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Abstract
Familial encephalopathy with neuroserpin inclusion bodies

(FENIB) is a rare disease characterized by the deposition of multiple

intracytoplasmic neuronal inclusions that contain mutated neuroserpin.

Tg-Syracuse (Tg-Syr) mice express Ser49Pro mutated neuroserpin

and develop clinical and neuropathological features of human FENIB.

We used 8-, 34-, 45- and 80-week-old Tg-Syr mice to characterize

neuroinflammation and the unfolded protein response (UPR) in a neu-

rodegenerative disease in which abnormal protein aggregates accumu-

late within the endoplasmic reticulum (ER). There were scattered

neuroserpin inclusions in Tg-Syr mice at 8 weeks of age; the numbers

of neurons involved and the amount of neuroserpin per neuron in-

creased with age throughout the CNS to 80 weeks of age; no similar

inclusions were found in wild type (Tg-WT) mice at any age.

Increases in numbers of astrocytes and microglia occurred at advanced

disease stages. Among 22 markers in 80-week-old Tg-Syr mice, only

II1b and II10rb mRNAs in the somatosensory cortex and CxCl10 and

Il10rb mRNAs in the olfactory bulb were upregulated when compared

with Tg-WT mice indicating a limited relationship between neuroser-

pin inclusions and inflammatory responses. The changes were accom-

panied by a transient increase in expression of Xbp1 spliced at 45

weeks and increased ERdJ4 mRNAs at 80 weeks. The sequestration

of UPR activators GRP78 and GRP94 in neuroserpin inclusions might

explain the limited UPR responses despite the accumulation of neuro-

serpin in the ER in this FENIB mouse model.

Key Words: Cytokines, Endoplasmic reticulum, Familial encepha-

lopathy with neuroserpin inclusion bodies (FENIB), Inflammation,

Microglia, Neuroserpin, Unfolded protein response.

INTRODUCTION
Neuroserpin (proteinase inhibitor 12, PI12 or SERPINI1)

is an axonal-secreted serine protease inhibitor encoded by the
serpin peptidase inhibitor, clade A, member 1: SERPINI1 gene
in chromosome 3q26 (1–3). Neuroserpin forms covalent acyl-
complexes in vitro with several proteases, such as tissue plas-
minogen activator and urokinase plasminogen inhibitor,
whereas inhibition of plasmin and trypsin seems to be mediated
by substrate-like interaction (4, 5). Neuroserpin is expressed in
post-mitotic neurons during development in the olfactory bulb,
cerebral neocortex, hippocampus, and amygdala at high levels
(6), and in striatum, thalamus, brainstem, and spinal cord at
lower levels in the adult (4). Neuroserpin is involved in neurite
growth, synaptic plasticity, and regulation of the emotional
state, and it is neuroprotective in stroke and seizures (7).

Mutations in neuroserpin gene cause familial encepha-
lopathy with neuroserpin inclusion bodies ([FENIB]; OMIM
#604218) (8–16). Clinically, FENIB can manifest as slowly
progressive dementia, dementia and epilepsy, and progressive
myoclonus epilepsy (17). Neuropathologically, it is charac-
terized by unique or multiple eosinophilic intracytoplasmic
neuronal inclusions and isolated inclusions in the neuropil,
called Collins bodies; these are strongly positive with peri-
odic acid-Schiff (PAS) staining and resistant to diastase, and
they contain aggregates of glycosylated mutant neuroserpin.
Neuroserpin deposits are present in the cerebral neocortex,
hippocampus, amygdala, striatum, thalamus, substantia nigra
and other nuclei of the brainstem, spinal cord, and dorsal spi-
nal ganglia, but the cerebellar cortex and inferior olives ap-
pear unaffected with the exception of one young patient with
a severe disease course (13). A unique feature of FENIB
when compared with other neurodegenerative diseases with
abnormal protein aggregates is the localization of neuroserpin
deposits within the endoplasmic reticulum (ER) as an amor-
phous or fine granular material often darker in the center
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(9, 10, 12). Biochemically, these deposits are the result of ab-
normal mutated neuroserpin polymerization that produces
sequences of linked monomers of the mutant protein that can-
not be exported or degraded (18–21). An additional curious
aspect of the disease is the limited microglial reaction when
compared with other more common neurodegenerative dis-
eases with abnormal protein aggregates. This is unexpected
because ER localization of abnormal proteins induces ER
stress, which is biochemically manifested as the unfolded
protein response (UPR), and the UPR can initiate inflamma-
tion (22).

Two mouse models of FENIB have been generated by
expressing the Syracuse (Ser49Pro) and Portland (Ser52Arg)
neuroserpin mutations (23). Another line has been generated
expressing the Gly392Glu mutation in neuroserpin (24). A rat
model of human FENIB has been created by overexpressing
megsin, a novel member of the serpin family (25). Although
this model resembles the neuropathological features of hu-
man neuroserpinopathy, megsin has never been described in
human FENIB. In contrast, Tg-Syracuse (Tg-Syr), Tg-
Portland and Tg-G392E reproduce clinical, neuropathologi-
cal, and biochemical traits of human FENIB, including neuro-
serpin deposits in the ER (and lysosomes in Tg-G392E);
moreover, neuroserpin inclusions appear much earlier than
the clinical signs. Therefore, these models are particularly
useful to investigate mechanisms of neurodegeneration with
disease progression (23, 25).

