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Local neocortical circuits are characterized by stereotypical physiological and structural features that subserve generic
computational operations. These basic computations of the cortical microcircuit emerge through the interplay of
neuronal connectivity, cellular intrinsic properties, and synaptic plasticity dynamics. How these interacting
mechanisms generate specific computational operations in the cortical circuit remains largely unknown. Here, we
identify the neurophysiological basis of both the rate of change and anticipation computations on synaptic inputs in a
cortical circuit. Through biophysically realistic computer simulations and neuronal recordings, we show that the rate-
of-change computation is operated robustly in cortical networks through the combination of two ubiquitous brain
mechanisms: short-term synaptic depression and spike-frequency adaptation. We then show how this rate-of-change
circuit can be embedded in a convergently connected network to anticipate temporally incoming synaptic inputs, in
quantitative agreement with experimental findings on anticipatory responses to moving stimuli in the primary visual
cortex. Given the robustness of the mechanism and the widespread nature of the physiological machinery involved, we
suggest that rate-of-change computation and temporal anticipation are principal, hard-wired functions of neural
information processing in the cortical microcircuit.
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Introduction

Complex brain functions emerge from the orchestrated
activity of neural circuits in the cerebral cortex. This
emergent brain activity is dependent on many properties of
the cortex, from areal specializations to microcircuit con-
nectivity or cellular and synaptic mechanisms. At the micro-
cicuit level, the cortex is characterized by a fairly stereotyped
architecture and physiology [1–5]. These uniform properties
of local circuits are likely to operate generic, incremental
computations on incoming signals [6]. However, specific
instances of the causal relationship between cellular and
synaptic mechanisms, network signal processing, and behav-
ioral function have been difficult to identify. This results in
part from the myriad experimentally identified physiological
mechanisms of synapses and neurons in the cerebral cortex,
and their complex reciprocal interactions. Two especially
prominent physiological mechanisms are short-term synaptic
depression [7] (STD) and intrinsic spike-frequency adaptation
[8,9] (SFA). Indeed, synapses between neocortical pyramidal
neurons typically show STD [10,11], and most pyramidal
neurons in the neocortex display pronounced SFA [8]. Upon
sustained stimulation, these well-characterized mechanisms
induce, respectively, reductions in synaptic responses or in
neuronal firing, and these have been independently related to
various neural computations [12–17]. However, the joint
effect of SFA and STD on neural information processing has
not been scrutinized (but see [18]), despite the fact that they
are often associated in cortical circuits and they engage in
direct interplay because they act and depend on neuronal
firing rate, respectively. Therefore, the combination of
presynaptic SFA and STD provides a nontrivial physiologi-

cally realistic scenario as yet undefined in terms of neural
information processing properties.
We show here, by means of computational modelling and

experiments in cortical slices, how the combination of STD
and SFA approximates the computation of the rate of change
(or derivative) of the input, and how this can be used as the
critical building block of a general predictive scheme for
neural information processing. Indeed, according to the
Taylor approximation for a smooth function, by combining
the current stimulus value and its instantaneous rate of
change it is possible to estimate the value of the stimulus
slightly ahead in time [19,20]. We illustrate this here by
proposing a simple, plausible neural architecture that imple-
ments a stimulus anticipation response that is in agreement
with experimental observations of cortical responses to
moving stimuli [21] and can be easily extended to other
low-level anticipation or control circuits in the nervous
system.
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l’Université René Descartes, France

Received May 24, 2006; Accepted March 26, 2007; Published May 11, 2007

A previous version of this article appeared as an Early Online Release on March 26,
2007 (doi:10.1371/journal.pcbi.0030082.eor).

Copyright: � 2007 Puccini et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: s.d., standard deviation; SFA, spike-frequency adaptation; STD,
short-term synaptic depression

* To whom correspondence should be addressed. E-mail: acompte@clinic.ub.es

PLoS Computational Biology | www.ploscompbiol.org May 2007 | Volume 3 | Issue 5 | e820813



Results

We built a network model of spiking neurons that
integrated an identical injected input current Iin and
projected to a postsynaptic neuron through conductance-
based synapses (see Materials and Methods). The postsynaptic
neuron passively summated incoming postsynaptic currents,
and we studied the resulting total current Ipost (Figure 1A), as
would be obtained in a voltage-clamp experiment. Presynap-
tic neurons could accommodate their firing through SFA by
means of the activation of a calcium-dependent potassium
current [9], and their synapses could in addition depress
following a phenomenological model calibrated against
cortical STD experiments [7]. In the following, we show how
this biophysically grounded cortical network model is a
robust, physiologically plausible neural implementation of an
approximate differentiator operator for low frequencies, so
that Ipost is a close approximation to the rate of change of the
slower components of the input Iin. Our argumentation is
based on the two main aspects that characterize the action of
the differentiation operator on sinusoidal inputs [d sin(xt) / dt
¼ x � sin(xt þ p/2)]: 908 phase advancement irrespective of
sinusoidal input frequency, and modulation amplitude gain
proportional to sinusoidal input frequency (Figure 2B).

SFA and STD Induce Robust Phase Advancement of a
Sinusoidal Input Current Iin

Independently, both STD and SFA are known to advance
the phase of a sinusoidal input [12,14]. However, we found
that SFA cannot produce sufficient phase advancement to
generate the derivative signal, and STD can do so only by
strongly reducing the signal-to-noise ratio of Ipost (Figure 1B
and 1C). Instead, the phase advancement of a sinusoidal Iin
was systematically larger and less noisy when both SFA and
STD were included in the simulation (case þAþD in Figure
1B), approaching 908 as required by a rate-of-change
computation. Adding presynaptic SFA improved the signal-
to-noise ratio without canceling other STD effects because
synaptic resources were recovered through the decrease of
presynaptic firing, so the total postsynaptic charge entry
remained approximately constant while synapses gained

sensitivity to modulations of the input. This enhanced
signal-to-noise and phase-shift effect of the combination of
SFA and STD was very robust, as it persisted for significant
changes in the parameters that defined the strength and
dynamics of both mechanisms in our model (see Figure S1).

