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Abstract 

 

Protein lipoxidation was assessed in the parietal cortex (PC), frontal cortex (FC), and 

cingulate gyrus (CG) in middle-aged and old-aged individuals with no clinical 

manifestations of cognitive impairment, in order to increase understanding of regional 

brain vulnerability to oxidative damage during aging. Twenty-five lipoxidized proteins 

were identified in all the three regions although with regional specificities, by using 

redox proteomics to detect target proteins of neuroketals (NKT) adduction. The number 

of cases with NKT-adducted proteins was higher in old-aged individuals but most 

oxidized proteins were already present in middle-aged individuals. Differences in 

vulnerability to oxidation were dependent on the sub-cellular localization, secondary 

structure, and external exposition of certain amino acids. Lipoxidized proteins included 

those involved in energy metabolism, cytoskeleton, proteostasis, neurotransmission 

and O2/CO2, and heme metabolism. Total NKT and soluble oligomer levels were 

estimated employing slot-blot, and these were compared between age groups. 

Oligomers increased with age in PC and FC; NKT significantly increased with age in 

FC, whereas total NKT and oligomer levels were not modified in CG, thus highlighting 

differences in brain regional vulnerability with age. Oligomers significantly correlated 

with NKT levels in the three cortical regions, suggesting that protein NKT adduction 

parallels soluble oligomer formation. 
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Abbreviations 

 

ACO2: aconitate hydratase; ATP5A1: ATP synthase subunit alpha; AD: Alzheimer‟s 

disease; BASP1: brain acid soluble protein 1; BLVRB: NADPH-flavin reductase; CA1: 

carbonic anhydrase 1; CG: cingulate gyrus; CKB: creatine kinase B-type; CRYAB: 

alpha-crystallin B chain; DHA: docosahexaenoic acid; DLD: dihydrolipoyl 

dehydrogenase; DPYSL2: dihydropyrimidinase-related protein 2; ENO1: alpha-

enolase; FC: frontal cortex; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; 

GFAP: glial fibrillary acidic protein; GO: gene ontology; GOT1: aspartate 

aminotransferase; HBA1: hemoglobin subunit alpha; HSPD1: 60 kDa heat shock 

protein; LC-MS/MS: liquid chromatography–tandem mass spectrometry; NEFL: 

neurofilament light polypeptide; NEFM: neurofilament medium polypeptide; NKT: 

neuroketals; PARK7: protein DJ-1; PC: parietal cortex; PEBP1: 

phosphatidylethanolamine-binding protein 1; PGAM1: phosphoglyceratemutase 1; 

PKM2: pyruvate kinase isozymes M1/M2 ; ROS: reactive oxygen species; SYN1: 

synapsin-1; TPPP: tubulin polymerization-promoting protein; UCHL1: ubiquitin 

carboxyl-terminal hydrolase L1; YWHAG: 14-3-3 protein gamma. 

 

Introduction 

 

Aging produces changes in the structure and function of biological systems, leading to 

increased vulnerability to disease and death [1]. Senescence results from the 

accruement of declining processes including unbalanced oxidation, accumulation of 

abnormal and damaging molecules, and loss of repair capacities, among other factors 

[2]. In the brain, aging is manifested by reduction in white matter size, selective loss of 

neurons, dendrites and dendritic spines, modifications in neurotransmission, and 

senescence of glial cells [3-6]. Regional vulnerability results from the vulnerability of a 

particular region to damage by distinct noxious stimuli together with its specific capacity 

to react to the harmful stimuli. The combination of external factors such as blood flow 

and internal factors such as specificities of distinct neuronal and glial cell types 

contributes to delineating regional brain profiles of vulnerability during aging [7]. 

Reactive oxygen species (ROS) have been implicated as sources of molecular injury 

when reaching undesirable thresholds [8-9] and have been directly implicated in the 

process of aging [10]. The human brain has high energy metabolism and high oxygen 

consumption demands, relatively low antioxidant defenses when compared with other 

tissues, high rates of transition metals that may act in redox cycles, and high 

concentration of poly-unsaturated fatty acids [11-12]. All these factors make the brain 

highly susceptible to oxidative stress damage during aging. Moreover, some targets of 

oxidative damage are common in aging and neurodegenerative diseases such as 

Alzheimer‟s disease (AD) [13-16].  

Lipid peroxidation is an important source of secondary ROS-mediated injury. Poly-

unsaturated fatty acids present in cell membranes are extremely susceptible to 

peroxidation [17]. Among these, docosahexaenoic acid (DHA; C22:6, ω3) is particularly 

abundant in the brain when compared to other ones such as arachidonic acid; DHA is 

highly concentrated in neuronal membranes and accounts for about one-third of total 



 
 

fatty acids in amino-phospholipids of gray matter [18]. Neuroketals (NKT) are γ-

ketoaldehyde sub-products of the non-enzymatic oxidation of DHA through the 

neuroprostane pathway [19]. NKT adducts lysine residues of proteins with remarkable 

rapidity causing protein lipoxidation and inducing cross-linking and aggregation [20], 

which are common marks of several age-related neurodegenerative disorders [21]. 

Soluble intermediates of protein aggregates named soluble oligomers cause cell injury 

by several mechanisms including mitochondrial damage, increased oxidative stress, 

and reduced protein clearance [22]. Soluble oligomers display a common 

conformation-dependent structure that is unique regardless of sequence and, 

therefore, allows detection with conformation-specific antibodies [23]. This suggests 

that they share a common mechanism of toxicity despite their derivation from different 

proteins [24]. A possible relation between oligomer production and NKT-mediated 

protein damage, and induction of cross-linking and aggregation, is a plausible 

hypothesis triggering cell damage. 

Since the majority of the neurodegenerative diseases with abnormal protein 

aggregates appear in older individuals it is practical to try to gain understanding about 

modifications occurring with age before the time of the appearance of these diseases. 

The reason is not only to gain knowledge about mechanistic aspects but also to identify 

putative rational windows for specific therapeutic intervention. In the context of aging, 

redox proteomics is a very useful tool to identify protein targets of lipoxidative damage 

and to infer possible functional implications [25-26]. 

The present study analyzes lipoxidation in middle-aged and old-aged individuals with 

no clinical manifestations of cognitive impairment in three brain regions: parietal cortex, 

frontal cortex, and cingulate gyrus. Redox proteomics is used to detect target proteins 

modified by NKT adducts. This is followed by the bioinformatic analysis of factors 

contributing to vulnerability of NKT-adducted proteins, considering their localization, 

structure, and functions. Finally, the relation between the presence of soluble 

oligomeric species and NKT-adduction is explored in each region in the different age 

groups to learn about possible interactions of soluble oligomers and protein lipoxidation 

with age. 

 

 

 

Methods 

 

Samples 

Brain tissue samples were obtained from eighteen cases from the Institute of 

Neuropathology Brain Bank, a branch of the HUB-ICO-IDIBELL Biobank, following the 

guidelines of the Spanish legislation and the approval of the local ethics committee. At 

autopsy, each brain was rapidly removed from the skull. The left hemisphere was fixed 

in 4% buffered formalin for neuropathological study and the right hemisphere cut into 

slices, dissected into selected regions which were separated in individual labeled 

plastic bags, immediately frozen, and stored at -80ºC until use. Three regions were 

studied: parietal cortex Brodmann area 7 (PC), frontal cortex area 8 (FC), and   

cingulated gyrus area 23 (CG). 

