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ABSTRACT
Recent experiments with electrolytes driven through conical nanopores give evidence of strong rectified current response. In such devices, the
asymmetry in the confinement is responsible for the non-Ohmic response, suggesting that the interplay of entropic and enthalpic forces plays
a major role. Here, we propose a theoretical model to shed light on the physical mechanism underlying ionic current rectification. By use of an
effective description of the ionic dynamics, we explore the system’s response in different electrostatic regimes. We show that the rectification
efficiency, as well as the channel selectivity, is driven by the surface-to-bulk conductivity ratio Dukhin length rather than the electrical double
layer overlap.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5108723., s

I. INTRODUCTION

Dating back to the famous thought experiment of Maxwell’s
demon (1867), the dream of designing force-free transport devices
has permeated different branches of physics, including nanofluidics.
In the context of nanofluidics, one can imagine the ionic diode,1 a
nanofluidic device exhibiting ionic currents of unequal magnitude
under voltages of equal magnitude and opposite polarity, as a real-
ization of such a demon. The first realization of such a nanometric
ionic diode was reported by Siwy and Fuliński in a geometrically
asymmetric nanochannel obtained by asymmetric chemical etching
of a polymer foil.2 Their conical channel demonstrated a strong non-
linear ionic current under ac voltage, resulting in a net average cur-
rent under zero average forcing. Ionic current rectification (ICR) in
conical nanochannels has since been extensively studied experimen-
tally,3–7 thanks to the considerable progress made over the last 20
years in nanofabrication technologies.8 ICR has also been observed
in symmetric channels subject to a concentration gradient9 and in
the presence of surface charge discontinuity.10

Empirically, the two features necessary to observe current rec-
tification have been identified as the presence of surface charge and
broken symmetry in the direction of transport, irrespective of the

nature of the broken symmetry. Alongside practical applications
in macromolecular sensing and manipulation,11,12 energy harvest-
ing,13–15 and water desalination,16,17 the phenomenon raises funda-
mental questions on the nature of ionic transport at the nanoscale.
At this lengthscale, surfaces and entropic confinement strongly
influence mass transport, leading to the emergence of nonlinear and
exotic responses,18 of which ICR is a prominent example. Ratio-
nalization of the latter would then be a test bed for understanding
more complex behavior occurring at the nanoscale,18 such as that of
biological functionalized protein channels.19–21

In nano-sized fluidic diodes, electrostatic interactions between
charged species play a key role. In the presence of a surface charge
density σ in contact with an electrolyte solution, an electrical dou-
ble layer (EDL) builds up inside the channel with a characteristic
decay length given by the Debye length, over which the imbalance of
charge due to the channel walls is screened,

λD =
√

kBT𝜖0𝜖w
csz2e2 . (1)

Here, kB is the Boltzmann constant, T is the temperature, 𝜖0 and
𝜖w are, respectively, vacuum and relative water permittivities, cs
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is the bulk electrolyte concentration, z is the electrolyte valency,
and e is the elementary charge. At room temperature, 𝜖w ≈ 80
and the Debye length can span from tens of nanometers down
to a few angstroms depending on the salt concentration. Within
the EDL, an excess counterion concentration screens the surface
charge giving rise to an electrically charged region. In the so-called
entropic electrokinetic regime,22 the Debye length is comparable to
the tip of the nanopipette, i.e., the smallest aperture. This is typi-
cally the case in most synthetic realizations of nanochannels6,23,24

as well as in biological ion channels. Notably, measures of ICR in
micrometer-sized systems have been reported more recently in the
literature.25,26

It is convenient to introduce a second electrostatic length
known as the Dukhin length,

lDu =
∣σ∣
ecs
∼
λ2
D

lGC
, (2)

which quantifies the relative importance of the surface compared
to bulk transport. Contrary to λD, the Dukhin length is a phe-
nomenological length: it does not directly correspond to a physi-
cally observable length in the system. Therefore, it can be much
larger or smaller than the system’s size.18 Equation (2) indicates
that the Dukhin length can be understood as the ratio between two
different lengthscales, namely, the Debye length (1) and the Gouy-
Chapman length lGC = 2𝜖0𝜖wkBT/z2e|σ|, defined as the typical length
at which the surface electrostatic potential energy equals the thermal
energy.

Nonetheless, the electrostatic phase space, associated with the
surface charge σ and the bulk concentration cs degrees of freedom, is
determined only by two independent lengths. As will become clear
in the following, the choice of λD and lDu as model parameters is
convenient for the problem at hand. In analogy to colloidal science,
we can also introduce a dimensionless Dukhin number,27

Du =
lDu
h̄

, (3)

where h̄ is the average half-height of the channel. Du≫ 1 identifies
the regime globally dominated by surface transport.

The theoretical literature on ICR has been confined mostly
to numerical simulations of the ion dynamics using the classical
Poisson-Nernst-Planck (PNP) equations for dilute electrolyte solu-
tions.28–31 Such a framework has quantitatively captured the phe-
nomenon, demonstrating that a mean field continuum description
is still valid for ionic dynamics down to a few nanometers.

An early qualitative interpretation of ICR is traceable back
to a paper of Woermann,32 who rationalized the phenomenon in
terms of ionic transference asymmetry between the ends of the
channel.

