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Rheological behavior of colloidal suspension with long-range interactions
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In this work, we study the constitutive behavior of interacting colloidal suspensions for moderate and high
concentrations. Specifically, using a lattice Boltzmann solver, we numerically examine suspensions flowing
through narrow channels, and explore the significance of the interaction potential strength on the system’s
macroscopic response. When only a short-range interaction potential is considered, a Newtonian behavior is
always recovered and the system’s effective viscosity mostly depends on the suspension concentration. However,
when using a Lennard-Jones potential we identify two rheological responses depending on the interaction
strength, the volume fraction, and the pressure drop. Exploiting a model proposed in the literature we rationalize
the simulation data and propose scaling relations to identify the relevant energy scales involved in these transport
processes. Moreover, we find that the spatial distribution of colloids in layers parallel to the flow direction does
not correlate with changes in the system macroscopic response; but, interestingly, the rheology changes do
correlate with the spatial distribution of colloids within individual layers. Namely, suspensions characterized
by a Newtonian response display a cubiclike structure of the colloids within individual layers, whereas for
suspensions with non-Newtonian response colloids organize in a hexagonal structure.
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I. INTRODUCTION

Transport of particles in confined geometries appears in
many technological and biological processes [1,2]. Examples
span from engineering applications such as the injection of
fuel in engines, energy harvesting devices [3] and microflu-
idics [4] to physiological processes such as blood flow through
vessels [5–8] and ionic pumping transport in channels [9]. In-
terestingly, the rheology of all these systems is quite complex
when compared to that of Newtonian fluids due to the stresses
induced by the interactions among suspended particles. Ac-
cordingly, these systems are usually grouped under the lemma
of soft glassy materials that includes concentrated emulsions,
foams, colloids, and even macroscopic granular assemblies
[1,2].

In the last decade, a number of experimental techniques
were introduced, allowing us to capture the rheology of soft
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glassy materials such as x-ray tomography [10–12], dynamic
light scattering [13], magnetic resonance imaging [14,15],
and high-frequency ultrasonic speckle velocimetry [16]. In
particular, previous outcomes [13–22] demonstrate that the
rheological response of colloidal suspensions is very sensitive
to the confining conditions, as well as, strongly depending
on the system composition. On one hand, for low volume
fractions of the dispersed phase the Newtonian response is
generally recovered. On the contrary, upon increasing volume
fraction the interactions among particles begin to play a role.
As a result, particles rearrangements occur, which leads to
nonlinear macroscopic response and enhancing of the yield
stress. Several research groups have proposed to rationalize
these complex response, assuming that the macroscopic flow
is produced by a succession of local elastic deformations
and irreversible plastic rearrangements [23–31]. Thus, these
events cause long-range stress fluctuations over the system,
which create localized fragile zones where the system flows.
Moreover, correlations between those plastic events have been
detected [32]. In particular, Goyon et al. [14,15] characterized
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the rheology of soft glassy materials confined between parallel
plates by introducing a nonuniform effective field named
nonlocal fluidity.

In this paper, we go one step further exploring the flow
of soft glassy materials in a confined geometry. We numeri-
cally examine three-dimensional (3D) suspensions of colloids
flowing through narrow channels at low Reynolds number,
focusing on the relevance of the interaction potential among
suspended colloids on the overall rheology of the system.
Our results show that the interactions among colloids strongly
affect the rheology of the system and lead to a non-Newtonian
response even at smaller volume fractions, compared to sys-
tems of noninteracting colloids. Interestingly, we find that
the onset of the non-Newtonian response is controlled by
the ratio between the magnitude of the applied pressure drop
and the magnitude of the colloid-colloid interaction potential.
When the attractive interaction potential is strong, for low
values of the pressure drop the system shows a non-Newtonian
response whereas upon increasing the pressure drop it even-
tually displays a Newtonian behavior. Finally, in order to
capture the velocity profile in the non-Newtonian regime we
exploit a previous mentioned model [14,15] that account for
inhomogeneous transport coefficients of the fluid. It is worth
mentioning that a similar effort was carried out in two dimen-
sions, exploring the rheological response of droplets [33].