A routine neuropathological study was performed in every case [27]. The 

neuropathological examination did not reveal lesions excepting moderate small blood 

vessel disease and status cribosus, and a few neurofibrillary tangles consistent with 



 
 

AD-related pathology stage I of Braak and Braak in older cases. In no cases were 

diffuse and neuritic β-amyloid plaques present. Therefore, hallmarks of AD-related 

pathology were not observed in the PC, FC, and CG in any case. 

The age of subjects ranged from 40 to 79 years (mean 58.9 ± 13.5 years) and five of 

them were females (27.8%). The mean post-mortem delay was 6h15min ± 2h48min 

(minimum 2h, maximum 14h). Markers of protein/nitrosative damage are preserved in 

post-mortem brains within these post-mortem time points [27]. All samples used were 

from individuals who did not have neurological or mental diseases, and had not 

suffered from diabetes, hepatic failure, or renal failure. In all of them there was an 

absence of prolonged hypoxia, sepsis, and agonal state in the context of artificial 

respiratory assistance. The causes of death in these cases were variable including 

carcinoma non-affecting the central nervous system, cardiac infarction, pulmonary 

thrombosis-embolism, and pneumonia. Summary of cases is shown in Table 1. 

 

Two-dimensional (2D) gel electrophoresis 

Samples of the PC, FC, and CG from ten individuals were analyzed with 2D 

electrophoresis (Table 1). These cases were representative of two age groups: five 

were middle-aged cases (mean age 43 ± 2.8 years) and five were old-aged cases 

(mean age 74 ± 5.5 years). The totality of samples was processed on different days. 

From each region, 0.1g of frozen tissue was homogenized in 1mL of ice-cold lysis 

buffer (7M Urea, 2M Thiourea, 40mM Tris pH 7.5 and 4% CHAPS) containing 

phosphatase and protease inhibitors (Roche Molecular Systems). The homogenate 

was centrifuged at 16,000g for 10min at 4°C and the pellet was discarded. Proteins 

from 300µL of the resulting supernatant were precipitated with methanol/chloroform at 

room temperature. Protein pellets were then suspended in 300µL of lysis buffer. 

Protein concentration was determined with the Bradford assay with bovine serum 

albumin (Sigma-Aldrich) as standard. 

For the first dimension electrophoresis, equal amounts of protein (200µg) in lysis buffer 

from each sample were mixed with 0.8% Byo-Lyte 3/10 ampholyte, 5mM TBP, and 

0.0004% bromophenol blue. Next, the sample was applied onto 7 cm pH 3-10 NL 

ReadyStrip™ IPG strips (Bio-Rad) for isoelectric focusing on a Protean® IEF Cell 

system (Bio-Rad) at 20°C and current limit of 50µA per strip. The strips were actively 

re-hydrated at 50V for 14h and focused in sequential steps of 1h at 200V, 1h at 500V, 

1h at 1,000V, 1h at 8,000V, and 10h at 8,000V. After focusing, the strips were stored at 

-20°C until required. 

For the second dimension, the strips were re-equilibrated in equilibration buffer (6M 

urea, 50mM Tris-HCl pH 8.8, 2% SDS, and 20% glycerol) containing 5mM TBP, and 

then alkylated in the same buffer plus 2.5% IAA. Afterwards, the strips were placed on 

the top of 10% SDS-polyacrylamide gels and electrophoresed at 120V at 4°C. Two 

identical gels were run in parallel for each sample. One was silver stained using the 

PlusOne™ Silver Staining Kit as described by the manufacturer (GE Healthcare). The 

other one was processed for western blotting.  

 

NKT-adducted protein identification  

The goat anti-NKT antibody (dilution 1:2,000, Ab5611, Chemicon International) was 

used to detect NKT-adducted proteins. According to the indications of the supplier, the 

antibody, produced using neuroketal-conjugate as immunogen, has been shown to 

react with neuroketal/neuroprostane-modified proteins by ELISA. By western blotting, 



 
 

the antibody reacts with several major and many minor bands in human brain protein 

modifications.    

This antibody has been previously used and validated in several brain regions and 

neurological diseases [28-30].  

NKT-positive spots in the 2D gels were qualitatively compared by visual inspection 

between age groups. The selection of NKT-positive spots was based on the presence 

or increased intensity in old-aged individuals versus absence or reduced intensity in 

middle-aged individuals. 

Selected NKT-adducted protein spots detected by western blot were matched with 

corresponding silver-stained spots in parallel gels. Selected spots were excised from 

2D silver stained gels and subjected to in-gel tryptic digestion using the automatic 

protein digestion system Investigator™ Progest (Genomic Solutions). Briefly, the SDS-

gel spots were cleaned with 25mM ammonium bicarbonate and acetonitrile. Next, the 

sample was reduced (10mM dithiothreitol for 30 min at 56°C) and alkylated (55mM 

iodoacetamide for 30min at 21°C in the dark). Afterwards, each sample was digested 

overnight at 37°C with 80ng of sequencing grade modified trypsin (Promega). Finally, 

the resulting peptide mixture was extracted from the gel matrix with 10% formic acid 

and acetonitrile, and then dried-down. 

The dried-down peptide mixture was analyzed in a nanoAcquity liquid chromatographer 

(Waters) coupled to a LTQ-Orbitrap Velos (Thermo Scientific) mass spectrometer. 

Tryptic peptides were re-suspended in 1% formic acid and each aliquot was injected 

into a nanoAcquity Symmetry C18 trap column (5µm, 180µm x 20mm; Waters). 

Trapped peptides were separated using a C18 nanoAcquity reverse phase capillary 

column (75µm x 100mm, 1.7µm BEH130, Waters). The gradient used for elution of 

peptides was 0 to 40% B in 20 min, followed by a gradient from 40% to 60% in 5 min 

with a 250 nL/min flow rate (mobile phases, A and B, were composed of 0 and 100% 

acetonitrile, respectively, and each contained 0.1% formic acid). Eluted peptides were 

subjected to electrospray ionization in an emitter needle PicoTip™ (New Objective) 

with an applied voltage of 2,000V. Peptide masses (m/z 350-1700) were analyzed in 

data-dependent mode with a full Scan MS in the Orbitrap with a resolution of 60,000 

FWHM at 400m/z. Up to 5 of the most abundant peptides (minimum intensity of 500 

counts) were selected from each MS scan. Then, they were fragmented by collision 

induced dissociation in a linear ion trap using helium as collision gas with 38% 

normalized collision energy. Generated raw data were collected with Thermo Xcalibur 

v.2.1.0.1140 (Thermo Scientific). 

Protein identification 

Raw data were submitted for database searching with the Mascot search engine using 

Thermo Proteome Discover v.1.3.0.339 (Thermo Scientific) against Swiss-Prot 

database. Both target and a decoy database were searched to obtain a false discovery 

rate (FDR) and thus estimate the number of incorrect peptide-spectrum matches 

exceeding a given threshold. The following search parameters were applied: trypsin 

enzyme, 2 missed cleavages, carbamidomethyl of cysteine as fixed modification, 

oxidation of methionine as variable modification, and peptide tolerance of 10 ppm and 

0.6Da (for MS and MS/MS spectra, respectively). 

To improve the sensitivity of the database search, Percolator (semi-supervised learning 

machine) was used to discriminate correct from incorrect peptide spectrum matches. 