Postsynaptic Response to White Noise Input Reveals

Derivative-Like Operation at Low Frequencies
To confirm that the network computed a derivative, in

addition to showing that SFA plus STD induced an
appropriate phase advancement on sinusoidal signals, we
needed to assess that this phase-shift was approximately
constant over a significant range of sinusoidal input
frequencies, and that the modulation gain in Ipost was
proportional to the sinusoidal input frequency. We checked
this by injecting input currents Iin of broad bandwidth (white
noise) into our network model and analyzing the resulting
Ipost . A spectral analysis of the transfer function
HðxÞ ¼ ~IpostðxÞ=~I inðxÞ, obtained from the Fourier trans-
forms of Iin and Ipost (Figure 2A), allowed for a quantitative
assessment of the network’s operation on the input signal.
Indeed, the complex-valued transfer function H(x) of the

Figure 1. Phase Advances Induced by SFA and STD in the Network

Model

(A) Scheme of the spiking neuron network employed (N¼ 300).
(B) Postsynaptic current Ipost in response to sinusoidal input current Iin for
the networks: no SFA and no STD (�A�D, cyan), SFA only (þA�D, green),
STD only (�AþD, blue), and SFA plus STD (þAþD, red). Last panel:
mathematical derivative dIin/dt. All panels show Iin (gray) and dIin/dt
(black). Signals are plotted rescaled by their s.d. (vertical scale bar ¼ 1
s.d.).
(C) Cross-correlation functions between s.d.-rescaled Iin and Ipost showing
the phase shift induced by the various mechanisms. The off-center
location and the height of the central peak are measures of the phase
advancement and the signal-to-noise ratio in Ipost, respectively.
doi:10.1371/journal.pcbi.0030082.g001
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Author Summary

The cerebral cortex is the region of the brain whose intricate
connectivity and physiology is thought to subserve most compu-
tations required for effective action in mammals. Through biophysi-
cally realistic computer simulation and experimental recordings in
brain tissue, the authors show how a specific combination of
physiological mechanisms often found in neurons of the cortex
transforms an input signal into another signal that represents the
rate of change of the slower components of the input. This is the
first report of a neurobiological implementation of an approximate
mathematical derivative in the cortex. Further, such a signal
integrates naturally into a neurobiologically simple network that is
able to generate a linear prediction of its inputs. Anticipation of
information is a primary concern of spatially extended organisms
which are subject to neural delays, and it has been demonstrated at
various different levels: from the retina to sensori-motor integration.
We present here a simple and general mechanism for anticipation
that can operate incrementally within local circuits of the cortex, to
compensate for time-consuming computations and conduction
delays and thus contribute to effective real-time action.

Anticipation and Derivative in Cortical Circuits



derivative operator is very different both in phase and
magnitude, for instance, from that of a time-shift operator
(Figure 2B). In particular, its phase is a constant 908 for all
frequencies and its magnitude grows linearly with frequency.
When we analyzed the average response of numerous network
simulations for the various conditions in our biophysical
network, we observed that networks endowed with SFA plus
STD and networks with STD but not SFA both generated
approximately the characteristics of the derivative for a
restricted range of frequencies (Figure 2C and 2D).

Mathematical Calculations Identify the Range of Validity
of Rate-of-Change Computation

We carried out the mathematical analysis of the computa-
tional model to explore the parametric conditions for the
emergence of derivative-like operation in a depressing,
convergent synaptic pathway. As we did numerically above,
this can be done in two different ways: in one case we asked
about the output to white noise rate fluctuations, and in the
other case we computed the output to a sinusoidal rate
modulation of given frequency. Both approaches converge
approximately to similar solutions (see Figure 3), lead to
complementary insights, and revolve around a different set of
simplifying assumptions (see Protocol S1 for detailed

mathematical derivations). To avoid complications from the
firing threshold in presynaptic neurons, we assumed that the
size r of temporal modulations in the rate was small
compared with the mean presynaptic rate r0.
Specifically, the transfer function H(x) can be obtained

exactly under the assumption of asynchronous presynaptic
firing [22] and is given by ð1þ ixsDÞ=½ð1þ ixssÞð1þ ixseÞ�
apart from constant prefactors, where x is the Fourier
frequency and i ¼

ffiffiffiffiffiffiffi
�1
p

. This shows how the dynamic output
of the system depends not only on the two time scales of our
synaptic variables, ss and sD (see Materials and Methods), but
also on an emergent time constant se¼ sD /[1þ (1� C) r0 sD].
This time constant is the effective time constant for the
relaxation of the synaptic efficacy (D) to its steady-state value
when stimulated at rate r0. Because the decay time constant of
synaptic conductances ss is very small, on the order of a few
milliseconds, it does not play a significant role in the
dynamics at the low frequencies (,100 Hz) that we are now
interested in, and all the dynamics in this frequency range are
determined by the time constants sD and se that define
synaptic depression dynamics. We analyzed the modulus and
phase of the transfer function when ss! 0 and we found that
precisely in the range of frequencies between 1/sD and 1/se the
modulus of the transfer function has an inflection point at

Figure 2. Fourier Analysis of the Network Model Output Ipost upon Stimulation with White Noise Input Current Iin
In a range of low frequencies, networks with STD act as differentiators, and networks with SFA have a low-pass cutoff at neighboring frequencies.
(A) Schematic representation of the model and the computation of its transfer function H(x) from the Fourier transforms of Iin ð~IinðxÞÞ and of Ipost

ð~IpostðxÞÞ. H(x) is an imaginary quantity that is characterized by its magnitude and its phase.
(B) Phase and magnitude of the H(x) for mathematical derivative (top) or time-shift (bottom) operators.
(C) H(x) phase and (D) H(x) magnitude for C¼ 0.5, sD¼ 400 ms, and sCa¼ 80 ms in the network models of Figure 1 (same color code). To reduce the
variance of H(x), a network with N¼1,000 presynaptic neurons was used and responses to 50 different white noise realizations were averaged together.
Significant phase advancement with linear increasing amplitude occurs for frequencies below 10 Hz when the network includes STD. On a single trial
basis, however, only-STD networks produce unsatisfactory, very noisy Ipost (Figures 1 and 4).
(D) Every curve is scaled independently to match the initial slopes of jH(x)j and to allow for comparisons. Inset: low-frequency range on linear scales.
doi:10.1371/journal.pcbi.0030082.g002
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xinf and the phase of the transfer function has a maximum at
xmax (see Figure 3). This means that around a given frequency
xinf in the range [1/sD,1/se] ðxinf ’ 3�1=4=

ffiffiffiffiffiffiffiffiffi
sDse
p Þ, the modulus

of the transfer function is very well approximated by a linear
function, and around a given frequency xmax in the same
range ðxmax ’ 1=

ffiffiffiffiffiffiffiffiffi
sDse
p Þ the phase of the transfer function is

practically constant. Because neither the modulus is perfectly
linear nor the phase perfectly constant in the mathematical
sense for a range of frequencies, it is arbitrary to define the
range of reasonable approximation by these simpler func-
tions. Thus, considering the range x 2 [1/sD,1/se], it can be
shown that the slope of the modulus of the transfer function
(plotted versus the frequency x) does not vary by more than a
factor of 2 and the phase of the transfer function only drops
below half the maximum phase if se , 0.07sD (i.e., in the
extreme cases when (1�C) sD r 0 . 13). Thus, for frequencies
within the interval [1/sD,1/se], the modulus of the transfer
function is approximately linear and the phase advance
sizable. This range of frequencies is large when se is small, i.e.,
when either r0 is large or C is small. This is in agreement with
our numerical exploration of the parametric dependence of
approximate differentiation as illustrated in Figure S3A.
Therefore, STD in a converging pathway that undergoes
significant synaptic summation performs an approximate
differentiation, provided the input spectral power is con-
centrated at frequencies below 1/se and presynaptic firing is
modulated around a high firing rate (if we want the range
[1/sD,1/se] to be one decade long, then r0 � 30 Hz).

