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ABSTRACT

Turbulence is ubiquitous in molecular clouds (MCs), but its origin is still unclear because MCs are usually
assumed to live longer than the turbulence dissipation time. Interstellar medium (ISM) turbulence is likely driven
by supernova (SN) explosions, but it has never been demonstrated that SN explosions can establish and maintain a
turbulent cascade inside MCs consistent with the observations. In this work, we carry out a simulation of SN-
driven turbulence in a volume of (250 pc)3, specifically designed to test if SN driving alone can be responsible for
the observed turbulence inside MCs. We find that SN driving establishes a velocity scaling consistent with the
usual scaling laws of supersonic turbulence, suggesting that previous idealized simulations of MC turbulence,
driven with a random, large-scale volume force, were correctly adopted as appropriate models for MC turbulence,
despite the artificial driving. We also find that the same scaling laws extend to the interiors of MCs, and that the
velocity–size relation of the MCs selected from our simulation is consistent with that of MCs from the Outer-
Galaxy Survey, the largest MC sample available. The mass–size relation and the mass and size probability
distributions also compare successfully with those of the Outer Galaxy Survey. Finally, we show that MC
turbulence is super-Alfvénic with respect to both the mean and rms magnetic-field strength. We conclude that MC
structure and dynamics are the natural result of SN-driven turbulence.
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1. INTRODUCTION

Understanding molecular cloud (MC) turbulence is key to
understanding the star formation process because supersonic
turbulence is ubiquitous in MCs and drives their fragmentation
into stars. Supersonic turbulence has been studied extensively
in the context of star formation, and its statistical properties are
at the core of recent models of the star formation rate (SFR;
Krumholz & McKee 2005; Hennebelle & Chabrier 2011;
Padoan & Nordlund 2011; Federrath & Klessen 2012) and the
stellar initial mass function (Padoan et al. 1997; Padoan &
Nordlund 2002; Hennebelle & Chabrier 2008; Hopkins 2012).
Most numerical studies of supersonic turbulence have used a
random large-scale force to drive the turbulence, as is
customary in the turbulence literature. It remains to be shown
that such an idealized external force is a good approximation of
the actual large-scale processes driving the interstellar-medium
(ISM) turbulence. While the simulations use a volume force
that penetrates the interior of the fluid, as long-range forces do
(e.g., gravity and magnetic fields), the real ISM driving forces
may be surface forces, such as large-scale shocks from spiral
arms or supernova (SN) bubbles. The effect of different types
of surface forces, or of a combination of volume and surface
forces on the turbulence, and thus, on star formation, has not
been systematically studied.

The turbulence in MCs is also key to understanding their
origin. The generation and maintenance of MC turbulence must
be an integral part of the cloud formation process, because most
of the energy of an MC is in the form of turbulent kinetic
energy. For example, the great majority of small and
intermediate-mass MCs are known to have rather large virial
parameters (see Section 10 and Heyer et al. 2001, 2009), thus
their turbulent energy is large enough to form and disperse
them in a few dynamical times. The same may be true also for

the most massive MCs, even if their virial parameter tends to be
of the order of unity. The spatial and velocity structures of MCs
follow power laws that span all scales from the smallest to the
most massive clouds, suggesting a universal origin of clouds
and cloud turbulence.
In this work, we adopt the viewpoint that MC turbulence is

just one component of the general ISM turbulence. The
question of the origin of MC turbulence is thus turned into the
more general question of how the ISM turbulent energy is
shared among its different gas phases. If we demonstrate that
the total large-scale turbulent energy of the ISM is dynamically
consistent with the turbulent energy in its dense phase, no extra
energy source specific to MCs is needed.
It is generally accepted that SN explosions dominate the

energy budget of star-forming galaxies at MC scales, although
large-scale gravitational instabilities in galactic disks (e.g.,
Elmegreen et al. 2003; Bournaud et al. 2010) and gas
compression in spiral density waves (e.g., Semenov
et al. 2015) may also contribute to the turbulence. The
Kennicut–Schmidt star formation law of disk galaxies, despite
giving a large gas-consumption timescale of the order of 1 Gyr,
corresponds to an energy input from SN explosions that
exceeds the turbulence dissipation rate of the ISM of those
galaxies. The analysis of H I maps of nearby face-on galaxies
also leads to the conclusion that SN feedback is responsible for
the observed H I line width, except in the disk outskirts
(Tamburro et al. 2009; Stilp et al. 2013; Ianjamasimanana
et al. 2015). Detailed modeling of the disk vertical balance has
also shown that SN feedback can maintain the ISM turbulence
that determines the disk scale height, resulting in self-regulated
star formation (Ostriker et al. 2010; Ostriker & Shetty 2011;
Faucher-Giguère et al. 2013), a picture that may also apply to
galaxies with high SFR at redshift z=1–3 (Lehnert
et al. 2013).
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Prior to these studies, galactic-fountain simulations had
already demonstrated that SN explosions can drive the
observed ISM turbulence (de Avillez & Breitschwerdt 2005;
Joung et al. 2009). However, these simulations barely resolved
the formation of the most massive clouds, and could not resolve
their internal structure and dynamics in order to compare with
observed MC properties. Furthermore, the evolution of
individual SN explosions was not resolved with high-enough
spatial resolution to study their interaction with indivi-
dual MCs.

Recent numerical works have studied the momentum
injection by individual SN explosions into the ambient
medium, assuming realistic ISM density and temperature
fluctuations (Iffrig & Hennebelle 2015; Kim & Ostriker
2015; Martizzi et al. 2015; Walch & Naab 2015). These
studies are useful for the derivation of feedback models to be
implemented as sub-grid physics in galaxy formation simula-
tions, but do not address the problem of the generation and
maintenance of MC turbulence by SN explosions.

In this work, we focus on a smaller-scale region than in
galactic-fountain simulations, and use high-enough numerical
resolution to model the MCs, their internal structure and
dynamics, and the evolution of individual SN bubbles with
sub-parsec resolution (see Section 2). We also select clouds
from the simulation, as connected regions above a threshold
density (Section 3), to study their turbulence and to compare
with observed MCs. First we study statistical properties over
the whole computational volume, such as total energies
(Section 4), power spectra (Section 5), and velocity structure
(Section 6.1). Then we present properties of individual clouds
selected from the simulation, such as the velocity structure
(Section 6.2), the virial parameter (Section 7), the cloud
lifetime (Section 8), and the magnetic field strength (Section 9).
Finally, we compare the properties of the clouds selected from
the simulation with those of MCs from the Five College Radio
Astronomy Observatory (FCRAO) Outer Galaxy Survey
(Section 10).

2. NUMERICAL SETUP

The simulation is carried out with the Ramses AMR code
(Teyssier 2002). We refer to Padoan et al. (2014) for a brief
description of our version of Ramses. What is new here,
relative to the simulation in Padoan et al. (2014), is the use of
the full energy equation (instead of assuming an isothermal
equation of state), and the inclusion of SN explosions and
tracer particles, besides the much larger physical size of the
computational volume.

We simulate a cubic region of size Lbox=250 pc (large
enough to contain a few turbulence correlation lengths, while
small enough to allow sub-parsec resolution), with a mean
density of 5 cm−3 (corresponding to a column density of 30
Me pc−2 and a total mass of 1.9×106Me) and an SN II rate
of 6.25Myr−1 (or a galactic rate of 100Myr−1 kpc−2, if all SN
explosions occurred within the vertical extent of our box). We
do not consider SNe Ia, because of their lower rate and higher
scale height, and because we distribute SN explosions
randomly, so our SN rate could also be interpreted as the
sum of the Type II and Type Ia rates.

These rate and column density values are consistent with the
Kennicutt–Schmidt relation, and our computational volume
may be viewed as a dense section of a spiral arm. For example,
the total column density in the Perseus arm of the Milky Way is

23 Me pc−2 (Heyer & Terebey 1998). However, we do not
include a galactic gravitational field, and adopt periodic
boundary conditions in all directions, so vertical stratification
and outflows of hot gas are neglected. We have chosen this
idealized setup because one of the motivations of this work is
to relate the statistical properties of SN-driven turbulence to
previous studies of randomly driven, supersonic, isothermal
turbulence that were carried out on periodic boxes without
stratification. Furthermore, we relate the velocity scaling to
theoretical predictions that also neglect complications such as
gravity and stratification.4

Besides the pdV work, and the thermal energy introduced to
model SN explosions, our energy equation adopts uniform
photoelectric heating as in Wolfire et al. (1995), with efficiency
ò=0.05 and the FUV radiation field of Habing (1968) with
coefficient G0=0.6, chosen to obtain temperature distribu-
tions consistent with those from the comprehensive simulations
by Walch et al. (2015). Because the code conserves total
energy, kinetic and magnetic dissipations are included self-
consistently as energy sources (this dissipation is purely
numerical, as we do not include viscosity or resistivity
explicitly). We use a tabulated optically thin cooling function
constructed from the extensive compilation by Gnedin &
Hollon (2012), based on 75 million runs of the Cloudy code
(Ferland et al. 1998) to sample a large range of conditions, and
from which the results have been made publicly available as a
Fortran code with accompanying database. All relevant atomic
transitions are included in the Cloudy runs. Although available
in Cloudy, molecular cooling is not included because the runs
are restricted to a single computational zone, with a negligible
column density, to enforce the optically thin case. Above a
temperature of 100 K, atomic cooling is dominant up to
densities of 106 cm−3 (e.g., Neufeld et al. 1995). At lower
temperature and high densities, molecular cooling should be
included. However, molecular cooling and cosmic-ray heating
are neglected, and their thermal balance in very dense gas is
emulated by clamping the resulting drop in temperature at
10 K. As pointed out by Gnedin & Hollon (2012), including the
balance of molecular cooling and cosmic-ray heating in such a
treatment does not make much physical sense, since the
balance of these processes at high densities crucially depends
on radiative transfer effects; in particular the absorption of UV
radiation by small-scale high-density cloud structures. In the
absence of radiative transfer, and given the optically thin
assumption, we approximate the UV shielding in MCs by
tapering off the photoelectric heating exponentially above a
number density of 200 cm−3 (assuming a characteristic size of
1 pc for MC structures at our critical density, corresponding to
a critical visual extinction of 0.3 mag; Franco & Cox 1986).
Figure 1 shows the phase diagram of gas pressure versus

density sampled over the last 11Myr of the simulation. The
horizontal feature around densities of a few 10−22 g cm−3 is a
consequence of the approximation of self-shielding. In a real
MC, or a model where the absorption of UV-radiation by the
filamentary structure of dense gas and dust is taken into
account more realistically, the transition to opaqueness would
take place at different densities at different locations, and
similar local phase diagram features would be washed out.
Comparing our current phase diagram with the ones in Walch

4 Star formation simulations with gravity have shown that, under reasonable
conditions (e.g., MCs not collapsing as a whole), gravity does not affect the
velocity scaling (Federrath & Klessen 2013).
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et al. (2015), we actually find the largest discrepancy not to be
near that horizontal feature, but rather at higher densities where,
for some reason, their balance of heating and cooling results in
a temperature of about 30 K, instead of our assumed value
of 10 K.

The simulation is started with zero velocity, a uniform
density nH,0=5 cm−3, a uniform magnetic field B0=4.6 μG,
and a uniform temperature T0=104 K. The first few SN
explosions rapidly bring the mean thermal, magnetic and
kinetic energy to approximately steady-state values, with the
magnetic field amplified to an rms value of 7.2 μG. The value
of the mean magnetic field is chosen to achieve near
equipartition with the kinetic energy at large scales, as shown
in Section 4. It also yields an average value of B∣ ∣ of 6.0 μG,
consistent with the value of 6.0±1.8 μG derived from the
“Millennium Arecibo 21 cm Absorption-Line Survey” by
Heiles & Troland (2005).

The simulation is run for 56Myr (with a total of 359 SN
explosions), initially without tracer particles and self-gravity.
At t=33Myr we include 150 million passively advected
tracer particles following the mass distribution in the
computational volume (each particle represents a fluid element
of 0.013 Me). Tracer particles are advected with the same
symplectic Kick-Drift-Kick scheme used for dark matter
particles in Ramses, but the kicks are ignored—they are
passive—and velocities in the drift are instead sampled using
CIC interpolation of fluid velocities.

At t=45Myr we include self-gravity. Several clumps of the
order of 1000 Me start to collapse. Larger resolution and sink
particles are required at that point, which will be the topic of a
followup work. For the purpose of this work, we stop the
simulation after approximately 11Myr of evolution with self-
gravity. This is also motivated by the need to trace the exact
location of SN explosions when clouds have been forming
massive stars for a time of the order of 10Myr, as explained in
the next section.

To enforce a sub-parsec resolution of the evolution of SN
bubbles and of their interaction with the ISM, we adopt AMR
criteria based on density, density gradients and pressure

gradients. Although our root grid contains only 1283 cells,
our AMR criteria result in rather large volume filling factors of
high-resolution cells: 75% of our computational domain is
covered at a resolution equivalent to 2563, 22% at a resolution
of 5123, and 2% at 10243. Because the volume filling factor of
the clouds selected in this work is approximately 0.5%, our
clouds are all resolved at the maximum resolution.
The left panel of Figure 2 shows the logarithm of the

projected density of the whole computational volume, at the
final time of the simulation. The structure is highly filamentary
and appears to be self-similar. The right panel of Figure 2
shows a sub-region magnified by a factor of four; the same type
of filamentary structure is seen at this smaller scale. This
structure is very similar to that previously found in supersonic
simulations of isothermal turbulence, and consistent with the
appearance of nearby giant molecular clouds (GMCs) mapped
with the Herschel satellite.
Apart from SN explosions, the simulation neglects any other

energy source, such as winds and radiation feedback from
massive stars, or external forces, such as spiral arm shocks and
fluctuations of the large-scale gravitational potential, that may
affect MC turbulence in real galaxies. This choice allows us to
test if SN turbulence alone can explain the origin and
maintenance of GMC turbulence, while also providing a
significant reduction of the computational cost. We also neglect
the chemical evolution of the ISM. Although we do not expect
that the dynamics would be strongly affected by a more precise
computation of cooling and heating based on dynamically
evolved chemical abundances, the selection of MCs and their
comparison with observations would certainly benefit from a
dynamical computation of the H2 and CO abundances (Glover
& Clark 2012; Walch et al. 2015). The neglect of chemistry in
this work is solely motivated by considerations of computa-
tional cost.

2.1. SN Explosions

Individual SN explosions are implemented with an instanta-
neous addition of 1051 erg of thermal energy and 15 Me of gas,
distributed according to an exponential profile on a spherical
region of radius rSN=3 dx=0.73 pc, where dx is our smallest
cell size, dx=Lbox/1024=0.24 pc. Kim & Ostriker (2015)
have derived a useful condition for numerical convergence of
the evolution of SN remnants, which states that both the grid
size and the initial SN radius must be smaller than one-third of
the shell-formation radius, <dx r r, 3SN sf . Because in our case
rSN>dx, and given the expression for rsf in Kim & Ostriker
(2015), the condition for our simulation is < -r n10 pcSN 0

0.46,
where n0 is the ambient density. Given our value of
rSN=0.73 pc, the condition becomes n0  300 cm−3. The
volume filling factor of gas at density above that value varies in
the approximate range between 0.0003 and 0.0009, with the
largest value reached only at the end of the simulation, while
the total number of SN explosions in the simulation is 359.
Because the locations of SN explosions are randomly
distributed, there is only a small probability that one or more
SN explosions violate the condition for numerical convergence.
SN explosions are generated at random positions and times,

neglecting the possibility of spatial and temporal clustering. In
the galactic fountain simulations by de Avillez & Breitschwerdt
(2005) and Joung et al. (2009) it was assumed that 60% of the
SN explosions occurred in clusters, and only the remaining
40% at random locations. Joung et al. (2009) assumed that the

Figure 1. Phase diagram of gas pressure vs. density based on 11 snapshots
covering uniformly the time period when gravity is included in the simulations,
t=45–56 Myr. The grayscale represents the square root of the volume fraction
at a given pressure and density.
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clustered SN population is distributed in clusters with up to 40
stars more massive than 8 Me, NSN=40, with a probability of
cluster size following a power law, ∼NSN

−2. All massive stars
from a given cluster were assumed to explode at the same
location, though at different times distributed in an interval of
40Myr, the approximate lifetimes of the least massive stars to
explode.

