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We analyze the dynamics of a tracer particle embedded in a bath of hard spheres confined in a channel
of varying section. By means of Brownian dynamics simulations, we apply a constant force on the
tracer particle and discuss the dependence of its mobility on the relative magnitude of the external force
with respect to the entropic force induced by the confinement. A simple theoretical one-dimensional
model is also derived, where the contribution from particle-particle and particle-wall interactions
is taken from simulations with no external force. Our results show that the mobility of the tracer
is strongly affected by the confinement. The tracer velocity in the force direction has a maximum
close to the neck of the channel, in agreement with the theory for small forces. Upon increasing the
external force, the tracer is effectively confined to the central part of the channel and the velocity
modulation decreases, which cannot be reproduced by the theory. This deviation marks the regime
of validity of linear response. Surprisingly, when the channel section is not constant, the effective
friction coefficient is reduced as compared to the case of a plane channel. The transversal velocity,
which cannot be studied with our model, follows qualitatively the derivative of the channel section, in
agreement with previous theoretical calculations for the tracer diffusivity in equilibrium. Published
by AIP Publishing. https://doi.org/10.1063/1.5048343

I. INTRODUCTION

Understanding the transport of ions, molecules, cells, and
colloids in nano- and micro-fluidic devices is of primary rel-
evance for its biological and technological applications. For
example, the transport across synthetic1–3 and biological4,5

channels and pores is controlled by their shape, as well as
by the effective interactions between channel walls and the
transported objects. Similarly, in micro- and nano-fluidic cir-
cuitry, the shape of the channel has been exploited to realize
fluidic transistors6 or diodes7–9 and to control ionic10,11 and
electro-osmotic12 fluxes.

At larger scales, the transport of colloids,13–16 poly-
mers,17–19 and even active particles20–22 has shown a sensi-
tivity on the geometry of the confining channel. Interestingly,
for hard sphere baths, polymer solutions, and colloidal suspen-
sions, the mutual interactions among peers can modulate the
“bare” transport coefficient provided by the solvent. Therefore,
in these scenarios, the many body effects will play a relevant
role in determining the effective transport performance.23–25

Theoretical models have been proposed to describe the
dynamics of a tracer particle, both in the active (forced) regime
and in the passive (unforced) case. For the active mode, the
problem is typically reduced to one dimension (along the
channel axis), the Fick-Jacobs equation, where the chan-
nel modulation enters as an effective potential (the so-called
entropic barrier).26–29 However, a channel with a varying sec-
tion induces anisotropic diffusion, which is only captured
when the dynamics are studied in (at least) two dimensions,
resulting in a diffusion matrix with non-zero out-of-diagonal

terms. In equilibrium,14 it is found that the diffusivity in
the longitudinal direction shows a maximum in the channel
neck, whereas the transversal diffusion follows qualitatively
the derivative of the channel section.

In this work, we study the dynamics of a forced tracer
in a colloidal system confined in a corrugated channel with
Langevin dynamics simulations and a theoretical model based
on the Fick-Jacobs approach. In the simulations, the force has
been varied covering the linear and the non-linear regimes
while in the theoretical model, only the small force regime
can be studied. Measuring the steady tracer velocity allows
the determination of the longitudinal and transversal friction
coefficients (one diagonal and one out-of-diagonal compo-
nents of the friction tensor, respectively). Our results show
that the effective friction experienced by the tracer particle is
strongly affected by both the geometry of the confining channel
and the magnitude of the external force. Surprisingly our data
show that effective friction can be reduced upon increasing
the corrugation of the channel; i.e., a plane channel does not
provide optimal transport. The linear regime at small forces
is identified by the linear dependence of the tracer flux with
the external force and allows the application of results from
equilibrium. For large forces, the tracer dynamics become
increasingly dominated by the external force, with a small
contribution from the channel corrugation.