II. COLLOIDAL SUSPENSION FLOWING THROUGH A
NARROW CHANNEL (LATTICE BOLTZMANN SCHEME)

The system under study is composed by N colloidal parti-
cles of radius R, suspended in a Newtonian fluid (see Fig. 1).
The system is confined by solid walls along the z direction
and periodic boundary conditions are applied along x and
y. A lattice Boltzmann (LB) approach is used to model the
fluid. This method recovers the solution of the Navier-Stokes
equations, and it has provided significant results examining
the rheological response of complex liquids [34–39].

FIG. 1. Illustration of the colloidal suspension, which moves
driven by a pressure drop �p

L
acting on the Y direction. The system

is confined in the Z direction by solid walls and periodic boundaries
condition are imposed on X and Y directions.

According to the LB scheme the fluid dynamics is read
out from the single-particle distribution function f (�r, t ) [35].
Hence, at each lattice node, the discretized distribution func-
tion fi (�r, t ) evolves at discrete time steps �t as,

fi (�r + �ci�t ; t + �t ) = fi (�r; t ) + �ij

(
f

eq

j (�r; t ) − fj (�r; t )
)
.

(1)

Note, this evolution rule accounts for the linear momentum
streaming to the neighbors nodes j due to the liquid advection
motion of velocity �ci . Moreover, a collision operator �ij rules
the relaxation process toward an equilibrium state, character-
ized by f

eq

j (�r; t ). In computing, we use LUDWIG [35,40] a
lattice Boltzmann implementation, which is able to reproduce
the behavior of complex fluids, and include a multirelaxation
collision operator �ij [40]. The system geometry is a 3D
cubic lattice with 19 allowed velocities �ci known as D3Q19

scheme [35]. We use units such that the mass of the nodes, the
lattice spacing, and the time step are one and the kinematic
viscosity is ν. Thermal fluctuations kBT �= 0 are incorporated
in the lattice Boltzmann model adding an additional noise
term ξi (kBT ) in Eq. (1) [41]. This additional contribution
introduces fluctuations in the populations in each phase-space
cell. The stochastic properties of this term are chosen to
ensure that the fluctuation dissipation theorem in equilibrium
is satisfied [41,42].

As mentioned above, the system is confined by solid walls
on the z direction. To compare with experimental condi-
tions, appropriate boundary conditions at the walls are needed
[40,43]. In LUDWIG walls are implemented by applying so-
called stick boundary conditions [40]. Thus, during propaga-
tion, the component of the distribution function that would
propagate into the wall node is bounced back and ends up back
at the fluid node but pointing in the opposite direction. This
procedure produces stick boundary conditions at the middle
point of the vector joining the wall and fluid nodes.

The rheological response of the colloidal suspensions is
realistically modeled, assuming that the solid particles inter-
act with the surrounding fluid also through bounce-back on
the links. Hence, the total force and torque acting on the
colloid are determined using the mechanical constraint that
the momentum exchange between the solid particle and the
nodes from bounce-back vanishes. The interaction between
the colloids is defined by two interaction potentials. A short-
term soft potential that reads as,

vSP =
{

εSP

(
σSP

r

)νo
r < R + rc

0 else
, (2)

where εSP accounts for the strength of the contact interaction,
σ is the length scale and ν0 characterize the range of the
particle-particle interaction. The numerical implementation
of the interaction potential Eq. (2) ensures colloids do not
overlap at the hard-core radius R when introducing a so-
called hydrodynamic radius Rh [44]. In general, simulating
multiparticle suspension all distance calculations are based on
the hydrodynamic radius Rh, and to obtain accurate results
it is then essential to use a calibrated value [45], which
is typically larger than the physical radius R. Besides this,
vSP is truncated at a cutoff distance of rc = 0.25 (in lattice
units). Additionally, a long range of interaction Lennard-Jones
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potential is also used,

vLJ = 4εLJ

((
σLJ

r

)12

−
(

σLJ

r

)6)
, (3)

where εLP accounts for the strength of the contact interaction.
Accordingly, a pair of forces �Fij = − �Fji with equal magni-
tudes |∇vLJ |, is applied to interacting colloids at a distance
r , but vLJ is truncated at a cutoff distance of rc = 5R. In all
cases presented here the values of σSP = 1.0, ν0 = 1.0, σLJ =
2Rh, R = 5.0, and Rh = 5.2 (in lattice units) are fixed. Note
that using those parameter values the interaction potentials
Eq. (2) and Eq. (3) are mainly locally repulsive and long-range
attractive, respectively.

