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We establish the complete phase diagram of self-propelled hard disks in two spatial dimensions from the
analysis of the equation of state and the statistics of local order parameters. The equilibrium melting
scenario is maintained at small activities, with coexistence between active liquid and hexatic order,
followed by a proper hexatic phase, and a further transition to an active solid. As activity increases, the
emergence of hexatic and solid order is shifted towards higher densities. Above a critical activity and for a
certain range of packing fractions, the system undergoes motility-induced phase separation and demixes
into low and high density phases; the latter can be either disordered (liquid) or ordered (hexatic or solid)
depending on the activity.
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Active materials are out-of-equilibrium systems in
which the dynamics of their elements break detailed
balance [1]. Examples can be found in living systems,
e.g., the collective motion of large animal groups [2,3],
bacteria swarming [4], and the formation of traveling
fronts of actin filaments [5], as well as in synthetic ones,
like self-propelled grains [6] or self-catalytic colloidal
suspensions [7]. Despite such diversity, the emergence of
activity-induced collective behavior is captured by minimal
models that yield accurate descriptions and shed light on
their universal character. A key example is the active
Brownian particles (ABP) model, which considers spheri-
cal self-propelled particles with only excluded volume
interactions [8–13]. A hallmark of active particle systems
is that at high enough density and activity, self-propulsion
triggers a motility-induced phase separation (MIPS) into a
low-density gas in coexistence with a high-density drop
[10–17], resembling the equilibrium liquid-gas transition
but in the absence of cohesive forces and without a
thermodynamic support [18,19].
Although active particles can in principle move in three

dimensions (3D), in most experimental set-ups they are
confined to two dimensions (2D). Most studies of 2D ABP
focused on MIPS, and they have therefore been largely
restricted to intermediate densities [10–19]. In contrast,
their solidification, or melting, has received little attention
[20–22], and the connection between the high Pe behavior

and the equilibrium physics as Pe → 0 has been, surpris-
ingly, disregarded. In particular, the fate of 2D melting
(with its intermediate hexatic phase) under active forces,
has been investigated for dumbbell systems [23], where
MIPS is continuously connected to the passive liquid-
hexatic coexistence. This result shed new light on the very
nature of MIPS, and it showed the importance of exploring
the full phase diagram at high densities. In this Letter, we
address this issue in the paradigmatic ABP model.
Melting in 2D is a fundamental problem that has remained

elusive despite decades of intensive research [24,25]. The
transition was initially claimed to be first order [26] and later
argued to follow a different scenario, with an intermediate
hexatic phase, separated by continuous transitions mediated
by the unbinding of defects [27–29]. More recently, numeri-
cal simulations [30–32], followed by experiments on col-
loidal monolayers [33], clarified the picture. They indicate
that melting of passive hard disks takes place in two steps: as
the packing fraction is increased, a first-order transition
between the liquid and hexatic phases occurs, followed by a
continuous Berezinskii-Kosterlitz-Thouless (BKT) transition
between the hexatic and the solid. The hexatic phase exhibits
quasi-long-range orientational order and short-range posi-
tional one, while the solid phase has quasi-long-range
positional and long-range orientational order. Liquid and
hexatic phases coexist close to the liquid phase, within a
narrow interval of packing fractions.
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Here, we examine how activity affects the phase behav-
ior of 2D systems of isotropic particles (i.e. with no
alignment interactions), from the dilute regime to close
packing (ϕcp ≈ 0.91). We establish the complete phase
diagram of 2D ABP spanning a broad range of activities,
see Fig. 1. We show that the two-step melting scenario at
Pe ¼ 0 is maintained at finite but small activity, with a
coexistence region between active liquid and hexatic
phases (black area). Above, an active hexatic phase exists
for all the explored activities (blue sector). Strikingly, active
disks arrange in a hexatic phase in a larger density range
than passive ones. At higher densities, orientational long-
range and positional quasi-long-range order emerge for any
activity, signaling the presence of an active solid phase
(orange region). The liquid-hexatic and hexatic-solid tran-
sitions shift towards higher densities with Pe, meaning that
activity destabilizes the ordered phases. At high enough
activity (Pe≳ 35), we identify the boundaries of MIPS
using both pressure measurements and density distributions
(black and white symbols). The MIPS region broadens as
activity increases, and it eventually crosses the hexatic and
solid transition lines. Such results show that (i) MIPS
prevails over the hexatic and solid phases, and (ii) MIPS
generates a phase separation between a dilute and a high-
density phase, which can either be liquid, hexatic, or solid,
as activity is increased.
We consider N overdamped ABP, in a square box