II. SIMULATION DETAILS

In the simulations, a system of quasi-hard particles
is considered. All particles undergo microscopic Langevin

0021-9606/2018/149(17)/174908/9/$30.00 149, 174908-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5048343
https://doi.org/10.1063/1.5048343
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5048343&domain=pdf&date_stamp=2018-11-02


174908-2 Puertas, Malgaretti, and Pagonabarraga J. Chem. Phys. 149, 174908 (2018)

dynamics, which for particle j reads30

mj
d2 rj

dt2
=

∑
i,j

Fij − γ0
d rj

dt
+ f j(t) + Fextδj1, (1)

where mj is the particle mass and the terms in the right-
hand side correspond to (i) the interaction between particles
i and j and with the confining wall, (ii) the friction force
with the solvent proportional to the particle velocity, (iii)
the Brownian force, and (iv) the external force, which acts
only on the tracer (labeled as j = 1). The Brownian force,
f(t), is random in time, but its intensity is linked to the fric-
tion coefficient, γ0, via the fluctuation dissipation theorem:
〈f j(t)·f j(t ′)〉 = 6kBTγ0δ(t − t ′), where kBT is the thermal
energy.30 The external force Fext = Fextey is constant and par-
allel to the y-axis. The use of Langevin microscopic dynamics
to approximate colloidal dynamics is convenient because it
gives direct access to the instantaneous velocity vj = drj/dt,
which is also used in the equation of motion, and the algo-
rithm is more stable than pure Brownian dynamics due to the
inertial term (if the time step is smaller than the momentum
relaxation time, mj/γ0, collisions are treated as in Newtonian
dynamics, while single particle diffusion is obtained at longer
times).

The system is confined in the z-axis between two walls,
as shown in the snapshot in Fig. 1. The shape of the walls is
defined by

z = ±

(
Lz

2
− A cos

2πy
λ

)
, (2)

where Lz is the mean separation between the walls, A is the
amplitude of the corrugation, and λ is its wavelength. The
system has periodic boundary conditions in the XY plane (with
dimensions Lx × Ly).

The particle-particle and particle-wall interactions are
quasi-hard,

V (r) = kBT
( r

2a

)−36
and Vw(d) = kBT

(
d
a

)−36

, (3)

respectively, where a is the particle radius, r is the center-
to-center distance, and d is the minimal distance from the
particle center to the wall. This is calculated expanding the
cosine in Eq. (2) in power series of 2πA/λ up to second

FIG. 1. Snapshot of the system with Lz = Lx = 6 a and Ly = 40 a. The red
particle is the tracer. The external force is parallel to the channel mid-plane
(y-axis), as shown.

order; our simulations are thus valid for small amplitudes and
large wavelength. The approximation was validated compar-
ing the density profile of a single particle with the theoretical
prediction.

In our simulations, all particles (including the tracer) have
the same mass, m, and radius, a, and the volume fraction of the
system is fixed in all cases, φ = 0.20. The corrugation ampli-
tude is A = 1 a and its wavelength is λ = 20 a, and the simulation
box has dimensions Lx = Lz = 6 a and Ly = 2λ = 40 a (see the
snapshot in Fig. 1). With these parameters, the system contains
N = 69 particles. Despite the low number of particles, there
are no significant finite size effects, as shown by the results of
simulations with Lx = 12 a. The length, mass, and energy units
are a = 1, m = 1, and kBT = 1. The solvent friction coefficient
is γ0 = 10

√
mkBT/a. The equations of motion of the tracer

and bath particles were integrated with the Heun algorithm,31

with a time step of δt = 0.0005 a
√

m/kBT . In this algo-
rithm, the friction force is integrated analytically in the time
interval δt.

The tracer is pulled with the constant force Fext and
dragged through the channel. Due to the periodic boundary
conditions, it travels through the simulation box several times.
The tracer position and velocity distributions in the Y Z-plane
are recorded in the stationary regime for different forces and
analyzed below. Note that the instantaneous velocity, used in
the velocity distribution, is well defined since the inertial term
is kept in the Langevin microscopic dynamics. With this setup,
the non-diagonal component of the diffusion tensor DYZ can
be determined from the transversal component of the tracer
velocity: vz = DYZ Fext, in addition to the diagonal component
vy = DYY Fext.

For comparison purposes, a planar channel has also been
simulated with the same particle density and other character-
istics; the width of this channel has been set equal to the mean
width of the corrugated channel, i.e., Lz = 6 a. Some results
of this planar channel, as well as for the bulk system with the
same density, are given below.