In the simulations N = 1000 colloidal particles are ini-
tially distributed in random positions inside the simulation
box whose dimensions along x and y (w = wx = wy) are
adjusted in order to attain the desired volume fraction, φ ∈
[0.30, 0.52], whereas for the confining direction we fixed
h = 104 nodes. Fluid parameters are chosen to ensure a low
Reynolds number Re = Vmh/ν where ν is the fluid kinematic
viscosity and Vm is the maximum velocity, which is measured
at the center of the channel. The fluid is subject to a pressure
gradient along the y direction, �p

L
, which results in a uniform

force parallel to the walls, mimicking a pressure driven flow
that pushes the colloidal particles through the channel. The
force induces the flow of the suspension, which reaches a
steady state after a short transient. In the following, all the
values of pressure gradient �p

L
are in lattice units (ρkBT /l

being l the lattice unit and ρ the number density of the fluid).
In the following we consider a pressure gradient �p

L
= 5 ×

10−5ρ kBT
l

that corresponds to a pressure gradient of �p

L
�

6 × 103Pa/m. We remark that this value of the pressure drop
is well within the typical experimental range (see Ref. [46]).

III. NONUNIFORM RHEOLOGICAL FORMULATION

In general, the rheological response of a liquid with negli-
gible yield stress reads as,

σ (z) = μ(γ̇ (z)) γ̇ (z), (4)

where the shear strain γ̇ (z) is defined as

γ̇ = ∂vy (z)

∂z
(5)

and μ(γ̇ (z)) is the effective viscosity.
Goyon et al. [14,15] examined the rheological behavior

of complex flows introducing a novel nonuniform flow rule.
According to Refs. [14,15], the fluidity f (z) is defined as the
ratio between shear rate and shear stress

f (z) = γ̇ (z)

σ (z)
= 1

μ(γ̇ (z))
(6)

having the dimension of inverse viscosity. Moreover, the
model postulates that the fluidity f (z) is the solution of:

f (z) = fbulk + ξ 2 ∂2f (z)

∂2z
(7)

and it depends parametrically on ξ (the so-called fluidity
length) and fbulk. We remark that in our case the limit ξ → 0
corresponds to a Newtonian fluid. Here, we study numerically

a pressure driven flow in a rectangular channel with height h.
In that geometry, the shear stress varies spatially according to

σ (z) = −�p

L
z, (8)

where �p

L
is the constant pressure gradient along the channel.

Note that two boundary conditions are needed to obtain the
solution of the fluidity, Eq. (7) and one boundary condition
for the velocity profiles vy (z). Using the numerical data, we
deduce the wall fluidity estimating the velocity gradient at
the wall γ̇ (±h/2) = γ̇w, finding f (−h/2) = f (h/2) = fw =
σ (±h/2)

γ̇w
. Thus, using Eq. (8) the solution of Eq. (7) reads

f (z) = fw − fbulk

cosh
(

h
2ξ

) cosh

(
z

ξ

)
+ fbulk. (9)

Finally the velocity profiles vy (z) can be analytically de-
duced form Eq. (4), using the momentum balance Eq. (8), and
obtaining

dvy (z)

dz
= �p

L
z

(
fw − fbulk

cosh
(

h
2ξ

) cosh

(
z

ξ

)
+ fbulk

)
. (10)

Each particular solution of Eq. (10) involves an integration
constant that we fix by imposing that the velocity at the
center of the channel Vm = vy (0) matches the one obtained
from the numerical simulations. We remark that following
this procedure the velocity profiles within the channel vy (z)
is totally determined by the values of fluidity length ξ and
bulk viscosity fbulk, which will be used as fitting parameters
when comparing the LB numerical results with Eqs. (5)–(9).

