
GRAU DE MATEMÀTIQUES

Treball final de grau

DYNAMIC PROGRAMMING
AND DNA SEQUENCE

ALIGNMENT ALGORITHMS

Autor: Marc Jordà Mascaró

Director: Dr. Miquel Bosch Gual

Realitzat a: Departament de

Matemàtiques i Informàtica

Barcelona, 19 de juny de 2019



Contents

Introduction iv

1 Dynamic programming fundamentals 1
1.1 Multistage decision processes . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Multistage processes . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Theoretical foundations . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Theorem of optimality . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Functional equation of dynamic programming . . . . . . . . . 8
1.2.3 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Bellman’s principle of optimality . . . . . . . . . . . . . . . . . . . . . 11
1.4 The optimum decision policy . . . . . . . . . . . . . . . . . . . . . . . 14

2 Dynamic programming computational procedure 16
2.1 Problem reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Dynamic programming vs brute-force enumeration . . . . . . . . . . 18

2.2.1 Optimisation via brute-force enumeration . . . . . . . . . . . 18
2.2.2 Computing time comparison . . . . . . . . . . . . . . . . . . . 19

2.3 Details of the computational procedure . . . . . . . . . . . . . . . . . 19
2.3.1 Constraints and quantization . . . . . . . . . . . . . . . . . . . 20
2.3.2 Starting procedure . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 First sweep: calculation of optimal decisions . . . . . . . . . . 21
2.3.4 Second sweep: recovery of an optimal trajectory . . . . . . . . 21

2.4 Properties of the computational procedure . . . . . . . . . . . . . . . 22
2.5 Computational requirements . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 The curse of dimensionality . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Forward dynamic programming . . . . . . . . . . . . . . . . . . . . . 25



2.6.1 Advantages and disadvantages of forward dynamic program-
ming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 DNA sequence alignment 28
3.1 The power of DNA sequence comparison . . . . . . . . . . . . . . . . 29

3.1.1 A short biological introduction . . . . . . . . . . . . . . . . . . 29
3.2 The change problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 The Manhattan tourist problem . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Longest path in a DAG problem . . . . . . . . . . . . . . . . . . . . . 34
3.5 The alignment game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 The longest common subsequence problem . . . . . . . . . . . . . . . 39
3.7 The global alignment problem . . . . . . . . . . . . . . . . . . . . . . 42
3.8 The local alignment problem . . . . . . . . . . . . . . . . . . . . . . . 44
3.9 Alignment with affine gap penalties problem . . . . . . . . . . . . . . 46
3.10 Multiple sequence alignment . . . . . . . . . . . . . . . . . . . . . . . 48
3.11 Further questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Conclusions 51

A Algorithms 52
A.1 The change problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.1.1 Recursive method . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.1.2 Dynamic programming method . . . . . . . . . . . . . . . . . 53

A.2 The Manhattan tourist problem . . . . . . . . . . . . . . . . . . . . . . 53
A.3 The longest path in a DAG problem . . . . . . . . . . . . . . . . . . . 55
A.4 The longest common subsequence problem . . . . . . . . . . . . . . . 57
A.5 The global alignment problem . . . . . . . . . . . . . . . . . . . . . . 59
A.6 The local alignment problem . . . . . . . . . . . . . . . . . . . . . . . 61
A.7 The alignment with affine gap penalties problem . . . . . . . . . . . 63
A.8 The multiple alignment problem . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 73



Abstract

The goal of this work is to present dynamic programming, which is a math-
ematical field that solves optimisation problems based on multistage decision-
making processes. First, its mathematical foundations are gradually built up based
on the theorem of optimality, the functional equation and the principle of opti-
mality. Next, the basic elements of the computational procedure are presented,
including its most remarkable advantages and drawbacks in comparison to other
more exhaustive computational methods. Finally, several up-to-date problems in
bioinformatics are introduced in order to compare DNA and protein sequences,
which is useful to find out unknown gene functions and compare the genome of
different species. Computer algorithms to solve these problems have been written
and attached to this work.

2010 Mathematics Subject Classification. 49L20, 90C35, 90C39, 90C90, 92D20



Acknowledgements

To my advisor Dr. Miquel Bosch, for having accepted to supervise a work
about the topic I wanted, for concrete suggestions about the content and, espe-
cially, for having shown such a big degree of confidence in my abilities.

To Dr. Yi Li, who introduced me in the field of the operations research in the
University of Sheffield, appreciated my work there and suggested me dynamic
programming as a topic for this research project.

To my parents, whose first priority was always their children’s education. Go-
ing through with their support was so easy that anything I achieve in my life is as
theirs as mine.

To my sister Sara, my guiding light, the first opinion I need to hear in any
situation.

To my whole family and to the ones who are not here anymore.

To Andrea. To Anna. For having given so much to me these last years that I
will never be able to give it back in return.

To my town friends. Because I could not think in a better atmosphere, even
when difficulties showed up, to feel the luckiest person on Earth.

To all the friends I made at University, whose undeniable brightness definitely
made me a better mathematician, a better physicist and, above all, a better person.

To the friends I made last year in Sheffield, who changed my life entirely.

To my current workmates, for their interest and laughs which made this last
effort much easier to deal with.

Thank you very much.



iv Introduction

Introduction

Dynamic programming is a field of mathematics highly related to operations
research which deals with optimisation problems by giving particular approaches
which are able to easily solve some complex problems which would be unfeasible
in almost any other way.

The basic idea behind dynamic programming is to consider problems in which
several decisions must be consecutively made to minimise a cost or maximise a
profit. Next, the situation is split into single-decision optimisation subproblems,
which are much easier to solve. Then, some iteration is defined to match the solu-
tions of these subproblems so as to construct the answer for the larger one. What
is more, computations are organized in such a way to avoid recalculating already
known values and then saving so much computing time.

First of all, the first chapter provides a gradual theoretical construction, ac-
counting for the appropriate hypothesis and restrictions and carefully justifying
every step, in order to build up a suitable framework which can properly justify
later results.

In any case, dynamic programming is essentially intended to be used by com-
puter programs. So, the second chapter describes the basic aspects of the com-
putational procedure. It does not only show its advantages against other more
common exhaustive methods, but also clearly states its limitations.

In addition, the most essential aspect of this optimisation field is its high de-
gree of applicability. Namely, the third chapter applies the dynamic program-
ming method to the alignment of DNA and protein sequences, which is an up-to-
date bioinformatics application really useful to discover unknown gene functions,
find out causes of diseases or look for evolutionary similarities between differ-
ent species. With this goal in mind, I enrolled in a massive open online course
(MOOC) offered by the University of California in the edX website called Dynamic
Programming: Applications In Machine Learning and Genomics [10], whose first half
contents are reflected in this work.

Eventually, the computer algorithms to solve the different problems introduced
in the third chapter have been written as suggested and assessed activities for the
mentioned online course. Actually, they are attached in the appendix, in Python
programming language, which I also specifically learned to do this work.



Chapter 1

Dynamic programming
fundamentals

This first chapter gives the basic theory required to understand the dynamic
programming fundamentals in order to thereafter explain its computational meth-
ods and some of its applications.

First of all, multistage decision processes are introduced, because dynamic pro-
gramming can be basically regarded as the optimisation of such processes. Later
on, this part of the work sheds light on the basic approach of dynamic program-
ming to solve problems, introducing the theorem of optimality and the functional
equation from basic principles as the key points to build on a proper theoretical
structure. Afterwards, the principle of optimality is stated and its relation with
the previous results is discussed. Eventually, the basic procedure to recover op-
timal decisions and optimal trajectories from an optimal solution is also described.

The development of the content of this chapter is based on a rearrangement of
different elements of the references [1], [3] and [4].

1.1 Multistage decision processes

The theory of dynamic programming provides a framework to deal with the
optimisation of multistage decision processes, which are described in detail in this
first section.

1.1.1 Multistage processes

We will start by defining the basic concepts to build up a multistage process.

1



2 Dynamic programming fundamentals

Definition 1.1. States:

• A state space is a nonempty set X which contains all the possible configura-
tions of a system. In our case, X will be a nonempty subset of Rn.

• A state is a specific point in the state space X. The state vector x is the vector
of the n coordinates of a state in the set X which uniquely specify it in Rn:

x =


x1

...

xn


The n components of the state vector x are called state variables.

We consider now a transformation g : X → X which produces the sequence of
states [x(0), x(1), x(2), . . .] as it follows:

x(1) = g(x(0))

x(2) = g(x(1)) = g2(x(0))
...

x(k + 1) = g(x(k)) = gk+1(x(0))
...

(1.1)

Definition 1.2. The stage variable k is the index of the sequence and it determines
the order in which events occur in the system.

Definition 1.3. A multistage process is the set of elements [x(0), x(1), x(2), . . .].
Equivalently, it is the pair [x(0), g], because both items uniquely specify the previ-
ous sequence. We will call the finite segment [x(0), . . . , x(N)] an N-stage process.

We will work with deterministic systems accomplishing the property of causal-
ity.

Definition 1.4. A system is deterministic if no randomness is involved in determin-
ing its future states.

Definition 1.5. A system is causal if the output at stage k only depends on values
of the input at stages k′ ≤ k.

The property of causality is a requirement for a system to be feasible in reality
and it is accomplished by most physical systems. As for multistage processes,
we can infer from equations (1.1) that, given the state x(k), all later elements are



1.1 Multistage decision processes 3

determined by x(k) and the transformation g. In other words, the future states are
only determined by the current state and the transformation law, and not by the
particular path followed in reaching the current state.
So far, it has been assumed that the transformation g was the same in every appli-
cation, but it could be considered stage-dependent:

x(k + 1) = g(k, x(k)) (1.2)

In addition, it can be mentioned that state variables might be constrained in a way
depending on the stage of the system. This is why we introduce the following
sets:

Definition 1.6. Xi ⊂ X is denoted as the set of all the feasible states belonging to stage
i. Namely, X0 is a non-empty subset of X whose elements are called initial states.

1.1.2 Decisions

The concept of decision-making will be introduced so as to obtain a far-reaching
generalization of multistage processes. The purpose of these decisions will be to
obtain optimal values for certain functions.

We begin with the discrete, deterministic N-stage process [x(0), g]. Now, the
transformation g also depends on a decision u which is at our disposal:

g = g(k, x(k), u(k)) (1.3)

Definition 1.7. Decisions:

• A decision u is a value which can be chosen directly to affect the state vari-
ables in some prescribed way.

• The decision space U is a subset of Rm where the decision u is selected from.

• A decision vector is a m-dimensional vector where the coordinates of u are
arranged:

u =


u1

...

um


The components of u are called decision variables.

The multistage process is now:

x(k + 1) = g(k, x(k), u(k)), k = 0, . . . , N − 1, (1.4)



4 Dynamic programming fundamentals

where x(0) is a given initial state. These relations are called system equations and
define how the state variables at stage k + 1 are related to the state and decision
variables at stage k.
So, our N-stage decision process is determined by the following elements:

x(0), . . . , x(N); u(0), . . . , u(N)

Definition 1.8. The decision sequence is the sequence of elements U = [u(0), . . . , u(N)].

In any multistage process, the goal of making decisions is to find the optimal
value for certain functions:

Definition 1.9. The criterion function is a scalar function J generated by the states
and decisions J = J(x(0), . . . , x(N); u(0), . . . , u(N)) to be maximised or minimised
and provides an evaluation of a given decision sequence U . If the criterion func-
tion is maximised, it is called objective function. If it is minimised, it is called cost
function instead.

Take note that x(0) is a given initial condition and that it can be seen from
equations (1.4) that later states are worked out based on the state and decision at
their immediately previous stage. Then, J can be only expressed in terms of the
decision sequence:

J = J(u(0), . . . , u(N))

The values of the decision variables are usually constrained differently depending
on the state and stage of the system. This is why we introduce the following sets:

Definition 1.10. The set Uk,x(k) ⊂ U is considered the set of feasible decisions at stage
k given the state x(k).

In consequence, we can introduce the following recurrence from definition 1.6
about the way states are constrained:

Xk+1 := {g(k, x(k), u(k)) : x(k) ∈ Xk, u(k) ∈ Uk,x(k)}, 0 ≤ k < N (1.5)

One of the main purposes of dynamic programming is to identify the rules
behind decisions. This is why we introduce the concept of policies:

Definition 1.11. Policies:

• Policies refer to the rules that prescribe which decisions are made.

• Feasible policies refer to rules according to feasible sequences of decisions.

• Optimal policies determine an application of feasible rules which provides an
optimal sequence of decisions which minimise (or maximise) the criterion
function J.



1.2 Theoretical foundations 5

There are numerous problems of great practical interest which can be ap-
proached using dynamic programming ideas about making decisions one stage
at a time [2]. However, we need some restrictions to make J analytic and compu-
tational headway. For example, we can firstly assume that the current decision is
a function only of the current state and current stage. Formally:

Definition 1.12. Markovian policies accomplish that to determine the decision at
stage k only it is required information about the state currently observed at this
stage, i.e.,

u(k) = u(k, x(k)), (1.6)

and that u(k, x(k)) ∈ Uk,x(k) for any pair (k, x(k)) for which the set Uk,x(k) is not
empty.

