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Abstract

Finances are an important field where stochastic processes are applied. These
processes allow to model different finance situations, such as price modeling
or risk. The aim of this project is to study a type of stochastic processes, the
Hawkes processes, which are an extension of Poisson processes that considers
self-excitation, and see some of their application in the financial field.
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Introduction

Hawkes processes are a generalization of homogeneous Poisson processes whose
Poisson rate depends on time and the history, making that a new jump influences
the probability of having a new jump.
These processes were first introduced by Alan Hawkes in 1971 [25] with the idea
of modelling earthquakes: his idea was to model the replica effects after an earth-
quake. However, these processes have not come to standstill by this application,
nowadays they are applied in many other fields, such as neurology, finance and
social science. Particularly, the first one to introduce these processes in finance was
C.G. Bowsher in 2003 [12]. Before Hawkes process was considered in finance, in
most of its applications it was considered a Poisson process with more weight in
the tail. After its apparition, the Poisson jump was replaced by a mutually-exciting
Hawkes process which could propagate different effects between markets.
This project is divided in three different chapters: (i) Basic notions, where some
general concepts that are needed later when talking about Hawkes processes, (ii)
Hawkes processes, where an introduction to these processes is done together with
different properties and characterizations and (iii) Finance applications, in which
an example of application in this field is shown.
In chapter one, some general concepts of probability are defined. Then there are
some general knowledge of martingales. Finally, an introduction to Point process
is done.
In chapter two, first it is defined a Hawkes process and its extrapolation to m di-
mensions. Secondly, the concept of stationarity is given for these processes. Next,
its first and second order are given. Following, different ways of representing a
Hawkes processes are described. Then, different extensions considered in litera-
ture are introduced. Finally, a way of estimate the parameters given historical data
is explained.
In chapter three, the market modelling application is described by using two dif-
ferent types of Hawkes processes.
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Chapter 1

Basic notions

Prior to embarking upon Hawkes processes, it is precise to set some general
concepts from the stochastic field, such as martingales and some results of point
processes, which this last is the basis of Hawkes processes.

1.1 Introduction

Throughout this section, we shall provide some general definitions of the prob-
ability field which will let us to built the basis of this project. To this purpose, let
us start off by giving some elemental definitions [19]:

Definition 1.1. Let Ω be a nonempty set, named the sample space, let H be a
σ−algebra on Ω, also called the event set, and let P : H → [0, 1] be a probabil-
ity measure. The tuple (Ω,H) is called a measurable space, and the triple (Ω,H, P)

a probability space. Elements of the event set H are called events.

Definition 1.2. Let (Ω,H, P) be a probability space, I an index set and let (χ, ξ)

be a measurable space. For every i ∈ I, let Xi : Ω → χ be a random variable. The
collection of random variables (Xi)i∈I (or {Xi : i ∈ I}) is called a stochastic process.

Definition 1.3. Let (Ω,H) be a measurable space and let (Hi)i∈I be a family of
σ-algebras on Ω such that Hi ⊂ Hi+1 ⊂ H ∀i ∈ I. Then, H = (Hi)i∈I is called a
filtration of (Ω,H).

1.2 Martingales

As it will be seen in Section 1.3.2 and remarked in Section 2.4.3, a point pro-
cess, and in particular a Hawkes process, can be decomposed in a martingale and

2



1.2 Martingales 3

another addend. For this reason, we shall briefly introduce martingales. Following
[24]:

Definition 1.4. Let (Ω,H, P) be a probability space and let H be a filtration of
the measurable space (Ω,H). Let I = N, then the stochastic process (Xn)n∈N is a
martingale with respect to H if it satisfies the following three properties:

• Xn is measurable with respect to Hn, that is, X−1
n (Bn) = {ω ∈ Ω : X(ω) ∈

Bn} ∈ Hn ∀Bn ⊂ χ.

• E[|Xn|] < ∞.

• E(Xn|Hm) = Xm a.s. ∀m ≤ n.

It is worth highlighting that if (Xn)n≥0 is a martingale, then E[Xm] = E[Xn]

∀m, n.
Additionally, if the first two properties are satisfied and the third one is replaced
by the inequality E[Xn|Hm] ≥ Xm (E[Xn|Hm] ≤ Xm ) a.s. ∀n ≥ m, then (Xn)n∈N is
called a submartingale (supermantigale).

The reason behind introducing the stopping times is that they generalize pro-
cesses which are not martingales, but locally they behave as martingales. It there-
fore follows the next definition:

Definition 1.5. Given a filtration H = (Ht)t∈R+ , then a random variable T taking
values on [0, ∞] is an H-stopping time if and only if {T ≤ t} ∈ Ht ∀t ≥ 0.

It is interesting to mention that a stopping time marks the time at which a
determined process has a behaviour which is of interest. Depending on their
predicting behaviour, there are two different types of stopping times [16]:

Definition 1.6. A stopping time T is predictable and predicted by a sequence of
random times {Tn}n∈N if Tn → T and Tn < T ∀n ∈N on the event {T > 0}.
A stopping time T is totally inaccessible if P(T = S) = 0 for every predictable
stopping time S.

Observe that in the definition of predictable stopping time, it has not been
mentioned that the sequence is made of stopping times, although it is implicit:

{T ≤ t} =
⋂
n
{Tn ≤ t} ∈ Ht

We are now set to give the definition of local martingale:
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Definition 1.7. Let {X(t) : t ≥ 0} be a stochastic process and let H = (Ht)t≥0

be a filtration on the measurable space (R
+,B(R+

)). Consider {Tn : n ≥ 1} an
increasing family of H-stopping times such that lim

n→∞
Tn = +∞ and that for n ≥ 1,

X(t ∧ Tn) is an Ht-martingale. Then, X(t) is an Ht-local martingale.

Definition 1.8. A semimartingale is a process which can be decomposed as the sum
of a local martingale and an adapted finite variation process, that is

M(t) = M(0) + X(t) + A(t)

where M(0) is finite and H0-measurable, X(t) is a local martingale and A(t) is the
process whose path have bounded variation on [0, t] for each t.

Definition 1.9. Let F and H be two filtration such that F ⊂ H. Then, there is
immersion between the filtration if any F-local martingale is a H-local martingale.

1.3 Point processes

Due to the fact that we will study a particular characterization of Point pro-
cesses, it is time to put forward some fundamental definitions for the upcoming
sections.

Definition 1.10. Let {N(t) ∈N : t ≥ 0} be a stochastic process such that N(0) = 0,
it is almost surely finite and its trajectories are right-continuous step functions with
increments of one unit. Then, {N(t) ∈N : t ≥ 0} is a counting process.

Figure 1.1: Example of counting process where the jumps have taken place in
T = {1, 2, 4, 5}

It is interesting to highlight that a counting process just enumerate the times a
determined event happens, such as when a person comes in a shop.
From this definition, the following properties are derived:
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• N(t) ≥ 0 ∀t ≥ 0

• N(t) ∈N

• if t1 < t2 then N(t1) ≤ N(t2)

So it turns out from the third property that the number of increments in the inter-
val (t1, t2] is obtained by considering N(t2)− N(t1).

It is apparent that the information given by a counting process is completely
equivalent to the information given by the times the jumps take place. These times
can be defined as ordered random points in the time space whose weights are the
same. This is quite remarkable since the study of the arrival times will allow
to derive some properties of the counting process. Now, in order to bridge this
relation, it therefore follows the next definition:

Definition 1.11. Let T = {T1, T2, ...} be a sequence of random variables taking
values in [0, ∞) which has P(0 ≤ T1 ≤ T2 ≤ ...) = 1. If the subsets T′k = {Ti : Ti ≤
k, k < ∞} ⊂ T have a finite cardinality, then T is an ordered (simple) point process.

It is remarkable that the condition |T′k| < ∞ ∀k excludes processes that ex-
plode1; that is, having infinite jumps in a short period of time. Later, a criterion to
ensure the non-explosion is given (see Lemma 2.14).
We will denote by Ht, named the history, the list of time events {t1, ..., tn} up to
time t.
By defining Ti as the time at which the i-jump occurs and whose corresponding
counting process is denoted as {N(t) : t ≥ 0}, the following relation is obtained:

N(t) = ∑
i≥1

1{Ti≤t}

It is of interest to highlight that N(t) is H-adapted2. Moreover, since Ti is the first
time for which N(t) = i, by the debut theorem3, it leads that Ti is a stopping time.

Due to the fact that we will be mainly studying a generalization of an homo-
geneous Poisson process, the simplest example of point process, it is important to
know their characterization and their properties.

1Definition: The explosion is defined as the minimum time interval t − s < ∞ that satisfies
N(t) − N(s) = ∞ for t − s < ∞. Thus, if this time exists, we will say that the stochastic process
{N(t) : t ≥ 0} explodes.

2Definition: A continuous process {N(t) : t ≥ 0} is adapted to a filtration H if ∀t ≥ 0, N(t) is
measurable with respect to this filtration.

3Theorem: (debut theorem) Let X be an adapted right-continuous stochastic process such that is
defined in the whole probability space. Then, if K ∈ R, then the process T : Ω→ R+ defined as:

T(ω) = inf
t∈R+
{X(t + ω) ≥ K}

is almost surely an stopping time.
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Example 1.12. An homogeneous Poisson process is defined as the process whose
probability is given by:

P[N(t + h)− N(t) = m|Ht] =


λh + o(h) if m = 1
o(h) if m > 1
1− λh + o(h) if m = 0

where λ > 0 is the Poisson rate which is constant and o(h) is such that lim
h→0

o(h)
h = 0.

It is apparent that the probability of finding a point in the interval (t, t + h] is
independent of Ht, thus, it is memoryless4. Moreover, by the second equation, si-
multaneous jumps are excluded.
It is time to put forward some fundamental results of homogeneous Poisson pro-
cesses which will give a deeper knowledge of these type of processes.

Proposition 1.12.1: The time intervals between jumps in an homogeneous Pois-
son process, Ti+1 − Ti, are independently exponential distributed.

Proof. Given the point process {Tk : k ∈ N} which describes the times at which
jumps take place, if we denote by τ = Ti+1 − Ti the time intervals between jumps,
supposing that t2 > t1 > 0, the survival function Sτ(·) satisfies the independence
property:

Sτ(t1 + t2) = P(τ > t1)P(τ > t1 + t2|τ > t1) = P(τ > t1)P(τ > t2) = Sτ(t1)Sτ(t2)

where in the second equality one has used that t2 > t1 and the time has started
over because of the memorylessness. Since the initial condition can only be Sτ(0) =
1, because of the independence:

Sτ(0) = Sτ(0 + 0) = (Sτ(0))2 → Sτ(0) = 0 or Sτ(0) = 1

If Sτ(0) = 0, then Sτ(x) = 0 ∀x > 0 as Sτ(x) = Sτ(x + 0) = Sτ(x)Sτ(0) = 0. Thus
Sτ(0) = 1. Furthermore:

Sτ(1) = Sτ(1/2 + 1/2) = (Sτ(1/2))2 ≥ 0→ S(1) = α ≥ 0

Sτ(n) = Sτ(1 + ... + 1) = (Sτ(1))n = αn ∀n ∈N

Sτ(1) = Sτ(1/n + ... + 1/n) = (Sτ(1/n))n → Sτ(1/n) = α1/n

4Definition: Let X be a random variable, we say that its probability distribution is memoryless if
it satisfies:

P[X > m + n|X > n] = P[X > m]
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Therefore Sτ(m/n) = αm/n. By the continuity of random variables and because of
the density of rationals in real numbers, Sτ(x) = αx ∀x ≥ 0. As Sτ(·) is a proba-
bility, Sτ(x) = e−λx for λ > 0 (where the case α = 0 has been excluded, otherwise,
the density would be a Dirac point mass, which is not continuous). Hence, it is an
exponential distribution, that is, Ti+1 − Ti ∼ Ei+1.
In particular, Tn = E1 + ... + En where Ei are independent exponential distribu-
tions.

