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 96 

One sentence summary: We argue that depending on p-values to reject null hypotheses, 97 

including a recent call for changing the canonical alpha level for statistical significance from .05 98 

to .005, is deleterious for the finding of new discoveries and the progress of cumulative science. 99 

 100 

 101 

Many researchers have criticized null hypothesis significance testing, though many have 102 

defended it too (see Balluerka, Gómez, & Hidalgo, 2005 for a review). Sometimes, there is a 103 

recommendation that the alpha level be reduced to a more conservative value, to reduce the Type 104 

I error rate. For example, Melton (1962), the editor of Journal of Experimental Social 105 

Psychology from 1950–1962, favored an alpha level of .01 over the typical .05 alpha level. More 106 

recently, Benjamin and 71 scientists (2017) recommended shifting to .005—consistent with 107 

Melton’s comment that even the .01 level might not be “sufficiently impressive” to warrant 108 

publication (p. 554). In addition, Benjamin et al. (2017) stipulated that the .005 criterion should 109 

be for new findings but were vague about what to do with findings that are not new. Though not 110 

necessarily endorsing significance testing as the preferred inferential statistical procedure,1 111 

Benjamin et al. (2017) did argue that using a .005 criterion would fix much of what is wrong 112 

with significance testing. Unfortunately, as we will demonstrate, the problems with significance 113 

tests cannot be importantly mitigated merely by having a more conservative rejection criterion, 114 

and some problems are exacerbated by adopting a more conservative criterion. 115 

We commence with some claims on the part of Benjamin et al. (2017). For example, they 116 

wrote “…changing the p-value threshold is simple, aligns with the training undertaken by many 117 

researchers, and might quickly achieve broad acceptance.” If significance testing—at any p-118 

value threshold—is as badly flawed as we will maintain it is (see also Amrhein, Korner-119 

Nievergelt, & Roth, 2017; Greenland, 2017), these reasons are clearly insufficient to justify it. 120 

                                                
1 Many of the authors favor Bayesian procedures. 
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Consider another claim: “The new significance threshold will help researchers and readers to 121 

understand and communicate evidence more accurately.” But if researchers have understanding 122 

and communication problems with a .05 threshold, it is unclear how using a .005 threshold will 123 

eliminate these problems. And consider yet another claim: “Authors and readers can themselves 124 

take the initiative by describing and interpreting results more appropriately in light of the new 125 

proposed definition of statistical significance.” Again, it is not clear how adopting a .005 126 

threshold will allow authors and readers to take the initiative with respect to better data 127 

interpretation. Thus, even prior to a discussion of our main arguments, there is reason for the 128 

reader to be suspicious of hasty claims with insufficient support. 129 

With the foregoing out of the way, consider that a basic problem with tests of 130 

significance is that the goal is to reject the null hypothesis. This goal seems to demand—if one is 131 

a Bayesian—that the posterior probability of the null hypothesis should be low given the 132 

obtained finding. But the p-value one obtains is the probability of the finding (or a more extreme 133 

finding) given the null hypothesis (and the assumptions underlying the test), and one would need 134 

to make an invalid inverse inference to draw a conclusion about the probability of the null 135 

hypothesis given the finding. And if one is a frequentist, there is no way to traverse the logical 136 

gap from the probability of the finding given the null hypothesis to a decision about whether one 137 

should accept or reject the null hypothesis (Briggs, 2016; Trafimow, 2017). We accept that, by 138 

frequentist logic, the probability of a Type I error really is lower if p = .005 than if p = .05, all 139 

else being equal. We also accept the Bayesian argument by Benjamin et al. (2017) that the null 140 

hypothesis is less likely if p = .005 than if p = .05, all else being equal (although determining p-141 

values via Bayes Factors is problematic; see Appendix).2 Finally, we acknowledge that Benjamin 142 

et al. (2017) performed a service for science by further stimulating debate about significance 143 

testing. But there are important issues Benjamin et al. (2017) seem not to have considered, 144 

discussed in the following sections.  145 

                                                
2 Depaoli and van de Schoot (2017) provided a critique showing how it is possible to abuse Bayesian statistics, and 

provided potential solutions to such abuse. Konijn, van de Schoot, Winter, and Ferguson (2015) suggested a way to 

use Bayesian statistics to reduce publication bias. 
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Regression and Reliability 146 