The present study was designed to learn about putative
inflammatory responses, or the relative lack of them, in the
Tg-Syr model of FENIB as a part of a larger comparative study
of inflammation and mechanisms involved in human neurode-
generative diseases and corresponding mice models. These in-
clude APP/PS1 Tg mice bearing the Swedish mutation in APP
and PSEN1 deletion used as a model of b-amyloidopathy mim-
icking Alzheimer disease (AD), P301S-MAPT mouse model of
tauopathy, and murine Creutzfeldt-Jakob disease (CJD), pro-
duced in Prp mo-/-, PrP humþ/þ mice infected with brain ho-
mogenates from CJD type MM1 (26–28). The major interest in
comparing neuroserpinopathy with other neurodegenerative
diseases with abnormal protein aggregates is based on the ac-
cumulation of the abnormal neuroserpin within the ER and the
apparent discrete data regarding inflammatory responses in
FENIB.

MATERIALS AND METHODS

Animals
The experiments were carried out in transgenic mice

overexpressing S49P-Syracuse human neuroserpin (S49P-
Syracuse: Tg-Syr) and wild-type human neuroserpin (Tg-
WT) aged 8, 22–25, 34, 45, and 80 weeks (n¼ 3 mice for
each phenotype and age). The generation of transgenic mice
has been reported elsewhere (23).

All animal procedures were performed in accordance
with the institutional guidelines of the animal facility of the
University Medical Center Hamburg-Eppendorf, Hamburg,
Germany. Mice brains were dissected and either fixed for
16 hours in 4% paraformaldehyde in phosphate-buffered saline

(pH 7.5) for subsequent immunohistochemistry or immediately
frozen with dry ice and stored at �80�C for subsequent RNA
purification.

Histology and Immunohistochemistry
Fixed brain tissue samples from Tg-WT and Tg-Syr

mice aged 8, 22-25, 34, 45, and 80 weeks were embedded in
paraffin, and coronal 4-lm-thick sections were obtained with a
sliding microtome. De-waxed sections were stained with he-
matoxylin and eosin and PAS stains and processed for immu-
nohistochemistry. The sections were boiled in citrate buffer for
20 minutes to enhance antigenicity. Endogenous peroxidases
were blocked with 10% methanol-1% H2O2 solution for
15 minutes, followed by 3% normal horse serum solution, and
then incubated at 4�C overnight with one of the following pri-
mary antibodies: anti-glial fibrillary acidic protein ([GFAP],
rabbit 1:250; Z0334, Dako, Glostrup, Denmark), microglia
(anti-Iba1, rabbit 1:250; 019-19741, Wako, Richmond, VA),
and anti-neuroserpin (polyclonal antibodies generated by ge-
netic immunization by the Antibody Core Facility, University
Medical Center Hamburg-Eppendorf, used at dilutions of
1:100 and 1:200) (29). Sections were subsequently rinsed and
incubated with biotinylated secondary antibody (Dako), fol-
lowed by EnVisionþ system peroxidase (Dako) and, finally,
chromogen DAB (diaminobenzidine) and H2O2. Some sec-
tions were incubated without the primary antibodies; no immu-
nostaining was detected in these sections. Sections were
lightly counterstained with hematoxylin. After staining, the
sections were dehydrated and coverslipped for microscopic
assessment.

For double-labeling immunofluorescence, de-waxed
sections were treated with citrate buffer for 20 minutes to en-
hance antigenicity and then stained with a saturated solution
of Sudan black B (Merck Millipore, Darmstad, Germany) for
30 minutes to block lipofuscin autofluorescence. Immediately
afterwards, the sections were rinsed in 70% ethanol and
washed in distilled water. After blocking endogenous peroxi-
dases with 10% fetal bovine serum for 90 minutes, sections
from Tg-WT and Tg-Syr mice aged 34, 45 and 80 weeks
were incubated with anti-neuroserpin mouse monoclonal
antibodies and one of the following antibodies: glucose-regu-
lated protein 78 (GRP78, rabbit, dilution 1:800; ab21685,
Abcam, Cambridge, UK); glucose-regulated protein 94
(GRP94, rabbit dilution 1:1,000, ab3674, Abcam); anti-inosi-
tol-requiring enzyme 1 (IRE1) (phospho S724) (IRE1-P, rab-
bit 1:500; ab48187, Abcam); and X-box binding protein
([XBP1], rabbit 1:500; ab37152, Abcam, which recognizes
the non-spliced shorter form of XBP1) and then incubated
with Alexa488 or Alexa546 fluorescence secondary antibod-
ies against the corresponding host species (1:400, Molecular
Probes, Eugene, OR). Nuclei were stained with DRAQ5TM