At the same time, the study of particle transport over entropic
barriers has attracted the attention in nonequilibrium statistical
physics.22,33–35 The first attempt to characterize transport in confined
systems dates back to the early work of Jacobs36 and Zwanzig,37 who
proposed the so-called Fick-Jacobs (FJ) approach to account for the
transport of Brownian particles geometrically confined in a quasi-
one-dimensional system. Under the assumption of a separation of
scales between the longitudinal and the transversal coordinates, the
latter is integrated and the description is reduced to an effective 1D

equation now containing an entropic term. The approach has proved
quantitatively correct for ionic transport in channel geometries with
smoothly varying cross-section both in the case of free diffusion38,39

and under moderate external field.40 These conditions are typically
satisfied in nanofluidic experiments.6,8,41

Overall, the FJ approach represents a well-established system-
atic framework to describe transport in the presence of entropic
barriers, and it has been recently extended to the regime of com-
petition between energetic and entropic interactions in electrolyte
dynamics.42

Our goal in the present work is to gain insights into the fun-
damental mechanism controlling current rectification in a geomet-
ric diode, i.e., a conical channel with uniform charge density in
contact with two reservoirs held at the same electrolyte concentra-
tion. Such a configuration corresponds to an extensively studied
nanopipette experimental setup. Moreover, it represents the concep-
tually intriguing case in which symmetry breaking originates only
from the geometric confinement; such a system is thus able to har-
ness entropy to rectify the ionic current. To address the problem,
we adapt the FJ approach to a 2D conical slab geometry. Con-
trary to previous works, considering channels much larger than the
Debye length,7,43 the present formalism allows us to investigate the
regime of finite λD, where partial Debye overlap occurs inside the
channel, and to fully capture the interplay between energetic and
entropic contributions. Furthermore, we are able to derive ana-
lytical predictions for the limiting conductance in the regime of
a strong EDL overlap which, to the best of our knowledge, have
not yet been derived for the geometric diode. Finally, our results
assess the key role played by the Dukhin number in the microscopic
mechanism of rectification, providing further insight into the nature
of ICR.

II. IONIC DYNAMICS
As shown schematically in Fig. 1, we consider an open asym-

metric channel with a slab geometry characterized by longitudinal

FIG. 1. Schematic view of the channel in contact with two reservoirs at a fixed
salt concentration. The channel width is assumed to be constant along the z
direction pointing out of the page. The channel walls carry a uniform negative
charge density, and an electrically charged double layer forms over a characteristic
length λD.
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size L, width Lz , and an x-dependent height,

h(x) = h̄ +
kL
2
− kx, (4)

where h̄ is the half-aperture of the channel and k = |dxh|
= (hL − hR)/L is the difference between the left hL and the right
hR channel half-heights in units of channel length. In the rest of
the paper, the channel slope is varied by keeping fixed its half-
height h̄ in order to compare systems with the same aspect ratio.
The channel is filled with a symmetric monovalent electrolyte com-
posed of species having equal diffusion coefficient D, in contact
with two reservoirs at fixed temperature T and ionic strength
cs. Each wall bears a uniform negative surface charge of density
σ < 0. We assume Lz ≫ h̄ so that we can neglect the z depen-
dence of any variables of the model, and the resulting system is
effectively 2D.

In order to characterize the ionic dynamics, we derive effective
one-dimensional transport equations for the ionic concentration
profiles c±. The approach relies on the constraint of a small aspect
ratio 𝜖 = h̄/L ≪ 1, i.e., a slowly varying channel geometry. In this
case, the transversal relaxation dynamics with characteristic relax-
ation time τy ∼ h̄2

/D is decoupled from the longitudinal relaxation
dynamics with τx ∼ L2/D and the ions are assumed to instantaneously
adjust to the Boltzmann distribution at each cross-section. Such a
separation of scale is known in the literature as local thermodynamic
equilibrium44 (LTE).

Under these assumptions, the steady-state Nernst-Planck equa-
tion for the positive and negative ionic species reads

j± = ∓Deβc±(x, y)∂xΦ(x, y) −D∂xc±(x, y), (5)

where j± is the constant mass flux density along x, β = 1/kBT, and
Φ(x, y) is the total electrostatic potential inside the channel. We
have neglected in (5) the advective flux which proved to be minor
compared to the electrophoretic contribution for moderate surface
charge densities and moderate external fields.29

Equation (5) must be supplemented by the Poisson equation
relating the electrostatic potential to the spatial charge distribution
q = e(c+ − c−) inside the channel,

∇
2Φ(x, y) = −

q(x, y)
𝜖o𝜖w

. (6)

In Sec. II A, we reduce (5) to an effective 1D equation by introduc-
ing the FJ ansatz for the ionic concentration profiles as explained
in Sec. II A. For consistency, the same approximation is applied
to the Poisson equation together with the assumption of a small
transversal variation of Φ (see Sec. II B), which allows us to formally
integrate (6).

A. The Fick-Jacobs approach
Since the ionic transversal and longitudinal dynamics are

assumed to be decoupled, it is convenient to introduce the marginal
concentration as the cross-sectional integral of the volumetric con-
centration,

c±(x) = ∫
+h(x)

−h(x)
dy c±(x, y). (7)

Moreover, following the approach of Zwanzig,37 we define x–
dependent free energies A±(x) via

e−βA±(x) =
1
h̄ ∫

+h(x)

−h(x)
dy e∓βeΦ(x,y). (8)

From the hypothesis of LTE, we may factor the volumetric con-
centrations c±(x, y) into the product of equilibrium normalized
conditional densities ξ±(y; x) and the marginal concentrations,

c±(x, y) ≈ ξ±(y; x) ⋅ c±(x) =
e∓βeΦ(x,y)

∫
+h(x)
−h(x) dy e

∓βeΦ(x,y)
⋅ c±(x). (9)

Equation (9) represents the key ansatz of the FJ approach. Martens
et al.33 proved that (9) can be recovered as the zero-order term of
a perturbative expansion in series for the geometrical parameter k
around the zero-transversal-flux solution. Notably, for the case of
a conical channel, where |dxh(x)| = const, taking into account the
extra x–dependence of the diffusivity D(x) amounts to rescaling of
the diffusion coefficient thus making the theory developed here valid
up to k ≤ 1.39,45

In the present work, we examine the zero-order FJ approxi-
mation and we leave to future work the discussion of higher order
corrections.