All in all, we have set up a suitable mathematical framework as a base to build
on the basic theory of dynamic programming.

1.2 Theoretical foundations

The goal of this section is to develop an analytical structure to study multi-
stage decision processes using dynamic programming ideas.
We will consider from now on the following minimisation problem:

Problem 1.13.
min

(u(0),...,u(N))∈S̄
J(u(0), . . . , u(N)) (1.7)

where J is a real function of the variables u(0), . . . , u(N) and S̄ ⊂ RN+1 is the set
of all the feasible solutions to this problem. Following the framework stated in pre-
vious sections, system equations (1.4) hold, x(0) = c is a given initial state and
constraints x(k) ∈ Xk and u(k, x(k)) ∈ Uk,x(k) must be satisfied ∀k = 0, . . . , N.
On the other hand, J is considered to be a continuous function of all their argu-
ments. States and decisions are ranged over closed, bounded subsets of Rn and
Rm, respectively. By the Weierstrass theorem [7], a minimising policy exists.

The same reasoning that will be followed here can be obviously applied to
study maximisation problems in an analogous way.

The basic idea is that dynamic programming approaches this problem consid-
ering it as a member of a class of similar problems. Namely, we want to find an
embedding1 for the problem such that:

1An embedding, or imbedding, generally refers to the representation of a mathematical object in a
certain space in such a way that its properties are preserved [14].



6 Dynamic programming fundamentals

(a) One member of the family of problems has a relatively simple solution.

(b) Relations are obtained linking members of the family of problems in a certain
way.

The goal, then, is to obtain the solution of the problem, which may be difficult to
solve at first, starting with the solution of the simple problem and then using the
relations between the members of the family to solve the rest of them.

First, the relations specified in the step (b) of the embedding will be attempted
by means of the introduction of the theorem of optimality and the functional equa-
tion. Then, the simple member of the family described in step (a) will be found
straightforward as a particular case of the functional equation.
The basic idea behind this procedure is to transform our complex problem of N + 1
variables into a set of N + 1 much simpler problems of a single variable. This way
of proceeding can be regarded as a decomposition method.

1.2.1 Theorem of optimality

The first phase of the decomposition method will be to split the problem 1.13
of N + 1 variables into two different problems of less variables each. This is why
we will introduce the optimality theorem. Before that, we need to make some
additional assumptions about J. To handle easier notation, we set u(k) ≡ uk ∀k
and ~u as the N-vector of components u1, . . . , uN .

Definition 1.14. Our criterion function J depending on N + 1 variables u0, u1, . . . uN

is said to be separable if it can be expressible in terms of other N + 1 scalar functions
J0, J1, . . . , JN such that:

J[u0, . . . , uN ] = J0{u0, J1[u1, . . . , uN ]}
J1[u1, . . . , uN ] = J1{u1, J2[u2, . . . , uN ]}
J2[u2, . . . , uN ] = J2{u2, J3[u3, . . . , uN ]}

...

JN [uN ] = JN [uN ]

(1.8)

Definition 1.15. Our criterion function J depending on variables u0 and ~u is de-
composable into two other scalar functions J0 and J1 if J is separable, i.e.:

J(u0,~u) = J0(u0, J1(~u)), (1.9)

and, moreover, the function J0 is monotone non-decreasing relative to its second
argument.



1.2 Theoretical foundations 7

On the other hand, given an initial state x(0), for every u0 ∈ U0,x(0) we define:

S̄u0 = {~u : ~u ∈ RN ; (u0,~u) ∈ S̄} (1.10)

Since it could happen that S̄u0 = ∅ for some values of u0, we agree beforehand
that

min
~u∈S̄u0

{J1(~u)} = +∞, if S̄u0 = ∅

and also

∀u0 ∈ U0,x(0) : J1(u0,+∞) = +∞, J1(u0,−∞) = −∞

Now, we can finally state the optimality theorem.

Theorem 1.16. Let J be a real function of u0 ≡ u(0) and ~u = (u(1), . . . , u(N)). If J is
decomposable with J(u0,~u) = J0(u0, J1(~u)), then:

min
(u0,~u)∈S̄

{J(u0,~u)} = min
u0∈U0,x(0)

{
J0

(
u0, min

~u∈S̄u0

{J1(~u)}
)}

(1.11)

Proof. By the definition of a minimum for J(u0,~u) = J0(u0, J1(~u)), we can state:

∀ u′0 ∈ U0,x(0), ∀ ~u′ ∈ S̄u0 : min
(u0,~u)∈S̄

J0(u0, J1(~u)) ≤ J0(u′0, J1(~u′))

Particularly, taking ~u′ = ~u′′ such that J1(~u′′) = min~u∈S̄u0
{J1(~u)}, we get:

∀ u′0 ∈ U0,x(0) : min
(u0,~u)∈S̄

J0(u0, J1(~u)) ≤ J0(u′0, J1(~u′′))

This latest inequality is still true when choosing for u′0 the value which minimises
the right-hand side, so:

min
(u0,~u)∈S̄

J0(u0, J1(~u)) ≤ min
u0∈U0,x(0)

{
J0

(
u0, min

~u∈S̄u0

{J1(~u)}
)}

This shows one direction of the inequality. As for the opposite one, we can use
that J0 is monotone non-decreasing relative to its second argument:

∀ u′0 ∈ U0,x(0), ∀ ~u′ ∈ S̄u0 : J0

(
u′0, min

~u∈Su0

{J1(~u)}
)
≤ J0(u′0, J1(~u′))

This relation still holds by taking the value of ~u′ which minimises the right-hand
side:

∀ u′0 ∈ U0,x(0) : J0

(
u′0, min

~u∈Su0

{J1(~u)}
)
≤ min

~u∈Su0

J0(u′0, J1(~u))



8 Dynamic programming fundamentals

We then take for u′0 the value u′′0 which minimises on u0 the right-hand side.
Hence:

min
u0∈U0,x(0)

{
J0

(
u0, min

~u∈S̄u0

{J1(~u)}
)}
≤ J0

(
u′′0 , min

~u∈Su0

{J1(~u)}
)
≤ min

(u0,~u)∈S̄
{J(u0,~u)}

And this completes the proof.

This theorem achieves to convert the optimisation of a function depending
on N + 1 variables into two different optimisation problems, the first one with a
function depending on a single variable and the second one with another function
depending on N variables.

1.2.2 Functional equation of dynamic programming

The optimality theorem is essential since it can be the root to build on a system
of solution methods for dynamic programming problems. The key point is to
regard the domain of feasible solutions S̄ of the original problem as an element of
a larger family of domains parameterized by the stage and the state variables:

Sk,x(k) := {(u(k), . . . , u(N)) : u(j) ∈ Uj,x(j), k ≤ j ≤ N} (1.12)

By construction, for a given x(0) ∈ X0, we easily see that S0,x(0) ≡ S̄ .

We start by considering a general constrained optimisation problem in vari-
ables u(0), . . . , u(N) described by:

Problem 1.17. Consider the previous problem 1.13:

I∗ = min
(u(0),...,u(N))∈S̄

J[u(0), . . . , u(N)] (1.13)

But now, moreover, J also satisfyes the hypotheses of theorem 1.16.

The basic idea of the procedure involves replacing the solution of the prob-
lem 1.17, which consists of N + 1 variables, by the solution of a whole family of
optimisation problems only containing N variables:

Problem 1.18. Consider J1 as the function specified in (1.9) resulting from the
separability of the function J defined in the problem 1.17. Let x(1) ∈ X be a state.
It must be solved:

I(1, x(1)) = min
(u(1),...,u(N))∈S1,x(1)

J1[u(1), . . . , u(N)] (1.14)

for x(1) running through X.



1.2 Theoretical foundations 9

We can notice, though, that x(0) is the given initial state and that u(0) ∈ U0,x(0)

and determines x(1) based on

x(1) = g(0, x(0), u(0)), (1.15)

so expressions (1.10) for u(0) and (1.12) for x(1) actually refer to the same set. This
is why we can state that

S̄u(0) = S1,x(1) (1.16)

On the other hand, we agree to set

I(1, x(1)) = +∞ when S̄u(0) = ∅ (1.17)

Alternatively, we could also have considered X1 as the set of feasible states in
problem 1.18 and have simply run x(1) through X1.

From the theorem 1.16, the function defined in the problem 1.17 can be stated
as:

I∗ = min
u(0)∈U0,x(0)

{
J0

(
u(0), min

(u(1),...,u(N))∈S1,x(1)

{J1(u(1), . . . , u(N))}
)}

By definition of the problem 1.18 and the relation (1.15),

I[1, g(0, x(0), u(0))] = min
(u(1),...,u(N))∈S1,x(1)

{J1(u(1), . . . , u(N))}

In consequence, we are ready now to get to the heart of the matter. When the
problem 1.18 is solved ∀x(1) ∈ X1, then the previous problem 1.17 becomes a
minimisation problem in a single variable u(0):

I∗ = min
u(0)∈U0,x(0)

{J0 (u(0), I[1, g(0, x(0), u(0))])} (1.18)

By applying this result recursively, an optimisation problem in N + 1 variables can
be solved in N + 1 stages, where in each stage a certain number of optimisation
problems in a single variable are solved.

Generally, at stage k of the recursivity, for 1 ≤ k < N, by assuming that the
criterion function J is decomposable such that it accomplishes the equations of
separability (1.8), the minimisation problems of I(k, x(k)) can be defined ∀x(k) ∈
Xk by the relation

I(k, x(k)) = min
u(k)∈Uk,x(k)

{Jk (u(k), I[k + 1, g(k, x(k), u(k))])} (1.19)

which is called the functional equation of dynamic programming. It allows to solve
optimisation problems of I(k, x(k)) for all states in Xk from the knowledge of



10 Dynamic programming fundamentals

I(k + 1, x(k + 1)) for all states in Xk+1.

It is clear that relations between problems of the same family have just been
defined by the functional equation, so step (b) of the required embedding is actu-
ally accomplished. On the other hand, we need to satisfy step (a) as well, i.e., to
find one member of the family with a simple enough solution. In fact, this can be
easily achieved by considering the last stage of the process, where k = N:

I(N, x(N)) = min
u(N)∈UN,x(N)

{JN (u(N))} (1.20)

which is a minimisation over the single variable u(N).

To sum up, starting by solving the equation (1.20) for all x(N) ∈ XN and then
applying backwards the recursivity in equation (1.19) from k = N − 1 until k = 0,
we achieve both (a) and (b) and we can find the solution of the original problem
1.17.

1.2.3 Restrictions

This backward procedure of dynamic programming cannot be applied, though,
to all situations. It is restricted to cases in which:

• The state space X ⊂ Rn is finite, with small cardinality.

• The state space X ⊂ Rn contains an infinite number of elements, but the
dimension n of the state vector is small enough, so that it is possible to
approximate the criterion function on X by discretizing states to a finite
number of points. The computations of the rest of states can be performed
by interpolation methods.

1.2.4 Example

Example 1.19. In practical terms, we will usually consider separable functions
which are expressible as the addition of terms that depend only on the state and
decision at a single stage. For instance:

J =
N

∑
k=0

L(k, x(k), u(k)) (1.21)

where L(i, x(i), u(i)) is a positive function of i, x(i) and u(i). All conditions as-
sumed for J in this section so far apply here as well.



1.3 Bellman’s principle of optimality 11

We first attempt the step (b) of the embedding. We define the cost function
I(k, x) as the minimum cost that can be obtained by using an admissible deci-
sion sequence for the remainder of the process starting from an arbitrary stage k,
0 ≤ k ≤ N, and an admissible state x = x(k) ∈ Xk. Hence, we consider the family
of the problems about the minimisation of

I(k, x) = min
u(k),...,u(N)∈Sk,x(k)

{
N

∑
j=k

L[j, x(j), u(j)]

}
(1.22)

We proceed to find the functional equation using the principle of causality:

I(k, x) = min
u(k),...,u(N)∈Sk,x(k)

{
L[k, x, u(k)] +

N

∑
j=k+1

L[j, x(j), u(j)]

}
=

= min
u(k)∈Uk,x(k)

min
u(k+1),...,u(N)∈Sk+1,x(k+1)

{
L[k, x, u(k)] +

N

∑
j=k+1

L[j, x(j), u(j)]

}
=

= min
u(k)∈Uk,x(k)

{L[k, x, u(k)]}+ min
u(k)∈Uk,x(k)

min
u(k+1),...,u(N)∈Sk+1,x(k+1)

{
N

∑
j=k+1

L[j, x(j), u(j)]

}
=

= min
u(k)∈Uk,x(k)

{L[k, x, u(k)]}+ min
u(k)∈Uk,x(k)

{I[k + 1, g(k, x, u(k))]}

So, finally:

I(k, x) = min
u(k)∈Uk,x(k)

{L[k, x, u(k)] + I[k + 1, g(k, x, u(k))]} (1.23)

We need to satisfy the step (a) of the embedding as well. When k = N, we obtain:

I(N, x) = min
u(N)∈UN,x

{L(N, x, u(N))}, (1.24)

which is a minimisation over the single variable u(N).
If we look at the recurrence relation (1.23), the minimum cost from state x and
stage k is found by minimising the sum of the current single-stage cost L(k, x, u)
plus the minimum cost of going to the end of the process from the resulting next
stage g(k, x, u(k)). Thus, by carrying the minimum cost function backward one
stage at a time, we can find the minimum cost at any state and stage by calculating
one decision at a time.