However, assuming that clusters have a typical velocity
dispersion of the cold gas of the order of 10 km s−1, and
considering the average value of NSN=10, the typical cluster
would contribute on average 1 SN explosion every 4Myr, with
a separation of approximately 40 pc between consecutive SN
explosions, due to the cluster motion not accounted for by
Joung et al. (2009). The 10 explosions would cover a distance
of 400 pc over 40Myr. Thus, even assuming the reasonable
cluster statistics of Joung et al. (2009), the explosions would
not appear to be clustered. A realistic prediction of spatial and
temporal clustering of SN explosions requires that the
formation and kinematics of individual stars is numerically
resolved through the adoption of very high spatial resolution
and sink particles. In the absence of that, a random SN
distribution is a reasonable assumption.

Another potentially important issue is the correlation
between the location of SN explosions and the position of
their parent clouds. Recent simulations have shown that the
large-scale structure of the ISM is sensitive to the amount of
correlation between SN positions and density peaks (Walch
et al. 2015; Gatto et al. 2015). Walch et al. (2015) have
concluded that the random distribution case or the case of
clustering in space and time, but not correlated with density
peaks, are favored by the observations. On the contrary, in
Dobbs & Pringle (2013) and Dobbs (2015) all SN explosions
are assumed to occur inside MCs. As an MC (or any density

peak above a certain threshold) is created, SN feedback is
turned on in its interior. This unrealistic SN feedback does not
allow to address the question of the origin of MC turbulence, as
this is driven directly by SNe by design.
Iffrig & Hennebelle (2015) have addressed this issue by

focusing on the effect of a single SN on a single MC of 104Me,
showing that the effect of an SN explosion on an MC is much
stronger if the explosion occurs inside the cloud than outside of
it. Their results may be affected by their specific choice of the
ambient density, 1.2, 20, and 700 cm−3, for the three SN
positions they tested. The probability of high density is
certainly increased inside an MC than outside of it. However,
the probability of an SN explosion at high density must be
quite small, because the volume filling fraction of dense
filaments and clumps is low even within the volume enclosing
an MC. Furthermore, H II regions and winds would probably
prevent SN explosions in dense gas in general. Nevertheless, it
seems reasonable that SN remnants expanding from within an
MC would be more effective at bringing material above the
escape velocity than SN remnants pushing on an MC from the
outside.
With a Salpeter IMF (Salpeter 1955), the mean stellar mass

between 8 and 100 Me is approximately 19 Me, corresponding
to a stellar lifetime of approximately 9Myr. Assuming that it
takes at least 1 Myr to initiate star formation in a young cloud,
and to accrete the stellar mass, the SN feedback would thus be
important in an MC after a characteristic time of 10Myr
(assuming that massive stars can remain in the general region
of their parent cloud for a parent-cloud crossing time). We will
show in Section 8 that our most massive clouds of the order of
105Me selected toward the end of the simulation were formed
approximately 20Myr earlier (tform≈20Myr in Figure 21).
For these clouds, thus, the SN feedback from locally formed

Figure 2. Left panel: logarithm of projected density along the x-axis of the simulation volume. The mean magnetic field direction is horizontal on the image. The
column density value is larger in darker regions, with black set to a maximum value of 5×1022 cm−2, and white to a minimum value of 6×1020 cm−2. The actual
values of column density span a much larger range, and these limits have been chosen to optimize the contrast of the density structure. The image includes the whole
computational volume, that is a size of 250 pc. Right panel: same as in the left panel, but for a region four times smaller (62.5 pc) shown by the white squared in the
left panel. The color-table limit values have been increased by a factor of 4 and 5, 2×1023 cm−2 (black) and 3×1021 cm−2 (white), to match the larger mean density
in this region.
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massive stars should start to play an important role, depending
on the delay between cloud formation and the formation of the
first massive stars.

The same is true for all clouds with lifetime of the order of
10Myr or larger. Because we find in Section 8 that the cloud
lifetime is on average four times longer than the cloud
dynamical time, and using the expression (25) for the
dynamical time derived in Section 10.4, the condition is that
the dynamical time is at least 5 Myr or longer, or, equivalently,
that the cloud mass is larger than 500Me. As the formation of
massive stars most likely requires clouds more massive than
500 Me as well, we conclude that SN feedback from locally
formed massive stars should generally play a role for most
clouds forming massive stars. As mentioned in Section 2, this
is in fact the main reason why the simulation was stopped
approximately 11Myr after introducing self-gravity, as
neglecting the locally formed massive stars beyond that time
would be unrealistic. The effect of the correlation of SN
explosions with their parent clouds will be considered in a
future work where the formation and kinematics of individual
massive stars will be numerically resolved in order to model
self-consistently the precise time and location of SN
explosions.

3. MC SELECTION

The main question addressed by this work, whether SN
explosions can drive and maintain the observed MC turbulence,
can be partly answered independently of the definition of MCs,
by computing the velocity structure functions for the dense and
cold gas throughout the computational volume. As long as
most of such gas is in clouds, its global structure functions
should be equivalent to the average of the structure functions of
MCs. Nevertheless, it is important to characterize the
turbulence within individual clouds and to also compute other
cloud properties that can be compared with observations.

Because chemistry is not included in this work, we can only
define MCs as cold over-densities in the SN-driven ISM
turbulence. A detailed comparison with the observations is
beyond the scope of this work. It would require synthetic
observations, hence molecular abundances from chemical-
network calculations. In the absence of synthetic observations,
we prefer to avoid the selection of MCs in position–position–
velocity (PPV) space, and instead define MCs in three-
dimensional (3D) space (PPP) in the simplest possible way,
as connected regions above a single threshold gas density,
nH,min. In order to test if our results depend on spatial resolution
or threshold density, we extract clouds using three different
mesh sizes, 2dx, dx4 and dx8 (we create uniform grids of 5123,
2563, and 1283 cells, respectively), and four different threshold
densities, =n 100H,min , 200, 400, and 800 cm−3, generating 12
cloud catalogs. Examples of clouds from one such catalog
( =n 100H,min cm−3 and 5123 resolution) are shown in Figure 3.
The images show the projected density of 18 clouds, the 2nd to
the 7th most massive ones in each of three snapshots.

The analysis of MC properties derived with the full three-
dimensional information, such as the results on MC velocity
scaling, the discussion on the virial parameter and cloud
structure, the evaluation of cloud lifetimes and the study of the
cloud magnetic field, is based on clouds extracted with

=n 100H,min cm−3 and 1283 resolution. For this analysis, the
resolution only affects the definition of cloud boundaries, as all
results are derived from the position, velocity, density, and

magnetic field of the tracer particles, thus taking advantage of
the highest resolution.
When we compare with observational data, deriving

projected quantities such as surface density, equivalent radius
and line of sight velocity dispersion, we verify the results on all
12 catalogs. For the mass and size distributions, we also report
quantitatively on the dependence of the slope of their power-
law tails on cloud extraction density and resolution. However,
all the plots we show in the comparison with the observations
are based on the highest-resolution catalog (5123 cells, or
0.49 pc) and on the threshold density that best matches the
observed mass–size relation, nH,min=200 cm−3. Furthermore,
velocity dispersions are based on tracer particles and so take
advantage of the highest available resolution, =dx 0.24 pc.5

This resolution matches well the highest one in the observa-
tional survey we consider (Heyer et al. 2001). After selecting
clouds with circular velocity vc<20 km s−1 and mass
Mcl>100 Me, we are left with 3228 observed clouds with
measured distances corresponding to a range of spatial
resolutions of 0.24–3.0 pc.
We select from the simulations only clouds more massive

than 100 Me to guarantee that, even at the lowest value of
=n 100H,min cm−3, the smallest clouds contain more than 1000

computational cells (our largest cloud of nearly 3×105Me
contains more than 3×106 cells). Because we use 150 million
tracer particles, our smallest and lowest-threshold-density
clouds contain a minimum of approximately 7000 particles,
while our most massive cloud of 3×105Me contains more
than 20 million particles. With this minimum mass, each
simulation snapshot yields over 200 clouds. In the comparison
with the observations (see Section 10) we use 7 snapshots from
approximately the last 6 Myr of the simulation, to include the
effect of self-gravity, resulting in sample sizes ranging from
595 clouds in the smallest catalog (1283 resolution and

=n 800H,min cm−3), to 1615 in the largest one (5123 resolution
and =n 100H,min cm−3). The plots we show in Section 10,
based on 5123 resolution and =n 200H,min cm−3, use measure-
ments from 1547 clouds. The catalog sizes could be considered
three times larger, as projected quantities are computed in the
three orthogonal directions. However, the clouds (and cloud
masses) would be the same, so the three samples would not be
completely independent. Thus, we compare with the observa-
tions using only one of the directions, after verifying that the
results are independent of direction.
Despite the mass range of over three orders of magnitude of

our clouds, we refer to all of them as MCs, instead of following
the common nomenclature that classifies clouds as cores,
clumps, MCs, giant MCs, and giant MC complexes, in order of
increasing mass. As we view all clouds as cold density
enhancements of the ISM turbulence, and because of the scale-
free nature of the turbulence, that nomenclature is not useful for
this work.

4. TOTAL ISM ENERGIES

We analyze our simulation in a time interval starting after the
turbulence has been fully developed until the end of the
simulation, between t=33.06Myr and t=56.43Myr. This is
also the time interval for which we have tracer particles in the
simulation. The evolution of the total kinetic, magnetic, and

5 The number density of tracer particles is very large in dense gas where the
mesh is refined to the highest resolution.
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Figure 3. Square root of the projected density of 18 clouds extracted with nH,min=100 cm−3 and 5123 resolution from three different snapshots near the beginning,
the middle, and the end of the time interval with self-gravity. The clouds are numbered in order of decreasing mass. To save space in the panels, the most massive
cloud from each snapshot (cloud 0) is not shown. The gray color table covers a range of column densities from 0Me pc−2 (black) to 200Me pc−2 (white). The column
density of gas below the threshold density of 100 cm−3 is not included. Cloud 6 of the top panel and cloud 4 of the bottom one are the same as in Figures 15 and 16,
respectively. The complex filamentary structure is very similar to that observed in MCs.
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thermal energies in that time interval is shown in Figure 4. The
three energies are all around 1051 erg. Both the thermal (Eth)
and kinetic (Ek) energies show strong oscillations, while the
magnetic energy (Em) is almost constant with time. The kinetic
energy oscillates mostly above 1051 erg, and, interestingly, at
its valleys, the magnetic energy is almost in equipartition with
Ek. The thermal energy is the smallest, mostly below both the
magnetic and kinetic energies.

Given the strong temporal oscillations in kinetic energy, it
may seem surprising that the magnetic energy does not
experience significant fluctuations at all. The reason is that
the kinetic energy peaks correspond to the energy injected by
SN explosions mainly in the form of expansions and shocks.
While the magnetic field can be strongly compressed and
amplified by the shocks, the volume filling factor of the
postshock gas is tiny, and thus the total magnetic energy of the
computational volume is barely changed, as illustrated by the
following estimate.

Consider an SN remnant of radius RSN and a preshock
magnetic field B1. Compression by the SN shock would
amplify the magnetic field strength by a factor equal to the
density-jump factor, Γ, of the shock. In the adiabatic phase,
Γ=4 and in the radiative phase, G  A with
 pr= v B 4A sh 1 1( ) being the Alfvénic Mach number of
the shock. As the remnant expands, solenoidal turbulent
motions also develop (see Section 5.1), which can amplify
the magnetic field as well. The timescale for the magnetic
energy amplification by solenoidal motions is roughly the
turnover time of the largest eddies in the postshock region (e.g.,
Federrath et al. 2011a). We assume that the turbulent velocity
in the postshock region is the postshock velocity, Gvsh , and the
large eddy size is the thickness of the postshock region of the
remnant, which is GR 3SN ( ) (due to the compression by the
shock). The large eddy turnover time is then estimated to be
R v3SN sh( ). Considering that the age of the remnant is
 R v2

5 SN sh and  R v2

7 SN sh in the adiabatic and radiative
phases, respectively, solenoidal motions may amplify the

magnetic energy by one e-fold or so, meaning an amplification
factor of A ; 3 for the magnetic energy. Including both the
effects of shocks and solenoidal motions, the magnetic energy
density in the postshock region would be G

p
 A B1

8
2

1
2.

The above description of the magnetic field amplification
only applies to the compressed layer behind the shock. Due to
the compression by a factor of Γ, the width of the compressed
layer is given by GR 3SN ( ), so the total magnetic energy within
the compressed layer is estimated to be GA B R1

6 1
2

SN
3 . On the

other hand, the magnetic energy in the hot cavity interior to the
compressed layer is small due to the expansion and can
be neglected. Considering that the magnetic strength is still
B1 in regions not reached by the SN remnant, the
total magnetic energy in the simulation box is

p
 B1

8 1
2

p pG + -A N R V N R4 3 4 3SN SN
3

box SN SN
3( ), where NSN is the

number of SNe exploded around the same time and Vbox is the
volume of the simulation box. Because the highest kinetic-
energy peaks are of the order of 1052 erg, NSN may be as large
as ;10. If we define a filling factor of each SN remnant as

p=f R V4 3SN
3

box( ), the total magnetic energy can be written as
G - +

p
 N A f B V1 11

8 SN 1
2

box[ ( ) ] , meaning that Em is amplified
by a factor of G - +N A f1 1SN ( ) . In the Sedov phase, Γ is
constant, and the amplification factor for the magnetic energy
increases with the filling factor, f. Applying the physical
conditions in our simulation, we find that, when the Sedov
phase ends due to radiative cooling, f increases to ;3×10−4.
Thus, with Γ=4 and A ; 3, G -A f1( ) is only ;0.003.
Therefore, due to the tiny filling factor of the SN remnant, the
total magnetic energy is amplified only by a negligible amount
during its early evolution.
When the remnant evolution enters the radiative phase, the

jumping factor, G  A, which can be significantly larger
than 4. Using the pressure-driven snow-plow solution to
account for the deceleration of the shock velocity (and hence
the decrease ofA with time) and the increase of RSN (and the
filling factor, f), we find that the maximum of the amplification
factor, G -A f12( ) , by a single SN in the radiative phase is
;0.05. Therefore, even if at a given time there are 10

Figure 4. Total kinetic, magnetic and thermal energies in the simulation vs.
time, during the period analyzed in this work, between t=33.06 Myr and
t=56.43 Myr. The energies are measured in 188 snapshots (8 snapshots per
Myr), integrating over the whole simulation volume, independent of density.
The horizontal dotted line shows the initial magnetic energy (also the magnetic
energy corresponding to the mean magnetic field in the simulation, which is a
conserved quantity). There is near equipartition between the lowest values of
kinetic energy, the mean value of the magnetic energy, and the highest values
of the thermal energy.