The reason behind introducing the above result is that it allows to completely
characterize the distribution of jumps for these processes:

Proposition 1.12.2: For an homogeneous Poisson processes, the number of
increments in the interval (a, b], N(b) − N(a), follows a Poisson distribution of
parameter λ.

Proof. To this purpose, let us start off by seeing that the the n-jump follows a
Gamma law with parameters n and λ, Gamma(n, λ), which corresponds to the
following density function:

fTn(t) =
λn

(n− 1)!
tn−1e−λt1{t>0}

By using the induction method on n, we have that for the initial case, n = 1, T1

follows an exponential law with parameter λ, as seen in the last proof, which is
equivalent to a Gamma(1, λ).
Suppose now that Tn ∼ Gamma(n, λ) (induction hypothesis). Since En+1 ∼
Exp(λ) is independent of Tn, for t > 0, the distribution function is written as:

FTn+1(t) = P(Tn+1 ≤ t) = P(Tn + En+1 ≤ t) =
∫ ∞

0
P(Tn + En+1 ≤ t|Tn = u)·

· fTn(u)du =
∫ t

0
P(En+1 ≤ t− u) fTn(u)du =

∫ t

0
FEn+1(t− u) fTn(u)du

Thus:

fTn+1(t) =
d
dt

∫ t

0
(1− e−λ(t−u)) fTn(u)du =

∫ t

0

(
(1− e−λ(t−u)) fTn(u)

)′
du+(1− e−λ(t−t))·

· fTn(t) =
∫ t

0
λe−λ(t−u) λn

(n− 1)!
un−1e−λudu =

λn+1

(n− 1)!
e−λt

∫ t

0
un−1du =

λn+1

n!
tne−λt

Now, we are ready to see that N(t) follows a Poisson law. Denoting by c the
interval length, c = b − a, and using the equivalence between the number of
increments and the times in which these increments takes place, it turns out:

P[N(b)− N(a) < k] = P[T1 + ... + Tk > c] =
∫ ∞

c

λ(λu)k−1e−λu

(k− 1)!
du =

k−1

∑
s=0

e−λc(λc)s

s!
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where in the last equality one has integrated by parts (k − 1) times. Then, it is
now evident that N(t) ∼ Poisson(λt), since:

P(N(t) = n) = P(N(t)− N(0) ≥ n)−P(N(t)− N(0) ≥ n + 1) =

n

∑
k=0

e−λt (λt)k

k!
−

n−1

∑
k=0

e−λt (λt)k

k!
= e−λt (λt)n

n!

The natural question now is how to characterise a point process. Imagine, for
example, that one wants to characterise the occurrence of earthquakes. One way to
typify this situation is by knowing what is the probability of having an earthquake
considering the past; in other words, the distribution function of the arrival time
conditioning on the history Hu. Being aware of this idea, the conditional cumula-
tive distribution function of the next jump Tk+1, given the history up to last jump
k taken at time u, Hu, is:

F∗(t|Hu) =
∫ t

u
P[s ≤ Tk+1 ≤ s + ds|Hu]ds =

∫ t

u
f ∗(s|Hu)ds

Notation: The * as a superindex indicates conditioning on the history Hu.
Supposing that the realisations are in {t1, t2, ..., tk} and using the law of total prob-
abilities the arriving conditional distribution can be written as:

f (t1, t2, ..., tk) =
k

∏
i=1

f ∗(ti|Hu)

1.3.1 Conditional intensity function

The reason behind introducing the conditional intensity function is that work-
ing with f ∗(·|Hi) can be very difficult in many situations; which creates the ne-
cessity of an alternative representation for a point process. It therefore follows the
following definition:

Definition 1.13. The conditional intensity function, also known as the complete inten-
sity function, is defined as the expected rate of jumps conditioned on Ht:

λ∗(t|Ht) =
E[dN(t)|Ht]

dt
= lim

h→0+

E[N(t + h)− N(t)|Ht]

h
= lim

h→0+

P(t ≤ T < t + h|Ht)

h

where dN(t) = lim
h→0

[N(t + h)− N(t)].
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It is worth highlighting that it only depends on information of the counting
process in the past, which means it is Ht-measurable. Moreover, notice that λ∗(t)
can only be non-negative.

An alternative way to define the conditional intensity function can be found
in different papers, such as [28]; where the equivalence with the hazard function is
given. The hazard function is the ratio of failure for small intervals of time, that
is:

λ∗(t|Ht) =
f ∗(t|Ht)

1− F∗(t|Ht)
(1.1)

However, note that although they can have the same expression (as we will see
next), they are not exactly the same: the hazard function is based on continuous
values from a population, whereas the conditional intensity function considers the
probability at which jumps occur.
Additionally, by considering Equation (1.1), it is possible to obtain the survival
function in terms of the hazard function:

λ∗(t) = − Ṡ∗(t|Ht)

S∗(t|Ht)
= − d

dt
ln(S∗(t|Ht))

Thus, it is now clear that the survival function follows an exponential distribution:

S∗(t|Ht) = e−
∫ t

0 λ∗(u)du (1.2)

Note: In order to simplify notation in the following chapters, from now, the con-
ditional intensity function is written as λ∗(t) instead of λ∗(t|Ht).
In order to attain the equivalence between the conditional intensity function and
the hazard function, a non-rigorous demonstration following [21] is shown next.
However, a rigorous proof can be seen in Corollary 4.1.2 of [11] by taking the limit
s→ t.

Proof. Consider an infinitesimal interval around t, say dt, then, taking into account
Definition 1.11, where it is not possible to have simultaneous jumps and consider-
ing the probability of a first jump, one obtains:

f ∗(t|Ht)

1− F∗(t|Ht)
=

P(point in dt|Ht)

P(point not before t|Ht)
=

P(point in dt, point not before t |Ht)

P(point not before t|Ht)
=

P(point in dt|point not before t,Ht) = P(point in dt|Ht) = E[N(dt)|Ht] = λ∗(t)

where in the second equality we have considered that it is the first jump and in
the forth equality, it is used that the information up to time t is already included
in Ht.
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Nevertheless, the conditional intensity function only characterises the finite
dimensional point processes in case it exists [28].

The following result shows the complete characterization of the process given
the jumps before an origin of time, result given by Alan Hawkes in [26]:

Lemma 1.14. Let t0 be an origin of time and suppose that the jumps before this
time follows a specific distribution. Then, there exists at most one orderly point
process {N(t) : t ≥ 0} which satisfies Definition 1.11 for a given function λ∗(·)
given the history.

Proof. See [26].

Going back to the information given by the conditional intensity function, de-
pending on the future consequences of having a new jump, the point process can
be classified in:

• self-exciting if a jump increases the conditional intensity function; that is, the
fact that a new jump occurs increases the probability of having a new jump.
For this reason, there will be a temporal clustering of the arrival time -a lot
of increments in a short period of time-.

• self-regulating if a jump causes the conditional intensity function to decrease.
That is, when a new increment occurs, the probability of having a new in-
crement is decreased. In this case, the arrival times appear quite temporally
regular.

In order to be more familiar with these two types of process, an example of each
one is shown next:

Example 1.15. The behavior of an earthquake can be modelled with a self-exciting
process, whereas for modelling an important loss of money, a self-regulating pro-
cess would be an ideal choice.

Particularly, in Chapter 2 some explicit expressions of these two types of con-
ditional intensity function are given.

1.3.2 Compensator

Throughout this subsection, more properties of counting processes are given
by considering their compensator, which is defined as:
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Definition 1.16. The compensator of a counting process is defined as the integral of
its conditional intensity function:

Λ(t) =
∫ t

0
λ∗(s)ds

Notice that it can be interpreted as the conditional mean of N(t) given the past.
Calling to mind Equation (1.2), the survival function can be given in terms of the
compensator:

S(t) = e−
∫ t

0 λ∗(u)du = e−Λ(t)

So as to see the importance of the compensators for a counting process, firstly, it
is necessary to see that the counting process is a submartingale:

Proposition 1.17. The counting process defined in terms of the arrival times,
N(t) = ∑i≥1 1{Ti≤t}, is a submartingale.

Proof. Following the conditions on Definition 1.4, it is implicit to see the N(t) is
Ht-measurable (as {Ti ≤ t} ∈ Ht), and consequently, N(t) is H-adapted.
Trivially, E[|N(t)|] < ∞ since the increments can only be of one unit, so:

E[|N(t)|] = E[N(t)] = P[N(t) = 1] < ∞

And finally, E[N(t)|Hs] ≥ N(s) because:

E[N(t)|Hs] = E

[
∞

∑
i=1

1{Ti≤t}|Hs

]
=

∞

∑
i=1

E
[
1{Ti≤t}|Hs

]
=

∞

∑
i=1

1{Ti≤s} +
∞

∑
i=1

E
[
1{s<Ti≤t}|Hs

]
≥

∞

∑
i=1

1{Ti≤s} = N(s)

where in the inequality it is used that E
[
1{s<Ti≤t}|Hs

]
≥ 0.

Then, N(t) = ∑i≥1 1{Ti≤t} can be decomposed into a zero mean martingale
M(t) and a unique (Ht)-predictable increasing process, Λ(t). This decomposition
is known as Doob-Meyer decomposition:

N(t) = M(t) + Λ(t) (1.3)

where E[M(t)] = 0.

Proof. See [35].
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More details of this representation are shown in upcoming sections.
It is time to put forward some important results for the characterization of point
processes, and in particular, of counting processes [29]:

Lemma 1.18. Let Λ(t) be the compensator of a given process X. Then for any
stopping time T:

• ∆Λ(T) = 0 if T is a totally inaccessible stopping time.

• ∆Λ(T) = E[∆X(T)|HT− ] if T is a predictable stopping time.

where ∆ denotes increments of the variable that comes next.

Proof. See Lemma 2 of [29].

This result is quite remarkable since the study of the variations of the compen-
sator are described in terms of the expected value of the point process.

Lemma 1.19. Let N(t) be a counting process whose compensator is given by Λ(t).
Then, N(∞) < ∞ if and only if Λ(∞) < ∞ with probability 1.