1.3 Bellman’s principle of optimality

The development of the functional equation of dynamic programming (1.19)
can be understood as a way to construct an optimal solution to an initial problem



12 Dynamic programming fundamentals

from partial optimal solutions, which involve just a portion of the total stages of
the procedure.
The optimal solution obtained, then, is related to a very important concept defined
by Richard Bellman in 1954 which is called principle of optimality:

Definition 1.20. The principle of optimality states than an optimal policy has the
property that, whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from
the first decision [8].

In other words, all the portions of an optimal solution are, themselves, optimal
solutions as well. We can give an easy example to visually understand this state-
ment by imagining an optimal trajectory from certain point A to another point
C. Then, the path from any intermediate point B to point C must be the optimal
trajectory from B to C too.

However, there is not always an equivalence between the principle of optimal-
ity and the functional equation (1.19), because the conditions assumed to validate
the functional equation -essentially, separability and monotonocity-, are not suf-
ficient to ensure the validity of the optimality principle. This will be illustrated
using the following example [9]:

Example 1.21. Imagine we are looking for the shortest path in the graph G =

(V, E) in figure 1.1, in which the length of a path is defined as the product of the
lengths of the edges conforming that path. V = {1, 2, 3, 4} is the set of vertices
and E is the set of edges eij from vertex i to vertex j with associated cost or length
cij, 1 ≤ i, j ≤ 4. L is a real number such that L > 1.

1

2

3 4

1
L

L

1
L

0

Figure 1.1: Example of an optimal solution of the functional equation which does
not satisfy the principle of optimality.

The functional equations

J(1) = 1

J(j) = min
i

cij · J(i), eij ∈ E, j = 2, . . . , N



1.3 Bellman’s principle of optimality 13

satisfy both separability and monotonicity conditions. However, the optimal path
{1, 3, 4} of cost 0 given by those equations contains a partial path {1, 3} which is
not optimal between 1 and 3.

This counterexample makes clear, actually, that functional equations are not
simply a mathematical transliteration of the principle of optimality.
To ensure the validity of the principle of optimality we need to introduce a slightly
stronger assumption:

Definition 1.22. Our criterion function J depending on variables u0 and ~u is de-
composable in the strict sense into two other scalar functions J0 and J1 if J is separable
such that

J(u0,~u) = J0(u0, J1(~u))

and J0 is a strictly monotone non-decreasing function of its second argument.

We state now the following theorem:

Theorem 1.23. Let J be a decomposable in the strict sense function such that it
satisfies J(u0,~u) = J0(u0, J1(~u)). Let (u0,~u) be an optimal policy which determines
a path from the state x0 to the state xN , where g represents the system equations
such that g(0, x0, u0) = x1. Let ~u = (u1, . . . , uN) be a feasible policy which deter-
mines a path from x1 to xN . Then, ~u is an optimal policy from x1 to xN .

Proof. We will proof this result by contradiction. Assume that ~u is not the optimal
policy for the trajectory to x1 to xN , i.e., ∃ a feasible policy ~u′ = (u′1, . . . , u′N) from
x1 to xN such that

J1(~u′) < J1(~u)

First, since g(0, x0, u0) = x1, then (u0,~u′) is a feasible policy from x0 to xN .
By the assumption of strict non-decreasing monotonicity, we have:

J1(~u′) < J1(~u)⇒ J0(u0, J1(~u′)) < J0(u0, J1(~u))⇒ J(u0,~u′) < J(u0,~u)

This means that (u0,~u) is not an optimal policy from x0 to xN , which leads to a
contradiction and, in consequence, to the end of this proof.

Both this theorem and proof can be applied in an analogous way to show that
any optimal policy consists of subobtimal policies by assuming that the criterion
function is decomposable in the strict sense. Fortunately, additive and multiplica-
tive2 criterion functions accomplish this property.

2Additive criterion functions must consist of non-negative terms and multiplicative functions
must contain strictly positive factors.



14 Dynamic programming fundamentals

What is more, it can be shown that if it is just assumed that the criterion
function is decomposable, the functional equation of dynamic programming will
recover an optimal solution but it may not recover all of them. However, it can also
be shown that if the criterion function is assumed to be decomposable in the strict
sense, then the resulting functional equation will recover all the optimal solutions.
This topic is widely discussed in the 10th chapter of the reference [4].

1.4 The optimum decision policy

Once the recurrence relations for the criterion function are established, the next
goal is to determine the optimum sequence of decisions to achieve this optimal
solution. Dynamic programming provides an easy way to get this optimal decision
policy, because when the recurrence relation (1.19) is performed, it is simply a
matter of keeping track the values of the decisions û(k, x), for every stage and
state, which actually achieve this minimisation. Formally:

û(k, x) = arg min
u(k)∈Uk,x(k)

{Jk (u(k), I[k + 1, g(k, x(k), u(k))])} (1.25)

The optimal decision policy allows us to determine the optimum decision se-
quence from any state and stage. This means that, instead of just solving the
problem for the initial stage and state x(0), we have found the optimal solution
from any state and stage of the system, which is a huge advantage about using
dynamic programming.

In addition, the optimal decision policy also determines the optimal trajectory
in state space:

Definition 1.24. The optimal trajectory in state space or optimal trajectory is the op-
timum sequence of states, x̂(i), i = 0, . . . , N, where x̂(0) = c is the given initial
state.

To explain it in a simple way, the basic dynamic programming method involves
two sweeps through the stage variable. In the first sweep, we work backwards
computing I(k, x) in terms of I(k + 1, x) and getting the optimal decision policy
meanwhile. In the second sweep, we work forward, beginning at the initial state c
at stage 0. At every stage, we use the optimal decision policy function to recover
the next optimum decision in our sequence û(k, x̂(k)). Then, the next state in the
optimal trajectory x̂(k) is found by forward iteration of

x̂(k + 1) = g[k, x̂(k), û(k, x̂(k))], (1.26)



1.4 The optimum decision policy 15

until we reach the final state at the final stage N.
The procedure can also be applied when the initial state is not specified but must
be determined by minimising a function over all possible initial states: the initial
state is first selected by performing the minimisation, and the optimum decision
sequence and optimal trajectory are recovered by usual.



Chapter 2

Dynamic programming
computational procedure

The aim of this chapter is to discuss, based on the theoretical results previously
shown, the basic computational procedure of dynamic programming. Most con-
cepts are based on arguments from [1] and will be introduced through an additive
separable cost function to simplify the general reasoning.

We start by reviewing the basic problem formulation used in this chapter.
Then, we introduce the brute-force enumeration method to compare it to dynamic
programming and show that the latter requires much less computing time. Later
on, we explain the main elements of the computational procedure: constraints and
quantization of states, the starting procedure and two sweeps through the stage
variable to recover the complete solution of the problem.
Afterwards, the main properties of dynamic programming methods are listed so
as to show that its implementation is essentially beneficial. Furthermore, main
computational issues are discussed to evaluate the limits and implications of the
dynamic programming procedure. Finally, an analogous forward procedure is
introduced to broaden the range of problems which can be approached by our
computational method.

2.1 Problem reformulation

We have already checked the way dynamic programming approaches the opti-
misation of multistage decision processes. The basic general problem formulation
applied in this method is reviewed here so as to be subsequently used by compu-
tational methods.

16



2.1 Problem reformulation 17

On the one hand, stage variable usually takes discrete values k = 0, . . . , N. In
addition, we might even consider continuous problems by quantizing the stage
variable into uniform increments. For instance, we could define a continuous
stage variable t over a range to ≤ t ≤ t f with increment size ∆t, so stages would
be indexed in the following way:

t = t0 + j · ∆t, j = 0, . . . , N

On the other hand, it will be assumed in this chapter that for any given problem a
set of n independent state variables x1, . . . , xn can be specified. Besides, there are
generally m decision variables u1, . . . , um. The values of both types of variables are
usually restricted by constraints:

x(k) ∈ Xk ⊂ X ⊂ Rn, u(k, x(k)) ∈ Uk,x(k) ⊂ U ⊂ Rm (2.1)

The system equations are:

x(k + 1) = g(k, x(k), u(k)), k = 0, . . . , N − 1, (2.2)

The computational procedure can be applied to the minimisation (or maximisa-
tion) of any criterion function satisfying the conditions of the general problem
1.17. However, this second chapter is not meant to be as formal as the first one,
because the presentation of the main features of the computational procedure is
likely best suited for a not so formal treatment. This is why we will restrict to
additive separable cost functions:

J =
N

∑
i=0

L[i, x(i), u(i)], (2.3)

where L[i, x(i), u(i)] is a positive function of i, x(i) and u(i).
We can already specify which problems will be considered all along this chapter:

Problem 2.1. Given:

(i) An N-stage decision process described by system equations (2.2).

(ii) Constraints on the states and decisions (2.1).

(iii) An initial state x(0) = c.

Find the decision sequence u(0), . . . , u(N) which minimises (2.3) while satisfying
the constraints.



18 Dynamic programming computational procedure

2.2 Dynamic programming vs brute-force enumeration

2.2.1 Optimisation via brute-force enumeration

Before solving problem 2.1 by using dynamic programming, it is quite useful
to briefly look at a a brute-force enumeration procedure in order to discuss its lim-
itations and show why it is beneficial to apply a dynamic programming method
instead.

In a brute-force enumeration process, the set of admissible decisions is quan-
tized to a finite number of values:

U = {u(1), . . . , u(M)},

where both the number M of admissible decisions and their values u(q), q =

1, . . . , M, can vary with the state and the stage.
Steps of the enumeration procedure are based on a classical decision tree model:

• At the given state x(0) and stage k = 0, every admissible decision u ∈ U is
applied. For each of these decisions, the next state is computed from:

x(1) = g[0, x(0), u]

If x(1) ∈ X1, then the associated cost is:

Ω[1, x(1)] = L[0, x(0), u]

If x(1) /∈ X1, no further consideration is given.

• In general, when a set of states x(k) ∈ Xk (k = 1, . . . , N − 1) is defined, a
new set of states x(k + 1) ∈ Xk+1 is defined by applying all of u ∈ U at all of
the x(k) ∈ Xk, computing the system equations and evaluating the following
cost:

Ω[k + 1, x(k + 1)] = L[k, x(k), u] + Ω[k, x(k)]

• The process continues until k = N is reached.

The minimum cost is evaluated computing Ω[x(N), N] for the admissible states
x(N) ∈ XN and choosing the minimum value. We can recover from that, back-
wards, the optimal decision sequence and the optimal decision cost. Unfortu-
nately, assuming constraints are not violated, the number of trajectories is given
by MN , so the total number of computed evaluations -scoring the costs, compar-
ing them to find the minimum and tracing back along the decision tree to find the
optimal decision sequence and optimal trajectory- follows O(MN), which is not
computationally feasible for moderately large values of M and N.



2.3 Details of the computational procedure 19

2.2.2 Computing time comparison

We will check now whether the dynamic programming iterative function im-
proves the brute-force enumeration procedure.
We assume the quantization of X to some finite number of values:

X = {x(1), . . . , x(Θ)} (2.4)

where both Θ and x(j), for j = 1, . . . , Θ, can vary with the stage k. We also assume
the quantization of U = {u(1), . . . , u(M)}.
We obtained in the example 1.19 the following iterative functional equation:

I(k, x) = min
u∈U
{L[k, x, u] + I[k + 1, g(k, x, u)]} , k = 0, . . . , N − 1 (2.5)

starting by
I(N, x) = min

u∈U
{L(N, x, u)}, (2.6)

If we work backwards from (2.6), given a particular state x at stage k, we only need
to carry the minimum cost function (2.5) and the optimum decision associated to
it. Namely, for each u ∈ U, we evaluate:

1. The cost of the present stage L(k, x, u).

2. Next state g(k, x, u).

3. The minimum cost at the next state I(k + 1, g(k, x, u)).

Finally, we compare L[k, x, u] + I[k + 1, g(k, x, u)] ∀u ∈ U.

These calculations are computed once per quantized decision for each state
and for each stage. In this case, if the number of quantized decisions, quantized
states and stages are M, Θ and N, respectively, the total number of evaluations
for this dynamic programming method follows O(M ·Θ · N). This linear growth
is much less than the exponential growth needed in the direct enumeration proce-
dure, which was ruled by O(MN).

Hence, in all but the very simplest examples, dynamic programming requires
orders of magnitude less computing time than direct enumeration, so its imple-
mentation is quite preferable.