By integrating Eq. (5) in the y coordinate and using (9) as
a closure for c±(x, y), an effective one-dimensional equation is
obtained,

J± = Dc±(x)
⎡
⎢
⎢
⎢
⎢
⎢
⎣

∂x ∫
+h(x)
−h(x) e

∓βeΦ(x,y)dy

∫
+h(x)
−h(x) e

∓βeΦ(x,y)dy

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−D∂xc±(x), (10)

where J± = ∫dyj± is the longitudinal mass flux per unit width for each
species. In Eq. (10), the concentrations c±(x) are the marginal ones;
in the following, we refer to the marginal concentrations unless both
x– and y–dependences are explicitly noted.

Now, we introduce dimensionless variables. As reported in
Table I, we rescale the x coordinate by the total length of the channel
L and the coordinate y as well as the Debye length λD and the chan-
nel profile h(x) by the half-height h̄. In this way, the channel profile
reads

h(x) = 1 +
κ
2
− κx, (11)

where we also introduced a rescaled channel slope κ = k/𝜖. Since we
keep fixed the half-height h̄ allowing for variation in the degree of
corrugation, we note that κ < 2 for geometrical consistency.

The electrostatic potential is rescaled by the thermal one kBT/e
and the volumetric concentrations c± by the concentration in the
bulk cs. Consequently, the charge density q is rescaled by ecs, the
mass flux J per unit width by Dcsh̄/L, and the conductance per unit
width, G = ∂I/∂ΔV with I the total ionic current and ΔV the applied
potential drop, by the bulk conductance Dcsh̄e2

/kBTL.
In a dimensionless form, Eq. (10) now reads

J± = −c±[∂xβA± + ∂x log c±] = −c±∂xμ±, (12)

where we have introduced the (dimensionless) electrochemical
potential μ± = log c± + βA±. In Eq. (12), the electrophoretic
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TABLE I. Adimensionalization of the independent and derived quantities of the model.

Variables Rescaled variables

Longitudinal coordinate x x/L
Transversal coordinate y y/h̄
Channel profile h(x) h(x)/h̄
Debye length λD λD/h̄
Channel slope κ k/𝜖
Electrostatic potential ϕ eϕ/kBT
Volumetric concentrations c± c±/cs
Charge density q q/ecs
Mass fluxes J± J±/(Dcsh̄/L)
Differential conductance G G/(Dcsh̄e2/LkBT)

contribution now appears in terms of the previously introduced
effective free energies A±(x). For a neutral species, the effec-
tive free energy reduces to the standard Boltzmann entropy
βA(x) = −log 2h(x). In this case, d

dxβA(x) is referred to as an entropic
force, originating from the variation in phase-space volume available
for free diffusion along the channel. For a charged species, A embeds
both enthalpic and entropic contributions.

Equation (12) must be integrated with the appropriate bound-
ary conditions, i.e., by imposing continuity in the electrochemical
potential at the ends of the channel.46

The discontinuity in the surface charge distribution at the chan-
nel ends and the consequent readjustment of ions within the diffu-
sive layer result in an apparent local discontinuity in the concentra-
tion and electrostatic potential profiles. In the present framework,
such discontinuities are treated as pointlike discontinuities, which
stands for the fact that these entrance effects are O(𝜖), and hence,
they fall within the level of our approximation.

B. Local Debye-Hückel approximation
In dimensionless units, the Poisson equation (6) reads

𝜖2∂2
xΦ + ∂2

yΦ = −λ
−2
D q. (13)

It is convenient to decompose the electrostatic potential as

Φ(x, y) = ψ(x, y) + ⟨ϕ⟩(x) + ϕext(x), (14)

where ⟨ϕ⟩ = 1
2h(x) ∫

+h(x)
−h(x) dy ϕ(x, y) is the average potential across

y, ψ = ϕ − ⟨ϕ⟩ is the excess potential at each section, and
ϕext = −ΔV(x − 1

2) is the potential drop applied externally, resulting
in a constant electric field directed in the x direction.

By using FJ approximation into Eq. (13) together with (14) and
by linearizing in ψ under the assumption of small potential variation
in the transversal direction, we reduce (13) to

𝜖2∂2
xΦ + ∂2

yψ = −
λ−2
D

2 h
[(c+ − c−) − (c+ + c−)ψ]. (15)

We refer to the linearization used to derive Eq. (15) as a local Debye-
Hückel (DH) approximation: the potential is linearized with respect
to the local cross-sectional average, therefore preserving global non-
linearity. We stress that the assumption of small ψ is more general

than the standard DH, which requires small ζ potential everywhere
(typically47 ζ ≤ 25 mV). In fact, it allows us to explore the ideal gas48

regime for an arbitrarily high Dukhin number, where the typical
global Debye-Hückel assumption would fail.