On the other hand, from the mathematical analysis of
output responses to a sinusoidally modulated (at frequency x)
input rate, one obtains similar results that concur with the
transfer function analysis described above (see Figure 3),
despite the fact that for the sinusoidal-input case the
mathematical derivations require stronger simplifying as-
sumptions (see Protocol S1). However, this analysis gives some
additional insight as it reveals at which point in the chain of
synaptic events of our model the qualitative properties of the
differentiation operator emerge. Indeed, the temporal course
of synaptic efficacy (D) modulations upon sinusoidally

modulated input rate are already phase-shifted (by an
amount given by p � arctan xse), but the amplitude of these
temporal modulations decreases with input modulation
frequency x. It is only after considering summation of
responses to a great number of asynchronously firing
afferents (mathematically this corresponds to Ipost ’ r(t)D(t),
see [22,23]) that the postsynaptic current shows both phase
advancement and a fluctuation amplitude that increases
linearly with x. Thus, the critical mechanisms required for
the emergence of a regime of approximate derivative
operation at low frequencies are not only STD, but also
synaptic summation of asynchronous afferents. However, this
is insufficient for differentiation, as high frequency compo-
nents will be amplified (see Figure 3A) and will dominate the
output. The association of presynaptic SFA is what in our
circuit filters away high-frequency fluctuations (Figure 2D) to
form a robust mechanism of neural differentiation.

SFA Presynaptic to STD Enhances Signal-to-Noise and
Filters High-Frequency Components
When we averaged over many different trials (Figure 2) or

analyzed the system mathematically (Figure 3), networks with
STD approximated the characteristics of a differentiation
operator for low frequencies. However, on a single trial basis
only networks with both STD and SFA produced an output
with sufficient signal-to-noise ratio to effectively yield the
rate of change of arbitrary slowly varying nonsinusoidal
currents (Figure 4A–4E). For a given complex-varying input
signal, we quantified the similarity of the networks’ output
with the derivative signal as the magnitude of their cross-
correlation’s central peak (see Materials and Methods). The
SFA plus STD network model yielded a significantly higher
cross-correlation (89%) than either of the other networks
(SFA only, 74%; STD only, 68%; none, 49%). Notice that our
spectral analysis on white noise inputs showed that 908 phase
advance (as for a mathematical derivative) applies only for a
narrow range of frequencies (0.5–2 Hz, Figure 2C). Figure 4E
shows that approximate differentiation is thus not critically
dependent on a strict 908 phase shift because in that figure Iin

Figure 3. Analytical Calculations Show That the Summation of Asynchronous STD Synapses Produces Derivative-Like Postsynaptic Currents in an

Identified Range of Low Frequencies

This can be obtained from a white noise input rate (yielding the transfer function H(x), solid lines) or from a sinusoidal input rate (dashed lines), through
a different set of simplifying assumptions (see Protocol S1).
(A) Amplitude of postsynaptic current fluctuations (x-axis is Fourier frequency for solid line and frequency of stimulation sinusoid for dashed curve).
Amplitude is plotted in arbitrary units, ignoring all dimensional prefactors. xinf denotes the inflection point of the solid curve, around which a straight
line is a very good approximation.
(B) Phase advancement with respect to input frequency x. xmax denotes the frequency at which the maximum phase advancement occurs; around this
point the phase is relatively insensitive to frequency x. Dashed regions correspond to the interval [1/sD,1/se], in which amplitude grows linearly with x
and phase remains approximately constant. Parameters used were sD ¼ 0.4 s, C¼ 0.4, r0 ¼ 20 Hz.
doi:10.1371/journal.pcbi.0030082.g003
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has sinusoidal components with frequencies between 1 and
7.5 Hz. In an additional series of simulations, satisfactory
rate-of-change computation (defined as cross-correlation
between network output and derivative above 80%) occurred
for complex inputs with power content spanning from 1 to 20
Hz (see Figure S2). This range of frequencies corresponds
approximately to the range of linear increase of H(x)
magnitude in Figure 2D. In addition, our white-noise analysis
reveals the low-pass filtering properties of networks endowed
with SFA, with a cutoff frequency near the upper limit of the
frequency range for derivative operation (Figure 2D). Such an
effect is advantageous for a system that computes the
derivative of low-frequency signals, since it leads to the
filtering out of high-frequency components, which would
otherwise dominate the derivative calculation (Figure 4D).
Thus, a network endowed with SFA and STD both ignored
high-frequency fluctuations and computed the approximate
rate of change of low-frequency input components (�20 Hz,
the range of temporal frequencies coded by neurons in
primary visual cortex [24]). This operation was not specific
for a particular set of parameters of our model, but it
persisted robustly over a significant range of parameter
values (see Figure S3).

Experiments Show Phase Advancement and Magnitude
Rescaling of Ipost upon Sinusoidal Iin, as Expected for a
Derivative

We then wondered whether experimental data in the
cortical tissue could support these computational results

(Figure 5). We tested experimentally whether our conclusions
still held if the schematic model of STD was replaced by real
synapses of the cerebral cortex. Presynaptic stimulation was
precisely timed to the occurrence of spikes in the adapting
presynaptic neurons of the model and delivered by electric
shocks to layer 4 of visual cortex slices. The evoked
monosynaptic potentials in a connected layer 2/3 neuron
were recorded. The convergent architecture of the model was
replaced in the experiment by sequential stimulation with the
presynaptic spike trains of model neurons and posterior
reanalysis to summate those responses as if they had occurred
through simultaneous pathways (see Materials and Methods)
(Figure 5A). A successful recording required stimulation in
stable conditions for a minimum of 30 min. Real synapses
advanced the phase of a periodic presynaptic frequency of
stimulation in five out of five recordings (phase shift
attributable to experimental synaptic plasticity 16.58 6 8.68,
mean 6 s.d., n¼ 5), as it has been theoretically suggested [12].
For two of these recordings, of remarkable stability (.2.5 h,
sharp microelectrodes), we stimulated with triggers from
presynaptic model neurons excited with two different sinus-
oidal frequencies (Figure 5C). Both of these recordings
concurred with our model results (see Figure 2): for low
sinusoidal stimulation frequencies (,10 Hz), phase advance-
ment was practically independent of, and response amplitude
gain was approximately proportional to, stimulation fre-
quency (Figure 5D). The fundamental operations of a differ-
entiation operator on low-frequency sinusoidal inputs were
therefore accomplished by a neuronal network of intrinsi-
cally adapting model neurons projecting convergently
through real depressing cortical synapses. We confirmed this
by using an arbitrary slowly varying nonsinusoidal current as
input for our experimental protocol, which resulted in a
reconstructed experimental Ipost that approached the rate of
change of the input (Figure 4F), in close similarity to the full
model’s corresponding output (Figure 4E).