IV. RESULTS AND DISCUSSION

In the simulations, the colloidal suspension is subject to a
constant pressure gradient �p

L
, which induces the flow. In gen-

eral, we obtain that the suspension yield stress is practically
zero and after a short time, a steady state is reached.

First, we characterize the rheology of the system in the
absence of long-range interactions (εLJ = 0). For such a
regime, the system shows a Newtonian response regardless
the strength of the short-range interaction εSP . As shown in
Fig. 2, the velocity profiles obtained for different volume
fractions all collapse on a parabola, i.e., the system behaves
as a Newtonian fluid. Interestingly, the data indicate that the
effective viscosity ηeff = h2

8Vm

�p

L
increases monotonically with

the volume fraction φ. As expected, for small values of φ the
dependence of ηeff (φ)/ηo is compatible with Batchelor’s for-
mula [47] whereas for larger values of φ it is better captured
by [48]

ηeff = η0

[
1 − φ

1 − cφ

]− 5
2

, (11)

where c = 1−φc

φc
and φc � 0.74, which is the maximum pack-

ing fraction of hard spheres in three dimensions. For compar-
ison, the expressions proposed by Quemada [49] and Krieger
[50] are also included. Our results show the colloids are not
homogeneously distributed across the channel, rather they
accumulate at specific locations [see the points location in
Fig. 2(a)]. Indeed, for the largest value of φ that we explore,
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FIG. 2. (a) Velocity profiles obtained numerically. The data
correspond to colloidal suspensions without long-range interaction
(εSP = 0.5 and εLJ = 0), �p

L
= 5 × 10−5, εSD = 0.5. Outcomes for

several volume fractions φ are shown. The velocity values are
rescaled with the maximum velocity Vm and compared with a typical
Newtonian response. (b) The maximum velocity Vm(φ) as a function
of φ is illustrated, the values are rescaled with Vm(0) = h2

8η0

�p

L
. In

the inset the values of effective viscosity ηeff/ηo are compatible with
the Batchelor’s analytic prediction for non-Brownian suspension. ηo

is the viscosity of the liquid, i.e., ηo = ηeff (0).

the interparticle distance along the z direction is smaller than
the particles diameter 2R, suggesting that the particles are
spatially distributed in a honeycomblike structure. Such an
observation justifies the value of φc = 0.74 used in Eq. (11).
We argue the system linear response is expected because the
volume fraction φ is still low. We remark that non-Newtonian
response was found experimentally for systems with φ > 0.62
[14,15].

Next, we turn on the long-range Lennard-Jones interaction
potential with strength εLJ [see Eq. (3)]. Figure 3 summarizes
a systematic study, exploring the macroscopic response of
the system varying εLJ , while keeping constant the pressure
gradient �p

L
= 5 × 10−5 and the volume fraction φ = 0.52.

Interestingly, the strength of long-range interaction potential
εLJ has a significant impact on the macroscopic rheological
response, as shown in Fig. 3(a), or alternatively in Fig. 3(b).
In contrast, the maximum velocity is not sensitive to the
magnitude of the short-range interaction εSD [see insets of
Fig. 3(a) and Fig. 3(b)]. In particular, Fig. 3(a) shows that
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FIG. 3. Maximum velocity Vm (a) in the channel as a function
on εLJ , keeping εSD = 0.5, the values are rescaled with the maxi-
mum velocity obtained for εLJ = 0. (b) The corresponding effective
viscosity ηeff , the values are rescaled with ηeff (εLJ = 0). The insets
illustrates the same but as a function of εSD keeping εLJ = 0.

the maximum velocity decreases and effective viscosity [see
Fig. 3(b)] grows upon increasing εLJ . More interesting, a
nonuniform rheological response is typically found when
εLJ �= 0.