Trafimow and Earp (2017) argued against the general notion of setting an alpha level to 147 

make decisions to reject or not reject null hypotheses, and the arguments retain their force even if 148 

the alpha level is reduced to .005. In some ways, the reduction worsens matters. One problem is 149 

that p-values have a sampling distribution,3 as do other statistics (Cumming, 2012). Whether the 150 

p-value obtained in any experiment passes the alpha level is partly a matter of luck (which p-151 

value one happens to sample), with the caveat that large effect and sample sizes, and small 152 

variation, should decrease p-values. Absent the caveat, the researcher is unlikely to re-sample a 153 

p-value below a significance threshold upon replication, as there may be many more p-values 154 

above than below the threshold in the p-value distribution. Thus, the phenomenon of regression 155 

to the mean suggests that the p-value obtained in a replication experiment is likely to regress to 156 

whatever the mean p-value would be if many replications were performed to obtain a distribution 157 

of p-values for the experiment. How much regression should occur? That depends on the 158 

reliability of p-values. 159 

Based on data placed online by the Open Science Collaboration (2015; 160 

https://osf.io/fgjvw), Trafimow and de Boer (2017) calculated the correlation between p-values 161 

obtained in the original cohort of studies with p-values obtained in the replication cohort, and 162 

obtained the dismal value of .004.4 Clearly, then, the obtained p-value in the original study has 163 

little to do with the p-value obtained in a replication experiment. The best prediction would be a 164 

p-value for the replication experiment being vastly closer to the mean of the p-value distribution 165 

than to the p-value obtained in the original experiment. Under the null hypothesis, the lower the 166 

p-value published in the original experiment (e.g., .005 rather than .05), the greater the amount of 167 

distance of the p-value from the p-value mean, implying increased regression to the mean.5 Thus, 168 

even using the .05 value is problematic, with exacerbation using the .005 value (Amrhein & 169 

Greenland, 2017). When studies have low power, it is not rare to obtain large sample effects that 170 

                                                
3 For a test of the difference between two normal means, the p-value is uniformly distributed on [0,1] under the 

point null hypothesis. Under a range alternative hypothesis, the distribution may be unknowable. 
4 There are several possible reasons for the low value. These could include the nonlinear relation between p-values 

and effect sizes, mixing cases where the null hypothesis is true (or close to true) with cases where it is not, 

publication bias, and imperfect replication methodology, as well as random sampling error. 
5 Recall, the p-value distribution under the alternative hypothesis often is not knowable. 
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are overestimates, and using the .005 threshold instead of .05 would guarantee that statistically 171 

significant results are even larger overestimates of population effect sizes (Button et al. 2013). 172 

In addition, from a measurement point of view, where reliability is a prerequisite for 173 

validity, the p-value correlation (reliability) of .004 obtained by Trafimow and de Boer (2017) 174 

indicates that as a basis for binary decisions, p-values are incapable of measuring anything 175 

validly, including the strength of the evidence (Fisher, 1925; 1973) or the severity of the test 176 

(Mayo, 1996).6 This could be argued to be a good reason not to use p-values at all. Alternatively, 177 

the dismal p-value reliability as evidenced by the Open Science Collaboration could be 178 

attributed, in part, to the publication bias caused by having a publishing criterion (Locascio, 179 

2017a). But if one wishes to make such an attribution, although it provides a justification for 180 

using p-values in a hypothetical scientific universe where p-values are more reliable because of a 181 

lack of publication bias, the attribution provides yet another important reason to avoid publishing 182 

criteria based on p-values. 183 

 184 

Type I and Type II Errors 185 

 Another disadvantage of using any set criterion level for publication is that the relative 186 

importance of Type I and Type II errors might differ across studies within or between areas and 187 

researchers (Trafimow & Earp, 2017). Setting a blanket level of either .05 or .005, or anything 188 

else, forces researchers to pretend that the relative importance of Type I and Type II errors is 189 

constant.7 Benjamin et al. (2017) pointed out that a few areas of science use very low criterion 190 

levels to justify their recommendation to reduce to the .005 level, but this justification seems to 191 

tacitly admit that a blanket level across many areas is undesirable. It seems obvious that a wide 192 

variety of factors can influence the relative importance of Type I and Type II errors, thereby 193 

rendering any blanket recommendation undesirable (indeed Miller & Ulrich, 2016, show how 194 

these and other factors have a direct bearing on the final research payoff). These factors may 195 

include the clarity of the theory or auxiliary assumptions, practical or applied concerns, or 196 

experimental rigor. There is an impressive literature attesting to the difficulties in setting a 197 

