recruitment of specific DNA binding 

proteins (Martin M et al., 2009). MEF2 contains a MADS box and MEF2 DNA binding 

domain that modulates dimerization, sequence-specific DNA binding and interaction 
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with different transcription factors such as EBF1 (Wu et al., 2010; Kong et al., 2016). In 

this case, the balance between gene activation produced by MEF2 and gene silencing 

caused by HDACs is critical for correct development and differentiation of diverse 

tissues, e.g. neurons, muscular cells and lymphocytes. Class IIa HDAC-MEF2 

interaction by forming and dissociating complexes depending on phosphorylation of 

HDACs is highly dynamic (Chang et al., 2006a; Arnold et al., 2007; Jayathilaka et al., 

2012; Parra, 2015). Many researchers are focused on studying in detail the interaction 

class IIa HDAC-MEF2 and their downstream targets and effects in order to increase 

knowledge about developmental biology and improve therapies for pathologies, 

especially cancer (Clocchiatti et al., 2015; Di Giorgio, Hancock, & Brancolini, 2018).  

2.5.4 Subcellular shuttling 

The N-terminal domain of class IIa HDACs also contains several highly conserved 

serine residues that are subject to phosphorylation in a specific signal-dependent 

manner. This reaction is crucial for their subcellular localization (Martin M et al., 2007; 

McKinsey, Zhang, & Olson, 2001; Parra & Verdin, 2010). 

The phosphorylation status of class IIa HDACs determines whether these proteins are 

localized in the nucleus or in the cytoplasm and, consequently, the exertion of their 

repression activity on their target genes (Parra and Verdin, 2010). 

In the nuclear compartment, class IIa HDACs specifically interact and form complex 

with MEF2 family members, the serum response factor (SRF), the calmodulin-binding 

transcription activator and the TF RUNX2. These interactions lead to DNA recruitment 

and subsequent silencing of target genes (Clocchiatti et al., 2011; Haberland et al., 

2009). Conversely, in response to different extracellular physiological signals, class IIa 

HDACs become phosphorylated at serine residues from the N-terminal domain and 

then interact with 14-3-3 proteins. This results in their cytoplasmic sequestration, the 

dissociation of bound specific TFs and the de-repression of their target genes 

(Grozinger & Schreiber, 2000; Martin M et al., 2009; Parra & Verdin, 2010; A. H. Wang 

et al., 2000). The presence of some class IIa HDACs in both the nucleus and the 

cytoplasm give rise to additional mechanisms involved in shuttling regulation that are 

still unknown (Parra, 2015). The action of specific phosphatases produce the de-

phosphorylation of class IIa HDACs, resulting in their nuclear import and the repression 

of their target genes again  (Clocchiatti, Florean, & Brancolini, 2011; Maud Martin et al., 

2009; Parra & Verdin, 2010). 

To date, there are four families of serine/threonine kinases and two families of 

phosphatases implicated in this mechanism. The most relevant members are CaMK 
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and PKD, and PP2A and PP1β (included in myosin phosphatase complex) 

respectively. The coordinated activity between kinases and phosphatases constitutes 

an essential regulatory mechanism that allow correct, rapid, and reversible expression 

of class IIa HDAC target genes in response to specific external signals (Figure 10) 

(Clocchiatti et al., 2011; Martin M et al., 2009; Parra et al., 2007). 

 

 

 

 

 

 

 

Figure10. Subcellular shuttling of class IIa HDACs. Illustration showing the modulation of nuclear-

cytoplasmic shuttling of class IIa HDACs depending on phosphorylation. Serine phosphorylation by 

CaMK/PKD lead to nuclear export and 14-3-3 binding results in cytoplasmic arrest. Conversely, de-

phosphorylation by PP2A/MYTP1 complex give rise to nuclear import and HDAC target genes repression. 

(Figure adapted from Clocchiatti A et al. 2011). 

 

2.5.5 Class IIa HDACs in the immune system   

HDAC7 and HDAC9 in T cell development 

Interestingly, Eric Verdin’s laboratory showed that particularly HDAC7 was the most 

class IIa HDAC expressed in double-positive thymocytes (CD4+CD8+) (Dequiedt et al., 

2003a). It is localized in the nucleus of resting thymocytes, where it represses the 

expression of a long list of genes involved in T-cell positive and negative selection 

(Kasler and Verdin, 2007). Among these genes, HDAC7 represses the orphan nuclear 

receptor called Nur77, which is involved in the apoptosis of thymocytes and their 

negative selection (Dequiedt et al., 2003a; Parra et al., 2005; Kasler and Verdin, 2007). 

Upon T-cell activation, HDAC7 is phosphorylated and exported to the cytoplasm, 

resulting in Nur77 re-activation and induction of apoptosis (Parra et al., 2005; Dequiedt 

et al., 2005). Strikingly, in vivo conditional deletion of HDAC7 in double-positive 

thymocytes results in a significant defect in their ability to differentiate into CD4+ single 

positive T cells and naïve CD4 thymocytes are unable to differentiate (Kasler et al., 

2011; Myers et al., 2017). Conversely, nuclear accumulation of HDAC7 due to impaired 

65



phosphorylation gave rise to a block of negative selection and consequent escape of 

autoreactive T cells, an impairment of the development of iNKT cells and the 

development of lethal tissue-specific autoimmune diseases (Kasler et al., 2018, 2012). 

All these evidences define HDAC7 as an essential regulator of T cell development with 

relevant signal-dependent repressive function. Regarding cytotoxic T cells (CTL), 

HDAC7 is constitutively phosphorylated and retained in the cytoplasm. In fact, a failure 

in phosphorylation of its serine residues and nuclear import of HDAC7 lead to impaired 

function of this cell type (Navarro et al., 2011).  

 

HDAC7 and HDAC9 play an important role in various stages of T lymphopoyesis, 

likewise Foxp3 is an important transcriptional repressor and modulator for T cell 

development and function. In particular, HDAC9 is highly expressed in Treg cells 

compared to other T cell types. Strikingly, HDAC7, HDAC9 and HDAC3, are required 

for Foxp3-dependent transcriptional silencing activity. Upon Treg cell activation, 

HDAC9 is exported from the nucleus (Li B et al., 2007; Tao R et al., 2007; Wang L et 

al., 2015). Reduced expression of HDAC9 in mice induced Foxp3 expression, resulting 

in an increased Treg suppressor function and prevention of autoimmunity disorders 

(Wang et al., 2009; de Zoeten et al., 2010).  In contrast to HDAC7, HDAC9 does not 

have a role in preventing autoimmunity disorders. Thus, HDAC9 becomes a relevant 

therapeutic target in order to modulate the balance between T effectors and T 

regulators function and, consequently, maintain cell tolerance and prevent immune-

associated pathologies (Nijhuis et al., 2019). 

HDAC7 in B lymphopoiesis 

Our laboratory demonstrated that HDAC7 is highly expressed in pre-B cells but not in 

myeloid cells such as macrophages. Graf and colleagues developed an in vitro 

approach in which pre-B cells directly transdifferentiate into-macrophage-like cells in 48 

hours after up-regulation of CEBP-α induced by β-estradiol treatment (Bussmann et al., 

2009). During trans-differentiation, treated cells present a dramatic down-regulation of 

HDAC7 expression (Figure 11). Interestingly, treated cells expressing exogenous 

HDAC7 expression undergo a block in the up-regulation of myeloid transcriptional 

program during trans-differentiation. These results demonstrated that HDAC7 

represses myeloid genes expression in B cells, becoming a potential and important 

protein for proper B cell development.  Notably, in pre-B cells HDAC7 interacts with 

MEF2C and is recruited at MEF2 binding sites from promoters of macrophage genes 

(Barneda-Zahonero et al., 2013).  
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Preliminary results in our laboratory reported a block in B lymphocyte development, 

specifically at the pro-B cell to pre-B cell transition, upon deletion of HDAC7 by using a 

conditional knockout mouse model. However, the mechanisms by which HDAC7 

regulates and control proper early B cell development and the role of HDAC7 in B cell 

malignancies were still unknown.  

 

 

 

 

 

 

Figure 11. Trans-differentiation of pre-B cells into macrophages. This is an established in vitro model 

dependent on B-estradiol treatment and consequent upregulation of CEBPα expression. Figure adapted 

from Barneda-Zahonero et al. 2013. Cell illustrations were extracted and adapted from public webpage 

Smart servicer medical art. 

 

HDAC7 and hematological malignancies 

Acute lymphoblastic leukaemia (ALL) is the most frequent type of cancer in infants. 

Despite having achieved around 80-90% of remission from the total of ALL cases, it is 

still the main cause of leukaemia-associated death in children (Iacobucci and 

Mullighan, 2017). Most of the paediatric ALL cases are related to the cell lineage (B-

ALL) and a great part of them are caused by the de-regulation of critical TFs involved in 

the regulation of correct B lymphopoiesis such as PAX5, EBF1, IKAROS and E2A. In 

parallel, multiple lymphoma types such as Burkitt or Diffuse Large B-cell Lymphoma 

(DLBCL) also present alterations in TFs expression. The activation of these TFs can be 

additionally affected by chromosomal translocations (e.g. ETV6-RUNX1 fusion protein), 

mutations, rearrangements, or deletions. The de-regulation of their activators or 

repressors, such as the upregulation of miR-125b that represses IRF4 activity or the 

over-expression of ZNF423 that represses EBF, also contributes to the ALL onset. In 

fact, modulation of the TF activity can be affected by multiple mechanisms, but the 

previously mentioned situations result in a reduced or loss of function of the 

corresponding TFs, leading to a developmental arrest and malignant cellular 

transformation (Mullighan et al., 2007; So et al., 2014; Somasundaram et al., 2015; 

Kuiper et al., 2007). Additionally, translocations and aberrant overexpression of c-MYC 
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was observed in T-cell acute leukemia (T-ALL), B-ALL, and some types of B-cell 

lymphoma such as Burkitt lymphoma or DLBCL (La Starza et al., 2014; Zhang and 

Amos Burke, 2018).  

As mentioned above, HDACs deregulation has also been associated to the 

development of haematological malignancies, leading to the use of HDAC inhibitors as 

promising therapeutic agents in some blood cancers. In fact, some studies reported a 

correlation between HDAC7 and hematopoietic malignancies. For instance, by using a 

PiggyBac transposon mutagenesis screening in mice, HDAC7 was initially identified as 

a target gene in hematopoietic cancers (Rad et al., 2010).  In the same line, several 

HDACs including HDAC7 were associated to a reduced viability in some hematological 

malignancies such as CLL (Wang et al., 2011). However, HDAC7 has been recently 

catalogued as a potential tumor suppressor gene in DLBCL after performing an 

exhaustive genetic study in a thousand of patients, despite the genetic heterogeneity of 

this pathology (Reddy et al., 2017). Thus, deregulation of HDACs in lymphoid 

malignancies cannot only be associated to their overexpression but also to their loss of 

function or expression.  

Hence, the understanding of the regulatory networks that control proper B cell 

development is essential to study additional genetic alterations that can modulate these 

regulatory systems in each pathological condition.  
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OBJECTIVES  

 

The overall objectives of this PhD thesis are: 

1. To dissect the HDAC7-mediated molecular silencing mechanisms during early 

B cell development. 

a. Based on the generation of a conditional knockout moue model, we will 

dissect the contribution of HDAC7 in regulating proper B cell 

development, especially at the B cell progenitors stage, as well as the 

biological consequences of HDAC7 deficiency in the hematopoietic 

system. 

b. Based on the unique structure of this class IIa HDAC, we will search for 

the details of its mechanism of action over its target genes. 

 

2. To investigate the role of HDAC7 in DNA 5-hydroxymethylation status of B cells 

through repression of the demethylase enzyme Tet2 

a. To determine whether HDAC7 is recruited directly to regulatory regions 

of Tet2 gene. 

b. To study the consequences of HDAC7 deficiency on DNA 5-

hydroxymethylation in B cell progenitors. 

 

3. To investigate the potential contribution of HDAC7 in the regulation of 

microRNAs expression in B cell progenitors. 

 

4. To unveil the potential anti-oncogenic function of HDAC7 in B cell acute 

lymphocytic leukemia (B-ALL) and Burkitt Lymphoma 
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“In vivo conditional deletion of HDAC7 reveals its requirement to 

establish proper B lymphocyte identity and development” 
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IntroductIon
Within the adult hematopoietic system, generation of various 
mature blood cell types is the result of several cell lineage 
choices and differentiation steps. At each particular branching 
or differentiation point, the silencing of genes from alterna-
tive lineages is crucial for acquiring the correct identity of 
the newly generated cell. In bone marrow, lymphoid-primed 
multipotent progenitors commit to the lymphoid branch by 
generating common lymphoid progenitors, which, in turn, 
have the ability to give rise to early B and T lymphocyte 
progenitors (Kondo et al., 1997; Cobaleda and Busslinger, 
2008). Once generated, B cell progenitors (pro–B cells) un-
dergo a series of differentiation steps that result in the gen-
eration of B cell precursors (pre–B cells) and immature B 
lymphocytes (Parra, 2009; Barneda-Zahonero et al., 2012). 
The latter migrate to the spleen to complete their matura-
tion (Parra, 2009; Barneda-Zahonero et al., 2012). Intense 
research effort has revealed the identity and role of specific 
transcription factors responsible for the activation of B cell–

specific genes (Parra, 2009; Barneda-Zahonero et al., 2012). 
The transcription factors E2A, EBF, and FOXO1 are involved 
in the early specification of common lymphoid progenitors 
into pro–B cells, whereas PAX5 is required to maintain B cell 
identity during differentiation into mature B cells (Urbánek 
et al., 1994; Zhuang et al., 1994; Lin and Grosschedl, 1995; 
Bain et al., 1997; Delogu et al., 2006; Dengler et al., 2008). 
Recently, Schwickert et al. (2014) reported that IKA ROS is 
also required for early B cell development. In all cases, tran-
scription factors induce the expression of genes characteristic 
of B cells. Notably, the transcription factor PAX5 not only 
induces the expression of a B cell–specific genetic program, 
but also suppresses inappropriate genes of alternative lineages, 
thereby ensuring proper B cell differentiation (Delogu et al., 
2006; Pridans et al., 2008). Likewise, EBF and E2A are also 
involved in the repression of non–B cell genes (Ikawa et al., 
2004; Pongubala et al., 2008; Lukin et al., 2011; Nechanitzky 
et al., 2013). The transcription factor myocyte enhancer fac-
tor 2C (MEF2C) is involved in the commitment of cells to 

class IIa histone deacetylase (HdAc) subfamily members are tissue-specific gene repressors with crucial roles in development 
and differentiation processes. A prominent example is HdAc7, a class IIa HdAc that shows a lymphoid-specific expression 
pattern within the hematopoietic system. In this study, we explored its potential role in B cell development by generating a 
conditional knockout mouse model. our study demonstrates for the first time that HdAc7 deletion dramatically blocks early 
B cell development and gives rise to a severe lymphopenia in peripheral organs, while also leading to pro–B cell lineage pro-
miscuity. We find that HdAc7 represses myeloid and t lymphocyte genes in B cell progenitors through interaction with myo-
cyte enhancer factor 2c (MEFc2). In B cell progenitors, HdAc7 is recruited to promoters and enhancers of target genes, and 
its absence leads to increased enrichment of histone active marks. our results prove that HdAc7 is a bona fide transcriptional 
repressor essential for B cell development.
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HDAC7 is essential for B cell development | Azagra et al.2

the lymphoid lineage by activating lymphoid-specific genes 
and repressing myeloid genes (Stehling-Sun et al., 2009; 
Kong et al., 2016). How B cell transcription factors induce 
the silencing of genes that should not be expressed in B cells 
remains largely unknown.

The large superfamily of histone or protein deacetyl-
ases (HDACs) are crucial transcriptional repressors in many 
physiological and pathological processes. Among them, the 
class IIa HDAC subfamily, comprising HDAC4, HDAC5, 
HDAC7, and HDAC9, has specific features that differ from 
all other HDACs, such as tissue specificity and interaction 
with transcription factors (Parra and Verdin, 2010; Parra, 
2015). Recently, we found that HDAC7 is down-regulated 
during the in vitro reprogramming of pre–B cells into mac-
rophages, whereas exogenous expression of HDAC7 inter-
fered with the acquisition of essential macrophage-specific 
cell functions in this in vitro system (Barneda-Zahonero et 
al., 2013). However, a role for HDAC7 in B cell develop-
ment in vivo remains to be established. Of interest, Lin et al. 
(2010) identified Hdac7 as a target of E2A, EBF, and Foxo1 
in B lymphocyte progenitors, whereas Revilla-i-Domingo et 
al. (2012) showed that Hdac7 may be a PAX5-activated gene. 
Whyte et al. (2013) showed that genes involved in cell lineage 
identity contain superenhancer regions that recruit specific 
transcription factors leading to their expression. Strikingly, 
they identified Hdac7 as one of the lineage identity genes 
bearing a superenhancer region in pro–B cells (Whyte et al., 
2013). These recent studies suggest that HDAC7 may regu-
late B cell development.

Here, we demonstrate that HDAC7 is essential for 
proper B cell development. Specifically, HDAC7 deficiency 
in pro–B cells in mice causes a block in early B cell develop-
ment. This is accompanied by expression of genes from alter-
native lineages, such as myeloid cells and T lymphocytes. We 
propose that HDAC7-mediated repression occurs through 
MEF2C recruitment to crucial myeloid and T cell genes. 
These findings establish HDAC7 as a bona fide transcriptional 
repressor necessary for the acquisition of the correct gene cell 
identity during B cell generation.

rEsults And dIscussIon
To investigate the potential role of HDAC7 in adult B 
lymphopoiesis, we generated a conditional mouse model for 
HDAC7 deficiency in pro–B cells. To this end, we crossed 
Hdac7loxp/− mice with the deleter line mb1-Cre, mb1-Creki/+ 
mice (Hobeika et al., 2006). An initial analysis of bone mar-
row and spleen revealed a 30% and 45% reduction, respec-
tively, in the total number of cells in Hdac7loxp/−;mb1-Creki/+ 
mice (referred to as Hdac7fl/−) compared with their lit-
termate controls Hdac7+/−;mb1-Creki/+ (Hdac7+/− mice; 
Fig. 1 A). Accordingly, we observed markedly smaller spleens 
in HDAC7 conditional knockout mice than in their litter-
mate controls (Fig. 1 B). A detailed flow cytometry analysis 
of the various B cell subsets in the bone marrow showed that 
HDAC7 deficiency causes a block in B cell development at 

the pro–B to pre–B cell transition. In particular, we observed 
a significant decrease in the total number of B cells and an ac-
cumulation of pro–B cells in Hdac7fl/− compared with their 
littermate controls, Hdac7+/− (Fig. 1 C, and see Fig. S1, A–C 
for gating strategy). In contrast, the number of pre–B cells 
was significantly lower while immature and mature recircu-
lating B cells were hardly detectable in the bone marrow of 
HDAC7 mutant mice (Fig.  1  C). Our staining strategy to 
distinguish between pro–B (B220+IgM−CD43+) and pre–B 
(B220+IgM−CD43−) lymphocytes revealed the presence of 
cells expressing intermediate CD43 levels in bone marrow 
from HDAC7-deficient mice (see Fig. S1 for gating strategy). 
A similar CD43 expression pattern was observed when the 
CD19 marker was included in the analysis (Fig. S1). Further-
more, an alternative staining strategy including CD25 as a 
marker corroborated that the absence of HDAC7 results in 
a block in B cell development at the pro–B to pre–B cell 
transition (Fig. S1). These findings collectively indicate that 
HDAC7 is necessary for early B cell development.

Next, we assessed the impact of HDAC7 deficiency in 
peripheral organs. We found that HDAC7 knockout mice 
had many fewer B cells in the spleen and blood than did 
control mice (Fig. 1 D). To assess the effect of HDAC7 de-
ficiency at later B cell developmental stages, we next ana-
lyzed B cell maturation in the spleen of Hdac7fl/− mice and 
their littermate controls Hdac7+/−. In particular, the analysis 
of immature B cells, marginal zone B cells, follicular B cells, 
and transitional B cells revealed that the absolute numbers 
of all B cell subtypes analyzed were significantly lower in 
HDAC7-deficient mice (Fig. 1 D, and see Fig. S2 for gating 
strategy). Hematoxylin and eosin staining revealed that the 
spleens of control mice had a normal structure with well-de-
fined follicles represented by white pulp (hematoxylin stain-
ing in purple; Fig. 1 E) surrounded by red pulp (eosin staining 
in pink; Fig. 1 E). We observed that spleens from HDAC7-de-
ficient mice had a highly abnormal and unstructured mor-
phology, with smaller and poorly defined follicles (Fig. 1 E). 
We examined whether the proportions of macrophages and 
T cells were altered in the spleens of HDAC7 knockout mice. 
We found significantly higher proportions of Mac-1–positive 
cells in the spleens of HDAC7 mutant mice (Fig. 1 F). In ad-
dition, flow cytometry analysis revealed a higher percentage 
of T lymphocytes in HDAC7 knockout mice (Fig. 1 G). The 
data presented so far demonstrate that HDAC7 is essential for 
proper B lymphocyte development and its absence is associ-
ated with severe lymphopenia in the periphery and a higher 
density of macrophages and T cells in the spleen.

To get an insight into the mechanisms underlying the 
B lymphocyte developmental block observed, we first de-
termined whether the absence of HDAC7 affected cell pro-
liferation. Cell cycle analysis revealed that proliferation was 
not sensibly altered in either pro–B or pre–B cell subsets in 
the absence of HDAC7 (Fig. 2 A). Likewise, we did not ob-
serve differences in the expression of Il7r in pro–B or pre–B 
cells from wild-type and HDAC7-deficient mice, thus rein-
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forcing the finding that the proliferation status is intact in 
HDAC7-deficient B cells (Fig. 2 B). Therefore, we wondered 
whether the developmental block at the pro–B to pre–B cell 
transition in mice lacking HDAC7 might be associated with 
cell death. HDAC7-deficient pre–B cells showed a significant 
increase of 7-aminoactinomycin D (7AAD)+ cells compared 
with wild-type pre–B cells (Fig.  2  C). We also observed a 
trend to an increased cell death rate in HDAC7-deficient 
pro–B cells. Next, to test whether HDAC7 is required for 
V(D)J recombination in pro–B and pre–B cells, we exam-
ined the expression of intracellular IgHµ protein. We found 
that HDAC7-deficient pro–B and pre–B cells express IgHµ 
(although to a significantly lesser extent than control cells; 
Fig. 2 D), indicating that HDAC7 is not absolutely required 
for V(D)J recombination. Western blot experiments revealed 
that the Cre-Loxp system used in our study was highly effi-
cient because HDAC7 was completely absent in B cells from 
bone marrow of knockout mice (Fig. 3 G). Therefore, V(D)J 
rearrangements in pro–B and pre–B cells from our knockout 
mouse model are not likely caused by the presence of residual 
HDAC7. Together, these data indicate that pro–B and pre–B 

cells lacking HDAC7 undergo V(D)J recombination but are 
more susceptible to apoptosis, which may explain the severely 
reduced numbers of pre–B and subsequent B cell subsets in the 
bone marrow and the periphery of HDAC7-deficient mice.