In order to rationalize the simulations data, we use the
model presented in Sec. III. Figure 4(a) illustrates the velocity
profiles obtained numerically, for different values of εLJ

at constant volume fraction φ = 0.52 and pressure gradient
�p

L
= 5 × 10−5. For comparison, in each case the analytic

solution of Eq. (10) is also included. Interestingly, upon
increasing εLJ the velocity profiles depart from the Poiseuille-
like profile typical of Newtonian fluids and a plateau sets at
the center of the channel. Moreover, it correlates with the
increasing of the shear rate close to the walls. We fit the
velocity profiles using Eqs. (5)–(9), while fbulk and ξ are
fitting parameters. Figure 4(b) shows the bulk fluidity profiles
f (z), i.e., Eq. (9), normalized by f ∗

bulk(φ) = 1
ηeff (φ) where

ηeff(φ) is calculated using Eq. (11). Interestingly, Fig. 4(b)
shows that for larger values of εLJ the value of the fluidity
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FIG. 4. System response obtained varying the strengths of long-
range interaction εLJ , at constant φ = 0.52 and �p

L
= 5 × 10−5.

(a) Velocity profiles numerical (symbols) compared with the analytic
predictions (lines) solution Eq. (10), see (b) for the color legend. In
(b) the corresponding fluidity f (z) profiles Eq. (7) are shown.

is quite reduced and its profile becomes nonuniform all along
the channel transverse direction. The dependence of the fitting
parameters, namely fbulk and ξ on εLJ is referred to further in
the text.

Exploring the dependence of the onset of non-Newtonian
regime on the suspension volume fraction φ, we perform
simulations varying φ, for εLJ �= 0. Figure 5(a) shows the
velocity profiles obtained numerically for different values of
φ, keeping constant the strength of Lennard-Jones potential
εLJ = 0.2 and the pressure gradient �p

L
= 5 × 10−5. For

comparison, in each case the analytic solution of Eq. (10)
is also included. As expected, the velocity profiles [see
Fig. 4(a)] deviate from the Newtonian regime upon increasing
the volume fraction φ. The corresponding fluidity profiles [see
Fig. 4(b)] are nonuniform along the transverse section of the
channel, highlighting the onset of the non-Newtonian regime.
Interestingly, when εLJ �= 0 the non-Newtonian response is
detected for volume fractions notably lower than φ = 0.62,
which is the critical value obtained experimentally, in the
absence of long-ranged interactions [14,15].

Complementarily, we simulate cases varying the pressure
drop �p

L
at constant φ = 0.52 and εLJ = 0.2. The velocity

and fluidity profiles are presented in Fig. 6(a) and Fig. 6(b),
respectively. Interestingly, the non-Newtonian response is
attained for smaller values of �p

L
, suggesting that in that

regime the particle-particle interaction potential is dominant.
Whereas the linear response is recovered for large values
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(lines) solution of Eq. (10), see (b) for the color legend. In (b) the
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FIG. 6. System response obtained varying the pressure drop �p
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at constant φ = 0.52 and εLJ = 0.2. (a) Velocity profiles numerical
(symbols) compared with the analytic predictions (lines) solution
Eq. (10), see (b) for the color legend. In (b) the corresponding fluidity
f (z) profiles Eq. (7) are shown.

of �p

L
, where the liquid-mediated hydrodynamic interactions

play the most significant role.

A. Onset of the nonuniform rheological behavior

Next, we identify the onset of nonuniform rheological
response, as well as the interrelationship between the external
forcing, �p

L
, Lennard-Jones potential, εLJ , and volume frac-

tion, φ. As a first step, we clarify the significance of the three
energy scales of the system, namely the thermal energy, kBT ,
the long-ranged interaction strength εLJ , and the energy, E,
associated to the viscous forces. Indeed the latter can be easily
expressed via its time derivative, namely the dissipated power:

Ė = fd〈V 〉 × 〈V 〉 = 6πηlR〈V 〉2, (12)

where ηl is viscosity of the fluid phase ηl = η0 and 〈V 〉 is the
mean velocity of the fluid, which can be estimated in terms of
the effective viscosity of the suspension ηeff (φ), and reads as

〈V 〉 = 2

3

(
h2

8ηeff (φ)

�p

L

)
, (13)

the average speed of a Newtonian fluid in a rectangular chan-
nel. In order to obtain an energy scale, we multiply Eq. (12)
by the characteristic advective time τ = rm−σLJ