Figure 5. Same as Figure 4, but with the energies computed only for gas with
density above 100 cm−3, the same threshold density adopted for the cloud
selection. There is a clear energy separation in the dense gas, with the lowest
kinetic energy values being approximately an order of magnitude larger than
the mean magnetic energy, and two orders of magnitude larger than the lowest
values of the thermal energy. Thus, the turbulence in the dense gas is both
supersonic and super-Alfvénic.
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supernova remnants that happen to simultaneously amplify the
magnetic energy by the maximum possible amount, the total
amplification of the magnetic energy is only 50%. Note that in
the above estimate, we have ignored the dynamical effect of the
magnetic field and the dissipation of the magnetic energy, and
thus the realistic amplification due to the SN explosions may be
considerably smaller than 50%. This explains the near
constancy of the total magnetic energy despite the strong
oscillations in the total kinetic energy of the flow.

Although the SN energy is introduced purely as thermal
energy in the simulation, the thermal energy is efficiently
converted into kinetic energy, and is also partly radiated, so the
resulting turbulence is mildly supersonic, with a time-averaged
kinetic to thermal energy ratio of á ñ =E E 3.75k th . A crucial
question for this work is what fraction of that total kinetic
energy is given to the dense gas and, thus, is available as
turbulent kinetic energy for the MC turbulence. The answer is
given in Figure 5, showing the time evolution of the total
energies in the gas with density larger than 100 cm−3. The
time-averaged ratio of dense-gas kinetic energy and total
kinetic energy is á ñ =E E 0.11k,d k . The ratio of the kinetic
energies per unit mass is á ñ =E M E M 0.55k,d d k box( ) ( ) (the
dense-gas mass fraction is á ñ =M M 0.18d box ), and oscillates in
time between 0.19 and 0.97, with the largest values achieved
during the peaks of total kinetic energy. This large ratio means
that, per unit mass, the kinetic energy is only a factor of ∼2 less
than equally distributed between the dense gas and the rest of
the gas. This high efficiency of kinetic energy transfer to the
dense gas results in a realistic velocity dispersion of dense gas,
sá ñ = 8.5v,d km s−1, as shown in Figure 6.
Figure 5 also shows a clear separation of energies in the

dense gas, with á ñ =E E 27.4k,d m,d and á ñ =E E 9.7m,d th,d .
Thus, the turbulence in the dense gas is both supersonic and
super-Alfvénic, as further confirmed below for individual
clouds selected from our simulation (see Section 10) and first
suggested by Padoan & Nordlund (1997, 1999).

5. POWER SPECTRA AND DRIVING SCALE

The expansion of SN remnants deposit energy on a broad
range of scales, affecting the velocity scaling of the turbulence.
We observe this in the form of wave-like features in the
velocity power spectrum or deviations in the velocity structure
functions (see Section 6) at small and intermediate scales in
nearly one fourth of the snapshots of our simulation, as
expected for our rate of approximately 6 SN explosions per
Myr, and a characteristic expansion time to 20–40 pc of
∼4×104 years.

Figure 7 shows the power spectra from a single snapshot that
captures the early expansion phase of a single SN remnant
(here it has reached a diameter of approximately 30 pc) that has
not had any major interaction with dense gas yet, so most of the
freshly injected energy is still in the compressive modes (see
Section 5.1).6 The figure shows the power of the velocity, E(k),
of the solenoidal (divergence-free) velocity component from a
Helmholtz decomposition, Es(k), of the compressive (curl-free)
velocity component from the same Helmholtz decomposition,
Ec(k), of the square root of kinetic energy (r u1 2

i), EK(k), and
of the magnetic field, Em(k). They are computed from the root

grid (1283 computational cells) of a single snapshot at time
t=52.75Myr. The velocity power spectra, especially the
compressive one, exhibit significant fluctuations at large and
intermediate k. The wavy behavior is a signature of strong SN
shocks and can be understood with a one-dimensional
illustration. Consider two SN shocks moving in opposite
directions away from the origin (the explosion center). If the
velocity profile in between the two shocks is assumed to be
roughly linear with the distance from the origin, it is
straightforward to show that the power spectrum is
µ --k kR kR kRcos sin2 2( ( ) ( ) ) , where R is the radius of the
SN shock. Clearly, this spectrum oscillates at k  R−1, which
explains the wavy behavior of the velocity spectra shown in
Figure 7.
In between SN explosions, or in regions not directly affected

by a rapidly expanding SN remnant, the flow should have time
to relax from the transient state with direct SN impact, and we
expect the velocity spectra to be smoother. To test this, we
consider a time range t=40.5–48.8Myr, around the middle of
our integration time. This choice avoids the larger SN rate
toward the beginning and the end of the simulation (see
Figure 4), and thus minimizes the number of snapshots with
direct impact from very recent SN explosions. Figure 8 shows
the average three-dimensional power spectra computed from
the root grid of 66 snapshots in the chosen time range. For each
snapshot, the 3D spectra are obtained by averaging the three
components (e.g., the average of the power spectra of ux, uy and
uz). The average spectra we obtain are qualitatively similar to
those of the most relaxed snapshots, and they exhibit a clear
(though short) inertial range. The slopes have been computed in
the wavenumber interval  pk L4.2 2 12.1box , correspond-
ing to the scale interval  ℓ59.3 pc 20.6 pc, where all
spectra are very well described by power laws. The measured
inertial-range slopes are given in Figure 8. To our knowledge,
this is the first time that inertial-range slopes are identified in
SN-driven turbulence. Because of the importance of this result,
a full discussion of the power spectra will be presented
elsewhere. Here, we focus only on two points of direct interest
for this work, the ratio of compressive to solenoidal modes and
the driving scale.

Figure 6. Velocity dispersion vs. time. The rms velocity is computed over the
whole computational volume (dashed line) or only for gas with density larger
than 100 cm−3 (solid line). The dotted line shows the mass-weighted rms
velocity, averaged over the whole volume.

6 This is a relatively rare event, as most SN remnants experience some
interaction with dense gas before they reach a size of 30 pc, and thus the
compressive modes are usually not dominant, as explained in Section 5.1.

8

The Astrophysical Journal, 822:11 (28pp), 2016 May 1 Padoan et al.



5.1. Ratio of Compressive to Solenoidal Modes

SN driving should not be viewed as a purely compressive
form of driving. Our simulation indicates that, around the
effective driving scale (see Section 5.2), compressive modes
are not dominant over solenoidal ones. We find that the
compressive-to-solenoidal ratio is typically smaller than unity,
as shown by the time-averaged power spectra in Figure 8.7

After an SN explosion, the momentum of the ejecta is
gradually transferred to the ISM during the expansion of the
SN remnant until the final momentum-conserving snow-plow
phase. As a result, SN-driving covers a wide range of scales
and persists for a relatively long time after the explosion. This
complex driving process cannot be primarily compressive
because vorticity is readily generated by the baroclinic effect
and amplified by the nonlinear advection, as explained below.
Even the ISM forcing immediately after the explosion is far
from purely compressive, as hydrodynamical instabilities of the
blast wave start already in the interior of the star, generating
vorticity and making the ejecta very clumpy and asymmetric
(e.g., Chevalier & Klein 1978; Herant & Woosley 1994;
Kifonidis et al. 2006; Couch et al. 2009; Wongwathanarat
et al. 2015). In our simulation, the forcing at the moment of the
thermal energy injection is not purely compressive either,
because the acceleration from the corresponding pressure force
has a non-zero curl (a baroclinic term) due to the non-
uniformity of the medium (see the argument below).

To examine the ratio of compressive and solenoidal modes,
it is helpful to write down the equations of the flow divergence

and vorticity,

r r r


+ ¶ ¶ =   - 
uD

Dt
u u p p , 1i j j i

2 2( · ) ( )( ) ( · ) ( ) ( )

and,

w w w r r-  +  =  ´ u u
D

Dt
p . 22( · ) ( · ) ( ) ( )

The terms on the right-hand sides arise from the pressure term
in the Navier–Stokes equation, and r r ´ p 2( ) in
Equation (2) is called the baroclinic term, which contributes
to generate vortical motions when the gradients of ρ and p are
not aligned. The w  u( · ) term is known as vortex stretching
and can amplify the vorticity.
In our simulation, the flow velocity is driven by the pressure

term. If we denote as ps the contribution to the pressure from
the SN thermal energy source, the effective driving acceleration
is r- ps( ) . It follows immediately from Equations (1) and (2)
that the divergence and curl of the effective acceleration are
given by r r r  - p ps

2 2
s( · ) ( ) and r r ´ ps

2( ) ,
respectively. Because the SN locations are selected randomly
in our simulation and due to the density fluctuations in the
ambient gas, the pressure and density gradients ( r and ps)
around the boundary of the initial SN sphere are not aligned in
general, meaning that, at the instant of the SN energy injection,
the effective driving acceleration at the boundary of the SN
sphere is not curl-free. Therefore, the effective driving in our
simulation is not purely compressive.
If r r ps

2( · ) dominates over r p2
s( ) (which is

supported by the fact that r  > p pln 2∣ ( )∣ · ∣ ∣ ∣ ∣ in a
significant fraction of our simulated flow), the ratio of
compressive to solenoidal power generated by the pressure
source is determined mainly by the angle, θ, between the
directions of r and ps. Because in our simulation the SN
locations are random, one may expect that the angle between
the gradients is also random, so that qá ñ cos 1 32( ) and

qá ñ sin 2 32( ) . In that case, the effective driving generates
the vorticity variance (corresponding to solenoidal motions)

Figure 8. Power spectra as in Figure 7, but averaged over 66 snapshots within
the time interval t=40.5–48.8 Myr. During this time interval the random SN
rate is a bit lower than during the first and last third of the simulation, so there is
a reduced probability that a snapshot captures the early expansion of SN
remnants with the corresponding perturbations to the power spectra. As a
result, the time average is representative of the statistically relaxed power
spectra. The power-law slopes are obtained from a least-square fit in the range
of wave numbers  pk L4.2 2 12.1box .

Figure 7. Power spectra of velocity, E(k), solenoidal velocity component,
E ks ( ), compressive velocity component, E kc ( ), square root of kinetic energy,
E kK ( ), and magnetic field, E km ( ), obtained from the average of the power
spectra of the x, y and z components of these fields in the root grid (1283

computational cells) of a single snapshot at time t=52.75 Myr. This time
captures the early expansion of an SN remnant to a diameter of approximately
30 pc, as indicated by the peak of the velocity power spectrum. The wavy
appearance of Ec(k) is explained in the text. The fact that Es does not show
similar fluctuations, and Es<Ec at the energy peak, indicates that this remnant
has so far expanded into a relatively uniform hot medium, where the baroclinic
effect is negligible and solenoidal modes are not efficiently generated yet.

7 The compressive power may exceed the solenoidal one at snapshots with an
SN remnant that expands in a uniform density region, making the baroclinic
term negligible as explained below. This is the case of the specific snapshot of
Figure 7.
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twice faster than the divergence variance. Although of a
qualitative nature, the above argument provides an explanation
of why the solenoidal spectrum is typically larger than the
compressive one.

By monitoring solenoidal and compressive spectra as a
function of time, we can observe that the expansions of the SN
remnants bring both the compressive and solenoidal modes to
larger scales, as shown in Figure 9. The power in compressive
modes moves to larger scales according to the simplified 1D
model given earlier, which also explains the wavy features in
the spectrum; the solenoidal power is transferred to larger
scales by the expansion through the nonlinear term in
Equation (2), w  u( · ). Figure 9 shows the velocity power
spectra in a (100 pc)3 volume centered around an SN explosion.
The spectra are computed at three different times, one just
before the SN explosion, and two after the SN remnant has
reached an approximate size of 40 and 80 pc. The velocity field
is multiplied by a tapered-cosine window function before
performing the Helmholtz decomposition in Fourier space, to
gradually set the velocity to zero at the volume boundaries,
making the velocity field periodic. The transfer of both
solenoidal and compressive power to larger scale is clearly
seen between the times t1 and t2, as the remnant expands from
40 to 80 pc.

At times or in regions not too close to very young SN
remnants, the solenoidal and compressive modes have a chance
to develop cascades toward small scales and to interact with
each other, evolving toward a dynamically and statistically
relaxed state. The time-averaged spectra in Figure 8 indicate
that in the relaxed state the solenoidal component of the
velocity is larger than the compressive component at all k. The
ratio, c ºk E k E kc s( ) ( ) ( ), is ≈0.2 at k=10. At the smallest
wave numbers, the modes are almost in equipartition, χ(k)∼1.
However, Es(k) is remarkably shallow, while µ -E k kc

2( ) , so
the compressive-to-solenoidal ratio decreases rapidly toward
larger wave numbers, c µ -k k 0.67( ) in the inertial range.
Although they did not obtain clear power-law scaling and did
not identify inertial-range slopes in their SN-driven simulation,

Balsara et al. (2004) also found that χ(k) decreases with
increasing k and c k 1( ) at large wave numbers.
The different inertial-range slopes of Ec(k) and Es(k) and the

rapid decrease of χ(k) with increasing k are in contrast to
previous studies, which typically found that χ(k) is more or less
constant in the inertial range. For example, simulations of
weakly compressible turbulence with Mach numbers ~ 1s
showed that both compressive and solenoidal modes have
Kolmogorov-like inertial-range spectrum,

µ µ -E k E k kc s
5 3( ) ( ) , and χ(k)∼0.05 (e.g., Porter

et al. 1998, 1999, 2002). At the opposite extreme, simulations
with purely compressive driving find χ(k)∼1 in the inertial
range, and the same Burgers-like slopes for both modes,

~ µ -E k E k kc s
2( ) ( ) (Federrath 2013). Simulations with

solenoidal (or mixed) driving and large Mach number,
  1s , yield values c »k 0.3 0.5( ) – (Kritsuk et al. 2010;
Federrath 2013), with only a slight decline toward large wave
numbers.
An important difference between these studies and our

simulation is that they all adopted a barotropic equation of
state, assuming either adiabaticity or isothermality. The
baroclinic effect is thus absent in all the simulations mentioned
above. As discussed earlier, when SNe explode in our
simulation, the baroclinic effect from the pressure source
immediately drive solenoidal motions around the SN spheres at
a rate similar to compressible modes. As the SN remnant and
the flow evolve, the general baroclinic effect in Equation (2) is
also likely to play an important role as the flow develops a
cascade and evolves toward relaxation. As compressive
motions in the form of shocks or expansions encounter a
dense region in the flow, the baroclinic effect gives rise to shear
and vortices around and within the region. Since the baroclinic
term depends on the gradients of the density and pressure, the
conversion from compressive to solenoidal motions is expected
to be more efficient at smaller scales. This explains why the
compressive-to-solenoidal ratio decreases rapidly with increas-
ing k in our simulation. We thus argue that the existence of the
baroclinic effect in our simulation is responsible for the

Figure 9. Left: power spectra of solenoidal (solid lines) and compressive (dashed line) velocity components within a (100 pc)3 volume approximately centered around
an SN explosion. The spectra are computed at three different times, t0=46.625 Myr, t1=46.750 Myr and t2=46.875 Myr. The time t0 is just before the SN
explosion, while the times t1 and t2 are after the explosions, when the diameter of the remnant is approximately 40 and 80 pc, respectively. Between the times t1 and t2,
the expansion of the SN remnant brings the power in both the compressive and solenoidal modes to larger scales, as explained in the text. Right: squared root of
projected temperature (upper row of panels) and logarithm of projected density (lower row of panels) for the three times at which the power spectra are computed. At
time t1 the edge of the remnant is barely visible in the logarithm of projected density, while at time t2 the gas density within the remnant has significantly decreased in
the lowest density regions.
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different behaviors of Ec(k), Es(k) and χ(k) compared to
previous barotropic simulations.

