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Pridopidine is in clinical trials for Huntington’s disease treatment. Originally developed

as a dopamine D2 receptor (D2R) ligand, pridopidine displays about 100-fold higher

affinity for the sigma-1 receptor (sigma-1R). Interestingly, pridopidine slows disease

progression and improves motor function in Huntington’s disease model mice and,

in preliminarily reports, Huntington’s disease patients. The present study examined

the anti-amnesic potential of pridopidine. Thus, memory impairment was produced in

mice by administration of phencyclidine (PCP, 10 mg/kg/day) for 10 days, followed

by 14 days’ treatment with pridopidine (6 mg/kg/day), or saline. Finally, novel object

recognition performance was assessed in the animals. Mice receiving PCP and

saline exhibited deficits in novel object recognition, as expected, while pridopidine

treatment counteracted PCP-induced memory impairment. The effect of pridopidine was

attenuated by co-administration of the sigma receptor antagonist, NE-100 (10 mg/kg).

Our results suggest that pridopidine exerts anti-amnesic and potentially neuroprotective

actions. These data provide new insights into the therapeutic potential of pridopidine as

a pro-cognitive drug.
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INTRODUCTION

Pridopidine (formerly ACR16), was originally developed as a fast-dissociating, micromolar affinity
dopamine D2 receptor (D2R) antagonist (Pettersson et al., 2010), showing antipsychotic-like
activity in rodents with low liability to induce catalepsy (Nilsson et al., 2004; Natesan et al.,
2006; Ponten et al., 2010) and pro-social effects in MK-801-treated rats (Rung et al., 2005). Later,
pridopidine was found to possess nanomolar sigma-1 receptor (sigma-1R) affinity, displaying a
corresponding preference for sigma-1R over D2R in vivo (Sahlholm et al., 2013, 2015). While
showing promising effects on negative symptoms of schizophrenia in limited clinical studies
(Carlsson andCarlsson, 2006), pridopidine subsequently underwent phase IIb and phase III trials in
Huntington’s disease patients, where improvements in motor function were observed (de Yebenes
et al., 2011; Huntington Study Group HART Investigators, 2013). Additionally, preliminary results
showed a slower decline in total functional capacity in Huntington’s disease patients receiving
pridopidine, suggesting a possible neuroprotective effect (Reilmann et al., 2017).
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Pridopidine has also been found to increase brain-
derived neurotrophic factor (BDNF) signaling, improve
motor function and extend the lifespan of Huntington’s
disease model mice, and may exert Sigma-1R-dependent
neuroprotective effects in neurons from such mice (Squitieri
et al., 2015; Geva et al., 2016; Ryskamp et al., 2017).
However, although neurodegenerative pathologies, including
Huntington’s disease, often feature cognitive deficits and
memory impairment (Tyebji and Hannan, 2017), the putative
effects of pridopidine on memory function have not yet been
studied.

Sigma-1R agonists are known to exert anti-amnesic effects
in several models of cognitive impairment (Maurice and Su,
2009). Novel object recognition has previously been used
to demonstrate protective effects of atypical antipsychotics
and sigma-1R agonists against cognitive deficits induced by
subchronic phencyclidine (PCP) (Hashimoto et al., 2007).
The subchronic PCP model is often used to model cognitive
symptoms of schizophrenia (Rajagopal et al., 2014), but
the neurotoxic effects of the treatment (Olney et al., 1989;
Johnson et al., 1998) also makes this model relevant for
studying neuroprotective effects. The present study aimed to
investigate the ability of pridopidine to counteract novel object
recognition deficits induced by subchronic PCP treatment
in mice.

MATERIALS AND METHODS

Drugs
Pridopidine was custom-synthesized by Axon MedChem B.V.
(Groningen, The Netherlands), while PCP and NE-100 were
obtained from Tocris Bioscience (Bristol, UK).

Animals
Wild type CD-1 mice (Charles River Laboratories) weighing
25–50 g were used at 2–3 months of age. The University
of Barcelona Committee on Animal Use and Care approved
the protocol. Animals were housed and tested in compliance
with the guidelines described in the Guide for the Care and
Use of Laboratory Animals (Clark et al., 1997) and following
the European Union directives (2010/63/EU), FELASA, and
ARRIVE guidelines. All efforts were made to minimize animal
suffering and the number of animals used. Animals were housed
in groups of five in standard cages with ad-libitum access to food
and water and maintained under 12 h dark/light cycle (starting
at 7:30 a.m.), 22◦C temperature, and 66% humidity (standard
conditions).

Animals received subcutaneous (s.c.) injections of PCP (10
mg/kg, 4 mg/ml), or saline (2.5 ml/kg), once daily for 10
days (on days 1–5 and 8–12), followed by intraperitoneal (i.p.)
administration of either 6 mg/kg pridopidine (2 mg/ml), saline
(3 ml/kg), or pridopidine + 10 mg/kg NE-100 (the injected
solution contained both 2 mg/ml pridopidine and 3.33 mg/ml
NE-100) once daily for another 2 consecutive weeks (days 15–28;
Figure 1A).