Neurons Can Encode the Temporal Derivative in Their
Firing Rate
Our combined experimental-modeling approach demon-

strated that, for a network endowed with both SFA and STD,
voltage-clamped synaptic currents impinging on the post-
synaptic neuron Ipost follow the temporal derivative of the
low-frequency components of the input current to presy-
naptic cells Iin. Obviously, a number of mechanisms can
operate postsynaptically to manipulate and distort this signal
(voltage- and activity-dependent channels, etc.). We won-
dered whether the backbone mechanisms of neural function,
synaptic integration and spike generation, posed a problem
for the eventual representation of the temporal derivative at
the membrane voltage and firing rate levels. We thus repeated
the simulations in Figure 4E, only that we now activated
synaptic integration (Figure 6C) and both synaptic integra-
tion and spike generation (Figure 6D). Our simulations
showed that the temporal derivative of Iin could be well-
represented not only at the level of synaptic inputs (Figure
6B, cross-correlation peak 89%), but also (and equally well) in
the membrane voltage (Figure 6C, cross-correlation peak
92%) and in the firing rate (Figure 6D, cross-correlation peak
95%). Although this shows that the rate-of-change signal can
be encoded in spike trains, and propagated to other neurons
and networks, an alternative is that this signal is used and

Figure 4. The Network Computed the Rate of Change of an Arbitrary

Input, Ignoring High-Frequency Fluctuations

(A–E) Same network model as in Figure 1A. All presynaptic model cells
receive the same Iin ¼ Isignal þ Inoise (gray), with Isignal the sum of low-
frequency sinusoids (see Materials and Methods) and Inoise a Gaussian
white noise. Panels show Ipost for different combinations of SFA and STD.
Colors and symbols as in Figure 1. The derivative of Isignal is plotted
(black) to compare with Ipost. Unlike the mathematical derivative shown
in (D), SFA plus STD (E) acted as a pass-band filter differentiator.
(F) Smoothed Ipost for experimentally measured synapses (purple) is also
very close to the derivative of Isignal (all signals equally smoothed for fair
comparison). The response of an SFA-only network is superimposed for
comparison (pale green). Vertical scale bars ¼ 1 s.d.
doi:10.1371/journal.pcbi.0030082.g004
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manipulated within the postsynaptic neuron before produc-
ing a spiking output that is to be propagated downstream. We
illustrate this in the following through the construction of an
anticipation network.

Rate-of-Change Network Underlying an Anticipation
Neural Scheme in the Cortical Circuit

A biological system that has access to the instantaneous
rate of change of a signal, can exploit this knowledge in a
variety of ways. A straightforward and powerful application is

the computation of a prediction of the signal, by adding
together the rate of change and the signal itself, as in the first-
order Taylor approximation of mathematical calculus [19,20]:
I(t þ s) ’ I(t) þ s dI(t) / dt. We tested whether the addition in
this formula was performed naturally by a postsynaptic
neuron receiving inputs both from the network that we have
been discussing (contributing k dIin / dt) and from a new set of
presynaptic neurons that neither adapted nor had depressing
synapses (so they contributed Iin, as in Figure 4A). This is

Figure 5. Experimentally, Real Cortical Synapses Produced Constant Phase Advance and Modulation Gain Proportional to Frequency

(A) Experiment scheme. Electric shocks were triggered by the sequentially chained spike trains of ;400 presynaptic model cells. Postsynaptic responses
in an intracellularly recorded neuron were analysed off-line, translated in synaptic conductances, and added together to simulate the putative total
synaptic conductance evoked by the simultaneous activation of ;400 presynaptic neurons. The voltage-clamped postsynaptic current Ipost is
represented.
(B) Control recording for periodic stimulation at 10 Hz (purple) and model trace given by C ¼ 0.65 (gray) (C is the ratio of peaks of contiguous
postsynaptic currents at very high stimulation rates).
(C) Smoothed postsynaptic current phase advance in the model with SFA only (green) was enhanced when replacing nondepressing model synapses by
real cortical synapses (purple). Results for two different Iin frequencies are shown (top: 3.5 Hz, bottom: 5 Hz). Signals are plotted normalized to s.d.
(computed from triangles onward to avoid transients).
(D) Cross-correlation functions between Iin and non-s.d.–normalized experimental Ipost for the two frequencies (dashed: 3.5 Hz, solid: 5 Hz) overlapped
when plotted versus phase and when normalized by stimulation frequency (inset). All data shown here come from the same neuron.
doi:10.1371/journal.pcbi.0030082.g005
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represented schematically in Figure 7A and described
mathematically by:

Ipost ’ Iin þ kdIin=dt ð1Þ

The postsynaptic current Ipost was indeed a fixed time interval
ahead of the input Iin (Dt ; 20 ms. Dt depended on the relative
strength of inputs from the two contributing pathways), and
predicted it quite accurately (Figure 7B). This can be
specifically addressed by computing the cross-correlation
function between the output and input currents, and compar-
ing it with an appropriately displaced autocorrelation func-
tion of Iin (Figure 7C). The two curves follow each other closely,
indicating that indeed Ipost is an anticipated version of Iin.

We then wondered how rigidly this anticipatory function

was associated with the specific network architecture of
Figure 7A. Although it is not an unlikely architecture (two
segregated, physiologically distinct pathways could converge
from different layers of the cerebral cortex, for instance), the
cortical tissue is typically associated with random distribution
of properties, rather than with the distinct two-pathway
scheme in Figure 7A. Therefore, we tried a network (Figure
8A) where both the strength of SFA in presynaptic neurons
and the strength of STD in their synapses were chosen
independently at random from exponential distributions
(Figure 8B). By choosing an exponential distribution, we
ensured that in many cases neurons had little SFA and
synapses little STD so the signal suffered little change
through the pathway; but a small proportion had sizable
SFA and STD, so they contributed a small perturbative
additive term, which to leading order resembled a derivative.
We thus anticipated such a network to approach the Taylor
approximation demonstrated in Figure 7. Indeed, when we
injected the same current as in Figure 7 into the heteroge-
neous population of presynaptic neurons, we obtained a
current Ipost that followed approximately Iin (see qualitatively
similar correlation functions in Figure 8C), advanced by a
fixed time window (inset in Figure 8C). Such a randomly
heterogeneous network thus also performs an anticipation on
the inputs, albeit incorporating further distortions than the
network in Figure 7. Therefore, we have identified two
biological implementations of a first-order Taylor approx-
imation, through which the cortical network is able to
anticipate with various degrees of accuracy the magnitude
of its inputs in the immediate future.