The small aspect ratio constraint allows for a lubricationlike
approximation of (15) which reduces to a linear equation for ψ,

∂2
yψ = −

λ−2
D

2 h
[(c+ − c−) − (c+ + c−)ψ]. (16)

Consistently, the scaling argument applies as well to the electrostatic
wall boundary condition, which after neglecting terms of O(k2

), and
introducing rescaled variables, reduces to

∂yϕ∣
y=±h
= ∓

Du
λ2
D

. (17)

We shall note here that the LTE hypothesis previously introduced
implies local electroneutrality, in which the integrated charge den-
sity balances the surface charge density at each cross-section,

∫ dy q(x, y) = c+(x) − c−(x) = 2 Du. (18)

In fact, by integrating Eq. (15) in the y–coordinate, using (17), and
neglecting O(𝜖2

) terms, Eq. (18) is obtained.
Although applied to different fields, the unique underlying

physical assumption of the FJ ansatz, the lubrication approxima-
tion and local electroneutrality is, to first order, the separation of
transversal and longitudinal scales.49 The reduced Poisson equation
can be formally integrated leading to

ψ = −
Du(x)
λD(x)

cosh(y/λD(x))
sinh(h(x)/λD(x))

+
c+(x) − c−(x)
c+(x) + c−(x)

. (19)

In Eq. (19), the potential is naturally expressed in terms of
a local Dukhin number and a local Debye length, respectively,
defined as:

λD(x) =
λD

√
cvol(x)

, (20)

Du(x) =
Du

cvol(x)
, (21)

in terms of the total average volumetric concentration cvol(x)
= [c+(x) + c−(x)]/2h(x).

We recognize the first term on the rhs of Eq. (19) to be the
Debye-Hückel potential carrying an extra x–dependence due to the
varying channel geometry. The second term on the rhs ensures local
electroneutrality.

Equations (12) and (16) need to be solved numerically. It is
convenient to rewrite Eq. (12) in terms of ψ,

J+ = −∂xc+ + c+[∂x logh − (∂x⟨ϕ⟩ − ΔV) + ∂x log⟨e−ψ⟩], (22a)

J− = −∂xc− + c−[∂x logh + (∂x⟨ϕ⟩ − ΔV) + ∂x log⟨e+ψ
⟩], (22b)

∂2
yψ = −

λ−2
D

2 h
[(c+ − c−) − (c+ + c−)ψ], (22c)

so that the coupling between the concentration profiles and the
electrostatic potential is now made explicit. We use finite-element
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simulations (COMSOL) to solve the system of Eqs. (22a)–(22c) in
order to look at the electric current I = J+ − J− generated by the
applied potential drop ΔV. (See the Appendix for details on the
numerical simulations.)

The expression for the electric current obtained by formally
integrating Eqs. (22a) and (22b) reads

I = −
1
2
[
e−ΔV/2 − e+ΔV/2

∫10 dx′ eβA+(x′)
−
e+ΔV/2

− e−ΔV/2

∫10 dx′ eβA−(x
′)
], (23)

where the denominator is responsible for the nonlinear (rectified)
response of the channel, as it expresses the coupling between the
dissipative dynamics (thermodynamic forcing) and the geomet-
ric asymmetry. For a flat channel, Eq. (23) reduces to the stan-
dard ohmic response50 (per unit width) which in dimensional unit
reads

Iohm =
De2

kBT
[

2c−
L

+
2σ
eL
] ΔV . (24)

Equation (23) is valid for slowly varying channels under the assump-
tion of small potential variation in the transversal direction. Hence,
it represents a well-grounded expression for the ionic current allow-
ing to span across different regimes in the electrostatic phase space
in both λD and Du.

Previously proposed analytical approaches32,43,51 assume that
λD is the relevant controlling parameter by treating separately the
cases of no overlap λD ≪ 1 and strong overlap λD ≫ 1. This is not
necessary in the present framework, where λD can vary continuously.
Nevertheless, it is useful at this stage to introduce the regime of a
strong Debye overlap as it represents a well-known scenario which
we will use as a benchmark to compare with numerical results.

C. Strong Debye overlap, λD ≫ 1
Let us consider the regime in which the channel height is much

smaller than the Debye length. The EDL extends all throughout
the interior of the confined electrolyte, rendering the channel per-
fectly charge-selective. Both the electrostatic potential, Φ(x), and the
ionic concentration profiles, c±(x), are assumed to be uniform in
the transversal direction allowing for a substantial simplification of
the mathematical problem at hand. We stress that the concentra-
tions c±(x) here are not the marginal concentrations but the total
concentrations which in this limit are independent of y.

The combination of local electroneutrality which in this case
reads

2h(x)[c+(x) − c−(x)] = 2Du, (25)
and continuity in the chemical potential provides an expression for
the Donnan potential at either end of the channel,17,28,50

ϕL =
1
2

log
⎡
⎢
⎢
⎢
⎢
⎣

−Du +
√
Du2 + h2

L

+Du +
√
Du2 + h2

L

⎤
⎥
⎥
⎥
⎥
⎦

+
ΔV

2
, (26a)

ϕR =
1
2

log
⎡
⎢
⎢
⎢
⎢
⎣

−Du +
√
Du2 + h2

R

+Du +
√
Du2 + h2

R

⎤
⎥
⎥
⎥
⎥
⎦

−
ΔV

2
. (26b)

Notably, already at equilibrium, the varying geometry results in a
nonuniform tilted potential across the channel.