2.3 Details of the computational procedure

In this section, some different aspects affecting the implementation of dynamic
programming mehods are considered.



20 Dynamic programming computational procedure

2.3.1 Constraints and quantization

Dynamic programming -like direct enumeration- is very flexible when han-
dling constraints, which actually reduces the computational effort. The set of
admissible states X is defined based on inequality constraints which restrict the
range of the state variables by

β−i (k) ≤ xi(k) ≤ β+
i (k), i = 1, . . . , n, k = 0, . . . , N (2.7)

Analogously, the set of admissible decisions U uses inequality constraints that
restrict the range of the decision variables by

α−j (k, x) ≤ uj(k, x) ≤ α+
j (k, x), j = 1, . . . , m, k = 0, . . . , N (2.8)

On the other hand, we specified in last chapter that dynamic programming
requires a finite number of admissible states. If necessary, state variables xi could
be quantized in the range described by (2.7) assuming non-uniform increments
∆xi(k, ji):

xi(k, ji) = β−i (k) +
ji

∑
j=0

∆xi(k, j), ji = 0, . . . , Θi, k = 0, . . . , N (2.9)

such that
Θi

∑
j=0

∆xi(k, j) = β+
i (k)− β−i (k), ∀ k = 0, . . . , N (2.10)

Anyway, for simplicity, for the remainder of this chapter α−j , α+
j , β−i and β+

i will

be assumed constant. In addition, we will also assume that X = {x(1), . . . , x(Θ)}
and U = {u(1), . . . , u(M)}.

2.3.2 Starting procedure

Since the iterative functional equation (2.5) expresses the minimum cost at
stage k depending on the minimum cost at stage k + 1, we need to specify a set
of boundary conditions at the final stage N. So, the quantity to be determined is
I(N, x) for every quantized state x ∈ X from equation (2.6).
Besides, if no decision was made at the final stage k = N, then we could simply
write:

I(N, x) = L(N, x) (2.11)



2.3 Details of the computational procedure 21

2.3.3 First sweep: calculation of optimal decisions

Once we have the values of the boundary conditions I(N, x) ∀x ∈ X, the func-
tional equation (2.5) is used at first to compute the minimum cost I(N − 1, x) and
the optimal decision û(N − 1, x) at state x and stage N − 1. Then, the same equa-
tion is iteratively applied backwards through all stages until k = 0.

The general iterative procedure assumes that, at stage k, I(k + 1, x) is known
∀ x ∈ X. Given one of these quantized states x ∈ X, at stage k each of admissible
decisions u(q) is applied and then the cost at current stage is:

L(q) = L[k, x, u(q)], q = 1, . . . , M (2.12)

On the other hand, next state at stage k + 1 is:

x(q)(k + 1) = g[k, x, u(q)], q = 1, . . . , M (2.13)

If x(q)(k + 1) lies outside of the range of admissible states X, the decision u(q) is
rejected. If system equations lead to obtain a state x(q)(k + 1) within the range of
allowable states but not being a quantized value, we need to use some interpola-
tion procedure to evaluate the criterion function at this point by expressing it in
terms of the actual values at quantized states1.

Reasoning from equation (2.5), we need to compute:

I[k, x] = min
u(q)∈U

{
L[k, x, u(q)] + I[k + 1, x(q)(k + 1)]

}
(2.14)

The optimal decision at this state and stage, û(k, x), is the value u(q) for which the
minimum in equation (2.14) is actually taken on.

This procedure is repeated again for all x ∈ X. Later on, the whole process
is developed again at every stage, backwards, until û(0, x) and I(0, x) have been
computed.

2.3.4 Second sweep: recovery of an optimal trajectory

We have seen that dynamic programming consists in solving a whole family
of related problems. This is the reason why a dynamic programming solution
does not only give a simple optimal value. Actually, a complete solution specifies

1For practical reasons only the simplest interpolation techniques are extensively used in dynamic
programming, basically low-order polynomial approximations over a small region. These methods
are described in detail in reference [1].



22 Dynamic programming computational procedure

û(k, x) and I(k, x) for all quantized states x ∈ X and for all stages k = 0, . . . , N in-
stead. However, we were originally asked about to determine an optimal sequence
of decisions from a given initial state x(0).

Once the optimal decisions and minimum costs have already been computed
and also stored for every state and stage, it is really easy to explicitly find the
optimal sequence of decisions associated to the considered initial state. Starting
from the given x(0), first decision is evaluated as û(0) = û(0, x(0)). Afterwards,
next state in the optimal trajectory is found by x̂(1) = g[0, x(0), û(0)]. If x̂(1) is
quantized, then the next decision is directly û(1) = û(1, x̂(1)). Otherwise, we
need to interpolate from values û(1, x) for quantized states in X. The recovery
procedure continues forward through all stages until û(N) and x̂(N) have been
obtained.

2.4 Properties of the computational procedure

At this point, it is clear that dynamic programming offers some interesting
properties to be applied in optimisation problems of multistage decision processes.
In this section, main properties of the dynamic programming computational pro-
cedure will be listed so as to outline its desirability in the application of these
problems.

Some of the main dynamic programming features are actually shared with the
brute-force enumeration method:

• The main assumptions required for system equations g and the single-stage
cost functions L are a rule for determining values of these functions at quan-
tized values of the stage, state and decision variables and a procedure to
interpolate them between quantized values.

• It easily handles constraints.

• It always determines an absolute minimum (or absolute maximum), since
all states are considered for every stage and all decisions are considered for
every state and stage.

• It is a quite simple procedure, since it only steps forward the system equation
g, looks up and/or interpolates the minimum cost function at the next stage
and compares scalar quantities.

In addition, there are some other properties which involve a clear improvement
respect to the brute-force enumeration method:



2.5 Computational requirements 23

• Running time requirements are drastically reduced.

• Solutions are obtained for an entire family of problems, not for just a single
problem. This property was called by Bellman as invariant imbedding.

• A feedback control or decision policy is obtained, which means that the optimal
decision is simplified as a function of both stage and state. So, if there are
deviations from the original optimal trajectory, a truly optimal decision can
be found for the remaining stages.

Nevertheless, as in any other computational method, some aspects must be care-
fully taken into account when implementing dynamic programming. These pos-
sible drawbacks will be presented in the next section.

2.5 Computational requirements

In this section, we will analyse the computational requirements involved in the
dynamic programming method we have been discussing all along this chapter.

2.5.1 The curse of dimensionality

Despite dynamic programming presents beneficial properties, computational
requirements of the procedure grow rapidly with the number of state and decision
variables. This feature was called by Bellman as curse of dimensionality. Actually,
dimensionality problems affect many different computational methods, but they
are specially significant for discrete optimisation problems, which are the main
target for dynamic programming.
Nowadays, computers allow the resolution of problems which were not afford-
able several decades ago. Despite these advances, the curse of dimensionality is
still an obstacle. Yet, dynamic programming is still more efficient than brute-force
enumeration in terms of execution time. In addition, several types of problems,
like many graph and network problems, are not essentially affected by this size
problem.
The curse of dimensionality is often faced using heuristic methods, which try to
find good approximations to the actual exact solutions of the dynamic program-
ming functional equation. Unfortunately, the absence of exact solutions makes
often difficult to determine if these results are good enough.
The best idea is probably analysing problems on a case by case basis in order to
find a functional equation which eludes dimensionality issues as much as pos-
sible. In fact, a general approach seems to have no chance against the curse of
dimensionality.



24 Dynamic programming computational procedure

2.5.2 Memory

Despite dynamic programming highly advantages brute-force enumeration in
terms of running time, it involves much more important memory issues which
must be taken under consideration.
To begin with, the first barrier is the number of locations in the high-speed mem-
ory which must be available during computations. It requires that enough data
should be stored to specify I(k, x) ∀x ∈ X at every stage k, generally by keeping
one value of I(k, x) per every quantized state x ∈ X and by using a simple inter-
polation formula.
Generally, the required number of locations is:

Nn =
n

∏
i=1

Ni,

where Ni is the number of quantized values of the ith state variable and n the total
number of state variables. Since at stage k− 1 we need both I(k− 1, x) and I(k, x),
we actually require 2Nn locations.

A second storage issue involves saving the results of computation. If there are
Nn quantized states at each stage and N stages, the number of values of û(k, x)
and I(k, x) computed is Nc = Nn · N each. On the other hand, the number of
discrete values of u that must be tried at each of these Nc points is:

Nd =
m

∏
j=1

Mj,

where Mj is the number of quantized values of jth decision variable and m is the
number of decision variables.

In fact, the memory requirements can be directly related to the computing
time. If, at a given state x and stage k, we call ∆tc the time, in seconds, needed by
a computer to work out the quantity

{L(k, x, u) + I(k + 1, g(k, x, u))}

and to compare it with other values, the total running time becomes:

tc = Nc · Nd · ∆tc, (2.15)

which seems a quite reasonable running time for most available computers.



2.6 Forward dynamic programming 25

To sum up, we can actually conclude that dynamic programming provides
an extremely powerful conceptual point of view for structuring approaches to
complex problems and, at the same time, it can also be a practical computational
tool for obtaining numerical results in these problems.

2.6 Forward dynamic programming

Despite we have presented a basic procedure under some assumptions, the
general method can actually accept modifications in order to be applied to a wider
range of problems. For example, dynamic programming can be applied in prob-
lems where there is not an explicit stage variable and the end of the process de-
pends on some condition rather than a concrete number of applied steps. It can
be used as well in problems where the number of stages becomes infinite. Both
situations are widely discussed in reference [1].

In this section, we will focus on problems where the basic recursive equations
are not solved backwards, because there exist certain cases where it is preferable
to reverse the directions of the sweeps in the stage variable.

Definition 2.2. Forward dynamic programming involves procedures in which the
basic recursive relation is operated forward in the stage variable.

Analogously, we will call backward dynamic programming to the processes we
were studying so far.
There are two ways to interpret the concept of forward dynamic programming:

1. We can simply relabel the stage index as ` = N − k, for k = 0, . . . , N. Then,
the stage variable represents the number of stages to go, rather than the
index of the current stage. So, the relations (2.5) and (2.6) become:

I(`, x) = min
u∈U
{L(N − `, x, u) + I(`− 1, g(N − `, x, u))}, ` = 1, . . . , N

(2.16)
I(0, x) = min

u∈U
{L(N, x, u)} (2.17)

If we momentarily consider the stage-invariant case L(k, x, u) ≡ L(x, u) and
g(k, x, u) ≡ g(x, u):

I(`, x) = min
u∈U
{L(x, u) + I(`− 1, g(x, u))}, ` = 1, . . . , N (2.18)

I(0, x) = min
u∈U
{L(x, u)} (2.19)



26 Dynamic programming computational procedure

These equations lead to a more meaningful interpretation, because the ex-
pression in (2.18) states that a process with ` stages is given recursively in
terms of a process with (`− 1) stages. Hence, we start from the initial stage
but we allow the length of the process to increase one stage at a time. How-
ever, this interpretation does not work for a stage-varying problem.

2. Alternatively, we can define the minimum cost I′(k, x) as the one that can be
achieved starting from one admissible initial state and arriving at state x at
stage k:

I′(k, x) = min
u(j)∈U, 0≤j≤k−1

{
k−1

∑
j=0

L(j, x(j), u(j))

}
, (2.20)

where, as usual, g[k− 1, x(k− 1), u(k− 1)] = x.
To obtain the iterative equation, we assume the injectivity [6] of the sys-
tem equation g and we define its inverse g−1 : X → X, where g−1[k, x(k +
1), u(k)] is the state x(k) from which the state x(k + 1) is reached at stage k
by applying the decision u(k). So, based on this definition:

g{k, g−1[k, x(k + 1), u(k)], u(k)} = g{k, x(k), u(k)} = x(k + 1) (2.21)

Then, the iterative equation becomes:

I′(k, x) = min
u∈U
{L[k− 1, g−1(k− 1, x, u), u] + I′[k− 1, g−1(k− 1, x, u)]} (2.22)

The fact that I′(k, x) is determined in terms of I′(k− 1, x) implies that calcu-
lations proceed forward in the stage variable.

As for the initial condition to begin with, we must indicate the minimum
cost function at the initial state. If an initial state x(0) = c is specified:

I′(0, x) =

{
0, x = c

∞, x 6= c
(2.23)

Alternatively, the initial state may not specified but an initial cost function
ψ(x(0)) could be given instead.

The corresponding optimum policy function û′(k, x) consists of the values
of u for which the minimum in (2.22) is reached and specifies what decision
should have been applied at stage k− 1 to reach state x at stage k.



2.6 Forward dynamic programming 27

The iteration proceeds forward until I′(N, x) and û(N, x) are obtained. From
this point, the optimum policy function allows to recover the optimal trajec-
tory going backwards one stage at a time until x(0) is reached.

2.6.1 Advantages and disadvantages of forward dynamic programming

Forward dynamic programming provides several useful properties to be ap-
plied in solving some different problems. Its basic advantages are listed below:

• Great flexibility in the terminal cost function and/or terminal constraints. A
terminal cost function or constraint can be added after all computations have
been performed or it is possible to asses the effects of using different ones
without repeating all the calculations.