Anticipating Neural Circuits Reproduce the
Phenomenology of Motion Extrapolation
Our two networks processed slowly varying inputs (as for a

stimulus moving into the neurons’ receptive field with
constant velocity, see Figure 9A) slightly ahead in time as
compared with sudden inputs (Figure 9B and 9C, for
networks in Figures 7A and 8A, respectively), in agreement
with recordings in visual cortex [21]. We computed the spatial
mismatch on the visual scene that such differential temporal
processing would imply perceptually, to compare with the
phenomenology of the ‘‘flash-lag effect.’’ In this perceptual
effect, a flashed object appears to lag behind a moving object,
even though both are presented in perfect alignment [25,26].
In our model (we show it for the model in Figure 7A, but
similar results can be obtained from the model in Figure 8A)
and for slow motion (,50 deg/s), the lag distance depended
linearly on the velocity of motion of the stimulus (Figure 9B,
inset), as observed both neurophysiologically [21] and
psychophysically [25]. Our models were also in quantitative
agreement with the physiological data [21], but fell short of
the visual displacements perceived psychologically [25],
suggesting the involvement of additional mechanisms for
the perceptual ‘‘flash-lag effect.’’ Also, the model predicted
the disappearance of the effect for very rapidly moving
stimuli (.100 deg/s, Figure 9B, inset), as has been reported to
occur in the retina [27]. Notice that the randomly heteroge-
neous network of Figure 8A produces an anticipated
response that is distorted, especially in its later phase for
the moving stimulus (Figure 9C). Thus, for slow motion, our
models computed a fixed-interval extrapolation that resulted
in shorter latency processing for moving than for flashed

Figure 6. In a Network Scheme with Both SFA and STD, Basic Integration

and Spiking Mechanisms in the Postsynaptic Membrane Allow the

Postsynaptic Neuron to Encode the Temporal Derivative

(A) Current injected into presynaptic neurons (Iin, solid black line).
(B) Synaptic conductance opening in the postsynaptic neuron Gsyn(t).
(C) Membrane voltage modulations resulting from synaptic currents and
synaptic conductance changes when postsynaptic spiking is inactivated.
(D) Sample spike trains (above) and trial-averaged firing rate (below) of
the postsynaptic neuron subject to the presynaptic network activity. In
all panels, the dashed black curves trace the mathematical derivative of
the input, rescaled by the s.d. and recentered by the mean of the plotted
signal to allow a direct comparison. The network is exactly as in Figure
4E, with enabled synaptic integration and spiking mechanisms in the
postsynaptic neuron. The firing rate curve in (D) was obtained from 400
different simulations and by averaging together normalized bell-curve of
s.d. 10 ms centered at the time of spike occurrence. Average
postsynaptic firing rate was 64 Hz.
doi:10.1371/journal.pcbi.0030082.g006
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stimuli, one of the proposed interpretations of the ‘‘flash-lag
effect’’ [25,26,28].

Discussion

Physiological Mechanisms for the Rate-of-Change
Computation

We have shown that the combination of ubiquitous
physiological mechanisms (SFA and STD), often encountered
side-by-side in cortical circuits [8,10,11], leads naturally to a
network that computes the instantaneous rate of change of its
inputs. In isolation STD is more effective than SFA in this
respect (see Figure 2), although it has two important draw-
backs: it has a very low signal-to-noise ratio, and it does not
present a low-pass cutoff at low frequencies to disregard high-
frequency synaptic noise. Instead, SFA presynaptic to STD
conserves the rate-of-change properties of the STD pathway
while solving these two problems. This is achieved through
the activity-dependent reduction of the presynaptic rate, and
the resulting recovery of depressed synaptic resources.
Through this dynamic interplay, the summated excitatory
drive into the postsynaptic neuron remains approximately
unaffected by SFA while the sensitivity of the synapses to
input temporal modulations is significantly enhanced. We
thus report novel coordinated interactions between these two
mechanisms (see also [18]), which have traditionally been
viewed as alternative suppressors of neural excitability. Note
that other mechanisms could be invoked to play or enhance
some of the roles of SFA in this association. For instance, the
spike generation mechanism could provide appropriate low-
pass characteristics [29] but it would not control the
presynaptic rate to improve the signal-to-noise ratio.

An Experimental Test for Rate-of-Change Computation in
the Cortex
Testing network mechanisms experimentally in vitro is

difficult because current experimental techniques do not
allow controlled, simultaneous stimulation of large numbers
of individual neurons monosynaptically connected to an
intracellularly recorded postsynaptic cell. We have circum-
vented this problem by using one single monosynaptic
connection from layer 4 to layer 2/3 of visual cortex, and
stimulating it sequentially with the spike patterns of 300–400
presynaptic model neurons. In subsequent off-line analysis we
processed recorded voltage responses to eventually add them
all together, as if they were arriving simultaneously to the
postsynaptic cell. We can thus provide experimental support
for STD-induced phase advance and amplitude enhancement
(Figure 5), consistent with a derivative operation. Notice,
however, that the phase shift observed in our experiment was
smaller than would be predicted from our model (Figure 5).
We identify a few caveats associated with the experimental
approach: on the one hand, inhibition was not blocked in
order to avoid epileptiform discharges, particularly in an
experiment in which repetitive electrical stimulation was
given. Even when we routinely tested the evoked synaptic
response at different membrane potentials to ensure that it
was strictly excitatory (see Materials and Methods), we cannot
rule out that repetitive stimulation did not recruit some
inhibitory component. No slow hyperpolarization was ever
observed during the protocols, what excludes a significant
GABAB activation. Still, we worked with the assumption that if
there was some inhibitory shunting, this was constant through
each stimulation train. Thus, nonstationary shunting could
have been a source of error in our analysis. On the other hand,

Figure 7. Anticipatory Responses through a Taylor-Approximation–Inspired Neurophysiological Circuit

(A) Model scheme for a biological implementation of the first-order Taylor approximation.
(B) Anticipatory Ipost response to Iin¼ Isignal of Figure 4 (both currents equally smoothed for readability). Dashed square zoomed in inset. Vertical scale
bar represents 0.5 lA/cm2.
(C) Cross-correlation function between Ipost and Iin (black) superimposed on autocorrelation function of Iin displaced by 16 ms (gray). Inset shows the
displacement of the central peak (dashed square).
doi:10.1371/journal.pcbi.0030082.g007
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slow depolarizing NMDA-independent effects were some-
times seen upon repeated electrical stimulation (in three out
of five recorded neurons, see example in Figure S4), as has
been reported by other authors [30]. These slow changes in
membrane potential may reflect the recruitment of other
ascending pathways and the action of a neuromodulator,
which could be associated with a change in conductance [30].
Theoretically, a change in baseline membrane voltage could
also engage postysnaptic voltage-dependent properties,
although in our hands the maximum amplitude of the
depolarization was very small (1–2 mV). Therefore, our results
in Figure 5 are all the more significant, as the predicted effect
of STD is qualitatively observed despite the possible presence
of these confounding mechanisms, recruited by the non-
selectivity of electrical stimulation in the slice.