Analogously, the channel’s junction concentrations read

cL = c+
L + c−L =

√
Du2 + h2

L

hL
, (27a)

cR = c+
R + c−R =

√
Du2 + h2

R

hR
. (27b)

Hence, a jump in concentration profiles builds up at each junction
of the channel to compensate for the potential discontinuity (26).
Such a local balance is known in the literature as local Donnan
equilibrium. These expressions will allow for asymptotic analytical
predictions for the conductances when ΔV → ±∞.

The equation of motion (12) for λD ≫ 1 reduces to

2 h(x)[∓c±(x)dxϕ(x) − dxc±(x)] = J±, (28)

which, rewritten in terms of the total mass flux J = J+ + J− and
electric current I, becomes

J = −2 h(x)dxc(x) − 2Du dxϕ, (29a)
I = −2 h(x)c(x)dxϕ + 2Du dx log 2 h(x). (29b)

In (29a) and (29b), local electroneutrality (25) has been used to
further simplify the expressions.

III. RESULTS
A. Current response and limiting conductances

We focus first on the current response obtained by numerically
solving the system (22a)–(22c) under an applied potential differ-
ence ΔV. The two reservoirs are kept at the same ionic strength
so that the only thermodynamic force at play is a constant elec-
tric field along the longitudinal coordinate. A positive (negative)
ΔV corresponds, respectively, to the anode placed at the left (right)
reservoir.

A standard measure of ionic rectification is given by the
current-voltage (I-V) curve which we report in Fig. 2 for the case

FIG. 2. Dimensionless current I as a function of ΔV for a channel with λD = 1/2
and Du = 1/2 at different values of the channel slope, respectively, κ = 0, 1, 3/2,
and 1.8. We recognize two different conductance states. For positive voltage drop
(positive electric field), the system is in a low conductance state, the current being
smaller than the Ohmic one (gray line). On the contrary for negative voltage drop
(negative electric field), the current is magnified and the system is said to be in a
high conductance state.
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of λD = 1/2 and Du = 1/2 and for different values of the channel
slope. This regime corresponds to the case of the partial Debye over-
lap inside the channel. For instance, in the case of k = 3/2, the local
ratio λD

h(x) spans from ∼0.3 at the base junction up to ∼2 at the tip
junction. Therefore, by moving from left to right, ions experience
the building up of a Donnan potential passing from a region (left)
where the bulk dominates to a region (right) where the EDL dom-
inates. The nonlinear curves in Fig. 2 display the usual diodelike
behavior reported in the literature, with a preferential direction of
the ionic current. When the electric field is applied parallel to the
x–direction with the counterions moving from the base to the tip,
the current is suppressed with respect to the Ohmic response (gray
curve) and the system is said to be in a low conductance state. On the
contrary, when the electric field is applied antiparallel with respect
to x with the counterions moving from the tip to the base, the cur-
rent is magnified and the system is said to be in a high conductance
state.

The rectification magnitude is monotonous in the degree of
asymmetry in the system. The greater the channel’s slope, the larger
the rectification. This must come as no surprise since the channel
slope is the only element introducing asymmetry in the system. For
k → 0, the channel is flat and it behaves like a standard Ohmic
resistor.

The numerical I-V curves can be compared with analytical
predictions of the limiting differential conductances,

G±∞ = lim
ΔV→±∞

∂I
∂ΔV

. (30)

For a strong Debye overlap, the equations of motion reduce to (29a)
and (29b). By neglecting the diffusive contribution to the mass flow
with respect to the electrophoretic contribution in (29a) and by
integrating in x, we obtain

J = 2DuΔV . (31)

Combining Eqs. (29a) and (29b), we solve for dxc in terms of the
ratio I

J ,

2 hdxc +
(2Du)2

2 hc
dx log 2h = (

2Du
2hc

I
J
− 1)J, (32)

which is bound asymptotically; ΔV → ±∞, if the prefactor on the
rhs vanishes, i.e., 2Du

2hc
I
J → 1. Accordingly, the limiting conductance,

G±∞, reduces to

G±∞ = lim
ΔV→∞

(c+ + c−) (33)

because the diffusive contribution to the ionic flux for very large
fields is negligible. Equation (33) implies that the marginal concen-
tration inside the channel approaches a uniform value in the limit
ΔV → ±∞. When λD ≫ 1, we have analytical expressions for the
marginal concentration at the channel’s ends where, due to the chan-
nel geometry, the left end is characterized by the higher marginal
concentration while the right end fixes the lower value. Hence, from
Eqs. (27a) and (27b) (see Sec. IV for further details),

G+∞ = cRvol = 2
√

Du2 + h2
R, (34a)

G−∞ = cLvol = 2
√

Du2 + h2
L. (34b)

In Fig. 3, we show the I-V curves for λD = 2 and Du = 1, i.e., in
the regime of a strong overlap. For k = 3/2, we report the analytical
predictions for the asymptotic curves I±∞ = ±G±∞ΔV with the lim-
iting conductances obtained from (34), showing that these analytical
expressions accurately capture the numerical results. Further discus-
sion on the saturation mechanism for the conductance is reported in
Sec. IV.

From the comparison between Figs. 2 and 3, we observe that
the quantitative structure of the I-V curves does not change, respec-
tively, for the partial Debye overlap with λD = 1/2 and the strong
overlap with λD = 2. Consequently, the Debye length does not seem
to play a primary role in governing rectification. Notably, this is at
odds with the previous understanding of ICR which relies on λD as
the main controlling parameter.

In the next session, this observation is further explored and
clarified by looking closely to the dependence of ICR on the elec-
trostatic lengthscales.