                                                
6 “Correcting” the correlation for attenuation due to restriction of range, in the original cohort of studies, increases 

the correlation to .01, which is still low. 
7 Another problem is that for different sample sizes the same p-value may imply a different extent of the evidence 

against the null hypothesis (Royall, 1986). 
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blanket recommendation (e.g., Buhl-Mortensen, 1996; Lemons, Shrader-Frechette, & Cranor, 198 

1997; Lemons & Victor, 2008; Lieberman & Cunningham, 2009; Mudge, Baker, Edge, & 199 

Houlahan, 2012; Myhr, 2010; Rice & Trafimow 2010). This argument is not a recommendation 200 

that every researcher should get to set her own criterion, as that has obvious problems too (as 201 

Trafimow & Earp, 2017, showed).8 Rather, given that blanket and variable criterion levels both 202 

are problematic, it is sensible to dispense with significance testing altogether. 203 

 204 

Defining Replicability 205 

Yet another disadvantage pertains to what Benjamin et al. (2017) touted as the main 206 

advantage of their proposal, that published findings will be more replicable using the .005 than 207 

.05 alpha level. This depends on what is meant by “replicate” (see Lykken, 1968, for some 208 

definitions). If one insists on the same alpha level for the original study and the replication study, 209 

then we see no reason to believe that there will be more successful replications using the .005 210 

level than using the .05 level. In fact, the statistical regression argument made earlier suggests 211 

that the regression issue is made even worse using .005 than using .05. Alternatively, as 212 

Benjamin et al. (2017) seem to suggest, one could use .005 for the original study and .05 for the 213 

replication study. In this case, we agree that the combination of .005 and .05 will create fewer 214 

unsuccessful replications than the combination of .05 and .05, for the initial and replication 215 

studies, respectively. However, this comes at a high price in arbitrariness. Suppose that two 216 

studies come in at p < .005 and p < .05, respectively. This would count as a successful 217 

replication. In contrast, suppose that the two studies come in at p < .05 and p < .005, 218 

respectively. Only the second study would count, and the combination would not qualify as 219 

indicating a successful replication. The arbitrariness of declaring the combination of .005 and .05 220 

as being a successful replication, whereas the combination of .05 and .005 is not, adds to the 221 

myriad difficulties researchers have interpreting their data. More generally, insisting that setting 222 

                                                
8 In addition to creating new issues of how researchers should decide on the criteria for each experiment, how 

editors and reviewers should evaluate different criteria proposed by different authors, and losing what many 

consider to be the point of NHST—which is to have a consistent threshold level across a scientific domain: with 

variable thresholds, many old problems with NHST remain unsolved, such as the problems of regression to the 

mean, unreliability of p-values, inflation of effect sizes, publication bias, and the general disadvantage of forcing 

decisions too quickly rather than considering cumulative evidence across experiments. 
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a criterion of .005 renders research more replicable demands much more specificity with respect 223 

to how to conceptualize replicability. In addition, we do not see a single replication success or 224 

failure as definitive. If one wishes to make a strong case for replication success or failure, 225 

multiple replication attempts are desirable.9 226 

 227 

Questioning the Assumptions 228 

 The discussion thus far is under the pretense that the assumptions underlying the 229 

computation of p-values are true. But how likely is this? Berk and Freedman (2003) have made a 230 

strong case that the assumptions of random sampling from a population and independence are 231 

rarely true. The problems are particularly salient in the clinical sciences, where the falsity of the 232 

assumptions, as well as the divergences between statistical and clinical significance, are 233 

particularly obvious and dramatic (Bhardwaj, Camacho, Derrow, Fleischer, & Feldman 2004; 234 