Percolator assigns a q-value to each spectrum, which is defined as the minimal FDR at 

which the identification is deemed correct. These q values are estimated using the 



 
 

distribution of scores from decoy database search (Percolator Target FDR, strict: 0.01; 

Validation based on: q-value). The list of resulting proteins was filtered to accomplish 

two restrictions: containing Homo sapiens in the description and having at least 2 high-

confidence peptides (FDR ≤ 0.01). 

 

Western-blotting  

2D gels obtained in a sub-set of samples were used to detect NKT-adducted proteins. 

Total number of cases (n=18) was analyzed by western blotting for total levels of 

selected proteins in mono-dimensional (1D) gels. Equal amounts of total protein for 

each sample were loaded onto 10% SDS-polyacrylamide gels and separated according 

to their molecular weight. Polyacrylamide gels (1D or 2D) were transferred onto 

nitrocellulose membranes using the Trans-Blot® Turbo™ blotting system (Bio-Rad). 

Transferred membranes were blocked with 5% skimmed milk in TBS-T buffer and 

incubated overnight at 4°C with the appropriate primary antibody diluted with 3% BSA 

in TBS-T. Then the membranes were washed in TBS-T and incubated with the 

corresponding secondary antibody labeled with horseradish peroxidase (HRP), and 

washed again in TBS-T. Immunoreactivity was detected with the chemiluminescence 

method (Amersham ECL Western blotting detection reagents, GE Healthcare).  

To validate the LC-MS/MS identification results, selected proteins were tested with the 

corresponding antibodies on the same 2D membranes after stripping. Strip of 

membranes consisted of two sequential washes in stripping buffer (62.5mM Tris-HCl 

pH 6.8, 2% SDS, 100mM β-mercaptoethanol) at 65°C, three washes in TBS-T at room 

temperature, and blockage with 5% skimmed milk in TBS-T buffer. A list of the  

antibodies employed is shown in Supplementary Table 1. 

 

Slot-blot 

The level of soluble oligomeric species was detected with slot blot analysis using the 

anti-oligomers A11 antibody (AHB0052, Invitrogen) according to the manufacturer‟s 

protocol for dot-blotting. A11 antibody detects specific oligomeric structural 

conformations. Previous to this analysis, A11 antibody was tested (by slot-blot with the 

same protocol) against monomeric Aβ40-42; no signal was detected thus confirming the 

specificity of the assay. In order to obtain soluble proteins at non-denaturing 

concentrations of compounds on the original lysis buffer, samples were diluted 1:10 

(v/v) in phosphate buffered saline (137mM NaCl, 2.7mM KCl, 10mM Na2HPO4, 2mM 

KH2PO4 pH 7.4) and allowed proteins to re-nature minimizing aggregation. Then, 

samples were centrifuged at 16,000g for 5min at room temperature; the insoluble pellet 

was discarded and protein concentration determined by Bradford assay. 

Equal amounts of total protein of each sample were slot-blotted onto nitrocellulose 

membranes by vacuum using a SHM-48 slot blotter unit (Scie-Plas). Ponceau staining 

(AppliChem GmbH) was used to verify equal protein loads after blotting. The 

membranes were blocked in 10% skimmed milk, incubated overnight with A11 

antibody, washed, incubated with the secondary anti-rabbit HRP conjugated antibody, 

and washed using buffers and dilutions recommended by the supplier. 

Immunoreactivity detection was performed with chemiluminescence as for western-

blots. After oligomer detection, the membranes were stripped and tested against NKT 

to explore possible quantitative relation in the amount of NKT and oligomeric species in 

the same protein fraction as well as total NKT levels.  

 



 
 

Densitometry 

Densitometry of monodimensional gel protein bands and slots was used to determine 

expression levels. The quantification analysis was performed with TotalLab software 

(Nonlinear Dynamics). β-tubulin in monodimensional gels and total protein (from 

Ponceau staining) in slots were used as internal controls of protein loading prior to 

statistical analysis. 

 

Bioinformatics-based protein characterization 

Proteins under study were identified by their UnitProt database accession numbers 

(http://www.uniprot.org/); particular cellular locations and functions are reported in 

accord with this database. For analysis of the structural features PredictProtein web-

based software (https://www.predictprotein.org/) was employed. Functional protein-

protein interaction network analysis was performed using the web-based STRING 

software (http://www.string-db.org/) [31]. Gene Ontology (GO) and pathway analysis 

was performed using Cytoscape software with the ClueGO and CluePedia plugins 

including information from KEEG, REACTOME, and STRING databases [32, 33]. 

 

Statistical analyses 

Descriptive data were expressed as mean ± standard deviation or as percentages 

when needed. Kruskal-Wallis test with Lilliefors correction was used to probe the 

normality assumption for continuous variables. Student‟s t test and Mann-Whitney U 

test, as appropriate, were used to evaluate differences between age groups. Pearson 

correlations were employed to assess possible relations among variables. In addition, 

NKT and soluble oligomer levels were subjected to factor analysis using Principal 

Components Analysis (PCA). For all the tests, p-values less than 0.05 were considered 

statistically significant. Statistical analyses were carried out using STATISTICA v8.0 

software (StatSoft). 

 

Results 

 

2D gel electrophoresis and NKT adducted-protein identification 

PC, FC, and CG samples of the ten cases covering the two groups of age distribution 

(middle-aged, old-aged) were analyzed with 2D electrophoresis and anti-NKT western 

blotting. NKT-positive spots were qualitatively compared by visual inspection between 

age groups. Thirty-nine NKT-positive spots were selected as being of interest based on 

increased intensity or presence in old-aged individuals (Figure 1). The corresponding 

spots in the silver-stained gels processed in parallel were excised, in-gel digested, and 

analyzed with LC-MS/MS for protein identification. The full list of spots and the 

corresponding LC-MS/MS resulting identifiers is shown in Table 2. 

 

Validation of identified proteins 

In order to corroborate that protein gel spots were accurately identified by LC-MS/MS, 

thirteen top candidate proteins (ATP5A1, BASP1, CKB, CRYAB, ENO1, GAPDH, 

GFAP, HBA1, HSPD1, NEFL, PARK7, UCHL1 and YWHAG) were analyzed. 2D anti-

NKT blotted membranes were stripped and blotted against specific antibodies 

corresponding to proteins of interest (Supplementary Figure 1). The resulting spots 

were matched with the original ones over the same 2D membrane, and protein 

http://www.uniprot.org/
https://www.predictprotein.org/
http://www.string-db.org/


 
 

identities were corroborated. However, UCHL1 matched a group of NKT-positive spots 

but displaced to a more basic isoelectric point. 

 

NKT adducted proteins with respect to age in each region 

A final list of twenty-five protein targets of lipoxidation by NKT adduction is shown in 

Table 3 which includes their locations and functions. The number of cases per age 

group and region in which proteins were oxidized is presented in Figure 2. 

In the PC (Figure 2A), 8 proteins (32%) showed the same levels of lipoxidation in both 

age groups (ATP5A1, DLD, GFAP, NEFL, NEFM, HSPD1, BASP1, and SYN1) while 

17 (68%) manifested increased lipoxidation with age (CKB, GAPDH, PGAM1, ENO1, 

PKM2, ACO2, TPPP, PARK7, CRYAB, GOT1, DPYSL2, YWHAG, HBA1, CA1, 

BLVRB, PEBP1, and UCHL1). Four of them (PKM2, ACO2, CRYAB, and HBA1) were 

oxidized only in old-aged cases. 