(1:2,000, Biostatus, Leicestershire, UK). After washing, the
sections were mounted in Immuno-Fluore mounting medium
(ICN Biomedicals, Irvine, CA), sealed, and dried overnight.
Sections were examined with a Leica TCS-SL confocal mi-
croscope (Leica, Wetzlar, Germany). In addition, to block
autofluorescence of possible lipofuscin granules by pre-incu-
bating the tissue sections with Sudan black, non-specific

L�opez-Gonz�alez et al J Neuropathol Exp Neurol � Volume 00, Number 0, Month 2016

2

 by guest on January 14, 2016
http://jnen.oxfordjournals.org/

D
ow

nloaded from
 

Deleted Text: producing 
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text: (
Deleted Text: )
Deleted Text: .
Deleted Text: &ndash;
http://jnen.oxfordjournals.org/


autofluorescence was controlled by incubating a few sections
without primary antibodies. No immunostaining was ob-
served in these sections.

Astrocyte (GFAP-positive) and microglia (Iba1-positive)
cells in the somatosensory cortex, amygdala, thalamus, hippo-
campus, and brainstem were counted in 3 representative fields
per region in serial non-consecutive sections at the ages of 22–
25, 34, 45, and 80 weeks using a microscope Olympus BX50
(Shinjuku, Tokyo, Japan) at a magnification x200. Three ani-
mals per group were used for quantifications; selected areas
were similar in all cases and measured 0.115 mm2.

RNA Purification
Total RNA from olfactory bulb and neocortex of Tg-Syr

and Tg-WT mice aged 8, 22–25, 34, 45, and 80 weeks (n¼ 3
per group) was isolated with the Rneasy Lipid Tissue Mini Kit
(Qiagen, Hilden, Germany) following the manufacturer’s pro-
tocol. RNA concentration of each sample was measured using
a NanoDrop Spectrophotometer (Thermo Fisher Scientific,
Wilmington, DE). RNA integrity was tested using the Agilent
2100 BioAnalyzer (Agilent Technologies, Palo Alto, CA). In
addition, the thalamus was available only in Tg-Syr and Tg-
WT mice aged 45 weeks (n¼ 3 per phenotype) and was pro-
cessed in the same way. RNA integrity number values were
higher than 8.5 in every sample.

TaqMan Quantitative RT-PCR
cDNA was prepared using the High-Capacity cDNA

Reverse Transcription kit (Applied Biosystems, Foster City,
CA) following the protocol provided by the supplier. Parallel
reactions for each RNA sample were run in the absence of
MultiScribe Reverse Transcriptase to assess the lack of con-
tamination of genomic DNA.

TaqMan quantitative reverse transcription-polymerase
chain reaction (RT-PCR) assays were performed in duplicate
for each gene on cDNA samples in 384-well optical plates us-
ing an ABI Prism 7900 Sequence Detection system (Applied
Biosystems, Life Technologies, Waltham, MA). For each 10
lL TaqMan reaction, 4.5 lL cDNA was mixed with 0.5 lL
20x TaqMan Gene Expression Assays and 5 lL of 2x TaqMan
Universal PCR Master Mix (Applied Biosystems). The identi-
fication numbers and names of TaqMan probes are shown
in Table 1. Hypoxanthine-guanine phosphoribosyltransferase
(Hprt), alanyl-transfer RNA synthetase (Aars), and X-prolyl
aminopeptidase (aminopeptidase P) 1 (Xpnpep1) were used as
housekeeping genes for normalization.

The reactions were carried out using the following param-
eters: 50�C for 2 minutes, 95�C for 10 minutes, and 40 cycles of
95�C for 15 seconds and 60�C for 1 minute. Finally, all TaqMan
PCR data were captured using the Sequence Detection Software
(SDS version 2.2.2, Applied Biosystems).

ER stress sensors were quantified by SYBR green
quantitative RT-PCR. Two lg of total RNA was used as a
template to synthesize cDNA with the SuperScript III First-
Strand Synthesis System for RT-PCR (Invitrogen, Life
Technologies, Carlsbad, CA). Real-time quantitative PCR as-
says were then performed in triplicate on these cDNAs in the

presence of the PCR Master Mix (Power SYBRGreen,
Applied Biosystems) to detect the amplification products.
Samples were analyzed simultaneously for ribosomal protein
36B4 mRNA as an internal control using an ABI Prims 7300
sequence detector (Applied Biosystems). The reactions were
carried out using the following parameters: 50�C for 2 minutes,
95�C for 10 minutes, and 40 cycles of 95�C for 10 seconds,
60�C for 15 seconds, and 72�C for 25 seconds. Finally, all
SYBR green PCR data were captured using the Sequence
Detection Software (SDS version 2.2.2, Applied Biosystems).
Forward and reverse primer sequences for quantitative PCR
are indicated in Table 1.