There has been recent interest in the regime of supersonic
turbulence with purely compressive driving, showing that it
affects the probability distribution of gas density (Federrath
et al. 2008; Molina et al. 2012), the magnetic field amplification
by turbulence (Federrath et al. 2011a), and the inertial-range
velocity scaling (Schmidt et al. 2008, 2009; Federrath 2013),
with possible consequences for models of star formation or for
turbulence in galaxy clusters (Porter et al. 2015). However, our
result that SN-driving is not primarily compressive, particularly
at MC scales, suggests that features specific to isothermal flows
with highly compressive driving may not apply to ISM
turbulence. If SN shock-waves are the main energy source
for MC turbulence, the driving acceleration would consist of a
significant fraction of solenoidal modes, which arise through
the baroclinic effect, when the SN shock impacts a cloud. Thus,
idealized isothermal simulations with purely solenoidal driving
may better capture MC turbulence than isothermal simulations
with purely compressive driving, and previous results on
turbulent fragmentation based on solenoidal driving may not
require significant correction. A careful study of the full
implication for star formation of our result would require the
evaluation of the compressive-to-solenoidal ratio specifically
for the clouds formed in the SN-driven turbulence, which we
pursue in a separate work (Pan et al. 2015).

5.2. Energy Injection Scale

Using the velocity power spectrum, E(k), we can define a
length, Lin, that corresponds approximately to the scale where
most of kinetic energy is contained, and can thus be interpreted
as a characteristic scale of energy injection by SN explosions:
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The time dependence of Lin is shown in Figure 10, where we
have also plotted the rms velocity, σv. The value of Lin

oscillates between approximately 50 and 100 pc, with many of
the peaks corresponding also to peaks in σv. The time average
and standard deviations are 70.5 pc and 12.0 pc respectively.
Figure 10 also shows the transverse integral scale, L22. The

longitudinal and transverse integral scales, L11 and L22, are
defined as the integrals of the two-point velocity correlation
functions:
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with uℓ and un being the velocity component parallel to ℓ and
one (of the two) transverse component perpendicular to ℓ,
respectively. L11 and L22 are typically smaller than the injection
length, L in. In isotropic turbulence, exact relations exist
between L11, L22 and Lin. For example, in incompressible
turbulence, = =L L L2 3 811 22 in (Monin & Iaglom 1975). Our
simulated flow is highly compressible, and we find that the
longitudinal and transverse integral scales are close to each
other with á ñ =L 19.911 pc, and á ñ =L 19.422 pc. The near
equality of L11 and L22 suggests that kinetic energies contained
in solenoidal and compressive modes are comparable. Figure 8
shows that at the scale of Lin the solenoidal and compressive
spectra are in equipartition, in the sense that the solenoidal
spectrum is twice larger than the compressive one due to the
extra degree of freedom. One can demonstrate that in such case
L11 and L22 should be exactly equal, as found in our simulation.
Furthermore, in that case L11 and L22 are expected to be equal
to Lin/4, which further explains the ratios, =L L 3.5in 11

and =L L 3.6in 22 .
By comparing four galactic-fountain simulations with

different SN rates, Joung et al. (2009) found that the energy
injection scale decreases with increasing SN rate. In the model
with approximately the same SN rate as in our simulation they
obtained Lin =87 pc. This value is approximately consistent
with the one derived here, if we account for the fact that Joung
et al. (2009) assumed that 60% of the SN explosions are
spatially correlated, as discussed above in Section 2.1, which
enhances the formation of super-bubbles and so should tend to
increase the correlation length.
Using their galactic-fountain simulation, de Avillez &

Breitschwerdt (2007) computed the longitudinal and transverse
integral scales, L11 and L22. They found that

=L L 0.5 0.622 11 – , which is consistent with the ratio in
incompressible turbulence, implying that the overall compres-
sibility of their simulated flow was likely low. Their measured
value of 75.2 pc for L11 would indicate an injection length scale
of Lin ; 200 pc. This injection length scale is significantly
larger than Lin ; 70 pc found in our simulation. Based on the
dependence of the integral scale on the SN rate from Joung
et al. (2009), this difference may be attributed to the much
smaller SN rate in the simulations analyzed by de Avillez &
Breitschwerdt (2007).

Figure 10. Time evolution of the energy-injection scale, Lin (thick solid line),
computed from the integral of the inverse wave number, k1 , weighted by the
velocity power spectrum, E(k) (see Equation (3)). The time-averaged value of
70.5 pc is shown by the horizontal dashed line. The dotted line shows the rms
velocity, σv (see the dashed line in Figure 6 for the actual values of σv). Almost
all peaks in σv correspond to peaks in L. The thin solid line shows the time
evolution of the transverse integral scale, L22 (see text). The average value,
á ñ =L 19.422 pc, is shown by the horizontal dashed–dotted line.
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6. VELOCITY STRUCTURE

In order to characterize the turbulence, we compute the
velocity structure functions, first for the whole computational
volume, and then for individual clouds. The velocity structure
functions of the order of p are defined as

º á + - ñ µ zx ℓ xS ℓ u u ℓ , 6p
p p( ) ∣ ( ) ( )∣ ( )( )

where the velocity component u is parallel (longitudinal
structure function) or perpendicular (transversal structure
function) to the vector ℓ and the spatial average is over all
positions x.

Boldyrev (2002) proposed an extension to supersonic
turbulence of the intermittency model by She & Lévêque
(Dubrulle 1994; She & Lévêque 1994):

z z = + -p p3 9 1 1 3 . 7p 3( ) ( ) ( ) ( )

This velocity scaling has been found to provide a very accurate
prediction for numerical simulations of highly supersonic and
super-Alfvénic turbulence (Boldyrev et al. 2002; Padoan
et al. 2004b; Pan & Scannapieco 2011). Padoan et al.
(2004b) showed that, as the rms Mach number of the
turbulence increases, the structure function scaling varies from
the She–Lévêque scaling of incompressible turbulence to the
Boldyrevʼs scaling, which has been interpreted as a gradual
change of the Hausdorff dimension of the most dissipative
structures from 1 (dissipation in filaments) to 2 (dissipation in
sheets). Although the scaling of Equation (7) may not apply to
flows driven by purely compressive forces (Schmidt
et al. 2009), we have shown in Section 5.1 that the compressive
modes are not dominant in SN-driven turbulence.

Because of the limited extent of the turbulence inertial range
in numerical simulations, the structure functions are usually
power laws only over a very limited range of scales, if at all.
Thus, the scaling exponents are usually derived by normalizing
the structure functions to the third-order one, which yields
power laws that extend well into the (numerical or physical)
dissipation range of scales. This useful property is known as
“extended self-similarity” (Benzi et al. 1993).

The third-order structure function always yields a slope
larger than unity in supersonic turbulence, while ζ(3)=1 is an
exact result in incompressible turbulence, the so called “4/5
law” first derived by Kolmogorov (1941). This is because in
supersonic turbulence the third-order structure functions should
be computed with some density-weighting factor. For example,
a density weight inspired by the assumption of constant energy
transfer of a compressible flow, r~u ℓ 1 3( ) (Fleck 1996), was
proposed by Kritsuk et al. (2007) and further tested by Kowal
& Lazarian (2007) and by Schmidt et al. (2008). In this work,
we compute the structure functions either using the tracer-
particle positions and velocities, or using the gas velocity
values on a uniform mesh, with a density-weighting method
that is equivalent to the use of tracer particles. This density-
weighting method is different from that proposed by Kritsuk
et al. (2007).

To calculate the structure functions based on tracer particles
in an MC, we search particle pairs at given distances, ℓ ,
compute their relative velocities, and average over all the
particle pairs to obtain the relative velocity moments at
different orders, p. For example, the pth-order structure

function is computed as
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where N is the number of pairs separated by a distance of ℓ, and
-u un n1 2 is the relative velocity of the nth pair of particles.

These tracer-based structure functions have a built-in density
weighting, because the number of particle pairs at a given
distance depends on the flow densities at the particle positions
(the tracer particles are initialized with a number density
proportional to the local gas density). For structure functions
over the entire simulation box, we compute grid-based structure
functions with a density weighting defined as
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r r
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It is straightforward to prove that S ℓp
tr ( ) and S ℓp

dw ( ) are
statistically equivalent to each other, if the number of tracers is
large enough to sufficiently sample the flow density field. To
show this, consider two infinitesimal volumes, dV1 and dV2,
around two points, 1 and 2, separated by a distance of ℓ. When
computing the tracer-based structure functions, these two
volumes would contribute to a total number of

r r r=N n dV dVp12
2

1 2 1 2( ¯ ¯ ) particle pairs at a distance of ℓ ,
where np¯ and r̄ are the mean particle number density and mean
flow density, respectively. In other words, the two points 1 and
2 are essentially counted r rµN12 1 2 times in the computation
of S ℓp

tr ( ). This is equivalent to a density-weighting factor of

r rµ 1 2, suggesting that S ℓp
tr ( ) is equal to the grid-based

structure function, S ℓp
dw ( ).

The density-weighting scheme adopted here is of particular
interest in the light of a result derived by Falkovich et al.
(2010). Motivated by Kolmogorovʼs 4/5 law for incompres-
sible flows, Falkovich et al. (2010) obtained an exact relation
for compressible turbulence,

r r
r

á + + + ñ

+ á + ñ µ

x x ℓ x x ℓ x ℓ

x x x ℓ

u u u

u p ℓ , 10
i i j
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where p is the pressure of the flow. In highly supersonic
turbulence, the pressure term may be neglected, and we have

r rá + + + ñ µx x ℓ x x ℓ x ℓu u u ℓ . 11i i j j( ) ( ) ( ) ( ) ( ) ( )

The quantity r rá + + + ñx x ℓ x x ℓ x ℓu u ui i j( ) ( ) ( ) ( ) ( ) is clo-
sely related (although not exactly equivalent) to the density-
weighted third order structure function, S3

dw. We therefore
expect a linear scaling for our density-weighted third-order
structure function, µS ℓ3

dw , which turns out to be confirmed by
our simulation for both the entire flow and individual MCs.

6.1. Global Velocity Scaling

We first compute the velocity structure functions averaged
over the whole computational volume. The velocity field is first
remapped onto a uniform mesh of 5123 cells, and then the
structure functions are computed with the density-weighting
method described above. The volume contains large voids of
very low density, with a very low number of tracer particles, so
we prefer this mesh-based method instead of the equivalent
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tracer-particle method (which we use below for the structure
functions inside MCs). To speed up the calculations, we only
consider velocity differences along the three main orthogonal
directions, and 16 values of cell distances, ℓ. Even with this
limitation, the sample size is large enough to yield reliable low-
order statistics.

Figure 11 shows the first, second, and third order longitudinal
velocity structure functions, S ℓp

dw ( ), plotted versus the separation
ℓ , computed over the whole volume as described above, and
time-averaged using 24 snapshots covering uniformly the time
interval t=33 − 56Myr (one snapshot per Myr). They are well
approximated by power laws in the approximate range of scales
between 3 and 30 pc. The values of the exponents are
z = 1 0.39 0.01( ) , z = 2 0.75 0.01( ) , z =3( ) 1.13 0.02.

To compare with values previously found in studies of
randomly driven supersonic isothermal turbulence, in this and
following figures we over-plot lines showing the slopes from
Equation (7). Notice that Equation (7) only gives the exponents
of the velocity structure functions without density weighting
and normalized to the third-order one. Thus, in this
comparison, we make the reasonable assumption that the
exponents normalized to the third order should be the same for
the unweighted structure functions as for the density-weighted
ones. However, future works should recompute the velocity
structure functions of randomly driven, supersonic isothermal
turbulence simulations using the same density-weighting
scheme as in this work.

While the first and second order structure functions in
Figure 11 have exponents within 3σ and 1σ, respectively, from
the values of Equation (7), z 3( ) is significantly larger than
unity, despite the time averaging. We find that this deviation
from unity, and even from a power law, occurs in snapshots
during periods with the highest SN rate, when it is more likely
that a snapshot is very close in time to a very recent SN
explosion. During the brief, initial period of the SN bubble
expansion, SN driving has a direct effect on a range of scales.
On the contrary, in snapshots that are not too close in time to

SN explosions, the SN remnants have already expanded to
large scale, the turbulence has had time to relax, and the third
order structure function is found to be a nearly perfect power
law with z =3 1( ) . Figure 12 shows an example of velocity
structure functions from a single snapshot, at =t 44.5 Myr,
that is not too close in time to an SN explosion. The third order
structure function is now a power law, with the expected
numerical decay below approximately 3–4 pc, and the third
order slope is indistinguishable from unity. The exponents in
this single snapshot are z = 1 0.41 0.01( ) , ζ
(2)=0.77±0.02, ζ(3)=1.00±0.02, consistent with Equa-
tion (7) within one or two σ.
To better quantify the uncertainty of these exponents, and to

illustrate their time dependence, we compute their values for
each snapshot in the time interval t=33–56Myr (8 snapshots
per Myr), by fitting the structure functions as a function of ℓ in
the range between 3 and 30 pc, and plot them versus time in
Figure 13. The two pairs of solid and dotted horizontal lines
show the predicted values for incompressible (lower values)
and supersonic (higher values) turbulence (She–Lévêque and

Figure 11. Density-weighted longitudinal velocity structure functions, S ℓp
dw ( )

(see Equation (9)), of orders p=1, 2, and 3, plotted vs. the separation ℓ,
computed over the whole computational volume (filled circles). The plots show
the time average of the structure functions from 24 snapshots covering
uniformly the time interval t=33–56 Myr (one snapshot per Myr). The solid
lines corresponds to the structure function slopes predicted by Boldyrev (2002)
and confirmed in simulations of randomly driven isothermal turbulence
(Boldyrev et al. 2002; Padoan et al. 2004b; Pan & Scannapieco 2011), ζ
(1)=0.42, ζ(2)=0.74, ζ(3)=1.0. Although they provide an excellent fit,
these solid lines are not obtained by fitting the data.

Figure 12. Same as in Figure 11, but for a single snapshot at =t 44.5 Myr .

Figure 13. Structure function slopes vs. time, for structure functions computed
in each of the 188 snapshots in the time interval t=33–56 Myr. The horizontal
dotted lines show the values of the first order slope, z 1( ), predicted by the She–
Lévêque intermittency model (She & Lévêque 1994) (lower line) and the
Boldyrev model (Boldyrev 2002) (upper line). The horizontal solid lines
correspond to the predictions for z 2( ) by the same models, and the horizontal
dashed line corresponds to z =3 1( ) , an exact mathematical result for
incompressible turbulence Kolmogorov (1941).
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Bodyrev scaling respectively). One can see that the values are
usually within the predicted ones for the first and second order
exponents, while the third order exponent is systematically
above unity during the first and last thirds of that time interval,
when the SN rate and the kinetic energy appear to be a bit
higher than in the middle third (see Figure 4). The time average
of the single-snapshot values are ζ(1)=0.39±0.04, ζ
(2)=0.75±0.05, ζ(3)=1.1±0.2, well within one σ of
the values from Equation (7).