In the FC (Figure 2B), 6 proteins (24%) showed no differences in the presence of NKT 

adduction between middle-aged and old-aged individuals (CKB, GAPDH, GFAP, 

NEFL, NEFM, and HSPD1) whereas 19 proteins (76%) presented increase in the NKT 

adducted forms in old-aged individuals (PGAM1, ENO1, PKM2, ACO2, ATP5A1, DLD, 

TPPP, PARK7, CRYAB, GOT1, DPYSL2, BASP1, YWHAG, HBA1, CA1, BLVRB, 

PEBP1, SYN1, and UCHL1). One protein, HBA1, was lipoxidized only in old-aged 

individuals. 

In the CG (Figure 2C), 7 proteins (28%) showed no differences between groups 

(PKM2, GFAP, NEFL, NEFM, HSPD1, DPYSL2, and YWHAG) whereas increased 

lipoxidation occurred in the 18 remaining proteins (72%) in older cases (CKB, GAPDH, 

PGAM1, ENO1, ACO2, ATP5A1, DLD, TPPP, PARK7, CRYAB, GOT1, BASP1, HBA1, 

CA1, BLVRB, PEBP1, SYN1, and UCHL1). 

The most frequently lipoxidized proteins, accounting for at least 70% of cases, were 

GFAP (100%), HSPD1 (100%), CKB (93.33%), GAPDH (93.33%), NEFL (93.33%), 

NEFM (80%), DPYSL2 (80%), DLD (73.33%), PEBP1 (70%), and SYN1 (70%). 

Considering the cumulative presence of lipoxidized proteins by age group (Figure 2D), 

lipoxidation of specific proteins in all the regions increased in old-aged individuals. In 

the PC, values of cumulative count varied from 48 in middle-aged to 67 in old-aged 

cases. In FC, values varied from 79 in middle-aged to 107 in old-aged; whereas in the 

CG, there were 76 in middle-aged and 104 in old-aged individuals. 

 

Quantification of selected lipoxidized protein levels 

To determine whether increased lipoxidation of certain proteins might not be merely the 

result of the increased expression levels of that particular protein, selected protein 

levels were quantified. Proteins with no differences in any region (GFAP, NEFL, NEFM 

and HSPD1) were excluded. Proteins for which no commercial antibodies wee 

available (PKM2, DPYSL2, DLD, PEBP1, SYN1, GOT1, PGAM1, ACO2, TPPP, CA1 and 

BLVRB) were not analyzed. Finally, six lipoxidized proteins with increased cumulative 

levels of lipoxidation in old aged cases at least in two regions were assessed using 1D 

SDS-PAGE electrophoresis and western blotting with specific available antibodies: 

ATP5A1, CKB, ENO1, GAPDH, YWHAG and UCHL1. Quantification of the bands was 

carried out by densitometry (Supplementary Figure 2). Protein levels were compared 

between age in each region after checking normality of variables (non-normal data: 

ATP5A1 in PC; ENO1 and HBA1 in FC; and UCHL1 in CG). Statistical results of these 



 
 

comparisons are summarized in Supplementary Table 2, and graphically represented 

in Supplementary Figure 3. There were no significant differences in the total expression 

levels of assessed proteins in any region when comparing middle-aged and old-aged 

groups, excepting significant decreased levels of YWHAG (p < 0.02) in the FC in the 

old-aged group, thus indicating that increased lipoxidation levels of defined proteins 

were not the result of increased expression of the corresponding total protein. 

 

Characterization of lipoxidized proteins 

To learn about the commonalities of proteins vulnerable to lipoxidation, their structures 

were analyzed using PredictProtein web-based software. The structural characteristics 

are represented in Figure 3.  

Excluding BASP1, in which 100% is loop or disorganized, α-helix motive represents 

between 5.14 and 83.10%, β-strand represents between 1.2 and 31.43% (absent in 

NEFL and HBA1), and loops represent between 16.9 and 75.46% (Figure 3A). Proteins 

with secondary structures forming α-helix plus loops represent between 68.5% and 

98.8%. Interestingly, exposure to the medium varied between 42.6% and 100%, and it 

was superior to 50% in 16 proteins (Figure 3B). 

Regarding amino acid composition, the most common amino acids represented are 

alanine (mean frequency in the group: 9.71%), leucine (mean frequency in the group: 

8.74%), and glycine (mean frequency in the group: 8.02%) as reported for the total pull 

of proteins present in Swiss-Prot database. However, the most frequent amino acids 

encountered in the exposed regions of lipoxidized proteins are lysine (mean frequency: 

12.16%), glutamic acid (mean frequency: 11.44%), and aspartic acid (mean frequency: 

8.53%) (Figure 3C). 

With respect to the cellular location, analysis of GO term “cellular component” 

annotation revealed that the best represented sub-cellular localizations of lipoxidized 

proteins were cytoplasm, cytoskeleton, mitochondrion, and exosome. For the GO term 

“molecular function” lipoxidized proteins over-represented terms are binding, catalytic 

activity, and structural molecule. 

Interactions of these proteins were explored using the STRING web-based tool. The 

network of interactions used for the analysis with a high confidence level of combined 

score computed and no more than 10 external partners is shown in Figure 4. 

Interestingly, the central node of the resulting network is occupied by ubiquitin. 

The over-represented functional pathways in which lipoxidized proteins are involved 

were explored using Cytoscape software. The results from this analysis are presented 

in Figure 5 showing a high representation of GO term for processes related with energy 

metabolism (including glycolysis and gluconeogenesis, citric acid cycle, mitochondrial 

respiration, and rapid energy production), intermediate filament based process, axon 

cargo transport, cytoskeleton-dependent intracellular transport, protein stabilization, 

mitochondrial protein import, and carbon-oxygen lyase activity. Roughly 32% of 

lipoxidized proteins are involved in energy metabolism (CKB, GAPDH, PGAM1, ENO1, 

PKM2, ACO2, ATP5A1, and DLD), 16% in cytoskeleton-related functions (GFAP, 

NEFL, NEFM, and TPPP), 16% in proteostasis (HSPD1, PARK7, CRYAB, and 

UCHL1), 24% in neurotransmission directly or indirectly (PEBP1, SYN1, GOT1, 

DPYSL2, BASP1, and YWHAG), and the remaining 8% and 4% in O2/CO2 (HBA1 and 

CA1) and heme-group metabolism (BLVRB), respectively. 

 

Soluble oligomers and NKT levels 



 
 

The levels of soluble oligomers as revealed with the A11 antibody (Figure 6A) and NKT 

(Figure 6B) were detected with slot-blot densitometric analysis comparing middle-aged 

versus old-aged cases in every region using Student‟s t-test. Soluble oligomer levels 

were significantly increased in the older group with respect to middle-aged cases in the 

PC (t = -2.83, p < 0.01) and FC (t = -3.98, p < 0.001), whereas, no significant 

differences were found between age groups in the CG. With respect to NKT, only 

significantly increased levels (t = -3.32, p < 0.005) were found in the old-aged group 

when compared with middle-aged cases in the FC. 

The same pattern was found when results were analyzed for significant continuous 

relations with age (Pearson‟s correlation). Positive significant correlations with age for 

oligomers in PC (r = 0.52, p < 0.045), for oligomers (r = 0.65, p < 0.008), and for NKT (r 

= 0.57, p < 0.025) in FC (Figure 6C). No correlation was found with age in the CG. 