with volume V ¼ L2 and periodic boundary conditions.
They self-propel under a constant modulus force Fact along
ni ¼ ( cos θiðtÞ; sin θiðtÞ) and obey

γ_ri ¼ Factni − ∇i

X

jð≠iÞ
UðrijÞ þ ξi; _θi ¼ ηi; ð1Þ

with ri the position of the center of the ith particle, rij ¼
jri − rjj the interparticle distance, and a short-ranged
repulsive potential, UðrÞ ¼ 4ε½ðσ=rÞ64 − ðσ=rÞ32� þ ε if
r < σd ¼ 21=32σ and 0 otherwise. The terms ξ and η are
zero-mean Gaussian noises that verify hξiðtÞξjðt0Þi ¼
2γkBTδijδðt − t0Þ1 and hηiðtÞηjðt0Þi¼2Dθδijδðt− t0Þ. The
units of length, time, and energy are given by σd, τ ¼ D−1

θ

and ε, respectively. We fix Dθ ¼ 3γkBT=σ2d and vary the
packing fraction ϕ ¼ πσ2dN=ð4VÞ and Péclet number
Pe ¼ Factσd=ðkBTÞ by tuning L and Fact at fixed γ ¼ 10
and kBT ¼ 0.05. The integration of Eqs. (1) used the
velocity Verlet algorithm implemented in LAMMPS

[34,35]. Simulations ran with N ¼ 2562 particles, scanning
the parameter space ϕ ∈ ½0∶0.9� and Pe ∈ ½0∶200�. With
less (N ¼ 1282) and more (N ¼ 5122) particles we
explored finite size effects.
The equation of state.—Our first estimate of the phase

boundaries is given by the ϕ dependence of the mechanical
pressure [18,36]

ΔP ¼ Fact

2V

X

i

hni · rii −
1

4V

X

i;j

h∇iUðrijÞ · ðri − rjÞi ð2Þ

with ΔP ¼ P − PG and PG ¼ NkBT=V the ideal gas
pressure. The first term, Pact, quantifies the effect of
Fact, the so-called active or swim pressure [37,38]. The
second one, Pint, is the standard virial term due to particle
interactions. The definition in Eq. (2) is a state function for
isotropic ABP such that PðϕÞ defines an equation of state
[38]. (This does not hold generically in active systems for
which the pressure can, for instance, depend on the details
of the interaction between the particles and the confining
walls [39].) In the dilute limit, we recover the ideal gas law
PV ¼ NkBTeff ¼ NkBTð1þ Pe2=6Þ, at an effective tem-
perature that is compatible with the one that stems from
the fluctuation-dissipation relation in the late diffusive
regime [40–42].
The equation of state for zero and weak Pe is shown in

Fig. 2(a). PðϕÞ is roughly flat in a narrow ϕ interval for
Pe≲ 3. A zoom over this area in the Pe ¼ 1 case evidences
a double loop structure characteristic of phase coexistence,
see Fig. 2(b). Although the equal-area Maxwell construc-
tion that allows us to directly extract the binodals cannot be
readily applied for Pe > 0 [19,38], we use it by extension
of the passive disks analysis [31], as a first identification of
the coexistence region (black dots in Fig. 1). Beyond
Pe ¼ 3, we do not find evidence for coexistence until
the high-Pe regime where MIPS is attained. For Pe≳ 35,
the PðϕÞ curves become flat in between two densities.
Representative curves at 10 ≤ Pe ≤ 50 are displayed in
Fig. 2(c). As it has been recently reported [18,36], at very