Proof. Let τ be the first time at which Λ(τ) ≥ n. As the compensator is an in-
creasing function, it is clear that ∀t < τ Λ(t) < n. Moreover, as the counting
process can only increase by increments of one unit, the same is for the compen-
sator because of Lemma 1.18. Thus, Λ(τ) < n + 1 and the following inequality is
obtained:

E[N(τ)] = E[Λ(τ) + M(τ)] = E[Λ(τ)] + E[M(τ)] = E[Λ(τ)] < n + 1

which means that N(τ) < ∞5. Then, if Λ(∞) < ∞ one obtains that N(∞) < ∞
letting n→ ∞.
Conversely, define τ as the first time at which N(τ) = n, hence N(τ) ≤ n. Then,
the Doob-Meyer decomposition yields to:

E[Λ(τ)] = E[N(τ)] ≤ n

Therefore, supposing that N(∞) < n, that is for τ = ∞, and letting n → ∞ one
obtains that Λ(∞) < ∞ almost surely.

Apart from a relation to determine when the process is finite, it also character-
izes when the counting process is constant:

5Property: If E(X) < ∞ then X < ∞ almost surely.
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Lemma 1.20. Let N(t) be a counting process with compensator Λ(t). Then, N(t)
is almost-surely constant on all intervals on which the compensator is constant.

Proof. Let s, ε > 0 and let Ts,ε denote the stopping time defined as:

Ts,ε = inf{t ≥ s : Λ(t) ≥ Λ(s) + ε}

As Ts,ε is predictable, there exists a sequence of stopping times Tn < Ts,ε increasing
to Ts,ε. Letting n increase to infinity, then:

E[N(Ts,ε)− N(s)] = lim
n→∞

E[N(Tn)− N(s)] = lim
n→∞

E[Λ(Tn)−Λ(s)] ≤ ε

Suppose now that for any t > s, Λ(t) = Λ(s). For the right-continuity of the
compensator, Ts,ε is strictly greater than t:

E
[

sup
t>s

1{Λ(t)=Λ(s)}(N(t)− N(s))
]
≤ E[N(Ts,ε)− N(s)] ≤ ε

Nevertheless, this inequality holds for any ε > 0, thus, E
[

sup
t>s

1{Λ(t)=Λ(s)}(N(t)− N(s))
]
=

0 almost surely. Hence, N(t) = N(s) ∀t > s for which Λ(t) = Λ(s).



Chapter 2

Hawkes processes

In the last chapter, we shed some light on point processes with the character-
ization of the conditional intensity function. Now, it is time to familiarize with
Hawkes processes for the upcoming sections.

2.1 Introduction

In order to bridge last section with Hawkes processes, its definition is given.
This shows that the univariate Hawkes process is a generalization of an homo-
geneous Poisson process (see Example 1.12), where the Poisson rate depends on
time and its history:

Definition 2.1. Let {N(t) : t ≥ 0} be a counting process with associated filtration
H = {Ht : t ≥ 0} which satisfies:

P[N(t + h)− N(t) = m|Ht] =


λ∗(t)h + o(h) if m = 1
o(h) if m > 1
1− λ∗(t)h + o(h) if m = 0

where the conditional intensity function of the process, also known as jump inten-
sity, can be written as:

λ∗(t) = λ +
∫ t

0
µ(t− u)dN(u)

λ > 0 is known as background intensity and µ : R→ [0, ∞) is the excitation function
with µ(t) = 0 if t < 0 -that is, it is causal- and µ 6= 0 to avoid the trivial case
-which corresponds to an homogeneous Poisson process-. Such a process N(·) is
a linear Hawkes process.

14
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Figure 2.1: Representation of the conditional intensity function of a Hawkes pro-
cess. In red, the expected value of the conditional intensity function.

It is interesting to mention that in the particular situation that the conditional
intensity does not depend on the history, a non homogeneous Poisson process
would be obtained, which its probability has the following form:

P[N(b)− N(a) = k] =

(∫ b
a λ(t)dt

)k

k!
e−
∫ b

a λ(t)dt

To the purpose of being more familiar with the relation between the conditional
intensity function and the time the jumps take place, we start off by giving the
probability of the first jump. By using Equation (1.2):

P(T0 ≤ s|H0) = 1− exp
(
−
∫ s

0
λ∗(u)du

)
=

= 1− exp
(
−λs−

∫ 0

−∞
[µ(s− u)− µ(−u)]dN(u)

)
Being aware of the two types of point processes when considering the con-

ditional intensity function, processes which are considered in this project are the
self-exciting ones. However, an example of conditional intensity function for a
self-regulated process is presented (examples of conditional intensity functions
for self-exciting processes can be seen in Example 2.4 and 2.5):

Example 2.2. Let {T1, T2, ...} be the times at which the jumps take place. Suppose
the following expression for the conditional intensity function:

λ∗(t) = exp

(
µt− ∑

Ti<t
α

)
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where µ, α > 0. Observe that the intensity increases as time draws on, but each
time a new jump appears, it is multiplied by a constant e−α < 1 and thus, the
probability of a new jump decreases immediately after a jump has appeared; that
is, a self-regular point process.

Figure 2.2: Representation of the conditional intensity function of a self-regulating
process. Jumps have taken place at T = {0.2, 0.3, 0.7, 1.5, 1.7} In red, the expected
value of the conditional intensity function.

Rigorously, a self-exciting process is defined as, which is to be expected that
the definition matches well with the one given in Chapter 1:

Definition 2.3. The process is said to be self-exciting if Cov[N(b) − N(a), N(c) −
N(b)] > 0 where 0 < a ≤ b < c.

It is worth highlighting that, for self-exciting processes, the jump intensity is
a stochastic process where each previous jump increases the jump intensity. This
shows the dependency on the past, which is different from homogeneous and
non homogeneous Poisson process as their distribution is memoryless. Moreover,
by definition, instantaneous jumps are very improbable as seen in homogeneous
Poisson process. Since a new jump depends on the last jump and the distribution
of jumps is completely determined by the conditional intensity function, the pair
(N(t), λ∗(t)) forms a Markov process1 [20].

Remembering that the counting process and the arrival times are equivalent,
one can express the conditional intensity function in terms of the past arrival times

1Definition: A Markov process is a collection {X(t)}t∈R+ of random variables with values on a
countable set E. Two conditions are imposed:

• Markov property: P [X(t + s) = j|X(u), 0 ≤ u ≤ t] = P [X(t + s) = j|X(t)] ∀s, t ≥ 0 i, j ∈ E

• Homogeneity: P[X(t + s) = j|X(t) = i] = P[X(s) = j|X(0) = i] s, t ≥ 0, i, j ∈ E.

Please see [19] for more details.
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{T1, T2, ...}:
λ∗(t) = λ + ∑

Ti<t
µ(t− Ti)

Thus, the particular structure of the conditional intensity function is found when
specifying the background intensity and the excitation function. Particularly,
A.Hawkes in [26] considered two different self-exciting excitation functions: (i)
an exponential decay and (ii) a potential decay. These examples are shown next:

Example 2.4. In the case of an exponential decay with parameters α and β, the
excitation function has the particular form of: µ(t) = αe−βt. Hence, this brings to
the conditional intensity function:

λ∗(t) = λ +
∫ t

−∞
αe−β(t−s)dN(s) = λ + ∑

Ti<t
αe−β(t−Ti)

Notice that α gives information of the quantity that increases the conditional in-
tensity when there is a new jump; whereas β gives information of the jump’s
influence decay from past to future events.

Example 2.5. For the potential decay, the excitation function is particularly ex-
pressed as µ(t) = k

(c+(t−s))p , which depends on three positive parameters: s, k and
p. This leads to:

λ∗(t) = λ +
∫ t

−∞

k
(c + (t− s))p dN(s) = λ + ∑

Ti<t

k
(c + (t− Ti))p

When one wants to use Hawkes processes to model, it is necessary to fix an
origin of time so as to know the impact of an event. For this reason, it is useful
to consider an initial condition, λ∗(t0) = λ∗0 , and by this, the conditional inten-
sity function is the solution of a stochastic differential equation. Specifically, for
Example 2.4, the stochastic differential equation is the following:

dλ∗(t) = β(λ− λ∗(t))dt + αdN(t) t ≥ 0

whose solution is of the form:

λ∗(t) = e−βt(λ0 − λ) + λ +
∫ t

0
αeβ(t−s)dN(s) t ≥ 0

2.1.1 m-variate Hawkes processes

Notation: The operation ∗ corresponds to the convolution product, which is
defined as:

F ∗ g(t) =
∫ ∞

−∞
F(u)g(t− u)du
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When refering to finance, sometimes there are some indicators that are preferible
to be considered all together at the same time. For example, when one wants to
model the mid-price changes by taking into account the best bid and the best ask
(see Section 3.1 for more details).
This can be completely defined because Definition 2.1 is completely extendable
to m dimensions by taking an m-variate counting process N(t) = {Ni(t) : t ≥
0}i=1,...,m, where each Ni(·) has a different conditional intensity function λ∗i (·) and
each one represents a univariate Hawkes process. Thus, this is possible by consid-
ering collections of one-dimensional Hawkes processes in which a jump of one of
these Hawkes process can increase the probability of a jump for another one, that
is, they can excite one to another. Therefore, it is to be expected that the following
definition matches well with the one given for the one dimensional process:

Definition 2.6. Let N = {N1(t), ..., Nm(t)} be a collection of counting processes
and let T = {Tij : i ∈ {1, ..., m}, j ∈ N} be the random arrival times for each
counting process. Supposing that the conditional intensity function of Ni(·) is:

λ∗i (t) = λi +
m

∑
j=1

∫ t

−∞
µij(t− u)dNj(u) = λ + dN ∗ µ(t)

where λ = {λi}i=1,...,m is a vector of exogenous intensities with λi > 0 ∀i; and
µ = {µij}i=1,...,m is a matrix-valued kernel where µij : R→ [0, ∞) are L1-integrable
where µ(t) = 0 ∀t < 0. Then, N is a mutually exciting Hawkes process.

Definition 2.7. The conditional intensity matrix of a m-variate Hawkes process {Ni(t) :
t ≥ 0} is defined as:

κ∗ijdt = E[dNi(t)|dNj(0) = 1]− εijδ(t)−Λidt

where Λi is the compensator of the Hawkes process Ni(t) and εij is the Kronoecker
delta2.