Significant positive correlations were seen between oligomers and NKT levels present 

in each one of the explored regions (PC: r = 0.70, p < 0.004; FC: r = 0.89, p < 0.000; 

CG: r = 0.86, p < 0.000), which are represented in Figure 7A. 

To reduce dimensionality while preserving the maximum amount of information to infer 

significant associations between variables, Principal Components Analysis was used 

including oligomers and NKT levels for each region as active variables and age as 

supplementary variable (Figure 7B). Two principal components explained 83.18% of 

the variance in the data, the first component (Factor1: 52.49% of the variance) with a 

high information contribution from oligomer and NKT levels in PC and FC, and the 

second component (Factor 2: 30.69% of the variance) with information from oligomer 

and NKT levels in CG. Both factors were negatively correlated to age, but factor 1 

showed a closer relation than factor 2. The projection of variables in the factor-plane 

graph summarizes this information, showing the closer positive relation of soluble 

oligomers and NKT levels in PC and FC among them and with age, and the more 

distant pattern of oligomers and NKT levels in CG. 

 

Discussion 

 

Protein lipoxidation in human cerebral cortex occurs at middle age and increases with 

physiological senescence 

Cases analyzed were considered normal individuals with no neurological or mental 

diseases and with no neuropathological alterations excepting stage I of Braak and 

Braak and moderate status cribosus in some older cases. About 80% of individuals 

aged 65 years have neurofibrillary tangles in the entorhinal and transentorhinal cortices 

[34]. Factors other than age that might have interfered with the analysis of oxidized 

proteins, such as metabolic diseases and hypoxia were ruled out. Causes of death 

were similar in the two groups of cases. Post-mortem delay was within the range of 

feasibility [27]. Finally, the NKT antibody has been used and validated in previous 

studies [28-30]. 

Twenty-five NKT-adducted proteins were identified in the cerebral cortex of normal 

middle-aged and old-aged individuals. Four proteins, GFAP, NEFL, NEFM, and 

HSPD1, showed the same cumulative presence of NKT-adducted forms in the three 

regions and in both age groups. Some proteins having the same cumulative levels of 

NKT adducted forms in both age groups were identified in distinct regions: ATP5A1, 

DLD, BASP1, and SYN1 in PC; GAPDH and CKB in the FC; and PKM2, DPYSL2, and 



 
 

YWHAG in the CG. However, adducted forms of all these proteins in a particular region 

increased in the other two regions in old-aged individuals. 

The degree of lipoxidation of the vast majority of remaining proteins identified by the 

accumulation of NKT adducts was higher in old-aged individuals when compared to 

middle-aged cases in spite of regional variations. These proteins are PGAM1, ENO1, 

ACO2, TPPP, PARK7, CRYAB, GOT1, HBA1, CA, BLVRB, PEBP1, and UCHL1. 

However, certain proteins were lipoxidized only in old-aged individuals in certain 

regions such as PKM2, HBA1, and CA in the PC, and HBA1 in the FC.  

Together, these observations show, on the one hand, that the cerebral cortex in 

individuals aged between 40 and 48 years contains lipoxidized proteins the levels of 

which vary from one region to another, and, on the other hand, that cumulative 

presence of NKT adducted forms increases in individuals aged between 70 and 79 

years. 

Importantly, increased lipoxidation is not related to increased levels of the 

corresponding protein but rather to increased vulnerability to lipoxidation with age as 

revealed by the higher values of oxidation compared with preserved total levels of the 

same protein. 

 

Selective protein lipoxidation in human cerebral cortex 

Susceptibility to lipoxidation is not uniform in all proteins [14, 35]. Assuming that ROS 

act stochastically, several factors can influence this specificity beyond abundance 

including structure, location, and functional characteristics. Localization of proteins, a 

particular cell type or subcellular compartment, may make them more vulnerable as a 

result of their environmental conditions [36]. An example of cell type-related 

vulnerability is GFAP localized in astrocytes which are the main brain producers of 

DHA [37] and its peroxidation derivatives. Regarding subcellular localization, HSPD1 

and DLD are located in the mitochondria, the principal source of ROS [38]. NEFL and 

NEFM are proteins of the cytoskeleton, as well as DPYSL2 which is also located in the 

growth cones; PEBP1 is involved in neurotransmission and SYN1 is present in synaptic 

vesicles. It is worth stressing that axons and synaptic terminals have high energy 

demands achieved by continuous mitochondrial activity and recruitment, and rapid 

energy transduction mediated by CKB. In addition, axons are radial structures with a 

small diameter in comparison with the cell body which increases the probability of 

stochastic interactions between ROS and membrane lipids, thus propitiating lipid 

peroxidation. 

The present findings also show that certain structural traits, mainly the presence of 

alpha helices and loops, render proteins susceptible to oxidative damage. Excepting 

cytoskeletal proteins, the rest of the proteins identified as targets of lipoxidation 

(excluding BASP1 which is completely disordered) are globular and form soluble 

coiled-shaped molecules with hydrophobic groups at the core and exposed hydrophilic 

groups. Moreover, proteins with the revealed amino acids lysine, glutamic acid, and 

aspartic acid are also particularly vulnerable; the average level of exposure is greater 

than 50% in sixteen proteins. 

 

Functional clustering of oxidatively-damaged proteins 

Principal systems affected by protein lipoxidation, considering the number of identified 

damaged proteins, are energy metabolism, cytoskeleton, proteostasis, 

neurotransmission, and O2/CO2 and heme metabolism. 



 
 

There is strong evidence that energy metabolism is particularly affected during aging 

and neurodegeneration [8, 11, 17]. The present observations give some clues about 

the molecular substrates of energy failure with aging after the identification of key 

proteins as targets of lipoxidative damage, including proteins of the glycolysis GAPDH, 

PGAM1, ENO1, and PKM2; proteins of the citric acid cycle ACO2 and DLD; and 

ATP5A1 subunit of the respiratory mitochondrial complex V. All of them are 

components of coupled processes necessary to fulfill ATP requirements of cells. 

Neuronal activity is highly dependent on these processes since, under normal 

conditions, glucose is the exclusive energy substrate for the brain [39]. In addition, CKB 

is in charge of rapid ATP production from phosphocreatine reservoirs in response to 

acute increased energy demands in neurons, but CKB is also a key player in the 

„phosphocreatine circuit‟ for cellular energy homeostasis [40]. Thus CKB provides 

neurons with a reservoir and also an alternative source of ATP from glycolysis, citric 

acid cycle, and respiration. 

Cytoskeletal GFAP, NEFL, and NEFM are filamentous proteins composed of long 

parallel chains, linked by disulphide cross bridges, making the proteins very stable and 

prone to long half-lives. The present results are in line with previous observations 

showing that neurofilaments are major targets of 4-hydroxinonenal adduction (another 

marker of lipid peroxidation that covalently links lysine) in mice nervous system [41, 

42]. They also support the concept that oxidation of certain cytoskeletal proteins is 

under a tightly regulated mechanism of redox control during life-span [41]. Whether 

these changes do occur in the same direction in other brain regions is not known; nor is 

the functional implication of the high constant levels of oxidation of GFAP, NEFL, and 

NEFM in the three regions examined of the cerebral cortex understood. Moreover, a 

certain degree of lipoxidation in selected cytoskeletal proteins turns out perhaps to be 

useful for the normal functioning of the cytoskeleton. Whether possible disturbances of 

tubulin polymerization result from increased NKT adducts with aging in TPPP remains 

speculative. 