Ferrill, Brown, & Kyle, 2010; Fethney, 2010; Page, 2014). The problem of likely false 235 

assumptions underlying the computation of p-values, in combination with the other problems 236 

already discussed, render the illusory garnering of truth from p-values yet more dramatic. 237 

 238 

The Population Effect Size 239 

 Let us continue with the significance and replication issues, reverting to the pretense that 240 

significance testing assumptions are correct, while keeping in mind that this is unlikely. Consider 241 

that as matters now stand using tests of significance with the .05 criterion, the population effect 242 

size plays an important role both in obtaining statistical significance (all else being equal, the 243 

sample effect size will be larger if the population effect size is larger) and in obtaining statistical 244 

significance twice for a successful replication. Switching to the .005 criterion would not lessen 245 

the importance of the population effect size, and would increase its importance unless sample 246 

sizes increased substantially from those commonly used.10 And there is good reason to reject that 247 

                                                
9 The present NHST focus should not detract from the importance of the quality of the theory and auxiliary 

assumptions for replication, as is attested to by recent successful replication studies in cognitive psychology (Zwaan 

et al., 2017) and social sciences (Mullinix et al., 2015). 
10 In addition, with an alpha level of .005, large effect sizes would be more important for publication, and 

researchers might lean much more towards “obvious” research than in testing creative ideas where there is more of a 

risk of weak effects and p-values that fail to meet the .005 bar. 
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replicability should depend on the population effect size. To see this quickly, consider one of the 248 

most important science experiments of all time, by Michelson and Morley (1887). They used 249 

their interferometer to test whether the universe is filled with a luminiferous ether that allows 250 

light to travel to Earth from the stars. Their sample effect size was very small, and physicists 251 

accept that the population effect size is zero because there is no luminiferous ether. Using 252 

traditional tests of significance with either a .05 or .005 criterion, replicating Michelson and 253 

Morley would be problematic (see Sawilowsky, 2003, for a discussion of this experiment in the 254 

context of hypothesis testing). And yet physicists consider the experiment to be highly replicable 255 

(see also Meehl, 1967).11 More generally, an experiment’s replicability should not depend on the 256 

population effect size. Any proposal that features p-value rejection criteria forces the replication 257 

probability to be impacted by the population effect size, and should be rejected. 258 

 259 

Accuracy of Published Effect Sizes 260 

 It is desirable that published facts in scientific literatures accurately reflect reality. 261 

Consider again the regression issue. The more stringent the criterion level for publishing, the 262 

more distance there is from a finding that passes the criterion to the mean, and so there is an 263 

increasing regression effect. Even at the .05 level, researchers have long recognized that 264 

published effect sizes likely do not reflect reality, or at least not the reality that would be seen if 265 

there were many replications of each experiment and all were published (see Briggs, 2016; 266 

Grice, 2017; Hyman, 2017; Kline, 2017; Locascio, 2017a; 2017b; and Marks, 2017 for a recent 267 

discussion of this problem). Under reasonable sample sizes and reasonable population effect 268 

sizes, it is the abnormally large sample effect sizes that result in p-values that meet the .05 (or 269 

.005) criterion, as is obvious from the standpoint of statistical regression. Moreover, with 270 

typically low sample sizes, statistically significant effects often require overestimates of 271 

population effect sizes. Effect size overestimation was empirically verified by the Open Science 272 

Collaboration project (2015), where the average effect size in the replication cohort of studies 273 

was dramatically reduced from the average effect size in the original cohort (from .403 to .197). 274 

Changing to a more stringent .005 criterion merely would result in yet worse effect size 275 

                                                
11 Very likely, a reason null results are so difficult to publish in sciences such as psychology is because the tradition 

of using p-value cutoffs is so ingrained. It would be well to terminate this tradition. 
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overestimation (Button et al. 2013). The importance of having published effect sizes accurately 276 

reflect population effect sizes contradicts the use of significance tests, at any criterion. 277 

 278 

Sample size and Alternatives to Significance Testing 279 

 We stress that replication depends largely on sample size, but there are factors that 280 

interfere with researchers using the large sample sizes necessary for good sampling precision and 281 

replicability. In addition to the obvious costs of obtaining large sample sizes, there may be an 282 

underappreciation of how much sample size matters (Vankov, Bowers, & Munafo, 2014), of the 283 

importance of incentives to favor novelty over replicability (Nosek, Spies, & Motyl, 2012) and 284 

of a prevalent misperception that the complement of p-values measures replicability (Cohen, 285 