The logarithmic fluctuations in Figure 13 (the y-axis of the
plot is logarithmic) are significantly larger for the third order
than for the first and second orders, meaning that deviations
from the expected scaling due to the effect of SN driving is
stronger for higher order statistics. Therefore, it is not
convenient to take advantage of extended self-similarity and
measure the exponents by plotting the structure functions
versus the third order one, instead of versus ℓ, at least not for
the first and second order case, as their time evolution would
then have much larger fluctuations, due to the larger
fluctuations of the third order one.

Joung & Mac Low (2006) and de Avillez & Breitschwerdt
(2007) computed the velocity scaling exponents from galactic-
fountain simulations and found a scaling law consistent with
Boldyrevʼs prediction. However, because of insufficient
dynamic range below the driving scale, their simulations did
not yield a power-law inertial range, and so the exponents
could be computed only relative to the third-order one (taking
advantage of the extended self-similarity). Therefore, their
result cannot be compared directly with the ISM velocity
scaling derived from observations. Furthermore, their simula-
tions did not reach the necessary spatial resolution to describe
the evolution of individual SN remnants and their interaction
with MCs in detail, and to study the velocity scaling within
individual clouds, to test if MC turbulence is consistent with
SN driving.

Because our simulation yields power-law velocity structure
functions as a function of ℓ, and the values of the exponents are
the same as in previous numerical studies of MC turbulence
based on random driving with a large-scale volume force, we
conclude that the use of an artificial force in those previous
studies did not result in incorrect velocity scaling, so no major
corrections to IMF and SFR models based on turbulent
fragmentation should be needed. However, because deviations
from the average scaling laws are found in snapshots that are
very close in time to SN explosions, it may be worthwhile
investigating the possibility of minor effects on star formation
resulting from such deviations.

6.2. Velocity Scaling within MCs

In order to test if SN driving can generate the same velocity
scaling also inside MCs, despite their density contrast, we
compute the velocity structure functions inside MCs selected
from our simulation as described in Section 3. To better
constrain the scaling exponents, we have computed the velocity
structure functions for the 15 most massive clouds of each
snapshot. Because of the very complex cloud shapes, we find it
convenient to compute the structure functions based on the
position and velocity of the tracer particles, Strp(ℓ) (see
Equation (8)). MCs are regions of density enhancement, so
their velocity field is sampled well by the tracer particles. In
fact, they contain so many tracer particles that, to speed up the
calculation, we randomly select a number of particle pairs 500

times smaller than all possible pairs in each cloud, resulting in
approximately 2–200 million pairs per cloud. As a further
simplification, we also compute the differences of each velocity
component irrespective of their orientation relative to the
separation vector, ℓ, so we do not distinguish between
transversal and longitudinal structure functions.
We find velocity differences growing with scale up to

10–30 pc, depending on the cloud size. As an example,
Figure 14 shows the average of the structure functions of the 15
most massive clouds selected at time t=34.2Myr. The
structure functions inside these GMCs are consistent with the
global ones and are well approximated by power laws down to
a scale of approximately 10dx=2.4 pc. At a separation
= =ℓ dx4 0.96 pc, the velocity differences are only approxi-

mately 30% below the value extrapolated from the inertial-
range scaling, as shown by the first order structure function in
Figure 14.
In Figures 15 and 16 we show examples of structure

functions of individual MCs, one with no evidence of the direct
effect of SN driving (Figure 15), and one with significant

Figure 14. Velocity structure functions obtained from the average of the
structure functions of the 15 most massive clouds selected at time
t=34.2 Myr. The structure functions of the clouds are computed from the
position and velocity of their tracer particles (see text). As in Figures 11 and 12,
the solid lines are the model predictions for the structure function slopes, not
fits to the data.

Figure 15. Same as in Figure 14, but for a single MC, the seventh most
massive one among those selected at time t=45.6 Myr (MC 6 in the top panel
of Figure 3).
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deviations at ℓ 1pc, due to a recent nearby SN explosion
(Figure 16).

These results show that, despite the large contrast between
the MC density and the average ambient density, the kinetic
energy of SN explosions is effectively transferred into
turbulence within individual clouds, where it establishes the
usual scaling laws of supersonic turbulence, all the way to the
smallest scales where the simulation is affected by numerical
dissipation. Real MCs also exhibit power-law velocity scaling
(e.g., Heyer & Brunt 2004; Padoan et al. 2006). The slope of
ζ(2)=0.8±0.1 derived for the Perseus region by Padoan
et al. (2006) using the method by Lazarian & Pogosyan (2000)
is formally consistent with the scaling laws derived here for the
MCs of our simulation. On the other hand, the principle-
component-analysis results by Heyer & Brunt (2004) give a
very large slope, ζ(2)=1.12±0.04, which is hard to
interpret, as it is steeper than the scaling from the Burgers
equation that models an infinitely compressible flow. A careful
study of the consistency between the structure function slopes
of the SN-driven simulation and of the observations requires
the computation of synthetic observations and is beyond the
scope of this work.

All the plots in this section adopt an arbitrary normalization
of the structure functions. The actual normalization of MC
turbulence, that is the velocity dispersion of clouds of a given
size, is discussed below, comparing the velocity–size Larson
relation of our clouds with that from the observations.

7. VIRIAL PARAMETER AND CLOUD STRUCTURE

Larson (1981) interpreted the MC velocity–size relation he
discovered as being due to a turbulent cascade in the ISM.
Because of the very large Reynolds number of the observed
motions in the cold ISM, the development of a turbulent
cascade is unavoidable, and both analytical arguments and
numerical simulations have demonstrated that Larson relations
can be viewed as the natural consequence of supersonic
turbulence (e.g., Kritsuk et al. 2013). Nevertheless, the
velocity–size relation has also been interpreted as the
consequence of the MC self-gravity (e.g., Solomon
et al. 1987; Heyer et al. 2009), because MC virial masses are

often comparable to the masses estimated from the CO
luminosity.
The relative importance of turbulence and self-gravity is

measured by the virial parameter, introduced by Bertoldi &
McKee (1992):
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where σv is the one-dimensional velocity dispersion, and the
dynamical time is defined as

s=t R . 13dyn cl v,3D ( )

The last equality in (12) is exact in the case of an idealized
spherical cloud of uniform density. For more realistic cloud
mass distributions, the virial parameter is only an approxima-
tion of the ratio of kinetic and gravitational energies.
To estimate the relative importance of turbulence and self-

gravity in clouds from our simulation, we have computed the
virial parameter and the kinetic and gravitational energies of
clouds selected from six snapshots, three before and three after
the inclusion of gravity in the simulation, using a threshold
density =n 100H,min cm−3. The virial parameter of a cloud is
measured using the positions and velocities of the tracer
particles belonging to that cloud, and defining the cloud radius
as the rms of the particle positions:
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i n1 ,¯ are the components of the mean
particle position (the cloudʼs barycenter) and N is the total
number of tracer particles in the cloud.
While the virial parameter only depends on global MC

properties (mass, radius and rms velocity), the ratio of kinetic
to gravitational energy is sensitive to the cloud internal
structure (mass distribution and shape) and to correlations
between density and velocity (e.g., Federrath & Klessen 2012).
Thus, the comparison between αvir and E E2 k g is a useful tool
to probe the internal structure of MCs and its evolution under
the effect of self-gravity. As in the case of the virial parameter,
we compute Ek and Eg of a cloud using the velocities and
positions of the tracer particles in that cloud:
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where N is the total number of tracer particles in the cloud, m is
the mass associated with a tracer particle, ui is the modulus of
the velocity of the ith particle, and rij is the distance between
the ith and the jth particles. This expression for Eg assumes that
the cloud is isolated, as in the definition of the virial parameter.
In future work, this expression should be contrasted with a
formulation that accounts self-consistently for the surrounding
mass distribution by using the actual gravitational potential
from the simulation (e.g., Federrath & Klessen 2012).
Figure 17 shows the comparison between αvir and 2Ek/Eg

for clouds selected from three snapshots covering a time span
of 4Myr before the inclusion of self-gravity. Figure 18 shows

Figure 16. Same as in Figure 15, but for the fifth most massive MC among
those selected at time t=56.1 Myr (MC 4 in the bottom panel of Figure 3).
This is an example of structure functions clearly affected by deviations at small
scales due to the effect of nearby and recent SN explosions. During the brief
period of time of the early expansion of an SN bubble, excess energy is found
at small or intermediate scales relative to the “undisturbed” structure functions.
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the same plot, but based on three snapshots after the inclusion
of self-gravity, covering the last 4 Myr of the simulation. On
average, the clouds of Figure 18 are selected 9Myr after the
inclusion of self-gravity, while their average free-fall time,
based on the density estimated as p=n M R4 3H,cl cl cl

3( ) (see
Figure 20), is 4.4±2.1 Myr, and their average dynamical time,

sºt Rdyn cl v,3D, is 2.6±1.5 Myr. Thus, self-gravity has been
active for approximately two cloud free-fall times and four
cloud dynamical times on average, with significant changes
occurring only in regions that have too small filling factors
(e.g., small collapsing cores) to change global statistics
significantly. Indeed, gravity is not expected to be important
for clouds with a > 1vir . Selecting clouds with a 1.0vir , 0.5
and 0.25, we find a mean free-fall time of 2.1±1.3 Myr,
1.5±1.3 Myr, and 1.2±1.0 Myr, respectively. Thus, for the
clouds where it should be most important, self-gravity has been
active for 4–8 free-fall times on average. To establish whether
the absence of significant trends during this time interval will
continue for the lifetime of the various structures requires, as
discussed in Section 2.1, future simulations that include the SN
feedback from the massive stars produced by the simulation
itself.

Figure 17 shows that αvir provides a remarkably good
approximation of the energy ratio, E E2 k g, despite the
complexity of the cloud structure. We find the ratio
a =E E2 1.20vir k g( ) on average, constant over three orders
of magnitude in E Ek g (we have verified that it is constant also
over the full range of cloud masses), and with a small scatter
(the standard deviation is approximately 20% of the mean); it is
also nearly unchanged after gravity is included in the
simulation. Figure 18 shows that most clouds follow
approximately the same relation of αvir versus E E2 k g as in
the case without self-gravity, except that a few of them have
significantly lower values of 2Ek/Eg, because they contain
collapsed cores that have also been included in the computation
of the total Eg. The comparison of the two figures, without and
with gravity, shows the main effect of self-gravity is to cause
the collapse of dense cores inside the clouds (hence star
formation), while the cloud virial parameter is not strongly
affected.

In Figure 19 we show the probability distribution of αvir for
the three snapshots without gravity (shaded histogram) and
with gravity (unshaded histogram), where we have included
also the star-forming clouds with very low values of E E2 k g.
The two distributions are very similar, with the one including
gravity slightly shifted toward lower values; the mean values
are 8.5 without gravity and 6.6 with gravity. The small shift
between the two distributions shows that self-gravity causes
some amount of cloud contraction, but not a significant change
in global cloud structure. This is further confirmed by the
histograms of cloud density shown in Figure 20, where the
cloud density is defined as p=n M R4 3H,cl cl cl

3( ). The
histogram for the clouds with self-gravity is only slightly
shifted to higher density, with the mean value changing from
183 to 264 cm−3, before and after the introduction of gravity
respectively. This small increase in cloud density shows that
self-gravity does not cause a global cloud collapse, even if it
drives star formation through the collapse of dense cores within
MCs. Only clouds with αvir  10 contribute to star formation,
according to Figure 18, with most star formation occurring in
clouds with αvir  3, in agreement with recent studies of the
SFR in supersonic turbulence, showing that the SFR is mainly
controlled by the virial parameter (Padoan & Nordlund 2011;
Federrath & Klessen 2012; Padoan et al. 2012). Future
simulations, where self-gravity is active for much longer than
the 11Myr period of our run, and where self-consistent SN
feedback is included, will be needed to further test the above
results.

8. MC LIFETIMES

While the virial parameter estimates the relative importance
of turbulence and self-gravity, the comparison of the cloud
lifetime with either the dynamical time or the free-fall time
provides a definitive assessment of the actual dynamical state
of clouds. For example, short-lived clouds are evidently not
gravitationally bound, while their virial parameter may be of

Figure 17. Virial parameter vs. energy ratio for clouds selected from three
snapshots of the simulation prior to the inclusion of self-gravity and covering a
time span of 4 Myr. The solid line shows the average ratio of 1.20 between αvir

and E E2 k g. The dotted line marks the maximum value of that ratio.

Figure 18. Virial parameter vs. energy ratio for clouds selected from three
snapshots after the inclusion of self-gravity and covering the last 4 Myr of the
simulation. The solid and dotted lines are the same as in Figure 17, showing
that the average ratio of αvir and E E2 k g and its scatter are nearly unchanged for
most clouds, relative to their value before the inclusion of self-gravity. Clouds
with very low values of E E2 k g contain collapsing cores whose gravitational
energy has been included in the computation of the cloud Eg. They are star-
forming clouds with relatively low value of αvir, but do not show evidence of
global collapse.
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the order of unity and thus would not allow to draw a definitive
conclusion about their dynamical state.

Being so difficult to constrain observationally, MC lifetimes
are a valuable outcome of numerical modeling. They can be
measured in our simulation thanks to the introduction of tracer
particles, but only up to a maximum age of 23Myr, the time
interval with tracer particles in our simulation (11Myr if we
considered only clouds during the time interval with self-
gravity). Although this maximum age is comparable to or
smaller than the lifetime of the largest clouds, it is at least
significantly longer than the mean free-fall time (4.4 Myr) and
the mean dynamical time (2.6 Myr) of the clouds in the
simulation, so it allows us to evaluate the influence of gravity
on the cloud lifetimes for most clouds in our study.

Dobbs & Pringle (2013) measured MC lifetimes by defining
the continuation of a cloud at a later time as that with the largest
number of particles in common with that cloud. The time when
the number of particles (and the mass) in common drops to half
or less of that in the original cloud marks the end of the cloud
lifetime. Cloud precursors and formation times are defined in
the same way, by considering the clouds at earlier times with
the largest number of particles in common with the original
cloud. As pointed out by the authors, this method has the
drawback that clouds precursors or continuations are often not
found with more than half of the original mass because of
changes in density contours, rather than a real cloud dispersion.
For example, based on this method, a cloud may seem to have
dispersed after a certain time, but may later reappear.

After verifying in our own simulation that this lifetime
definition is indeed very uncertain, we have chosen to estimate
cloud lifetimes with a different method that is independent of
the specific density contours of clouds in past and future
snapshots. Because the formation of a cloud implies conver-
ging flows (even in the absence of self-gravity), and its
dispersion requires diverging flows, we simply define the
lifetime of a cloud as the time interval during which the cloud
radius, defined always by all the tracer particles belonging to
that cloud, is within a factor of two from the radius at the time
the cloud is selected. In other words, we follow the cloud tracer
particles in the past, until their radius has doubled in size,
which marks the formation time of the cloud, and in the future

also until the radius has doubled in size, which marks the
dispersion time of the cloud.
Figure 21 shows the formation time, tform (interval between

cloud formation and time of cloud selection), and dispersion
time, tdisp (interval between time of cloud selection and cloud
dispersion) versus the cloud mass, using all the clouds more
massive than approximately 700 Me from each of 12 snapshots
covering the whole time interval with tracer particles (the time
between snapshots is 2 Myr). The sum of the two times gives
the cloud lifetime, tlife=tform+tdisp, but we have plotted the
two times separately (empty squares and circles) because in
many cases we can identify the cloud formation time and not its
dispersion time (for clouds selected toward the end of the
simulation), or vice-versa (for clouds selected shortly after the
introduction of tracer particles). The average values of tform and
tdisp are biased by the large number of upper limits (not plotted
to avoid confusion). In order to obtain a nearly unbiased
estimate of the average values, we consider only clouds
selected from the first and the last snapshots of the series (filled

Figure 20. Probability distributions of mean cloud density for the same three
snapshots before self-gravity as in Figure 17 (shaded histogram) and for the
three snapshots after self-gravity as in Figure 18 (unshaded histogram).