Because HDAC7 is a bona fide transcriptional repres-
sor, we wondered whether HDAC7 is involved in silencing 
lineage-inappropriate genes, thereby ensuring the correct 
acquisition of B cell identity. To address this possibility, we 
performed global gene expression profiling in pro–B cells 
purified from Hdac7fl/− mice and their Hdac7+/− littermate 
control mice. Microarray analysis showed that 1,750 and 
1,424 genes were up-regulated and down-regulated, respec-
tively, in HDAC7-deficient pro–B cells (Dataset S1). To gain 
functional insights into the genes that were up-regulated in 
the absence of HDAC7, we performed gene set enrichment 
analysis based on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways and the gene ontology (GO) 
categories corresponding to Biological Processes (Fig. 3 A). 
The KEGG pathway analysis showed that the up-regulated 
genes were enriched in MAPK signaling, T cell receptor 
signaling, lysozyme, ubiquitin-mediated proteolysis, endo-

Figure 1. HdAc7 is required for early B cell development. (A) Absolute numbers of total bone marrow cells (Hdac7fl/− [n = 6] and Hdac7+/− [n = 8]) 
and total spleen cells (Hdac7+/− [n = 12] and Hdac7fl/− [n = 9]). (B) Representative photograph of the spleen from Hdac7+/− and Hdac7fl/− mice. (C) Abso-
lute numbers of bone marrow B220+ B cells (Hdac7fl/− [n = 5] and Hdac7+/− [n = 8]), B220+CD43+IgM− pro–B cells (Hdac7fl/− [n = 5] and Hdac7+/− [n = 8]), 
B220+CD43−IgM− pre–B cells (Hdac7fl/− [n = 6] and Hdac7+/− [n = 6]), B220+IgM+ immature B cells (Hdac7fl/− [n = 7] and Hdac7+/− [n = 9]), and B220+IgM+ 

IgD+ mature recirculating B cells (Hdac7fl/− [n = 7] and Hdac7+/− [n = 9]). (D) Graph on the left shows the absolute numbers of B220+ B cells from spleen 
of Hdac7+/− (n = 12) and Hdac7fl/− (n = 9) mice. Graph in the middle shows the percentage of B220+ cells in the blood from Hdac7+/− (n = 4) and Hdac7fl/−  
(n = 4) mice. Graph on the right shows absolute numbers of spleen B cell subsets from wild-type and HDAC7-deficient mice: B220+IgM+IgD+ mature B cells 
(Hdac7+/− [n = 7] and Hdac7fl/− [n = 5]), CD21brightCD23+ marginal zone (MZ) B cells (Hdac7+/− [n = 12] and Hdac7fl/− [n = 9]), and CD21+CD23brightCD93− fol-
licular (FO; Hdac7+/− [n = 9] and Hdac7fl/− [n = 7]) and CD21+CD23brightCD93+ transitional (T; Hdac7+/− [n = 8] and Hdac7fl/− [n = 7]) B cells. (E) Hematoxylin 
and eosin staining of the spleen from Hdac7+/− and Hdac7fl/− mice. (F) Percentages of granulocytes and macrophages from the spleen of Hdac7+/− (n = 9) and 
Hdac7fl/− (n = 7) mice. Mean values are shown as horizontal bars. ns, not significant. (G) Representative FACS analyses from three independent experiments 
are shown on T lymphocytes from the spleens of Hdac7+/− and Hdac7fl/− mice. FSC, forward scatter. Data are represented as the mean ± SEM. Statistical 
significances were identified using the unpaired two-tailed Student’s t test. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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cytosis, chemokine signaling, and Fc-γ–mediated phagocy-
tosis pathways (Fig.  3  A). The Biological Processes analysis 
revealed that the up-regulated genes belong to the catego-
ries representing transcription, chromatin organization and 
modification, hemopoiesis, leukocyte activation, intracellular 
signaling cascade, immune system development, endocytosis, 
T cell activation and differentiation, and myeloid activation 
processes (Fig. 3 A). Strikingly, we observed that the absence 
of HDAC7 from pro–B cells was associated with the up-reg-
ulation of key genes for myeloid cell functions, such as Itgam, 
Itgax, Ifi204, Ccl3, Ccl4, and Ccr2, among others (Table S1). 
Indeed, HDAC7 deficiency prompted the expression of the 
key macrophage marker Mac-1 (encoded by Itgam) in gated 
bone marrow lymphocytes or purified CD19+ B cells (Fig. 3, 
B and C). In addition, loss of HDAC7 from pro–B cells led 
to the up-regulation of many transcription factors, several of 
which play a role in myeloid cell differentiation (Fosb, Egr1, 
Crebzf, Cebpb, and Cebpd; Table S1). Strikingly, analysis of 
data from the Immunological Genome Project to compare 
the expression pattern between HDAC7 and selected myeloid 

genes in purified B cells and macrophage populations revealed 
an inverse correlation with gene expression (Fig.  3 D). We 
also found that HDAC7 deficiency led to the up-regulation 
of T cell genes, such as Cd28, Cd69, Il17, and Lck, and the 
T cell transcription factors Runx1, Runx3, and Nfat5 (Table 
S1). Changes in the expression of selected genes (Itgam, Ccl3, 
Cd28, and Cd69) were validated by quantitative RT-PCR 
(Fig. 3 E). Interestingly, analysis of the down-regulated genes 
in the absence of HDAC7 did not reveal any enrichment in 
either gene ontology or KEGG pathways related to biological 
aspects of B lymphocytes (not depicted). Of note, our mi-
croarray experiments did not reveal any changes either in the 
expression of key B cell transcription factors such as PAX5, 
E2A, and EBF or in other important B lymphocyte genes 
(CD19 and RAG2). The expression of Cd19, Pax5, and Rag2 
was determined by quantitative RT-PCR (Fig. 3 F). PAX5 
and EBF protein levels were determined by Western blot as-
says (Fig. 3 G). The fact that HDAC7 deficiency imposes a 
strong block on B cell development, even in the presence of B 
cell master regulators, indicates that it is a potent regulator of 

Figure 2. HdAc7 deficiency results in 
increased cell death in pro–B and pre–B 
cells. (A) Representative Hoechst staining 
of pro–B and pre–B cells from Hdac7+/− and 
Hdac7fl/− mice form three independent ex-
periments. Bars represent the percentage of 
cycling cells. (B) RT–quantitative PCR exper-
iments for gene expression of Il7r in pro–B 
cells from Hdac7+/− and Hdac7fl/− mice. (C) In-
creased cell death of pro–B and pre–B cells in 
the absence of HDAC7. Bar graph depicts the 
percentage of apoptotic-dead (7AAD+) cells. 
(D) Representative histogram staining show-
ing the expression of intracellular IgHµ (Igm
IC) in pro–B and pre–B cells from Hdac7+/− and 
Hdac7fl/− mice. Bar graph depicts the cell count 
expressing IgHµ. All data are represented as
the mean ± SEM of three independent experi-
ments. Statistical significances were identified
using the unpaired two-tailed Student’s t test.
*, P < 0.05; ***, P < 0.001.
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B cell lymphopoiesis. Collectively, these findings demonstrate 
that HDAC7 acts as a transcriptional repressor of lineage-in-
appropriate genes in B cell progenitors.

Because we previously showed that HDAC7 specifically 
interacts with the transcription factor MEF2C but not with 
other B cell–specific transcription factors in B cell precur-
sors (Barneda-Zahonero et al., 2013), we examined whether 
HDAC7 is recruited to MEF2 binding sites located at the 
promoter of nonlymphoid genes in pro–B cells, leading to 
their transcriptional silencing, by performing chromatin 

immunoprecipitation (ChIP) experiments. First, using the 
TFconsite bioinformatic tool, we found that promoters of 
Itgam, Cd69, Cd28, and Ccl3 contain putative MEF2 bind-
ing sites. Chromatin prepared from bone marrow wild-type 
B cells was subjected to ChIP assays with an antibody spe-
cific to HDAC7. Quantitative PCR analysis of the immu-
noprecipitated material with specific primers for the Itgam, 
Ccl3, Cd28, and Cd69 promoters indicated that HDAC7 
was enriched at their putative binding sites in these loci in 
pro–B cells (Fig. 4 A). Interestingly, we did not observe an 

Figure 3. Pro–B cells from HdAc7-deficient mice express genes from alternative lineages. (A) KEGG pathway enrichment and Gene Ontology (GO) 
analysis of up-regulated genes in HDAC7-deficient pro–B cells. (B) Representative FACS analyses from three independent experiments showing Mac-1 
expression in gated bone marrow lymphocytes from Hdac7+/− and Hdac7fl/− mice (top). Histogram showing Mac-1 expression in gated bone marrow 
lymphocytes from Hdac7+/− (red) and Hdac7fl/− (blue) mice (bottom). FSC, forward scatter. (C) Representative FACS analyses from three independent 
experiments showing Mac-1 expression in purified CD19+ bone marrow lymphocytes from Hdac7+/− and Hdac7fl/− mice. (D) Heatmap showing the expression 
pattern of HDAC7 and selected myeloid genes in different hematopoietic cell subsets. Data were obtained from the Immunological Genome Project. A 
description of the different cell subsets analyzed can be found at www .Immgen .org. (E) RT–quantitative PCR experiments for gene expression changes for 
selected up-regulated genes in the absence of HDAC7. *, P < 0.05; **, P < 0.01. (F) RT–quantitative PCR experiments for gene expression levels of B cell 
genes. (E and F) Data are represented as the mean ± SEM of three independent experiments. (G) Western blot analysis for the expression of HDAC7 and B 
cell transcription factors in wild-type and HDAC7-deficient B lymphocytes.
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enrichment of HDAC7 at the Pax5 promoter (Fig. 4 A). We 
also found that MEF2C was enriched at the promoters of 
HDAC7 target genes (Fig.  4  A). To definitively prove that 
HDAC7 represses its target genes through interaction with 
MEF2C, we performed a rescue or gain of function exper-
imental approach. We transduced purified B cells from the 
bone marrow and spleens of wild-type and HDAC7-deficient 
mice with retroviral vectors for either normal HDAC7 or a 
mutant form carrying a deletion of the entire 17–amino acid 
stretch that mediates the interaction with MEF2 transcription 
factors (MIG-HDAC7-ΔMEF; Dequiedt et al., 2003), fused
to GFP, and GFP-positive cells were sorted. We tested the 
HDAC7 mutant for its ability to repress Itgam and Cd69 in 
bone marrow B cells lacking HDAC7. As experimental con-
trols, we transduced wild-type and HDAC7-deficient cells 
with empty retroviral vector (MIG). Expression of wild-type 
HDAC7 in knockout cells resulted in a significant decrease in 
the expression of Itgam and Cd69 mRNA levels (Fig. 4 B), 
whereas expression of the HDAC7 mutant defective for 
MEF2C binding had no significant effect. We also observed 
that the expression of wild-type, but not mutant, HDAC7 
reduced the expression of Mac-1 protein in purified B cells in 
the spleens of knockout mice (Fig. 4 C). These experiments 
demonstrate that the HDAC7–MEF2C interaction is neces-
sary for HDAC7 to repress its target genes.

Next, we analyzed the enrichment of active and re-
pressive histone marks at HDAC7 target genes in the ab-
sence or presence of HDAC7. Interestingly, we observed that 
H3Ac(K9/K14) and H4K16Ac were already present at the 
promoters of HDAC7 target genes in wild-type B cells. The 
absence of HDAC7 from B cells was associated with a mod-
erate but significant increase of both histone marks and a de-
crease of the repressive mark H3K27me3 in the promoters 
of its target genes (Fig. 4 D). To test whether, in addition to 
target promoters, H3Ac(K9/14) are also enriched at other 
genomic regions, we performed ChIP-seq assays using puri-
fied pro–B cells from wild-type and HDAC7-deficient mice. 
Both histone marks were also found at other genomic loca-
tions such as introns, exons, and intergenic regions (Fig. 5 A 
and Dataset S2). Interestingly, many of the genes up-regulated 
in HDAC7-deficient pro–B cells showed an enrichment in 
H3Ac(K9/K14) in wild-type and HDAC7-deficient pro–B 
cells (Dataset S3). At the global level, only slight changes in 
enrichment of H3Ac(K9/K14) were detectable in the ab-
sence of HDAC7 (Fig. 5 B). However, individual analysis by 
ChIP coupled with quantitative PCR confirmed the signifi-
cance of such changes observed for HDAC7-deficient pro–B 
cells (Fig.  4  D). Karmodiya et al. (2012) recently reported 
that H3K9Ac and H3K14Ac marks not only associate with 
promoters of actively transcribed genes, but also with devel-
opmentally regulated bivalent promoters, as well as with en-
hancers in mouse embryonic stem cells. Similarly, pro–B cells 
in the bone marrow are largely undifferentiated lymphocyte 
progenitors, and the presence of histone active marks may in-
dicate that genes from alternative lineages are poised, resulting 

in a certain degree of cell plasticity toward other hematopoi-
etic cell types. In fact, genetic ablation of key B cell factors 
such as PAX5, E2A, and EBF1 in mice results in the inappro-
priate expression of genes from other cell types within the 
hematopoietic system. Accordingly, here we demonstrate that 
HDAC7 deficiency from pro–B cells leads to expression of 
myeloid and T cell genes. Recently, van Oevelen et al. (2015) 
determined the presence of enhancers at macrophage genes in 
pre–B cells. The authors showed that during trans-differentia-
tion of pre–B cells into macrophages by exogenous expression 
of the myeloid transcription factor C/EBP-α, this transcrip-
tion factor binds to two types of myeloid enhancers in B cells: 
preexisting enhancers that are bound by PU.1, providing a 
platform for incoming C/EBP-α; and de novo enhancers
that are targeted by C/EBP-α (van Oevelen et al., 2015). This
prompted us to analyze whether these macrophage gene en-
hancers were also enriched in H3K9/K14Ac in our ChIP-
seq experiment. Interestingly, preexisting enhancers that are 
bound by PU.1 were indeed occupied by both histone marks 
in wild-type and HDAC7-deficient pro–B cells (Fig. 5 B and 
Dataset S4). This finding further supports the notion that lin-
eage-inappropriate genes may be epigenetically poised in B 
cell progenitors. To test the possibility that HDAC7 could be 
also recruited at enhancers of its target genes, we performed 
ChIP experiments. Strikingly, we found that HDAC7 is also 
bound to enhancers of Itgam and Cd69 (Fig. 5 C), in addi-
tion to their promoters. The absence of HDAC7 from pro–B 
cells was associated with a significant enrichment of the acti-
vating histone marks, H3Ac(K9/K14) and H4K16Ac, in the 
enhancers of its target genes. Interestingly, enrichment of the 
enhancer mark H3K27Ac was also increased in the same en-
hancer loci in HDAC7-deficient pro–B cells (Fig. 5 D). Col-
lectively, our results demonstrate that HDAC7 is recruited to 
the promoters and enhancers of lineage-inappropriate genes 
in pro–B cells, resulting in their transcriptional silencing. The 
finding that HDAC7 is also recruited at enhancers of its target 
genes represents a novel mechanism by which this HDAC 
may control gene expression in B lymphocytes.

Our results represent the first evidence that HDAC7 acts 
in vivo as a master regulator of B cell identity and develop-
ment. We demonstrate that HDAC7 is an essential transcrip-
tional repressor of genes from alternative lineages that ensures 
proper B cell development. The fact that B cell transcription 
factors, such as E2A and PAX5, may induce the expression 
of HDAC7 in pro–B cells indicates the potential existence of 
an alternative mechanism involved in gene repression. B cell 
transcription factors not only recruit corepressors to silence 
their lineage-inappropriate target genes, but also may act 
through an indirect mechanism that induces the expression 
of a transcriptional repressor, such as HDAC7, which, in turn, 
through the interaction with MEF2C, directly represses genes 
from alternative lineages. In conclusion, we have identified 
HDAC7 as a lymphoid-specific and bona fide transcriptional 
repressor that is essential for proper B lymphocyte develop-
ment and for ensuring the acquisition of the correct gene 
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Figure 4. HdAc7 and MEF2c are recruited to the promoters of lineage-inappropriate genes in bone marrow B lymphocytes. (A) ChIP experi-
ments showing the enrichment of HDAC7 and MEF2C to putative MEF2 binding sites on the Itgam, Ccl3, Cd28, Cd69, and Pax5 gene loci in bone marrow 
CD19+ B cells. Results are presented as the relative enrichment over input and are based on the results of three independent experiments. (B and C) 
Purified HDAC7-deficient B cells from bone marrow (B) and spleen (C) were infected with MSCV-GFP, MSCV-GFP-HDAC7, and MSCV-GFP-HDAC7(ΔMEF)
viruses. As an experimental control, wild-type B cells were transduced with MSCV-GFP. (B) GFP+ cells were sorted and mRNA extracted. RT–quantitative 
PCR experiments for Itgam (left) and Cd69 (right) gene expression changes in HDAC7-deficient B cells. Data are given as mean ± SEM of values obtained 
in three independent experiments. (C) Cells were stained with a Mac-1 antibody, and the GFP-positive fractions were gated and the results plotted. (D) 
ChIP experiments showing the enrichment of H3Ac(K9/K14), H3K27me3, and H4K16Ac to the Itgam, Ccl3, Cd28, Cd69, and Pax5 gene loci in bone mar-
row CD19+ B cells from Hdac7+/− and Hdac7fl/− mice. Results are presented as the relative enrichment over input and are based on the results of three 
independent experiments. Data are given as mean ± SEM of values obtained in three independent experiments. Statistical significances were identified 
using the unpaired two-tailed Student’s t test. *, P < 0.05; **, P < 0.01.
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Figure 5. HdAc7 is recruited at enhancers of its target genes, and its deficiency results in increased enrichment of histone active marks. 
(A) Genomic distribution of H3Ac(K9/K14) enrichment in Hdac7+/− and Hdac7fl/− pro–B cells. (B) Examples for H3Ac(K9/K14) enrichment at enhancers
and promoters of selected genes. (C) ChIP experiments showing the enrichment of HDAC7 to Itgam and Cd69 promoters and enhancers in pro–B cells
from Hdac7+/− and Hdac7fl/− mice. (D) H3Ac(K9/K14), H4K16Ac, and H3K27Ac enrichment to the Itgam, Ccl3, and Cd69 enhancers in pro–B cells from
Hdac7+/− and Hdac7fl/− mice. Results are presented as the relative enrichment over input and are based on the results of three independent experiments. 
(C and D) Data are given as mean ± SEM of values obtained in three (C) and four (D) independent experiments. Statistical significances were identified
using the unpaired two-tailed Student’s t test. *, P < 0.05.
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identity of B cells. Our findings represent a significant ad-
vance in our understanding of the transcriptional complexity 
underlying B cell generation.

MAtErIAls And MEtHods
Mouse and animal care
Hdac7f l/− mice were previously described (Chang et al., 2006) 
and were provided by E. Olson (University of Texas South-
western Medical Center, Dallas, TX). mb1-Creki/+ mice were 
provided by M. Reth (Max Planck Institute of Immunology 
and Epigenetics, Freiburg, Germany). Experiments were per-
formed with mice that were 4–6 wk of age. Animal housing and 
handling, and all procedures involving mice, were approved by 
the Bellvitge Biomedical Research Institute ethics committee, 
in accordance with Spanish national guidelines and regulations.

Flow cytometry and cell-sorting experiments
Cells were extracted from bone marrow and spleen. Isolated 
cells were incubated with Fc receptor–blocking antibody 
(BD) for 10 min at 4°C to reduce nonspecific staining. Cells 
were then stained with anti-B220 (PerCP-Cy5.5), anti-CD43 
(APC), anti-IgM (FITC), anti-CD25 (APC), anti-IgD (PE), 
anti-Gr1 (PE), anti-CD11b (APC), anti-CD21 (FITC), an-
ti-CD23 (PE), anti-CD93 (APC), and anti-CD3 (FITC; BD) 
for 30 min at 4°C in the dark. For intracellular IgHµ staining, 
cells were first stained with surface markers, permeabilized and 
fixed with buffer Perm/Wash (BD), and stained with anti-IgM 
mu-biotin antibody (Jackson ImmunoResearch Laboratories, 
Inc.) followed by incubation with streptavidin-PE. Cells were 
processed in a Gallios flow cytometer (Beckman Coulter), and 
the data were analyzed using FlowJo software (Tree Star). For 
cell-sorting experiments, bone marrow cells were incubated 
with Fc receptor–binding antibody and then stained with 
anti-B220 (PerCP-Cy5.5), anti-CD43 (APC), and anti-IgM 
(FITC; BD), under the same conditions. B220+CD43+IgM− 
cells were isolated on a MoFlo sorter (Beckman Coulter).

retroviral supernatant generation and cellular transduction
For retrovirus generation, the MSCV-GFP, MSCV-GFP-
HDAC7, and MSCV-GFP-HDAC7(ΔMEF) plasmids were
transfected into the packaged cell line Platinum-E, and super-
natants were collected at 48–72 h after transfection. Purified 
B cells were spin infected, and 48 h later, GFP+ cells were 
either sorted or analyzed by flow cytometry.

spleen section histology
Spleens from Hdac7f l/− mice and Hdac7+/− control mice were 
fixed in 4% formaldehyde, embedded in paraffin, sectioned at 
4 µm, and stained with hematoxylin and eosin. Samples were 
imaged under a Scope.A1 microscope (ZEI SS).

Western blot
Western blot analysis was performed according to standard 
procedures. Western blots were developed with the Enhanced 
Chemiluminescence detection kit (GE Healthcare).

Proliferation and cell cycle assays
Cell proliferation and cell death were assessed by Hoechst 
and 7AAD staining, respectively. Cells were analyzed by flow 
cytometry using a Gallios flow cytometer.