B. Current rectification ratio
In order to gain further insights into the rectified behavior of

the present system, we introduce the rectification ratio η,

η =
∣I(−ΔV)∣
∣I(+ΔV)∣

, (35)

defined as the ratio between the absolute value of the current for
opposite polarity of the external field. In the case of an ohmic
resistor, η = 1.

Figure 4 displays η as a function of the external forcing, ΔV, for
λD = 1/2 and λD = 2. Each plot shows the rectification ratio for dif-
ferent values of the channel slope. The asymptotic predictions for η
obtained from Eqs. (34a) and (34b) are reported in Fig. 4(b) (dashed
black lines).

Figure 4 shows a saturation behavior for a large value of ΔV.
The saturation value increases with the channel slope as already
observed for the I-V curves. Moreover, for the strong overlap, the
analytical expressions (dashed lines) are in good agreement with the
numerical results.

FIG. 3. Dimensionless current I as a function of ΔV for a channel with λD = 2
and Du = 1/2 at different values of the channel slope, respectively, κ = 0, 1, 1.5,
and 1.8. The black dashed lines are the limiting currents for k = 3/2 in the limit of
ΔV → ±∞ using Eqs. (34).
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FIG. 4. (a) The rectification ratio η as a function of the amplitude |ΔV | in the case
of λD = 1/2 and Du = 1 for κ = 0, κ = 1, κ = 3/2, and κ = 1.8. For a flat channel,
η = 1 and the response is linear (gray line). (b) The rectification ratio η as a function
of the amplitude |ΔV | in the case of λD = 2 and Du = 1 for κ = 0, κ = 1, κ = 3/2,
and κ = 1.8. The dashed black lines show the asymptotic value for η in the limit of
|ΔV |→∞.

We now turn our attention to the dependence of ICR
on the Dukhin number. Figure 5 shows η as a function of the
reference Dukhin number, Eq. (3), for λD = 2 and κ = 3/2 for
different values of the external forcing. Interestingly, η shows a

FIG. 5. The rectification ratio η as a function of the reference Du for a chan-
nel with λD = 2 and k = 3/2 at different values of external forcing, respectively,
ΔV = 10, 20, 40, and 60. In the inset graph, the analytical prediction for η in the
regime of the strong overlap and of |ΔV | →∞ is reported. For sufficiently large
Du, it accurately estimates the behavior of η while in the limit of Du → 0, it devi-
ates from the numerical curves because of the breakdown of the hypothesis of the
strong overlap.

FIG. 6. The rectification ratio η as a function of the Debye length for different values
of the Dukhin, respectively, Du = 1/10, Du = 1/2, and Du = 1. The channel slope
κ = 3/2 and the potential drop ΔV = 40. Dashed lines refer to the regime in which
the local Debye-Hückel approximation is no longer justified.

strong nonmonotonic dependence on Du with a maximum of rec-
tification approximately at Du ≈ 1/2. For Du ≪ 1 or Du ≫ 1,
the rectification ratio goes to one and the standard ohmic behav-
ior is recovered. For values of Du close to unity, the rectification
ratio reaches a maximum which depends on the strength of the
applied field upon reaching a saturation value as shown in Fig. 4.
The saturation value of ΔV is itself modulated by Du. Figure 5
shows that Du is a critical parameter controlling rectification, in
contrast to λD that does not seem to be an adequate parameter to
describe ICR. This is further illustrated by looking at Fig. 6, where
η is plotted as a function of λD for three different values of Du.
We report a dashed line when we enter the regime in which lin-
earization in ψ is no further justified. This happens in the limit of
small λD when the potential at the centerline vanishes and ψ ∼ ζ.
In the regime of partial and strong overlaps, no significant depen-
dence on λD is shown. Albeit not quantitative, our results suggest
that ICR decreases while approaching the limit of vanishing λD. In
this limit, it is known that ICR approaches a nonzero asymptotic
value.52

IV. DISCUSSION: THE ROLE OF THE DUKHIN NUMBER
The results of Sec. III B show that ICR is not primarily gov-

erned by the Debye length, but rather by the Dukhin length. This
suggests that the Dukhin number directly controls the high (low)
conductance state, for a negative (positive) potential drop. This
can be understood in terms of ionic concentration enrichment and
depletion for opposite polarity of the external field, as discussed
in previous works.23,32,51 The panel in Fig. 7 shows the volumet-
ric cross-sectional averaged concentration cvol along the channel
axis for two different regimes of λD. In both figures, we observe
an overall increase (decrease) of ionic concentration for negative
(positive) ΔV with respect to the equilibrium profile, represented
by the gray line. Therefore, the high conductance state for negative
ΔV is due to an increase in ionic concentration inside the chan-
nel. The larger the external forcing, the stronger the accumulation
of ions. On the contrary, when a positive voltage drop is applied,
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FIG. 7. Volumetric cross-sectional average concentration cvol along the chan-
nel axis for different amplitudes of the applied potential, respectively, ΔV = 0,
ΔV = |10|, ΔV = |20|, ΔV = |40|, and ΔV = |60|. In the figures, solid lines corre-
spond to a positive potential drop while dashed lines to a negative potential drop.
Concentration profiles for the following choice of parameters: (a) λD = 1/2, Du = 1,
and κ = 3/2 (b) λD = 2, Du = 1, and κ = 3/2.

the electrical conductance decreases due to the decrease of ionic
concentration.