• The initial conditions can easily be constrained to only one state. So, when
we need an optimal trajectory from a concrete given initial state, the use of
forward dynamic programming can save computing time.

• There is a straightforward interpolation procedure for problems in which
the next states do not occur exactly at quantized values, as it is explained in
reference [1].

On the other hand, some disadvantages must be taken into account as well:

• The feedback control property is not retained: if a deviation occurs from the
selected optimal trajectory, a new optimal trajectory cannot be easily found.

• We cannot ensure beforehand that a decision u(k− 1) is an admissible deci-
sion at the state x(k− 1) = g−1(k, x, u(k− 1)).

• It might be difficult to compute g−1 if g is a nonlinear, time-varying function.

To sum up, forward dynamic programming suits problems where the initial state
is specified, flexibility in choosing the terminal state is desirable, and computation
of a new optimal trajectory is feasible if deviations occur from the original trajec-
tory. Much further considerations about this topic are extensively considered in
the 14th chapter of reference [4].



Chapter 3

DNA sequence alignment

After having built up the dynamic programming theoretical structure and hav-
ing introduced its computational procedure, we can now care about its applica-
tions. Dynamic programming generally involves an interesting approach to typ-
ical operations research problems like allocation problems, scheduling problems,
inventory problems or routing problems, as it is explained in reference [2]. In this
work, though, we will focus on an up-to-date bioinformatics application consist-
ing in the comparison of DNA sequences to find out gene functions.

According to this purpose, some context is initially provided and main bio-
logical concepts are briefly described. All along the next sections, we will try
to explain the best methods to compare sequences algorithmically by introduc-
ing some different problems whose computer algorithms are attached in the ap-
pendix. At first, a basic change problem is introduced and recursive and dynamic
programming approaches are compared. Afterwards, both the Manhattan tourist
problem and the longest path in a direct acyclic graph problem are useful to define the
appropriate framework to consider DNA sequence comparison methods, which
are mainly based on two optimisation problems called the alignment game and the
longest common subsequence problem.
Later on, the basic alignment procedure has been increasingly complicated to take
into account some relevant biological aspects. In this sense, problems like global
alignment, local alignment, affine penalties and multiple alignment are also regarded in
this chapter. Finally, further questions about the topic are considered as well.

All theoretical contents in this chapter are based on the references [5] and [10].
However, the computer programs containing the algorithms are essentially mine.

28



3.1 The power of DNA sequence comparison 29

3.1 The power of DNA sequence comparison

One remarkable application of dynamic programming is the development of
algorithms which can find similarities between different DNA sequences. Actu-
ally, DNA sequence comparison algorithms are widely used in biology to discover
gene functions. After finding a newly sequenced gene, its function is usually un-
known. A common approach to discover it is to compare this new DNA sequence
against sequence databases of genes of already known function.

One outstanding example of this procedure took place in 1984, when scien-
tists used a simple computational technique to compare a cancer-causing gene
called v-sis with all known genes at that time. It surprisingly matched a normal
gene responsible for growth and development called platelet-derived growth factor
(PDGF). This similarity allowed scientists to conclude that cancer could be caused
by a normal growth gene being activated at the wrong time. Afterwards, many
applications of sequence comparison algorithms quickly followed [5].

3.1.1 A short biological introduction

Since this is still a work about mathematics, we will just briefly give the basic
biological notions needed to understand the upcoming sections.
DNA is formed over four elements or nucleotides called adenine (A), cytosine (C),
guanine (G) and thymine (T), so in this work DNA sequences will be represented
by strings containing elements of a 4-letter alphabet {A, C, G, T}. DNA can be
transformed into RNA simply replacing all ocurrences of thymine (T) to uracil (U)
in a process called transcription. So, RNA is analogously represented by strings
with elements of a 4-letter alphabet {A, C, G, U}.
In addition, RNA transcripts are partitioned into non-overlapping substrings of
length 3 called codons. Each codon converts into one of 20 amino acids via the
genetic code1 in a process called translation, except for three stop codons which
halt this mechanism. Since protein sequences consist of amino acids, they will be
considered in this work as strings over a 20-letter alphabet.

1In 1961, Marshall Nirenberg decoded the ribosomal genetic code by associating how amino
acids are translated from triplets of nucleotides of RNA [16].



30 DNA sequence alignment

3.2 The change problem

First of all, we will begin by introducing a very simple problem which will
be useful to compare the dynamic programming approach to a common recursive
solution:

Problem 3.1. The change problem: Find the minimum number of coins needed to
change a given amount of money.

• Input: An amount of cents M and coins from denominations c = (c1, c2, . . . , cd).

• Output: The minimum number of coins c = (c1, c2, . . . , cd) to change M
cents.

First, if minNumCoinsM is the smallest number of coins required to change M
cents, we can introduce the following recurrence relation:

minNumCoinsM = min


minNumCoinsM−c1 + 1

...

minNumCoinsM−cd + 1

(3.1)

A simple recursive change algorithm could be designed straightforward based on
the previous recurrence. Every time the amount of coins needed to change M
cents is computed, it implies d recursive calls to find out the minimum number of
coins needed to change M− ci, with i = 1, . . . , d.

Algorithm 3.2. RECURSIVE_CHANGE(M, c, d)

if M = 0 then
return 0

end if
minNumCoins← ∞
for i← 1 to d do

if M ≥ ci then
numCoins← RECURSIVE_CHANGE(M− ci, c, d)
if numCoins + 1 < minNumCoins then

minNumCoins← numCoins + 1
end if

end if
end for
return minNumCoins



3.2 The change problem 31

Despite being strictly correct, this algorithm becomes unfeasible because it
takes too much time (O(Md)) to solve the problem, since it recalculates the op-
timal solution for a given amount of money repeatedly [5]. The Python script to
solve the change problem using a recursive method can be found in the appendix
A.1.1.

Luckily, dynamic programming can improve the former algorithm with a dif-
ferent approach. Since the optimal solution for M cents relies on optimal solutions
for M− ci, with i = 1, . . . , d, we can reverse the execution order and solve the prob-
lem for each increasing amount of money from 0 to M. It could seem we are facing
a more complex task at first sight, but at every stage the algorithm is analysing d
precomputed values instead of recomputing them. This procedure is represented
by the following faster algorithm, with running time O(M · d):

Algorithm 3.3. DPCHANGE(M, c, d)

minNumCoins(0)← 0
for m← 1 to M do

minNumCoins(m)← ∞
for i← 1 to d do

if m ≥ ci then
if minNumCoins(m− ci) + 1 < minNumCoins(m) then

minNumCoins(m)← minNumCoins(m− ci) + 1
end if

end if
end for

end for
return minNumCoins(M)

The Python code to solve the change problem using dynamic programming can
be found in the appendix A.1.2.

Example 3.4. We introduce a concrete example of the change problem so as to
compare the running time of the recursive algorithm (appendix A.1.1) and the
dynamic programming algorithm (appendix A.1.2). For the following input:

M = 49 and c = (11, 9, 7, 3, 1),

the output in both cases gives the same optimal solution (5 coins), as expected.
The interesting point here is that we used the Python library timeit to record the
running time of each program. Actually, we executed each program several times
and we considered the average running time of all executions in each case to give



32 DNA sequence alignment

more statistical significance to the results. The dynamic programming algorithm
lasted 9, 02 · 10−5 seconds to find the answer, whereas the recursive algorithm
lasted 1, 86 · 103 seconds ' 31 minutes. This means that, in this case, the dynamic
programming approach improves the running time requirement in 8 orders of
magnitude.

3.3 The Manhattan tourist problem

Dynamic Programming can be well illustrated by a graph theory problem
called the Manhattan tourist problem, which will be surprisingly useful as a base
to build thereafter the DNA sequence alignment problem.

Imagine we are on a sightseeing tour in Manhattan. We must go from one
corner to another, with restricted movements to south or east, and our goal is to
visit as many attractions as possible along this path. We can represent Manhattan
as a grid-like graph, where each city intersection is a vertex or node and every edge
has associated a weight indicating the number of attractions along its path. Vertical
and horizontal edges can only be travelled downward or rightward, respectively.
We must decide among all possible paths between the northwesternmost point
(the source vertex) and the southeasternmost point (the sink vertex). A path is a
continuous concatenation of edges and its length is defined by the sum of the
weights of all these edges. Hence, the aim of this problem will be to find the
longest path in the graph.

Problem 3.5. Manhattan Tourist Problem: find a longest path in a rectangular city
grid.

• Input: a weighted n×m rectangular grid.

• Output: a longest path sn,m from the source (0, 0) to the sink (n, m) in the
grid.

Brute force approach to this problem -searching among all paths in the graph-
cannot be developed in a feasible time for moderately large grids. Greedy strate-
gies2 might be used as well, but short-term optimal decisions will not usually lead
to long-term optimal solutions.
Dynamic programming approach involves solving a more general problem. In-
stead of finding the longest path from source to sink, it finds the longest path si,j

from source to every vertex (i, j) with 0 ≤ i ≤ n, 0 ≤ j ≤ m. A first glance, it seems

2Greedy algorithms choose the local optimal decision at every step so as to try to find a global
optimum in a reasonable time scale.



3.3 The Manhattan tourist problem 33

we are facing a more complicated task, because n× m problems must be solved
now. However, we are actually defining an embedding for the original problem in
which all the problems of the family are easily related and there are also so simple
problems among all of them. The fact that solving the whole family of problems
is as easy as solving the original one is the basis of dynamic programming.

In practical terms, we can directly find optimal paths on the first row of the
grid, i.e., s0,j for 0 ≤ j ≤ m, since movement is restricted to the east, so s0,j is the
sum of weights of the first j edges of the grid’s first row. Similarly, si,0 is also easy
to compute for 0 ≤ i ≤ n, because in this case movement is forced to the south.
Once s0,1 and s1,0 are already computed, s1,1 can be then obtained. The vertex (1, 1)
can only be reached travelling south from (0, 1) or east from (1, 0). The value of
the first path is s0,1+ weight of the edge between (0, 1) and (1, 1) and the value of the
second one is s1,0+ weight of the edge between (1, 0) and (1, 1). The longest path to
(1, 1) will be, then, the larger amount between these two quantities.
This method can be easily generalised, because the only way to get to the vertex
(i, j) is either by going southward from node (i− 1, j) or by going eastward from
node (i, j− 1). We obtain, in consequence, the following recurrence:

si,j = max

{
si−1,j + weight of the edge between (i− 1, j) and (i, j)

si,j−1 + weight of the edge between (i, j− 1) and (i, j)
(3.2)

This expression can therefore compute every score si,j in a single sweep of the grid

as it is shown in the following algorithm called ManhattanTourist. Let
↓
w and

→
w be

two-dimensional matrices with the weights of the grid’s southward and eastward

edges, respectively. Namely,
↓

wi,j is the weight of the edge between (i − 1, j) and
(i, j) and

→
wi,j is the weight of the edge between (i, j− 1) and (i, j). So:

Algorithm 3.6. ManhattanTourist(
↓
w,
→
w, n, m)

s0,0 ← 0
for i← 1 to n do

si,0 ← si−1,0 +
↓

wi,0

end for
for j← 1 to m do

s0,j ← s0,j−1 +
→

w0,j

end for
for i← 1 to n do

for j← 1 to m do

si,j ← max{si−1,j +
↓

wi,j, si,j−1 +
→

wi,j}



34 DNA sequence alignment

end for
end for
return sn,m

The Python programming code to solve the Manhattan tourist problem can be
found in the appendix A.2.

The ManhattanTourist algorithm returns the length of the longest path in the
grid, but does not give the path itself. The algorithm can be slightly modified by
keeping track of the edges selected to reach every vertex -called backtracing point-
ers- and by keeping in memory the value of longest paths for every node as well.
Once the value of the longest path is already calculated for every node in the grid,
we start from the sink going backwards through backtracing pointers selected in
the process until the source is reached.
It should be mentioned that, when the two alternatives to reach a vertex have
an equal length, both edges should be kept in memory, because there might be
several different paths of optimal length. Proceding in this way, we can get all
the optimal paths in the graph. For simplicity, though, the computer algorithm is
written so as to give just one solution.

Another point we could have in mind is that a city is not generally a perfect
rectangular grid. So, we can transform this grid into an arbitrary graph where
edges can go from whatever vertex to whatever node. This generalization of the
Manhattan tourist problem is called longest path in a directed acyclic graph problem.

3.4 Longest path in a DAG problem

In this section, the method used to find the longest path in a perfect rectangu-
lar grid will be applied to more general graphs. Before that, we should mention
that one of the requirements to implement a dynamic programming algorithm
in a graph is that we must decide beforehand in what order the nodes must be
explored. Logically, when a certain node is analysed, all its incoming edges are
involved in the calculations. Hence, the initial vertices of these edges -called prede-
cessors- must have been already computed. However, graphs containing directed
cycles would never satisfy this requirement, because the directed cycle could be
indefinitely travelled. So, we introduce some new concepts:

Definition 3.7. A directed graph is a graph whose edges have an associated di-
rection. A directed acyclic graph (DAG) is a finite directed graph which does not
contain any directed cycles.