Oxidation of chaperones involves mitochondrial (HSPD1) and cytosolic (CRYAB) 

molecules. HSPD1 modulates protein import and folding into the mitochondria [43]; 

CRYAB exhibits chaperone-like activity, and is able to prevent protein aggregation 

during stress situations while also increasing the resistance of cells to oxidative injuries 

[44]. PARK7 is a redox-dependent chaperone that reduces intracellular ROS through 

oxidation of itself [45], maintains mitochondrial homeostasis [46], and regulates gene 

transcription [47]. 

Regarding oxidized proteins linked to neurotransmission, PEBP1 modulates choline 

acetyltransferase during acetylcholine synthesis [48]. Phosphoprotein SYN1 coats 

synaptic vesicles, modulating synaptic vesicle release, synaptic transmission, and 

plasticity [49]. GOT1 participates in the synthesis and regulation of the levels of 

glutamate [50], the neurotransmitter responsible for around 90% of the excitatory 

synapsis on the brain. BASP1 is found in nerve terminals, enriched in synaptic vesicles 

and in the lipid raft fraction of synaptic plasma membranes [51]; BASP1 regulates the 

transport of glutamic acid decarboxylases to the presynaptic terminals and their 

anchoring to the synaptic vesicles [52. DPYSL2 has relevant functions in axon 

guidance and neurite outgrowth, as well as in synaptic vesicle and N-methyl-

Daspartate glutamate receptor trafficking [53]. YWHAG is a member of the 14-3-3 

group of proteins which display a plethora of functions, among them the ability to 

activate tryptophan and tyrosine hydroxylases, the rate-limiting enzymes in the 



 
 

synthesis of serotonin and catecholamines, respectively [54]. These modifications 

together with those linked to the high energy demands make synapses especially 

vulnerable to oxidative stress damage. 

Three proteins related to heme metabolism and O2 and CO2 regulation, BLVRB, CA 

and HB1A, are also oxidatively damaged. CA participates in the conversion of CO2 into 

bicarbonate and participates in the transport of CO2 out of the tissues. BLVDR 

regulates the final step in heme metabolism, but it also regulates glucose metabolism 

and has neuroprotective effects [55]. HBA1 is a component of haemoglobin whose role 

in the nervous system is still poorly understood. Haemoglobin has been found in 

neurons where it probably plays a role in O2 transport or as a regulator of cytosolic 

neuronal O2 [56]. Interestingly, haemoglobin levels are reduced in neurons in AD [57]. 

Oxidative damage of, at least, those three proteins tags cell O2 and CO2 regulation as a 

target of putative cellular respiratory dysfunction in the elderly. 

Finally, molecular interactions of lipoxidized proteins in the human cerebral cortex were 

explored to identify systems that may be indirectly impaired as a result of primary 

protein lipoxidation and presumable loss of function. Ubiquitin C has been identified as 

the central node of the network of interactions. Ubiquitin conjugation to proteins plays a 

cardinal role in the ubiquitin-proteasome system and protein turnover which has been 

identified as being affected in neurodegenerative diseases associated with aging [58]. 

Since ubiquitin conjugation to target proteins occurs through the ε-amino group of 

lysine, NKT adduction of this group can restrain protein-ubiquitin interactions and then 

hamper the degradation of altered proteins. In addition, 50% of the ubiquitin binding 

sites are not involved in protein degradation by the ubiquitin-proteasome system [59], 

suggesting that ubiquitin serves other molecular pathways. If true, several pathways 

can be deregulated as a result of altered ubiquitin conjugation with oxidized proteins. 

 

NKT adduction and soluble oligomers 

Aberrant protein structures are able to generate soluble oligomers; such molecular 

species are increasingly recognized for their high cytotoxic potential [22, 60]. Soluble 

oligomers have been detected by using the structure-specific amino acid sequence 

independent antibody A11 [23]. Therefore, although initially generated to recognize β-

amyloid soluble oligomers, undefined oligomeric species can be detected as well. 

NKT adduction of proteins generates aberrant structures like crosslinking and 

aggregation [19]. For this reason, global levels of protein NKT adduction and the 

presence of oligomers have been analyzed in every sample. A positive significant 

relation is found between protein NKT and soluble oligomer levels in the three cortical 

regions assessed, suggesting that modifications of proteins resulting from NKT 

adduction parallel soluble oligomer formation. Levels of oligomers increase with age in 

the PC and FC, and NKT levels significantly increase with age just in FC, whereas at 

CG total NKT and oligomer levels showed no differences between age groups.  

The present findings also complement previous observations showing increased levels 

of soluble oligomers in the entorhinal and frontal cortices when comparing middle-aged 

individuals lacking AD related pathology with older cases with AD-related pathology 

stages I-II. Thus, increased levels of soluble oligomers are indeed a characteristic 

feature of the aging human brain coincidental with first stages of AD-related pathology 

[61]. Importantly, increased levels of oligomeric species parallel expression levels of 

brain cytokines and mediators of the immune response in old age [61]. Whether these 



 
 

coincidences have a cause-effect relationship needs further study using appropriate in 

vitro and in vivo models. 

 

Implications on regional brain functions   

The present observations may have implications in brain function. FC area 8, a part of 

the dorsolateral prefrontal cortex, participates in executive functions in connection with 

other brain regions including PC [62, 63]. PC area 7 is also linked to several high-level 

processing tasks [64]. Interestingly, the molecular relationship found between PC and 

FC complements findings from tractography showing an anterior-posterior gradient in 

age-related white matter degradation of specific long-range white matter tracts 

connecting FC and PC [64]. In the same study, reduced frontal tract integrity correlated 

with reduced executive and working memory functions. This accounts, at least in part, 

for cognitive performance decline in older adults. Interconnection of FC and PC is also 

important in the elderly as in healthy old-aged subjects PC is compensatorily recruited 

to perform frontal cortex cognitive tasks [65]. Analysis of the principal components in 

the present study reveals similar patterns of protein oxidation and oligomer burden in 

PC and FC, and relative independence of the CG during aging.  

CG area 23 has a central role in supporting internally-directed cognition. It is a key 

component of the default mode network which is involved in self-referential functions 

and is highly correlated with activity at rest [66]. The posterior CG exhibits a transitional 

pattern of connectivity coordinating distinct networks for efficient cognitive function [67]. 

In line, posterior CG presents a striking high rate of metabolism: cerebral blood flow 

and metabolic rate are around 40% greater than average within the region in human 

brain [68]. Reduced metabolism in this region is accompanied by reduced CG 

functional connectivity [69].  

 

 

Conclusions 

Together, the present findings provide information about increased protein damage by 

lipoxidation with aging, which may compromise vital cell functions such as energy 

metabolism, cytoskeleton, proteostasis, neurotransmission, O2/CO2, and heme 

homeostasis. Post-translationally modified proteins resulting from oxidative damage, in 

addition to certain oligomeric species, truncated proteins, lipids, and metabolites, can 

be considered as putative collaborative factors contributing to neuronal senescence. 