Samples were analyzed with the double-delta cycle
threshold (DDCT) method using 8-week-old Tg-WT mouse
samples as controls. Values of the 3 housekeeping genes were
similar; values of inflammation-related genes were normalized
using the mean values of the 3 housekeeping genes. Results
were analyzed with two-way ANOVA followed by Tukey post
hoc or Student t-test when required. The significance level was
set at *p< 0.05, **p< 0.01, and ***p< 0.001.

RESULTS

Histological and Immunohistochemical
Observations

Neuroserpin inclusions, as revealed with the anti-neuro-
serpin antibody, were observed in scattered neurons of the neo-
cortex, hippocampus, amygdala, thalamus, and brainstem in Tg-
Syr mice at the age of 8 weeks. The numbers of affected neu-
rons and the amount of neuroserpin inclusions increased with
disease progression: low at the age of 34 weeks and increasing
thereafter mainly in the olfactory bulb, neocortex, amygdala,
and brainstem in Tg-Syr mice aged 45 weeks, and dramatically
in all regions in mice aged 80 weeks (Fig. 1), as detailed in the
seminal description of this murine model (23). No inclusions
were seen in Tg-WT mice at any age (data not shown).

Glial responses were examined with anti-GFAP antibod-
ies to label astrocytes, antibody IBA1 to identify microglia,
and PAS staining in consecutive serial sections which included
the cerebral neocortex, hippocampus, amygdala, thalamus and
brainstem in Tg-Syr and Tg-WT littermates at different ages.
Astrocyte and microglia populations were similar in Tg-WT
and Tg-Syr mice despite the progressive accumulation of
Collins bodies revealed by PAS staining in Tg-Syr mice. This
was even observed at advanced stages of the disease in the ce-
rebral neocortex, hippocampus, amygdala, and brainstem, but,
curiously, not in the thalamus, where the number of astrocytes
and microglia was significantly higher in Tg-Syr when com-
pared with Tg-WT littermates (Fig. 2).

Quantitative studies showed regional differences in the
number of astrocytes in Tg-WT and Tg-Syr mice; the hippo-
campus was enriched in astrocytes at any age followed by the
brainstem when compared with the amygdala, thalamus, and
somatosensory cortex. An increased number of astrocytes was
observed in Tg-WT and Tg-Syr at the age of 80 weeks. The
major difference between phenotypes was found in the thalamus
where the number of astrocytes was higher in Tg-Syr when
compared with Tg-WT mice (Table 2).
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Quantitative studies of microglia revealed an increase
in the number of microglial cells in the thalamus in Tg-Syr
mice when compared with Tg-WT aged 45 weeks. Microglial
cells increased in number whatever the phenotype in mice
aged 80 weeks. However, the number of microglia was higher
in the thalamus of Tg-Syr mice when compared with corre-
sponding Tg-WT mice aged 80 weeks (Table 2).

Gene Expression of Cytokines and Mediators of
the Immune Response

Gene expression levels of cytokines and mediators of
the immune response in Tg-WT and Tg-Syr mice in the olfac-
tory bulb and neocortex were assessed in mice aged 8, 22-25,

34, 45, and 80 weeks. Modifications were related to aging
and phenotype.

In Tg-WT mice, the expression of C1qtnf7, C3ar1,
C4b, Csf3r, Tlr7, Ccl3, Ccl4, Ccl6, CxCl10, and Tnfa
mRNAs was significantly increased in the neocortex with age
(Table 3). Increased expression of C1qtnf7, C4b and Ccl4
mRNAs, and decreased expression of Tgfb2 mRNA were ob-
served in the olfactory bulb with age (Table 4).

Regarding Tg-Syr mice, C3ar1, C4b, Csf3r, Ccl3,
Ccl4, Ccl6, CxCl10, Il1b, Il6st, Tnfa, Il10rb, and Tgfb1
mRNAs were significantly increased in the neocortex with
age, whereas C4b, Csf3r, Ccl4, Cxcl10, Tnfa, and Il10ra
mRNAs were significantly increased in the olfactory bulb
with age (Tables 3, 4).

TABLE 1. TaqMan Probes and PCR Primers Used for Study of Murine Cytokine and Immune Response Mediator
Expression

Symbol Gene Name TaqMan and Primer Sequences

Hprt Hypoxanthine-guanine phosphoribosyltransferase CAGCAGTGAGGACAAAACCGAGTTT

Aars Alanyl-tRNA synthetase GGACTGATTATGGACAGGACTGAAA

Xpnpep1 X-prolyl aminopeptidase (aminopeptidase P) 1 ACTACGCGCCAGTCCCTGAGACGAA

C1ql1 Complement component 1, q subcomponent 1 AACGGCCAGGTGCGGGCCAGTGCAA

C1qtnf7 C1q and tumor necrosis factor related protein 7 AAAGGGCACTGCAGGTCTAAAAGGT