It is of interest to mention that µ has positive components -that is µi ≥ 0 ∀i-
and causal components -that is, for t < 0, µi = 0 ∀i-.
Additionally, by considering the arrival times of each counting process t = {Tij :
i ∈ {1, ..., m}, j ∈N}, the conditional intensity function is equivalently written as:

λ∗i (t) = λi +
m

∑
j=1

∑
Tij<t

µij(t− Tij)

2Definition: The Kronoecker delta is defined as:

εij =

{
1 if i = j
0 if i 6= j
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As for the univariate Hawkes process, an example follows:

Example 2.8. In the particular case where the excitation functions are exponential
decays (expression equivalent to Example 2.4), the conditional intensity function
is given by:

λ∗i (t) = λi +
m

∑
j=1

∫ t

−∞
αije−βi(t−u)dNj(u) = λi +

m

∑
j=1

∑
Tjk<t

αije−βi(t−Tjk)

where αij, βi are non-negative constants. This yields to the differential equation:

dλ∗i (t) = βi(λi − λ∗i (t))dt +
m

∑
j=1

αijdNj(t)

It must be emphasized that this equation takes into account the activity depen-
dency on time, where many jumps will be clustered in a short period of time; and
the dependency on the space of the counting processes, where an adverse shock
in a market propagates to the others. So in the multivariate case, as in the uni-
variate one, one can have a set of similar differential stochastic equations whose
solutions are the components of conditional intensity function with exponential
kernel of each process. Thus, equivalently, for the multivariate Hawkes process,
the (2m)-uple {N(t), λ∗1(t), ..., λ∗m(t)} is a Markov chain in the situation of expo-
nential kernels, but not in the case of potential decays, for example.

It must be pointed out that the interest of introducing the multivariate Hawkes
processes relies on the possibility of self-excitation and cross-section which gives
feedback, that is, new jumps vary the probability of new jumps. Hence, when a
first jump is occurred, and in the situation of having a mutually exciting process,
the process is self-feeding and contagious. Furthermore, they introduce asymme-
try: not all jumps have the same consequences.

2.2 Stationarity

In this section we will focus on stationary Hawkes processes which are of
interest, since they are easy to study and because of their invariance along time.
For example, in finance, processes that do not change in time have been studied
because there exists an interest in different modelings of stable markets.
To this purpose, let us start off by giving the following definitions, which introduce
this property are considered in the general case of a m-variate Hawkes process,
and they can be particularized to one dimension by setting m = 1.
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Definition 2.9. Let N = {Ni(t) : t ≥ 0}i=1,...,m be a m-variate Hawkes process, N
is stationary if a translation in time does not change its distribution. That is, for
h > 0:

{N1(t + h), N2(t + h), ..., Nm(t + h)} ∼ {N1(t), N2(t), ..., Nm(t)}

Nevertheless, from Theorem 1 (unbounded Lipschitz dynamics) of [13], an
equivalent definition of stationarity for a Hawkes process is considered in [22].

Definition 2.10. Let F(t) = { f ij(t)}m
i,j=1 be a square matrix of scalar functions. Its

spectral radius is given by:

||F|| = max {||ki(t)|| : ki eigenvalue of F(t) i = 1, ..., m} =

= max
{∫

dt|ki(t)| : ki eigenvalue of F(t) i = 1, ..., m
}

where the integral is taken over all possible values of t.

Specifically, for a univariate Hawkes process, the spectral ratio is known as
branching ratio, which is given by:

n :=
∫ ∞

0
|µ(s)|ds

Definition 2.11. Let {N(t) : t ≥ 0} be a Hawkes process. We say it has asymp-
totically stationary increments and λ∗(t) is asymptotically stationary if the kernel µ

satisfies the stability condition, that is, ||µ|| =
{
||µij||

}m
i,j=1 < 1.

Let’s illustrate with examples the stability condition referring to the two pos-
sible excitation functions shown in Example 2.4 and 2.5.

Example 2.12. Imagine a bivariate simetric Hawkes process whose kernel is repre-
sented by an exponential decay. In this situation there are two type of excitations:
(i) the self-excitation which corresponds to the influence on their probability when
a jump occurs and (ii) the cross-excitation which takes into account the influence
of one to the other. In this case, the kernel is of the form:

µ =

(
µs(t) µc(t)
µc(t) µs(t)

)
where each component has the following form:

µi(t) = αie−βit1{t>0}

with αi, βi > 0. Note that, as in the one dimensional case, αi gives information of
the interaction strength and βi controls the relaxation time of perturbations from
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past to future jumps. In order to be the process stable, the stability condition must
be satisfied:

||µ|| = ||µs + µc|| < 1⇔ αs

βs
+

αc

βc
< 1

as the eigenvalues of µ are k1 = µs + µc and k2 = µs − µc.

Example 2.13. Suppose now the case of a univariate Hawkes process with a power
law as excitation function:

µ(t) =
k

(c + (t− s))p 1{t>s} ≡ µ(u) =
k

cp(1 + u/c)p 1{u>0}

with k, c > 0 and the last expression is the one that will be used from now. So as
to satisfy the stability condition, the following criteria must be satisfied:∫ ∞

0

k/c
(1 + t/c)p dt =

k
p− 1

< 1⇔ k < (p− 1)

This indicates that p > 1 as k is positive by definition; otherwise, the process is
not stationary.

It is of interest to remark that for a self-exciting process, the value of the branch-
ing ratio, apart from giving a stability criteria, also gives a criteria of whether the
process explodes [28]:

Proposition 2.14. Let n be the branching ratio of a Hawkes process. We say that
the Hawkes process explodes if and only if n ≥ 1.

Proof. Firstly, we start by defining the expected value of the conditional intensity
function as:

g(t) = E[λ∗(t)] = E
[

λ +
∫ t

0
µ(t− s)dN(s)

]
= λ +

∫ t

0
µ(t− s)E[dN(s)] (2.1)

where the last equality is because of Fubini’s theorem3. On the other hand, by
Definition 1.13:

λ∗(s) =
E[dN(s)|H(s)]

ds
3Theorem: (Fubini’s theorem) Let (Ω,H, P) be a σ-finite measurable space and {X(t)}t∈T a set of

measurable real-valued random variables. Then:

E
[∫

T
X(t)dµ(t)

]
=
∫

T
E[X(t)]dµ(t)

if X(t) is non-negative ∀t ∈ T or if
∫

T E(|X(t)|)dµ(t) < ∞.
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Then, if we calculate the expected value of this expression and use the tower
property4, it yields to:

g(s) = E[λ∗(s)] =
E[E[dN(s)|H(s)]]

ds
=

E[dN(s)]
ds

Therefore, by replacing this result in Equation (2.1), we have:

g(t) = E[λ∗(s)] = λ +
∫ t

0
µ(t− s)g(s)ds = λ +

∫ t

0
g(t− s)µ(s)ds = λ + µ ∗ g

which corresponds to a renewal equation5. Reasoning over the range of cases:

1. n < 1 (deflective case): By Asmussen’s Proposition6:

g(t) = E[µ∗(t)]→ λ

1− n
t→ ∞

2. n > 1 (excessive case) and n = 1: As the number of jumps each time can only
be 0 or 1 because instantaneous events have been excluded, the following
result holds:

λ∗(t) = λ + ∑
ti≤t; dN(ti)=1

∫ t

0
µ(s)ds = λ + ∑

ti≤t; dN(ti)=1
n→ ∞ as t→ ∞

Thus, the process explodes.

2.3 First and second order

The possibility to know the first and second order allows to characterize the
process. Particularly, thanks to the structure of the conditional intensity function,
it is possible to characterize its properties in an analytical way which is what we
are going to do all along this section.

4E(X) = E(E(X|Y)).
5Definition: A renewal equation is an equation of the form u = a + (F ∗ u) where (F ∗ u)(t) =∫ t

0 F(t− s)du(s) and whose solution is given by u(t) = (R ∗ a)(t). R(t) is the renewal function, which
is defined as R(t) = ∑n≥0 F∗n(t).

6Proposition: Suppose the renewal equation Z = z + Z ∗ F. If in the deflective case z is bounded
and z(∞) = limt→∞ z(t) exists, then

Z(t)→ z(∞)

1− ||F|| = Z(∞)

Proof: See proposition 7.4 in [2].
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2.3.1 Covariance and Power spectral densities

Bearing in mind that when the branching ratio satisfies n ∈ (0, 1), the expected
value E[dN(t)] and the covariance Cov[dN(t), dN(t + s)] do not depend on time
since the process is stationary, it is interesting to see how the process behaves in the
first and second order. Because of the result of Proposition 2.14 for the deflective
case (see the proof), the expected value of the conditional intensity matrix for the
univariate Hawkes process is constant:

g = g(t) = E[λ∗(t)] =
E[dN(t)]

dt
=

λ

1− n
(2.2)

where dN(t) = lim
h→0

[N(t + h)− N(t)].

In the case of the second order, it follows the next definition.

Definition 2.15. Let N(t) = {Ni(t) : t > 0, i ∈ {1, ..., m}} be a m-variate Hawkes
process and let s > 0, the autocovariance density is defined as:

R(s) = Cov
(

dN(t)
dt

,
dN(t + s)

ds

)
=

E[dN(t + s)dNT(t)]
dtds

− g · gT

Although it is symmetric with respect to 0, R(s) = R(−s), it cannot be ex-
tended to R as there is an atom7 in 0 (s > 0). In the case of simple point processes,
that is there are no multiple events (which means that the increments dN(t) can
be either 0 or 1), it results that:

E[(dN(t))2] = E[dN(t)] = gδ(s)

which would correspond to the case of s = 0. Hence, in order to define the
covariance in all R, the complete covariance density is proposed:

Definition 2.16. The complete covariance density can be defined as:

R(c)(s) = gδ(s) + R(s)

Note it is defined R(0) so that the complete covariance density is continuous.

For continuous signals over time, such as an asymptotic stationary process, one
important characteristic is the description of how the variations of these signals are
distributed over frequency and how they change. This description allows to see
how weak or strong are these changes. It therefore follows the next definition:

7Definition: An atom is a measurable set which has a positive measure and it does not contain a
subset with a positive measure.
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Definition 2.17. The power spectral density function is defined as:

S(ω) =
1

2π

∫ ∞

−∞
e−isωR(c)(s)ds =

1
2π

[
g +

∫ ∞

−∞
e−isωR(s)ds

]
It is interesting to see the particular expression that takes the covariance den-

sity and the power spectral density for Hawkes processes. This informations is
given in the following proposition:

Proposition 2.18. Particularly, for a stationary mutually exciting process, the co-
variance density matrix is given by:

R(s) = E
[(

λ +
∫ t+s

−∞
µ(t + s− u)dN(u)

)
dNT(t)

dt

]
− g · gT

which gives a power spectral density matrix:

S(ω) =
1

2π

1
I−L{µ(t)}(ω)

g
I−L{µ(t)}(−ω)

Proof. See Section 2 in [25].