〈V 〉 , where rm ≈
1.122σLJ is the distance at which the long range potential
reaches its minimum (maximum attraction). As a result we
obtain,

E = 6πη0(rm − σLJ )R〈V 〉. (14)

For the cases under scrutiny, both E and εLJ are much larger
then kBT , hence, the latter can be disregarded. Accordingly,
we are left with two energy scales, namely the dissipative en-
ergy, E and the strength of long-range interaction εLJ . When
εLJ � E we expect that the local inhomogeneity promoted
by the long-range interactions will be suppressed due to the
action of the external force and hence the linear response
should be recovered. In contrast, when εLJ � E we expect the
onset of nonlinear response due to the local rearrangements in
the colloidal density induced by the long-range interactions.
Accordingly, substituting Eq. (13) into Eq. (14) and equating
it to εLJ provides an estimate for the onset of pressure for the
non-Newtonian response,

�p∗

L
= 2

ηeff (φ)εLJ

πη0(rm − σLJ )Rh2
. (15)
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� =
√∑

(vi−vp )2

n
less than 5%, where vi and vp are the numerical

results and the model prediction, respectively. The values of ε∗
LJ ,

�p∗
L

, and f ∗
bulk used in each case are explained in the text.

Whereas for fixed εLJ and �p

L
the critical value of volume

fraction reads:

φ∗ = χ
2
5 − 1

χ
2
5 − c + χ

2
5 c

(16)

with

χ = π (rm − σLJ )Rh2

2εLJ

�p

L
. (17)

While for fixed �p

L
and φ [using Eq. (11)] the critical values

of the Lennard-Jones potential:

ε∗
LJ = E =πη0(rm − σLJ )Rh2

2ηeff (φ)

�p

L
. (18)

For clarity reasons, Fig. 7 summarizes, the values of the
fluidity length ξ in units of 2R, and bulk fluidity fbulk, used
to fit the nonuniform model [Eq. (9) and Eq. (10)] to the
numerical data of Fig. 4, Fig. 5, and Fig. 6.

In particular, Fig. 7(a) corresponds to the data shown in in
Fig. 4, i.e., when changing εLJ with constant φ = 0.52 and
�p

L
= 5 × 10−5. In this case, the values of εLJ are rescaled

by the characteristic energy ε∗
LJ [see Eq. (18)] and fbulk is

normalized by the bulk fluidity calculated using Eq. (11),
f ∗

bulk = 1/ηeff (φ). It is noticeable that introducing the long-
range interactions potential leads to the increasing of the
fluidity length ξ and the reduction of the bulk fluidity fbulk.
Interestingly, we found that there is a threshold value εLJ ≈
0.4ε∗

LJ (βεLJ � 500) above which the fluidity length, ξ , is
of the order of a few particle diameters whereas for εLJ �
0.4ε∗

LJ we have that ξ becomes vanishing small. Moreover,
for εLJ < 0.4ε∗

LJ we have fbulk/f
∗
bulk � 1 whereas for εLJ >

0.4ε∗
LJ the bulk fluidity strongly diminishes [see inset of

Fig. 7(a)].

Figure 7(b) shows how the onset of nonuniform rheology
depends on the suspension volume fraction, φ, for fixed
εLJ = 0.2 and �p

L
= 5 × 10−5 (corresponding to Fig. 5). The

values of fbulk are rescaled with f ∗
bulk = 1/ηeff (φ), where

φ = 0.42, i.e., the lower explored value. Moreover, the values
of volume fraction are rescaled with φ∗, which is estimated
using Eq. (18). Figure 7(b) shows that high values of φ, which
represent the most confined situation, leads to lower values
of bulk fluidity fbulk and larger effective viscosity. Moreover,
an abrupt change in the nonuniform fluidity length ξ is de-
tected for an specific value of volume fraction. These results
suggest that the onset of the non-Newtonian regime is due
to a nontrivial coupling between the long-range interactions
among colloids and the confinement. In particular, for �p

L
=

5 × 10−5 and εLJ = 0.2, we find non-Newtonian rheology
sets for values of φ above the threshold value 0.75φ∗.