Figure 21. Dispersion time (empty circles) and formation time (empty squares)
for clouds selected from 12 snapshots of our simulation, uniformly distributed
at intervals of 2 Myr, to cover the whole time interval with tracer particles.
Filled circles mark the values of dispersion time of clouds selected from the
first snapshot of the series; filled squares mark the values of formation time of
clouds from the last snapshot.

Figure 19. Probability distributions of the viral parameter for the same three
snapshots before self-gravity as in Figure 17 (shaded histogram) and for the
three snapshots after self-gravity as in Figure 18 (unshaded histogram).
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circles and filled squares, respectively, in Figure 21). The first
snapshot has 12 clouds more massive than 700 Me, yielding 10
measured values of tdisp and only two upper limits; the last
snapshots has 40 clouds more massive than 700 Me, 39 of
which with a measured value of tform and only 1 with an upper
limit to tform. Based on these measurements alone, we find
á ñ =t 11.1 Myrdisp and á ñ =t 9.2 Myrform . By assuming that
clouds are selected at a random moment of their lifetime, we
should expect á ñ = á ñ = á ñt t t2 2life form disp , and so we can
average together all the 49 values and obtain á ñ =t 21.4 Myrlife .

This lifetime is based on clouds covering over two orders of
magnitude in mass, and only on 39 measurements. We can
further improve our estimate of MC lifetimes by using all
measurements and, at the same time, derive the mass
dependence of the lifetimes, if we normalize the lifetime to
the cloud dynamical time, tdyn. Figure 22 plots tlife versus tdyn
of 64 clouds for which we have measured values of both tform
and tdisp (filled circles), besides the formation and dispersion
times for all the other clouds where these are measured (empty
squares and circles, respectively). The plot in Figure 22 shows
an approximately linear correlation between tlife and 4 tdyn. The
mean and standard deviation of the ratio of the two times are

= t t 4.5 1.4. 17life dyn ( )

As shown by Figure 23, this estimate is derived from clouds
with  ´M 6 10cl

3Me, and thus it should be considered only
as an extrapolation when applied to more massive MCs.
Nevertheless, this result for the tlife/tdyn ratio is consistent with
the measured formation times of the most massive MCs in the
simulation. Figure 23 shows that the four most massive GMCs,
with masses around 105Me, have á ñt tform dyn close to two,
which would imply á ñ »t t 4life dyn , in the absence of selection
biases due to the limited time interval covered by the tracer
particles.

Furthermore, while we cannot use all the values of tform and
tdisp from Figure 21 to estimate an unbiased average lifetime
from á ñ » á ñ » á ñt t t2 2life form disp , we can still use all of the
corresponding ratios, t tform dyn and tdisp/tdyn, to estimate an
unbiased average ratio of lifetime to dynamical time from
á ñ » á ñ » á ñt t t t t t2 2life dyn form dyn disp dyn , if we assume that this

ratio is independent of cloud mass. Indeed, the dashed and
dotted lines in Figure 23 show that
á ñ » á ñ »t t t t 2form dyn disp dyn , using values over the whole
mass range, consistent with the estimate á ñ »t t 4life dyn , based
on clouds with Mcl  6×103Me.
This result shows that both the formation and the dispersion

of the MCs in our sample take two dynamical times, on
average. This is an indication that both the formation and the
dispersion of the MCs in our sample is controlled by the
turbulence, with little influence of self-gravity. Because of the
non-negligible scatter in the ratio of cloud lifetime to
dynamical time, one may expect that at least the clouds with
the largest ratios may have longer lifetime due to their self-
gravity. This is not the case: we have verified that there is
actually a positive correlation between tlife/tdyn and αvir,
meaning that larger values of tlife/tdyn are usually due to smaller
values of tdyn because of larger σv (hence larger αvir), rather
than longer tlife as a consequence of a lower αvir. Thus, there is
no significant imprint of self-gravity in the cloud lifetimes,
even if more than half of our clouds are selected at a time after
self-gravity has been included in the simulation. Future
simulations, where self-consistent SN feedback allows longer
runs with selfgravity, are needed to test if this lack of
significant imprint of selfgravity continues, and if it extends to
MCs with longer lifetimes and to higher surface density MCs.
We should also stress the caveat that, for the most massive

MCs of ∼105Me we could only measure formation times, and
not dispersion times, due to their long lifetime (and dynamical
time) and the limited duration of the simulation. Thus, we
cannot rule out that, at least the most massive MCs, could have
dispersion times significantly longer than two dynamical times.
However, that would imply dispersion times longer than
20Myr (lifetimes longer than 40Myr) for such clouds, a
timescale over which the extra energy injection from SN
explosions of locally formed massive stars would presumably
succeed in dispersing the clouds, even if the general ISM
turbulence could not (see discussion in Section 2.1).
To derive actual values of cloud lifetime as a function of

cloud mass, taking advantage of our result (17), we can use the

Figure 22. Cloud lifetime vs. cloud dynamical time for clouds with measured
dispersion and formation times (filled circles). Clouds with only dispersion or
formation times are plotted as empty circles and empty squares, respectively.
The dashed line corresponds to tlife=2 tdyn, the long-dashed line to
tlife=4 tdyn.

Figure 23. Ratio of lifetime to dynamical time vs. mass for the same clouds as
in Figure 22. The long-dashed line shows the mean ratio for the clouds with
both dispersion and formation times measured (filled circles),
á + ñ =t t t 4.5form disp dyn( ) . The dotted and the dashed lines the mean ratio
for clouds with only formation or dispersion times, respectively,
á ñ =t t 2.2form dyn , á ñ =t t 2.4disp dyn . All these average values are consistent
with á ñ »t t 4life dyn , independent of cloud mass.
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expression (25) for the average cloud dynamical time derived
in Section 10.4, which gives an average cloud lifetime of

= t M M22.5 Myr 10 . 18life cl
4 0.25( ) ( )

9. MAGNETIC FIELD IN MCS AND MC FORMATION

Our simulation adopts a mean magnetic-field strength
consistent with the Galactic one (see Section 2), so the
magnetic field inside clouds selected from the simulation
should be comparable to that in real MCs. We have already
shown in Figures 4 and 5 that the mean magnetic energy is not
far from equipartition with the mean thermal and kinetic
energies averaged over the whole volume, while the energy
ratios are much larger in the dense gas. This clear energy
separation in dense gas, with á ñ =E E 25.1k,d m,d and
á ñ =E E 9.8m,d th,d , is the necessary consequence of the near
equipartition at the largest scales. Being only mildly super-
Alfvénic, large-scale compressive motions cannot compress the
mean magnetic field by a large factor, so the density
enhancement of MCs is largely achieved with compressions
along field lines, resulting in a mean magnetic field strength in
the dense gas not much larger than the total mean field. The
mean magnetic field of 4.6 μG is amplified by the SN-driven
turbulence to an rms value of 7.2 μG, averaged over the whole
volume and between t=33 and 56Myr. The rms field strength
in the dense gas is 12.8 μG, not even a factor of two larger.

To investigate the role of the magnetic field in individual
MCs, we consider the same catalog of 1547 clouds as in the
comparison with the observations discussed in the next section.
The clouds are selected from 7 snapshots during the final 6 Myr
of the simulation, at a resolution of 0.49 pc and with a density
threshold of =n 200H,min cm−3. We compute both the mean
and the rms magnetic field of each cloud using the values
sampled by the tracer particles, á ñ = SB B Ni i and
á ñ = SB B N2 1 2

i i
2 1 2( ) , where Bi is the magnetic field strength

sampled by the particle i in a given cloud, and N is the total
number of particles in that cloud. These magnetic field values
are plotted versus cloud mass in Figure 24, where the
horizontal dashed line represents the mean magnetic field in
the computational volume, B0=4.6 μG. The mean field in the

clouds is approximately 10 μG on the average, only twice
larger than B0, and independent of cloud mass. We have
verified that the mean magnetic field strength of the clouds is
also independent of their mean gas density.
The relatively small increase of the cloud mean magnetic

field relative to B0 and its independence of gas density are
characteristic of trans-Alfvénic supersonic turbulence (Padoan
& Nordlund 1997, 1999), and further illustrates that MCs must
be formed by compressive motions primarily along magnetic
field lines, due to the non-negligible magnetic pressure prior to
the compression and cooling of the low-density gas. As the gas
is being compressed into a nascent MC by random large-scale
motions, the increasing density and decreasing cooling time
cause a drop in both the Alfvén and sound speeds (Padoan
et al. 2010). As a result, the turbulence within an MC is super-
Alfvénic and highly supersonic, while the larger-scale flows
responsible for its formation are trans-Alfvénic and mildly
supersonic. Because in super-Alfvénic turbulence the magnetic
field is amplified by compressions, as shown by a positive B–n
correlation (Padoan & Nordlund 1997, 1999), dense cores
formed by shocks within MCs (Padoan et al. 2001) have an
enhanced magnetic-field strength on average. Furthermore,
cores are topologically the ultimate zero-dimensional destina-
tion of a fluid element undergoing compression, as they can be
viewed as the intersection of filaments that are formed by the
intersection of postshock sheets. Much of the flow turbulent
energy is dissipated by the time it “stagnates” into a core. Due
to this drop in turbulent energy, together with the increase in
magnetic-field strength and density, the turbulence inside dense
cores is trans-Alfvénic and trans-sonic. In summary, super-
Alfvénic and supersonic MC turbulence is the natural
consequence of large-scale trans-Alfvénic trans-sonic turbu-
lence and also the natural origin of small-scale trans-Alfvénic
trans-sonic turbulence in prestellar cores.
The small-scale enhancement of the magnetic field within

MCs is partly illustrated in Figure 24 by the values of the rms
field in the clouds that is approximately a factor of two larger
than the mean field in the most massive clouds. As a more
direct demonstration of the super-Alfvénic nature of MC
turbulence, Figure 25 shows the cloud rms Alfvénic Mach
number versus the cloud mass. The Mach number is computed
as the ratio of the cloud rms velocity and the cloud Alfvén

Figure 24.Magnetic field strength vs. cloud mass for the same sample as in the
Larson relations of Figures 31 and 34. The dashed line shows the mean
magnetic field averaged over the whole computation volume (also the initial
mean field). Empty circles correspond to the mean value of the magnetic field
of all tracer particles in each cloud, while filled circles give the rms value.

Figure 25. Alfvénic rms Mach number vs. cloud mass for the same clouds as in
Figure 24, computed with the cloud mean magnetic field (empty circles), or the
cloud rms magnetic field (filled cirlces).
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velocity, where the latter is computed either with the mean
magnetic field (empty circles) or with the rms magnetic field
(filled circles), and using the mean density sampled by the
tracer particles. Nearly all clouds with mass larger than 103Me
are super-Alfvénic, even considering their amplified field
strength. For the 41 GMCs with masses larger than 104Me,
the average Alfvénic Mach number is 8.3 with respect to the
mean field, and 3.9 with respect to the rms field.

The super-Alfvénic nature of the turbulence in the clouds
from our simulation is consistent with the observational
evidence. Based on the comparison between simulations of
MHD turbulence and MC observations, Padoan & Nordlund
(1997, 1999) suggested that MC turbulence was better
characterized by supersonic turbulent flows with   1A
than flows with » 1A . This result was later confirmed with
the aid of synthetic observations (Padoan et al. 2004a) and
synthetic Zeeman splitting measurements (Lunttila
et al. 2008, 2009). Taking advantage of the anisotropy of
MHD turbulence, Heyer & Brunt (2012) demonstrated that the
densest regions of the Taurus MC complex are characterized by
super-Alfvénic turbulence, while in low density regions the
motions are sub or trans-Alfvénic, also consistent with the
picture from our simulation, where MCs are formed by large-
scale trans-Alfvénic turbulence, and thus fed preferentially by
motions along magnetic field lines, as discussed above
(Nordlund & Padoan 2003; Padoan et al. 2010).

To further characterize the cloud turbulence, we have
computed the B–n relation inside all the clouds of our sample,
using again the values of B and n of the tracer particles inside
the clouds. We divide the density in logarithmic bins, and
compute the mean magnetic field strength and its standard
deviation in each density bin. We then average these values
among all the clouds, using weights proportional to the number
of tracer particles in the density bins of each cloud. Figure 26

shows this mean B–n relation. We also illustrate the large
scatter by plotting error bars that correspond to twice the
standard deviation above and below the mean values. The two
solid lines are least-square fits for nH<103 cm−3, B∼nH0.13,
and for nH>103 cm−3, B∼nH0.29.
The stronger dependence of the magnetic-field strength on

density at nH>103 cm−3 than at lower density is qualitatively
consistent with the observations (Crutcher et al. 2010). The
slope we derive is much smaller than that derived by Crutcher
et al. (2010) at high densities, B∼nH0.65. However, their slope
does not refer to the mean magnetic field at a given density, but
to its maximum value. Considering the large number of
measured upper limits well below such maximum values, the
dependence of the mean B on density could be significantly
shallower than the estimated slope of the upper envelope of the
B–n relation. Furthermore, the Bayesian analysis by Crutcher
et al. (2010) assumes a uniform distribution of the magnetic
field strength, while this distribution is exponential in super-
Alfvénic turbulence (Padoan & Nordlund 1999) (we have
verified it is exponential also in our clouds). Finally, and most
importantly, the B–n relation in Figure 26 is not computed for a
selection of dense cores, as in the observations, but using every
single tracer particle in the cloud, so it should not be compared
quantitatively to the observational B–n relation. Such a
comparison would require synthetic Zeeman observations of
a selection of dense cores, as in Lunttila et al. (2008, 2009). It
would also require higher spatial resolution, because most of
the observed cores with the largest detected magnetic-field
strengths, at densities of the order of 105–107 cm−3, have sizes
substantially smaller than the spatial resolution of our
simulation. The higher resolution would also allow to better
resolve the dynamo amplification in dense cores (Federrath
et al. 2011b), which would tend to increase the slope of the B–n
relation.