1994; Thompson, 1996; Greenland et al. 2016). A focus on sample size suggests an alternative to 286 

significance testing. Trafimow (2017; Trafimow & MacDonald, 2017) suggested a procedure as 287 

follows. The researcher specifies how close she wishes the sample statistics to be to their 288 

corresponding population parameters, and the desired probability of being that close. Trafimow’s 289 

equations can be used to obtain the necessary sample size to meet specifications. The researcher 290 

then obtains the necessary sample size, computes the descriptive statistics, and takes them as 291 

accurate estimates of population parameters (provisionally on new data, of course).12 This a 292 

priori procedure stresses (a) deciding what it takes to believe that the sample statistics are good 293 

estimates of the population parameters before data collection rather than afterwards, and (b) 294 

obtaining a large enough sample size to be confident that the obtained sample statistics really are 295 

within specified distances of corresponding population parameters. The procedure also does not 296 

promote publication bias because there is no cutoff for publication decisions.13 297 

 The larger point is that there are creative alternatives to significance testing that confront 298 

the sample size issue much more directly than significance testing does. The “statistical toolbox” 299 

(Gigerenzer & Marewski, 2015) further includes, for example, confidence intervals, equivalence 300 

                                                
12 An optimal way to obtain reliable estimation is via robust methods (Erceg-Hurn, Wilcox, & Keselman, 2013; 

Field & Wilcox, 2017; Huber, 1972; Portnoy & He, 2000; Rousseeuw, 1991; Tukey, 1979). 
13 The foregoing description may make the a priori procedure seem to be the same as traditional power analysis, but 

this is not so. First, the goal of traditional power analysis is to find the sample size needed to have a good chance of 

obtaining a statistically significant p-value. Second, traditional power analysis is strongly influenced by the expected 

effect size whereas this a priori procedure is completely uninfluenced by the expected effect size. 
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tests, alternative ways of dealing with p-values as continuous indices, Bayesian methods, or 301 

information criteria; but none of those tools should replace conventional significance testing as 302 

the new magic method giving clear-cut mechanical answers (Cohen, 1994). In fact, inference 303 

should not be based on single studies at all (Neyman & Pearson, 1933; Fisher, 1937; Greenland, 304 

2017), nor on replications from the same lab, but on cumulative evidence from multiple 305 

independent studies. It is desirable to obtain precise estimates in those studies, but the more 306 

important goal may be to publish also our wide confidence intervals and small effects, without 307 

which the cumulative evidence will be distorted (Amrhein, Korner-Nievergelt, & Roth, 2017; 308 

Amrhein & Greenland, 2017). Along these lines, Briggs (2016) argues for abandoning 309 

parameter-based inference and adopting purely predictive, and therefore verifiable, probability 310 

models, and Greenland (2017) sees “a dire need to get away from inferential statistics and hew 311 

more closely to descriptions of study procedures, data collection [...], and the resulting data.” 312 

 313 

Conclusion 314 

 It seems appropriate to conclude with the basic issue that has been with us from the 315 

beginning. Should p-values and p-value thresholds be used as the main criterion for making 316 

publication decisions? The mere fact that researchers are concerned with replication, however it 317 

is conceptualized, indicates an appreciation that single studies are rarely definitive and rarely 318 

justify a final decision. Thus, p-value criteria may not be very sensible. A counterargument 319 

might be that researchers often make decisions about what to believe, and using p-value criteria 320 

formalize what otherwise would be an informal process. But this counterargument is too 321 

simplistic. When evaluating the strength of the evidence, sophisticated researchers consider, in 322 

an admittedly subjective way, theoretical considerations such as scope, explanatory breadth, and 323 

predictive power; the worth of the auxiliary assumptions connecting nonobservational terms in 324 

theories to observational terms in empirical hypotheses; the strength of the experimental design; 325 

or implications for applications. To boil all this down to a binary decision based on a p-value 326 

threshold of .05, .01, .005, or anything else, is not acceptable.  327 
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Appendix 465 