Rate-of-Change Computation in Biological Circuits
Here, we explicitly illustrated how derivative calculation

can be used in a neural circuit to anticipate incoming inputs,
but in fact this basic computation could take part in a variety
of information processing operations in neural systems.
Indeed, time derivatives are basic computations that are
profusely used in complex operations in engineering and
physics, typically integrated in control circuits to correct
undesired trends in a monitored signal. In biology, imple-

mentations of control circuits have already been identified at
the biochemical level in molecular biology [31] and at various
physiological levels in neuroscience [32,33], suggesting that
the computation of the rate of change of a signal is a
fundamental operation in biological circuits. A specific
neurobiological instance where such a signal has been
observed is in sensory receptors of the vestibular system
[34], where evidence also supports a neural substrate for the
mathematical integration of some Newtonian laws of motion
[35,36]. A number of experiments and theoretical studies
have also suggested the presence of integrator circuits in the
cerebral cortex [37,38]. We provide here the first circuit based
on neurophysiological mechanisms of the neocortical micro-
circuit that is capable of computing the rate of change of
electrical current irrespective of high-frequency fluctuations.

An Anticipation Network Integrated in the Cortical

Microcircuit
We have illustrated explicitly how the rate-of-change

computation implemented through the interplay between
SFA and STD can underlie a physiologically plausible
anticipation circuit, mathematically equivalent to a first-
order Taylor approximation [19,20]. We suggest that such an
anticipatory circuit is integrated in the stereotyped local
anatomy and physiology of the neocortex [3,4]. Indeed,

Figure 8. Slightly Degraded Anticipatory Response from a Disordered, Heterogeneous Population of Adapting Neurons and Depressing Synapses

(A) Model scheme for a less constrained anticipatory architecture: presynaptic neurons have different values of the IKCa conductance (gKCa) responsible
for SFA, and their synapses have varying degrees of STD (parameter C).
(B) Exponential distributions of gKCa and C, by which these parameters are randomly and independently distributed in presynaptic neurons and
synapses, respectively.
(C) Cross-correlation function between Ipost and Iin superimposed on autocorrelation function of Iin displaced by 17 ms. The output is a slightly degraded
version of an anticipation of the input. Inset: zoom on central peak (dashed square).
doi:10.1371/journal.pcbi.0030082.g008
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specific stereotyped arrangements of connectivity and phys-
iological mechanisms have been observed before [2,3]. The
layered architecture of the cerebral cortex provides segre-
gated, highly specific input pathways within a cortical column
that could easily embed the anticipatory circuit of Figure 7A
[1,4,39]. However, our anticipatory scheme does not even
require a very high degree of specificity. Notice that in
Equation 1 the term that contributes the rate-of-change
signal is comparatively small with respect to the first term
(first-order perturbation). The relative magnitude of the two
terms (controlled by the relative magnitude of the synaptic
strengths in the two pathways) determines both the deviation
of the resulting signal from the accurate prediction and the
time-window by which the scheme anticipates. Therefore,
although the derivative is optimally accomplished by the
combination of SFA and STD (Figures 1–5), for the specific
case of this anticipation scheme where the rate of change
enters only as a small, perturbative term, the sole action of
either SFA or STD induces short-time anticipation. This leads
us to a formulation of the anticipatory network on much
more general physiological terms: a population of neurons
highly heterogenous with respect to their degree of SFA and
STD produce in a convergently activated postsynaptic
neuron a signal that anticipates their own inputs (Figure 8).
Thus, cortical networks are endowed with extraordinary
flexibility for the implementation of anticipatory circuits:
approximate anticipation occurs through the sole action of
heterogeneous SFA and STD parameters (Figure 8) or, for
higher accuracy, through the specific coordination of these
mechanisms (Figure 7).
We propose that our anticipatory schemes are integrated

into the cortical local circuit, even though we do not consider
mechanisms operating upon postsynaptic neuron function
such as postsynaptic SFA or feedback inhibition. This is
justified by the fact that we are claiming that the operation
occurs between the driving currents to presynaptic (Iin) and
postsynaptic (Ipost) neurons. Thus, any processing that occurs
when postsynaptic neurons are activated would correspond
to some further computation on the postsynaptic neuron
inputs. In the case of our networks, these inputs Ipost would be
slightly advanced with respect to inputs to presynaptic cells
and thus all ensuing processing will have this anticipation
component. Therefore, the networks we identified are
interposed conduction elements between two layers of
processing, each of which has its own mechanisms to further
elaborate information processing. Note, however, that this
does not concern feedforward inhibition, which must also be
considered a driving element of postsynaptic neurons. The
effect of feedforward inhibitory dynamics on these networks
thus remains to be elucidated.

Multilevel Anticipation Circuits in the Cortex
Neurophysiological mechanisms for predictive computa-

tions have been proposed before only in the context of
learning processes [40–44] or on the basis of the specific
functional aspects of circuits with respect to motion
processing [21,27]. We present here a plausible hard-wired,
bottom-up mechanism that is neither dependent on learning
nor specific to a particular stimulus modality or feature.
Instead, it performs a lower-level computation: stimuli are
predicted based on the empirical fact that inputs typically
change continuously and smoothly. It is likely that antici-

Figure 9. Physiological Implementations of an Anticipatory Network
Reproduce Advanced Sensory Responses to Moving Versus Flashed
Visual Stimuli

(A) Stimulus configurations as in [21]. Incoming current Iin depended on
the position of the moving or flashed bar in the receptive field (top row).
For a bar moving with speed v, Iin was a Gaussian of s.d. L/v, (L ¼
receptive field radius, ;38 in primary visual cortex).
(B) Superposition of the Iin’s for the two stimuli in (A) (gray lines) and
corresponding outputs from the model presented in Figure 7 (Ipost’s,
black traces) show advanced response to moving with respect to flashed
stimuli (Dt ¼ 29 ms). Inset: Apparent spatial shift between moving and
flashed stimulus from neural responses (vDt) for increasing speed v.
(C) Same as in (B) but for the model presented in Figure 8. Inset: zoom on
the inputs (gray) and responses (black) around the time of the flash onset,
showing the advanced response to moving with respect to flashed stimuli.
Vertical scale bar in (B) for (B) and (C) represents 0.5 lA/cm2.
doi:10.1371/journal.pcbi.0030082.g009
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patory computations are present in the brain at practically all
levels of processing, from the very early and low-level aspects
discussed here to simple sensory predictions that are based
on learned associations, all the way up to the very complex
and high-level forward models of sensorimotor control that
predict the evolution of the world out of the brain’s motor
commands [45,46]. Predicting the future state of the
surroundings must be such an important tool for behavior
that all possible strategies are likely to be exploited, at the
corresponding processing level.