FIG. 1. Pe-ϕ phase diagram of ABP. In the inset, an enlarge-
ment over the low Pe-high ϕ regime highlights the connection
with 2D melting. In the black area there is coexistence, in the blue
hexatic order and the orange one is an active solid phase. The
black filled (open) points were obtained from pressure (density
distribution) measurements; the blue stars from the orientational
correlations and the orange symbols from the spatial correlations
decay. Although narrow, the blue area persists for Pe → 0 and
broadens as Pe increases. The solid boxes highlight the param-
eters used to measure the correlations in Figs. 3 and 6.
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high Pe, the pressure drops abruptly at the vicinity of MIPS,
see Fig. 2(d), as a consequence of the existence of a
metastability region with a very large nucleation barrier
[18]. We obtain the limits of MIPS with an extrapolation of
the flat part of PðϕÞ across the pressure jump (or spinodal),
as illustrated in Fig. 2(d) for Pe ¼ 100. Previous numerical
studies used the local density probability distribution
functions (PDF) to locate the MIPS region, see e.g.
[11,23]. For the sake of completeness, we searched for
the limits of a double peak structure of these PDFs, finding
the open symbols in Fig. 1, in very good agreement with the
pressure measurements (see Figs. S1, S2, and S3 in the
Supplemental Material (SM) [43] for further details).
Orientational order and the hexatic phase.—We put the

orientational order to the test using the hexatic order
parameter ψ6ðrjÞ ¼ N−1

j

PNj

k¼1 e
i6θjk, where θjk is the angle

formed by the segment that connects the center of the jth
disk and the one of its kth (out of Nj) nearest neighbor
(found with a Voronoi tessellation algorithm) and the x axis.
We studied its correlation function g6ðr ¼ jrj − rkjÞ ¼
hψ6ðrjÞψ6ðrkÞi=hψ2

6ðrjÞi and kurtosis or Binder parameter
U4 ¼ 1 − hψ4

6ðrjÞi=ð3hψ2
6ðrjÞi2Þ, see Figs. 3 and 4, respec-

tively. We use the change of behavior of g6ðrÞ, from
exponential (active liquid, in black) to algebraic r−η (active
hexatic, in blue), as a criterion to locate the hexatic transition
(blue symbols in Fig. 1). In the hexatic (blue) region, the
power law decay is maintained, with exponent η taking a
value close to the BKT η ¼ 1=4 at the transition but varying
with ϕ and Pe. These data are compatible with the behavior
of the Binder cumulant, U4, that in the scale of the main

panel in Fig. 4 has a common intersection point, proving the
transition. The inset enlargement shows a weak remanent N
dependence that would be compatiblewith a first order phase
transition [46,47]; however, the accuracy of our data is not
enough to draw such a conclusion and, moreover, a second
order transition is consistent with the absence of phase
coexistence found above Pe ≈ 3. As illustrated in Fig. 3(b),
activity shifts the emergence of orientational quasi-long-
range order to higher densities.
Orientational order and coexistence.—The maps of the