C3ar1 Complement component 3a receptor 1 GTGTGCTTGACTGAGCCATGGAGTC

C4b Complement component 4b GACATGAGCAAGGTCTTTGAAGTAA

Csf1r Colony stimulating factor 1 receptor CTAAAAACTGCATCCACCGGGACGT

Csf3r Colony stimulating factor 1 receptor GCTACTCCCCAGAAGTCTGGAGAGC

Tlr4 Toll-like receptor 4 CCCTGCATAGAGGTAGTTCCTAATA

Tlr7 Toll-like receptor 7 CCCTGCATAGAGGTAGTTCCTAATA

Ccl3 Chemokine (C-C motif) ligand 3 GTCTTCTCAGCGCCATATGGAGCTG

Ccl4 Chemokine (C-C motif) ligand 4 GTTCTCAGCACCAATGGGCTCTGAC

Ccl6 Chemokine (C-C motif) ligand 6 CCCAGGCTGGCCTCATACAAGAAAT

CxCl10 Chemokine (C-X-C motif) ligand 10 GACTCAAGGGATCCCTCTCGCAAGG

Il1b Interleukin 1b GACCCCAAAAGATGAAGGGCTGCTT

Il6 Interleukin 6 TGAGAAAAGAGTTGTGCAATGGCAA

Il6st Interleukin 6 signal transducer ACCCACTTGAGAGGACGCCTCCTGG

Tnfa Tumor necrosis factor a GCCCACGTCGTAGCAAACCACCAAG

Tnfrsf1a Tumor necrosis factor receptor superfamily member 1a CTTGCAGCCACTGCAAGAAAAATGA

Il10 Interleukin 10 GAAGACTTTCTTTCAAACAAAGGAC

Il10ra Interleukin 10 receptor a TATCACGACGGAGCAGTATTTCACT

Il10rb Interleukin 10 receptor b CAGGCAATGACGAAATAACCCCTTC

Tgb1 Transforming growth factor b1 CTGAACCAAGGAGACGGAATACAGG

Tgfb2 Transforming growth factor b2 TCGAGGCGAGATTTGCAGGTATTGA

CHOP Fw C/EBP-homologous protein forward GCTGGGAGCTGGAAGCCTGGTATG

CHOP Rev C/EBP-homologous protein reverse TCCCTGGTCAGGCGCTCGATTTCC

Asns Fw Asparagine synthase forward TTGGGTCGCCAGAGAATCTCTTTGGG

Asns Rev Asparagine synthase reverse GTATATTCGGAAGAACACAGACAGCGTGG

Gpr78 Fw Glucose-regulated protein 78 kDa forward ACCAACTGCTGAATCTTTGGAAT

Gpr78 Rev Glucose-regulated protein 78 kDa reverse GAGCTGTGCAGAAACTCCGGCG

ERdj4 Fw Endoplasmic reticulum-localized DnaJ 4 forward GAAAACTCCTGGAAGTGATGCCTTTGTCTA

ERdj4 Rev Endoplasmic reticulum-localized DnaJ 4 reverse TCACAAATTAGCCATGAAGTACCACCCTGA

Xbp1 Fw X-box binding protein 1 forward CCCCACTGACAGAGAAAGGGAGG

Xbp1 Rev X-box binding protein 1 reverse GCAGGTGCAGGCCCGATTGTCAC

Xbp1 splicing Rev X-box binding protein 1 splicing reverse CGGGTCTGCTGAGTCCGCAGCAG

36B4 Fw Acidic ribosomal phosphoprotein P0 forward AACATCTCCCCCTTCTCCTT

36B4 Rev Acidic ribosomal phosphoprotein P0 reverse GAAGGCCTTGACCTTTTCAG
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In contrast with the substantial and wide modifications
with age in both Tg-Syr and Tg-WT animals, only minor dif-
ferences were found when comparing gene expression in Tg-
Syr and Tg-WT littermates. Ccl6 mRNA was transiently in-
creased (p< 0.05) in the neocortex of Tg-Syr mice aged 8
weeks when compared with Tg-WT, whereas Il1b and Il10rb
were increased (p< 0.05 and p< 0.01, respectively) in Tg-
Syr aged 80 weeks when compared with Tg-WT (Table 3).
Transient decrease in Il10ra mRNA (p< 0.01) and C1qtnf7
(p< 0.05) was found in the olfactory bulb in Tg-Syr mice
aged 34 weeks and 45 weeks, respectively, when compared
with Tg-WT littermates. Only CxCl10 and Il10rb mRNAs
were upregulated (p< 0.01 and p< 0.05, respectively) in the
olfactory bulb in Tg-Syr mice aged 80 weeks when compared
with Tg-WT (Table 4).

Samples of the thalamus were available in Tg-Syr and
Tg-WT mice aged 45 weeks. Only Il10 was significantly upre-
gulated in Tg-Syr when compared with Tg-WT (3.15 6 0.17 vs
1.00 6 0.28, respectively, p< 0.01).