3.4 Longest path in a DAG problem 35

Definition 3.8. A topological sorting or topological ordering is a linear ordering of the
nodes of a graph such that for all directed edges (vi, vj) from vertex vi to vertex
vj, vi comes before vj in the ordering.

The next stated result will be quite useful:

Proposition 3.9. A directed nonempty graph G has a topological ordering if and
only if G is a DAG [12], [13].

Proof. • ⇒:
We will prove the first implication by contradicition.
We assume that G is not acyclic, so there is a directed cycle C in G with edges
(vi0, vi1), (vi1, vi2), . . . , (vik, vi0). Since by hypothesis G has a topological or-
dering, from edges in the cycle C we have the following inequality about the
ordering:

vi0 < vi1 < vi2 < . . . < vik < vi0,

which is impossible. We reached a contradicition and therefore the initial
assumption about G not being acyclic is false. We conclude then that G is
acyclic instead.

• ⇐:
As for the second implication, we will first show that if G is a DAG, it has at
least one source node. We will prove it, again, by contradiction.
We suppose that every vertex in G contains at least one incoming edge.
We start a vertices sequence from an arbitrary node v1 ∈ G and we con-
tinue picking nodes tracing edges backwards, giving a sequence v1, v2, v3 . . ..
Since there are only finitely many nodes in G, this process will finally revisit
a node vi. However, we will have a subsequence vi, vi+1, vi+2, . . . , vi which
is a cycle in G traced in reverse order. But it contradicts the fact that G is a
DAG. So our initial assumption was wrong and G must contain at least one
source node.

Now, we use this result to prove that G has a topological ordering. Let
v1 ∈ G be a source node -which we have proved to exist. We then remove v1

from G, obtaining G1 = G − {v1}. The graph G1 is a DAG as well because
we cannot add cycles to a graph by removing edges. Since G1 is a DAG, it
contains a source node v2, as we proved above. We repeat the same process
and we remove v2 from G1, so G2 = G−{v1, v2}, which is a DAG as well. We
continue this method repetadly until every vertex is removed. The resulting
numbering of nodes is a topological order because an edge (vi, vj) must be



36 DNA sequence alignment

deleted before the removal of vertex vj and, therefore, by the same rule the
vertex vi must be deleted before the vertex vj. In consequence, i < j holds
for every edge (vi, vj), which is the definition of topological ordering.

Now, we will give a pseudocode to be able to define a topological ordering for
a graph, based on the proof of the proposition above:

Algorithm 3.10. TopologicalOrdering(G)

i = 1
while G 6= ∅ do

Let x = vertex in G with indegree(x) = 0 . indegree(x) = #predecessors of x
Label x with i
Delete all edges (x, z) from G
i++

end while

Once the topological sorting is found, it will indicate the order to visit the
vertices of the DAG during the algorithm. Naturally, several topological orderings
can be valid for the same DAG. Now, we can introduce the following problem:

Problem 3.11. Longest path in a directed acyclic graph problem: find a longest path
between two nodes in an edge-weighted DAG.

• Input: an edge-weighted DAG with source and sink nodes.

• Output: a longest path from the source to the sink in the DAG.

This problem can also be solved by dynamic programming, which involves
finding out the longest path from the source to each vertex of the graph. If sb

refers to the length of the longest path from the source to node b, we can use a
simple recurrence:

sa = max
all predecessors b of node a

{sb + weight of edge from b to a} (3.3)

This expression actually works as a functional equation, relating the family of
problems which will be solved. A pseudocode for the original problem can be
described, in which nodes are updated following certain topological sorting:

Algorithm 3.12. LongestPath(Graph,source,sink)

for each node a in Graph do
sa ← −∞

end for



3.5 The alignment game 37

ssource ← 0
TopologicalOrdering(Graph)
for each node a do . from source to sink in the topological order

sa ← maxall predecessors b of node a{sb + weight of edge from b to a}
end for
return ssink

Since this dynamic programming method uses every edge just once to work
out the value of the length of its final vertex, the runtime of this algorithm is pro-
portional to the number of edges of the graph. The Python programming code to
solve the longest path in a DAG problem with a given topological ordering can be
found in the appendix A.3.

3.5 The alignment game

DNA sequence comparison problems are efficiently solved by dynamic pro-
gramming algorithms based on appropriate Manhattan-like grids which model
the features of particular biological problems. In this section, we will explain how
to compare different DNA sequences by introducing a quite simple procedure
called the alignment game. First, we want to specify more in detail the meaning of
similarity or distance between two DNA sequences. We introduce a useful concept
from information theory [11]:

Definition 3.13. The Hamming distance between two strings of equal length is the
amount of positions at which their corresponding symbols are different.

The Hamming distance necessarily assumes that the ith symbol of one se-
quence is aligned against the ith symbol of the other one. However, since DNA
replication is subject to errors such as substitutions, insertions and deletions, it
is hardly ever known whether DNA sequences are aligned. It will be then help-
ful to consider the following alternative distance introduced in 1966 by Vladimir
Levenshtein:

Definition 3.14. The edit distance between two strings is the minimum number
of editing operations- i.e., insertions, deletions and substitutions of symbols- re-
quired to transform one string into another

Edit distance obviously allows comparisons between strings of different lengths.
In bioinformatics, the basic notion of sequence alignment is represented by the
alignment game, which constructs the alignment of two sequences.



38 DNA sequence alignment

Assume we have one string v with n characters and another string w with m
characters. The alignment of v and w is determined by a two-row matrix whose
first row contains the ordered characters of v and whose second row contains the
ordered characters of w. Both rows can be interspersed by spaces (represented by
the symbol "-"), so characters are not necessarily adjacently written. It should be
stated that spaces in both rows for the same column are not allowed, so the matrix
length is at most n + m. We can classify the columns of the alignment matrix as
follows:

• Match: column containing two identical letters.

• Mismatch: column containing two different letters.

• Indel: column with a space symbol on it.

– Insertion: column where the first row contains a space symbol.

– Deletion: column where the second row contains a space symbol.

As for the actual procedure, given two sequences the alignment game allows the
following decisions at every stage of the process, with their corresponding rewards
defined by a scoring function:

1. Remove the first symbol from both sequences:

(a) If they are the same (match), we get 1 point.

(b) If they are different (mismatch), we get 0 points.

2. Remove the first symbol of one of the sequences (insertion or deletion), and
we get 0 points.

The removed characters are used to construct the alignment matrix, column by
column. These decisions are made until there are no symbols left.

It should be mentioned that the substitution operation is not allowed in the
alignment game, so now the edit distance between v and w is regarded as the
minimum amount of insertions and deletions needed to transform v into w. The
total score is given by the addition of all individual column scores. So, based on
the previous scoring function, the maximum score in the alignment game will be
given by the maximum number of matches in the alignment matrix. Take note that
an initial comparison of both strings might give very few matches at first sight,
but the introduction of insertions and deletions allows shifts in the sequences -by
introducing spaces- which rearrange their elements so as to construct an align-
ment matrix in which will likely increase the number of initial apparent matches.



3.6 The longest common subsequence problem 39

Since we are actually looking for matches between both sequences, we have
transformed the alignment game into finding the longest common subsequence
between both strings.

3.6 The longest common subsequence problem

Before stating the longest common subsequence (LCS) problem, which is based
on the alignment game, we will give two definitions:

Definition 3.15. A subsequence of a string v is an ordered not necessarily consecu-
tive sequence of characters from v.

Definition 3.16. A common subsequence of two strings v = v1 . . . vn and w = w1 . . . wn

is a sequence of positions in v, 1 ≤ i1 < · · · < ik ≤ n, and a sequence of positions
in w, 1 ≤ j1 < · · · < jk ≤ m, such that vit = wjt for 1 ≤ t ≤ k.

It can be seen straightforward that a common subsequence in the alignment
of two strings is formed by their set of matches. We can introduce now the LCS
problem:

Problem 3.17. Longest common subsequence problem: Find the longest common sub-
sequence of two strings.

• Input: Two strings, v and w.

• Output: The longest common subsequence of v and w.

The key point in this part of the work is to be able to find out a connection
between the Manhattan tourist problem and the LCS problem so as to apply an
analogous dynamic programming algorithm on it.
The alignment matrix columns can actually be regarded as coordinates in a bidi-
mensional n × m grid, similar to the grid we used to represent Manhattan. We
will basically build a kind of Manhattan grid for the alignment game, called edit
graph or alignment graph, now including diagonal edges as well.
Namely, the symbols of the first sequence v are used to index the rows of the grid
and the symbols of the second sequence w are used to index its columns. Besides,
every column of the alignment matrix is converted to an edge translated into the
new grid as follows:

• Matches correspond to southeastward diagonal edges which imply equal
symbols on their pertinent rows and columns in the grid and have weight or
score 1.



40 DNA sequence alignment

• Mismatches correspond to southeastward diagonal edges with different sym-
bols on their pertinent rows and columns in the grid and have weight 0.

• Insertions correspond to eastward horizontal edges and have weight 0.

• Deletions correspond to southward vertical edges and have weight 0.

Paths in this edit graph correspond to an alignment of both sequences, since edges
in the graph are actually columns in the alignment matrix. Analogously, optimally
travelling through this graph means constructing longest common subsequences,
and the length of the longest path will correspond to the maximum score in the
alignment game, which is the edit distance between the two sequences as well.
The figure 3.1 shows an example of edit graph based on the previous indications.

We apply a dynamic programming method to solve the alignment problem be-

Figure 3.1: Edit graph representing the alignment between two DNA strings. Its
longest path is outlined so that matches are shown in red, mismatches in purple,
insertions in blue and deletions in green.

tween v and w, so it means that we are in fact solving n×m problems: the length
of a LCS between v1 . . . vi and w1 . . . wj -i.e., the longest path from the source to
the node (i, j)-, represented by si,j, for 0 ≤ i ≤ n and 0 ≤ i ≤ m. At every stage
of the algorithm, three decisions can be made to reach node (i, j): moving diago-

nally, corresponding to an edge of weight
↘

wi,j = 1 when both symbols are equal

(match) or weight
↘

wi,j = 0 when both symbols are different (mismatch); moving
rightward, corresponding to an edge of weight

→
wi,j = 0 (insertion); or moving



3.6 The longest common subsequence problem 41

downward, corresponding to an edge of weight
↓

wi,j = 0 (deletion).

It is easily seen that si,0 = s0,j = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. As for
the general recurrence, it is very similar to the one used in the Manhattan tourist
problem:

si,j = max



si−1,j +
↓

wi,j = si−1,j

si,j−1 +
→

wi,j = si,j−1

si−1,j−1 +
↘

wi,j = si−1,j−1 + 1 if vi = wj

si−1,j−1 +
↘

wi,j = si−1,j−1 if vi 6= wj

(3.4)

Just as in the Manhattan problem, backtracking pointers are preserved so as to
reconstruct the concrete LCS for the alignment:

backtracki,j =



↓
wi,j, if si,j = si−1,j
→

wi,j, if si,j = si,j−1

↘
wi,j, if si,j = si−1,j−1 + 1 and vi = wj

↘
wi,j, if si,j = si−1,j−1 and vi 6= wj

(3.5)

We can use this information to move from the sink backwards until arriving to
the initial node, and all traced edges represent the solution to the longest common
subsequence problem. Obviously, there could be more than one optimal path in
the edit graph and, ideally, all of them should be recorded.
The dynamic programming algorithm is shown below. It computes the optimal
length of the LCS and, for simplicity, gives only one concrete longest common
subsequence, by keeping in a bidimensional vector b an incoming selected edge

for every node (either
→

wi,j,
↓

wi,j or
↘

wi,j).

Algorithm 3.18. LCS(v, w)

for i← 0 to n do
si,0 ← 0

end for
for j← 1 to m do

s0,j ← 0
end for
for i← 1 to n do

for j← 1 to m do



42 DNA sequence alignment

si,j = max


si−1,j

si,j−1

si−1,j−1 + 1 if vi = wj

si−1,j−1 if vi 6= wj

bi,j =



↓
wi,j, if si,j = si−1,j
→

wi,j, if si,j = si,j−1

↘
wi,j, if si,j = si−1,j−1 + 1 and vi = wj

↘
wi,j, if si,j = si−1,j−1 and vi 6= wj

end for
end for
return (sn,m, b)

The Python programming code to solve the LCS problem can be found in the
appendix A.4.

3.7 The global alignment problem

During the next sections, we will introduce several modifications to the align-
ment game and the longest common subsequence problem so as to give more
biological relevance to the problems. According to this, the weights of our graphs
will usually reflect the cost of mutations from one DNA sequence to another.