Note that in the particular case of a self-exciting process, this result is written
as:

S(ω) =
g

2π(1−L{µ(t)}(ω))(1−L{µ(t)}(ω))
=

g
2π|1−L{µ(t)}(ω)|2

Let us give now the specification for an exponential decay:

Theorem 2.19. (Hawkes process power spectral density) Let {N(t) : t > 0} be a uni-
variate Hawkes process whose excitation function has the form of an exponential
decay with α < β (see Example 2.4). Then, the covariance density for s > 0 is:

R(s) =
αβλ(2β− α)

2(β− α)2 e−(β−α)s

And its power spectra density function has the form of:

S(ω) =
λβ

2π(β− α)

(
1 +

α(2β− α)

(β− α)2 + ω2

)
Proof. By the definition of the covariance density for s ∈ R \ {0} we have that:

R(s) = Cov
(

dN(t)
dt

,
dN(t + s)

ds

)
= E

[
dN(t)

dt
dN(t + s)

ds

]
− g2
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By using the tower property and Definition 1.13, it is obtained:

E
[

dN(t)
dt

dN(t + s)
ds

]
= E

[
E
[

dN(t)
dt

dN(t + s)
ds

|H(t + s)
]]

=

= E
[

dN(t)
dt

E
[

dN(t + s)
ds

|H(t + s)
]]

= E
[

dN(t)
dt

λ∗(t + s)
]
=

= E
[

dN(t)
dt

(
λ +

∫ t+s

−∞
µ(t + s− u)dN(u)

)]
Therefore:

R(s) = E
[

dN(t)
dt

(
λ +

∫ t+s

−∞
µ(t + s− u)dN(u)

)]
− g2 = λg+

+E
[

dN(t)
dt

(∫ t+s

−∞
µ(t + s− u)dN(u)

)]
− g2 = gλ+

+E
(∫ s

−∞
µ(s− v)

dN(t)
dt

dN(t + v)
dv

dv
)
− g2 = λg+

+
∫ s

−∞
µ(s− v)E

[
dN(t)

dt
dN(t + v)

dv

]
dv− g2 = λg+

∫ s

−∞
µ(s− v)(R(c)(v)+ g2)dv−

−g2 = λg + gµ(s) +
∫ s

−∞
µ(s− v)R(v)dv + ng2 − g2 =

= gµ(s) +
∫ ∞

0
µ(s + v)R(v)dv +

∫ s

0
µ(s− v)R(v)dv

where n is the branching ratio. Now, taking the Laplace transformation8 (for more
details see appendix A.2 of [28]), it is possible to solve this equation and by taking
into account that the excitation function is an exponential decay, we have that:

L{R(s)}(r) = αg(2β− α)

2(β− α)(r + β− α)
=

αβλ(2β− α)

2(β− α)2(r + β− α)

By inverting this expression, the result that we were looking for is obtained:

R(s) =
αβλ(2β− α)

2(β− α)2 e−(β−α)s

Moreover, by taking the definition of the power spectra density function, one
obtains:

8Definition: Let f : R→ R be a L1-scalar function, then its Laplace transformation is defined as:

L{ f (t)} =
∫ ∞

−∞
dt f (t)ezt

All Laplace transformations in this section and the next one have been calculated using [34].
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S(ω) =
1

2π

[
g +

∫ ∞

0
e−isωR(s)ds +

∫ ∞

0
eiωsR(s)ds

]
=

1
2π

[g + L{R(s)}(iω)+

+L{R(s)}(−iω)] =
λβ

2π(β− α)

(
1 +

α(2β− α)

(β− α)2 + ω2

)

2.3.2 Kernel inversion

Throughout this section, we are going to find some general results for a mu-
tually exciting process by giving an alternative characterization of the first and
second order. This characterization is based on the Laplace transformation which
will make some problems easier and the kernel inversion. Therefore, we have the
following definition:

Definition 2.20. Let {N(t) : t ≥ 0} be an asymptotically stationary Hawkes pro-
cess, then the Kernel inversion Φ(t) is denoted as the solution of the following
renewal equation:

µ(t) + Φ(t) ∗ µ(t) = Φ(t)

As a consequence of the asymptotically stationarity, Φ(t) exists and it can be
expressed as an infinite sum of convolutions:

Φ(t) = µ(t) + µ(t) ∗ µ(t) + µ(t) ∗ µ(t) ∗ µ(t) + ... = ∑
i≥1

µ∗i(t)

It is worth highlighting that this solution could have also be obtained by seeing
that the equation is a renewal equation. Then, its Laplace transformation is given
by:

L{Φ(t)}(z) = 1
I−L{µ(t)}(z) − I

where I is the identity matrix.
It is also interesting to mention that by the definition of the Laplace transforma-
tion, one has an alternative expression for the spectral radius:

L{µ}(0) =
∫ ∞

−∞
dtµ(t) = ||µ||

Moreover, with the kernel inversion, it is possible to acquire an alternative
representation for the first and second order, which is shown in the following
result [4]:
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Proposition 2.21. (First and Second order statistics) Let {N(t) : t ≥ 0} be an asymp-
totically stationary Hawkes process. Then:

• The average intensity g is given by:

g =
E[dN(t)]

dt
= (I + L{Φ(0)})λ =

λ

I− ||µ||

• The autocovariance density matrix given in Definition 2.15, has as Laplace
transformation:

L{R}(z) = (I + L{Φ}(−z))Σ(I + L{Φ}T(z))

where Σ is a diagonal matrix whose non-zero elements are given by Σii = gi,
that is the average intensity of the stationary Hawkes process {Ni(t) : t ≥ 0}.

Notice that the expression of the average intensity is completely in accordance
with Equation (2.2). With this result, a linear prediction is obtained providing that
one has the conditional intensity function.
Now we are ready to see how this result can help on finding the first and second
order with two examples:

Example 2.22. Suppose an asymptotically stationary bivariate Hawkes process
with exponential decay like the one of Example 2.12. Then, the Laplace trans-
formation of the excitation function can be written equivalently as:

L{µ}(z) = 1
2

(
1 1
1 −1

)(
L{µs}(z) + L{µc}(z) 0

0 L{µs}(z)−L{µc}(z)

)(
1 1
1 −1

)

where

L{µs}(z) =
βsαs

βs − z
L{µc}(z) =

βcαc

βc − z

Observe that from the first representation the kernel matrix is diagonal in the basis
of the symmetric and antisymmetric combinations N±(t) = 1√

2
(N1(t) ± N2(t)).

Therefore, in this basis, by assuming that λ = (λ0, λ0), the average intensity has
both components equal to g0:

g0 =
λ0

1− αs − αc

And the correlation matrix in this basis is of the form:

R±(s) =
E[(dN1(t)± dN2(t))(dN1(t + s)± dN2(t + s))]

2dtds
− g2

0
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whose Laplacian transformation is:

L{R}(z) = [I + L{µ}(−z)]−1Σ[1−L{µ}(z)]−1

After replacing by the Laplacian of the excitation function, one obtains:

L{R±}(z) = g0

(1−L{µs}(−z)∓L{µc}(−z))(1−L{µs}(z)∓L{µc}(z))

Example 2.23. Suppose now a univariate Hawkes process with a power law excita-
tion function as the one Example 2.13. In this situation, the Laplace transformation
of the excitation function is given by:

L{µ}(z) = kc−p+1e−cz(−cz)p−1Γ(−p + 1,−cz)

where Γ(n, m) =
∫ ∞

m tn−1e−tdt is the incomplete Gamma function. The Laplace
transformation of the Kernel inversion is:

L{Φ}(z) = kc−p+1e−cz(−cz)p−1Γ(−p + 1,−cz)
1− kc−p+1e−cz(−cz)p−1Γ(−p + 1,−cz)

As seen before, the Hawkes process is asymptotically stationary if and only if
k < p− 1, which leads to an average intensity of:

g =
λ

1− ||µ|| = λ

(
p− 1

p− 1− k

)
Note that the average intensity is between a total intensity equals to the exoge-
neous one (k = 0); that is the non-interacting case, and an increasingly larger
number of events (k ∼ p− 1); which corresponds to a process near the instability
point.
Then, in this example the Laplace transformation of the covariance matrix is:

L{R}(z) = g
(1−L{µ}(z))(1−L{µ}(z))

This expression cannot be inverted analytically9.

Additionally, there exists an alternative way to find the covariance matrix,
which is by taking into account the conditional intensity matrix (Definition 2.7),
which is shown in the next proposition:

9However, for z << 1, this equation can be inverted by using Tauberian theorems (theorems that
gives conditions in order to sum divergent series) [5].
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Proposition 2.24. There exists a relation between the conditional average and the
correlation matrix for an asymptotically stationary m-variate Hawkes process:

R(t) = ΣκT(t) ∀t > 0

where Σ is a diagonal matrix with non-zero elements equal to Σii = gi, being gi the
average intensity of the process Ni and κ∗(t) is the conditional intensity matrix.

Proof. See Section II.B of [4].

The reason behind introducing the first and second order with its different
expressions is that they completely characterize a Hawkes process by using a
Wiener-Hopf equation10. Accordingly, the following result is shown [8]:

Theorem 2.25. (Wiener-Hopf equation) Let {N(t) : t > 0} be an asymptotically
stationary Hawkes process. Then, the matrix function χ(t) = µ(t) is the unique
solution of the Wiener-Hopf system:

κ(t) = χ(t) + χ(t) ∗ κ(t) ∀t > 0

Proof. The uniqueness can be seen in Appendix A of [8].

This result has a lot of importance since, when the average intensity g(t)
and the conditional intensity matrix κ(t) are fixed, it shows the uniqueness of
a Hawkes process for these given observables. However, this process does not
always exist as it cannot reproduce the linear properties for systems in which in-
hibition is important, that is, self-regulating processes [5].
Thus, whereas this result states that correlations and average intensities uniquely
fix the interactions; Proposition 2.21 states that by fixing the excitation function
and the exogeneous intensity, the correlation is uniquely determined.

It is also remarkable to see what happens when the background intensity func-
tion depends on time, λ(t). In this situation [4]:

10Definition: A Wiener-Hopf equation corresponds to an integral equation on [0, ∞) that depends
on the difference of two arguments:

u(x)−
∫ ∞

0
k(x− s)u(s)ds = f (x) ∀x ∈ [0, ∞)

.



30 Hawkes processes

Theorem 2.26. Let {N1, ..., Nm} be an asymptotically stationary mutually exciting
process. Assuming that h(t) =

∫ t
0 λ(s)ds < ∞ ∀t > 0, one has:

E[N(t)] = h(t) +
∫ t

0
∑
n≥1

µ∗nh(s)ds

where µ∗n = µ ∗ ... ∗ µ (n times).

Proof. Note that ∑n≥1 µ∗n is L1-integrable. By induction, it is obtained that:∫ ∞

0
µ∗n(t)dt = ||µ||n

and as the Hawkes process is asymptotically stationary, ∑n≥1 Kn is finite when
0 < K < 1, it yields: ∫ ∞

0
∑
n≥1

µ∗n(t)dt =
||µ||

1− ||µ||

Additionally, using the Doob-Meyer decomposition given in Equation (1.3), it is
obtained:

E[N(t)] = E
[∫ t

0
λ∗(s)ds

]
= E

[∫ t

0
λ(s)ds

]
+ E

[∫ t

0
ds
∫ s

0
µ(s− u)dN(u)

]
Considering Fubini’s theorem:

∫ t

0
ds
∫ s

0
µ(s−u)dN(u) =

∫ t

0

(∫ t

u
µ(s− u)ds

)
dN(u) =

∫ t

0

(∫ t−u

0
µ(x)dx

)
dN(u)

After integrating by parts, the final result is obtained:

E[N(t)] = E
[∫ t

0
λ(s)ds

]
+E

[∫ t

0
µ(t− s)N(s)ds

]
=
∫ t

0
λ(s)ds+

∫ t

0
µ(t− s)d(E[N(s)])

where in the last equality the Fubini’s theorem has been used. Observe that this
corresponds to a renewal equation, hence the solution is:

E[N(t)] =

(
∑
n≥0

µ∗n(t) ∗ h(t)

)
= h(t) +

∫ t

0
∑
n≥1

µ∗nh(s)ds

For more details, see Theorem 1 in [4].