In order to understand the phenomenon of salt accumulation
and depletion, we now turn our attention to the behavior of the

marginal concentration for large fields. In Sec. III A, we already
anticipated that in the limit of a very large potential drop, we expect
the marginal concentration to saturate to a uniform value along the
channel axis. Figure 8 reports the marginal concentration along the
longitudinal axis for increasing values of λD [(a)–(c)]. For increas-
ing amplitude of the external forcing, the marginal concentration
indeed tends to a constant value which is determined by the bound-
ary value at either end of the channel. In the case of a negative
potential drop, the marginal concentration saturates to the larger
boundary value which is the value at the left end of the channel
(base). On the other hand, for a positive potential drop, the satu-
ration value is bounded to the boundary condition at the right site
(tip).

Figure 8 also shows an overshoot in the marginal concentra-
tion for large (but finite) negative ΔV. The overshoot is not present
in the case of positive ΔV which stands as an additional sign of
the asymmetry in the system. The microscopic mechanism caus-
ing it is still not clear and requires further investigations. Figure 9
reports the marginal concentration profiles for an increasing slope
of the channel showing a significant dependence of the overshoot
on κ.

Figure 8(c) displays the marginal concentrations for a strong
overlap, λD ≫ 1. Local Donnan equilibrium builds up at the
nanopore ends, controlling the corresponding marginal concentra-
tions,

cL = 2hL

√

(
Du
hL
)

2
+ 1, (36a)

cR = 2hR

√

(
Du
hR
)

2
+ 1. (36b)

Asymptotically, Du≫ 1 and cL→ cR, i.e., η→ 1. In this regime, trans-
port is controlled by the diode surface, where entropic interactions
are negligible with respect to electrostatic interactions and ions do
not feel the symmetry breaking originated from the confinement.
That is, to say, enthalpy wins.

The local marginal selectivity, γ±(x) (directly proportional to
the ionic marginal concentrations), constitutes a second relevant
quantity. For the counterions, the local selectivity at either end of

FIG. 8. Marginal concentration c along the channel axis for different amplitudes of the applied potential, respectively, ΔV = 0, ΔV = |10|, ΔV = |20|, ΔV = |40|, and ΔV = |60|.
In the figures, solid lines correspond to a positive potential drop while dashed lines to a negative potential drop. Concentration profiles for the following choice of parameters:
(a) λD = 1/2, Du = 1, and κ = 3/2. (b) λD = 1, Du = 1, and κ = 3/2. (c) λD = 2, Du = 1, and κ = 3/2. The black dashed lines in (c) correspond to the boundary value for the
marginal concentration due to the local Donnan equilibrium (34a) and (34b).
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FIG. 9. Marginal concentration c along the channel axis for different amplitudes of the applied potential, respectively, ΔV = 0, ΔV = |10|, ΔV = |20|, ΔV = |40|, and ΔV = |60|.
In the figures, solid lines correspond to a positive potential drop while dashed lines to a negative potential drop. Concentration profiles for the following choice of parameters:
(a) λD = 2, Du = 1, and κ = 1/2. (b) λD = 2, Du = 1, and κ = 1. (c) λD = 2, Du = 1, and κ = 3/2. The black dashed lines correspond to the boundary value for the marginal
concentration due to the local Donnan equilibrium (34a) and (34b).

the channel, respectively, reads

γL+ =
cL+

(cL+ + cL−)
=

Du
hL

+
√

(DuhL
)

2
+ 1

2
√

(DuhL
)

2
+ 1

, (37a)

γR+ =
cR+

(cR+ + cR−)
=

Du
hR

+
√

(DuhR
)

2
+ 1

2
√

(DuhR
)

2
+ 1

, (37b)

making transparent the key role of the Dukhin number in control-
ling the local channel selectivity. Equation (37) quantifies the relative
importance of the counterion flux over the total transport. Due to
the conical shape of the channel, γR+ is larger than γL−, meaning that
counterion transfer in the presence of an external driving is larger
at the tip than at the base. Such imbalance in selectivities results in
a transient ion readjustment when an external driving is switched
on. In the case of counterions, moving from the tip to the base
(negative ΔV), this imbalance in selectivities results in a transient
accumulation of ions inside the channel. On the contrary, when

FIG. 10. The counterion selectivity at the tip γR+(blue) and at the base γL+(red) of a
channel with k = 3/2 as a function of the reference Dukhin number. For Du ∼ 1/2,
the difference between the two selectivities (yellow curve) is maximized, leading to
a maximum of rectification.

counterions move from the base to the tip (positiveΔV), there will be
a relatively larger amount of ions leaving than entering the channel
resulting in an overall decrease of salt concentration. In either case,
the stationary state is reached when the nonequilibrium accumu-
lation/depletion dynamics counterbalances the asymmetry of local
selectivity induced by the geometry. Equation (37) implies that the
imbalance in selectivities is controlled by the asymmetry between
Du/hL and Du/hR. Both Du ≪ 1 and Du ≫ 1 result in a uniform
selectivity between the two ends of the channel, i.e., no rectification
(see Fig. 10). A high Dukhin number, Du≫ 1, means that the selec-
tivity of counterions at either end tends to one (that is the selectivity
of coions tends to zero): the coions are completely excluded from
the system and the geometrical asymmetry is nullified by the perfect
selectivity of the channel. No bulk transport is present so that the
entirety of transport takes place in the EDL. On the other side, for
Du≪ 1, the selectivity at either end tends to its bulk value 1/2. In this
regime, irrespective of the physical extension of the EDL, the entirety
of transport takes place in the unselective bulk and the ohmic bulk
response is restored.