Unfortunately, the longest common subsequence problem is not a realistic ap-
proach to the alignment problem. Its restrictive scoring function awards 1 point
for matches but it does not penalize indels, so there is no limit to introduce inser-
tions or deletions to find a LCS. One alignment with an excessive amount of indels
might not be biologically meaningful. Hence, we will deal with a generalization
of the LCS where the scoring method will be defined by a scoring matrix which
does not only reward matched symbols but also penalizes indels and mismatches.
We consider the k-letter alphabet A and we extend it including the space sym-
bol ’-’, where k is typically 4 or 20 depending on the type of sequence (DNA or
proteins) is being analysed. We build a (k + 1)× (k + 1) scoring matrix which in-
cludes the score of aligning every pair of symbols. An initial approach still gives 1
point for matches, but it also considers a penalty for mismatches by some positive
constant µ and another penalty for indels by some positive constant σ. The scoring
matrix for this scoring system in DNA sequences comparison (k = 4) would be as
follows:



3.7 The global alignment problem 43



A C G T -
A +1 −µ −µ −µ −σ

C −µ +1 −µ −µ −σ

G −µ −µ +1 −µ −σ

T −µ −µ −µ +1 −σ

- −σ −σ −σ −σ


We remark that the LCS problem considered the parameters µ = 0 and σ = 0. The
score of an alignment is then updated now to:

#matches− µ · #mismatches− σ · #indels (3.6)

Actually, whatever matrices can be defined, mainly when dealing with the amino
acid alphabet. Since some mutations can be more likely than others, biologists
try to design scoring matrices to reflect the mutation propensity of amino acids
into another amino acids3. So, the (i, j) coefficient in the scoring matrix indicates
how often amino acid i substitutes amino acid j in the alignments of evolutionar-
ily related sequences. It should be stated that this system can imply that optimal
biologically meaningful alignments of amino acid sequences could result in very
few matches, because it could be preferable to avoid heavy penalties rather than
positively scoring because of matches.

Let Score be whatever suitable scoring matrix for the current sequences com-
parison. Taking it as an input, we can solve a generalized version of the alignment
problem:

Problem 3.19. Global Alignment Problem: Find a highest-scoring alignment of two
strings as defined by a scoring matrix.

• Input: Two strings v and w and a scoring matrix Score.

• Output: An alignment of the strings whose alignment score (as defined by
Score) is maximised over all alignments of v and w.

The values in the scoring matrix are reflected in the weights of the edges of the
alignment graph. Recalling that matches and mismatches correspond to diagonal
edges, deletions to vertical ones and insertions to horizontal ones, a recurrence si,j

3These scoring matrices are usually obtained firstly aligning very similar sequences, which can
be even achieved without scoring matrices. As a result, a biological database of related sequences
is built and then it can be counted how many times the amino acid i is aligned with the amino acid
j. These pieces of information can be used to iteratively compute a scoring matrix to deal with less
and less obvious alignments [5].



44 DNA sequence alignment

to compute the length of a longest path from (0, 0) to (i, j) is given by:

si,j = max


si−1,j + Score(vi,−)
si,j−1 + Score(−, wj)

si−1,j−1 + Score(vi, wj)

(3.7)

The Python programming code to solve the global alignment problem with given
concrete µ and σ penalties can be found in the appendix A.5.

3.8 The local alignment problem

Even though global alignment is a good model for some biological sequences
comparison problems -for instance, when the similarity between the strings ex-
tends over their entire length-, it can turn out to be a bad model for some others.
For example, two genes in different species could be only similar over short con-
served regions but very different over all the rest of the DNA4. So, global align-
ment algorithm might not find this small region containing biologically relevant
common sequences with a really high score on its own so as not to be highly pe-
nalized by indels over the rest of the region.

Example 3.20. Imagine we have the following two DNA sequences:

• GCCCAGTTATGTCAGGGGGCACGAGCATGCACA

• GCCGCCGTCGTTTTCAGCAGTTATGTCAG

where we can see, underlined in both cases, a common subsequence which is
likely to be biologically meaningful. Nevertheless, if we use the algorithm for
the global alignment problem attached in the appendix A.5, scoring 1 for matches
and penalizing µ = 3 for mismatches and σ = 2 for indels, we obtain a global
maximum score of -16 and the following alignment:

• G C C - C A G T - - T A T G T C A G G G G G C A C G - - A - G - C A T G C

• G C C G C C G T C G T T T - T C A G - - - - C A - G T T A T G T C A - G -

This is an alignment which has a higher score from the perspective of global align-
ment but therefore hides the biologically relevant alignment, which incurs heavy
indel penalties.

4For example, homeobox genes -which regulate embryonic development-, despite greatly differing
between different species, highly conserve an approximately 60 amino acid-long region in each gene,
the homeodomain [10].



3.8 The local alignment problem 45

In 1981, Temple Smith and Michael Waterman modified the global alignment
dynamic programming algorithm to find small conserved areas while ignoring
other areas with little similarity. The local alignment problem looks for short similar
segments within a bigger sequence and it is formulated as follows:

Problem 3.21. Local alignment problem: Find the highest-scoring local alignment
between two strings.

• Input: Strings v and w and a scoring matrix Score.

• Output: Substrings5 of v and w whose global alignment score (defined by
Score) is maximised among all global alignments of all substrings of v and
w.

This problem could be directly solved finding the longest path connecting ev-
ery pair of nodes -rather than just between the source and the sink- and then
selecting the path having maximum weight over all these longest paths.
However, a faster approach is to consider the addition of any extra edges of weight
zero from the source to any other node, as well as edges from every node to the
sink, with the purpose of tracing the common substrings without having heavy
penalties in the remaining path6. This will result in a DAG suitable for solving
the Local Alignment Problem, because thanks to the extra edges it will be enough
to find the longest path from source to sink, rather than between every pair of
vertices.
The number of edges in our graph still remains quadratic (O(|v| · |w|)), so the
problem will still be solvable in a feasible time. Our former dynamic program-
ming recurrence changes for the local alignment by adding a forth possibility to
reach every node, which is the weight of an edge from (0, 0) to (i, j), which is zero:

si,j = max


weight from (0, 0) to (i, j) = 0

si−1,j + Score(vi,−)
si,j−1 + Score(−, wj)

si−1,j−1 + Score(vi, wj)

(3.8)

In the case of the sink, where all other nodes are its predecessors:

sn,m = max
0≤i≤n,0≤j≤m

si,j (3.9)

5The difference between a subsequence and a substring is that a substring consists only of con-
secutive characters from a string, while a subsequence may pick and choose any characters as long
as their order is preserved.

6Using the context of the Manhattan tourist problem, these freely added edges are usually called
free taxi rides.



46 DNA sequence alignment

This will make our local alignment algorithm practical and fast. The Python pro-
gramming code to solve the local alignment problem can be found in the appendix
A.6.

Example 3.22. We will use the local alignment algorithm in appendix A.6 to solve
the example 3.20, which was not appropriately approached with the global align-
ment method. Keeping the same input as before, we get now as an output a global
score of 12 and the following alignment:

• C A G T T A T G T C A G

• C A G T T A T G T C A G

which is the conserved underlined region for both original sequences and, in con-
sequence, the result we really expected from the very beginning.

3.9 Alignment with affine gap penalties problem

In this section, we will take into account the introduction of biologically ade-
quate insertion and deletion penalties in sequence alignment.

Mutations are usually produced by DNA replication errors which insert or
delete an entire substring of several nucleotides. In fact, we should consider an
insertion or deletion of k nucleotides as a single event rather than k independent
mutations. Hence, starting a gap -a contiguous sequence of spaces in one of the
rows of the alignment matrix- should be penalized much more than extending an
already started gap, because it is likely to be a part of the same mutation. Since in
our former model the penalty for the insertion or deletion of a k-symbol gap was
rather excessive (k · σ), we will now define a softer approach to gap penalties called
affine penalty: σ penalty to open a gap and ε penalty to extend it, with σ > ε > 0.
Hence, now the penalty for a gap of length k will be σ + (k− 1) · ε < k · σ.
We can state now the following problem:

Problem 3.23. Alignment with affine gap penalties problem: Construct a highest-
scoring global alignment between two strings (with affine gap penalties).

• Input: Two strings v and w, a scoring matrix Score and numbers σ and ε.

• Output: A highest-scoring global alignment between these strings, as de-
fined by the scoring matrix Score and by the gap opening and extension
penalties σ and ε.



3.9 Alignment with affine gap penalties problem 47

We could represent gaps in the alignment graph as long vertical (deletion) and
horizontal (insertion) edges to account for every possible gap. Namely, we could
add edges connecting the (i, j) node to both (i + k, j) and (i, j + k) for all pos-
sible gap lengths k. Using this procedure, yet, for two sequences of length n the
number of edges would increase from O(n2) to O(n3), as well as the running time.

To solve this issue, we can increase the number of nodes instead, by splitting
our alignment graph into three levels: for every vertex (i, j) we build three distinct
ones: (i, j)lower, (i, j)middle and (i, j)upper, as it is shown in figure 3.2. The mid-
dle level consists of diagonal edges of weight Score(vi, wj) representing matches
and mismatches; the lower level has vertical edges of weight −ε to represent gap
extensions in v; and upper level presents horizontal edges weighting −ε as gap
extensions in w. To move between these grid layers we add edges from (i, j)middle

to (i + 1, j)lower or (i, j + 1)upper to open a gap at cost −σ, or from (i, j)lower or
(i, j)upper to (i, j)middle to close a gap at free cost.
It can be easily seen that the number of edges remains below 7× |v| × |w|, so we

Figure 3.2: The three layers for the alignment graph in the affine penalties problem.

keep an affordable running time. It is still required to find a path from the top left
corner to the bottom right corner, either moving along the grid or between their
layers.
The algorithm is based on the three following recurrence relations, where loweri,j,
upperi,j and middlei,j are the lengths of the longest paths from the source node to



48 DNA sequence alignment

(i, j)lower, (i, j)upper and (i, j)middle, respectively:

loweri,j = max

{
loweri−1,j − ε

middlei−1,j − σ

upperi,j = max

{
upperi,j−1 − ε

middlei,j−1 − σ

middlei,j = max


loweri,j

middlei−1,j−1 + score(vi, wj)

upperi,j

(3.10)

All in all, despite having created a much more complicated graph, the alignment
algorithm also works with it. The Python programming code to solve the align-
ment with affine gap penalties problem can be found in the appendix A.7.

3.10 Multiple sequence alignment

We have studied pairwise alignment so far, which consists of comparing two
sequences to find out structural or functional similarities among proteins or DNA
sequences. Although it is hard to know whether certain similarities are really
meaningful or just by chance, they can become more relevant if they are found in
many other sequences as well. Hence, pairwise alignment can be generalized to
multiple alignment, in which many sequences are simultaneously compared.

Let v1, . . . , vt be t strings of length n1, . . . , nt over an alphabet A, whereas A′ is
the extended alphabetA∪{−}, including the space character. A multiple alignment
of v1, . . . , vt is specified by a t× n matrix A, where n ≥ max1≤i≤t ni. Its coefficients
are elements of A′ and each row i contains the ordered characters of vi, inter-
spersed with n− ni spaces. Columns are assumed not to contain only spaces. The
score of a multiple alignment is given by the sum of scores of the columns (or
weights of edges in the alignment path). A very general scoring function will be
used, a t-dimensional matrix Score of size |A′| × . . .× |A′| describing scores of all
possible combinations of t symbols from A′.

Problem 3.24. Multiple Alignment Problem: Find the highest-scoring alignment be-
tween multiple strings under a given scoring matrix.



3.10 Multiple sequence alignment 49

• Input: A collection of t strings and a t-dimensional matrix Score.

• Output: A multiple alignment of these strings whose score (as defined by the
matrix Score) is maximised among all possible alignments of these strings.

This problem is solved by a straightforward application of the dynamic pro-
gramming alignment algorithm for a t-dimensional alignment graph. For exam-
ple, applying the same logic as in two dimensions, the alignment graph for three
sequences is a grid of cubes, where every node has up to seven incoming edges,
as it is shown in figure 3.3.

For three particular sequences v, w and u, si,j,k is defined as the length of the

Figure 3.3: Representation of a cell in a 3D aligment graph.

longest path from the source (0, 0, 0) to node (i, j, k) in the alignment graph:

sI,j,k = max



si−1,j,k + Score(vi,−,−)
si,j−1,k + Score(−, wj,−)
si,j,k−1 + Score(−,−, uk)

si−1,j−1,k + Score(vi, wj,−)
si−1,j,k−1 + Score(vi,−, uk)

si,j−1,k−1 + Score(−, wj, uk)

si−1,j−1,k−1 + Score(vi, wj, uk)

(3.11)

The Python programming code to solve the multiple alignment problem for three
sequences can be found in the appendix A.8.

Describing the multiple alignment problem as a generalization of the more
basic pairwise alignment problem implies some problems when dealing with t
sequences of length n for larger parameters t and n. On the one hand, it may not
be really handy to work with a t-dimensional scoring matrix. On the other hand,
the alignment graph would consist of approximately nt nodes, each one with up



50 DNA sequence alignment

to 2t − 1 incoming edges7, involving a runtime of O(nt · 2t), so the dynamic pro-
gramming algorithm would not work in a feasible time for many long sequences.