III. MODEL

In order to capture the dynamics of the driven tracer under
confinement, we extend the Fick-Jacobs approximation to the
generic case of interacting systems. For simplicity’s sake, we
restrict to the case of channels that are translational invariant
along the x-direction.

The overdamped dynamics of the density of a non-
interacting system, ρ(x, y, z, t), are described by the Smolu-
chowski equation

dρ
dt

(x, y, z, t) = D∇·
[
∇ρ(x, y, z, t) + βρ(x, y, z, t)∇W (x, y, z)

]
,

(4)

where β−1 = kBT and W (x, y, z) accounts for the geo-
metrical confinement and for all conservative forces act-
ing on the particles, as will be described below in detail.
When the channel section is varying smoothly, ∂yh(y) � 1,
then the probability distribution can be approximated
by32,33
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ρ(x, y, z, t) = P(y, t)
e−βW (x,y,z)

e−βF(y)
, (5)

with

F(y) = −kBT ln

[
1

2Lxh0

∫ Lx

−Lx

dx
∫ ∞
−∞

e−βW (x,y,z)dz

]
, (6)

where 2Lx is length of the channel in the x direction (perpen-
dicular to the force) and h0 its mean width. Integrating Eq. (4)
in dx and dz leads to

∂tP(y, t) = ∂y

[
βD(y)P(y, t)∂yF(y) + D(y)∂yP(y, t)

]
,

(7)

with D(y) being the local tracer diffusion coefficient.14,33

A. Non-interacting systems

In the absence of interactions among the particles, W con-
tains contributions only due to the geometric confinement,
interactions with the walls (ψ), and the applied external forces
(Fext) and can be written as

W (x, y, z) =



ψ(y, z) − Fexty if|z | ≤ h(y),

∞ if|z | > h(y).
(8)

B. Interacting systems

In the mean field approach of the Fick-Jacobs framework,
particle interactions can be accounted for by terms that are
quadratic in the density field. In this case,

W (x, y, z) =



∫ W(x, z, y, x′, y′, z′)ρ(x′, y′, z′, t)dx′dy′dz′ + ψ(x, y, z) − Fexty,
√

x2 + z2 < h(y),

∞, else
(9)

can be understood as the sum of the potential of mean force
experienced by the tracer due to the interaction with its peers
[via the interaction kernel W, first term in Eq. (9)], the interac-
tions with the walls [second term in Eq. (9)], and the external
force [last term in Eq. (9)].

In the steady state, ∂tP = 0, Eq. (7) becomes a linear first
order differential equation, with solution

P(y) = −
J

D0
e−βF(y)

[∫ y

−L/2

D0

D(z)
eβF(z)dz + Π

]
, (10)

where D0 is the tracer bulk diffusion coefficient. Imposing the
normalization of the particle probability density

1
L

∫ L/2

−L/2
P(y)dy = 1 (11)

and periodic boundary conditions, we can determine J and Π,

J = −D0



L/2∫
−L/2

dye−βF(y)*..
,

y∫
−L/2

D0

D(z)
eβF(z)dz + Π

+//
-



−1

, (12)

Π =
e−βF(L/2)

∫
L/2
−L/2

D0
D(y) eβF(y)dy

e−βF(−L/2) − e−βF(L/2)
. (13)

In the following, we are interested in the case in which just
one particle (the tracer) experiences the action of the external
force. Accordingly, the density distribution of the “passive”
particles is barely affected by the “active” motion of the tracer.
Hence, for mild values of the external force, the effective
potential can be expressed conveniently as

W (x, yz) = W0(x, y, z) − Fexty, (14)

where W0 can be approximated using the equilibrium distri-
bution, leading to

F(y) = −Fexty + F0(y), (15)

with

F0(y) = −kBT ln



1
2Lxh0

Lx∫
−Lx

dx

h(y)∫
−h(y)

e−βW0(x,y,z)dz


(16)

carrying all the information about the interactions among
colloids and with the wall at equilibrium.

Since F0 depends on the mutual interactions, it is hard
to provide an analytical prediction. In our analysis, F0(y) will
be obtained from the simulations, fitting the tracer position
distribution from the simulations when no external force is
applied. This result for F0(y) is then used for finite forces
to calculate both the tracer density and velocity. Using the
proposed splitting of F, Π can be rewritten as

Π = −
eβfL/2

∫
L/2
−L/2

D0
D(y) eβF(y)dy

2 sinh(βfL/2)
, (17)

which is more useful in the following derivations.