local hexatic order parameter and the PDFs of its modulus,
shown in Fig. 5, provide clues to understand the difference
between the two sectors with phase separation at low and
high Pe. Close to Pe ¼ 0 the PDF is bimodal, see Fig. 5(a),
with two peaks of roughly the same height for this choice of
parameters. The map in Fig. 5(b) proves the existence of a
ramified but large (of the order of the system size) region
with the same local hexatic order. During the dynamics, this
region changes form, but the portion of the surface that it
occupies remains stable. These results are in perfect
correspondence with the data for the local densities (see
the SM in [43]). In the MIPS region, instead, the map
shows many different colors, associated with diverse local
orientational ordering, that do not extend over a long
distance, even at long times, see Fig. 5(c). During the
time evolution, the color pattern changes considerably, with
the breaking and recombination of blocks. Differences in
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the maps are translated into differences in the PDFs. The
secondary peak, close to jψ6;jj ¼ 0.9 in Fig. 5(a), is due to
the interfaces between areas with almost perfect orienta-
tional order. Additional maps in other sectors of the phase
diagram, PDFs of jψ6;jj, correlation functions and global
hexatic order parameter Ψ ¼ N−1jPjψ6;jj measurements
are given in the SM.
Positional order and the solid phase.—Since it is hard to

assert whether g6 acquires long-range order or does not
decay at the length scales of our finite-size box, we looked
for solid quasi-long range positional order, that should be
evidenced by an algebraic decay of

Cq0
ðrÞ ¼ heiq0·ðri−rjÞi; ð3Þ

at the wave vector q0 at the maximum of the first diffraction
peak of the structure factor SðqÞ ¼ N−1P

i;je
iq·ðri−rjÞ. The

change in the Cq0 decay, from exponential (hexatic) to
algebraic (solid) for several Pe and ϕ, see Fig. 6, yields the
orange points in the phase diagram above which lies the
solid. Activity introduces non-equilibrium fluctuations that
destabilize order and melt the solid.
Summarizing, we established the full phase diagram of

active Brownian hard disks, with active liquid, hexatic, and
solid phases, as well as coexistence and MIPS.
First, we proved that the overall scenario of the 2D

melting of passive disks is maintained for small-enough Pe.
Weak activity acts as a perturbation that destabilizes passive
order, similarly to what was found in [22] for a system of
softer disks (no coexistence in the passive limit) evolved
with Monte Carlo dynamics. This is shown by the fact that

by increasing Pe, both the liquid-hexatic and hexatic-solid
transitions shift to higher densities, and the liquid-hexatic
coexistence region shrinks and eventually disappears. Such
behavior can be due to the effective softness introduced by
activity [quantified by the ratio between the active and
potential forces Γ ¼ ε=ðσdFactÞ], since, in equilibrium,
particle softness reduces the liquid-hexatic coexistence
region and eventually destroys it, rendering the hexatic-
liquid transition continuous [32].
At high Pe, the MIPS region opens up on top of the

hexatic and solid transition lines (differently from what was
shown in [22]) and the emergence of hexatic and solid order
prevails. In most of the MIPS region, many finite-size
patches with different hexatic order coexist at any moment,
but the large activity makes them regularly rearrange via
breaking and recombination. This phenomenon is very
different from what happens at low Pe. Above the point at
which the hexatic transition line crosses the MIPS binodal,
activity triggers phase separation between a low-density
gas and a high-density hexatic, or solid, at higher Pe.
The discontinuity between the coexistence regions for

active Brownian disks is distinct from what was found for
active dumbbells, for which the large Pe phase separation
was continuously connected to the zero Pe one. This
difference could be due to the fact that dumbbells have
a nonconvex geometry that eases jamming and the for-
mation of local orientational order. It would be interesting
to study systems made of elements that interpolate between
the disk and dumbbell geometries, and then see how the
topology of the phase diagram transforms from the one in
Fig. 1 to the one in [23].
To conclude, our results provide a firm basis to ration-

alize the phase behavior of dense active matter and under-
stand how self-propulsion affects the liquid and solid
phases of matter on general grounds. The scenario we
established here could be experimentally tested in, for
instance, monolayers of self-propelled Janus colloids.
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FIG. 5. (a) PDF of jψ6ij in the low Pe and MIPS coexistence
region. (b),(c) Maps of ψ6i, projected into the mean orientation of
the system [43], for the two cases considered in (a). (d) Snapshot
showing jψ6ij and the interfaces between domains with different
orientational order (in green).
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