Microarray experiments
Total RNA from sorted pro–B cells of Hdac7+/− and 
Hdac7f l/− mice was extracted by TRIzol and then puri-
fied. PCR-amplified RNAs were hybridized against mouse 
array chips (Mouse Genome 430 p.m. strip; Affymetrix) at 
the Institute for Research in Biomedicine Genomics Facility 
(Barcelona, Spain). Microarray analysis (GEO accession no. 
GSE66163) was performed as previously described (Barne-
da-Zahonero et al., 2013).

rt–quantitative Pcr assays
Pro–B cells were purified by cell sorting. RNA was extracted 
by TRIzol extraction (QIA GEN), and cDNA was synthe-
sized using the High Capacity cDNA Reverse Transcription 
kit (Applied Biosystems). RT–quantitative PCR was per-
formed in triplicate using SYBR Green I Master (Roche). 
PCR reactions were run and analyzed using the LightCycler 
480 Detection System (Roche). 

chIP assays
For ChIP assays, purified CD19+ B or pro–B cells from the 
bone marrow of Hdac7+/− and Hdac7f l/− mice were cross-
linked with 1% formaldehyde and subjected to immunopre-
cipitation after sonication. ChIP experiments were performed 
using the LowCell# ChIP kit (Diagenode) according to the 
manufacturer’s instructions. The following antibodies were 
used: anti-HDAC7 (Abcam), anti-MEF2C (Cell Signaling 
Technology), anti-H3Ac(K9/K14) (EMD Millipore), an-
ti-H4K16Ac (Active Motif), anti-H3K27me3 (EMD Milli-
pore), and anti-H3K27Ac (Abcam). Analyses were performed 
by real-time quantitative PCR. Data are represented as the 
ratio between the bound fraction of the HDAC7, MEF2C, and 
histone modification antibody relative to the input control.

chIP-seq experiments
Sorted pro–B cells from the bone marrow of wild-type and 
Hdac7-deficient mice were cross-linked with 1% formal-
dehyde and sonicated using an S220 Focused ultrasonicator 
(Covaris). An anti-H3Ac(K9/K14) antibody (EMD Milli-
pore) was used to perform ChIP from 100,000 pro–B cells 
using the True MicroChIP kit (Diagenode) according to the 
manufacturer’s instructions. ChIP library construction and se-
quencing were performed according to standard procedures 
at the Centre for Genomic Regulation Genomics Core Fa-
cility (Barcelona, Spain). The quality of raw reads was checked 
using FastQC, and adapters were trimmed with a Skewer 
trimming tool (Bioinformatics) before mapping. Trimmed 
reads were mapped against the mouse genome (Mus muscu-
lus, genome version mm9) with Burrows-Wheeler Aligner–
MEM, and duplicates were removed with the MarkDuplicates 
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tool in the Picard software. Data analysis, involving peak 
calling and annotation, was performed by qGenomics Lab-
oratories using the Hypergeometric Optimization of Motif 
EnRichment v.4.8 suite. Variable-width peaks were called in 
the immunoprecipitated sample, using the input sample as 
a control, with the findPeaks function in the histone mode 
and a false discovery rate set to 0.001. Peaks were annotated 
using the annotatePeaks (Integrative Genomics) tool (SRA 
accession no. SRP076788).

statistics
Statistical significance was determined by the two-tailed un-
paired Student’s t test.

online supplemental material
Figs. S1 and S2 show the gating strategy used in the phe-
notypic characterization of wild-type and HDAC7-deficient 
mice. Table S1 shows a selection of up-regulated genes in 
HDAC7-deficient pro–B cells. Dataset S1 shows the list of 
genes up-regulated and down-regulated in HDAC7-defi-
cient pro–B cells. Datasets S2, S3, and S4 show the ChIP-
seq analysis of H3Ac(K9/K14) enrichment in wild-type and 
HDAC7-deficient pro–B cells (genomic distribution, anno-
tated peaks, and enrichment at macrophage gene enhancers).
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Figure S1. Cell population and gating strategy of B cell subsets from bone marrow of wild-type and HDAC7-deficient mice. (A) Representative 
FACS analyses are shown for B220+ cells. (B) Gating strategy to distinguish pro–B (B220+IgM−CD43+) and pre–B (B220+IgM−CD43−) cells. (C) Gating strategy 
to distinguish pro–B (B220+IgM−CD19+CD43+) and pre–B (B220+IgM−CD19+CD43−) cells. FSC, forward scatter; SSC, side scatter. (D and E) Representative 
FACS analyses are shown for B220+IgM+ immature B cells (D) and B220+IgM+IgD+ mature recirculating B cells (E). (F) Gating strategy to distinguish pro–B 
(B220+IgM−CD19+CD25−) and pre–B (B220+IgM−CD19+CD25+) cells.
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Figure S2. B cell subsets from the spleen of wild-type and HDAC7-deficient mice. Representative FACS analyses are shown for B220+ cells (A), 
B220+IgM+IgD+ mature B cells (B), CD21brightCD23+ marginal zone (MZ) B cells (C), and CD21+CD23brightCD93− follicular (FO) and CD21+CD23brightCD93+ 
transitional (T) B cells (D).
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Table S1. Selection of up-regulated genes in HDAC7-deficient pro–B cells

Transcription factors Gene Log2 fold change

AP-1 family FosB 4.6

Fos 3.2

Jun 2.7

JunB 1.8

Jund 1.0

C/EBP family Cebpb 0.7

Cebpz 0.6

Cebpd 0.7

Runx family Runx1 0.5

Runx2 1.2

Runx3 0.7

Notch family Notch2 0.7

Notch3 0.7

Klf family Klf2 1.6

Klf4 2.0

Klf6 2.18

Klf7 0.84

Zeb family Zeb1 1.7

Zeb2 1.3

Others Foxp1 1.4

Egr1 3.5

Nfat5 0.6

Mef2a 0.7

Crebzf 1.0

Stat3 1.6

Ikzf2 0.5

Myeloid-related genes
Ccl3 1.2

Ccl4 1.2

Ccr2 0.63

Ccr6 0.52

Ccr9 1.2

Ccrl1 0.52

Ccrl2 0.6

Cd33 0.92

Itgam 1.3

Itgax 0.7

Fcgr4 0.8

Csf2ra 1.4

Csf3r 0.8

Cr1l 0.7

T cell–related genes
Cd28 0.77

Nfat5 0.85

Lck 0.8

Sla2 0.84

Chromatin-associated factors
Brd1 0.65

Brd8 1.0

Cbx4 0.6

Chd2 1.0

Chd6 0.7

Chd8 1.0

Ezh1 0.6

Kdm2a 1.1

Kdm5a 0.6

Kdm5c 1.42

Kdm6a 1.66

Kdm6b 1.8

Mll1 0.51

Mll2 1.0

Mll3 0.6

Mll5 0.72

Mllt10 0.6

Mllt3 0.55

Setd2 0.74

Setd3 1.0

Setd6 0.6

Setd8 1.0

Smarca2 0.71

Smarce1 1.22

Suv39h2 0.56

Suv420h1 0.8

Transcription factors Gene Log2 fold change

Tet2 1.0

Jhdm1d 1.0

Jmjd1c 1.52

Jmjd6 0.8

Hdac9 0.82

Mbd1 0.92

Mbd6 0.82

Hdac9 0.82

Inflammatory response genes
Il10ra 0.75

Il12rb2 0.85

Il17rb 0.56

Il1f9 0.76

Il1r2 1.1

Il1rn 0.55

Ifi203 0.55

Ifi204 1.13

Ifng 1.6

Tnfaip2 1.0

Tnfaip3 1.4

Intracellular signal cascade
MAPK pathway Map3k2 0.85

Map3k8 1.34

Map4k4 0.95

Map4k5 1.0

Mapk14 0.6

Mapk1ip1 0.72

Mapk1ip1l 1.6

Mapk6 1.6

Mapk8ip3 0.80

NF-κB family Nfkbia 0.92

Nfkbiz 2.3

Nfrkb 0.66

Ikbkb 0.72

Ikbkg 0.7

PKC family Prkca 0.7

Prkcb 0.7

Prkcc 0.9

Prkcd 0.8

Prkd3 0.6

Protein ubiquitination
Cblb 1.2

Birc3 1.2

Birc6 1.8

Ube2j2 1.3

Ube2b 1.4

Ubr2 0.6

Ube2i 0.8

Mdm2 1.4

Malt1 1.1

Cbl 0.8

Cnot1 0.93

Cnot2 0.8

Cnot4 1.0

Cnot7 0.83

Cell cycle–related genes
Bcl2 1.1

E2f5 1.0

Gadd45a 1.39

Gadd45b 0.51

Gadd45g 0.7

Pten 1.0

Trp53 1.1

Cdc40 0.5

Cdc42 1.23

Cdk13 0.7

Cdk16 0.73

Ccnc 0.62

Ccnd1 0.9

Ccni 0.7

Ccnl2 0.61

Ccnt2 0.74
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Dataset S1 is an Excel file showing the list of genes up-regulated and down-regulated in HDAC7-deficient pro–B cells.

Dataset S2 is an Excel file showing the genomic distribution of H3Ac(K9/K14) in wild-type and HDAC7-deficient pro–B cells.

Dataset S3 is an Excel file showing annotated significant peaks for H3Ac(K9/K14) enrichment in wild-type and 
HDAC7-deficient pro–B cells.

Dataset S4 is an Excel file showing significant peaks for H3Ac(K9/K14) enrichment at enhancers of macrophage genes in wild-
type and HDAC7-deficient pro–B cells.
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Class IIa histone deacetylases (HDAC4, 5, 7 and 9) are transcriptional repressors that play crucial roles 

in differentiation and developmental processes. In the hematopoietic system, HDAC7 is expressed in B 

and T lymphocytes as well as in NK cells.  In B cells, HDAC7 is involved in the repression of genes 

from alternative cell types such as macrophages and T cells 
1–6

. Here we found that HDAC7 is

necessary to maintain physiologically low levels of TET2 in B cell progenitors. TET2 is a 

methylcytosine dioxygenase that converts 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine 

(5hmC), resulting in DNA demethylation and directing gene activation 
7
. Our results indicate that

HDAC7 induces gene silencing not only by direct recruitment to target genes, but also by regulating 

the expression of additional epigenetic players. Our data reveal an unexpected role for a class IIa 

HDAC, HDAC7, in controlling gene expression through DNA methylation-related mechanisms. 

B lymphocyte generation is a complex process that requires tight regulation. Early B cell development 

takes place in the bone marrow where common lymphoid progenitors (CLPs) commit to the B cell 

lineage through the generation of B cell progenitors (pro-B cells). These pro-B cells further 

differentiate into B cell precursors (pre-B cells), which in turn give rise to immature B cells that 

migrate to secondary lymphoid organs such as the spleen and the lymph nodes, where they terminally 

differentiate into plasma cells and memory B cells. Every cellular transition and differentiation step is 

characterized by the activation of a new lineage-specific genetic program and the repression of the 

previous one 
8
. This dynamic process, in which cells progressively change their genetic “identity”, is

guided by networks of transcription factors (TFs) which, in addition to being responsible for the 

activation of B cell-specific genes, are also involved in the repression of alternative lineage genes 
8,9

.

There is also a close relationship between transcriptional regulators and dynamic changes in DNA 

methylation during B cell development 
9,10

. Early differentiation stages generally experience enhancer

demethylation, which is associated with up-regulation of important B lymphocyte TFs, and affects 

multiple genes involved in B cell biology 
9
. In mammals, DNA demethylation depends on Ten-Eleven
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Translocation (TET) enzyme action. This protein family comprises TET1, TET2 and TET3, which 

convert 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), leading to DNA 

demethylation and consequent gene expression 
11.

TET2 appears to play crucial roles during hematopoiesis 
12–14

. Although broadly expressed

within the hematopoietic system, myeloid cells express higher levels of TET2 compared with 

lymphoid cell populations 
15,16

. Accordingly, TET2 has been shown to be a critical enzyme for correct

myelopoiesis 
15,16

. However, despite lower levels being present than in myeloid cell types, TET2, with

the necessary cooperation with TET3, has also been reported to play a role in B cell development 
17–19

.

Examination of microarray data from the Immunological Genome Project Database (Immgen) 

(http://www.immgen.org/) confirmed that Tet2 is expressed at much higher levels in myeloid cells than 

in lymphocyte populations (Fig. 1a). In addition, analysis of RNA-seq data from Immgen confirmed 

that Tet2 is more strongly expressed in macrophages than in CD19
+
 B cells (Supplementary Fig. 1a).

As expected, Pax5 and Itgam are specifically expressed in B lymphocytes and macrophages, 

respectively (Supplementary Fig. 1a), which suggests that different physiological levels of TET2 

protein may have a function in the hematopoietic system. How and why is TET2 expressed at different 

levels in myeloid cells than in lymphocytes? We have recently shown that HDAC7 is a crucial 

transcriptional repressor during early B cell development 
5
. HDAC7-deficient pro-B cells present

lineage promiscuity and express many genes from alternative cell types, such as macrophages and T 

cells 
5
. We observed up-regulation of Tet2 in our published microarray data set for wild-type (Hdac7

+/
)

mice and their HDAC7-deficient (Hdac7
fl/-

) counterparts. Here, using our mouse model for HDAC7

deficiency in pro-B cells, we confirmed by RT-qPCR experiments that the absence of HDAC7 from 

pro-B cells leads to a significant increase in the expression of Tet2 (Fig. 1b), reaching similar levels to 

those in macrophage cells (Supplementary Fig. 1b). Graf and colleagues previously demonstrated that 

Tet2 is up-regulated during the transdifferentiation of pre-B cells into macrophages facilitating the de-

repression of myeloid genes 
16

, confirming its higher level of expression in myeloid cell types. Using
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this system, we have previously reported that HDAC7 is down-regulated during the conversion of pre-

B cells into macrophages and that its ectopic expression interferes with cellular transdifferentiation 
4
.

HDAC7 exogenous expression blocks the up-regulation of Tet2 during cellular conversion (Fig. 1c). 

Forced expression of HDAC7 does not interfere with the down-regulation of Pax5 during cellular 

conversion (Fig. 1c). To determine whether HDAC7 is involved in Tet2 gene silencing, we performed 

western blot experiments with purified bone marrow CD19
+
 B cells from wild-type and HDAC7-

deficient mice. We used the CD19
-
 cell population, which includes myeloid cells such as macrophages,

as an experimental control for high levels of TET2. We confirmed that the absence of HDAC7 from B 

cells leads to an increase in TET2 protein levels (Fig. 1d). To corroborate the potential repressive 

action of HDAC7 on Tet2 gene expression, we took advantage of the “modules and regulators” 

interactive tool in the Immgen database to search for putative positive and negative Tet2 regulators. 

Remarkably, the analysis revealed that HDAC7 might be a unique and potential negative regulator of 

Tet2 expression (Figure 1d). Together, these findings indicate that HDAC7 is involved in Tet2 gene 

silencing and that it may be essential for maintaining its physiologically low levels in B cell 

progenitors compared with myeloid cells.  

We had previously demonstrated that the HDAC7-MEF2C interaction is necessary for HDAC7 

to repress its target genes in pro-B cells 
5
, and Tet2 has recently been reported to be an MEF2C direct

target gene in pro-B cells 
20

. To test whether Tet2 is also a direct HDAC7 target gene in pro-B cells we

next performed chromatin immunoprecipitation (ChIP) assays, in which HDAC7 proved to be 

recruited to a putative MEF2 binding site located at the promoter of the Tet2 gene (Fig. 2a). We also 

observed HDAC7 recruitment at a previously described Tet2 enhancer 
21

 (Fig. 2a). Our published

ChIP-seq analysis revealed that the absence of HDAC7 from pro-B cells was associated with a 

moderate but significant increase of the active histone marks, H3K9/K14ac, at the promoter and 

enhancers of its target genes 
5
. As further evidence that Tet2 may be a repressed HDAC7 gene, ChIP-

seq analysis revealed an increase in H3K9/K14ac enrichment at both the Tet2 promoter and enhancer 
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in HDAC7-deficient pro-B cells (Fig. 2b). We next determined by ChIP-qPCR that HDAC7 absence 

from pro-B cells causes a significant increase in the enrichment of the active histone marks 

H3K9/K14ac and H3K27ac and decreases the enrichment of the repressive histone marks H3K27me3 

and H3K9me3 at both Tet2 gene loci (Fig. 2c). Collectively, these data demonstrate that Tet2 is an 

HDAC7 direct target gene in pro-B cells. 

Our data suggest that HDAC7 may have a role in 5-hmC DNA, which would represent a novel 

and unprecedented mechanism by which a class IIa HDAC mediates gene silencing to establish proper 

B cell identity and function. To investigate this hypothesis, we first determined the global levels of 

hydroxymethylated DNA in wild-type and HDAC7-deficient pro-B cells. ELISA assays revealed that 

the absence of HDAC7 from pro-B cells led to a significant increase in the global levels of 5-hmC 

(Fig. 3a). Next, we performed 5-hmC DNA immunoprecipitation (hMeDIP) followed by next-

generation sequencing (hMeDIP-seq) in pro-B cells purified from Hdac7
fl/- 

mice and their Hdac7
+/- 

control littermates. The total frequencies of 5-hmC peaks in wild-type and HDAC7-deficient pro-B 

cells were similar, but their global intensity was higher in pro-B cells from Hdac7
fl/-

 mice, in

concordance with the results obtained from ELISA experiments (Fig. 3b and Supplementary Fig. 3a,b). 

The genomic distribution of the peaks did not differ significantly between the two conditions, and most 

peaks were located in intergenic regions, introns and within LINE-1 elements (Fig. 3c). Next, we 

looked for differential peaks in 5-hmC DNA enrichment between wild-type and HDAC7-deficient pro-

B cells. We found that HDAC7 deficiency from pro-B cells resulted in an increase of 10,000 and a 

decrease in 12,000 5-hmC peaks. To gain functional insights into the genes associated with 5-hmC 

peaks that were more highly enriched in the absence of HDAC7, we performed gene set enrichment 

analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and the gene 

ontology (GO) categories corresponding to Biological Processes. We found an increase in the 

enrichment of 5-hmC in lineage-inappropriate genes, such as Jun and Fosl2, in HDAC7-deficient pro-

B cells compared with wild-type cells (Fig. 3d and Supplementary Fig. 3c). These results were 
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confirmed by hmeDIP-qPCR experiments (Fig. 3e). Accordingly, the increased enrichment at both 

genes that was due to 5-hmC was correlated with increased expression levels. A heatmap derived from 

public data from Immgen and RT-qPCR experiments confirmed that myeloid and T cell genes were 

upregulated in HDAC7-deficient pro-B cells and macrophages relative to wild-type pro-B cells (Fig. 

3f,g). Finally, we performed a motif enrichment analysis to determine whether HDAC7 deficiency 

could have produced an alteration in chromatin positioning and could change the occupancy of 

different TFs in the genome. Although we found no differences associated with HDAC7, we did note 

enrichment of relevant TFs in the hematopoietic system such as PU.1 (Fig. 3h). The occupancy of 

PU.1 under both conditions is consistent with it being essential for lymphoid and myeloid lineages. 

These results highlight the importance of HDAC7’s role in silencing inappropriate lineage genes and 

reveal its influence on 5-hmC DNA in B cells by regulating an important epigenetic modulator such as 

TET2. 

Our genome-wide approach revealed increased enrichment in 5-hmC DNA in a significant 

number of repetitive genome regions (LINE-1 elements) in the absence of HDAC7. According to the 

average signal from all the peaks obtained, the signal intensity of 5-hmC peaks associated with LINE-1 

elements in HDAC7-deficient pro-B cells was higher than in their wild-type counterparts (Fig. 4a). 

Previous published data revealed that TET1 and TET2 are recruited at the 5’UTR of young LINE-1 

elements in embryonic stem cells 
22

. Regions with differential peaks were validated by hMeDIP-qPCR

assays, confirming that the absence of HDAC7 from pro-B cells results in higher levels of 5-hmC in 

several LINE-1 elements (Fig. 4 b,c). Although 5-hmC does not always involve an increase in gene 

expression 
23

, we observed a clear tendency towards stronger expression of L1 transcripts in HDAC7-

deficient pro-B cells (Fig. 4e). Given that aberrant expression of LINE-1 elements has been associated 

with chromatin instability, these results suggest that HDAC7 might be required to preserve chromatin 

integrity by mediating the silenced status of LINE-1 elements. This is consistent with our previous 

findings demonstrating that HDAC7-deficient pro-B and pre-B cells have a higher cell death rate than 
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do wild-type B cell populations 
5,24

. It is of note that recent studies have shown that the tight regulation 

of TET2 activity to be essential for correct maintenance of genome stability, since TET2 deficiency 

produces defects in DNA damage response and its overexpression produces chromosome instability 

and aneuploidy due to a collapse in BER activity 
25,26

. Thus, HDAC7 might have a role in preserving 

genome stability and integrity in B cells by restricting the levels of Tet2 expression and, consequently, 

maintaining physiological levels of 5-hmC at lineage-inappropriate genes and LINE-1 

retrotransposons.  

 Further examination of our hMeDIP-seq data revealed differential 5-hmC enrichment at miRNA-

associated loci. Coincident with peaks located in LINE-1 associated regions, the coverage depth of 5-

hmC peaks at miRNAs in HDAC7-deficient pro-B cells was higher than in control pro-B cells (Fig. 

5a). We found that several miRNAs involved in leukemia and lymphoma as well as in myeloid 

differentiation were more enriched in 5-hmC in pro-B cells from Hdac7
fl/-

 mice, such as miR-125b and 

miR-148a (Fig. 5b). We also observed miRNAs involved in B cell differentiation with an increased 5-

hmC mark in wild-type pro-B cells, such as miR-28a (Fig. 5a). We performed RT-qPCR experiments 

to establish whether 5-hmC and miRNA expression were correlated. Interestingly, mir-125b and miR-

28a were up-regulated and down-regulated in HDAC7-deficient pro-B cells, respectively (Fig. 5c). 

MiR-125b-5p is known to be more abundant in macrophages than in other immune cell types and up-

regulated in several types of leukemia such as acute myeloid leukemia (AML) 
27,28

. MiR-28a regulates 

proliferation of B cells and its down-regulation is involved in lymphomagenesis. To examine the 

potential role of HDAC7 in regulating the expression of miRNAs, we performed miRNA profiling 

using a quantitative PCR-based panel containing over 375 miRNAs (miRCURY LNA
TM

 microRNA 

Array (Exiqon)) in wild-type and HDAC7-deficient pro-B cells. We found 25 miRNAs whose levels 

of expression differed significantly between wild-type and HDAC7-deficient pro-B cells (Fig. 5d). 

MiRNAs represented in the heatmap, and others involved in the hematopoietic system and related 

disorders, were validated by RT-qPCR (Fig. 5e). Few miRNAs are highly specifically expressed in an 
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individual tissue or cell type 
29

, such as miR-142 and miR-181, in the case of hematopoietic cells. 

Although they are not represented in the heatmap due to statistical constraints in the analysis, we 

observed that both miRNAs, whose role is essential for B maturation and differentiation, were down-

regulated in HDAC7-deficient pro-B cells (Fig. 5e). Additionally, miR-150, which is down-regulated 

in pro-B cells from Hdac7-null mice, is related to B-cell development and performs tumor-suppressor 

functions in AML cells 
30

. Among the miRNAs that are up-regulated under HDAC7-deficient 

conditions, we found miR-125b-5p, miR-126, miR-29b, miR-34a and miR-99a. Previous studies 

indicated that miR-126 is down-regulated in lymphoid cells, which is consistent with previous results 

31,32
. Moreover, miR-29b is known to be activated by C/EBPα and to repress Tet2 expression, which 

concords with C/EBPα and Tet2 up-regulation when HDAC7 is deficient 
33

. Furthermore, miR-34a has 

been shown to be strongly expressed in myeloid cells, and its constitutive expression in B cells blocks 

the pro-B to pre-B cell transition 
34

. Finally, some members of the miR-99 family, such as miR-99b, 

have been reported to be abundant in macrophages, neutrophils and monocytes. Here, we observed that 

another member of the family related to leukemic stem cells, miR-99a, was up-regulated in HDAC7-

deficient pro-B cells 
35

. Considered as a whole, our data indicate that, through the regulation of Tet2, 

HDAC7 controls the expression levels of crucial miRNAs of the immune system. 

 Our findings represent a significant step forward in our understanding of how B cells acquire 

their genetic identity, from two different perspectives. First, we have identified HDAC7 as the specific 

transcriptional repressor controlling TET2 activity, which it achieves by fine-tuning its physiological 

expression levels in pro-B cells. This may be the mechanistic explanation for the different TET2 

expression levels observed in myeloid and lymphoid cells.  Second, our results reveal an unexpected 

role for HDAC7 in controlling proper DNA 5-hydroxymethylation status and expression of lineage-

inappropriate or functionally inappropriate genes, microRNAs and LINE-1 elements in pro-B cells. 

We suspect that other members of the class IIa HDAC subfamily may have similar functions in the 
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cellular differentiation and developmental processes in which they participate (e.g., skeletal and 

cardiac muscle, bone formation and brain). 
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Materials and Methods 

Mouse and animal care 

Hdac7
fl/-

 mice have been previously described and were kindly provided by Dr. Eric Olson (UT

Southwestern Medical Center, Dallas, TX, USA). mb1-Cre
ki/+

 mice were kindly provided by Dr.

Michael Reth (Max Planck Institute of Immunology and Epigenetics, Freiburg, Germany). Experiments 

were performed with 4-6-week-old mice. Animal housing and handling, and all procedures involving 

mice, were approved by the Bellvitge Biomedical Research Institute (IDIBELL) ethics committee, in 

accordance with Spanish national guidelines and regulations.  
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Cell culture and β-estradiol treatment 

C10 cells (transduced with a MSCVGFP- C/EBPα retroviral vector) were cultured and treated as 

previously described 
4
.

Flow cytometry and cell-sorting experiments 

Cells were extracted from bone marrow and spleen. Isolated cells were incubated with Fc-receptor-

blocking antibody (BD Bioscience) for 10 min at 4°C to reduce non-specific staining. Cells were then 

stained with anti-B220 (PerCP-Cy5.5), anti-CD43 (APC), anti-IgM (FITC), anti-CD19 (PE) and anti-

Cd11b (V450) (BD Bioscience) for 30 min at 4°C in the dark. Cells were processed in a Gallios flow 

cytometer (Beckman-Coulter, Inc.) and the data analyzed using FlowJo software (Tree Star, Inc.). For 

cell-sorting experiments, bone marrow cells were incubated with Fc-receptor binding antibody and then 

stained with anti-CD19 (PE), anti-B220 (PerCP-Cy5.5), anti-CD43 (APC) and anti-IgM (FITC) (BD 

Bioscience) under the same conditions. Pro-B cells (CD19
+
B220

+
CD43

+
IgM

-
) were isolated in a BD

FACSAria™ Fusion cell sorter (BD Biosciences). The gating strategy used is illustrated in 

Supplementary Fig. 2. 

Western blot 

CD19
+
 and CD19

-
 cell populations were obtained by magnetic cell isolation using Miltenyi MACS

manual separators. Western blot analysis was performed according to standard procedures. Blots were 

developed with the ECL detection kit (Amersham Biosciences). The antibodies used were anti-HDAC7 

(Santa Cruz), anti-TET2 (Abcam) and anti-β-actin (Abcam). 