Markers of the UPR
The mRNA expression levels of targets of the 3 UPR

pathways, PKR-like ER kinase (PERK): CHOP-10 (CHOP,

chop) and Asns; activating transcription factor 6 (ATF6):
Grp78 and total Xbp1; and IRE1: ERdJ4 and spliced Xbp1
were examined in Tg-Syr and Tg-WT aged 34, 45 and 80
weeks (Fig. 3A). Xbp1 spliced was significantly transiently
increased (p< 0.05) in Tg-Syr mice at the age of 45 weeks,
whereas ERdJ4 was significantly increased (p< 0.001) at the
age of 80 weeks (Fig. 3B).

Double-Labeling Immunofluorescence and
Confocal Microscopy of Neuroserpin and
Markers of the UPR

Double-labeling immunofluorescence disclosed that
practically all neuroserpin inclusions colocalized GRP78 and
GRP94 in Tg-Syr mice aged 45 and 80 weeks in the neocor-
tex, amygdala, and brainstem (Fig. 4). No neuroserpin coloc-
alization was seen with anti-IRE1 (phospho S724) and XBP1
antibodies (data not shown).

DISCUSSION

Neuropathology of Tg-Syr
Neuropathological characteristics of disease progres-

sion in the present study are the same as those already

FIGURE 1. Neuroserpin immunohistochemistry in Tg-Syr mice in the cerebral neocortex (A, F, K, P), CA1 region of the
hippocampus (B, G, L, Q), amygdala (C, H, M, R), thalamus (D, I, N, S) and brainstem (E, J, O, T) at 8 weeks (A–E), 34 weeks
(F–J), 45 weeks (K–O) and 80 weeks (P–T) of age. Neuroserpin inclusions were scarce at the age of 8 weeks but the numbers of
neurons affected and the numbers of neuroserpin inclusions per neuron increase with disease progression mainly in the
cerebral neocortex, amygdala and brainstem at the age of 45 weeks and in all regions at the age of 80 weeks. Note that
the thalamus is the region with the fewest neuroserpin inclusions. Paraffin sections, slightly counterstained with hematoxylin.
Scale bar ¼ 25 mm.
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FIGURE 2. Comparative aspects of glial responses in Tg-Syr and Tg-WT mice at the age of 80 weeks. Collins bodies were revealed
with PAS staining (A–E), astrocytes were demonstrated with anti-GFAP immunohistochemistry (F–O), and microglia were
demonstrated with anti-Iba1 IHC (P–Y) in Tg-Syr (A–E, K-O, U–Y) and Tg-WT (F–J, P-T) mice in the cerebral neocortex (A, F,
K, P, U), CA1 region of the hippocampus (B, G, L, Q, V), amygdala (C, H, M, R, W), thalamus (D, I, N, S, X) and brainstem
(E, J, O, T, Y). No differences in glial responses between Tg-Syr and Tg-WT mice were seen in the cerebral neocortex, CA1
region of the hippocampus, amygdala and brainstem; however, astrocytes and microglia were more numerous in the thalamus
in Tg-Syr mice. Note that the greatest glial responses in the thalami do not parallel with the number of Collins bodies in this
region. Paraffin sections; scale bars, A–E, 25 mm; F–Y, 50 mm.

TABLE 2. Quantification of Astrocytes and Microglia in Brain Regions of Tg-Syr (Syr) and Tg-WT Mice Aged 22–25, 34, 45, and
80 Weeks

GFAPþ Cells Iba-1þ Cells

22–25 w 34 w 45 w 80 w 22–25 w 34 w 45 w 80 w

WT Syr WT Syr WT Syr WT Syr WT Syr WT Syr WT Syr WT Syr

Somatosensory cortex 1 1 1 1 1 1 2 2 2 2 2 2 2 2 4 4

Amygdala 2 2 2 2 2 2 3 3 2 2 2 3 2 2 4 4

Thalamus 1 1 1 1 1 1 2 4 2 2 2 2 2 4 4 5

Hippocampus (CA1) 4 4 4 4 4 4 5 5 2 2 2 2 2 2 4 4

Brainstem 3 3 3 3 3 3 4 4 2 2 2 2 2 2 4 4

GFAPþ, glial fibrillary acidic protein-positive cells (astrocytes); Iba-1þ, Iba-positive cells (microglia); Tg-Syr, Tg-Syracuse mice; Tg-WT, Tg-wild type

mice; w, weeks; WT, wild type.

Values represent the number of cells per mm2: 1<30; 2: 30-70; 3: 70-120; 4: 120-150; 5: 150-200. Major differences in the number of astrocytes and micro-

glia are seen between the ages of 45 and 80 weeks regardless phenotype. An increase in the number of astrocytes is found in the thalamus of Tg-Syr at the age

of 80 weeks and especially of microglia in the thalamus of Tg-Syr at the age of 45 and 80 weeks.
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reported for the Tg-Syr line (23, 31). These include the pres-
ence of single and multiple PAS-positive, neuroserpin-immu-
noreactive intracytoplasmic inclusions principally in neurons
of the olfactory centers, cerebral neocortex, amygdala, hippo-
campus and brainstem, and in lesser numbers in the thalamus.
A few inclusions are present at the age of 8 weeks, and the
number of neurons affected and of inclusions increases with
disease progression.