Novel Object Recognition
After completing the drug treatment regime, animals were
habituated to the behavioral arena (a wooden box measuring 30
× 30 cm and painted non-reflective black, evenly illuminated at
110 lux) subsequently to be used for novel object recognition
testing, by letting them explore the arena for 5min on 3
consecutive days. Following the 3 days of habituation, two
virtually identical objects were placed into the arena about 20 cm
from each other, and the mice were allowed to explore the objects
for 5min, during which exploration of the objects was scored by
the experimenter (acquisition session). Animals were considered
to be exploring an object when sniffing or touching it with its
forepaws while sniffing. Subsequently, 24 h after the acquisition
session, animals were reintroduced to the arena, where one of the
two objects from the acquisition session had been replaced with
a new object, similar in size but with a distinct shape and color
(retention session), and exploration was scored during 5min as
on the previous day. Two different types of objects were used in
the study, and roughly half of the mice were trained on either
type. Animals which failed to explore the objects for more than
6 s were excluded from the analysis. The ratio between time spent
exploring the rightmost object (during the acquisition session),
or the novel one (during the retention session), and total time
spent exploring either object was calculated as a measure of
cognitive performance.

Statistical Analysis
Data are represented as means ± S.E.M. Comparisons among
experimental and control groups were performed by one-way
analysis of variance (ANOVA), followed by Bonferroni-corrected
post-tests. Statistical significance was accepted when P < 0.05.

RESULTS

We used the novel object recognition paradigm, considered
to test the rodent equivalent of human declarative memory
(Winters et al., 2010), to assess whether pridopidine can reverse
subchronic PCP-induced deficits. During the acquisition session,
all treatment groups showed undistinguishable preference for
exploring the right or left object [F(4, 106) = 0.2691, P = 0.8973]
(Figure 1B). However, during the retention session, when one of
the identical objects from the acquisition session was replaced by
a novel object, the different treatment groups showed significant
differences [F(4, 100) = 2.932, P = 0.0244]. Interestingly,
mice treated with PCP + saline showed significantly reduced
preference (P < 0.01) for the novel object compared to control
animals treated with saline + saline (Figure 1C), as previously
described (Hashimoto et al., 2007). Importantly, PCP-treated
animals that received 6mg/kg pridopidine daily during the last 14
days showed a significantly greater preference (P < 0.05) for the
novel object compared to the PCP+ saline group. Mice receiving
saline + pridopidine treatment did not differ significantly from
the saline+ saline group (Figure 1C).

Finally, we aimed to assess the putative sigma receptor
involvement in the pridopidine-mediated reversion of PCP-
induced deficits in novel object recognition. The sigma-1R-
preferring antagonist, NE-100 (10 mg/kg), attenuated the effect
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FIGURE 1 | Effect of pridopidine on subchronic PCP-induced deficits in novel object recognition. Diagram of the drug treatment regime (A). The exploratory

preference for the rightmost of two identical objects was first assessed during the acquisition session (B). The exploratory preference for the new object was

evaluated during the retention trial (C). The number of animals used per group is indicated on each column. **P < 0.01 and *P < 0.05 by one-way ANOVA with

Bonferroni’s multiple comparisons post-test. SAL, saline; PCP, phencyclidine; PRI, pridopidine; NE, NE-100; NOR, novel object recognition.

of pridopidine, such that the exploratory preference of NE-100-
treated animals was not significantly different (P = 0.255) from
that of animals receiving PCP+ saline (Figure 1C).

DISCUSSION

The present investigation provided evidence that pridopidine
mediates pro-cognitive effects, counteracting subchronic PCP-
induced deficits in novel object recognition in mice. We
used 6 mg/kg pridopidine as this dose was found to confer
neuroprotection in a Huntington’s disease mouse model
(Squitieri et al., 2015). PCP is known to induce neurotoxic
histopathological changes when given acutely (Olney et al.,
1989) and to cause neuronal apoptosis when administered
subchronically to rodents (Johnson et al., 1998). Thus, the ability
of pridopidine to reverse subchronic PCP-induced novel object
recognition deficits might reflect the neuroprotective effects of
this ligand described by recent studies (Squitieri et al., 2015;
Geva et al., 2016; Garcia-Miralles et al., 2017; Ryskamp et al.,
2017). Protection from PCP-induced deficits in novel object
recognition by sigma-1R agonist treatment has been suggested
to be mediated via sigma-1R-induced increased BDNF secretion,
and was abolished by simultaneous treatment with the sigma-
1R-preferring antagonist, NE-100 (Hashimoto et al., 2007).
Interestingly, pridopidine has been shown to increase BDNF
expression in vivo (Squitieri et al., 2015) and in a neuroblastoma
cell line (Geva et al., 2016); the latter effect was also blocked by
NE-100. Similarly, in the present study, NE-100 counteracted the
effect of pridopidine to reverse PCP-induced deficits in novel
object recognition.

It should be mentioned that although NE-100 is 200-fold
selective for sigma-1R over sigma-2 biding sites (Berardi et al.,
2001), engagement of sigma-2 receptors, or other “secondary”
targets of NE-100, cannot be ruled in the present context, given
the high dose of NE-100 employed. Thus, while it is tempting to
speculate that sigma-1R engagement may be responsible for the
anti-amnesic effects of pridopidine observed here, further studies
will be necessary to substantiate this notion.

Overall, the present results suggest that pridopidine exerts
anti-amnesic effects in subchronically PCP-treated mice, which
may be relevant to the therapeutic potential of this compound not
only in Huntington’s disease (e.g., slowing functional decline) but
also in other pathological conditions characterized by cognitive
impairment.
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