It is to be expected that this definition matches well with Equation (2.2) when
λ(t) = λ.
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2.4 Representation of a Hawkes process

In this section different ways of representing a Hawkes process are presented,
which will lead to different views of seeing them.

2.4.1 Immigrant-Birth representation

The population of a country can vary because of births, deaths or immigration.
Suppose that the arrival of immigrants can be modelled by an homogeneous Pois-
son process of rate λ. Additionally, an individual can produce m ∈N descendants
independently from other individuals. Hence, we can mind that the number of
births is modelled by an inhomogeneous Poisson process: imagine an individual
that enters in ti ∈ R+, the rate at which they produce offspring is µ(t − ti) for
t > ti.
Denote by Zi the number of offspring in the ith generation and suppose the case
where initially there is only one individual, Z0 = 1. Then, the first-generation of
offspring corresponds to a Poisson process of parameter n, that is, Z1 ∼ Pois(n).
In this situation:

n =
∫ ∞

0
dtµ(t) =

∫ ∞

0
αe−βsds =

α

β

Conditioning on the knowledge of Z1, the ratio of offspring of an immigrant is
i.i.d with density µ(t−ti)

n . This corresponds to the rate of offspring per person over
the frequency of occurrence that there is offspring.
It is now apparent the equivalence between this branching representation11 and
a Hawkes process, since each new individual regardless of its origin (birth or
immigration) can be comparable to a new jump in a Hawkes process.

With this representation in mind, we can derive an asymptotic characteristic
[28]:

Theorem 2.27. (Hawkes process with asymptotic normality) Let {N(t) : t ≥ 0} be an
asymptotically stationary univariate Hawkes process whose conditional intensity
function is given by Definition 2.1. If∫ ∞

0
sµ(s)ds < ∞

11Definition: A branching process is a Markov chain {X(n) : n ∈ N} on N. Its transition function
is defined by a given probability function {pk : k ∈N}, with pk ≥ 0 and ∑ pk = 1 by

P[X(n + 1) = j|X(n) = i] =

{
p∗ij if i ≥ 1 j ≥ 0

δ0j if i = 0 j ≥ 0

where δij is the Kronecker delta and {p∗ik : k ∈N} is the i-fold convolution of {pk : k ∈N} [3].
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Figure 2.3: Example of a representation of the arrival of new population. Different
colours represent offspring from different immigrants, which in this case there are
six different immigrants.

Figure 2.4: Corresponding conditional intensity function of the immigrant rep-
resentation shown in Figure 2.3. In red the expected value of the conditional
intensity function.

then the number of jumps in t is asymptotically normally distributed, that is:

P

(
N(t)− λt/(1− n)√

λt/(1− n)3
≤ x

)
→ Φ(x) when t→ ∞

where in this case Φ(x) corresponds to the cumulative distribution function of the
normal distribution with mean 0 and standard deviation 1.

Proof. See Theorem 2 in [26].

Going back to the immigrant representation, we have the following property:
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Proposition 2.28. Under the immigrant representation and supposing that Z0 = 1,
the ith-generation satisfies:

E[Zi] = ni

Proof. Induction will be done in order to proof this result:
For i = 0, as there is one immigrant, E[Z0] = E[1] = 1 = n0.
Suppose that for i the proposition is satisfied, E[Zi] = ni, then:

E[Zi+1] = E[Z1 · Zi] = E[Z1] · E[Zi] = n · ni = ni+1

where in the first equality, it has been used that Zi = Zi−1 · Zi, since the number
of individuals in the ith-generation is equal to the number of individuals in the
(i− 1)th-generation multiplied by the 1st-generation that each of these individual
can have, as offspring of different individuals is independent. The second equality
has been obtained by the independence of each individual. Finally, in the third
equality, the induction hypothesis has been used.

Hence in the case of one immigrant (Z0 = 1), the expected number of descen-
dants is:

E

[
∞

∑
i=1

Zi

]
=

∞

∑
i=1

E[Zi] =
∞

∑
i=1

ni =

{
n

1−n if n < 1
∞ if n ≥ 1

It is worth highlighting that in the situation of n ∈ (0, 1), which corresponds to
the asymptotically stationary situation, this result can be seen as the ratio between
the number of descendants for one immigrant and the number of members in their
family.

2.4.2 Cluster representation

In the general case of a m-variate spatial Hawkes process, the cluster inter-
pretation is similar to the immigrant representation but jumps represent a spatial
location in space.
Cluster processes are point processes which are built conditioning on the realiza-
tion of a center process, generally a Poisson point process. It turns out that the
process can be seen as a cluster process in which the process of cluster centers
Nc(t) is the Poisson process of rate λ formed by the arrival of immigrants. Thus,
for each point of Nc(t), one has a cluster corresponding to the descendants of all
generations of the immigrant.
First of all, we will see the existence of a Poisson cluster process12 given a self-
exciting process:

12Definition: A Poisson cluster process corresponds to a compound Poisson process where each
point is replaced by a cluster of points and the original point is seen as the center of the cluster. The
cluster sizes are independent and identically distributed and the cluster center is not observed.
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Lemma 2.29. Given a univariate Hawkes process, if the background intensity λ >

0 and the branching ratio satisfies n ∈ (0, 1), then there exists a Poisson cluster
process with rate λ′ = λ

1−n .

Proof. See Lemma 1 of [26].

It is worth mentioning that the Poisson rate corresponds to the average inten-
sity of the process. Notice that this lemma shows the existence of a self-exciting
process given two parameters: the background intensity and the branching ratio.
Additionally, this representation allows to see the uniqueness of the process: if
there exists two process with the same conditional intensity, they must come from
the same distribution. This fact is shown by the following lemma, which is a
particularization of Lemma 1.14 for a Hawkes process:

Lemma 2.30. There exists at most one asymptotically stationary orderly point pro-
cess with finite rate whose intensity function is given by Definition 2.1 and the
branching ratio satisfies n ∈ (0, 1).

Proof. See Lemma 2 of [26].

The reason behind introducing these two results is that they allow to build
self-exciting processes using Poisson cluster processes following the next idea.
Let Nc be a Poisson point process with Poisson rate λc, which is the starting point
(in the immigrant representation, it would represent an immigrant that appears
spontaneously). At each center point tc ∈ R of Nc, a point process is generated
independently N(·|tc). So, the cluster process N is defined as the set of all im-
migrants and offspring generated independently at each center point tc of Nc:
N(A) = Nc(N(A|·)) ∀A ∈ B(R).
The following proposition gives the proceed of how a Hawkes process can be built
following this representation [5]:

Proposition 2.31. (Clustering representation) Let n ∈ N and let [0, τ] be a time
interval, not necessarily finite, in which we define a sequence of events according
to the following steps:

1. For each 1 ≤ i ≤ n, consider {t(0)m , i}Mi
m=1 which is a set of events built from

an homogeneous Poisson process of rate λi in the interval [0, τ].

2. For each event of type j, (t(0)m , j) and for each 1 ≤ i ≤ n, a new sequence of

first-generation events {t(1)m , i}M(1)
i

m=1 is generated with Poisson rate µij(t− tm)

in the interval [t(0)m , τ].
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3. Repeat (2) from n− 1 to generation n to obtain the sequence {t(n)m , k(n)m }M(n)

m=1
until more events in the time interval [0, τ] cannot be generated.

Then, the events

{tm, km}M
m=1 =

∞⋃
n=0

{t(n)m , k(n)m }M(n)

m=1

are the ones that generate the Hawkes process in [0, τ].

2.4.3 Martingale representation

Hawkes processes can also be represented in terms of martingales by consid-
ering the Doob-Meyer decomposition (Equation (1.3)); which is the background of
the following theorem [4]:

Theorem 2.32. (Martingale representation) Let {Ni(t) : t ≥ 0, 1 ≤ i ≤ m} be a
m-variate Hawkes process, the stochastic process defined as:

M(t) = N(t)−Λ(t)

where Λ(t) is the compensator, is a martingale with respect to the canonical filtra-
tion13 of the Hawkes process. Moreover, if the Hawkes process is asymptotically
stationary, then the conditional intensity function can be denoted by:

λ∗(t) = λ +
∫ t

0
Φ(t− s)λds +

∫ t

0
Φ(t− s)dM(s)

by using the summation representation of the kernel inversion.

Particularly, in the asymptotic regime (t >> 1), the last result is simplified by:

λ∗(t)→ g +
∫ t

0
Φ(t− s)dM(s)

because of the average intensity’s definition.
Thanks to this result, the average intensity can be calculated following two differ-
ent ways:

13Definition: The canonical filtration for a random variable {X(t) : t ≥ 0} is the filtration

FX
t = σ(X(u) : 0 ≤ u ≤ t)

This is the smallest filtration for which {X(t) : t ≥ 0} is adapted.
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Example 2.33. Consider an asymptotically stationary Hawkes process. Then:

E[λ∗(t)|Hs] = λ +
∫ s

0
µ(t− u)dN(u) +

∫ t

s
duµ(t− u)E[λ∗(u)|Hs]

Using the martingale representation, one obtains:

E[λ∗(t)|Hs] = λ +
∫ t

0
Φ(t− s)λds +

∫ s

0
Φ(t− s)dM(s)

where it has been used that the expected value of the martingale is zero.

This representation is suitable for high-frequency data modeling because of its
structure.

2.5 Extensions

During this section we will present extensions of linear Hawkes processes,
which provide different characteristics.

2.5.1 Marked Hawkes process

Marked Hawkes process are quite used in finance modelling such as in mod-
eling commerce with different volumes [15]. These processes are defined by using
a mark variable:

Definition 2.34. Let {N(t) : t ≥ 0} be a Hawkes process where for each arrival
time tij, it is considered a mark variable ξij. Then, the conditional intensity func-
tion of a marked Hawkes process is written as:

λ∗i (t) = λi +
d

∑
j=1

µij(t− tij, ξij)

It is worth mentioning that the fact of labeling with different marks gives a
certain dynamism in the conditional intensity function, as different marks have
different effects in future jumps.
In general, it is assumed that marks of different events are i.i.d. random variables
and they come from the same distribution f (ξ). Typically, the choice of the exci-
tation function is such that the two variables are independent, i.e, the excitation
function can be factorized as µij(t, ξ) = µij(t)χij(ξ).