Anticipation as a Basis for the Perception of Predictable
Stimuli

We navigate and interact with complex, dynamic environ-
ments without typically perceiving any temporal mismatch
between our actions and the evolving surroundings. This is a
natural capability to expect from a highly evolved organism,
but it is also surprising because our sensory neurons transmit
delayed signals to the brain [47] and downstream computa-
tions incur additional delays [48]. Much delay correction is
done by sensorimotor control [45], but delay compensation
has also been suggested in sensory systems as an explanation
for the ‘‘flash-lag effect’’ [23]. This simple sensory explanation
has been challenged by a number of studies that reveal the
involvement of mechanisms at a cognitive level [26,49,50].
However, there is physiological evidence of shorter latency
neural responses to moving than to flashed stimuli in the
visual system [21,27,51], suggesting that sensory anticipation
in the visual system is one of the mechanisms of the flash-lag
effect. In addition, perceptual studies suggest that faster
processing of predictably changing stimuli occurs not only
for visual motion, but also across stimulus features and
sensory modalities [52,53]. This suggests that one fundamen-
tal computation carried out by neural circuits across the
cortex is the anticipation of predictable inputs. The
mechanistic scheme presented here implements a unifying
physiological principle that can underlie low-level anticipa-
tion along all stimulus features, sensory modalities, and even
beyond sensory cortices, as an integrated delay-correcting
module of the cortical microcircuit. This generality together
with the ubiquity of the mechanisms invoked and the
robustness of the phenomenon in the model and in the
experiment, suggests that this anticipatory circuit constitutes
a fundamental computational unit of neural information
processing in local circuits of the neocortex.

Materials and Methods

Biophysical model. The model consisted of a population of 300–
500 presynaptic neurons connected with fast excitatory (AMPA-type)
synapses to one postsynaptic neuron. The subthreshold membrane
voltage of neurons was modeled according to the equation:

C
dV
dt
¼ �gLðV � VLÞ � Iother þ Iinj ð2Þ

where C ¼ 1 lF/cm2 is the membrane capacitance, and the leak
current is characterized by VL¼�65 mV and gL¼0.1 mS/cm2. Iinj is the
injected current, composed by a noisy term 1.5 g(t) (where g(t) is a
Gaussian white noise with unit variance) independent from neuron to
neuron and a common input term Iin. In Figure 1 we had Iin ¼ 2.8 þ
0.8cos(2p3.5tþ0.8), while in Figure 4, Iin¼ Isignalþ Inoise, with Isignal¼2.8
þ 0.9cos(2pt) þ 0.25cos(2p2.5t þ 0.2) þ 0.3cos(2p3.5t þ 1.5) þ 0.25 �
cos(2p7.5t þ 1.8) and Inoise ¼ 1.5 g(t). In Figure 7B we used Iin ¼ Isignal,
the same Isignal as in Figure 4.

Presynaptic neurons fired an action potential whenever their
membrane potential reached the threshold Vth ¼�60 mV, at which

point the membrane potential was reset to Vreset¼�70 mV (integrate-
and-fire model). The potential was then held fixed at Vreset for a
refractory period of 2 ms. Other currents were incorporated at the
location of Iother: presynaptic adapting cells could have a calcium-
dependent potassium current Iother ¼ IKCa for the generation of SFA,
and postsynaptic neurons could have a synaptic input current Iother¼
Ipost due to the activity of their presynaptic partners.

Following [9], we modelled the calcium-dependent potassium
current IKCa as:

IKCa ¼ gKCa
½Ca2þ�i

½Ca2þ�i þ KD
ðV � VÞ

with KD¼30 mM, VK¼�80 mV, and gKCa¼5 mS/cm2 (except in Figure
8 and Figure S1, as indicated). The dynamics of intracellular calcium
concentration [Ca2þ]i was modeled as follows: at each action potential,
[Ca2þ]i increased instantaneously by an additive constant aCa (with aCa
¼ 0.2 lM/spike) due to the influx of calcium, and then decreased
exponentially with sCa ¼ 80 ms (except for Figures S1 and 2, as
indicated).

Voltage-clamped excitatory synaptic currents impinging on the
postsynaptic neuron were modeled as Ipost¼Gsyn(t)(Vhold� Vsyn) where
Vhold ¼ �65 mV, Vsyn ¼ 0, and Gsyn(t) denotes the total synaptic
conductance open in the postsynaptic membrane. Gsyn(t) decayed
exponentially to zero with a time constant ss ¼ 2 ms, and when a
presynaptic spike occurred, Gsyn rose instantaneously to Gsynþ gsyn D,
where gsyn represents the maximal synaptic conductance in a unitary
synaptic connection (gsyn¼ 0.24 mS/cm2 except for Figure 6 where gsyn
¼ 0.7 mS/cm2, and except for depressing synapses in Figures 7, 8, 9B,
and 9C, which have gsyn ¼ 1.2 mS/cm2, gsyn ¼ 0.75 mS/cm2, gsyn ¼ 2.85
mS/cm2, and gsyn ¼ 3.6 mS/cm2, respectively), and D is the depression
variable of the corresponding presynaptic neuron (modelled as in
[7]). For nondepressing synapses, D¼ 1. In depressing synapses, each
time a spike arrived at a presynaptic terminal, D was reduced
multiplicatively to CD, with 0 � C � 1 (we took C ¼ 0.65, except
for supporting figures, as indicated). The recovery of the synaptic
resources toward the maximal value (D ¼ 1) occurred between
presynaptic action potentials: sDdD / dt¼ 1�D, with sD¼ 0.4 s (except
for Figures S1 and S3, as indicated). In Figure 6 postsynaptic
responses at the level of membrane voltage and firing rate were
obtained using an integrate-and-fire postsynaptic neuron model
(Equation (2) with Iother ¼ Gsyn(t) (V � Vsyn) and corresponding
descriptions above).

Experiments. Slices of the visual cortex of adult (3–6 mo) ferrets
were prepared as described previously [54]. Experiments were
approved by the local ethical committee and done in accordance
with Spanish regulatory laws (BOE 256; 25/10/1990) that comply with
European Union guidelines on protection of vertebrates used for
experimentation (Strasbourg 3/18/1986). After preparation, slices
were placed in an interface-style recording chamber (Fine Science
Tools, http://www.finescience.com) and bathed in ACSF containing (in
mM): NaCl, 124; KCl, 2.5; MgSO4, 2; NaHPO4, 1.25; CaCl2, 2; NaHCO3,
26; and dextrose, 10, and was aerated with 95% O2, 5% CO2 to a final
pH of 7.4. Bath temperature was maintained at 34–35 8C. Intracellular
recordings were initiated after 2 h of recovery.