RT-qPCR assays 

Pro-B cells were purified by cell sorting. RNA was extracted with an RNeasy Mini kit (Qiagen) and 

cDNA was synthesized using the High Capacity cDNA Reverse Transcription Kit (AB Applied 

Biosystems). RT-qPCR was performed in triplicate using SYBR Green I Master (Roche). PCR reactions 

were run and analyzed using the LightCycler 480 Detection System (Roche). Primer sequences are 

available from the authors upon request. 
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Chromatin immunoprecipitation assays  

For chromatin immunoprecipitation (ChIP) assays, purified pro-B cells from the bone marrow of 

Hdac7
+/- 

and Hdac7
fl/-

 mice were crosslinked with 1% formaldehyde and subjected to

immunoprecipitation after sonication. ChIP experiments were performed using the LowCell# ChIP kit 

(Diagenode) according to the manufacturer’s instructions. The antibodies used were anti-HDAC7 

(Abcam), anti-H3(K9/K14)Ac (Millipore), anti-K27H3K27me3 (Millipore), anti-H3K27Ac (Abcam) 

and anti-H3k9me3 (Abcam). Real-time quantitative PCR was performed and the results analyzed. Data 

are presented as the ratio between the bound fraction of the HDAC7 and histone modification antibody 

relative to the input control.  

ChIP-sequencing experiments 

Data were extracted from ChIP-sequencing experiments, as described elsewhere 
5
. Data are available

under accession code: GEO: ChIP-seq data, SRA submission SUB1614653. 

Quantification of global 5-hydroxymethylation levels 

To quantify 5-hmC, a Quest 5-hmC DNA ELISA kit (Zymo Research) was used according to the 

manufacturer’s protocol. Briefly, the bottom of the well was coated with anti-5-hmC polyclonal 

antibody (pAb), and 100 ng of denatured genomic DNA was added. Anti-DNA HRP antibody and 

HRP developer (3, 3’, 5, 5’-tetramethylbenzidine (TMB)) were applied to detect the DNA bound to the 

anti-5-hmC pAb. After 20-30 min of incubation, the color reaction was stopped by the addition of 

sulfuric acid. The resulting color was analyzed at 450 nm. The percentage of 5-hmC DNA was 

estimated from linear regression. 

hMeDIP-qPCR experiments 

Purified genomic DNA (1 µg) from wild-type and HDAC7-deficient pro-B cells was sonicated to obtain 

fragments of 300-400 bp. Fragmented DNA was incubated with 1 µg anti-5-hmC (Active Motif, 39769) 

and 20 µl of Dynabeads G (Life Technologies) for 16 h at 4ºC. Real-time quantitative PCR was 
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performed and the results analyzed. Data are presented as the ratio of the enrichment of 5-hmC relative 

to the input control.  

hMeDIP sequencing experiments 

Purified genomic DNA (1 µg) from wild-type and HDAC7-deficient pro-B cells was sonicated to obtain 

fragments of 300-400 bp. Adaptor ligations were performed and libraries constructed by qGenomics 

Laboratories (Barcelona, Spain). 1 µg anti-5-hmC (Active Motif, 39769) was incubated with 20 µl of 

Dynabeads G (Life Technologies) for 2 h at 4ºC. Fragmented DNA was incubated with Dynabeads and 

antibody for 16 h at 4ºC. DNA from immunocomplexes was purified with the QIAquick MinElute kit 

(Qiagen). Amplified libraries were constructed and sequenced at qGenomics Laboratories (Barcelona, 

Spain). Fastq data were obtained with Trim Galore-0.4.2 and Cutadapt-1.6. Reads were mapped with 

bwa-0.7.12. Sorting Sam to Bam was carried out with Picard-2.8.0 SortSam and duplicates were 

removed with Picard-2.8.0 MarkDuplicates. Peak calling was performed using MACS2 software with 

the default narrow option and a threshold of p=0.001. DESEQ analysis was then used to define peaks 

and perform quantitative analyses. The Diffbind-2.6.6 R package was used for differential binding 

analysis. Differential enrichment was defined by a threshold value of p=0.005 and >1FC difference in 

KO relative to WT samples. Motif enrichment was analyzed and peak depth quantified with HOMER 

software.  

Expression profiling of microRNAs 

We used miRCURY LNA™ Universal RT microRNA PCR System (Exiqon) to determine miRNA 

expression profiles. The miRNA annotation of mirBase version 20.0 was used. Single-stranded cDNA 

was synthesized by reverse transcription of 8 μL of RNA, using the universal cDNA Synthesis Kit II 

(Exiqon). Diluted cDNA was mixed with ExiLENT SYBR® Green master mix (Exiqon), and 

quantitative PCR was performed using the Roche LightCycler® 480 RealTime PCR system (Roche). 

Statistical analysis 

Data were analyzed by Student’s two-tailed unpaired t-test using GraphPad Prism. 
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Figure legends 

Fig. 1: HDAC7 regulates the expression levels of Tet2 in pro-B cells. a, Tet2 expression profile in 

hematopoietic cells subsets. Data were obtained from the Immunological Genome Project (Immgen) 

database. b, RT-qPCR experiments for gene expression changes for Tet2 gene in wild-type and 

HDAC7-deficient pro-B cells. c, RT-qPCR experiments for gene expression changes for Tet2 and 

Pax5 in the absence or presence of HDAC7 during the conversion of pre-B cells into macrophage-like 

cells. Data from b,c are represented as the mean ± standard error of the mean (SEM) of three 

independent experiments. Statistical significance was identified using the unpaired two-tailed 

Student’s t-test. *p<0.05. d, Western blot analysis of the expression of TET2 and HDAC7 in wild-type 

and HDAC7-deficient B lymphocytes (CD19
+
). Non-B lymphoid cells (CD19

-
) were used as a control

of TET2 expression. e, Heatmap showing the expression of potential Tet2 gene regulators in 

hematopoietic cell subsets. Data were obtained from the Immgen database. 

Fig. 2: Tet2 is an HDAC7 direct target gene in pro-B cells. a, Chromatin immunoprecipitation 

(ChIP) experiments showing the recruitment of HDAC7 to Tet2 promoter and enhancer. Results are 

presented as the relative enrichment over input and are based on the results of three independent 

experiments. Statistical significance was identified using Student’s unpaired two-tailed t-test. *p<0.05.  

b, ChIP-seq peaks for H3(K9/K14)ac enrichment at the enhancer and promoter of the Tet2 gene in 

wild-type and HDAC7-deficient pro-B cells. Data were taken from SRA accession no. SRP07.  c, 

ChIP-qPCR experiments showing the enrichment of active histone marks (H3K9/k14ac and H3K27ac) 

and repressive histone marks (H3K27me3 and H3K9me3) to the promoter and enhancer of Tet2 in pro-

B cells from Hdac7
+/−

 and Hdac7
fl/− 

mice. Results are presented and analyzed as in a, and are based on

the results of four independent experiments. *p<0.05, **p<0.01. 

Fig. 3: HDAC7 regulates the levels of DNA 5-hydroxymethylation in pro-B cells. a, Global levels 

of DNA 5-hydroxymethylation (5-hmC) in pro-B cells from wild-type and HDAC7-deficient mice 

were tested by ELISA assays. Data are presented as the mean ± SEM of four independent experiments 
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and statistical significance was identified using Student’s unpaired two-tailed t-test. *p<0.05. b, 5-hmC 

coverage depth (per base pair per peak per 10 million mapped reads) of 5-hmC peaks (−2 kb to +2 kb) 

in wild-type and HDAC7-deficient pro-B cells.  c, Genomic distribution of 5-hmC enrichment in 

Hdac7
+/-

 and Hdac7
fl/- 

pro-B cells. d, Genome browser snapshot of the Jun gene showing signal for 5-

hmC in wild-type and HDAC7-deficient pro-B cells. Genome browser snapshot of RNA-seq and 

ATAC-seq data of B cells and macrophages (MF) were obtained from the Immgen database. e, 

hmeDIP-qPCR experiments showing the enrichment of 5-hmC in wild-type and HDAC7-deficient pro-

B cells in myeloid and T cell genes such as Fosl2 and Jun. Data are presented as the mean ± SEM of 

three independent experiments. The statistical analysis was performed as in a. *p<0.05, **p<0.01. f, 

RT-qPCR experiments for myeloid genes expression in wild-type and HDAC7-deficient pro-B cells. 

Data are presented and analyzed as in a,c. g, Heatmap of color-coded expression levels of selected 

genes between pro-B cells and macrophages. Data were obtained from RNA-seq experiments available 

in MyGeneSet browser of the Immgen database. h, Most relevant TF binding motifs in control (grey) 

and HDAC7-deficient (blue) pro-B cells based on their enrichment in both genomes using the 

HOMER database of known motifs.  

Fig. 4: HDAC7 regulates DNA 5-hydroxymethylation at LINE-1 elements in pro-B cells. a, 

Example of 5-hmC enrichment in two young retrotransposons (L1) from peaks detected in hMeDIP-

seq experiments. The peak location found in the hMeDIP-seq analysis is located in the yellow-shaded 

rectangle b, hMeDIP-qPCR experiments showing the enrichment of 5-hmC in wild-type and HDAC7-

deficient pro-B cells in L1 retrotransposable elements. Data are presented as the mean ± SEM of three 

independent experiments and statistical significance was identified using Student’s unpaired two-tailed 

t-test. *p<0.05, **p<0.01. c, 5-hmC coverage depth (per base pair per peak per 10 million mapped 

reads) of 5-hmC peaks located in L1 elements (−2 kb to +2 kb) in wild-type and HDAC7-deficient 

pro-B cells.  d, Gene ontology (GO) analysis of 5-hmC-enriched regions in HDAC7-deficient pro-B 
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cells associated with LINE-1 elements. e, RT-qPCR experiments to examine the expression of L1 

elements in pro-B cells from Hdac7
+/-

 and Hdac7
fl/-

 mice. Data are presented and analyzed as in b.

Fig. 5: HDAC7 regulates microRNA expression in pro-B cells 

a, Example of 5-hmC enrichment peaks at miR-125b from hMeDIP-seq experiments. b, RT-qPCR 

experiments of 5-hmC enriched miRNAs in HDAC7-deficient pro-B cells compared with wild-type 

cells. The levels of U6 RNA were used for normalization. Data are presented as the mean ± SEM of 

three independent experiments and statistical significance was identified using Student’s unpaired two-

tailed t-test. *p<0.05. c, 5-hmC coverage depth (per base pair per peak per 10 million mapped reads) of 

5-hmC peaks located in microRNAs (−2 kb to +2 kb) in wild-type and HDAC7-deficient pro-B cells

d, Heatmap of the differential expression of miRNAs for two Hdac7
+/-

 vs. Hdac7
fl/-

 replicates. Only

those with a greater or less than two-fold difference between samples are included. e, RT-qPCR 

analysis of selected microRNAs from miRCURY LNA™ Universal RT panel in wild-type and 

HDAC7-deficient pro-B cells. Data are presented and analyzed as in b. 

Supplementary Fig. 1: 

a) RNA-seq data obtained from Immgen showing the expression peaks of Tet2 in pro-B cells and

macrophages. Pax5 and Itgam expression peaks are shown as the control of specific genes of lymphoid 

and myeloid lineages, respectively. b) RT-qPCR experiments showing expression of Tet family 

members (1-3) in bone marrow wild-type and HDAC7-deficient pro-B cells and Cd11b
+
 cells. Data are

presented as the mean ± SEM of three independent experiments and statistical significance was 

identified using Student’s unpaired two-tailed t-test. *p<0.05 

Supplementary Fig. 2: 

Flow cytometry plots showing the gating strategy to sort pro-B (IgM
-
, CD19

+
, B220

-
, CD43

+
) cells

from the bone marrow of control and Hdac7 
fl/-

 conditional mice.
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Supplementary Fig. 3: 

a) Heatmaps of replicates from hMeDIP sequencing experiments. b), Coverage depth of 5-hmC peaks 

signal in intergenic and promoter (TSS) regions from hMeDIP-sequencing experiments. (c), Genome 

browser snapshot of 5-hmC peaks at FosL2 promoter in wild-type and HDAC7-deficient pro-B cells. 
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The transcriptional repressor HDAC7 promotes
apoptosis and c-Myc downregulation in particular types
of leukemia and lymphoma

B Barneda-Zahonero1, O Collazo1,11, A Azagra1,11, I Fernández-Duran1, J Serra-Musach2, ABMMK Islam3, N Vega-García4, R Malatesta4,
M Camós4, A Gómez5, L Román-González1, A Vidal6, N López-Bigas7,8, A Villanueva9, M Esteller5,8,10 and M Parra*,1

The generation of B cells is a complex process requiring several cellular transitions, including cell commitment and differentiation.
Proper transcriptional control to establish the genetic programs characteristic of each cellular stage is essential for the correct
development of B lymphocytes. Deregulation of these particular transcriptional programs may result in a block in B-cell
maturation, contributing to the development of hematological malignancies such as leukemia and lymphoma. However, very little
is currently known about the role of transcriptional repressors in normal and aberrant B lymphopoiesis. Here we report that
histone deacetylase 7 (HDAC7) is underexpressed in pro-B acute lymphoblastic leukemia (pro-B-ALL) and Burkitt lymphoma.
Ectopic expression of HDAC7 induces apoptosis, leads to the downregulation of c-Myc and inhibits the oncogenic potential of
cells in vivo, in a xenograft model. Most significantly, we have observed low levels of HDAC7 expression in B-ALL patient samples,
which is correlated with the increased levels of c-Myc. From a mechanistic angle, we show that ectopically expressed HDAC7
localizes to the nucleus and interacts with the transcription factor myocyte enhancer factor C (MEF2C) and the corepressors
HDAC3 and SMRT. Accordingly, both the HDAC7–MEF2C interaction domain as well as its catalytic domain are involved in the
reduced cell viability induced by HDAC7. We conclude that HDAC7 has a potent anti-oncogenic effect on specific B-cell
malignancies, indicating that its deregulation may contribute to the pathogenesis of the disease.
Cell Death and Disease (2015) 6, e1635; doi:10.1038/cddis.2014.594; published online 12 February 2015

Proper generation of mature B lymphocytes is the result of
complex cell lineage commitment and differentiation pro-
cesses. Each cellular transition is tightly regulated at the
transcriptional level by the action of linage-specific transcrip-
tion factors (TFs), such as PU.1, Ikaros, myocyte enhancer
factor C (MEF2C), E2A and PAX5 among others.1–9 The
deregulation of these particular transcriptional programs may
result in a block in the differentiation and a hyperproliferative
cellular state, thereby contributing to the development of
hematological malignancies such as leukemia and lymphoma.
Aberrant expression or mutation of many of the lineage-
specific TFs involved in B lymphocyte development have been
linked to the outcome of hematopoietic malignancies.10,11 In
addition, the overexpression of c-Myc has been found in T-cell
acute lymphoblastic leukemia (T-ALL) and B-ALL, and some
types of B-cell lymphoma, such as Burkitt lymphoma, present
translocations in the MYC gene (c-MYC-IgH).12 The dereg-
ulation of B-cell TFs in combination with chromosomal

aberrations, such as gene translocations (ETV6-RUNX1 and
BCR-ABL1) and rearrangements in the MLL gene are key
events in aberrant B lymphopoiesis and considered as primary
lesions.11,13

In recent years, the idea has begun to emerge that, in
addition to the activation of gene expression, transcriptional
repression is a fundamental mechanism to ensure proper B
lymphopoiesis.3,14,15 Among the different types of transcrip-
tional repressors, histone deacetylases (HDACs) are thought
to be crucial enzymes in many physiological and pathological
processes.16,17 Mutation and/or aberrant expression of
HDACs have often been observed in human disease, in
particular cancer, making them important therapeutic
targets.18,19 In pathological situations where classic HDACs
are overexpressed, HDAC inhibitors (HDIs) have emerged as
promising therapeutic agents.19 However, it is worth mention-
ing that the contribution of HDACs to cancer could be due to
mechanisms other than overexpression. In fact, HDACs may
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also present truncating or inactivating mutations.18 Therefore,
we are far from fully understanding the contribution of
individual HDACs to cancer.
Of the various HDACs, HDAC7 appears to be a lymphoid-

specific transcriptional repressor.20–26 In addition to its critical
role in T lymphocyte biology, we have recently reported that
HDAC7 is critical in maintaining the genetic identity of B
lymphocytes.20 Interestingly, HDAC7 has been identified as a
target gene in hematopoietic cancers in a PiggyBac transpo-
son mutagenesis screening in mice.27 On the basis of our
recent findings, we postulated that HDAC7 might be deregu-
lated in B-cell malignancies. Here we report the loss of HDAC7
expression in cell lines established from B-ALL and Burkitt
lymphoma as well as in pro-B-ALL samples from patients.
Forced expression of HDAC7 induces the apoptosis of the
cells. Strikingly, the presence of HDAC7 results in the
downregulation of the oncogene c-Myc. HDAC7 expression
interferes with the oncogenic potential of the cells in a
xenograft model. Most significantly, we have found low levels
of HDAC7 expression in B-ALL samples from patients, which
are associated with high levels of c-Myc. Taken together, our
findings suggest that HDAC7 expression may exert an anti-
oncogenic activity in particular types of B-cell malignancies
and that its deregulation may contribute to the pathogenesis of
B-ALL and B-cell lymphoma.

Results

HDAC7 is underexpressed in pro-B-ALL and B-cell
lymphoma. First, to further validate the notion that HDAC7
is a lymphoid-specific transcriptional repressor within the
hematopoietic system we examined the Immunological
Genome Project Database (Immgen) (http://www.immgen.
org/). Using this database we confirmed that HDAC7 is
specifically expressed in lymphoid cells but not in cells from
the myeloid lineage (Supplementary Figure 1). This finding
led us to speculate that HDAC7 expression could be

deregulated in B-cell malignancies. To test this hypothesis,
we first examined HDAC7 expression levels in a publicly
available microarray GEO data set (GSE34861), which
consists of the gene expression profile of 191 samples of
adult B-ALL and 3 normal samples. The B-ALL samples
comprised 28 corresponding to pro-B-ALL, 125 to early pre-
B-ALL, 23 to pre-B-ALL, 5 to mature B-ALL, 5 to CD56+
B-ALL and 5 to transitional-pre-B-ALL immunophenotypes.
Analysis using the Fisher test showed that HDAC7 was
significantly associated with underexpression in pro-B-ALL
samples (Figure 1a). We found no significant association with
deregulation of HDAC7 expression in samples from the other
immunophenotypes analyzed (Figure 1a). To further confirm
our findings, we next assessed the HDAC7 protein levels in
established cell lines from six B-ALLs. We observed that
SD-1 and JVM-2 cells presented low or undetectable HDAC7
protein levels (Figure 1b). Next we tested whether HDAC7
expression could also be deregulated in lymphomas. We
found that HDAC7 was underexpressed in the Burkitt
lymphoma-derived Namalwa cell line (Figure 1c). Altogether,
these data indicate that HDAC7 is deregulated in particular
types of B-ALL and B-cell lymphoma.

HDAC7 expression induces apoptosis in SD-1 and
Namalwa cells. To assess whether the absence of HDAC7
is associated with the oncogenic features of SD-1 and
Namalwa cells we adopted a gain-of-function experimental
approach. We generated a doxycycline-inducible system
to express HDAC7 exogenously in both the cell lines
(Figures 2a and b). Expression of HDAC7 after the addition
of doxycycline to SD-1 cells resulted in complete cell growth
arrest over a course of 3 days (Figure 2c). In contrast,
addition of doxycycline to the parental SD-1 cell line had no
significant effect on cell growth, demonstrating that HDAC7
specifically mediates the growth arrest of the cells
(Figure 2c). We then tested whether the reduction in the
total number of cells was the result of a block in cell
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proliferation by performing an MTT assay in the absence
and presence of HDAC7. HDAC7 expression significantly
reduced the cell viability of both SD-1 and Namalwa cell lines
(Figures 2d and e). To rule out the possibility that the effect
observed on cell viability is due to the toxicity of ectopic
overexpression of HDAC7, we generated HDAC7-inducible
lines in cells that express normal HDAC7 levels. We found
that ectopic expression of HDAC7 in RAJI and TOM-1 cell
lines did not affect their viability (Supplementary Figure 2a
and b). Moreover, the class IIa HDACs, HDAC4 and HDAC9

were found to be expressed in both SD-1 and Namalwa cells
in the absence and in the presence of doxycycline indicating
that the effect observed was specific to the expression of
HDAC7 (Supplementary Figure 2c). Next we examined
whether HDAC7 could induce apoptosis and assessed the
cell cycle status. We observed a significant accumulation of
cells in subG0 at 48 and 72 h after doxycycline treatment of
both SD-1 and Namalwa cell lines, demonstrating that
HDAC7 induced apoptosis (Figures 2d and e and
Supplementary Figure 3). These findings indicate that the
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absence of HDAC7 could be associated with the survival of
both the cancer cell lines and suggest that its re-expression
may exert a therapeutic anti-oncogenic effect.

HDAC7 expression induces apoptosis and inhibits tumor
growth in a xenograft model. To determine the physiolo-
gical consequences of HDAC7 expression in SD-1 and
Namalwa cells we performed in vivo functional experiments
using a xenograft model in athymic mice. First, SD-1 cells
were injected subcutaneously into the back of several
athymic mice. When tumors reached a homogeneous size
they were randomly allocated into two treatment groups: (i)
mice drank glucose; and (ii) drank glucose plus doxycycline
in water. Tumors in mice taking glucose-treated water that did
not express HDAC7 continued to grow. Strikingly, tumors in
mice treated with doxycycline showed a marked decrease in
their size (Figures 3a and b). Next to test the effect of HDAC7
expression on the lymphomagenic capacity of the Namalwa
cell line, 1.5 × 106 cells were injected orthotopically into the
spleen of 19 athymic mice and they were randomly allocated
into two treatment groups. (i) mice drank glucose; and (ii)
drank glucose plus doxycycline in water. Notably, 15 days
later, the tumors of mice treated with doxycycline were almost
undetectable at palpation. At that point, all mice were killed
and their spleens surgically removed. Similar to the results
obtained with leukemic cells, the expression of HDAC7 in
Namalwa cells markedly interfered with the growth of
lymphomas (Figures 3c and d). Immunofluorescence assays
revealed a significant reduction of proliferation, as revealed
by Ki67 staining, and increased apoptosis in tumor cells
expressing HDAC7 (Figures 3e and f and Supplementary
Figure 4). Thus, our in vivo data confirm that HDAC7 induces
apoptosis and exerts a potent anti-oncogenic effect suggest-
ing that its absence may be involved in the pathogenesis of
specific types of B-ALL and B-cell lymphoma.

HDAC7 expression induces the apoptotic gene program
of leukemic cells. As HDAC7 is a transcriptional regulator,
we decided to investigate the impact of HDAC7 expression
on the global gene expression profile of SD-1 cells.
Microarray analysis revealed that 660 genes were differen-
tially expressed when HDAC7 was ectopically expressed
in SD-1 cells. Of these, 410 genes were upregulated
and 250 were downregulated (Supplementary Figure 5,
Supplementary Data Sets 1 and 2). Next we examined the
list of upregulated genes after HDAC7 expression and looked
for the presence of apoptosis-related genes. We observed
that HDAC7 induced the expression of several genes, such
as CD44, FAS, ATM, TP53BP2, CD40 and BIRC3, with
known apoptotic functions (Supplementary Table 1). In
addition, we also found that the presence of HDAC7 led to
the upregulation of genes related to immune processes (IL16,
FCGR2A, IRAK2, CD86 and CD40, among others) and
cancer (RASSF4, RAB31, NEDD9 and RASSF2, among
others; Supplementary Table 1). To further investigate if
HDAC7 expression leads to the activation of the apoptotic
genetic program in SD-1 cells, we performed a gene set
enrichment analysis based on the gene ontology (GO)
categories corresponding to the biological processes and
on the KEGG pathways. The biological processes analysis

revealed that the set of genes upregulated upon HDAC7
expression belong to GO categories representing immune
system processes, regulation of cell death and regulation of
cell proliferation, among others (Figure 4a). KEGG pathway
enrichment analysis confirmed that the genes whose
expression was induced by HDAC7 were significantly
enriched in the apoptosis pathway (Figure 4b). A selected
number of genes were validated by RT-qPCR (Figure 4c). To
better understand the mechanism associated with the
HDAC7-induced apoptotic pathway in SD-1 cells, we
investigated the possible enrichment of TF motifs from the
TRANSFAC database in the set of upregulated genes. We
observed a significant enrichment of a set of TFs. Remark-
ably, we found the enrichment of the binding motif for p53,
suggesting that the induction of apoptosis may occur in a
p53-mediated manner (Figure 4d). To test this possibility we
assessed the status of p53 activation after the expression of
HDAC7 in both SD-1 and Namalwa cells and found that the
presence of HDAC7 in both the cell lines resulted in the
phosphorylation and acetylation of p53 at serine 392 and
lysine 382, respectively, two post-translational modifications
indicative of p53 activation (Figure 4e). Overall, our data
demonstrate that HDAC7 induces apoptosis presumably via
the activation of the p53 pathway.