Example 2.35. Let ξi ≥ 0 be a variable that denotes the magnitude of an earth-
quake which occurs at time ti. In order to model this situation, a possible condi-
tional intensity function that can be taken is of the form [23]:

λ∗(t) = λ + α ∑
ti<t

eβξi e−γ(t−ti)
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where the parameters α, β, γ > 0 and the mark density follows an exponential
distribution, that is:

f ∗(ξ|Ht) = δe−δξ

As these marks do not depend on history, they are unpredictable.
An alternative representation of the conditional intensity function is considering
the time and the marks at the same time:

λ∗(t, ξ) =

(
λ + α ∑

ti<t
eβξi e−γ(t−ti)

)
δe−δξ

The idea behind this model is that earthquakes cause aftershocks, this is why there
is the factor αeβξi , which increases intensity. Moreover, this model makes a relation
between the intensity of the earthquake and the probability of having another one.

2.5.2 Quasi-stationary Hawkes process

Another possible extension is the dependence on time of the background in-
tensity λi(t) as in Theorem 2.26. In particular, it allows to model a non-stationary
system in which the excitation matrix is independent of time. This type of ex-
tension is useful when modeling the intra-day seasonalities or the side effects in
consecutive days [5], for example.

Suppose the non asymptotically stationary regime, that is, a process whose
||µ|| ≥ 1. While in the case of ||µ|| > 1, the average intensity grows exponentially
in time, in ||µ|| = 1 the process can have a finite average event rate. This situa-
tion corresponds to quasi-stationarity. From this type of extension, two important
results are obtained [14]:

Proposition 2.36. Consider a univariate Hawkes process {N(t) : t ≥ 0}, such that
||µ|| = 1 and λ = 0. If ∫ ∞

0
dttµ(t) < ∞

then the average conditional intensity is either 0 or +∞. This property is known
as the degeneracy of critical, short-range Hawkes.

Thus, in the univariate case, two trivial cases are obtained: (i) for g = 0 there
are no events and (ii) for g = ∞ there is an explosion.

Theorem 2.37. (Existence of critical stationarity) Suppose a quasi-stationary Hawkes
process such that λ = 0 and

sup
t≥0

t1+γµ(t) ≤ R lim
t→∞

t1+γµ(t) = r

where r, R > 0 and γ ∈ (0, 1/2). Then, the average conditional intensity is finite.
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2.5.3 Non-linear Hawkes process

This extension is presented so as to notice that not all Hawkes processes
present the same structure. For this reason, we shall briefly introduce them:

Definition 2.38. Let {N(t) : t ≥ 0} be a counting process whose conditional
intensity function is given by:

λ∗i (t) = Ψ

(
m

∑
j=1

∫ t

−∞
µij(t− u)dN(u)

)

where Ψ : Rm → [0, ∞), µij : Rm → [0, ∞). Then, N(t) is a non-linear Hawkes
process.

Note that if Ψ(x) = λi + x, N(t) is the linear Hawkes process described in
Definition 2.6.
However, this extension is not used a lot because of its complexity and for being
quite recent. Nevertheless, it is worth showing an example on a possible applica-
tion:

Example 2.39. Considering the one dimensional situation with Ψ(x) = k1[0,K−1/2](x)
and µ(x) = 1[0,b](x), it is obtained the M/M/K/0 queue input. This corresponds
to a queue with Poisson jumps of intensity k > 0, service time b > 0, no waiting
room and K servers.

Additionally, in [13] some applications to the neuron modelling are presented.
The interest of applying these processes rely on the existence of asymptotically
stationary non-linear Hawkes processes which is given by the following theorem:

Theorem 2.40. (Increasing kernel) Suppose a nonnegative, nondecreasing and left-
continuous function Ψ(x) such that

Ψ(x) ≤ λ + αx x ∈ R

where α ≥ 0. Let µ : R→ R+ be a casual function that satisfies

α
∫

R
µ(t)dt < 1

Then, there exists an asymptotically stationary non linear Hawkes process defined
by Ψ(x).
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2.6 Parameter estimation

In this section, the estimation of the parameters that Hawkes processes depend
on is done by knowing a set of arrival times {t1, t2, ..., tn}. Specially, the method
that is explained corresponds to the maximum likelihood estimation which consists
of finding the likelihood function14 and then, estimating the model parameters by
maximizing this function [28].

Theorem 2.41. (Hawkes process likelihood) Consider a univariate Hawkes process in
a finite time interval {N(t) : t ∈ [0, τ]} and let {t1, t2, ..., tk} be the arrival times in
this temporal interval. Then, the likelihood is written as:

L(k|Hτ) =

[
k

∏
i=1

λ∗(ti)

]
exp

(
−
∫ τ

0
λ∗(u)du

)
Proof. Assume that the process is observed up to the kth arrival, then the joint
density function is defined as:

L(k|Hτ) = f (t1, t2, ..., tk) =
k

∏
i=1

f ∗(ti|Hti−1)

because the jumps are i.i.d.. Using Equation 1.2 one has:

F∗(t|Hs) = 1− exp
(
−
∫ t

tk

λ∗(u)du
)

f ∗(t|Hs) = λ∗(t) exp
(
−
∫ t

tk

λ∗(u)du
)

By replacing this in the likelihood expression, it yields:

L(k|Hτ) =
k

∏
i=1

f ∗(ti|Hs) =

[
k

∏
i=1

λ∗(ti)

]
exp

(
−
∫ tk

0
λ∗(u)du

)
Suppose now that the observation is done in a subinterval [0, tk] ⊂ [0, τ]. In this
situation, the likelihood includes the probability of not seeing any jump in the
interval (tk, τ], which means:

L(k|Hτ) =

[
k

∏
i=1

f ∗(ti)

]
(1− F∗(τ|Hs)) =

[
k

∏
i=1

λ∗(ti)

]
exp

(
−
∫ τ

0
λ∗(u)du

)

14Definition: The likelihood of a finite realization of a Poisson process is the probability of having
a given number of observations in a time period conditioning on the parameters that depends the
model, that is:

L(N(t)|Ht) = P[Ht|N(t)]
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Once the likelihood is obtained, we have to maximize it in order to estimate
the parameters. This maximization would be done depending on the type of like-
lihood, for example by calculating the derivatives and using numerical methods
(for example, Newton-Raphson method).

Example 2.42. In the particular case of having a univariate Hawkes process with
exponential decay, it is easier to work with the log-likelihood which, considering
the interval [0, tk], is written as:

l =
k

∑
i=1

log(λ∗(ti))−
∫ tk

0
λ∗(u)du =

k

∑
i=1

log(λ∗(ti))−Λ(tk)

Using Definition 1.16 and dividing the integral in different subsets, it yields to:

Λ(tk) =
∫ tk

0
λ∗(u)du =

∫ t1

0
λ∗(u)du +

k−1

∑
i=1

∫ ti+1

ti

λ∗(u)du =

=
∫ t1

0
λdu +

k−1

∑
i=1

∫ ti+1

ti

λ + ∑
tj<u

αe−β(u−tj)du = λtk + α
k−1

∑
i=1

∫ ti+1

ti

i

∑
j=1

e−β(u−tj) =

= λtk + α
k−1

∑
i=1

i

∑
j=1

∫ ti+1

ti

e−β(u−tj)du = λtk −
α

β

k−1

∑
i=1

i

∑
j=1

[e−β(ti+1−tj) − e−β(ti−tj)] =

= λtk −
α

β

k

∑
i=1

[e−β(tk−ti) − 1]

Replacing in the log-likelihood expression, it is obtained:

l =
k

∑
i=1

log

[
λ + α

i−1

∑
j=1

e−β(ti−tj)

]
− λtk +

α

β

k

∑
i=1

[
e−β(tk−ti) − 1

]
However, as there are two summations, computationally it is difficult. But, for
i ∈ {2, ..., k} the function

A(i) =
i−1

∑
j=1

e−β(ti−tj) = e−βti+βti−1

(
1 +

i−1

∑
j=1

e−βti−1+βtj

)
= e−β(ti−ti−1)(1 + A(i− 1))

simplifies the expression by assuming the particular condition A(1) = 0:

l =
k

∑
i=1

log(λ + αA(i))− λtk +
α

β

k

∑
i=1

[
e−β(tk−ti) − 1

]
Its derivatives and the Hessian can be seen in [30], and then, depending on the
data it will be used different methods for the approximation of the parameters.



Chapter 3

Finance applications

Although initially Hawkes processes were not created for financial modeling,
an important application in different financial situations such as a microstructure
dynamics, order arrival rate modeling and high-frequency data has been observed.
In this section, we will use the knowledge shown in last chapter to see an example
of application in the finance field. Particularly, two different ways of modeling the
market impact at a microstrutural level are presented by using Hawkes processes.

3.1 Market impact

The market impact, that is the market reaction, describes the changes in prices
immediately after an order takes place in a short period of time. In general, price
changes because of incoming and cancelled orders. Hence, the behaviour of these
changes are of interest since they induced extra costs, specially for large volumes
of trades; for example, in the case of a metaorder1: when the trading is being ex-
ecuted, the order is becoming less attractive (price raises) and when the execution
is over, the market impact is relaxed. This is based on the fact that when an asset
is bought, the price will increase; and when it is sold, the price will decrease. This
variation depends on the liquidity of the asset: the more liquidity of an asset, the
less the price is affected by an order. Furthermore, it is possible that other trades of
other assets affect the price of the asset considered; that is known as cross-impact.
Hence, the aim is to optimise the rate of trading so as to minimise the market
impact and the volatility risk.

1Definition: A large trading order that is divided in small pieces and executed incrementally is
called a metaorder.
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3.1.1 Bivariate Hawkes process for price modeling

In the first representation, the upward price changes, which is the price change
due to the purchase, and the downward price changes, which is the price change
due to the sales, are considered [4]. For this, it is taken into account the discrete
nature of price variations and that these variations do not depend on the size of the
jump. In this situation, the price variations are divided in two different processes,
the first one is affected by the purchases, this corresponds to the upward price
changes; and the second one, by the sales, that is, the downward price changes.
Hence, two counting processes forming a 2-dimensional Hawkes process are taken
into consideration, (N1(t), N2(t)), where N1(t) is related to the arrival times of
upward price changes and the second one, to the arrival times of downward price
changes. Thus, the price is given by:

P(t) = P(0) + N1(t) + N2(t) t > 0

Considering the conditional intensity functions λ∗1(t) and λ∗2(t) and knowing that,
in the microstructure level, the price tends to its mean value, that is, it is highly
mean reverting, the 2-dimensional Hawkes process has only the crossing terms in
the kernel [9]:

λ∗1(t) = λ + dN2 ∗ µ(t) λ∗2(t) = λ + dN1 ∗ µ(t)

Observe that the more the price increases P(t) (respectively decreases), the greater
the conditional intensity function λ∗2(t) (resp. λ∗1(t)) is. This corresponds to the
mean reversion property. Note that these two counting processes are assymptoti-
cally stable if the condition ||µ|| < 1 holds.
Suppose that we want to model the impact of a metaorder corresponding to a
continuous flow of buying orders with a trading rate per unit of time r(t) which
starts at time t0 and ends at time t0 + τ (hence r(t) = 0 ∀t 6∈ [t0, t0 + τ]). In order
to explain the main dynamics of the market impact, a linear model is assumed,
that is, the impact of a metaorder is the sum of the impact of its child orders.
With these assumption, an extra term in the conditional intensity function must
be added, which accounts for the impact of the buying order, that is

λ∗1(t) = λ + dN2 ∗ µ(t) +
∫ t

t0

f (r(s))g1(s− t0)ds

λ∗2(t) = λ + dN1 ∗ µ(t) +
∫ t

t0

f (r(s))g2(s− t0)ds

where f accounts for the instantaneous impact and it satisfies that f (0) = 0. Addi-
tionally, g1(t) is the impact kernel and g2(t) is the cross-impact kernel. Note that
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the second term of each expression takes into account the time dependency of the
order, while the third one considers the volume.
In order to describe the market impact, a particularization of the kernels is done.
As the impact is really focalised on time, the upward impact of a single buying
order can be considered as instantaneous, which means that there is an instanta-
neous jump in the price when there is an order. Hence, as in [4], the impact kernel
can be assumed as a Dirac function:

g1(t) = g1i(t) = δ(t)

On the other hand, taking into account that the market reacts to a new trade as if
it provoked an upward jump. Then, it is reasonable that the cross-impact kernel
is given by:

g2(t) = g2i(t) = C
µ(t)
||µ||

where C is the ratio between the impact decay and the impact amplification. De-
pending on its value, three different situations are possible:

1. C=0: no opposing reaction, thus, there is a permanent effect on price from
metaorders.

2. C=1: the opposing reaction has the same effect as the impact amplification.
Thus, one expects that they are compensated asymptotically, that means that
the total effect of the metaorder on prices is 0.