Inflammation Markers in Tg-Syr
Gene expression of cytokines and mediators of the im-

mune response is strikingly discrete when compared with the
very large extent of gene deregulation of the same cytokines
and mediators in murine models of AD, tauopathy, and CJD
(26–28), particularly considering that those studies were car-
ried out with the same probes by the same researchers in our

laboratory. It can be argued that modest differences between
phenotypes may be due to the small number of animals stud-
ied at every time point. However, significant differences
were identified with age in Tg-WT and Tg-Syr in the present
series as already demonstrated in mice during normal aging
and in aged Tg mice assessed so far (26–28). Therefore,
changes in Tg-Syr are not the mere expression of accelerated
aging but rather are independent. Moreover, gene deregula-
tion of cytokines and mediators of the immune response is
discrete in Tg-Syr mice. This is in line with the limited astro-
cyte and microglia reaction in these mice when compared
with AD, tauopathy, and CJD murine models (26–28).

Furthermore, inflammation markers do not correlate
with the number of neuroserpin inclusions through disease
progression. The thalamus is a good example of this because
microglia were significantly increased at 45 and 80 weeks
and Il10 was upregulated at least at 45 weeks (the only time

FIGURE 3. (A) Scheme of the ER chaperones (ER chap: inducers), GRP78 (glucose-related protein 78 kDa), and GRP94 (glucose-
related protein 94 kDa), 3 major ER stress sensors (ER sensors): PERK (PKR-like ER kinase), ATF6 (activating transcription factor 6)
and IRE1 (inositol-requiring enzyme 1 (IRE1); corresponding downstream effectors (effectors): p-eIF2a (phosphorylated
eukaryotic initiation factor 2 a), ATF6-T: ATF6-truncated and XBP-1, and targets tested (*) CHOP (C/EBP-homologous protein),
ASNS (asparagine synthase), GRP78, XBP1 (X-box binding protein 1), ERdj4 (endoplasmic reticulum-localized DnaJ 4) and XBP1
splicing. (Figure is modified from Zamarbide M, Martinez-Pinilla E, Ricobaraza A, Arag�on T, et al. PLoS One 2013;8:e71082) (30).
(B) mRNA expression of CHOP, Asns, Gpr78, Xbp1, ERdj4 and spliced Xbp1 in Tg-Syr and wild type (WT) mice at the ages of 34,
45 and 80 weeks. Xbp1 splicing is transiently increased at 45 weeks and ERdj4 at 80 weeks; p-eIF2a (eukaryotic translation
initiation factor 2A phosphorylated), ATF4 (activating transcription factor 4); *p < 0.05; ***p < 0.001.
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FIGURE 4. Double-labeling immunofluorescence demonstrating neuroserpin (green) and GRP78 (red) (A–C, G–I), and
neuroserpin (green) and GRP94 (red) (D–F, J–L) in the brainstem of Tg-Syr mice aged 45 weeks (A–F) and 80 weeks (G–L).
Note colocalization of both chaperones with neuroserpin inclusions (merge: C, F, I, L). Paraffin sections; nuclei stained with
DRAQ5TM (blue); C, E, merge; scale bar ¼ 20 mm.
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point available for mRNA studies in the thalamus) in Tg-Syr
despite the relatively limited number of neuroserpin inclu-
sions. Ccl6 mRNA is transiently increased in the neocortex of
Tg-Syr mice aged 8 weeks, and Il10ra and C1qtnf7 mRNAs
is transiently decreased in the olfactory bulb in Tg-Syr mice
aged 34 weeks and 45 weeks, respectively.

Only Il1b and Il10rb, and CxCl10 and Il10rb mRNAs
are upregulated in the cerebral neocortex and olfactory bulb,
respectively, in Tg-Syr aged 80 weeks. Comparative data in
the cerebral neocortex and olfactory bulb showing greater in-
flammatory responses in the former than in the latter, despite
similar alterations regarding neuroserpin bodies in both re-
gions, further reinforce the view that neuroserpin inclusions
(as in the thalamus) are not the only determinants of inflam-
matory responses. Other undetermined factors may modulate
the inflammatory responses.