10. COMPARISON WITH OUTER-GALAXY MCS

To further test our results, we carry out a comparison of the
properties of our MCs with those of observed MCs. This is a
preliminary approach based on the derivation of projected
quantities, such as column density, equivalent radius and line
of sight velocity dispersion. Follow-up studies with synthetic
observations taking into consideration chemistry and radiative
transfer are also needed.
Our observational sample of choice for this comparison is

the MC catalog by Heyer et al. (2001), extracted from a
decomposition of the 12CO FCRAO Outer Galaxy Survey
(Heyer et al. 1998). Besides the large dynamic range of the
survey, its main advantage is that for the Outer Galaxy there is
no blending of emission from separate MCs along the line of
sight, or at least the problem is strongly mitigated compared
with the Inner Galaxy. As a result, a very large number of
clouds can be reliably selected over a broad range of cloud
masses and sizes. The catalog contains a total number of
10,156 objects, up to a mass of approximately 8×105Me and
a size of 45 pc. It is estimated to be complete down to a mass of
approximately 600 Me and a cloud size of 3 pc.
Inner-Galaxy MC catalogs are far less reliable and complete

because of velocity blending, so they are not suitable for the
comparison we pursue here. For example, the recent catalog of
Inner-Galaxy MCs (Rathborne et al. 2009; Roman-Duval et al.
2009) extracted from the UB–FCRAO Galactic Ring Survey
(Jackson et al. 2006) contains objects between 1 and 106Me,

Figure 26. B–n relation obtained from averaging the B–n relations of all 1563
clouds in our sample. The circles correspond to the mean value of nH and B in
each density bin, while the error bars mark the values two standard deviations
above and below the mean, to illustrate the scatter in the B–n relation. The B–n
relation of an individual cloud is computed using the values of B and nH of all
the tracer particles in that cloud. Because the clouds are selected as regions with
density nH>100 cm−3, no tracer particles belonging to a cloud has density
lower than that. To extend the relation to densities nH<100 cm−3, we define a
cloud volume delimited by the smallest and largest coordinates of the tracer
particles of that cloud, and include the values of B and nH of each cell of that
volume to compute the relation. The two solid lines are least-square fits for
densities nH<103 cm−3 and nH>103 cm−3, giving B∼nH0.13 and B∼nH0.29,
respectively.
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but is estimated to be complete only above 4×104Me
(Roman-Duval et al. 2009). We suspect a more realistic
completeness limit may be 2×105Me, because the mass
distribution is a power law only above that mass (Roman-
Duval et al. 2009), which corresponds to a size limit of
approximately 20 pc, judging from the mass–size relation and
from the lack of a power law in the size distribution below
20 pc. This severe incompleteness suggests that the cloud
surface density may be overestimated by a large factor. The
MC mass distribution is expected to be a power law down to
small masses, so the abrupt departure from a power law below
2×105Me indicates that much of the missing mass from
smaller clouds is incorrectly assigned to larger ones due to
velocity blending. The failure to select individual three-
dimensional clouds is also demonstrated by the absence of a
velocity–size correlation and, possibly, by the extremely low
values of the cloud virial parameters (the distribution peaks at
αvir≈0.2), which would imply a larger SFR and a stronger
signature of global collapse than observed. In summary, the
differences between Galactic-Ring and Outer-Galaxy MCs may
not be as large as often assumed. Thus, although our
comparison is primarily with Outer-Galaxy MCs, the results
may be applicable to Galactic clouds in general.

As in Heyer et al. (2001), we consider only the subset of
3901 clouds with circular velocities vc<−20 km s−1, because
of kinematic distance accuracy. We further select clouds with
mass Mcl>100 Me, as that is the mass limit for our numerical
cloud catalogs, resulting in a total sample of 3228 Outer-
Galaxy MCs. Given the distances to the clouds and the angular
resolution of the survey, the spatial resolution varies between
0.4 and 3.8 pc. Therefore, the cloud extraction of our highest
resolution catalog with =dx 0.48 pc matches well the highest
resolution in the observations. The main limitation of the
survey is the velocity resolution, only slightly better than

1 km s−1, which, combined with the measurement of line width
based on the equivalent width instead of the antenna-
temperature-averaged velocity dispersion, results in a minimum
velocity dispersion of clouds of approximately 0.5 km s−1.
However, we show that the data can be used to test both the
slope and the normalization of the Larson velocity–size relation
from the simulation despite this low velocity resolution.
A explained in Section 3, we illustrate this comparison using

clouds selected from 7 snapshots from the last 6 Myr of the
simulation. However, we have verified that all the observa-
tional MC properties discussed in this section are essentially
the same when derived from a catalog of clouds selected from
the last 6 Myr prior to the inclusion of gravity. This confirms
that global MC properties are primarily the result of SN-driven
turbulence, with little modification due to self-gravity, apart
from the slight increase in mean cloud density shown in
Section 7, and an increase in the mass of the largest cloud.
Of the 12 cloud catalogs described in Section 3, we choose

the one with the highest-resolution (5123 cells, or 0.49 pc) and
with the threshold density that best matches the observed
mass–size relation, =n 200H,min cm−3, for all the plots in this
section, and we compute velocity dispersions using the tracer
particles, thus taking advantage of the highest resolution of the
simulation, =dx 0.24 pc, due to the large number density of
tracer particles within dense clouds. This catalog contains 1547
objects.

10.1. Mass Distribution

Figure 27 shows the mass distribution of our clouds (shaded
histogram). The histogram is well approximated by a power
law, with a slope of −0.88±0.06 in the approximate mass
range 200–105Me (dashed line). The figure also shows the
mass distribution of the MCs from the observational sample
that is also nicely fit by a power law, with a slope of
−0.91±0.09 in the approximate mass range 1.5×103–
2×105Me (dashed–dotted line). Heyer et al. (2001) derived a
slope of −0.80±0.03 by including all clouds down to the
completeness limit of 600 Me. Our slope is a bit steeper
because we are a bit more conservative on the completeness
limit. The dotted-line histogram in Figure 27 shows the mass

Figure 27. Probability distribution of cloud mass from the sample of 1,547
clouds of our highest-resolution catalog (5123 cells, or 0.49 pc) and with the
threshold density that best matches the observed mass–size relation,

=n 200H,min cm−3 (shaded histogram). The dashed line is the result of a
least-square fit yielding a slope of −0.88±0.06. The unshaded, solid-line
histogram shows the mass distribution from the observational sample of 3,228
Outer-Galaxy MCs (see text), selected from the larger sample in Heyer et al.
(2001). The dotted-line histogram is the mass distribution of the observational
sample, excluding clouds with radius R 3.1e pc, the size-completeness limit
of the Outer-Galaxy survey. It shows a contribution to the mass distribution by
clouds below this completeness limit up to a mass of approximately 1000 Me.
The least-square-fit to the observational mass distribution above 1.5×103 Me
has a slope of −0.99±0.09 and is shown by the dashed–dotted line.

Figure 28. Exponents of the power-law fits to the probability distributions of
cloud masses (lower plots) and cloud sizes (upper plots) for all twelve catalogs
of MCs selected from the simulation. The exponents are plotted as a function of
threshold density, nH,min, and for three different values of spatial resolution of
cloud selection.
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distribution for a sub-sample where we include only clouds
above the size completeness limit of 3.1 pc, the value derived
by Heyer et al. (2001). The comparison with the histogram of
the full sample shows that some MCs with sizes below the size
completeness limit are found with masses up to approximately
1000Me, so we consider the catalog to be complete only above
that mass value.

The mass distribution of our clouds is consistent with that of
the MCs from the Outer Galaxy Survey. Furthermore, this is
true for the mass distribution from all numerical cloud catalogs
we have compiled, independent of the numerical resolution and
threshold density of cloud selection. As shown in Figure 28, the
exponent of the power-law fit to the mass distribution has a
weak dependence on resolution and threshold density and,
within the 1-σ error bars shown in the plot, it is consistent with
the observational exponent in all cases.

The largest cloud in our =n 200H,min cm−3 catalog has a
mass of 1.3×105Me, a few times smaller than the largest MC
in the observational sample. However, Figure 27 shows that
this maximum mass is consistent with the largest mass
expected from our sample size and the slope of the mass
distribution. If we simulated a region larger than 250 pc, and
thus collected a much larger cloud sample, we would likely
derive a power-law mass distribution extended to larger
masses. The observations are consistent with a power-law
mass distribution for clouds more massive than those in the
Outer Galaxy Survey. For example, in their analysis of the MC
sample by Solomon et al. (1987), Williams & McKee (1997)
found a comparable slope of −0.81±0.14 in the mass range
3×105–5.6×106Me. Although more uncertain, the slope
they obtained from the analysis of the sample by Scoville et al.
(1987), −0.67±0.25, is also consistent with the slope of the
Outer-Galaxy MCs at lower masses. More recently, Roman-
Duval et al. (2010) found a slope of −0.64±0.25 in the mass
range 4×104–106Me from the analysis of the Galactic Ring
Survey (a more conservative completeness limit of 8×104Me

gives a slope of −0.86±0.25).

10.2. Size Distribution

Following Heyer et al. (2001) and most observational works,
as a measure of a cloudʼs size we adopt the equivalent radius,

pºR Ae cl
0.5( ) , where Acl is the cloud projected area. The

probability distribution of Re for the clouds from the simulation
is shown in Figure 29 (shaded histogram). It is well
approximated by a power law with a slope of −2.5±0.2 in
the approximate range of 2–15 pc. Within the uncertainty, this
is consistent with the slope of −2.3±0.3 of the observational
sample in the approximate equivalent-radius range of 5–50 pc.
Furthermore, Figure 28 shows that the size distributions of
clouds selected from the simulation with different threshold
density and resolution are also consistent with the observations,
within the 1-σ uncertainty (except for the catalog with

=n 200H,min cm−3 and the lowest-resolution). As in the case
of the mass distribution, we have been slightly more
conservative in the estimation of the size completeness limit,
based on evidence that around the value of 3.1 pc, the
completeness limit estimated by Heyer et al. (2001), we still
find some contribution from clouds with mass below the mass
completeness limit of 600 Me, as illustrated by the dotted
histogram in Figure 29. As a result, we find the same slope as
in Heyer et al. (2001), but with a three times larger uncertainty.
The same power law seems to apply to even larger clouds. For
example, Sanders et al. (1985) find a slope of −2.3±0.2 for a
sample of 80 clouds in the approximate size range of 20–80 pc.
Because we have previously computed a three dimensional

cloud radius, Rcl, from the simulation, we can test the relation
between the observable radius, Re, and the three-dimensional
one. The comparison is shown in Figure 30, where the dashed
line corresponds to =R Re cl. Re is smaller than Rcl for most
clouds with Rcl  2 pc, and larger than Rcl for most clouds with
Rcl  2 pc. The average ratio is Re/Rcl=0.87 and increases
toward smaller radii. As a consequence, the probability
distribution of Rcl is slightly shallower than that of Re.

10.3. Velocity–Size Relation

The velocity–size relation of MCs determines the normal-
ization of the velocity scaling inside individual clouds. In
Section 6.2, we have shown that the energy from SN
explosions sets a turbulent cascade inside individual MCs that
follows the usual velocity scaling of supersonic turbulence, but

Figure 29. Probability distribution of cloud size for the same cloud catalog
from the simulation (shaded histogram) and the same observational sample
(unshaded, solid-line histogram) as in Figure 27. The dotted-line histogram is
the size distribution of the observational sample, excluding clouds with mass
Mcl<600 Me, the mass-completeness limit of the Outer-Galaxy survey. The
dashed line is a fit to the tail of the histogram from the simulation, with slope
−2.5±0.2, and the dashed–dotted line a fit to the observational size
distribution, with slope −2.3±0.3.

Figure 30. Equivalent radius vs. the three-dimensional cloud radius for all the
clouds in the same simulation sample as in Figures 27 and 29.
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we have not discussed the normalization of the velocity
structure functions of individual clouds. To address the velocity
normalization, we compute the internal rms velocity of our
clouds based on the velocity of their tracer particles. Being
derived from tracer particles, this rms velocity is mass-
weighted, which is a reasonable approximation when compar-
ing it with the antenna-temperature-weighted rms velocity from
MC observations. As in the observations, we compute the one-
dimensional (line of sight) rms velocity, in the direction
perpendicular to the plane (plane of the sky) where we measure
the equivalent radius.

Figure 31 shows the velocity–size relation of the clouds from
the simulation (empty circles) and from the observational
sample (filled circles). We have excluded all the observed
clouds with Re<4 pc, because the observations cannot detect
velocity dispersions smaller than approximately 0.5 km s−1,
due to the low velocity resolution. The lower envelope of the
velocity–size relation of both the simulation and the observa-
tions decreases with decreasing cloud size, and reaches the
value of 0.5 km s−1 at approximately 4 pc. Thus, the velocity
dispersion of a fraction of the clouds smaller than 4 pc may be
significantly overestimated, with that fraction growing toward
smaller cloud radii, causing an artificial flattening of the
velocity–size relation. As shown in Figure 6 of Heyer et al.
(2001), the velocity–size relation for the full sample is
essentially flat below 4 pc.

Values of σv from the simulation are not to be trusted for the
smallest cloud sizes, Re<2 pc, because of the increasing effect
of numerical dissipation toward smaller scales. The thin solid
line in Figure 31 shows the average values of σv in logarithmic
bins of Re. While it is nicely fit by a power law for Re>2 pc, it
clearly drops at smaller cloud sizes. This is consistent with the
cloud structure functions shown in Figure 14, where the
numerical dissipation starts to become important below
approximately 2 pc as well.

Despite these limitations imposed by the low velocity
resolution of the observations and the numerical dissipation

in the simulation, we still have a sufficient range in Re where
the simulation and the observations can be compared. Both the
upper and the lower envelopes of the velocity–size relation are
very similar in the two cases. Furthermore, the velocity
normalization is nearly identical. The thick solid and dashed
lines in Figure 31 show the least square fits of the average
values of σv in logarithmic bins of Re of the simulation (for
Re>2 pc) and of the observations (for Re>4 pc), respec-
tively. From the simulation we get

s =  - R1.34 0.04 km s 10 pc , 19v
1

e
0.39 0.03( ) ( ) ( )

and from the observations:

s =  - R1.34 0.06 km s 10 pc , 20v
1

e
0.48 0.06( ) ( ) ( )

so the velocity normalization at Re=10 pc is indistinguishable
in the two cases. This agreement between the simulation and
the observations in the slope, total scatter and normalization of
the velocity–size relation is strong evidence that SN driving
alone can be responsible for the turbulence observed in MCs.
The universality of the MC velocity normalization has been

questioned by Heyer et al. (2009), claiming that it depends on
column density, and thus that the velocity–size relation is
controlled by gravity rather than being a natural consequence of
the ISM turbulence. To further confirm the agreement between
the simulation and the observations, we show the velocity
normalization as a function of column density in Figure 32 (we
plot σv/Re

0.5 as in Heyer et al. (2009), even if the slope of the
velocity–size relation is actually smaller than 0.5). Because the
range of cloud column densities is similar in the two cases, we
should not expect a different normalization even if it depended
on surface density. Figure 32 shows a good overlap between
our clouds and the observations. We also plot the values for the
Galactic-Ring clouds in Roman-Duval et al. (2010) that have
an average surface density an order of magnitude larger than
the Outer-Galaxy clouds (note that the difference in surface
density is only a factor of five for equal cloud mass or size, and
could have been overestimated by a factor of two or three, as
explained in the opening of Section 10). The figure shows that

Figure 31. One-dimensional rms velocity vs. size of clouds selected from the
simulation (empty circles) and from the Outer Galaxy Survey (filled circles).
The cloud samples are the same as in Figures 27 and 29, but the observations
are shown only for Re>4 pc, because for smaller cloud sizes the lower
envelope of the velocity–size relation is not resolved by the observation (the
minimum value of σv that can be detected is ∼0.5 km s−1). The thin solid line
shows the mean values of σv in logarithmic bins of Re, and the thick solid line
is a fit to those values, giving a slope of 0.39±0.07. The dashed line is the fit
to the binned data from the observations, giving a slope of 0.48±0.06, and
exactly the same normalization as the simulation at Re≈10 pc.