Protein vulnerability to oxidation is related to the particular sub-cellular localization of 

certain proteins, the secondary structure of the protein, and the external exposure of 

certain amino acids which are more vulnerable to lipoxidation. Increased oxidative 

damage of key proteins in the FC, PC and CG may impact on normal brain function 

particularly in cognition, integrative connectivity and coordination of activation-rest 

responses in brain. Importantly, since lipoxidative damage to proteins is already 

identified in normal middle-aged individuals and it increases physiologically in the 

elderly, it seems reasonable to act upon the appropriate ROS-producer targets at the 

befitting middle-age window. 
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Tables 

 

 
Table 1: Cases examined in the present series 

 

 

Case Age 

(years) 

Group Gender Cause of 

death 

Post-mortem 

delay 

Neuropathology 2D 1D Slot-Blot 

1 40 Middle-aged Female CA 8h 45min NL X X - 

2 40 Middle-aged Male PNEU 5h 10min NL X X X 

3 44 Middle-aged Male THR_EMB 6h 40min NL X X - 

4 45 Middle-aged Male C-INF 4h 5min CRIB X X X 

5 46 Middle-aged Female MYO 7h 15min CRIB X X X 

6 48 Middle-aged Female CA 4h 5min NL - X X 

7 52 Middle-aged Male PNEU 9h 30min NL - X X 

8 52 Middle-aged Male C-INF 4h 40min NL - X X 

9 57 Middle-aged Male PNEU 5h 20min NL - X X 

10 61 Old-aged Male CA 4h 30min AD I - X X 

11 65 Old-aged Male CA 3h 15min AD I X X X 

12 66 Old-aged Male THR-EMB 6h 25min NL - X X 

13 67 Old-aged Male CA 14h 40min AD I - X X 

14 70 Old-aged Male CA 2h AD I - X X 

15 75 Old-aged Female C-INF 6h 10min AD I X X X 

16 76 Old-aged Male PNEU 6h 30min AD I X X X 

17 77 Old-aged Male C-INF 6h 55min AD I X X X 

18 79 Old-aged Female INT-INF 6h 25min AD I X X - 

NL: no lesions; CRIB: status cribosus; AD I: Alzheimer disease-related pathology with Braak and Braak stage I of neurofibrillary 

degeneration; 2D: Two-dimensional electrophoresis; 1D: Mono-dimensional electrophoresis; CA: carcinoma; PNEU: pneumonia; C-INF: 

cardiac infarction; THR-EMB: pulmonary thrombosis-embolism; MYO: myocardioathy; INT-INF: intestinal infarction 

 

 



 
 

  

Table 2:  Identification of lipoxidized proteins with mass spectrometry 

 

Spot Protein 

Swiss-prot 

Accession 

No.
 

Mascot 

Score
 

Coverage 

(%) 

MW 

(kDa) 
pI

 

1 Dihydropyrimidinase-related protein 2 (DPYSL2) Q16555 724.28 48.43 62.25 6.38 

2 Dihydropyrimidinase-related protein 2 (DPYSL2) Q16555 1085.17 62.76 62.25 6.38 

3 60 kDa heat shock protein, mitochondrial (HSPD1) P10809 4087.37 83.60 61.02 5.87 

4 60 kDa heat shock protein, mitochondrial (HSPD1) P10809 2275.19 77.49 61.02 5.87 

5 60 kDa heat shock protein, mitochondrial (HSPD1) P10809 4285.96 89.35 61.02 5.87 

6 60 kDa heat shock protein, mitochondrial (HSPD1) P10809 2412.60 72.25 61.02 5.87 

7 Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) 

P04406 1937.82 88.06 36.03 8.46 

8 Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) 

P04406 1711.18 70.45 36.03 8.46 

9 Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) 

P04406 2334.34 79.10 36.03 8.46 

10 Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) 

P04406 842.06 43.28 36.03 8.46 

11 Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) P09936 1082.92 78.03 24.81 5.48 

12 Protein DJ-1 (PARK7) Q99497 625.43 89.42 19.88 6.79 

13 Protein DJ-1 (PARK7) Q99497 1262.00 89.42 19.88 6.79 

14 Protein DJ-1 (PARK7) Q99497 1065.72 85.71 19.88 6.79 

15 Protein DJ-1 (PARK7) Q99497 808.75 89.42 19.88 6.79 

16 Alpha-crystallin B chain (CRYAB) P02511 2069.68 97.14 20.15 7.53 

17 Phosphatidylethanolamine-binding protein 1 (PEBP1) P30086 2255.23 81.28 21.04 7.53 

18 Neurofilament medium polypeptide (NEFM) P07197 479.13 12.77 102.41 4.91 

19 Neurofilament light polypeptide (NEFL) P07196 902.93 41.25 61.47 4.65 

20 Pyruvate kinase isozymes M1/M2 (PKM2) P14618 860.77 42.94 57.90 7.84 

21 Dihydrolipoyl dehydrogenase, mitochondrial (DLD) P09622 337.68 25.34 54.14 7.85 

22 Brain acid soluble protein 1 (BASP1) P80723 800.65 81.50 22.68 4.63 

23 Glial fibrillary acidic protein (GFAP) P14136 1830.71 64.35 49.85 5.52 

24 ATP synthase subunit alpha, mitochondrial (ATP5A1) P25705 1447.00 46.65 59.71 9.13 

25 Alpha-enolase (ENO1) P06733 709.67 33.87 47.14 7.39 

26 Alpha-enolase (ENO1) P06733 728.28 41.71 47.14 7.39 

27 Creatine kinase B-type (CKB) P12277 724.17 56.96 42.62 5.59 

28 Aspartate aminotransferase, cytoplasmic (GOT1) P17174 1116.53 68.28 46.22 7.01 

29 14-3-3 protein gamma (YWHAG) P61981 1494.57 80.97 28.28 4.89 

30 Hemoglobin subunit alpha (HBA1) P69905 1400.82 85.21 15.25 8.68 

31 Synapsin-1 (SYN1) P17600 315.53 32.06 74.07 9.83 

32 Aconitate hydratase, mitochondrial (ACO2) Q99798 606.55 34.36 85.37 7.61 

33 Dihydrolipoyl dehydrogenase, mitochondrial (DLD) P09622 504.52 28.29 54.14 7.85 

34 Alpha-enolase (ENO1) P06733 2341.02 55.53 47.14 7.39 

35 Carbonic anhydrase 1 (CA1) P00915 481.65 52.49 28.85 7.12 

36 Phosphoglyceratemutase 1 (PGAM1) P18669 261.15 65.75 28.79 7.18 

37 Tubulin polymerization-promoting protein (TPPP) O94811 528.08 36.07 23.68 9.44 

38 NADPH-Flavin reductase (BLVRB) P30043 323.79 42.23 22.11 7.65 

39 Phosphatidylethanolamine-binding protein 1 (PEBP1) P30086 466.32 48.13 21.04 7.53 



 
 

 

 

 

Table 3: Lipoxidized proteins: localization and functions 

Protein Main localization Functions 

  Energy metabolism  

Creatine kinase B-type (CKB) Cytosol, EVE Energy transduction 

Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH)  

Cytosol, cytoskeleton, 

nucleus, EVE 

Glycolysis (step 6); nuclear functions; organization of 

cytoskeleton 

Phosphoglyceratemutase 1 

(PGAM1) 
Cytosol, EVE Glycolysis (step 8); regulates anabolic biosynthesis 

Alpha-enolase (ENO1) 
Cytosol, membrane, 

nucleus, EVE 

Glycolysis (step 9); growth control; hypoxia tolerance; immune 

responses 

Pyruvate kinase isozymes 

M1/M2 (PKM2) 
Cytosol, nucleus, EVE 

Glycolysis (last step); linked to caspase-independent 

programmed cell death 

Aconitate hydratase (ACO2) Mitochondrion, nucleus 
Catalyzes the isomerization of citrate to isocitrate within the 

tricarboxylic acid cycle 

ATP synthase subunit alpha 

(ATP5A1) 
Mitochondrion, EVE 

Component of the ATP synthase complex which produces 

ATP during the oxidative phosphorylation 

Dihydrolipoyl dehydrogenase 

(DLD) 
Mitochondrion  

Component of the pyruvate, α-ketoglutarate and branched-

chain amino acid dehydrogenase complexes, and of the 

glycine cleavage system  

  Cytoskeleton 

Glial fibrillary acidic protein 

(GFAP) 