HDAC7 represses the expression of c-Myc. Our findings
strongly indicate that HDAC7 exerts a strong anti-oncogenic
effect in pro-B-ALL and B-cell lymphoma. Given that HDAC7
is a transcriptional repressor, we wondered whether its
expression could lead to the repression of key oncogenes
in leukemia and lymphoma. We examined our microarray
data and looked for the presence of potential oncogenes in
the list of downregulated genes after HDAC7 expression.
Strikingly, we observed that the presence of HDAC7 resulted
in the downregulation of crucial genes with known oncogenic
potential, such as MYC, TERT and AICDA (Supplementary
Table 2). This finding was validated by RT-qPCR in both SD-1
and Namalwa cells (Figures 5a and b). Using the TRANSFAC
database, we found a significant enrichment of the binding
site motifs for MYC factors in the HDAC7-induced down-
regulated genes (Figure 5c). Moreover, we also found that
HDAC7 expression resulted in the reduction of c-Myc protein
levels (Figure 5d). Next we tested whether the ectopic
expression of c-Myc could prevent the cell growth arrest
induced by HDAC7 in both SD-1 and Namalwa cells. We
found that exogenous expression of c-Myc induced a
significant rescue of cell growth in cells treated with
doxycycline to express HDAC7. This finding further corrobo-
rates that the anti-oncogenic capacity of HDAC7 is mediated,
at least in part, by the downregulation of c-Myc in SD-1 and
Namalwa cells (Figure 5e). To confirm the relevance of our
finding we further analyzed the published microarray GEO
data set (GSE34861) and examined whether there was an
association between HDAC7 and c-Myc expression levels.
Strikingly, we found that a low level of expression of HDAC7
was significantly associated with high levels of c-Myc in
B-ALL patients (Figure 5f). These data strongly support the
hypothesis that HDAC7 posses an anti-oncogenic potential
on the B-cell malignancies studied.
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HDAC7 interacts with MEF2C, HDAC3 and SMRT and is
localized in the nucleus. Class IIa HDACs posses a highly
conserved C-terminal catalytic domain that mediates their
recruitment to a corepressor complex containing HDAC3 and
SRMT/N-CoR. In addition, class IIa HDACs contain a long
N-terminal region that has been shown to mediate their

interaction with tissue-specific TFs and their phosphorylation-
dependent subcellular localization. To gain an insight into
the mechanism of action of HDAC7, we first assessed its
subcellular distribution in Namalwa cells treated, or not,
with doxycycline. As expected, we found that ectopically
expressed HDAC7 was mainly localized in the nuclear
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compartment (Figure 6a). Next we tested the potential
requirement of both the TF-binding domain and the catalytic
domain in HDAC7-decreased cell viability. We generated
retroviral vectors carrying a C-terminal truncated construct
HDAC7 (1–487) that completely lacks the HDAC catalytic
domain but contains the MEF2 interacting motif, and an
N-terminal truncated construct HDAC7 (438–915) bearing the
enzymatic motif but lacking the MEF2 domain. Expression of
wild-type HDAC7 resulted in a significant decrease in the
viability of Namalwa cells, whereas the expression of HDAC7

(1–487) and HDAC7 (438–915) constructs did not have a
significant effect (Figure 6b). We have recently reported that
HDAC7 interacts with the TF MEF2C in B lymphocytes. To
address whether ectopically expressed HDAC7 specifically
interacts with MEF2C in Namalwa cells, we performed co-
immunoprecipitation experiments. We found that HDAC7
associated with MEF2C and not with other B-cell-specific TFs
in Namalwa cells (Figure 6c). We also observed that HDAC7
interacted with HDAC3 and SMRT (Figure 6c). It has been
proposed that HDAC7 lacks any enzymatic activity and that it
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upregulated genes. *Po0.05; **Po0.01. (d) TF-binding sites enriched in the upregulated genes after HDAC7 expression. p53 target genes are shown. (e) Representative
western blot of SD-1-1-Tet-On-Tight HDAC7 and Namalwa-1-Tet-On-Tight HDAC7 cells treated, or not, with doxycycline for the indicated times showing p53 phosphorylation and
acetylation status
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exerts its repressive function via the interaction with
HDAC3. However, the function of HDAC7 in the absence of
HDAC3 has not been properly studied. To address whether

HDAC7 induces cell growth arrest through the interaction
with HDAC3 in SD-1 and Namalwa cells, we performed
a loss-of-function experimental approach (Figure 6d).
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Strikingly, we observed that HDAC3 knockdown in both cell
lines reduced cell growth in the absence of HDAC7, indicating
that targeting HDAC3 would also have an anti-oncogenic
effect. However, in the presence of HDAC7, lowering HDAC3
levels did not lead to a rescue in the cell growth block induced
by HDAC7 (Figure 6e). This result indicates that HDAC7 may
possess an intrinsic enzymatic activity independent of
HDAC3. Next we wondered whether the expression of
HDAC7 partners could be deregulated in leukemia and
lymphoma cells expressing HDAC7. To test this possibility,
we determined the protein levels of HDAC3, MEF2C and
c-Myc in leukemia and lymphoma cell lines. As expected,
most of the cell lines express high levels of c-Myc (Figure 6f).
However, we did not observed differences in the expression
of HDAC3 between the cell lines tested (Figure 6f). This
supports the finding that HDAC7 exerts its anti-oncogenic
effect in an HDAC3-independent manner. Strikingly, we
observed that in contrast to SD-1 and Namalwa cells that
express the TF MEF2C, many of the other cell lines either
lack or express very low levels of this TF. Therefore, the
absence of MEF2C may explain why those cell lines can
tolerate normal HDAC7 levels. Altogether, these experiments
demonstrate that both the HDAC7–MEF2C interaction and its
catalytic domain, are necessary for HDAC7 to reduce the
viability of SD-1 and Namalwa cells.

Discussion

We present data demonstrating that the transcriptional
repressor HDAC7 has a potent anti-oncogenic effect in
particular types of B-ALL and B-cell lymphoma. First, we
report the loss of HDAC7 expression in pro-B-ALL patients
and in established B-ALL and B lymphoma cell lines. Second,
we show that HDAC7 expression induces apoptosis and
inhibits the oncogenic potential of the cell lines tested in vitro
and in vivo. Third, using genome-wide transcriptome profiling
we show that ectopically expressed HDAC7 induces the
expression of apoptotic genes and leads to the downregula-
tion of key oncogenes such as c-Myc. And fourth, we report
the key finding that samples from pro-B-ALL patients present
low levels of HDAC7, which are associated with high levels of
c-Myc expression.
The idea that HDACs are aberrantly overexpressed in

cancer has been prevalent for some time, to the point where it
is stated as dogma. In fact, inhibition of HDACs has been
reported to have promising effects in cancer treatment.18

However, most HDIs are disadvantaged by their lack of
enzyme specificity and have a broad range of potential side
effects.28 Our findings from this study reveal an unexpected
anti-oncogenic function for an HDAC in pro-B-ALL and B-cell
lymphoma. We demonstrated that the expression of
a crucial HDAC, HDAC7, for B lymphocyte biology is lost in
pro-B-ALL patients and in the B-ALL and B-cell lymphoma cell
lines, and that its re-expression has a potent anti-oncogenic
effect. In this regard, it is important to note that under-
expression levels, truncating or inactivating mutations in some
HDACs in cancer have also been reported.18 Recently,
Heideman et al.29 demonstrated that the reduction in HDAC1
and HDAC2 expression levels in vivo brings about T-cell
lymphomagenesis owing to a block in the early thymocyte

development. A different study demonstrated that the lack of
HDAC3 specifically in the liver leads to the development of
hepatocellular carcinomas.30 Therefore, our understanding of
the contribution of specific HDACs to a given cancer type
continues to be incomplete. Efforts are needed to establish
definitively the role of specific HDACs and whether they are
overexpressed, underexpressed or mutated in a particular
cancer. This will allow for the design and development of
HDAC isoform-specific HDIs or other molecules that can
modulate the expression of a particular HDAC.
Several reports have described a potential role for HDAC7 in

hematological malignancies.27,31–34 However, the functional
contribution of HDAC7 to B-ALL remains to be elucidated. In
an elegant study using a PiggyBac transposon screening
in mice, Rad et al.27 revealed that HDAC7 is a target gene in
hematopoietic cancers. In addition, HDAC7 has been shown
to be overexpressed in childhood ALL.34 This discrepancy with
our data could be explained by the different analytical methods
used in the two studies. Tone and colleagues analyzed
94 samples from childhood ALL patients, of which 78
corresponded to B-ALL and only 4 had a pro-B-ALL
immunophenotype.34 In the present work, we took advantage
of a data set obtained in an integrative epigenomic study
where they analyzed adult B-ALL patients distinguishing
different immunophenotypes.35 Performing an accurate ana-
lysis of the expression of HDAC7, we found that HDAC7 was
significantly underexpressed in pro-B-ALL patients. Therefore,
it is possible that Gonzaga and colleagues did not find low
levels of HDAC7 because pro-B-ALL was underrepresented in
their study.
Why is HDAC7 underexpressed in specific types of B-ALL

and B-cell lymphoma? Leukemogenesis and lymphomagen-
esis are complex malignant processes that may comprise a
broad number of driver mutations, rearrangements and
translocations in crucial genes, which are considered as
primary lesions. We speculate that the loss of HDAC7
expression in particular types of leukemia and lymphoma
may be the result of the transcriptome changes induced by a
specific primary lesion. Several mechanisms could account for
the loss of HDAC7 expression in leukemia and lymphoma.
First, it is possible that the HDAC7 gene suffers from DNA
methylation leading to its epigenetic silencing. A second
potential mechanism responsible for the deregulation of
HDAC7 is the action of microRNAs. In fact, another class IIa
HDAC, HDAC4, has been reported to be a target of miR-155 in
a Eu-miR-155 transgenic mouse model.36 Eu-miR-155 mice
exhibit high proliferation rates of pre-B cells and develop
lymphoma/leukemia. Croce and colleagues have shown that
miR-155 targets HDAC4, leading to its underexpression, and
that the ectopic expression of HDAC4 in diffuse large B-cell
lymphoma cells inhibits miR-155-induced proliferation and
increases the apoptosis of the cells.36 The elucidation of the
molecular mechanisms involved in the repression of HDAC7 in
pro-B-ALL and B-cell lymphoma is a current focus of study
in our laboratory. The modulation of HDAC7 expression in
specific types of B-ALL and B-cell lymphoma leading to the
induction of apoptosis and the downregulation of the c-Myc
oncogene may be a promising therapeutic pathway in future.
On the basis of this study, HDAC7 appears to be a promising
therapeutic target in these particular types of hematological
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disease. Our datawill help to generate new, highly specific and
personalized therapies for the treatment of pro-B-ALL and
B-cell lymphoma.

Materials and methods
Plasmids and retroviral supernatant generation. pRetro-X-Tight-Pur-
HDAC7 constructs were generated by cloning full length or deleted HDAC7 cDNAs
obtained by EcoRI digestion of the pcDNA3.1-HDAC7 plasmids into the pRetro-X-
Tight-Pur vector (Takara Bio, Otsu, Japan). MSCV-c-Myc-GFP retroviral vector was
obtained from Addgene (Cambridge, MA, USA). pLKO.1-shHDAC3KD1-GFP and
pLKO.1-shHDAC3KD2-GFP constructs were generated by cloning two validated
shRNAs sequences that target HDAC3 (SIGMA, St. Louis, MO, USA), into the
pLKO.1-GFP lentiviral vector. For retrovirus generation, pRetro-X-Tight-Pur-HDAC7
and pRetro-X-Tet-On-Advanced (Takara Bio) plasmids were transfected into the
packaged cell line Platinum-E and the supernatant was collected 48 h post
transfection. For lentivirus generation, the generated constructs were transfected
into 293 T cells together with enveloped and packaging plasmids and supernatant
was collected 48 h post transfection.

Retroviral transduction and doxycycline treatment. Inducible
HDAC7 expression in SD-1 and Namalwa cell lines was achieved by the generation
of the SD-1 and Namalwa Tet-On-Tight-HDAC7 cell lines. In brief, SD-1 and
Namalwa cells were first infected with the supernatant containing the pRetro-X-Tet-
On-Advanced viral particles overnight and 72 h later selected with 1.5 μg/ml
geneticin (GIBCO, Carlsbad, CA, USA). Next the selected cells were infected with
the pRetro-X-Tight-Pur-HDAC7 viral particles overnight and after 72 h selected with
3 μg/ml puromycin. For HDAC7 expression, cells were treated with 500 ng/ml of
doxycycline for the indicated periods. For c-Myc expression or HDAC3 knockdown,
SD-1 and Namalwa Tet-On-Tight-HDAC7 cell lines were transduced with MSCV-
Empty-GFP, MSCV-c-Myc-GFP, pLKO.1-GFP and pLKO.1-shHDAC3KD1+KD2-GFP
and GFP-positive cells were sorted by flow cytometry.

Proliferation and cell cycle assays. For the MTT assays, 5 × 104 cells
were plated onto 24-well plates. At different times, MTT was added at a final
concentration of 5 mg/ml. After incubation for 3 h (37 °C, 5% CO2), the blue
formazan derivative was solubilized in dimethyl sulfoxide and the absorbance was
measured at 570 nm. Cell proliferation was also assessed by cell counting. Cell
cycle and apoptosis were assessed by propidium iodide staining (distribution of cells
in G0/G1, S and G2/M phase, and in SudG0) followed by flow cytometry analysis
using a Gallios flow cytometer (Gallios, Beckman-Coulter, Brea, CA, USA).

Co-Immunoprecipitation assays. Co-immunoprecipitation assays were
performed as previously described in.26

Mouse xenograft assay. Five-week-old male athymic nu/nu mice (Charles
River, Wilmington, MA, USA), housed under specific pathogen-free conditions, were
used in this study. To minimize tumor growth dispersion observed by subcutaneous
injection of SD-1 cell line, SD-1-Tet-On-Tight-HDAC7 cells were developed in two
steps: (i) 5 × 106 SD-1-Tet-On-Tight-HDAC7 cells were subcutaneously injected into
the back of n= 5 animals. Once the tumors grew, they were harvested, cut into
equal size small fragments and subcutaneous transplanted into the back of other
nude mice. Mice bearing subcutaneous engrafted tumors (150–200 mm3) were
randomly allocated in the two treatment groups: (i) mice drank 1% glucose; and (ii)
drank 1% glucose plus 2 mg/ml doxycycline in water. The tumor growth was
recorded twice per week and tumor volume (in mm3) was estimated according to
the formula V= π/6 × L ×W2.(W) width and (L) length. For Namalwa-Tet-On-Tight-
HDAC7 cells (1.5 × 106) were injected orthotopically into the middle of the spleen
and the tumors were monitored by palpation twice a week. Likewise, mice were
randomly allocated in the two treatment groups: (i) mice drank 1% glucose; and (ii)
drank 1% glucose plus 2 mg/ml doxycycline in water. At the time of killing (30 days
after induction in SD-1 cells and 15 days for Namalwa cells) all the tumors were
excised and weighed, analyzed macroscopically and by hematoxylin and eosin
tissue staining for histological assessment. All experiments were approved by the
IDIBELL animal care and use committee.

Immunofluorescence. Tumors were fixed in 4% formaldehyde overnight at
4 °C, embedded in paraffin wax and sectioned at 4 μm. For immunofluorescence staining,
antigen retrieval was performed in 10mM sodium citrate (pH 6.0). Tumor sections were

blocked with 5% horse serum in phosphate-buffered saline for 1 h at room temperature
and incubated with primary antibodies overnight at 4 °C. The primary antibody used
was anti-Ki67 (Thermo Scientific, Alcobendas, Spain). Tumor sections were then
incubated with secondary antibodies for 1 h at room temperature. Nuclei were
stained using 4′,6-diamidino-2-phenylindole. Samples were imaged on a Leica TCS
SP5 spectral confocal microscope (LEICA, Barcelona, Spain), with a 63XNA 1.4
objective and using the LASAF software version 7 (LEICA). Microphotographs were
analyzed with Fiji software (http://fiji.sc/). In brief, images were analyzed in gray
scale and median filtered. More than 2400 cells per animal (three glucose; three
glucose+Doxy) where analyzed in Ki67 staining and apoptotic nuclei.

Western blot. Western blot analysis was performed according to standard
procedures. Western blots were developed with the ECL detection kit (Amersham
Biosciences, Pittsburgh, PA, USA).

RT-qPCR expression analyses. RT-qPCR analysis were performed as
previously described in.20

GSE34861 analysis. Expression profiling (microarray) of 191 samples of adult
B-lineage ALL and 3 normal pre-B samples were extracted from GEO database
(GSE34861). Raw data were robust multichip average (RMA) normalized using the
RMA algorithm in NimbleScan 2.5 software (Roche NimbleGen, Inc, Basel,
Switzerland). For differential expression analysis, average Log2 expression of the
normal samples were subtracted from each cancer patient expression data (Log2
value) for each gene using in house python script. The association between the
immunophenotypes of the various B-ALL patients and the downregulated levels of
HDAC7 was examined using the Fisher test. Two HDAC7 probes were analyzed:
cds1 Homo sapiens histone deacetylase 7A (HDAC7A), transcript variant 1, mR and
cds2 Homo sapiens histone deacetylase 7A, mRNA (cDNA_clone_MGC:74915_
IMAGE:6179239), complete cds. Both the probes were normalized with respect to
values of healthy patients. GSE34861 data were analyzed under R statistical
language. The q-values where obtained from multiple correction by false discovery
rate (FDR). The odds ratio (OR) shows the association between ALL
immunophenotype and the downregulation of HDAC7. If an OR41 indicates that
ALL immunophenotype is positively associated with having downregulated levels of
HAC7, whereas ORo1 indicates negative association between having the specific
ALL immunophenotype and HDAC7 downregulation. An OR= 1 indicates no
association between ALL immunophenotype and HDAC7 expression. To identify the
associations between the characterized cytogenetic features of B-ALL and low
levels of HDAC7 expression we applied the Wilcox test. Data were analyzed using
the R statistical language. To assess the correlation between c-MYC and the two
HDAC7 probes in the 191 B-ALL patients the Pearson correlation coefficient was
computed (rho) and linear regression was performed.

Microarray experiments. SD-1 Tet-On-Tight-HDAC7 or SD-1 cells were
treated or not for 24 h with doxycycline and collected in Trizol reagent (Invitrogen,
Carlsbad, CA, USA). RNA was extracted as described above. PCR-amplified RNAs
were hybridized against an Affymetrix human array chip (Affymetrix Human
Genome U219 Strip, Santa Clara, CA, USA) at the IRB genomics facility. Affymetrix
raw CEL files have been deposited in the GEO database (GSE51895).

Microarray analysis. Expression data were analyzed using the R statistical
program. The RMA method was applied to the raw data. This comprises
three steps: convolution background adjustment, probe-level quantile normalization
and median polish summarization. Linear model analysis (LIMMA package,
Bioconductor) was used to identify the significant upregulated and downregulated
genes. A FDR multiple test was applied to the P-values obtained from the LIMMA
procedure; the upregulated and downregulated genes were considered to be
significant for the values of adjusted P≤ 0.05. Values of log2FC≥ 0.5 and
log2FC≤ 0.5, respectively, indicated the upregulated and downregulated genes.

Functional and pathway enrichment analysis. Functional annotation
of differentially expressed genes was based on GO (Consortium, 2000; http://www.
geneontology.org) as extracted from the EnsEMBL and the KEGG pathway
databases. Accordingly, all genes were classified into ontology categories. We took
only the GO/pathway categories that had at least 10 annotated genes. We used
GiTools for enrichment analysis and heatmap generation 37(www.gitools.org). The
resulting P-values were adjusted for multiple testing using Benjamin and Hochberg’s
FDR method.
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Putative TF motif occurrence in promoter region. The possible
occurrence of the TF motif in the promoter region (500-bp upstream and 200-bp
downstream of the transcription start site) was predicted with the STORM
algorithm,38 applying a cutoff of P= 0.0000125 and position frequency matrices
from the TRANSFAC database39 (professional version release 2009.4).

Statistical analyses. All data, except those from the arrays, were analyzed
using GraphPad Prism5 (GraphPad, San Diego, CA, USA). Student’s t-test and one-
or two-way ANOVA, incorporating Bonferroni multiple comparisons, were carried out
to evaluate the differences between the groups.
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Supplementary Figure legends 

Supplementary Figure 1. HDAC7 is a specifically expressed in lymphoid cells. 

HDAC7 expression levels in murine hematopoietic cell populations obtained from the 

Immgen public database. Numbers in the x axis represent post-normalized gene 

expression values. The labels shown in the y axis represent different immune cellular 

subtypes. A precise description of each cell type and how they were purified is 

provided in Immgen.org. 

Supplementary Figure 2. HDAC7 expression blocks SD-1 cell growth. (a) and (b) 

Tom-1 and Raji cells were transduced to express HDAC7 in a doxycycline-inducible 

manner. Representative western blots showing HDAC7 protein levels after cell 

treatment with doxycycline. Mean ± SEM of the absorbance units from 3 independent 

MTT assays performed in triplicate. (c) Western blots showing HDAC4 and HDAC9 

protein levels in SD-1-Tet-On-Tight-HDAC7 and Namalwa-Tet-On-Tight-HDAC7 cells 

treated or not with doxycycline. 

Supplementary Figure 3. Forced expression of HDAC7 in SD-1 and Namalwa cell 

lines blocks their proliferation capacity and induces apoptosis. (a) Cell cycle and 

apoptosis were assessed by PI-staining. Distribution of the cells in G0/G1, S, G2/M 

phases and subG0 was analyzed by flow cytometry. Representative histograms at the 

indicated times after doxycycline SD-1-Tet-On-Tight-HDAC7 cell treatment are shown. 

cells in G1, S, G2/M phases and subG0 was analyzed by flow cytometry. 

Representative histograms at the indicated times after doxycycline SD-1 cell treatment 

are shown. (b) and (c) show the percentage of cells in G0/G1, S, G2/M phases from 3 

independent experiments with (b) SD-1 and (c) Namalwa cells treated or not with 

doxycycline for the indicated times. * p < 0.05; ** p < 0.01.  
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Supplementary Figure 4. HDAC7 expression reduced the number of KI67-

positive cells and promoted an increase in the number of apoptotic nuclei. Panel 

(a) shows the percentage of cleaved caspase 3 positive cells and panel (b) shows the

frequency of Ki67-positive cells in the Namalwa-Tet-On-Tight-HDAC7 xenographic 

assay. More than 2400 cells per animal (3 glucose; 3 glucose + Doxy) were analyzed. 

* p < 0.05. (c) Percentage of condensed or fragmented nuclei of all nuclei from > 2400

cells per animal (3 glucose; 3 glucose + Doxy). ** p < 0.01. Fluorescence 

photomicrographs of representative fields are shown. Scale bar: 25 µm. 

Supplementary Figure 5. Heatmap and clustering analysis of the differentially 

expressed genes. Heatmap and clustering analysis of the differentially expressed 

genes is shown.  

Supplementary Datasets  

Supplementary Dataset 1. List of upregulated genes after HDAC7 expression in SD-

1 cells.  