1. Small forces

In the limit of weak forces, Fext � kBT /a, the flux reads

J ≈ −
D0

Π



L/2∫
−L/2

dy
D0

D(y)
e−βF(y)



−1

=
βD0Fext

∫
L/2
−L/2 dy D0

D(y) eβF0(y)
, (18)

where we have used the definition of Π [Eq. (13)] and the
normalization condition, Eq. (11). Substituting Eq. (16) into
Eq. (18) and introducing the local equilibrium density profile

ρ
eq
z (y) =

1
2Lxh0

Lx∫
−Lx

dx

h(y)∫
−h(y)

e−βψ(x,y,z)dz (19)

lead to
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J ≈
D0 βFext

L/2

∫
−L/2

D0

D(y)
1

ρ
eq
z (y)

dy

. (20)

To proceed, we expand ρ
eq
z (y) and D(y) around the

solution for a plane channel

ρ
eq
z (y) = ρ0 + ε ρ1(y) + O(ε2), (21)

where ε is a small parameter encoding the deviation of the
channel section from the plane case. In particular, we assume
that the modulation of the channel section does not affect
the volume of the channel and so the total mass inside the
channel is not affected by the modulation. This implies that
L/2

∫
−L/2

dyρ1(y) = 0. Similarly we assume that the density, %, of

the bath of hard spheres can be expanded,

%
eq
z (y) = %0 + ε %1(y) + O(ε2), (22)

with
L/2

∫
−L/2

dy%1(y) = 0. This implies that the diffusion coef-

ficient of the tracer (that is determined by %14) can also be
expanded,

D(y) = D0 + εD1(y) + O(ε2). (23)

Accordingly, to leading order in ε , we get

J ≈
ρ0D0 βFext

L


1 +

ε

L

L/2∫
−L/2

dy
D1(y)

D0


+ O(ε2). (24)

The second factor on the rhs of Eq. (24) is the modulation
in the friction coefficient induced by the geometry. Interest-
ingly, when the diffusion coefficient is independent on the
geometry (D1 = 0), as it is for an ideal gas, Eq. (24) predicts
that for small modulations, the effective friction coefficient is
independent on the shape of the channel. However, for larger
modulations, for which higher order in ε should be considered,
Eq. (20) predicts that the flux across a corrugated channel is
always smaller than that in a flat channel and hence the effec-
tive friction is increased. By contrast, for interacting systems
(for which D1 , 0), when ∫

L/2
−L/2

D1(y)
D0

dy > 0, Eq. (24) pre-
dicts that the flux is enhanced as compared to the flat channel
and hence the effective friction coefficient is decreased by the
confinement.

IV. RESULTS

We start showing the tracer position distribution and then
we move to the analysis of its dynamical properties. In both
cases, the simulation results are compared with the theoreti-
cal model. Given that the model is expected to fail for large
forces, the regimes of small and large forces are presented
separately.

A. Tracer position distribution

The tracer position distributions in the channel, for dif-
ferent values of the external force, are presented in Fig. 2. For
small and intermediate forces, the tracer distribution mimics

FIG. 2. Tracer position distributions in
the planar channel for different forces,
increasing from left to right and top to
bottom: F = 0, 0.1 kBT /a (top row),
0.5, 2 kBT /a (middle row), and 10, 50
kBT /a (bottom row). The tracer density
increases with the ordering black-red-
blue-white.
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the bath equilibrium density. For small forces, the maximum
probability to find the tracer is close to the wall (see the top
right panel), but there is an increasing probability in the bot-
tleneck and, less noticeable, in the mid-plane of the channel.
Eventually, the tracer density strongly deviates from the equi-
librium profile for large forces, as shown in the bottom panels
of Fig. 2.

In order to analyze quantitatively these distributions, the
tracer density is studied in different planes; see Fig. 3. Since
the cross section of the channel varies, the tracer density is
studied in slabs of width ∆y = 1a. The upper panel of Fig. 3
shows the differences between the tracer density profiles when
the channel narrows or widens, for a mild external force Fext a
= kBT. Similar to the density of bath particles (data not shown),
the tracer density is larger close to the walls, with the effect
being more pronounced in the neck.