Glial cytoskeleton - 

intermediate filament 

Structural constituent of cytoskeleton; cell-specific marker that 

distinguishes astrocytes  

Neurofilament light polypeptide 

(NEFL) 

Cytoskeleton - 

neurofilament 

Neuronal cytoskeleton; maintenance of neuronal caliber; axon 

cargo transport 

Neurofilament medium 

polypeptide (NEFM) 

Cytoskeleton - 

neurofilament 

Neuronal cytoskeleton; maintenance of neuronal caliber; axon 

cargo transport 

Tubulin polymerization-

promoting protein (TPPP) 

Cytoskeleton, nucleus, 

EVE 

Integrity of microtubule network; mitotic spindle assembly and 

nuclear envelope breakdown 

  Proteostasis 

60 kDa heat shock protein, 

mitochondrial (HSPD1)  

Mitochondrion, cytosol, 

EVE 

Mitochondrial protein import and macromolecular assembly; 

folding of proteins; apoptotic process 

Protein DJ-1 (PARK7) 
Cytosol, nucleus, 

mitochondrion, EVE 

Protects against oxidative stress and cell death; chaperone 

activity; pleotropic regulatory activities 

Alpha-crystallin B chain 

(CRYAB) 
Cytosol, nucleus, EVE 

Chaperone-like activity; prevents aggregation of proteins under 

stress conditions 

Ubiquitin carboxyl-terminal 

hydrolase L1 (UCHL1) 

Cytosol, membrane, ER, 

EVE 
Processing of ubiquitin precursors and ubiquitinated proteins 

  Neurotransmission 

Aspartate aminotransferase 

(GOT1) 
Cytosol, nucleus, EVE 

Biosynthesis of L-glutamate; regulator of glutamate levels; 

scavenger of glutamate in neuroprotection 

Dihydropyrimidinase-related 

protein 2 (DPYSL2) 

Cytosol, cytoskeleton, 

membrane, EVE 

Neuronal development and polarity including axon growth and 

guidance, growth cone collapse and cell migration; synaptic 

vesicle trafficking 

Phosphatidylethanolamine-

binding protein 1 (PEBP1) 
Cytosol nucleus, EVE 

Binds ATP, opioids and phosphatidylethanolamine; inhibitor of 

serine proteases and RAF1 kinase activity 

Synapsin-1 (SYN1) 
Golgi apparatus, synaptic 

vesicle 

Coats synaptic vesicles and regulates neurotransmitter 

release; pre-synaptic nitric oxid functions  

Brain acid soluble protein 1 

(BASP1) 

Cytosol, membrane, 

nucleus, EVE 

Protein and DNA binding; transcription regulatory activity; 

development regulation 

14-3-3 protein gamma 

(YWHAG) 
Cytosol, EVE 

Regulation of a large spectrum of general and specialized 

signaling pathways 

  O2/CO2/heme metabolism 

Hemoglobin subunit alpha 

(HBA1) 
Cytosol, EVE Oxygen transport 

Carbonic anhydrase 1(CA1) Cytosol, EVE Reversible hydration of CO2; hydrates cyanamide to urea 

NADPH-Flavin reductase 

(BLVRB) 

Cytosol, membrane, 

nucleus, EVE 

Oxidoreductase: catalyzes NADPH-dependent reduction of a 

variety of flavins; heme catabolism;  

Note: Localization and functions based on the reported in the UniProt database (http://www.uniprot.org/). ER, endoplasmic 

reticulum; EVE, extracellular vesicular exosome. Proteins are separated into the groups: energy metabolism, cytoskeleton, 

proteostasis, neurotransmission, and O2/CO2 and heme metabolism. 

http://www.uniprot.org/


 
 

Figure legends 

 

Figure 1: Bi-dimensional (2D) gel electrophoresis and western blotting to neuroketal (NKT) 

of the parietal cortex (A), frontal cortex (B) and cingulate gyrus of two representative 

samples of middle-aged (40 years, left column) and old-aged (76 years, right column) 

individuals (corresponding to cases 1 and 16 in Table 1). Thirty nine spots (labeled in white 

numbers) were selected considering NKT adduction differences in all the cases analyzed 

for further identification by mass spectrometry. 

 

Figure 2: Number of cases by age group with presence of neuroketal adducted forms of 

the twenty five selected proteins identified by redox proteomics in the parietal cortex (A), 

frontal cortex (B), cingulate gyrus (C) and cumulative counts of the three regions (D). 

Proteins are discriminated into clusters corresponding to energy metabolism, cytoskeleton, 

proteostasis, neurotransmission, and O2/CO2/heme metabolism. Number of cases with 

protein neuroketal adducts are higher in old-aged when compared with middle-aged 

individuals, but most oxidized proteins are already present in middle-aged individuals. Note 

that the cytoskeletal proteins GFAP, NEFL and NEFM, and the chaperone HSPD1 show 

the same level of oxidative modifications in middle-aged and old-aged individuals. 

 

Figure 3: Structural characterization of the group of neuroketal-adducted proteins as 

revealed with the PredictProtein software analysis. Predominant structures of oxidized 

proteins are helix and loops (A). Most proteins have structures exposed to solvents (B). The 

most frequent amino acids exposed are lysine, glutamic acid and aspartic acid (C). 

 

Figure 4: Protein-protein interactions networks derived from the STRING software analysis 

of the identified neuroketal-adducted proteins. Several robust interactions are encountered 

in the diagram; interestingly, ubiquitin is a center interacting molecule for several lipoxidized 

proteins 

 

Figure 5: Overrepresented pathways and connections of genes encoding neuroketal-

adducted proteins resulting from the analysis of enriched Gene Ontology (GO) terms using 

Cytoscape software, and including information from GO pathway and functions, KEEG, 

REACTOME and STRING databases. 

 

Figure 6: Slot-blot quantification of soluble oligomers (antibody A11) (A) and total 

neuroketal (NKT) (B) levels in the parietal cortex, frontal cortex and cingulate gyrus in 

middle-aged and old-aged individuals; significant differences between age groups are 

analyzed with the Student's t test. Correlation of oligomers with age is found in the parietal 

and frontal cortices; correlations of NKT and age in the frontal cortex (C).  

 

Figure 7: Significant positive correlations are found between soluble oligomers and 

neuroketal (NKT) levels in all regions (A). Relationships are summarized using principal 

component analysis (B). 
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Graphical abstract: 

 
 

 



 
 

Highlights  

 

 Region-dependent brain protein lipoxidation occurs at middle age and increases in 

old age 

 Proteins involved in energy metabolism, cytoskeleton, proteostasis, 

neurotransmission and O2/CO2, and heme metabolism are the main targets 

 Sub-cellular localization, secondary structure and external exposition of certain 

amino acids are contributory factors in protein vulnerability 

 Non-identified oligomers correlate with protein neuroketal adduction    

 

 

 

 