Supplementary Dataset 2. List of downregulated genes after HDAC7 expression in 

SD-1 cells.  

Supplementary Tables 

Supplementary Table 1. HDAC7-induced genes belonging to apoptosis, immune 

processes and cancer categories.  SD-1 Tet-On-Tight-HDAC7 or SD-1 cells were 

treated or not for 24 hours with doxycycline and RNA was collected. Samples were 

subjected to the Affymetrix Human Genome U219 Strip array. Expression data were 

analyzed using the R statistical language. The robust multichip average (RMA) method 

was applied to the raw data. The LIMMA package was used to identify informative 
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upregulated and downregulated genes, p < 0.005. An FDR multiple test was applied to 

the p-values obtained by the LIMMA procedure; upregulated and downregulated 

genes were considered to be informative for values of adjusted p < 0.05. Distribution 

of enriched genes upregulated in apoptosis, immune system and/or cancer biological 

categories (FC, n-fold change vs. control). 

Supplementary Table 2. HDAC7-repressed genes belonging to immune 

processes and cancer categories.  SD-1 Tet-On-Tight-HDAC7 or SD-1 cells were 

treated or not for 24 hours with doxycycline and RNA was collected. Samples were 

submitted to the Affymetrix Human Genome U219 Strip array. Expression data were 

analyzed using the R statistical language. The robust multichip average (RMA) method 

was applied to raw data. The LIMMA package was used to identify informative 

upregulated and downregulated genes. An FDR multiple test was applied to the p-

values obtained using LIMMA procedure; upregulated and downregulated genes were 

considered to be informative for values of adjusted p < 0.05 Distribution of enriched 

genes downregulated in apoptosis, immune system and/or cancer biological 

categories (FC, n-fold change vs. control). 
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Supplementary Table S2. HDAC7 repressed genes belonging to immune 

processes and cancer categories.   

Log2FC pValue 
Gene 
Symbol Apoptosis 

Immune 
System Cancer Nature 

-1,5 3,41E-05 TNFRSF19 *	   TNF-receptor superfamily 

-1,5 8,84E-07 IGFBP3 *	  
insulin-like growth factor binding protein (IGFBP) 
family 

-1,5 7,42E-05 ARHGAP18 *	   Rho GTPase-activating protein 

-1,4 4,12E-03 AICDA *	   * RNA-editing deaminase 

-1,2 1,90E-04 VAV3 *	  
Guanine nucleotide exchange factor for RHO 
GTPASES 

-1,1 4,04E-04 ZFAT *	   Transcription factor 

-1,1 2,71E-05 CERKL *	   Ceramide kinase-like protein 

-1,1 4,30E-05 TERT *	   Telomerase 

-1,0 1,66E-04 ITGA4 *	   *	   Integrin alpha subunit 

-1,0 1,23E-03 MYC *	   Multifunctional nuclear phosphoprotein 

-0,9 2,50E-03 GNG7 *	   Guanine nucleotide-binding protein γ-7 

-0,9 2,47E-04 IRF4 *	   *	   Lymphoid-specific interferon regulatory factor 

-0,9 5,16E-04 CTSC *	   A papain-like cysteine protease 

-0,8 7,52E-05 DHX33 *	   DEAD box protein 

-0,7 4,48E-04 MTDH *	   Cell adhesion mollecule 

-0,7 1,52E-03 MYBBP1A *	   Nucleo-cytoplasmic transporter protein 

-0,7 1,39E-03 EEF1E1 *	   Peptide elongation factor 

-0,7 5,46E-04 PNO1 *	   Rna binding protein 

-0,7 1,12E-03 MGLL *	   Serine hydrolase of the AB hydrolase superfamily 

-0,6 2,30E-03 TNFRSF13B *	   TNF-receptor superfamily member 

-0,5 2,47E-03 TPD52 * Neoplasm protein
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SUMMARY OF RESULTS 

Among the transcriptional regulators involved in the activation of B cell specific genes 

and the repression of lineage inappropriate genes, HDAC7 emerged as an important 

transcriptional repressor of myeloid genes in pre-B cells which becomes down-regulated 

upon trans-differentiation of pre-B cells into macrophage-like cells. Our main goal, 

englobed in this thesis, has consisted on studying the role of HDAC7 during early B 

lymphocyte development by using an in vivo conditional knockout mouse model. 

Additionally, the role of HDAC7 in B cell acute lymphoblastic leukemia (B-ALL) and 

Burkitt lymphoma cell lines has been studied by using in vitro and in vivo approaches. 

 

1. HDAC7 is critical for early B cell development through repression of non-B cell 

genes 

In order to elucidate the role of HDAC7 in B cell development in vivo, our group 

developed a conditional knockout mouse model in which HDAC7 is deleted at the pro-B 

cell stage. First analysis of cell numbers in bone marrow and spleen from wild-type and 

Hdac7fl/- mice revealed that the second group presented a significant reduction by 30% 

and 45% in the respective organs. Interestingly, analysis of separated cell stages by flow 

cytometry showed that HDAC7 deficiency lead to a block at the pro-B cell stage, as pro-

B cell number increased significantly in HDAC7 deficient mice, whereas pre-B cells and 

immature B cells underwent a dramatic fall in their numbers. Cell death rate of HDAC7 

deficient pro-B and pre-B cells was greater than control cells. Given that HDAC7 

appears to be a transcriptional repressor specific for B cells, a gene expression profile 

was required in order to elucidate whether HDAC7 represses lineage or functionally 

inappropriate genes preserving B cell identity. Results from microarray experiments 

showed that HDAC7 deficiency led to up-regulation of >1700 genes and down-regulation 

of >1400 genes. Relevant up-regulated genes include myeloid and T-cell genes such as 

Itgam and Cd28, whereas expression of B lineage genes such as Pax5 or Cd19 did not 

change their expression depending on HDAC7. These results indicate that HDAC7 

promotes proper early B cell development by repressing non-B cell genes.  

 

2. HDAC7 exert its action through direct recruitment by MEF2C to the promoter 

and enhancer of inappropriate lineage genes  

Our group had previously demonstrated that HDAC7 interacts specifically with the TF 

MEF2C in pre-B cells but not with other B cell-specific TFs (Barneda-Zahonero et al., 
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2013). Thus, we investigated whether HDAC7 is directly recruited to MEF2 binding sites 

of non-B cell genes promoters in pro-B cells by chromatin immunoprecipitation (ChIP) 

experiments. Interestingly, HDAC7 was recruited at MEF2 sites located in the promoters 

and enhancers of lineage inappropriate genes such as Itgam and Cd69. Similarly, there 

was a significant increase in the enrichment of the active histone marks H3(K9K14)ac, 

H3K27ac and a decreased enrichment of the repressive histone mark H3k27me3 at 

promoters and enhancers of alternative lineage genes upon HDAC7 deletion in pro-B 

cells. As expected, enrichment at Pax5 regulatory regions did not change depending on 

HDAC7 presence. These results agree with the gene expression profiles obtained in 

microarray experiments. Next, we performed a ChIP-seq experimental approach in order 

to map H3(K9K14)ac enrichment in all genomic regions in wild-type and Hdac7fl/- pro-B 

cells. Accordingly, myeloid genes such as Itgam or Cd69 and T cell genes such as Cd28 

possess increased H3(K9K14)ac enrichment upon HDAC7 deficiency in promoter and 

enhancer regions. Finally, in order to definitively demonstrate the specific recruitment of 

HDAC7 by MEF2C, Hdac7fl/- B cells were transduced with retroviral vectors containing 

functional HDAC7 (H7WT) and truncated HDAC7 (H7ΔMEF), which is unable to interact 

with MEF2C. Wild-type pro-B cells were transduced with an empty vector (MIG) as an 

experimental control. Expression of normal HDAC7 in knockout cells lead to a significant 

reduction in expression of Itgam and Cd69 genes, whereas expression of truncated 

HDAC7 produced the same effect on Itgam and Cd69 as the empty vector. The same 

results were observed by performing flow cytometry experiments in which Mac-1 

expression in splenic knockout B cells was reduced upon normal HDAC7 expression. 

Thus, these results confirm that the interaction between HDAC7 and MEF2C is crucial 

for HDAC7 repressive action 

 

3. HDAC7 represses Tet2 in pro-B cells 

Notably, among the genes analyzed in microarray experiments, Tet2 appeared in the 

group of up-regulated genes in HDAC7 deficient pro-B cells. RT-qPCR experiments then 

confirmed that the absence of HDAC7 from pro-B cells leads to a significant increase in 

the expression of Tet2. Using the reprogramming system developed by Graf lab in which 

our group reported that HDAC7 is progressively downregulated upon trans-differentiation 

of pre-B cells into macrophages (Barneda-Zahonero et al., 2013), we observed that Tet2 

becomes up-regulated during this process and that exogenous HDAC7 expression 

prevents the up-regulation of Tet2. As expected, forced expression of HDAC7 had no 

influence on the expression of Pax5. To further corroborate that HDAC7 is involved in 

Tet2 gene silencing, western blot experiments showed Tet2 protein levels of purified 
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bone marrow B cells from wild-type and HDAC7-deficient mice. Tet2 levels in HDAC7-

deficient B cells were higher than levels from control B cells and similar to non-B cells. 

Finally, public data from the Immgen database classify HDAC7 as a potential negative 

and unique regulator of Tet2. Together, these findings indicate that HDAC7 acts as a 

Tet2 transcriptional repressor in B cell progenitors.  

 

4. HDAC7 is recruited to the promoter and enhancer of the Tet2 gene in pro-B cells 

Further supporting the notion that Tet2 is an HDAC7 repressed gene in B lymphocytes, 

data from ChIP-sequencing experiments showed an increase in H3k9k14ac enrichment 

at both Tet2 promoter and enhancer in HDAC7-deficient pro-B cells. HDAC7 was 

recruited to both promoter and enhancer loci of the Tet2 gene, indicating that it is a direct 

target. In addition, HDAC7 absence from pro-B cells lead to a significant increase in the 

enrichment of the active histone marks H3(K9K14)ac and H3K27ac, and a decreased 

enrichment in the repressive histone marks H3K27me3 and H3K9me3. These data 

demonstrate that HDAC7 is involved in maintaining low levels of Tet2 in pro-B cells 

through interaction with MEF2C and recruitment to its promoter and enhancer. 

 

5. HDAC7 deficiency leads to an increase in 5-hydroxymethylation in pro-B cells 

The finding that HDAC7 is involved in maintaining low levels of Tet2 in pro-B cells 

suggest that it may have a potential and unprecedented role in DNA 5-

hydroxymethylation and methylation status. To investigate this hypothesis, the global 

levels of 5-hmC in wild-type and HDAC7-deficient pro-B cells were determined by ELISA 

assays. The absence of HDAC7 led to a significant increase in global 5-

hydroxymethylation levels in pro-B cells. Next, we performed a hMeDIP-sequencing 

genome-wide experimental approach in order to map 5-hmC distribution and enrichment 

across genome depending on HDAC7. 5-hmC mark was increased in myeloid and other 

inappropriate lineage genes such as Jun in HDAC7 deficient conditions. In fact, RNA-

sequencing and ATAC-sequencing data from Immgen database corroborates our 

results, as the increased 5-hmC mark in HDAC7 deficient pro-B cells coincide with 

increased expression and chromatin accessibility of Jun in macrophages compared to 

control B cells. HMeDIP-qPCR experiments validated the obtained results from 

sequencing experiment showing the increase in 5-hydroxymethylation at regulatory 

regions of inappropriate lineage genes such as FosL2 and Jun. RT-qPCR experiments 

confirmed an up-regulation in the expression of selected myeloid genes. These results 

show that HDAC7 plays a role in the DNA hydroxymethylation status at both global and 
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individual levels through Tet2 repression and that this hydroxymethylation is linked to 

demethylation and subsequent expression activation of target genes. 

 

6. HDAC7 regulates expression of micro-RNAs and 5-hmC of L1 transposable 

elements 

Strikingly, additional results revealed that there was an increased enrichment in 5-

hydroxymethylation in some repetitive genome regions (LINE-1 retrotransposons) upon 

the absence of HDAC7. Previous published data revealed that TET proteins (especially 

TET1 and TET2) are recruited at the extreme 5’UTR of LINE-1 elements in embryonic 

stem cells (ESCs) (de la Rica et al., 2016). Given that deletion of HDAC7 leads to an up-

regulation of Tet2 expression, this can produce an increase in TET2 recruitment and 5-

hmC enrichment at LINE-1 elements. In order to investigate whether 5-

hydroxymethylation might be correlated to expression in these genomic regions, we 

performed RT-qPCR experiments for L1 transcripts including transcript of the chaperon-

like protein (ORF1p). Notably, expression of 1 transcript increased in HDAC7 deficient 

pro-B cells. These results shed light on the potential role of HDAC7 in regulating 

somehow L1 transposon methylation and activity. Alternatively, selected microRNAs 

such as miR125-b also presented increased 5hmC enrichment in pro-B cell from 

Hdac7fl/- mice. We wondered whether HDAC7 might be silencing inadequate genes and 

preserving B cell identity through micro-RNA expression. Thus, we performed miRNA 

profiling by using a quantitative PCR-based panel containing over 375 different miRNAs 

(miRCURY LNATM microRNA Array (Exiqon)) in wild-type and HDAC7 deficient pro-B 

cells. Among them, 25 microRNAs presented significant differential expression between 

control and HDAC7 deficient pro-B cells. They are represented in a heat map and were 

validated with RT-qPCR experiments.  Among up-regulated miRNAs in HDAC7 deficient 

conditions, we obtained miR125b-5p, a micro RNA more abundant in macrophage cells 

than other immune cell types and up-regulated in several types of leukemia, and miR-

34a, a miRNA that blocks B cell development (Chaudhuri et al., 2012; Rao et al., 2010). 
 

7. HDAC7 is down-regulated in some leukemia and lymphoma cell types  

The de-regulation of specific transcriptional programs involved in B lymphocyte 

development might result in a block in B-cell proliferation and differentiation, 

promoting the development of hematological malignancies such as leukemia and 

lymphoma. The study of the role of transcriptional repressors in normal and aberrant 

B lymphopoiesis is still incomplete, as HDAC’s contribution to tumor-suppressing and 

oncogenic functions and the use of HDAC inhibitors for cancer therapy have been 
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controversial during the last years. We report that HDAC7 is under-expressed in pro-B 

acute lymphoblastic leukemia (pro-B-ALL) and Burkitt lymphoma. In addition, in vivo 

(xenograft models) and in vitro approaches demonstrated that ectopic expression of 

HDAC7 blocks cell proliferation, induces apoptosis, give rise to the downregulation of 

c-Myc and inhibits the oncogenic potential of cells. Notably, we also observed that low 

levels of HDAC7 expression in B-ALL patient samples correlated with the increased 

levels of c-Myc. Remarkably, role of HDAC7 on apoptosis induction is independent of 

HDAC3 function and that requires MEF2C interaction to exert its function. Altogether, 

our findings report that HDAC7 has a potent anti-oncogenic effect on selected blood 

cancers and that its de-regulation may contribute to the tumorigenesis in B 

lymphocytes. 
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DISCUSSION 

How do cells decide to acquire their final identity to generate specific tissues and 

organs? For many years, this has been a fundamental question for basic and clinical 

researches that work in the field of cell development. Hematopoiesis has been an 

extensively studied model to answer this question. Within the hematopoietic system, 

the generation and differentiation of B lymphocytes is a complex process that takes 

place in a step-wise manner and requires a tight regulation. Indeed, genetic and 

epigenetic programs are dynamically modified at each cellular transition. This is 

achieved by the action of specific networks of TFs (Bruna Barneda-Zahonero B et al., 

2012, 2012; Parra, 2009; Recaldin & Fear, 2016). The concept that gene silencing is 

essential for proper cell differentiation and development has been considered for many 

years. Notably, aberrant establishment of inappropriate transcriptional programs may 

lead to the development of B cell malignancies. Critical TFs for B cell development and 

differentiation are not only involved in the activation of B cell specific genes, since they 

are also involved in the repression of undesirable genes, ensuring maintenance of 

proper B cell identity and differentiation (Delogu et al., 2006; Ikawa et al.,2004; Kong, 

et al., 2016; Nechanitzky et al., 2013; Pridans et al., 2008; Ramírez, Lukin, & Hagman, 

2010; Stehling-Sun et al., 2009). However, how gene silencing is established and 

which lineage-specific transcriptional repressors are involved during hematopoiesis and 

B cell lymphopoiesis are still unsolved questions in the field. 

1. The transcriptional repressor HDAC7 is a key regulator of early B cell 

development  

The Cellular Differentiation group found that HDAC7 is highly expressed in pre-B cells 

and not in myeloid cells such as macrophages (Barneda-Zahonero et al., 2013), 

pointing to its potential role as a B cell-specific transcriptional repressor. Using a pre-B 

cell to macrophage reprogramming system, our laboratory observed that HDAC7 is 

dramatically downregulated during cellular conversion. Exogenous HDAC7 expression 

abrogates the functional capacities of the reprogrammed macrophages and the 

establishment of macrophage gene transcriptional program (Barneda-Zahonero et al., 

2013).  Interestingly, several studies reported that Hdac7 is a potential target gene of 

the TFs PAX5, E2A, EBF1 and FOXO1 in pro-B cells (Revilla-i-Domingo et al., 2012; 

Lin et al., 2010b). Additionally, Young and colleagues showed that the Hdac7 gene 

carries a super-enhancer occupied by PU.1 in pro-B cells (Whyte et al., 2013). These 

data support our hypothesis that HDAC7 may be a master transcriptional repressor 

during early B cell development.  
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During the execution of this PhD thesis, by using a mouse model for specific deletion of 

HDAC7 in pro-B cells, we have demonstrated that HDAC7 is a transcriptional repressor 

crucial for early B cell development (Azagra et al., 2016). In pro-B cells, HDAC7 

represses lineage inappropriate genes such as Itgam and Cd28 characteristics of 

macrophages and T cells, respectively. 

Additional evidences supporting the relevance of HDAC7 for B cell development are 

based on the dramatic impairment in the transition from pro-B to pre-B cells in HDAC7-

deficient mice, similarly to other critical TFs for B cell development such as PAX5 (Nutt 

et al., 1997). Increased cell death rate in pro-B and pre-B cells (statistically significant 

in the second case) and reduced total number of cells in spleen and bone marrow in 

Hdac7fl/- mice indicate that both B cell stages are more prone to apoptosis in the 

absence of HDAC7. Despite Annexin-V test did not present significant differences in 

apoptosis rates between control and HDAC7 deficient pro-B cells, we observed the 

upregulation of Trp53 and other apoptotic-related genes. Thus, alternative cell 

programed death processes (such as necroptosis or pyroptosis) may be a priori 

discarded and we could speculate that the increased cell death of HDAC7 deficient 

pro-B cells could be due to a higher susceptibility to apoptotic processes (Tait et al., 

2014). 

Next, we aimed to decipher the mechanism of action of HDAC7 during early B cell 

development. Given that HDAC7 interacts with the TF MEF2C and that MEF2C binding 

motifs are found at promoters of HDAC7 targets genes in pre-B cells (Barneda-

Zahonero et al., 2013), we wondered whether HDAC7 was be recruited by MEF2C to 

lineage inappropriate genes in wild-type pro-B cells. Chromatin immunoprecipitation 

(ChIP) experiments corroborated this hypothesis as both HDAC7 and MEF2C were 

recruited at the promoters of myeloid and T cell genes in pro-B cells. Furthermore, 

gain-of-function experiments revealed that the interaction between the two proteins is 

required for HDAC7 repressing function. The induction of a truncated form of HDAC7 in 

pro-B cells from Hdac7fl/- mice was unable to interact with MEF2C and, consequently, 

did not suppress the upregulation of Itgam and Cd69 genes. Thus, these results 

demonstrate that HDAC7 is recruited at both the promoter and the enhancers of its 

targets genes through TF MEF2C in pro-B cell stage (Figure 1).  

As an epigenetic regulator, HDAC7 is thought to modulate histone marks enrichment, 

in particular histone acetylation, in pro-B cells. During the analysis of histone marks 

enrichment at HDAC7 target genes, we observed that H3(K9/K14)ac and H4K16ac 

were already present at the promoters of target genes in wild-type pro-B cells. 
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However, the absence of HDAC7 in pro-B cells produced a significant increase of both 

histone marks and a decrease of the repressive mark H3K27me3 in the promoters of 

its target genes. The concept that pro-B and pre-B cells present some grade of cellular 

plasticity, in which alternative lineage genes may be poised and silenced in a reversible 

manner is supported by three evidences. First, active histone marks are slightly 

enriched at macrophage genes in wild-type pro-B cells. Second, the deletion of specific 

B cell regulators alters the lineage expression pattern. And third, variations in levels of 

selected TFs such as C/EBP family members can change initial cell fate decisions, 

leading to conversion of precursor B cells into functional myeloid cells such as 

macrophages or granulocytes (Cirovic et al., 2017; Cobaleda and Busslinger, 2008). 

This plasticity is guided by multiple factors, including the TFs PAX5, C/EBPα, Myc, 

chromatin regulators and three-dimensional (3D) chromatin conformation, which in 

coordination modulate lineage specific gene signatures, orchestrate cell commitment 

and fate decisions and determine the predisposition of a cell to transdifferentiate 

efficiently (Boya et al., 2017; Francesconi et al., 2019). 

Given that the active histone marks H3(K9K14)ac are present in bivalent promoters 

and enhancers in addition to active promoters in murine ES cells (Karmodiya et al., 

2012), we looked for other genomic regions with H3(K9/K14)ac enrichment in wild-type 

and HDAC7 deficient pro-B cells in our ChIP-seq experiment. Interestingly, Graf and 

colleagues determined the presence of enhancers at myeloid genes in pre-B cells. 

During the transdifferentiation of pre-B cells into macrophages, the myeloid TF C/EBPα 

can bind to pre-existing enhancers already bound by PU.1 or to de novo enhancers, 

both of them myeloid enhancers in pre-B cells (van Oevelen et al., 2015). Notably, by 

examining our ChIP-seq data for those enhancers in myeloid genes with H3(K9K14)ac 

enrichment in pro-B cells, we found that pre-existing enhancers bound by PU.1 were 

indeed occupied by H3(K9/K14)ac mark in wild-type pro-B cells and presented an 

increased enrichment in HDAC7 deficient pro-B cells. Some studies indicated that 

enhancer priming has a scarce contribution to lineage specification (either lymphoid or 

myeloid), since most of enhancer activity comes from de novo generation and 

repertoire of activated enhancers in progenitor cells differs almost completely from 

mature cells (Choukrallah et al., 2015; Luyten et al., 2014). However, our findings 

support the fact that epigenetic machinery presents a key function in conferring 

plasticity through enhancer priming or poising and, consequently, in preventing 

alternative lineage genes from being activated in pro-B cells in a reversible manner.  

Consistent with our observation, we found that HDAC7 is also recruited to enhancers of 

Itgam and Cd69 genes, and that H3(K9K14)ac, H4K16ac and H3K27ac are higher 
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enriched at these loci in HDAC7 deficient pro-B cells compared to wild-type cells. The 

increased enrichment of H3K27ac at enhancers of macrophage genes in Hdac7fl/- pro-

B cells supports the evidence of close relationship existing between enhancer’s activity 

and cell identity (Creyghton et al., 2010).  

Several studies have correlated an increase in H3K27ac enrichment at global levels 

with some hematological malignancies, such as myeloid leukemia with MLL-AF9 fusion 

protein expression. In fact, the increase of enrichment of several active histone marks 

and the decrease of repressive marks such as H3K27me3 at regulatory regions of 

lineage inappropriate lineage might produce a histone methylation-to-acetylation 

change that may trigger hematological malignancies progression and, therefore, endow 

HDAC7 with a potential preventive role in tumor development (Sun et al., 2015). The 

connection between HDAC7 and hematological diseases will be discussed in the last 

part of the discussion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1.  HDAC7 represses the expression of lineage inappropriate genes in pro-B cells.  In wild-

type pro-B cells (left), HDAC7 is recruited to regulatory regions of lineage inappropriate genes through the 

interaction with the TF MEF2C in order to repress their expression. In pro-B cells where Hdac7 gene is 

cleft by Cre recombinase activity (right), there is an aberrant activation of these alternative lineage genes.   