Finally, Fig. 7(c) summarizes the results varying the forc-
ing, �p

L
(corresponding to Fig. 6). As we pointed out earlier,

for weak values of �p

L
the system shows a non-Newtonian

response, switching to a Newtonian one upon increasing
�p

L
. Interestingly, Fig. 7(c) shows that the onset of the non-

Newtonian rheology �p

L
≈ 2 �p∗

L
where we evaluate εLJ =

0.2 and φ = 0.52 in the scaling function �p∗
L

Eq. (15). These
results validate the consistency of our analysis.

B. Suspension morphology

The balance between the energy input and internal dis-
sipation always leads to steady-state regimes, but revealing
diverse flow morphologies. Thus, we examine the one-point
correlation function gz(z), i.e., the probability that a colloid
lies at a given distance z from the wall averaged over the x-y
plane. Note that gz(z) is proportional to an average volume
fraction profile. Moreover, we quantify the degree of local
ordering on the x-y plane, by means of the radial distribution
function gxy (r ), which accounts for the probability of finding
two colloids separated by distance r =

√
�x2 + �y2, regions

of width �z = 2R. Complementarily, we describe the local
structural order in the x-y plane, by using the hexatic order
parameter �6, defined as,

�6 =
∣∣∣∣∣∣

1

N

N∑
j=1

ϕ6(�rj )

∣∣∣∣∣∣ (19)

with

ϕ6(�rj ) = 1

nj

nj∑
k=1

exp (i6θjk ). (20)

In the above equation, θjk is the angle between the neighbors
k of each particle j . Specifically, the sum runs over the nj

neighbors at a distance r < 1.1 × D, where D = 2R. Thus,
�6 is obtained averaging the result of the N particles of the
layer.

First, we discuss the case without long-range interaction
(εLJ = 0). Figure 8(a) illustrates the correlation function
profiles gz(z) obtained for different volume fractions. For
comparison, we also show the gz(z) obtained initially, when
the colloids are distributed in random positions inside the
simulation box. We find that for systems with high volume
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FIG. 8. Correlation functions profiles, obtained in the absence of
long-range interactions (εLJ = 0). (a) One-point correlation function
gz(z) profiles for φ = [0.30; 0.34; 0.42; 0.52]. Radial distribution
function gxy (r ) profiles, obtained for (b) φ = 0.3 and (c) φ = 0.52.

fraction, the profiles of gz(z) show local peaks, which denotes
a pronounced layerlike ordering and the strong degree of cor-
relation between colloid movement and the walls. Figure 8(a)
also shows that for higher values of the volume fraction
the distance among the layers �h ≈ 9.45 is slightly smaller
than 2R, which suggests that the colloids are ordered as in
a honeycomb lattice. Interestingly, the high of the peaks of
gz(z) is not uniform and the peaks close to the walls become
larger than those close to the channel axis upon increasing the
volume fraction. Moreover, as the volume fraction decreases
(by increasing the channel width W with constant number of
particles), the amplitude of the peaks of gz(z) reduces, which
indicates loss of layering. Thus, at the smallest channel width
(φ = 0.30), the layering across the system practically breaks
down and the walls no longer induce well-ordered layering
in agreement with previously reported numerical [18,51–53]
and experimental [10,54–57] studies. Complementarily, in
Fig. 8(b) and Fig. 8(c) the degree of local ordering on the x-y
plane is studied using radial distribution function gxy (r ), for
two extreme values of volume fraction. Note that the maxi-
mum of the curves are always located at values of 2R, which
are multiples of the particle diameter, suggesting that a cubic
phase is dominant in the horizontal structure. As expected, it
is found that the changes in the two-point correlation function
correlates with the differences in the hexatic order parameter,
�6 (see legends in Fig. 8).