The lower panel of Fig. 3 shows the tracer position
distribution in the widest section of the channel, for differ-
ent applied forces. As mentioned above, for weak forces,
Fext a � kBT, the tracer accumulates at the walls, similar to
bath particles. However, upon increasing the force, the tracer
density decreases close to the wall and increases in the chan-
nel mid-plane (around z = 0). As the velocity of the tracer
increases, its translocation time across subsequent bottlenecks
becomes smaller than the diffusion time along the transverse
direction and the tracer cannot explore the wider parts of the
channel, getting effectively confined about the mid-plane of the
channel.

It is worth studying also an equivalent, uniform, and planar
channel (Fig. 4). In this case, the tracer position distribution
grows close to the wall and in the mid-plane for increasing

FIG. 3. Tracer distribution profiles in planes perpendicular to the exter-
nal force. Different planes are studied in the upper panel, as labeled, for
Fext = 1kBT /a, and different forces are shown in the lower panel for the
widest section (y = ±λ/2 = 10 a).

FIG. 4. Tracer distribution profiles in a planar channel for different external
forces, as labeled.

forces (and decreases for intermediate values of z). Namely, in
the planar channel, the tracer moves preferentially close to the
walls for large forces, contrary to the case of the corrugated
channel.

In order to compare with our model, we focus on the den-
sity profiles integrated in the XZ plane. In the simulations, a
slab of width ∆y = 1 a, parallel to the XZ plane, is used to
calculate the average,

ρz(y) =
1
Pz

∫
V
ρ(x, y, z)dxdz, (25)

where V is the integration volume and Pz is a constant intro-
duced to normalize the tracer density, ∫

λ/2
−λ/2 ρz(y)dy = 1.

This is presented in Fig. 5 for different values of the exter-
nal force in the corrugated channel, including the bath density
distribution (Fext = 0). In the latter case, the integrated den-
sity is modulated by the channel, with the minimum in the
channel neck. For increasing forces, the modulation decreases
and displaces to the right, indicating that the channel is
explored less efficiently in the transversal direction when
the force increases. Interestingly, even the weakest applied
force, Fext = 0.1 kBT /a, provokes noticeable deviations of
the tracer distribution with respect to the equilibrium bath
density.

From the equilibrium density profile, F0 can be estimated
and, once plugged into Eq. (15), used to predict the tracer
density profile under the action of an external force. The the-
oretical results, obtained by assuming D1 = 0, show a good
agreement with the simulations for small forces, but deviations
are observable for large y above Fext = 0.5kBT /a, due to the
accumulation of errors in the numerical integrations implied
in the theoretical calculation (see Fig. 5). For forces above
Fext = 1kBT /a, the theoretical calculation does no longer
predict the tracer behavior. This underlines the fact that for
weak forces, the transverse probability distribution is weakly
affected by external force and retains its equilibrium form.
By contrast, for Fext > kBT /a, the transverse distribution
is strongly affected by the external force and the velocity
obtained by using the equilibrium transverse distribution does
not match the one obtained from simulations.
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FIG. 5. Integrated tracer distribution profiles for different forces, as labeled,
from simulations (points) and theory (lines). The upper panel shows the low-
force regime, and the lower one shows the large forces. The open circles mark
the tracer density for the unforced system.

B. Effective friction with the bath

We focus now on the tracer dynamics, analyzing its lon-
gitudinal and transversal motion (parallel and perpendicular
to the external force, respectively). The distribution of the
longitudinal component of the instantaneous tracer velocity
in planes perpendicular to the external force is shown in
Fig. 6.

Interestingly, the velocity is constant (within the statisti-
cal noise) both in the neck and the widest section, but it varies
close to the wall when the channel cross section is changing.
When the channel narrows, the longitudinal velocity is smaller

FIG. 6. Velocity in the force direction, in different planes perpendicular to
the external force Fext = 1 kBT /a, as labeled.

close to the wall, whereas it increases when the channel widens.
Additionally, it can be seen in the figure that close to the chan-
nel mid-plane, the velocity does not show any dependence on
its location within the channel. In the equivalent planar chan-
nel, the velocity is almost constant (increasing slightly in the
mid-plane and close to the wall).