 466 

The Bayes Factor is an approach to model selection that attempts to quantify the posterior 467 

probability of one model relative to another, given set of observed data (Kass & Raftery, 1995). 468 

Formally, given a model 𝐻 and observed data 𝐷, the posterior probability of 𝐻 is given by Bayes 469 

theorem: 470 

𝑃 𝐻 𝐷 =
𝑃(𝐷|𝐻)𝑃(𝐻)

𝑃(𝐷)
 471 

where 𝑃(𝐷|𝐻) is the likelihood (determined by the statistical model), and 𝑃(𝐻) is the prior on the 472 

model 𝐻. Given two competing models 𝐻( and 𝐻), the ratio of the posterior probabilities is given 473 

by 474 

𝑃 𝐻( 𝐷
𝑃 𝐻) 𝐷

=
𝑃(𝐷|𝐻()𝑃(𝐻()
𝑃(𝐷|𝐻))𝑃(𝐻))

 475 

Here, the quantity 476 

𝐵 = 	
𝑃(𝐷|𝐻()
𝑃(𝐷|𝐻))

 477 

which multiplies the ratio of prior probabilities to obtain the posterior, is traditionally called the 478 

Bayes factor, and is generally interpreted as reflecting the relative weight of evidence provided 479 

by the data for the models 𝐻( and 𝐻). Quantities greater than 1 suggest that the data favor 𝐻(, 480 

while quantities less than 1 suggest support for 𝐻). 481 

 Ostensibly a form of model comparison, the Bayes factor has been widely employed in 482 

the sciences to perform null-hypothesis significance testing by specifying the null model 𝐻( to be 483 

the alternative 𝐻) with some parameter(s) set to zero (e.g. Wagenmakers, 2007; Wetzels & 484 

Wagenmakers, 2012; Ly, Verhagen, & Wagenmakers, 2016). In this way, Bayes factors find use 485 

as a sort of “Bayesian hypothesis test”. Although increasingly popular, Bayes factors have 486 

several problems which complicate their use as a form of hypothesis testing. Most notably, 487 

Bayes factors are highly sensitive to the choice of prior in a way that a true Bayesian analysis 488 

(one which returns a posterior distribution over the model parameters) is not, as we demonstrate 489 

below. Further, this prior sensitivity can often behave unintuitively; for instance, Gelman, et al 490 

(2014; pp. 183–184) provide an example in which the goal is to estimate a mean treatment effect 491 

within several groups. A Bayes factor is employed to compare a null model in which all groups 492 

have the same mean value, which has a normal prior; and a model with no shrinkage, in which 493 
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the means are independent draws from the same normal prior. In this case, the resulting Bayes 494 

factor is highly sensitive to the variance of the prior, and will always select the null model as the 495 

prior variance goes to infinity. A researcher, mistakenly believing that they are constructing a 496 

non-informative prior, might choose a very large prior variance, unknowingly forcing the Bayes 497 

factor to select the null model, regardless of what the data say. 498 

Moreover, in a fully Bayesian model the likelihood begins to dominate the prior as the 499 

sample size goes to infinity, as we might expect (since a larger sample provides more 500 

information about the model parameters). The prior thus has less effect with increasing sample 501 

size. This is not, in general, true of Bayes factors, which retain their prior sensitivity even with 502 

large samples. 503 

As an example, consider a set of data which are assumed to be Poisson distributed with 504 

rate 𝜆, with competing models 𝐻(: 𝜆 ≤ 1	𝑣𝑠	𝐻): 𝜆 > 1. A simulation study considering different 505 

sample sizes (20, 30 and 50) out with 10,000 replicates. The prior distributions for 𝐻( and 𝐻), 506 

and mean and standard deviations are presented in Table 1.  507 
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n	 Prior	𝑯𝟏	 Prior	𝑯𝟐	 𝒎𝒆𝒂𝒏(𝑩𝑭)	 𝒔𝒅(𝑩𝑭)	