Sharp intracellular recording electrodes were formed on a Sutter
Instruments (http://www.sutter.com) P-97 micropipette puller from
medium-walled glass and bevelled to final resistances of 50–100 MX.
Sharp electrodes were considered adequate given the long duration
(.2 h) of the protocols run consecutively in each recorded neuron.
Micropipettes were filled with 2 M KAc. Recordings were digitized
and acquired using a data acquisition interface and software from
Cambridge Electronic Design (http://www.ced.co.uk). For the study of
synaptic depression, electrical stimulation (0.1 ms, 10–300 lA) was
delivered by means of a WPI A-360 stimulus isolation unit (http://
www.wpiinc.com) that prevents electrode polarization. A concentric
bipolar stimulating electrode (FHC, http://www.fh-co.com) was placed
in layer 4 and the postsynaptic neurons recorded in layer 2/3. Only
monosynaptic connections were included, the criteria being: reliably
evoked synaptic potentials (no failures) of constant amplitude and
shape and with a constant latency (jitter ,1 ms) of 1.5–3 ms [55]. The
evoked synaptic potentials (amplitudes 3–5 mV) were routinely
examined at different membrane potentials to ensure that they only
contained an excitatory component. During presynaptic electrical
stimulation, neurons were hyperpolarized to 80 mV 6 2 mV to
prevent action potential firing. To simulate in vitro the convergent
input of a large number of presynaptic cells (n ¼ 300–400) on to a
postsynaptic neuron, we applied the stimulation trains generated by
each model presynaptic neuron (duration 1–1.5 s) sequentially (5-s
recovery periods). The bridge-balance was monitored and adjusted in
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between trains. The putative postsynaptic response was reconstructed
off-line as if those trains of stimuli had been simultaneous (see below).
All synaptic and injection currents in Figures 4F and 5 were
smoothed (20-ms square kernel) for readability. Trains of ten electric
shocks at 10 Hz were delivered before and interspersed during the
recording to verify both the presence of depressing synapses and the
relative invariability of depression with respect to previous stim-
ulations (Figure 5B).

Off-line analysis. We analyzed off-line the intracellularly recorded
membrane potential during each series of extracellular stimulation
trains, measuring the size of excitatory postsynaptic potentials at the
time of each stimulus trigger tspk (difference between maximum in a
4-ms window following stimulation artifact and voltage value right
before the artifact). A reconstructed membrane potential was then
generated by multiplying the measured size of each excitatory
postsynaptic potential by the difference of exponentials:

aðt� tspkÞ ¼
e�ðt�tspkÞ=s1 � e�ðt�tspkÞ=s2

e�tmax=s1 e�tmax=s2
;

with t . tspk and tmax¼s1s2 log(s1 / s2) / (s1�s2), where s1¼10ms and s2¼
2 ms. By doing this, we reconstructed a smoother voltage time series
that only incorporated events associated with our stimulation
protocol. We used this approach to remove all spontaneous synaptic
activity not associated with stimulation events, which could otherwise
have interfered with our analysis. The resultant reconstructed
potential was then cut in individual responses Vi, and translated into
putative synaptic conductance changes from the equationGi(t)¼�Ii(t) /
Vi(t) with Ii ¼ C dVi / dtþ gL(Vi – VL) – I. The values of C and gL were
derived from voltage responses to hyperpolarizing pulses of current
injected intracellularly (for the cell in Figure 5 C¼0.31 nF and gL¼0.02
lS). The resulting synaptic conductance traces were added together,
replicating the postsynaptically integrated conductance evoked by
;300 simultaneously active presynaptic neurons:Gsyn(t)¼

P
Gi(t). Total

synaptic conductance was translated to voltage-clamped postsynaptic
current by means of Ipost ¼ �Gsyn Vhold. Thus, the experimental
information incorporated into our analysis was that concerning the
synaptic efficacy change operated by in vitro synaptic plasticity.

Cross-correlation. The cross-correlation function between the
input current Iin and the postsynaptic current Ipost (see Figures 1, 5,
and S1) was calculated by applying the cross-correlation theorem, i.e.,
anti-transforming the product of the Fourier transform of one
function by the complex conjugate of the other function. The mean
and standard deviation (s.d.) of each signal were computed starting
from 0.2 s in Figure 1 and from the first minimum following the
transient of the signal (indicated by upward-pointing triangles) in
Figures 4 and 5. Two measures were extracted from each cross-
correlation function: the amplitude and the phase of the central peak
(see inset in Figure S1A). The amplitude of the cross-correlation’s
central peak is a measure of the signal-to-noise ratio of Ipost, and it has
a maximal value of 1 (we denote this as 100% in Figure S1) when the
cross-correlation is computed on normalized values for the two
signals (Ipost and Iin). To maintain information about the magnitude of
current modulations in Ipost, we did not normalize by its s.d. when
computing the cross-correlation functions in Figure 5D. On the other

hand, the phase of the cross-correlation’s central peak gives a
measure of the phase displacement of Ipost relative to Iin. These
measures provide a way to determine whether Ipost approximates the
derivative of a sinusoidal Iin: the maximum of the cross-correlation
should be close to 100% and the phase of the central peak close to 908
(upper right corner in Figure S1A). These criteria were central to our
exploration of how robust the model was to parameter change in the
mechanisms of SFA and STD (Figure S1). Similarly, we use the cross-
correlation maximum as a measure of the approximation to the
derivative in the case of more complex Iin (Figures 4, 6, and S2).

Supporting Information

Figure S1. Robustness of Network-Induced Phase-Shift of Sinusoidal
Currents as Parameters for STD (C, sD) and for SFA (sCa, gKCa) Are
Varied

Found at doi:10.1371/journal.pcbi.0030082.sg001 (102 KB TIF).

Figure S2. Output of a Network with SFA and STD Performs a Rate-
of-Change Computation (up to a Correlation of 80%) for Inputs with
Power Content Concentrated below 20 Hz

Found at doi:10.1371/journal.pcbi.0030082.sg002 (260 KB TIF).

Figure S3. Results of the Computational Model in Figures 2 and 4 Are
Robust to Parameter Modifications

Found at doi:10.1371/journal.pcbi.0030082.sg003 (353 KB TIF).

Figure S4. Sample Raw Data from the Experiment in Figure 5

Found at doi:10.1371/journal.pcbi.0030082.sg004 (189 KB TIF).

Protocol S1. Explicit Mathematical Derivations Described in the Text

Found at doi:10.1371/journal.pcbi.0030082.sd001 (91 KB PDF).
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