In order to analyze the impact of the channel constriction
on the tracer dynamics, we average its longitudinal velocity in
slabs perpendicular to the external force,

〈vy(y)〉 =
1

∫V ρ(x, y, z)dx dz

∫
V
vy(x, y, z)ρ(x, y, z)dx dz. (26)

Figure 7 presents 〈vy〉 from simulations and theoretical predic-
tions as the magnitude of the applied force varies. In order to
compare the impact of the channel on the motion of the tracer,
we normalize its velocity with the one of an isolated tracer in
the bulk, v0 = Fext/γ0. The ratio gives us direct information
on the tracer longitudinal diffusivity since 〈vy〉/v0 = 〈DY 〉/D0,
where 〈DY 〉 stands for the average of the local longitudinal
tracer diffusivity, DY , over the transverse channel section. The
average velocity along the channel for very small forces has
a maximum in the narrowest point, but changes notably for
increasing force. For large forces, the profile is almost flat,
shifting to larger velocities.

The comparison with the theory (lines) is possible only
for small forces, and the agreement is semi-quantitative. It is
worth noting that the contribution from interactions between
particles and with the wall is encoded in F0, which is obtained
from the tracer density profile in equilibrium. The theory

FIG. 7. Velocity in the force direction, averaged in slabs perpendicular to the
channel (symbols show the simulation results, and lines show the theory).
Small forces are shown in the upper panel, and large forces are shown in the
lower one.
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captures nicely both the displacement of the maximum to
larger positions and the decrease of the maximum. For large
forces, the contribution of the corrugation can be disregarded
and the model predicts a constant velocity profile growing lin-
early with the force, which is similar to the simulation results.
It must be also mentioned that the simulation results are com-
patible with the theoretical expectation from Ref. 14, where
the full diffusion tensor of particles (without external force) in
a corrugated channel is calculated. In this case, the diagonal
term in the direction of the channel has a maximum in the neck
of the channel.

Despite the strong variations of the velocity with the posi-
tion in the channel, the flux must be homogeneous, as expected
in the stationary regime. This is confirmed in Fig. 8, where the
flux has been calculated as

J(y) = ρ(y)〈vy(y)〉 (27)

and normalized with the stationary velocity of the single par-
ticle, Fext/γ0, in bulk. Within the statistical noise, for small
forces, the flux is proportional to the force, corresponding to
the linear regime shown in Eq. (18), and increases for large
external forces.

The averaged flux provides a robust means to extract the
effective friction coefficient experienced by the tracer particle,

γeff =
Fext
〈J(y)〉

. (28)

Figure 9 compares the dependence of γeff on the external force
for a corrugated channel, an equivalent planar channel, and in
bulk, the latter for a system with N = 1000 particles. Overall,
the three sets of data follow the same generic trend as that
reported for bulk systems,34 with a low-force plateau, force
thinning, and (apparently) a high-force plateau.

In the limit of small forces, Fext < 1 − 2kBT /a, the fric-
tion is almost constant for both channels and for the bulk
case, identifying the linear response regime. In this regime,
the presence of the confining walls induces a larger friction
in both channels as compared to the bulk. For large forces,
on the other hand, the plateau at high forces is above 1 in
the three sets of simulation data, while the theory sets it at
γ/γ0 = 1. The origin of this discrepancy was first shown by

FIG. 8. Flux in the force direction, with the same color code as the previous
figures. Because the flux is divided by the force, the noise is more important
for small forces.

FIG. 9. Effective friction coefficient in the corrugated channel (black points),
compared with the friction observed in the planar channel (red circles) and in
the bulk system with the same density and parameters (blue crosses).

Squires and Brady in the bulk, within the theoretical frame-
work of the two-particle Smoluchowski equation.35 Compar-
ing the three cases, the planar channel always shows a higher
friction coefficient than the corrugated one.36 Interestingly, a
crossover is observed for larger forces, when the friction of
the corrugated channel is smaller than that in the bulk system.
As shown above, this stems from the effective confinement
of the tracer in the central region of the channel, decreas-
ing the friction experienced by the tracer in the corrugated
channel.