ER Stress and UPR in Tg-Syr Mice
Because ER stress can stimulate inflammatory responses

(22), we next analyzed the expression of several UPR markers
in Tg-Syr mice. Protein folding at ER is modulated by 3 ER
transmembrane protein sensors: PERK, inositol requiring ki-
nase 1 (IRE1), and ATF6 (32–35). Under ER stress, PERK oli-
gomerizes, auto-phosphorylates and phosphorylates the a-sub-
unit of eukaryotic initiation factor 2 (eIF2-a) at serine 51,
resulting in decreased general protein synthesis (36), but it al-
lows specific translation of transcription factor 4 (ATF4),
which promotes DNA transcription of the specific genes C/
EBP-homologous protein (CHOP) and asparagine synthase
(ASNS) (37). Upon ER stress, ATF6 of 90 kDa moves to the
Golgi complex where it is cleaved to form the active transcrip-
tion factor of 50 kDa (ATF6-50kDa: ATF6f), which translo-
cates to the nucleus and activates transcription of GPR78,
among other stress genes (38). Finally, ER responses also acti-
vate IRE1 by dimerization and phosphorylation which, in turn,
activates the transcription factor Xbox binding protein
(XBP1), which activates transcription of ER-localized DnaJ 4
(ERdj4) and promotes the specific splicing of the mRNA
encoding XBP1, leading to spliced XBP1 (39–41).

We found no modifications in gene expression of
Gpr78, CHOP, Asns, and XBP1 in Tg-Syr mice aged 34, 45,
and 80 weeks, respectively. Only Xbp1 spliced was tran-
siently increased in Tg-Syr mice at the age of 45 weeks, and
ERdJ4 at the age of 80 weeks. These results are consistent be-
cause the spliced form of Xbp1 codes for a transcription fac-
tor that induces the expression of ERdJ4. This modest and
transient mRNA response is in line with the age-dependent
selective and temporally limited activation of phosphorylated
eIF2-a at the age of 20 weeks and of cleaved ATF6 protein in
Tg-Syr at 34 and 45 weeks (31). Total neuroserpin increases
with age and poly-neuroserpin and neuroserpin aggregates in-
crease at the time that UPR minimizes, suggesting that tran-
sient increase in the UPR modulates mutated neuroserpin poly-
merization (31). The reason for transient modifications of
certain UPR markers is not known but increased expression of
ERdj4, a BiP (immunoglobulin-binding protein) co-chaperone,
is consistent with activation of the ERAD (endoplasmic

reticulum-associated degradation) pathway, which serves to re-
move substrates from the ER lumen and reduce cell death (42–
45).

Links Between Failed UPR and Inflammation in
Tg-Syr Mice

Together, the present observations demonstrate discrete
transient inflammatory responses and activation of the UPR at
middle stages of the disease, followed by upregulation of Il1b
and Il10rb, and CxCl10 and Il10rb mRNAs in the cerebral neo-
cortex and olfactory bulb, respectively, as well as upregulation
of ERdj4 in Tg-Syr aged 80 weeks. When compared with other
neurodegenerative diseases, this pattern is unexpected because
Tg-Syr neuroserpinopathy is a paradigm of neurodegenerative
disease with abnormal protein aggregates in the ER.

The reasons for the discrete inflammatory response
may be related to the lack of extruded mutated neuroserpin
polymers together with the feeble UPR in Tg-Syr mice. The
UPR largely depends on the upstream chaperone glucose-reg-
ulated protein 78 (GRP78), which is located at the internal
membrane of the ER and controls activation of the 3 main ER
sensors: PERK, IRE1, and ATF6 (32–35). In addition,
GRP94 is located in the ER lumen and acts as a chaperone of
secreted and membrane proteins (46, 47). Double-labeling
immunofluorescence and confocal microscopy disclosed
colocalization of GRP78 and GRP94 and neuroserpin in the
vast majority, if not all, neuroserpin inclusions in Tg-Syr
mice, at least in mice aged 80 weeks. This is not accompanied
by deposition in the inclusions of other proteins involved in
the UPR; thus, GRP78 and GRP94 trapping by neuroserpin
aggregates in the ER seems to be selective. Based on these
findings it may be suggested that GRP78 and GRP94 seques-
tration attenuates and distorts the UPR in Tg-Syr mouse neu-
roserpinopathy. Moreover, mutant neuroserpin probably does
not lead to a strong activation of the UPR, because it is not re-
ally unfolded (48, 49).

Inclusion body isolation was performed with brain sam-
ples from FENIB patients (9) and from Tg-Portland mice
(23). The protocol included homogenization of the samples
followed by a detergent wash and a collagenase digestion
step. After these treatments, the inclusion bodies are still in-
tact (9); a further disruption step is necessary to release pro-
teins that can be detected by Coomassie blue staining. In both
studies, a single prominent band was observed; analysis with
amino terminal sequencing or mass spectrometry revealed
the band to be composed exclusively of mutant neuroserpin.
However, it cannot be ruled out that other proteins (eg, mu-
tant neuroserpin associated with chaperones not yet included
or in the process of being included into polymers) are also
present within inclusion bodies and are either underrepre-
sented or under the detection limit of Coomassie blue stain-
ing, or else they are separated from the polymers during the
isolation process. Whether GRP78 and GRP94 are separated
during the process of subcellular fractionation is not known.
Therefore, the present observations suggest that the UPR is
not a crucial player in the pathogenesis of the disease and that
neuroinflammatory responses are very discrete and occur at
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advanced stages of neuroserpinopathy. This is in striking con-
trast with other neurodegenerative diseases with abnormal
protein aggregates.
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