In previous studies, this particle layering has been re-
lated with an anomalous behavior of the suspension viscosity
when changing the volume fraction [18,52,58]. However, for
εLJ = 0 we obtain a Newtonian response and a monotonous
increase of the viscosity with the volume fraction. Thus, our
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FIG. 9. Correlation functions profiles, obtained varying the long-
range interaction potential εLJ . (a) One-point correlation functions
gz(z). The results correspond to �p

L
= 5.0 × 10−5, εSD = 0.5, φ =

0.52. Radial distribution function gxy (r ) profiles, obtained for two
values of εLJ , (b) below and (c) above the transition

results suggest that the shear-induced hydrodynamic forces
dominate over the long-range wall effects, for the range of
explored volume fractions.

Next, in Fig. 9(a), we explore the changes in the morphol-
ogy of the suspension, which are detected varying the strength
of the long-range interaction potential εLJ at fixed volume
fraction, φ = 0.52, and external force, �p

L
= 5 × 10−5. In

contrast to what we have shown for εLJ = 0, for very large
values of the long-range interaction potential εLJ we find
that the wall-induced layering spreads homogeneously across
the whole channel, denoting the large-range correlations are
enhanced. Complementarily, Fig. 9(b) and Fig. 9(c) illustrate
the radial distribution function gxy (r ) obtained for two ex-
treme values of long-range interaction potential εLJ . Inter-
estingly, while for εLJ = 0 a cubic phase results dominant
in the horizontal structure, for εLJ /ε∗ ≈ 0.8 (or equivalently
εLJ = 2347 kBT ) the position of the maximum indicates that
a hexagonal phase is dominant. This change in the g(r )
is in agreement with the values of the mean hexatic order
parameter �6 (see legends in Fig. 9). It is noticeable that the
long-range interaction potential induces a significant change
in the morphology of the suspension, which correlates with
the change in the rheological response (see Fig. 4).

Finally, varying the pressure drop �p

L
and keeping

εLJ /ε∗ ≈ 0.8 (or equivalently εLJ = 2347 kBT ) and φ =
0.52 [see Fig. 10(a)], we obtain that the nature of wall-
induced layering is not altered. Note, that the hight of the
maximums is the practically the same in the whole channel
and for both cases. Moreover, in this case both the radial
distribution function gxy (r ) and the hexatic order parameter
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FIG. 10. Correlation functions profiles, obtained varying the
pressure drop �p

L
. The results correspond to εLJ = 0.2, εSD = 0.5,

φ = 0.52. (a) One-point correlation function gz(z). Radial distribu-
tion function gxy (r ) profiles, obtained for two pressure drops �p

L

(b) �p

L
= 10−4 and (c) �p

L
= 2.5 × 10−5, which is below the

transition.

presented in Fig. 10(b) and Fig. 10(c), indicates a mild change
in the horizontal plane upon increasing �p

L
. Interestingly, both

indicators show a weakening of the hexagonal order upon
increasing �p

L
. This indicates that larger values of �p

L
(i.e.,

larger than those we could attain) may destroy the hexagonal
order.

V. CONCLUSIONS

We examine numerically in three dimensions, the rheolog-
ical response of colloidal suspensions when flowing between
parallel plates under the action of a constant pressure gradient.
When the colloids interact solely via a short-range potential
the colloidal suspension displays a Newtonian response, for
the studied volume fraction. Moreover, the colloids order in
layers parallel to the streamlines. For the highest value of the
volume fraction (φ = 0.52), we obtain the distance among
layers is smaller that the particle diameter, hence, pinpoint-
ing that colloids are organized in a honeycomblike struc-
ture. When introducing a long-range Lennard-Jones potential
the macroscopic response of the suspensions changes, from
Newtonian to non-Newtonian, depending on the interaction
strength, the volume fraction and the pressure drop. Exploit-
ing a theoretical framework proposed by Goyon et al. [14,15]
we rationalize the simulations data and identify the relevant
energy scales involved in this transport process. The latter
allows us to propose some scaling relations, which are in good
agreement with the numerical data. Finally, we find that the
distribution of colloids among layers does not correlate with
changes in the macroscopic response. However, the changes in
the macroscopic response partially correlates with the type of
structure within individual layers. Suspensions characterized
by a Newtonian response display a more cubiclike structure
of colloids within individual layers, whereas suspensions
with non-Newtonian response colloids organize in a more
hexagonal-like structure.
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