20	 Gamma(1,2)	 Gamma(3,3)	 7.0	 2.7	

Gamma(2,2)	 202.0	 74.7	

Gamma(3,2)	 3726.9	 1331.9	

Gamma(2,2)	 Gamma(1,3)	 11570.1	 3139.9	

Gamma(2,3)	 1496.0	 472.5	

Gamma(4,3)	 29.1	 12.6	

Gamma(10,3)	 0.0019	 0.0020	

Laplace	 Laplace	 2.5	 13.6	

Jeffreys	 Jeffreys	 0.7	 4.0	

30	 Gamma(1,2)	 Gamma(3,3)	 357.1	 125.6	

Gamma(2,2)	 15626.6	 5500.1	

Gamma(3,2)	 428190.9	 151300.7	

Gamma(2,2)	 Gamma(1,3)	 1936147.3	 597773.2	

Gamma(2,3)	 167656.2	 54433.1	

Gamma(4,3)	 1539.0	 603.0	

Gamma(10,3)	 0.0113	 0.0088	

Laplace	 Laplace	 1.7	 11.5	

Jeffreys	 Jeffreys	 0.4	 2.6	

50	 Gamma(1,2)	 Gamma(3,3)	 2161996.0	 796727.8	

Gamma(2,2)	 156358014.0	 58652977.0	

Gamma(3,2)	 7218780790.0	 2682940095.0	

Gamma(2,2)	 Gamma(1,3)	 53119836572.0	 18718219507.0	

Gamma(2,3)	 2776659384.0	 993973186.0	

Gamma(4,3)	 9361043.0	 3659097.0	

Gamma(10,3)	 3.8	 2.4	

Laplace	 Laplace	 0.7	 4.7	

Jeffreys	 Jeffreys	 0.1	 0.8	

 508 

Table 1: Mean and standard deviations for Bayes Factor (BF) when different prior distributions 509 

for the hypothesis 𝐻( and 𝐻) are considered. The BFs that provide support to 𝐻) are shown in 510 

bold. 511 
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It is evident that the BF changes considerably when prior distributions and sample sizes 512 

change. In many cases, 𝐻( is more strongly supported by the data than	𝐻), which is not correct 513 

since 𝜆 = 1.5. And yet, the posterior distribution over 𝜆 is largely insensitive to these choices. 514 

For 𝜆 = 1.5 and a sample size of 50, the expected sum over all observations for is 75. Since a 515 

Gamma prior is conjugate for a Poisson likelihood, we can compute the expected posterior 516 

directly: for prior shape 𝛼 and rate 𝛽, the expected posterior shape and rate are 𝛼 + 75 and 𝛽 +517 

50, giving a posterior mean of  518 

(	𝛼 + 75)
(𝛽 + 50)

. 519 

For Gamma(1,3) and Gamma(2,3) priors, we have posterior means of 1.43 and 1.45, 520 

respectively—a negligible difference. And yet, the Bayes factors resulting from these priors 521 

differ by an order of magnitude. 522 

 Additionally, Bayes factors may exhibit strange behavior when used to test point-nulls 523 

for continuous models (e.g. testing that a mean difference is exactly zero). Aitkin, Boys, and 524 

Chadwick (2005) study an example in which a hypothesis test for a binomial probability, 525 

conducted via Bayes factor, returns strong support for a point null 𝐻F: 𝑝 = 𝑝F when, in fact, the 526 

posterior distribution (and a data itself) overwhelmingly support a value 𝑝 ≠ 𝑝F. The authors 527 

note that this is an example where two competing approaches—estimation and hypothesis 528 

testing—are in clear conflict. In general, researchers should be aware that the question they are 529 

asking—that is, do the data support the null value, or is some other value better supported by the 530 

data—is not necessarily the question being answered by the Bayes factor, nor is a Bayes factor 531 

used to test a point null on a parameter consistent in general with the posterior distribution over 532 

that same parameter. For these reasons, we do not feel that the Bayes factor is a satisfactory 533 

substitute for traditional hypothesis testing, nor does it address the fundamental problems 534 

associated with such approaches: namely, that they ignore uncertainty in favor of binary decision 535 

making. Using a threshold for the BF will result in a similar dilemma as with a threshold for the 536 

p-value. As Konijn et al. (2015) suggested, “God would love a Bayes Factor of 3.01 nearly as 537 

much as a BF of 2.99”. Moreover, the Bayes factor does not provide a good measure of statistical 538 

evidence, as it fails the coherence desideratum (see Lavine & Schervish, 1999).  539 
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