The asymmetry between DuL/hL and DuR/hR is maximized for
Du ∼ 1 (in our case, Du ∼ 1/2 because of the normalization used for
the marginal concentrations).

The qualitative interpretation of ICR caused by an asymmetry
in the local selectivity at either end of the nanochannel is qualita-
tively consistent with the pioneer proposal of Woermann.32 How-
ever, our analysis provides a fresh interpretation of an old puzzle.
We have shown that Du is the principal electrostatic parameter that
locally controls the channel selectivity, with a secondary effect due
to λD, while Woermann pointed at λD as the main length to be com-
pared with the channel confinement. Although it may fly against
intuition, it is not the physical size of the EDL that determines the
system capability to rectify the ionic current.

V. CONCLUSION
In summary, we have presented here a theoretical analysis to

address the phenomenon of ionic current rectification in nanomet-
ric channels. We have specifically focused on the case of a geometric
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ionic diode where the symmetry breaking is caused only by the con-
ical geometry of the system. The theoretical framework mainly relies
on two assumptions: a slowly varying channel geometry and a small
electrostatic potential variation in the transversal direction. These
ingredients allow us to derive formal expressions for the electro-
static potential, Eq. (19), and for the ionic current, Eq. (23), and to
explore the response of the system for different values of λD and Du.
The main outcome of the work is the identification of the Dukhin
length as the primary electrostatic lengthscale controlling rectifi-
cation. Consequently, rectification is expected to be measured in
systems with a size comparable to the Dukhin length, which remark-
ably can reach the micrometer scale.18 This fact may explain recent
experimental works25,26 in which ICR is observed in mesoscopic
pores.

To conclude by misquoting Pauli,53 it is the dynamical usage
of surfaces that let the nanofluidic diode succeed where demons do
not.
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APPENDIX: NUMERICAL METHODS
Here, we report some details of the implementation in COM-

SOL for the numerical integration of the following equations:

J+ = −∂xc+ + c+[∂x logh − (∂x⟨ϕ⟩ − ΔV) + ∂x log⟨e−ψ⟩],

J− = −∂xc− + c−[∂x logh + (∂x⟨ϕ⟩ − ΔV) + ∂x log⟨e+ψ
⟩],

∂2
yψ = −

λ−2
D

2 h
[(c+ − c−) − (c+ + c−)ψ].

(A1)

First of all, let us recall here the appropriate boundary conditions for
the system at hands. In both ends of the channel, we have to impose
continuity in the electrochemical potential for each species. Starting
from the left side, we write in adimensional variables,

log
1
2
±
ΔV

2
= log c±(0) + βA±(0), (A2)

where by definition,

e−βA±(0) = e∓
ΔV

2 ∫

+hL

−hL
dy e∓ϕ(0,y). (A3)

By substituting Eq. (A3) into (A2), we obtain

c±(0) =
1
2 ∫

+hL

−hL
dy e∓ϕL(y), (A4)

where the boundary condition for c±(0) is expressed in terms of
the function ϕL(y) ≡ ϕ(0, y). The latter is obtained by solving the

following transversal equation at x = 0,

∂2
yϕL = −

λ2
D

2 + κ
[∫

+hL

−hL
sinh(ϕL) − (ϕL − ⟨ϕL⟩)∫

+hL

−hL
cosh(ϕL)],

x = 0,

(A5)

where ⟨ϕL⟩ = 1
2hL ∫

hL
0 dyϕL(y) and hL = 1 + κ

2 , and we made use of the
fact that

c+(0) + c−(0) = ∫
+hL

−hL
dy cosh(ϕL(y)),

c+(0) − c−(0) = ∫
+hL

−hL
dy sinh(ϕL(y)).

(A6)

Equation (A5) can be then numerically integrated using the standard
electrostatic boundary conditions,

∂yϕL(0) = 0, (A7)
∂yϕL(±hL) = ∓

Du
λ2
D

.

Likewise, we find the appropriate boundary value for c±(1) using

c±(1) =
1
2 ∫

+hR

−hR
dy e∓ϕR . (A8)

Therefore, the expressions (A4) and (A8) are now numbers which
can be directly used as boundary conditions for the system in (A1).

It is also convenient in COMSOL to rescale the y variable in the
following way:

y → h(x)y′, (A9)

f (x, y)→ f (x,h(x)y′) ≡ f ′(x, y′). (A10)

In this way, we map the original domain to a square domain substan-
tially simplifying the COMSOL calculation. From the chain rule, it
follows

∂xf (x, y)→ ∂xf ′(x, y′) = ∂xf ′(x, y′) + ∂y′f ′(x, y′)∂xy′

= ∂xf ′(x, y′) − ∂y′f ′(x, y′)
y′

h(x)
dxh(x),

(A11a)

∂yf (x, y)→ ∂yf ′(x, y′) = ∂y′f ′(x, y′)dyy′

= ∂y′f ′(x, y′)
1

h(x)
. (A11b)

The only variables in the model that depend on y are ψ(x, y), ϕL(y),
and ϕR(y). For each of them, we apply (A11) so that the electrostatic
boundary condition for ψ (likewise for ϕL and ϕR) becomes

∂y′ψ′(x, y′ = 0) = 0, (A12)

∂y′ψ′(x, y′ = ±1) = ∓
Du
λ2
D
h(x) (A13)

and the rescaled Poisson equation becomes

∂2
y′ψ′ = −

λ−2
D

2
h(x)[(c+ − c−) − ψ′(c+ + c−)]. (A14)
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