 

 

2. Role of HDAC7 in DNA 5-hydroxymethylation in B cell progenitors 

Interestingly, the gene encoding for the TET2 enzyme was found among the set of 

upregulated genes upon HDAC7 deletion in pro-B cells. While HDAC7 has a specific 

lymphoid expression pattern, TET2 is an enzyme broadly expressed in the 
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hematopoietic system including B cells but reaches highest expression levels in 

myeloid cells (Ko et al., 2010; Kallin et al., 2012; Barneda-Zahonero et al., 2013). 

Despite several studies have reported a relevant role of TET2, in cooperation with 

TET3, during B cell development and differentiation, as well as its abundant presence 

through this lineage, others have observed that it becomes essential for proper 

myelopoiesis and its expression is higher in myeloid cells compared to lymphocytes 

(Lio et al., 2016; Orlanski et al., 2016; Ko et al., 2010). In fact, public data from the 

Immunological Genome project (Immgen) unveiled HDAC7 as a unique potential 

negative regulator of Tet2 expression, considering the opposite expression patterns 

between the two proteins in the hematopoietic lineages. Given the apparent 

controversy about the levels of TET2 expression in hematopoietic cell lineages, our 

results combined with Immgen data highlight the importance of comparing cell lineages 

and reflect that further studies are required to unveil more detailed TET2 regulation 

mechanisms in the the hematopoietic system. 

Using our in vivo HDAC7 conditional knockout mouse model and the in vitro 

reprogramming system developed by Thomas Graf’s group (Bussmann et al., 2009), 

we observed that Tet2 was upregulated in HDAC7 deficient pro-B cells and that 

HDAC7 exogenous expression lead to a block in the upregulation of Tet2 during trans-

differentiation of pre-B cells into macrophages (Azagra et al., 2016). Next, by 

performing ChIP experiments, we observed that HDAC7 is recruited to the promoter 

and the enhancer of the Tet2 gene and that HDAC7 deficiency lead to an increased 

and decreased enrichment in active (H3(K9K14)ac, H3K27ac) and repressive 

(H3K27me3, H3K9me3) histone marks placed at those regulatory regions, respectively. 

Interestingly, H3K9me3 mark is not only related to retrotransposons repression in 

embryonic cells. Recent studies have reported that it is also involved in the silencing of 

lineage inappropriate genes, the prevention of cell reprogramming and maintaining 

oligodendrocytes and T-lymphocytes lineage stability (Allan et al., 2012; Becker et al., 

2016; Bulut-Karslioglu et al., 2014). Thus, the significant decline in H3K9me3 

enrichment upon HDAC7 deficiency may be associated with the loss of B lymphocyte 

identity. 

Our findings corroborate that HDAC7 indeed represses Tet2 expression in pro-B cells 

and pre-B cells by a direct silencing mechanism. Its classical partner MEF2C may 

recruit HDAC7 at the promoter as well as the enhancer of Tet2, similar as occurred 

with the myeloid genes Itgam and Cd69 reported in the first article and mentioned in 

the first part of the discussion (Azagra et al., 2016).  
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TET2 functions as an epigenetic regulator involved in the conversion of 5-mC to 5-

hmC. Next, we wondered whether HDAC7 could have a contribution in 5-hmC in pro-B 

cells, which would suppose a totally unexpected role for a class IIa HDAC. Despite the 

average percentage of 5-hmC levels in hematopoietic cells is quite low (~0,2%) 

compared to other cell types such as mouse Purkinje cells or embryonic stem cells 

(ESCs) (~5%) (Kriaucionis and Heintz, 2009; Ficz et al., 2011), we observed that global 

levels of 5-hmC in pro-B cells increased significantly by 2-fold upon HDAC7 deletion. 

In order to analyze all those regions that presented differential enrichment in 5-hmC 

depending on HDAC7 function, we performed hMeDIP-seq experiments. We observed 

higher number of 5-hmC peaks were located at intergenic and distal TSS regions 

compared to promoter regions. These results support the dependence of distal 

regulatory regions with enhancer features to TET2-mediated DNA demethylation and 

correlate with the existence of additional mechanisms that control DNA methylation 

status at promoter-associated regions (Rasmussen et al., 2019; Rasmussen and Helin, 

2016).  

Next, we corroborated that Tet2 upregulation in pro-B cells from Hdac7fl/- mice 

produced an increased enrichment of 5-hmC at promoters and enhancers of myeloid 

and T cell genes including Jun, Fosl2 and Cd28 (Figure 2). These results are in 

accordance with RNA-seq and ATAC-seq data from the Immgen database in which the 

expression and chromatin accessibility of these genes is higher in macrophages 

compared to pro-B cells. Furthermore, the 5-hmC enrichment in Jun gene in HDAC7 

deficient pro-B cells correlates with Jun enhancer demethylation prior to B cell 

reprogramming through Tet2 recruitment (Sardina et al., 2018).Altogether, these 

findings consolidate DNA 5-hmC as an essential regulatory strategy in order to guide 

cell differentiation and maintain B cell identity, by reinforcing the repressive role of 

HDAC7 towards inappropriate lineage genes and raising it as an essential key 

regulator of B cell development, through the unexpected ability to modulate DNA 5-

hmC levels. Our data indicate that HDAC7 not only induces gene silencing by direct 

recruitment to target genes, but also by regulating the expression of additional 

epigenetics players such as TET2. 
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Figure2. HDAC7 conditional deletion leads to Tet2 upregulation and increase 5-hmC in pro-B cells. 

HDAC7 deletion by Cre recombinase activity at the pro-B cell stage leads to Tet2 upregulation and 

increase of 5-hmC, at global and specific levels (e.g. myeloid genes such as Jun).  

 

3. Potential role of HDAC7 in preserving B lymphocyte chromatin stability  

DNA methylation is one of the main epigenetic mechanisms involved in preserving 

chromatin stability, preventing aberrant transcriptional activation and maintaining 

genetic content. Strikingly, HDAC7 deficiency and consequent Tet2 upregulation also 

gave rise to enrichment of 5-hmC in multiple non-LTR-retrotransposon elements (LINE-

1) in pro-B cells. These results are consistent with previous studies which supported 

that TET enzymes are recruited at the 5’UTR of young L1 elements in murine 

embryonic stem cells (mESC) and that LINE-1 elements are regulated by DNA 

methylation in more differentiated cells. Despite H3K9me3 related to L1 repression is 

associated to embryonic cell stage, the decrease of its enrichment upon HDAC7 

deletion in progenitor cells could be attributed to enhanced 5-hmC in L1 elements 

(Bulut-Karslioglu et al., 2014; de la Rica et al., 2016).  

Recent studies indicated that 5-hmC does not necessarily involve an increased 

expression of L1 elements, since the deletion of TET enzymes in ESCs does not alter 

L1 expression levels. These results suggest that activation of L1 activity may require 

additional factors and mechanisms rather than TET-mediated demethylation (Gerdes et 

al., 2016). However, our results from RT-qPCR experiments showed that higher 5-hmC 

levels at L1 elements were accompanied by a tendency of increased L1 transcripts in 

HDAC7 deficient pro-B cells. Given that aberrant expression of LINE-1 elements is 

associated with chromatin instability and that uncontrolled retrotransposition can 

activate apoptotic pathways, these results suggest that HDAC7 might be required to 

maintaining the silenced status of LINE-1 elements in accordance to our previous 

Jun 
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results in which HDAC7-deficient pro-B and pre-B cells showed an increased cell death 

rate compared to wild-type B cell populations (Azagra et al., 2016; Bourque et al., 

2018; Haoudi et al., 2004). 

Therefore, an apparent increase in L1 transposition in HDAC7 deficient conditions 

could give rise to higher rates of DNA damage and, consequently, higher signal of 

γH2AX, a relevant marker of double strand breaks (DSB). We obtained unexpected 

results, since γH2AX signal in pro-B cells from Hdac7fl/- mice was even weaker than in 

their wild-type counterparts. We wondered whether these results could be explained by 

different mitotic rates between two conditions, as multiple studies indicate that γH2AX 

signal gains intensity with the progression of cells through the cell cycle, reaching their 

maximum levels in metaphase, independently of DNA damaging (Ichijima et al., 2005; 

McManus and Hendzel, 2005; Turinetto and Giachino, 2015). However, cell cycle 

analyses performed in the first article of the results section showed that there were no 

significant differences in mitotic rates between control and HDAC7 deficient pro-B cells 

(Azagra et al., 2016).  

Notably, B lymphocytes also undergo RAG-driven DSBs at multiple developing stages, 

including pro-B and pre-B cell stages, to produce rearrangements at the heavy chain of 

immunoglobulin (IgHµ) and pre-BCR assembly (Bednarski and Sleckman, 2019). 

Hence, the significant fall of IgH expression and the less efficient V(D)J rearrangement 

upon HDAC7 deficiency could explain the observed increase in γH2AX signal in control 

B cells, associating them to DSBs induced by RAG proteins. Then, is L1 enhanced 

transcription in Hdac7fl/- pro-B cells producing additional DNA damage? Is this 

additional damage related to increased cell death rates?   

As mentioned above, it is well-known that de-regulated L1 expression and consequent 

transposition can lead to chromatin instability and mutagenesis. We could speculate 

that pro-B cells, upon HDAC7 deficiency, might undergo p53-driven apoptosis to 

silence the de-regulation of L1 elements, preventing mutagenesis and aberrant 

transformation.  Notably, it has been reported that de-regulation of short 

retrotransposons (SINEs) in murine fibroblasts led to an apoptotic induction mediated 

by type I IFN response (Leonova et al., 2013; Levine et al., 2016; Tiwari et al., 2018). 

On the other hand, some studies reported a correlation between L1 mRNA expression 

and IFN expression in some autoimmune diseases (Mavragani et al., 2016). Regarding 

potential mutagenic effect of deregulated L1 activity, it has been reported that blood 

cancers have registered very few cases of retrotransposition compared to other cancer 

types such as epithelial tumors (Burns, 2017). This could be explained by the fact that 
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initiating cancer cells must restrict expression of TEs through H3K9me3-mediated 

silencing in order to avoid an immune response that could threaten their viability and 

activate programmed cell death (Chiappinelli et al., 2015). Thus, accumulation of 

mutagenic events produced by enhanced L1 activity which might promote 

transformation of immune cells could generate either a IFN-driven immune response or 

excessive genome instability that lead to apoptosis (Robbez-Masson et al., 2017; 

Cuellar et al., 2017). Additionally, apoptotic mechanisms induced by IFN in malignant 

cells involve the activation of genes such as Bcl2 (Kotredes and Gamero, 2013). 

Despite not all L1 elements produce mutagenic effects during their genomic 

movements (Bourque et al., 2018), L1 enhanced 5-hydroxymethylation and expression 

upon HDAC7 deletion in pro-B cells may be correlated to the upregulation of pro-

apoptotic genes such as Trp53 and Ifng. This evidence suggests that these 

transposable elements might be compromising host cell viability. Thus, HDAC7 might 

contribute to the maintenance of chromatin stability by preventing aberrant DNA 

demethylation and subsequent activation of L1 elements through repression of TET2 

demethylase enzyme, avoiding additional DNA damaging events.  

Additional experiments should be performed, in order to elucidate whether L1 elements 

are disturbing severely the chromatin stability of HDAC7 deficient pro-B and pre-B 

cells. For instance, it would be necessary to evaluate whether these cells present 

aberrant loss of DNA content (e.g. aneuploidy) or impaired nucleosome integrity. 

Accordingly, recent studies indicated that tight regulation of TET2 activity is essential 

for the correct maintenance of genome stability, as TET2 deficiency produce defects in 

DNA damage response whereas Tet2 gene over-expression leads to chromosome 

instability and aneuploidy due to a collapse of BER activity (Kafer et al. 2016; 

Manfoudhie et al. 2016). These evidences correlate with our proposal about the 

potential role of HDAC7 in preserving genome stability and integrity in B cells by 

regulating proper levels of TET2 expression. 

Despite the mechanisms of TEs regulation in mammals are still poorly understood, it 

has been established that an important part of the epigenetic machinery is dedicated to 

the regulation of TEs through complex regulatory systems that act in a very specific-

manner (He et al., 2019)). Further studies are needed to define the contribution of 

HDAC7 in TE regulation. However, our findings place HDAC7 as a critical regulator of 

proper B cell identity, by preventing aberrant gene expression and preserving 

chromatin integrity. Furthermore, HDAC7 potential tumor-suppressive role in B cells 

cannot be discarded and will be discussed in the 5th section of the Discussion. 
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4. HDAC7 and regulation of micro-RNAs expression 

As mentioned in the Introduction, B lymphocyte generation is a complex process tightly 

regulated by several mechanisms, given that every single cellular stage during 

development is characterized by a different epigenetic landscape, transcriptional 

program and function. Among these mechanisms, recent studies the crucial role of 

miRNAs in both normal and malignant B cell development, by modulating the 

expression of crucial regulatory genes across different cellular transitions such as c-

Myb and Foxp1 (Zhang et al., 2009; Zheng et al., 2018; Chen et al., 2004). 

miRNAs expression in the hematopoietic system must be also tightly regulated, since 

their de-regulation has been associated with the onset and progression of several 

types of cancers, including diffuse large B cell lymphoma (DLBCL) and chronic 

lymphocytic leukemia (CLL), as well as with their response to therapy. Remarkably, 

changes in methylation of the regulatory regions of miRNAs can alter their expression. 

For instance, the promoter hypermethylation of miR-34b and miR-34c is a common 

feature of CLL patients and are considered tumour suppressors (Deneberg et al., 2014; 

Craig et al., 2011; Gulyaeva and Kushlinskiy, 2016; Marques et al., 2015). 

Alternatively, miRNAs depend on the transcription of a host gene for being expressed, 

since some of them are included in cluster genes that depend on external stimuli from 

the immune system for their activation (Gulyaeva and Kushlinskiy, 2016). In addition, 

some TFs directly modulate the expression of specific miRNAs. For example, MEF2C 

activates the expression of a region encoding several miRNAs involved in muscle 

growth and differentiation via a muscle-specific enhancer (Liu et al., 2007). 

Strikingly, an analysis of miRNA expression and 5-hmC enrichment in wild-type and 

HDAC7 deficient pro-B cells revealed different microRNA expression and 

hydroxymethylation profiles. Among the upregulated miRNAs in HDAC7 deficient 

conditions, which in addition present higher 5hmC enrichment, we could highlight miR-

125b-5p and miR-34a. miR-125b is expressed more abundantly in macrophages and is 

upregulated in several types of leukemia such as acute myeloid leukemia (AML). 

Interestingly, de-regulation of miR-125b expression depends on C/EBPα, a critical TF 

in the myeloid lineage (Chaudhuri et al., 2012; Vargas Romero et al., 2015). In 

addition, miR-34b/c methylation is observed in leukemic cases whereas miR-34a is 

highly expressed in myeloid cells and its expression in B cells leads to Foxp1 

repression and, consequently, a blockage of pro-B to pre-B cell transition (Rao et al., 

2010). Accordingly, given the oncogenic potential of the de-regulation of Foxp1 

expression, miR-34a is upregulated upon DNA damage via p53 pathway in CLL cases, 
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which correlates with increased L1 upregulation and the increased cell death rate 

observed in HDAC7 deficient pro-B cells (Cerna et al., 2019). Finally, the analysis of 

our hMeDIP-seq experiment unveiled that 5-hmC enrichment at miR-34b/c is present in 

wild-type pro-B cells but totally absent in HDAC7 deficient pro-B cells. This might 

correlates with aberrant hypermethylation of these genes in tumoral cases. 

Among the downregulated miRNAs in HDAC7-deficient pro-B cells, we focused on 

miR-29a/b, miR-28a, miR-142-3p, miR-150p and miR-181. miR-181 was the first 

reported miRNA to have a role in B cell lineage. Its expression is upregulated in bone 

marrow, thymus and spleen and its over-expression leads to an expansion in the 

number of B lymphocytes (Zheng et al., 2018; Chen et al., 2004). miR-29a/b represses 

Tet2 expression and is probably activated by C/EBPα (Kriegel et al., 2012). miR-28a 

regulates proliferation of B cells and its downregulation is involved in 

lymphomagenesis, especially in the development of Burkitt lymphoma (Schneider et 

al., 2014). miR-142 is essential for the correct generation and homeostasis of 

lymphocytes, since miR-142 null mice present a disruption in B cell expansion and 

severe immunodeficiency (Kramer et al., 2015).  miR-150 is required for mature B cell 

development. Its ectopic expression in early B cell stages produces a premature 

inhibition of the TF c-Myb, leading to a blockage of the pro-B to pre-B transition. In 

contrast, its inhibition enhances expression of c-Myb and produces an expansion of 

antibody-producing B cells (Zhou et al., 2007; Marques et al., 2015; Xiao et al., 2007). 

Such specific-stage action of miR-150 reinforces the required coordination between 

multiple regulators, ensuring the dynamic changes at every stage during B cell 

development.   

In summary, our findings demonstrate that a class IIa HDAC, HDAC7, can also exert its 

gene silencing function during B cell development by regulating miRNAs expression, 

presumably trough interaction with its classical partner MEF2C that may be recruited to 

regulatory regions of these miRNAs as it does at other specific miRNAs in skeletal 

muscle (Liu et al., 2007). Consequently, these results shed more light on our 

understanding of the regulatory mechanisms that preserve B lymphocyte identity and 

function.  
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5. HDAC7 and hematological malignancies 

The de-regulation of lineage-specific transcriptional programs can originate a block of B 

cell differentiation, an expansion of immature cells and the development of 

hematological malignancies such as leukemia and lymphoma.  

Interestingly, as other key regulators of B cell development, we found that HDAC7 is 

under-expressed in pro-B-ALL and Burkitt lymphoma cell lines. The ectopic expression 

of HDAC7 leaded to a block of proliferation, c-Myc down-regulation and apoptosis 

induction in both in vitro and in vivo approaches. In consequence, the expression of 

HDAC7 caused a block of tumor growth in a murine xenograft model. In addition, 

analysis of B-ALL patient samples revealed that low expression of HDAC7 correlated 

with higher levels of the c-MYC oncogene. Although the aberrant expression of c-MYC 

in ALL patients has no impact on their prognosis (Allen et al., 2014), this potentially 

negative regulation exerted by HDAC7 on c-MYC confers it a potential anti-oncogenic 

activity. Apparent controversy of HDAC7 role in apoptosis of normal pro-B and pro-B-

ALL cells reinforce the dual function of some key regulatory factors such as IKAROS, 

depending on the cellular context (either physiological or pathological status). 

Following with the controversy, several studies indicated that aberrant over-expression 

of HDACs was related to malignant development and adverse prognosis, e.g. the 

association of HDAC1/2 with tumor invasiveness and the upregulation of HDAC8 in 

neuroblastoma, as explained in the Introduction chapter. Therefore, HDAC inhibitors 

(HDIs) have emerged as promising therapeutic agents against cancer. However, most 

HDIs are not specific enough to avoid side effects because of the alteration of 

additional enzymes (Li and Seto, 2016b; Barneda-Zahonero and Parra, 2012). On the 

other hand, it has been reported that some HDACs are under-expressed in some 

tumors. For instance, Heideman et al demonstrated that deletion of HDAC1/2 in vivo 

promoted T-cell lymphomagenesis due to a block in the early thymocyte development 

and c-Myc over-expression (Heideman et al., 2013). In fact, HDAC1 exerts a tumor-

suppressor role in initial tumorigenesis, while it has an oncogenic-role in established 

tumors (Santoro et al., 2013). Thus, our understanding of the role and influence of 

specific HDACs in a given cancer type is still incomplete. 

Additional results from recent studies support our findings that suggest an anti-

oncogenic role to HDAC7 in B cells. First, results from miRNA expression analysis 

explained in the second part of the results revealed the upregulation of miR-125b in 

absence of HDAC7 in pro-B cells, potentially contributing to leukemia development. 

Regarding HDAC7 role in lymphoma development, our findings correlate with more 
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recent publications in which HDAC7 has been reported to be mutated in 6% of DLBCL 

patients and classified as a potential tumor suppressor gene in a CRISPR screening 

study in DBLCL cell lines (Reddy et al., 2017; Morin et al., 2011).  

How is HDAC7 downregulated in hematological tumors? Is there a specific and unique 

mechanism driving its repression? There is no defined answer to these questions, but 

several possibilities should be considered. On one hand, analysis of the DNA 

methylation of two hundred leukemia pediatric patients revealed that CpG islands of 

HDAC7 gene body were hypomethylated. Given that gene body hypomethylation could 

be associated with gene repression, it may represent an interesting mechanism of 

HDAC7 silencing in B-ALL (Lee et al., 2015). On the other hand, the deleterious 

alterations of key regulators that seems to act upstream of HDAC7 (e.g. PAX5) in such 

malignancies could affect HDAC7 expression. Finally, current studies investigate 

changes in chromatin architecture upon malignant development and try to link 

chromatin profiles to clinical outcomes, as single cell analysis from AML samples 

present unique epigenetic profiles (Corces et al., 2016a). 3D chromatin reorganization 

could also modify accessibility of the HDAC7 gene, preventing its expression.  

 

6. HDAC7–mediated regulation at multiple levels, ¿is it a real enzyme? 

It has been reported that class IIa HDACs do not possess intrinsic enzymatic activity on 

acetylated histones, acting as simple cofactors of transcriptional repressor HDAC3 

included in SMRT/N-CoR multiprotein complexes by using (Fischle et al., 2002). In fact, 

Lahm et al reported that the lack of catalytic activity in this subclass of enzymes lied in 

a residue change. A conserved tyrosine from the catalytic domain of class I HDACs is 

substituted for a histidine in class IIa HDACs. Strikingly, the conversion of the histidine 

into a tyrosine recovered the lost activity of these class IIa HDACs (Lahm et al., 2007).  

However, it is important to mention that the deacetylase activity of class IIa HDACs, in 

particular HDAC7, has not been determined in its physiological context, B cells. 

Additionally, the possibility that HDAC7 may catalyze the removal of other acyl-lysine 

modifications cannot be discarded.  

Our obtained results during these years support the fact that HDAC7 may have intrinsic 

enzymatic activity. First, HDAC7 is under-expressed in some types of leukemia (pro-B 

ALL) and lymphoma (Burkitt lymphoma) and its ectopic expression lead to reduced 

proliferation and apoptosis activation independently of HDAC3 activity (Barneda-

Zahonero et al., 2015). Second, HDAC7 deficiency in pro-B cells lead to a block in B 

lymphopoiesis, specifically in the transition from pro-B to pre-B cells, independently of 
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other key B cell-specific regulators such as PAX5, E2A or EBF1 (Azagra et al., 2016). 

Third, HDAC7 is classified as a potential negative regulator of Tet2 gene in a public 

database. Other cofactors were not found as potential negative regulators indicating a 

specific and intrinsic function to HDAC7 over Tet2 gene silencing.  

Altogether, our findings demonstrate that HDAC7 is a master transcriptional repressor 

of early B cell development, which preserves proper development and maintains 

cellular identity and chromatin integrity at multiple levels: direct recruitment at 

promoters and enhancers of lineage inappropriate genes through recruitment of TF 

MEF2C, repression of Tet2, control of 5-hmC level in these genes and LINE-1 

retrotransposons and regulation of miRNA expression (Figure 3). Additionally, our 

results provide a new perspective for other class IIa HDACs potential functions in the 

physiological context where they are expressed. However, further studies are required 

in order to elucidate whether HDAC7 catalyzes alternative histone modifications, if 

HDAC7 is involved in long-range promoter enhancer interactions and has a role in 

chromatin positioning, or whether HDAC7 have also a critical role in terminal B cell 

differentiation. 