Comparing the reduction in the effective friction coeffi-
cient shown in Fig. 9 to Eq. (24) (and assuming linear response)
pinpoints that the contribution of D1 is crucial in determin-
ing the flow, even in the regime of very small forces. Indeed,
Eq. (24) shows that in order to reduce the friction coefficient
by means of corrugating the channel, D1 , 0 is a necessary
condition. However, in the same regime, Fig. 7 shows that
the theoretical model provides quantitatively reliable predic-
tions even assuming D1 = 0. Hence our data show that the
different observables can display quite a different sensitivity
to D1.

Finally, we analyze the transversal component of the
velocity, giving the non-diagonal component of the diffusion
tensor, DYZ . In the planar channel, this component vanishes
identically (not shown), while this is not the case for the
corrugated channel, as shown in Fig. 10.

The depicted transversal velocity, normalized by the cor-
responding tracer velocity in the bulk, deviates from zero more
significantly close to the walls when the channel widens or nar-
rows (following the force direction). Close to the mid-plane,
and both to the neck and the maximal aperture positions, this
velocity component vanishes. This result cannot be discussed
within the simple theory model used above, and we must turn
to the full model presented previously.14 The theoretical results
(for the unforced tracer) indeed predict this behavior close to
the wall.

Figure 11 presents the transversal velocity averaged in
slabs perpendicular to the external force, as studied above for
the density and longitudinal component of the velocity. (To
avoid a vanishing average due to the channel symmetry, vz
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FIG. 10. Velocity in the transversal direction, in different planes perpendic-
ular to the external force Fext = 1 kBT /a, as labeled.

has been defined as vz = v · n̂, where n̂ is the unit vector
in the vertical direction pointing from the mid-plane to every
point—upwards in the upper channel half and downwards in
the lower one.) Again, to compare different forces, the veloc-
ity is normalized with the longitudinal velocity of an isolated
tracer (i.e., the ratio of the transversal diffusivity to the diffu-
sion constant of the single particle). For small forces (upper
panel), in the linear regime, the results collapse onto a master
curve, which follows, qualitatively, the derivative of the wall.
For large forces, on the other hand, the behavior changes; the
effect disappears with increasing forces, indicating that the

FIG. 11. Velocity perpendicular to the force direction, averaged in slabs par-
allel to the XZ-plane. Small forces are shown in the upper panel, and large
forces are shown in the lower one. Note that in the averaging, the sign of vz
has been corrected; positive represents from the mid-plane to the wall and
vice-versa.

tracer motion is increasingly confined in the transversal direc-
tion and confirming that the tracer does not explore the full
section of the channel.

V. CONCLUSIONS

The dynamics of a tracer pulled through a colloidal sys-
tem confined in a corrugated channel have been analyzed. The
tracer is pulled with a constant force, and the whole range
of forces has been studied. The results are compared with
a simple one-dimensional model based on the Fick-Jacobs
approximation, but the results from the full model, studied
previously, have also been considered; the latter predicts that
for the unforced tracer, the diffusion tensor has non-zero
out-of-diagonal terms.

Our simulations confirm these predictions in the limit
of small forces and show that the linear response regime
extends up to Fext ∼ 1 − 2 kBT /a. The tracer longitudi-
nal velocity has a maximum in the neck of the channel,
whereas the transversal component is non-zero and has a max-
imum where the channel cross section varies more strongly.
Likewise, in this region, both the longitudinal and transver-
sal velocities (or local diffusion constants) vary close to the
walls, while they remain essentially constant in the rest of the
channel.

The theoretical model describes the tracer dynamics
effectively, fitting the contribution from particle-particle and
particle-wall collisions in the equilibrium case (Fext = 0) and
using this result for finite forces. The results for the tracer den-
sity and longitudinal diffusivity agree almost quantitatively
with the simulation results within the linear regime. Outside
this, the calculations break down and cannot provide reliable
results.

For larger forces, the tracer is confined to a narrow region
parallel to the channel axis, set by the minimum cross section
of the channel. The longitudinal component of the velocity
in this region is almost constant, as the channel section is not
explored, and the transversal component becomes increasingly
small. As a result, the effective friction experienced by a tracer
pulled with a large force in the corrugated channel is smaller
than in the bulk with the same density. This region falls out of
the theoretical model developed here.
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