3. C ∈ (0, 1), there is an opposing reaction but it is smaller than the impact
amplification.

Using the Hawkes impact model, the market impact of a metaorder is given by:

η(t) = E[P(t)] ∀t ≥ t0

Thanks to Proposition 1 of [4], a general result for the impact of a metaorder can
be obtained:

Proposition 3.1. (Transient, decay curves and permanent effect) For all t ≥ t0, the
market impact is given by:

η(t) =
∫ ∞

t0

f (r(s)) (G(t− s)− (κ ∗ G)(t− s)) ds

where G(t) =
∫ t

0 (g1(u) − g2(u))du and κ = ∑∞
n=1(−1)n−1µ∗n. In the particular

case of a Hawkes impact model, with the corresponding kernels given before, this
simplifies to:

η(t) =
∫ t

t0

f (r(s))
(

1−
(

1 +
C
||µ||

) ∫ t−s

0
κ(u)du

)
ds ∀t ≥ t0
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And in the particular situation of having a constant rate strategy, that is, r(t) =

r ∀t ∈ [t0, t0 + τ], then, the permanent effect of the metaorder on the price is:

η(∞) = lim
t→+∞

η(t) = f (r)τ
1− C

1 + ||µ||

Proof. Direct consequence of Theorem 2.26 and by considering that

∞

∑
i=0

(−1)nxn =
−x

1 + x

For more details see Appendix A of [4].

If now we consider that the trade rate is constant and that the excitation func-
tion has the form of a power law, then the market impact curve will decay asymp-
totically as a power-law, so that [4]:

Corollary 3.2. Suppose a constant rate strategy in a Hawkes impact model. As-
suming that µ ≥ µ∗2 and that ∃K > 0 such that lim

t→∞
µ(t)t−b = K for b ∈ (−2,−1),

then the market impact curve decays to η(∞) asymptotically as a power-law with
exponent b + 1, that is:

inf
(

p :
∫ ∞

1
(η(t)− η(∞))t−p−1dt < ∞

)
= b + 1

Proof. See Appendix A of [4].

Thus, in the case of a unique market maker2 with noise traders, and assuming
an idealized market, the impulsive Hawkes impact model is seen as the modelling
of the market maker inventory, that is, λ∗1 − λ∗2 . The market maker adjusts the
interaction level for which they accept the metaorder by backtestings and their
experience for a given risk budget. With this, they supply attractive prices with a
small risk until the inventory exceeds a threshold. A market maker with a low C
does not yield a lot of resistance to the metaorder pressure and does not supply a
large herding effect when they close out their inventory. Instead, a market maker
with a large C generates a high opposite pressure to metaorder and, when the
threshold is exceeded, a large herding effect is produced (which is compensated
by slower market maker with large inventory).
Note that this model could be extended by considering a continuum market maker,
where C follows a distribution taking into account the distribution of metaorders

2Definition: a market maker is a company/individual that provides quotes for selling and buying
trades which accepts to provide liquidity under their own risks.
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in a given market.
Suppose a duration T(C) of a metaorder. Initially, when the order starts, the
metaorder interacts with market makers with low C. A time after, as the buyers
consider they are adversely selected, they stop ordering and they provide their
inventory to market makers with the highest C. When the metaorder has finished,
the interaction continues with market makers with the best C, and then, they have
to unwind their inventory slowly to see their benefits.

3.1.2 Tetravariate Hawkes process for price modeling

As described in [7], another possibility to model the market impact is by taking
into account a four-dimensional point process, which considers the order arrival
self-excitation, the price changes mean reversion, the impact of an order arrival
on the price and the feedback of price variations on the trading activity. Here, all
market trades and all mid-price change events are consider. However, the trade
volumes are not taken into account so as to make easy the notation (but they could
be considered by adding a mark variable).
For this modeling, jumps of the market caused by orders are described by a bi-
variate Hawkes process which counts the orders until time t:

T(t) =

(
T−(t)
T+(t)

)
where T−(t) gives the number of orders at the best ask3 and T+(t), the number
of orders at the best bid4. Thus, when a new market order arrives, T+(t) or T−(t)
is increased by one. The trade process T is completely characterised by the condi-
tional intensity vector λ∗T(t).
Similarly, the mid-price5 is described by a two-dimensional Hawkes process, par-
ticularly X(t) = N1(t)− N2(t), which N+(t) defines the number of upward price
jumps at time t and N−(t), the number of downward price jumps at time t.

N(t) =

(
N−(t)
N+(t)

)
When the price varies, N−(t) or N+(t) increase by 1. The mid-price is charac-
terised by the conditional intensity vector, λ∗N(t).

3Definition: The best ask is the lowest quoted offer price from competing market makers for a par-
ticular trading instrument (see https://www.investopedia.com/terms/b/bestask.asp for more
details).

4Definition: The best bid is the highest quoted for a particular security among all bids offered by
competing market makers; that is, the highest price that an investor is willing to pay for an asset
(see https://www.investopedia.com/terms/b/bestbid.asp for more details).

5Definition: The mid-price corresponds to the average of the best ask and best bid prices.

https://www.investopedia.com/terms/b/bestask.asp
https://www.investopedia.com/terms/b/bestbid.asp
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Hence, the process that is being considered is:

P(t) =

(
T(t)
N(t)

)
=


T−(t)
T+(t)
N−(t)
N+(t)


which allows to define the influence of the different components and its condi-
tional intensity vector is given by:

λ∗(t) =

(
λ∗T(t)
λ∗N(t)

)
=


λ∗T−(t)
λ∗T+(t)
λ∗N−(t)
λ∗N+(t)


The interest in using Hawkes processes relies on the issue that it takes into account
the influence of any component of P(t) because of the structure of the conditional
intensity function, which is λ∗(t) = λ + dP(t) ∗ µ. In this particular case, the
background intensity, which takes into account the exogeneous intensity of trades,
is:

λ =


λ0

λ0

0
0


because the best bid and best ask are assumed to be equal and that the mid-price
jumps are only caused by endogeneous variables6. The kernel which gives the
excitation function is then:

µ(t) =

(
µT(t) µF(t)
µI(t) µN(t)

)

where

µT (influence of T on λ∗T) takes into account the trade correlations.

µI (influence of T on λ∗N) takes into account the impact of a trade on the price.

µF (influence of N on λ∗T) is the response influence of the price moves on the
trades.

µN (influence of N on λ∗N) is the influence of past and future changes in price.

6Definition: An endogeneous variable is a variable that depends on other variables of the system
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Symmetries between the best bid and the best ask for trades and symmetries be-
tween the up and down directions for price lead to an excitation function of the
form:

µi(t) =

(
µs

i (t) µc
i (t)

µc
i (t) µs

i (t)

)
for i = I, F, T, N and where the superindex s indicates the self influence and c, the
cross influence. As these matrices can be diagonalised using the same basis, they
commute because their eigenvalues are the sum and the difference of the self and
cross terms.
Note that in the situation of having a buying order that takes all the volume at
the best ask, this results in an instantaneous jump for the mid-price. Although
instantaneous jumps are not possible, this can be modelled by considered that
the changes in the mid-price are a small time interval after the order because of
the causality relation. With this, µI(t) will result in a function close to the Dirac
distribution arount t = 0. This distribution is obtained by considering a positive
L1-function with norm I and with domain ∆t of a few milliseconds. Then, the price
increases after ∆t milliseconds of the order and thus, the price change follows a
Poisson distribution with parameter I. With this, µI(t) = δ(t)I.
In this situation, the stability condition is given by:

(||µs
F||+ ||µc

F||)(||µs
I ||+ ||µc

I ||) < (1− ||µs
T|| − ||µc

T||)(1− ||µs
N || − ||µc

N ||)

and
||µs

T||+ ||µc
T|| ≤ 1 ||µs

N ||+ ||µc
N || < 1

The proof can be seen in Annex 9.1 of [7]. In the particular case that µF = 0, that
is, the price changes do not influence the orders; then the stability condition is
reduced to the second and third conditions.

For this model, which is to model orders which can be influenced by different
agents, the impact of an order can only be obtained by the response function [7]:

Definition 3.3. The response function is the price variation between 0 and t, know-
ing that on time 0 there has been a trade:

R(t) =

{
E[N+(t)− N−(t)|dT+(0) = 1] if t > 0
0 otherwise

Notice that the response function considers the impact of all market orders that
are in the same metaorder as the market order that is being consider. Otherwise,
the market impact given in Proposition 3.2 takes into account the market orders
of a single agent. An analytical expression and how it is obtained can be found in
[7].



Conclusions

Now, it is time to conclude this dissertation by providing an overview of it and
going through as a whole.
First of all, Hawkes processes permit to model situations where self-excitation
and contagion are two properties quite important. Moreover, the fact that they
are a type of point processes, particularly an extension of homogeneous Poisson
processes, allows to take into account some of their characterizations, such as the
conditional intensity function and the compensator.
Secondly, as there are different representations of these processes and they are
quite easy to compute, their used has been extended during last years in many
fields: not only on the ones that have been encompassed here, that is earthquakes
and finances, but also criminality and neuronal signal transmissions.
Finally, we have seen that the application in a specific theme, in this case the mar-
ket impact, can be modelled by using different types of Hawkes processes, which
justifies that these processes are adaptable; not only because of their extension to
different dimensions, but also because of the flexible structure that the conditional
intensity function can present.
In conclusion, although some improvements and applications could have been
done, this project allows to have a fulfilling overview not only of Hawkes pro-
cesses, but also on point processes; together with an introduction in the finance
field.
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