 

 

  

 

 

 

 

 

 

Figure3. Graphical summary of HDAC7 regulation mechanisms in pro-B cells. HDAC7 has been 

established as a master transcriptional repressor of early B cell development, but further studies are 

needed to evaluate whether it is also involved in the regulation of late B cell differentiation. Regarding role 

of HDAC7 in blood cancers, it has been associated t anti-oncogenic roles in several malignancies (see list 

in the image). Finally, three mechanisms have been defined for HDAC7-mediated repression: direct 

recruitment through specific TFs, indirect role on 5-hmC status and regulation of miRNAs expression. 
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CONCLUSIONS 

1. HDAC7 deficiency leads to a block in B cell development, impairing the

transition from pro-B cells to pre-B cells.

2. Pro-B and pre-B cells undergo increased cell death rates upon HDAC7

deficiency, being significant in the case of pre-B cells, which suggest that these

cells are more susceptibility to apoptosis.

3. In normal pro-B cells, HDAC7 is recruited to the promoter and enhancers of

lineage inappropriate genes such as Itgam or Cd69 through interaction with

tissue-specific TF MEF2C, preventing their expression and ensuring the

maintenance of B cell identity.

4. The repressive function of HDAC7 is independent from other crucial B cell

regulators such as TFs PAX5, E2A or EBF1.

5. HDAC7 represses Tet2 gene in pro-B cells, controlling its physiological levels

during early B cell development.

6. HDAC7 deficiency causes a significant increase in DNA 5-hydroxymethylation

at both global levels and at specific genes loci, especially targeting lineage

inappropriate genes such as Jun or Fosl2.

7. HDAC7 deficiency produces an increase in 5-hmC enrichment at LINE-1

elements and leads to their expression, suggesting a potential contribution of

HDAC7 in maintaining B cell genome integrity.

8. HDAC7 regulates the expression microRNAs involved in the development of

both lymphocyte and myeloid lineages, as well as in hematological

malignancies in pro-B cells.

9. HDAC7 is under-expressed in some types of B cell malignancies, including

ALL, DLBCL and Burkitt lymphoma.

10. HDAC7 ectopic expression in these blood cancers lead to c-Myc

downregulation and induction of apoptosis independently of HDAC3 function.
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Abstract 

The generation of B lymphocytes is tightly regulated at the level of gene transcription. In 

recent years, investigators have shed light on the transcription factor networks and the 

epigenetic machinery involved at all differentiation steps of B cell development. During 

terminal differentiation, B cells undergo dramatic changes in their gene transcriptional 

programs to generate germinal center B cells, plasma cells and memory B cells. Recent 

evidence indicates that mature B cell formation involves an essential contribution from the 

three-dimensional chromatin conformation through its interplay with transcription factors 

and the epigenetic machinery. In this review, we provide an up-to-date overview of the 

coordination between transcription factors, epigenetic changes, and chromatin 

conformation during terminal B cell differentiation, with a particular focus on the most recent 

discoveries. 
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B lymphocyte development: a brief overview  

B cell differentiation underlies the development of the vertebrate humoral immune 

response, which is based on the production of highly diverse antibodies that can recognize 

and eliminate virtually any antigen. Antibody diversity is achieved at two stages during B 

cell differentiation. The first is V(D)J recombination in early B cell precursors during bone 

marrow differentiation and involves the combinatorial rearrangement of variable (V), 

diversity (D), and joining (J) coding segments of immunoglobulins (Ig) genes [1,2]. 

Successful V(D)J recombination on the heavy-chain and light-chain Ig genes leads to B cell 

receptor (BCR) expression on naïve B cells, which can then exit the bone marrow and 

migrate to the peripheral lymphoid organs. In the periphery, antigens encountered by B 

cells in the context of a cognate T helper cell [3] can trigger the formation of microstructures 

called germinal centers (GC), where B cell Ig genes diversify through somatic 

hypermutation (SHM) and class switch recombination (CSR) [4,5]. CSR is a region-specific 

recombination reaction in the heavy-chain Ig locus that replaces the IgM or IgD constant 

regions with alternative downstream constant regions, generating the IgG, IgE or IgA 

isotypes, thus increasing the versatility of antibody-mediated antigen removal. SHM 

introduces nucleotide changes, mostly point mutations, into the variable, antigen-binding 

region of the Ig heavy and light chains. These mutations generate Ig variants from which 

those with higher affinity for antigen are selected in the context of T follicular helper (Tfh) 

cells and follicular dendritic cells (FDC) in a process called affinity maturation. Finally, B 

cells exit the GC and terminally differentiate into either long-lived antibody-producing 

plasma cells (PC) or memory B cells [3]. SHM and CSR are both initiated in a transcription-

dependent manner by activation-induced cytidine deaminase (AID), which deaminates 

cytosine to uracil on single-stranded DNA [6].  

 Terminal B cell differentiation is controlled by a cohort of transcription factors (TFs) 

that integrate inputs from BCR signals, cytokine signals, and direct interactions with T cells. 

TFs such as Pax5, Bcl6 and Bach2 form complex regulatory networks during the GC 

reaction, whereas IRF4, Blimp-1 and XBP1 act in the generation of plasma cells (PC) [7]. 

The master transcriptional regulator in GC B cells is Bcl6 [8], while Pax5 and Bach2 are 
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expressed in naïve B cells and play important roles at earlier B cell activation stages. 

Conversely, memory B cell and PC development requires the downregulation of Bcl6 and 

the upregulation of IRF4 for memory B cells and Blimp-1 for PCs [9–11]. In addition, PC 

differentiation requires the extinction of the B cell gene program [12–14] (Figure 1, Key 

Figure).  

Three-dimensional (3D) chromatin conformation and its impact on gene regulation 

Every nucleated human cell contains about 2 meters of linear DNA encompassing all 

the genes that shape our being. This DNA, which is the same in almost every cell, is 

packed into a nucleus measuring only a few microns in diameter; this packaging is not 

random, and the specific folding of DNA plays a fundamental role in the regulation of gene 

expression. In some cases, the folded DNA conformation brings promoters of co-regulated 

genes or regulatory elements, such as enhancers, into physical contact with target gene 

promoters. This phenomenon partly explains how cells endowed with the same genetic 

information are phenotypically and functionally different. Accordingly, the ordered 

complexity of B cell differentiation is not only achieved by the action of the TF network, but 

also requires the coordination of epigenetic regulators and architectural proteins that 

establish a correct and permissive/non-permissive chromatin structure. Proper 

conformation of the chromatin architecture is essential for the correct gene expression and 

cell development and involves genome compartmentalization and the establishment of 

chromosome territories, gene clusters, and three-dimensional (3D) interactions between 

gene regulatory regions [15–17]. 3D genome organization is remodeled dynamically in each 

cell type, facilitating accessibility and interactions between regulatory regions of the specific 

gene cohort required at each developmental stage [18,19]. In B lymphocytes, the tightly 

regulated processes of V(D)J recombination and CSR are closely linked to transcription and 

involve the formation of DNA loops that facilitate interaction between distant regulatory 

regions [20–22]. The increasing ability to characterize these parameters provides an 

unprecedented vision of genome topology and allows a better understanding of basic 

developmental processes, misregulation in pathological conditions, and evolution [17]. In 

the following sections, we provide an overview of the experimental techniques to study 3D 
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chromatin conformation and summarize the most recent advances in our knowledge of how 

chromatin structure and TFs underlie the activation of naïve B cells, the GC reaction, and 

terminal B cell differentiation into PCs and memory B cells. 

An overview of recent technical advances to study 3D chromatin conformation  

No cell activity or function can be understood without considering the time-dependent 

3D organization of the genome within the nucleus. The explosion of chromosome 

conformation capture (3C)-based methods over the last decade has complemented and 

enriched classical microscopy analysis, and has positioned nuclear genome organization as 

one of the hottest fields in molecular biology. In this section, we provide a brief overview of 

the 3C method and the most common C-based technologies, which have allowed 

investigators to reveal the general features of genome architecture, from compartments [23] 

to topologically associating domains (TADs) [24,25], sub-TADs [26], and chromatin loops 

[19,27]. More detailed information about these methods and other emerging technologies 

can be obtained in specialized reviews [16,28]. 

C-based technologies detect the frequency of pairwise contacts between distant 

genomic fragments. After chemical fixation to preserve the 3D genome architecture, 

chromatin is enzymatically fragmented and re-ligated, and the generated DNA concatemers 

are isolated. The hierarchical folding of eukaryotic genomes can bring distant genome 

regions, such as enhancers and target gene promoters, into physical proximity, allowing 

regulatory interactions between them. The closer two genomic fragments are within the 

nucleus, the more ligation products will be generated. The abundance and nature of these 

ligation products can be detected by a variety of C-based technologies. 

The original 3C method is the earliest and the lowest throughput C-based technology. 

In this method, the ligation junctions are detected by semi-quantitative or quantitative PCR, 

allowing estimation of the 3D proximity of two preselected loci [29]. In contrast, circularized 

chromosome conformation capture (4C) is based on the design of a single primer targeting 

a specific locus; this approach allows the genome-wide detection of all possible interacting 

partners of the targeted locus by microarray hybridization [30] or high-throughput 

sequencing [31]. Although 3C and 4C provide insights into gene regulation, these methods 
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are not quantitative due to PCR amplification biases. This limitation has been resolved with 

the UMI-4C method, which combines 4C with the use of sonication-based unique molecular 

identifiers (UMIs) [32]. The best method for detecting the folding of a genomic region 

measuring several megabases is carbon copy chromosome conformation capture (5C). 5C 

uses a pool of primers for the multiplexed ligation-mediated amplification of a target region 

in a 3C library, which is then detected by microarray analysis [33] or high-throughput 

sequencing [34]. On the other hand, if the biological question is focused on the interactions 

of a given protein, the best choice is chromatin interaction analysis paired-end tag 

sequencing (ChIA-PET), combining ChIP, 3C, and sequencing. Although ChIA-PET can 

detect rare interactions specifically mediated by the protein of interest, the library quality is 

dependent on the antibody quality, and extremely large numbers of cells are needed due to 

the low efficiency of proximity ligation after chromatin sonication. The most powerful C-

technology is Hi-C, which allows detection of the entire ensemble of chromosomal 

interactions within a cell population [23] or in a single cell [35]. The key point of Hi-C is the 

addition of biotinylated nucleotides to the sticky ends generated after restriction digestion. 

These molecular tags allow the use of magnetic streptavidin-coated beads to separate 

informative ligation junctions from non-informative products generated after sonication, 

greatly reducing the sequencing costs and increasing the resolution. Hi-C and 3C libraries 

generated from a mammalian genome are highly complex, and reproducible and reliable 

identification of significant interactions between individual restriction fragments requires 

ultra-deep sequencing, which is a significant additional cost. Capture Hi-C [36] and 

Capture-C [37] pull-down specific sequences of interest and their frequent interaction 

partners from Hi-C and 3C libraries, respectively. This requires complex computational 

analysis, but these capture methods also have advantages, including economically viable 

detection of significant interactions at fragment resolution and compatibility with custom 

capture systems targeting specific genome regions of interest. For example, Capture Hi-C 

has been successfully used to identify distal sequences, such as enhancers and other 

regulatory elements, that significantly interact with almost all promoters in the genome [19] 

and to demonstrate that actively transcribed genes cluster as a result of DNA double-strand 
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breaks [38]. The different techniques used to study 3D chromatin conformation are 

summarized in Figure 2, and more detailed technical information is available in recent 

reviews [16,28]. 

Chromatin conformation changes during the germinal center reaction 

 Antigen recognition by naïve B cells triggers dramatic phenotypic and gene 

expression changes and their differentiation into GC B cells. This developmental program 

involve intense proliferation, increase in nucleus size, and major genetic and epigenetic 

changes in GC B cells [3]. Using Hi-C technology, two recent studies revealed that B cells 

undergo progressive chromatin decondensation upon antigen recognition and during the 

GC reaction, leading to a loss of interactions between the longest chromosome arms 

[39,40]. This is an energy-dependent process, in which Myc activity leads to increases in 

ATP production, the number of DNA loops mediated by the architectural protein CTCF, and 

the proportion of nearby DNA interactions between promoters and enhancers of crucial 

genes in the GC transcriptional program, such as Bcl6, promoting their upregulation [39,40]. 

The recent study by Casellas and colleagues [39] defined the main chromatin spatial 

reorganization events during B cell activation: chromatin acetylation, chromatin 

decompaction and the spreading of mononucleosome fibers throughout the nucleus, and 

the unexpected requirement of Myc and energy input. Meanwhile, Melnick and colleagues 

[40] identified the stratified genome reorganization in naïve and GC B cells. Chromosome 

distribution in naïve B cells groups genes share the same regulatory program into regions 

called “gene neighborhoods”. After B cell activation, these separated units become 

interconnected in “gene cities”, so that the coordination and control of GC regulatory 

regions can be optimized independently of their physical distance in the genome [40,41]. 

These interactions are accompanied by the coordinated addition of the histone marks 

H3K27ac and H3K27me3 during the GC reaction, and these histone modifications are 

required for the changes in gene expression and genome architecture [40]. Studies have 

also identified an important role during B cell activation for the complex chromatin 

architectural protein CTCF. CTCF is a well characterized regulator of the 3D chromatin 

architecture and function that mediates interactions between distant interdomain and 
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intradomain regulatory sequences [42,43]. Several studies have shed light on the 

contribution of CTCF during V(D)J recombination and the GC reaction. First, CTCF 

contributes to antibody repertoire diversity by altering the balance of rearrangements 

between distal and proximal constant regions of the IgH locus through DNA looping and 

interaction with the intergenic control region (IGCR) [44,45]. Second, CTCF prevents CSR 

before B cell activation by generating a “closed” chromatin conformation that blocks 

activation of germline promoters in naïve B cells [46]. Third, as a consequence of its 

repression of premature CSR, CTCF contributes to the maintenance of the GC reaction and 

the prevention of premature PC differentiation by inhibiting Blimp-1 [46–48]. The dynamic 

role of CTCF is thus modulated at several steps during B cell differentiation.  

 Additional architectural proteins or regulators play important roles during CSR. Reina-

San-Martin and colleagues reported that AID interacts with subunits of the cohesin complex 

[49]. The cohesin complex together with CTCF plays a crucial role in promoting long-range 

DNA interactions and loop structures [50]. Several components of the cohesin complex are 

recruited to the IgH locus during CSR, partially correlating with the recruitment of AID [49]. 

A more recent study from the same laboratory found that mediator, a multiprotein complex 

required for gene transcription, is involved in long-range interactions of the IgH locus and 

facilitates transcriptional activation during CSR [51]. Two laboratories have uncovered a 

novel function of 53BP1 in CSR. Using a 4C-seq experimental approach, Skok and 

colleages have reported that 53BP1 controls chromatin conformation of IgH independently 

of DNA damage during CSR [52]. Simultaneously, Kenter and colleagues also unveiled an 

architectural role for 53BP1 in the chromatin looping of IgH in mouse B cells [53]. Finally, 

the transcriptional regulator YY1, which is involved in early and terminal B cell 

differentiation, have also been reported to impact DNA loops during CSR. Using 3C, 

Atchison and colleagues demonstrated that YY1 is required to proper establish the Eμ-3′RR 

DNA loop of IgH [54]. 

 Among the TFs involved in late B cell differentiation, IRF4 is a versatile regulator that 

drives B cell fate toward the GC reaction or PC differentiation, depending on its expression 

level. IRF4 is required for the initiation of the GC reaction but not for its maintenance; in GC 
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B cells, low levels of IRF4 co-occupy EICE motifs together with PU.1, leading to B cell gene 

transcriptional activation [11,55]. EICE motif binding by IRF4/PU.1/Ikaros complexes 

activates target genes such as Ebf1, which consequently promotes Pax5 and Bach2 

expression [56]. Cooperation between these three TFs is important for GC differentiation, 

and the progressive reduction of Pu.1 expression during differentiation results in repression 

of Ikaros/Irf4 targets genes, thus ensuring the initiation of PC differentiation [11,56]. There 

is also emerging evidence that long non-coding RNAs (lncRNA) influence epigenomes and, 

consequently, 3D looping and interactomes, with recent publications reporting the co-

expression of upstream lncRNAs and their interaction with the Bcl6 promoter [40,57]. 

Chromatin conformation changes in plasma cells 

 The spatial conformation of PC chromatin has been studied since the early in the last 

century. Cajal drew faithful and characteristic chromatin patterns reminiscent of a cartwheel 

[58]. This distinctive feature is in part acquired as a result of the transformation of active 

chromatin (euchromatin) into inactive chromatin (heterochromatin), a process undergone by 

most terminally differentiating cells [59]. In general, the initiation of differentiation and the 

establishment of a specific gene expression program involve a complex interaction of TFs 

and the action of thousands of cis-regulatory elements (enhancers). This complexity is 

increased by histone modifications and changes in DNA methylation, which provide 

dynamic mechanisms for controlling gene expression changes over time [60–62]. To initiate 

differentiation, the B cell TFs that define the mature B cell gene expression program must 

be silenced [13]. The most important PC-specific TFs are XBP1, IRF4 and Blimp-1, which is 

the master regulator of PC differentiation. Blimp-1 is essential for full PC differentiation but 

not for the initiation of the process [63]. A critical step in the transition to PC commitment is 

Pax5 repression [63,64]. The detailed molecular mechanisms regulating PC differentiation 

have not been fully defined; however, several mechanisms of B cell specific gene 

repression have been identified. One involves an important role for microRNAs in cell fate 

decisions, with miR-155 repressing PU.1 and thus leading to Pax5 repression [65]. GC B 

cells bearing BCRs with low antigen affinity decrease IRF4 expression and consequently 

maintain AID expression, allowing continued SHM and the opportunity to generate higher 
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affinity BCRs. In contrast, GC B cells with high affinity BCRs increase IRF4 expression, 

promoting Blimp-1 expression and repressing Pax5 [11,62,66,67]. The molecular 

mechanisms mediating repression of some other IRF4 target genes are still unknown. 

Nevertheless, Igarashi and colleagues described a correlation between PC differentiation 

and the high-density binding of IRF4 to interferon sequence response element (IRSE) 

motifs [56]. Moreover, differentiating PCs acquire several histone modifications that 

contribute to gene silencing. In particular, the acquisition of H3K9me3 and H3K27me3 

repressive epigenetic marks correlates with heterochromatinization [68]. ATAC-seq 

experiments revealed that the restriction of chromatin accessibility in PCs involves 

H3K27me3 enrichment mediated by EZH2, the catalytic subunit of the Polycomb complex. 

In fact, EZH2 absence led to de-regulation of B cell-related TFs and genes repressed by 

Blimp-1, impairing PC function. CTCF binding motifs are more accessible in the absence of 

EZH2, and EZH2 deficiency also leads to early Blimp-1 expression, giving hints as to how 

cells optimize the establishment of different genetic programs by using rapid alternative 

steps [61,69]. In an elegant and comprehensive work, Busslinguer and colleagues used a 

broad range of experimental techniques to identify Blimp-1 target genes, associated 

chromatin regulators and epigenetic changes at the onset of plasmablast differentiation. 

The found that Blimp-1 regulates a plethora of events; it directly represses several TFs and 

Aicda leading to the silencing of the B cell gene program, promotes Ig transcription and 

induces the expression of IRF4 and proteins required for immunoglobulins secretion [70]. 

Finally, proper PC differentiation is determined by a unique chromatin conformation. 

Intriguingly, the Ig genes IgK, IgH and IgJ, which are located on different chromosomes, 

colocalize in the same cluster or transcription factory. FISH experiments demonstrated that 

these clusters are located at the nuclear periphery and show interchromosomal enhancer 

interaction. Although the nuclear periphery is commonly associated with gene silencing, 

DNA regions containing active genes are positioned close to the nuclear pores and the 

endoplasmic reticulum in PCs. This DNA distribution facilitates the rapid secretion of 

antibodies and an efficient humoral immune response [71]. A recent preprint published by 

the Murre laboratory describes the chromatin conformation changes underlying PC 

226



 

differentiation [72]. Using DNA fish and chromosomal conformation capture techniques to 

study 3D chromatin status, they confirmed that PC possess a unique chromatin 

conformation compared to other B cell types. Chromosomes of PC show helical structures 

and generate inter-chromosomal interactions in the Prdm1 gene as well as in genes 

characteristics of the of the unfolded protein response (UPR) and the endoplasmic 

reticulum [72]. Allan and colleagues have determined by Hi-C the genome organization of B 

cells at several developmental stages [73]. Pax5 is involved in genome organization across 

B cell differentiation until the plasmablast stage correlating with Pax5 silencing and the loss 

of the B cell chromosome architecture that precedes PC generation [73].   

Chromatin conformation changes in memory B cells 

 Memory B cells are long-lived cells that self-maintain in an antigen-independent 

fashion and exert a rapid and robust antibody response to subsequent antigen exposure 

[74,75]. Naïve and memory B cells share a similar transcriptional program, but differ in the 

expression of factors involved in mounting a rapid immune response and self-renewal [76]. 

As differentiated cells, PCs and memory B cells share a similar DNA methylome, but they 

differ in their gene transcriptional profile. Memory B cells thus have unique functional and 

molecular features [77,78]. It remains unknown how the chromatin architecture determines 

the final fate decision between becoming a memory B cell or a PC. However, several 

studies demonstrate tight coordination between chromatin 3D organization and 

transcription, and nuclear positioning of genes at naïve B cell stages may determine 

terminal B cell differentiation, in coordination with cytokines and other signals. Thus, in line 

with findings in memory T cells [62,79], gene promoters and enhancers associated with 

memory B cell differentiation may be positioned together and occupied by specific TF 

networks, priming them for a rapid response to the appropriate stimulus. 

 

Concluding remarks 

 The recent explosive growth in techniques for studying chromatin conformation 

places the B cell field in a position to advance our understanding of how a proper humoral 

response is generated. However, further studies are needed to decipher the precise 
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mechanisms involved in regulating and enacting specific and dynamic genome 

reorganization during terminal B cell differentiation. Recent evidence establishes a strong 

relationship between nuclear architecture, the epigenetics machinery, and gene regulation, 

and understanding this relationship promises to reveal the complex coordination among all 

factors and signals involved in the humoral immune response. Nevertheless, B cell biology 

continues to present technical challenges to the determination of chromatin organization 

and DNA architecture in rare populations such as memory B cells.  
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Figure legends 

Figure 1 (key Figure). Transcription factors interaction and chromatin 

remodeling during late B cell differentiation. Germinal Centers (GC) are 

specialized structures located in secondary lymphoid organs upon antigen detection, 

either by infection or immunization. GCs are divided into to two compartments. The 

dark zone contains hyperproliferative B cells that undergo somatic hypermutation 

(SHM). In the light zone, follicular and T cells interact with these B cells in order to 

present them the antigen and start de selective process. Negative selected cells 

activate apoptotic process. B cells undergo class switch recombination (CSR) in order 

to improve antigen-specificity in their antibody production. Then, they can become 

antibody-producing plasma cells (PC) or memory cells, or re-renter to the dark zone 

for further SHM and affinity selection. Several TFs are involved during GC formation. 

The most relevant are included in the representation. Dynamic chromatin 

reorganization is represented in 3 terminal B cell stages: naïve B cell (compacted 

chromatin), GC B cell (deconsensed chromatin spread on the nucleus) and plasma 

cell (cartwheel-like open chromatin).  
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Figure 2. Chromosome Conformation Capture (3C) and derivative methods. 

Schematic representation of 3C-related techniques highlighting their main 

characteristics. The first three steps are shared by all methodologies: crosslinking of 

DNA with formaldehyde, fragmentation of DNA either by restricted digestion or by 

sonication, and reverse of crosslinking (very few variations between them, e.g. 

reverse crosslinking is followed by biotinylation in the case of Hi-C). Next, depending 

on their specific objective, 5 represented methods follow different technical 

approaches. 4C requires self-circularization of des-crosslinked DNA followed by 

reverse PCR. 5C requires multiplexed ligation-mediated amplification (LMA), in which 

tails (T7 and T3) of 5C primers allow amplification after primers ligation. Hi-C requires 

biotin labeling to detect all genome junctions (dark blue circle). ChiA-PET combines 

chromatin immunoprecipitation (ChIP) with 3C methods, limiting interactions between 

regions bound to a specific protein (green circle). Most of techniques require next 

generation sequencing approaches in order to detect 3D-interactions in the 

chromatin, except for 3C that study interactions at smaller scale.  
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