Figure 32. Normalization of the velocity–size relation vs. column density. We
normalize the velocity dispersion with Re

0.5, instead of the shallower slopes
derived in Figure 31, to reproduce the plot in Figure 7 of Heyer et al. (2009).
Besides the data points from Figure 31 (this time including Outer-Galaxy MCs
with Re < 4 pc), we also show a sample of MCs from the Galactic Ring Survey
(Roman-Duval et al. 2010). The column density of the Galactic-Ring MCs is
on the average 10 times larger than that of the Outer-Galaxy MCs, yet the
velocity normalization is essentially the same.
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there is no difference in the velocity normalization of Galactic-
Ring and Outer-Galaxy MCs, despite the difference in surface
density. Thus, we conclude that the normalization of the
velocity–size relation of the MCs in our sample is consistent
with being controlled by SN-driven turbulence, rather than by
the clouds self-gravity. This result is in contradiction to the
claim that the velocity normalization of MCs scales with
surface density (Heyer et al. 2009), based on clouds from the
sample by Solomon et al. (1987), analyzed within rectangular
maps of different sizes, rather than a fixed antenna-temperature
threshold.

Besides being useful to derive the velocity normalization, the
observed velocity–size relation may also provide a rather
accurate estimate of the slope of the second order velocity
structure function. In Figure 33 we show the relation between
the velocity dispersion derived from the three-dimensional one,
s 3v,3D , and the three-dimensional cloud radius, Rcl. The
thick solid line is the least square fit to the average values of σv
in logarithmic bins of Rcl shown by the thin solid line. The fits
to the three-dimensional velocity–size relation for Rcl>1.6 pc
(where the relation is well approximated by a power law) gives

s =  - R1.19 0.04 km s 10 pc . 21v
1

cl
0.37 0.02( ) ( ) ( )

This relation is consistent with its two-dimensional counterpart
(apart from the lower normalization due to the fact that
Rcl>Re on average), so the observable relation can be
considered as a good estimate of the intrinsic three-dimensional
one. Furthermore, the slope of the relation (21) is also
consistent with the slope of the second order structure function,
z »3 2 0.37( ) , of the clouds from the simulation. Thus, we
conclude that the observed velocity–size relation provides an
estimate of the velocity scaling of MC turbulence, as long as it
is based on MCs with reliable distance measurements and
sufficient velocity resolution to detect the lower envelope of the
relation.

The velocity–size relation (21) implies the following
expression for the dynamical time of MCs as a function of
the cloud three-dimensional radius, using the definition (13) of

dynamical time adopted in Section 8:

=t R4.8 Myr 10 pc . 22dyn cl
0.63( ) ( )

Using the result of Section 8 that á ñ »t t 4life dyn , our velocity–
size relation implies that our largest MCs with sizes in the
range Rcl∼10–30 pc have lifetimes in the range
tlife∼19–38Myr.

10.4. Mass–Size Relation

The mass–size relation is plotted in Figure 34, this time
including all observed clouds above 100 Me. The values of Re

of the observed MCs have been divided by 10, to avoid overlap
with the clouds from the simulation. Because of the imposed
limit on the minimum cloud mass, the data is binned and fit
only for Re>2 pc for both the simulation and the observa-
tions. The resulting fits are

=  ´ 
M M R9.6 0.3 10 10 pc 23cl

3
e

2.55 0.03( ) ( ) ( )

for the simulation, and

=  ´ 
M M R10.9 0.7 10 10 pc 24cl

3
e

2.49 0.07( ) ( ) ( )

for the observations, so the slope of the mass–size relation from
the simulation is consistent with the observations. The
normalization of the mass–size relation depends on the
threshold antenna temperature of the observational sample
and the threshold density of the numerical sample. Of our MC
catalogs described in Section 3, the ones with

=n 200H,min cm−3 have the mass–size normalization closest
to that of the Outer-Galaxy MC sample by Heyer et al. (2001).
This is the reason why all plots in this section are based on the
highest-resolution catalog with that value of threshold density.
The total scatter in the relation is also similar between the

observations and the simulation, if we account for the facts that
the observational sample size is approximately twice as large as
the numerical one, and that we have not added any
observational uncertainty to the masses and sizes of the clouds
from our simulation. Because of the similarity in both the slope

Figure 33. Cloud rms velocity vs. cloud size for the same numerical cloud
sample as in the previous figures, but with both rms velocity and cloud size
measured in three-dimensional space, s s= 3v v,3D and Rcl. The thin solid
line shows the average σv in logarithmic intervals of Rcl, and the dashed line is
the fit to the binned values, with a slope 0.37±0.02 for cloud sizes
Rcl>1.6 pc.

Figure 34. Mass vs. size for the same numerical and observational cloud
samples as in Figure 31, but including all observed MCs with mass larger than
100 Me. The observational points have been shifted to the left by dividing the
observed values of Re by 10, to avoid the overlap with the numerical data
points. The thick solid and dashed lines are fit to the binned data of the
simulation and the observations respectively, for Re>2 pc. The thin, long-
dashed lines show two values of constant surface density.
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and the total scatter, we can conclude that the mass–size
relation resulting from SN-driven turbulence is consistent with
that of real MCs from the Outer Galaxy Survey. A similar
mass–size relation (though with a five times larger normal-
ization) was also derived from the Galactic Ring Survey
(Roman-Duval et al. 2010) and is implied by previous
estimates of cloud fractal dimensions from various observa-
tional surveys (e.g., Elmegreen & Falgarone 1996; Sánchez
et al. 2007) and from simulations of randomly driven
turbulence (e.g., Kritsuk et al. 2007; Federrath et al. 2009).

Combining the mass–size relation (23) with the dynamical
time expression in Equation (22), and adopting the average
value derived in Section 10.2 for the ratio between the two
definitions of cloud radius, Re=0.87 Rcl, we obtain the
following expression for the average dynamical time of MCs
as a function of cloud mass:

= t M M5.0 Myr 10 , 25dyn cl
4 0.25( ) ( )

hence the expression (18) for the average cloud lifetime as a
function of cloud mass anticipated in Section 8.

10.5. Virial Parameter

In Section 7, the virial parameter is computed with the three-
dimensional radius, Rcl. Here, as in most MC studies including
Heyer et al. (2009), we define an observable version of the
virial parameter using the equivalent radius, Re, and thus refer
to it as avir,e. The dependence of avir,e on Mcl is fully
determined by the velocity–size and mass–size relations
presented above. Nevertheless, it is presented here as an
alternative view of the comparison of the simulation with the
observations, and to suggest an empirical calibration of the
virial parameter of MCs.

The values of avir,e are plotted versus Mcl in Figure 35 for
both the simulation (empty circles) and the observations (filled
circles). The most striking feature of this plot is the very large
scatter in the values of avir,e at a fixed cloud mass, growing
with decreasing cloud mass, which is a direct consequence of
the large scatter in the velocity–size relation. As in that relation,
the lower envelope for the observational data is limited by the

smallest value of σv to which the observations are sensitive,
σv≈0.5 km s−1. The dashed–dotted line in Figure 35 shows
the minimum value of avir,e as a function of Mcl, computed by
setting Re as a function of Mcl using the average mass–size
relation from the previous section and setting σv=0.5 km s−1.
The virial parameter would be independent of mass if the

velocity size relation were s ~ Rv e
1 2 and the mass–size

relation were Mcl∼Re
2, the often assumed form of the Larson

relations. However, the mass–size relation is such that the
cloud surface density grows with mass, as shown in the
previous section, causing the decrease of avir,e with increasing
Mcl seen in Figure 35, only partly mitigated by the exponent of
the velocity–size relation being a bit smaller than 0.5. The
upper envelope in Figure 35 is even steeper than the average
decrease of virial parameter with mass, as a consequence of the
nearly flat upper envelope of the velocity–size relation. The
dashed line in Figure 35 shows the expected upper envelope
based on the mass–size relation and a maximum rms velocity
of 2.5 km s−1 that is representative of some of the largest values
in both the simulation and the observations.
Once we account for the minimum velocity dispersion in the

Outer-Galaxy Survey, the relation of avir,e with Mcl and its
scatter for the clouds from the simulation are consistent with
those for the observed Outer-Galaxy MCs, as expected from
the agreement found in the velocity–size and mass–size
relations. This agreement suggests the possibility of an
empirical calibration of the observed values of the virial
parameter based on the results of our simulation. We have
shown in Section 7 that the virial parameter computed with the
radius Rcl is a » E E1.2 2vir k g( ). We have also shown in this
section that, on the average, »R R 0.87cl e , thus we derive this
useful result for the relation between the observed virial
parameter based on the equivalent cloud radius and the energy
ratio:

a»
E

E

2
0.96 26k

g
vir,e ( )

(assuming negligible saturation of the observed lines, such that
the rms velocity can be assumed to be approximately mass
weighted). Bertoldi & McKee (1992) modeled extensively the
coefficient of the virial parameter of clumps, depending on the
mass profile and the ellipticity of the clumps. Given their
complex structure, MCs are not described by radial density
profiles and ellipticity parameters as easily as compact clumps,
so an empirical calibration based on simulations as proposed
here is needed.

11. OVERVIEW OF RESULTS AND CONCLUSIONS

The main goal of this work is to test if ISM turbulence driven
only by SN explosions can explain the turbulence observed
within MCs. We have addressed this question with an AMR
simulation representing an ISM volume of (250 pc)3 and
reaching a maximum resolution of 0.24 pc, with refinement
based on density, density gradients and pressure gradients to
resolve individual SN remnants and their interaction with the
dense gas. We have studied the SN-driven turbulence over the
whole volume and within individual clouds. We have compiled
12 different catalogs of MCs selected from the simulation using
four different values of threshold density and three different
spatial resolution. The properties of these clouds have been
studied using tracer particles, hence taking advantage of the full

Figure 35. Virial parameter vs. mass for the same clouds as in Figures 34. The
dashed line shows a predicted upper envelope assuming that the largest
velocity dispersion is ∼2.5 km s−1 (independent of cloud mass) and adopting
the fit to the mass–size relation from Figures 34. The dashed–dotted line shows
the predicted lower envelope, also based on the mass–size relation and
assuming a minimum velocity of ∼0.5 km s−1, as in the observations.
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resolution of the simulation. First we presented cloud properties
based on particle position, velocity, and magnetic field values
measured in three-dimensional space; then, we carried out a
comparison with real MCs from the Outer Galaxy Survey by
measuring projected quantities, such as the line of sight
velocity dispersion and the equivalent radius. Our results are
summarized in the following.

1. Near equipartition of total energies in the whole volume
results in a distinct energy separation in the dense gas.
While the overall ISM turbulence is trans-Alfvénic and
mildly supersonic, the turbulence in the dense gas is
highly supersonic and super-Alfvénic.

2. Approximately 11% of the total kinetic energy is
transferred to the dense gas, even if most SN explosions
occur at low densities. The dense gas has an average
velocity dispersion of 8.5 km s−1.

3. During the rapid expansion of an SN remnant, the
velocity power spectrum may briefly show strong features
at different scales. During most of the time the power
spectrum is statistically relaxed and develops a power-
law inertial range that scales with wavenumber as

µ -E k k 1.46( ) , between approximately 20 and 60 pc.
4. Unlike previous studies of compressible turbulence, the

power spectrum of the compressive component of the
velocity, µ -E k kc

1.98( ) , is much steeper than that of the
solenoidal component, µ -E k ks

1.31( ) . The baroclinic
effect is the best candidate to explain this result, as
previous simulations of supersonic turbulence adopted
equations of state where such effect was absent.

5. SN driving is not purely compressive. The curl of the
forcing is the baroclinic term that is comparable to or
larger than the divergence of the forcing (except in the
unrealistic cases of a uniform-density medium or a
barotropic equation of state). As a result, the power in
solenoidal modes exceeds that in compressive modes
almost at any time and any wavenumbers (at the scale of
20 pc, ~E E 0.2c s ). Thus, isothermal simulations of
turbulent fragmentation based on random solenoidal
driving are a much better approximation of MC
turbulence than isothermal simulations with purely
compressive driving.

6. The time-averaged energy-injection scale of SN-driven
turbulence is approximately 70 pc with our SN rate (may
be larger with a smaller SN rate, or vice-versa), and
oscillates in time between 50 and 100 pc.

7. The scaling exponents of the first and second order
structure functions of velocity, relative to the third order
one, in SN-driven turbulence are consistent with those
found in supersonic turbulence driven by an idealized,
random volume force, which supports the validity of
turbulent fragmentation and star formation studies where
the ISM turbulent cascade within MCs was modeled with
such an idealized driving.

8. Based on a new scheme to compute density-weighted
velocity structure functions, we obtain a third order
exponent close to unity, as in the incompressible
Kolmogorovʼs “4/5 law.” Thanks to the AMR method
and to this density-weighting scheme, the structure
functions probe the inertial range of MC turbulence
down to a scale of 2–3 pc, while previous studies of SN-
driven turbulence did not resolve an inertial range and
only addressed the relative scaling.

9. The scaling of the velocity structure functions within
individual MCs selected from the simulation is generally
consistent with the scaling derived from MC observa-
tions. However, deviations are found for MCs directly
affected by recent SN remnants.

10. The ratio of cloud virial parameter and kinetic to
gravitational energy ratio is a =E E2 1.2vir k g( ) , inde-
pendent of energy ratio and mass (see point 15 for the
observable virial parameter). This structural property of
MCs is not significantly affected by self-gravity during
the duration of our simulation, where self-gravity is
included in the final 11Myr, corresponding to about two
average cloud free-fall times. The ratio becomes very
large only in a small fraction of clouds with αvir  10,
where self-gravity causes the collapse of dense cores.
Even in these star-forming clouds, there is no evidence of
global cloud collapse. Self-gravity only causes a slight
shift toward larger densities of the probability distribution
of cloud densities.

11. The formation and dispersion times of MCs are of the
order of two cloud dynamical times. Equivalently, the
cloud lifetime, defined as the sum of formation and
dispersion times, is approximately four cloud dynamical
times. This is evidence indicating that SN-driven
turbulence is responsible for cloud formation and
dispersion, with little influence from self-gravity visible
during the duration of our run. Future work, with longer
runs, is needed to determine to what extent this remains
true for longer periods of time.

12. The clouds have a mean magnetic field enhanced only by
a factor of two relative to the mean magnetic field in the
simulated volume The turbulence is super-Alfvénic for all
clouds more massive than approximately 103Me.

13. The comparison with the MC sample from the Outer
Galaxy Survey shows that clouds selected from the
simulation have properties consistent with the observa-
tions, such as the mass and size distributions, the
velocity–size and mass–size relations, and the depen-
dence of virial parameter on cloud mass. In our run, these
properties, including the normalization of the velocity–
size relation, are essentially the same for clouds selected
either before or after the inclusion of gravity in the
simulation; they are primarily the result of SN-driven
turbulence, with only a minor contribution from self-
gravity.

14. The normalization of the velocity–size relation does not
depend on surface density in the simulation, nor in the
observations. It is the same for MCs from the Outer
Galaxy Survey as for those in the Galactic Ring Survey
whose surface density is significantly higher.

15. The simulation provides a calibration of the observable
virial parameter, avir,e, based on the equivalent radius,
which allows a derivation of the energy ratio from
observational quantities, a»E E2 0.96k g vir,e.

Based on these results from the simulation and given its
successful comparison with the Outer Galaxy Survey, we
conclude that the SN-driven turbulence in our simulation is
consistent with the observed MC turbulence during the
duration of our experiment. Although other energy sources
are present in galaxies, and local radiative and mechanical
feedbacks also play a role in the dispersion of star-forming
MCs, the origin, evolution and internal dynamics of MCs in our
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run are primarily the consequence of SN-driving, which is able
to sustain turbulence at observed levels without help from those
extra energy sources.
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