Biologists usually face this problem using greedy strategies by comparing all
pairwise alignments between all sequences and choosing the most similar pair
of sequences as a root to build up the multiple alignment. Then, at each step,
the string having the maximum score against the current alignment is selected
so as to build a new growing multiple alignment. Despite this procedure can be
computed in a reasonable time, it does not guarantee optimal solutions, because
short-term optimal decisions may not involve long-term optimal decisions as well.
Alternatively, there exists a dynamic programming method for the multiple align-
ment problem involving a score function based on the concept of entropy. Both
approaches are explained in detail in the 6th chapter of the reference [5].

3.11 Further questions

In this last chapter, we introduced several techniques to align DNA or protein
sequences by using dynamic programming approaches while taking into account
some biologically relevant aspects about the matter.

However, in practical terms, we should wonder whether these methods can
indeed find subtle similarities between billion-nucleotide long sequences from
highly diverged species, because alignment algorithms with quadratic time may
be unpractical when dealing with entire genomes.

All these limitations can be treated by developing a new computational frame-
work called Hidden Markov Models (HMM), a machine learning approach which
finds some unknown probabilistic parameters in the context of dynamic program-
ming by considering scoring approaches varying at each column of the alignment
matrix and edit graphs with probabilistic weights for the edges. This topic is out
of the scope of this work, unfortunately, but the readers who are interested in
keeping learning about it can find information in references [5] and [10].

7The number of vertices in a hypercube of dimension t is 2t [15].



Conclusions 51

Conclusions

The variety of topics treated in this work allows a very general perspective
about dynamic programming.

First of all, despite it is commonly regarded as a field closer to algorithmics,
the truth is that dynamic programming has also been shown to be characterised
by strong mathematical foundations.

In addition, one of the most relevant aspects of dynamic programming is its
easiness to be implemented by computer programs. As it happens with all compu-
tational procedures, it presents different advantages and drawbacks but, weighing
up pros and cons, its beneficial properties are worth enough to consider its utili-
sation.

Another point which should be mentioned is that dynamic programming has
a really wide range of application. On the one hand, this flexibility makes impos-
sible to define a general functional equation to solve all possible problems in the
same way. Then, every problem must be analysed on a case by case basis to find
a suitable functional equation. On the other hand, though, this flexibility can be
regarded as positive as well because it means that the procedure can be applied in
so many different situations.

As for the application in DNA sequence alignment, it should be outlined how
apparently simple procedures can be translated into so high achievements. By
introducing, bit by bit, some complications in the initial graph theory, we were
able to account for biologically relevant aspects in our statements. In addition, the
results obtained through simulations of the written algorithms strongly supported
the ideas presented in the last chapter.

Unfortunately, as dynamic programming is a really extensive field, many in-
teresting aspects about it had to remain out of the scope of this work. Some of
them are mentioned all along the text with corresponding related references for
the readers who are interested in them.



Appendix A

Algorithms

This appendix contains all the computer algorithms refered to the problems
presented in the third chapter of this work. Actually, most of them correspond to
problems proposed by the massive open online course (MOOC) Dynamic Program-
ming: Applications In Machine Learning and Genomics offered by The University of
California in the edX website [10]. In addition, these codes were also assessed in
that course in order to ensure their validity. Python programming language was
chosen as one of the options offered by the course and due to its simplicity when
dealing with dynamic memory.

A.1 The change problem

Find the minimum number of coins needed to make change.

• Input: An integer money and an integer array Coins = (coin1, ..., coind).

• Input Format: The first line of the input contains the positive integer money.
The second line contains a comma-delimited list of positive integers Coins.

• Output: The minimum number of coins with denominations Coins that
changes money.

A.1.1 Recursive method

• Answer:

import sys

def find_change(money, coins):
if money == 0:

52



A.2 The Manhattan tourist problem 53

return 0
min_num_coins = float("inf")
for i in range(0, len(coins)):

if money >= coins[i]:
num_coins = find_change(money-coins[i],coins)
if num_coins + 1 < min_num_coins:

min_num_coins = num_coins + 1
return min_num_coins

if __name__ == "__main__":
money = int(sys.stdin.readline().strip())
coins = list(map(int, sys.stdin.readline().strip().split(’,’)))
print(find_change(money, coins))

A.1.2 Dynamic programming method

• Answer:

import sys

def find_change(money, coins):
min_num_coins = []
min_num_coins. append(0)
for m in range(1, money + 1):

min_num_coins.append(float("inf"))
for i in range(0, len(coins)):

if m >= coins[i]:
if min_num_coins[m - coins[i]] + 1 < min_num_coins[m]:

min_num_coins[m] = min_num_coins[m - coins[i]] + 1
return min_num_coins[money]

if __name__ == "__main__":
money = int(sys.stdin.readline().strip())
coins = list(map(int, sys.stdin.readline().strip().split(’,’)))
print(find_change(money, coins))

A.2 The Manhattan tourist problem

Find the length of a longest path in a rectangular grid.



54 Algorithms

• Input: Integers n and m, an n× (m + 1) matrix Down, and an (n + 1)× m
matrix Right.

• Input Format: The first line of the input contains the integers n and m (sep-
arated by a space). The next n lines (each with m + 1 space-delimited num-
bers) represent the matrix Down. The next line is a "-" symbol. The last n + 1
lines (each with m space-delimited numbers) represent the matrix Right.

• Output: The length of a longest path from source (0, 0) to sink (n, m) in
the n×m rectangular grid whose edge weights are defined by the matrices
Down and Right.

• Answer:

import sys

def longest_path(n,m,down,right):
longest_path = [0] * (n + 1)
for k in range(n + 1):

longest_path[k] = [0] * (m + 1)
longest_path[0][0] = 0
for k in range (1, n + 1):

longest_path[k][0] = longest_path[k - 1][0] + down[k - 1][0]
for k in range (1, m + 1):

longest_path[0][k] = longest_path[0][k - 1] + right[0][k - 1]
for i in range (1, n + 1):

for j in range(1, m + 1):
path1 = longest_path[i - 1][j] + down[i - 1][j]
path2 = longest_path[i][j - 1] + right[i][j - 1]
if path1 >= path2:

longest_path[i][j] = path1
else:

longest_path[i][j] = path2
return longest_path[n][m]

if __name__ == "__main__":
n,m = map(int, sys.stdin.readline().strip().split())
down = [list(map(int, sys.stdin.readline().strip().split()))

for _ in range(n)]
sys.stdin.readline()
right = [list(map(int, sys.stdin.readline().strip().split()))



A.3 The longest path in a DAG problem 55

for _ in range(n+1)]

print(longest_path(n,m,down,right))

A.3 The longest path in a DAG problem

Find a longest path between two nodes in an edge-weighted DAG.

• Input: An edge-weighted graph, a source node source, and a sink node sink.

• Input Format: The first line of the input contains an integer -with the small-
est label- representing source. The second line of the input contains an in-
teger -with the largest lebel- representing sink. Each of the remaining lines
represents an edge in the graph G(V, E) with node-set V and edge-set E, is
in the format u→ v : w denoting an edge from node u to node v with weight
w.

• Output: The length of the longest path from source to sink, followed by a
longest path.

• Output Format: The first line of the output should contain a number repre-
senting the length of the longest path from source to sink. The second line
of the output should be a longest path in the format source→ a → b → c →
. . . → sink, where these elements are nodes in G. (If multiple longest paths
exist, you may return any one.)

• Answer:

import sys

def longest_path(source, sink, edges):
edge = [0] * len(edges)
for k in range(len(edges)):

edge[k] = [0] * 3
for i in range(0, len(edges)):

temp1 = str(edges[i])
j = 0
temp2 = []
while temp1[j] != "-":

temp2.append(temp1[j])



56 Algorithms

j += 1
temp2_as_string = ’’.join(temp2)
edge[i][0] = int(temp2_as_string)
j += 2
temp3 = []
while temp1[j] != ":":

temp3.append(temp1[j])
j += 1

temp3_as_string = ’’.join(temp3)
edge[i][1] = int(temp3_as_string)
j += 1
temp4 = []
while j != len(temp1):

temp4.append(temp1[j])
j += 1

temp4_as_string = ’’.join(temp4)
edge[i][2] = int(temp4_as_string)

weight = []
path = []
weight.append(0)
path.append(str(source))
for k in range(source + 1, sink + 1):

weight.append(float("-inf"))
path.append(str(source))

for i in range(source, sink + 1):
for j in range(0, len(edges)):

if edge[j][1] == i and weight[edge[j][0] - source] + edge[j][2] >
weight[i - source]:

weight[i - source] = weight[edge[j][0] - source] + edge[j][2]
path[i - source] = path[edge[j][0] - source] + "->" + str(i)

result = str(weight[sink - source]) + "\n" + str(path[sink - source])
return result

if __name__ == "__main__":
source = int(sys.stdin.readline().strip())
sink = int(sys.stdin.readline().strip())
edges = []
i = 0
while True:



A.4 The longest common subsequence problem 57

edges.append(sys.stdin.readline().strip())
if edges[i] == "":

edges.remove("")
break

i += 1
print(longest_path(source, sink, edges))

A.4 The longest common subsequence problem

Find a longest common subsequence of two strings.

• Input: Strings s and t.

• Input Format: The first line of the input contains a string s, and the second
line of the input contains a string t.

• Output: A longest common subsequence of s and t.

• Output Format: A longest common subsequence of s and t. (Note: you can
output any of the solutions.)

• Answer:

import sys

def LCS(s,t):
n = len(t)
m = len(s)
longest_path = [0] * (n + 1)
backtrack = [" "] * (n + 1)
for k in range(n + 1):

longest_path[k] = [0] * (m + 1)
backtrack[k] = [" "] * (m + 1)

longest_path[0][0] = 0
for k in range (1, n + 1):

longest_path[k][0] = longest_path[k - 1][0]
backtrack[k][0] = "down"

for k in range (1, m + 1):
longest_path[0][k] = longest_path[0][k - 1]
backtrack[0][k] = "right"



58 Algorithms

for i in range (1, n + 1):
for j in range(1, m + 1):

path1 = longest_path[i - 1][j]
path2 = longest_path[i][j - 1]
if s[j - 1] == t[i - 1]:

path3 = longest_path[i-1][j-1] + 1
else:

path3 = longest_path[i-1][j-1]
if path1 >= path2 and path1 >= path3:

longest_path[i][j] = path1
backtrack[i][j] = "down"

elif path2 >= path1 and path2 >= path3:
longest_path[i][j] = path2
backtrack[i][j] = "right"

else:
longest_path[i][j] = path3
backtrack[i][j] = "diagonal"

LCS = []
i = n
j = m
while i > 0 and j > 0:

if backtrack[i][j] == "down":
i -= 1

elif backtrack[i][j] == "right":
j -= 1;

else:
if s[j - 1] == t[i - 1]:

LCS.append(s[j - 1])
j -= 1;
i -= 1;

LCS.reverse()
LCS_as_string = ’’.join(LCS)
return LCS_as_string

if __name__ == "__main__":
s = sys.stdin.readline().strip()
t = sys.stdin.readline().strip()
print(LCS(s,t))



A.5 The global alignment problem 59

A.5 The global alignment problem

Find a highest-scoring alignment between two strings.

• Input: A match score m, a mismatch penalty µ, a gap penalty σ and two
DNA strings s and t.

• Input Format: The first line contains m, µ and σ separated by spaces. The
second and third lines contain DNA strings s and t, respectively.

• Output: The maximum alignment score of s and t and an actual alignment
achieving this maximum score.

• Output Format: The first line of the output should contain the maximum
score of an alignment between s and t, and the second and third lines should
contain an alignment of s and t, respectively, with gaps placed appropriately,
achieving this maximum score.

• Answer:

import sys

def align(m,mu,sigma,s,t):
nt = len(t)
ns = len(s)
longest_path = [0] * (nt + 1)
backtrack = [" "] * (nt + 1)
for k in range(nt + 1):

longest_path[k] = [0] * (ns + 1)
backtrack[k] = [" "] * (ns + 1)

longest_path[0][0] = 0
for k in range (1, nt + 1):

longest_path[k][0] = longest_path[k - 1][0] - sigma
backtrack[k][0] = "down"

for k in range (1, ns + 1):
longest_path[0][k] = longest_path[0][k - 1] - sigma
backtrack[0][k] = "right"

for i in range (1, nt + 1):
for j in range(1, ns + 1):

path1 = longest_path[i - 1][j] - sigma
path2 = longest_path[i][j - 1] - sigma
if s[j - 1] == t[i - 1]:



60 Algorithms

path3 = longest_path[i-1][j-1] + m
else:

path3 = longest_path[i-1][j-1] - mu
if path1 >= path2 and path1 >= path3:

longest_path[i][j] = path1
backtrack[i][j] = "down"

elif path2 >= path1 and path2 >= path3:
longest_path[i][j] = path2
backtrack[i][j] = "right"

else:
longest_path[i][j] = path3
backtrack[i][j] = "diagonal"

t_aligned = []
s_aligned = []
i = nt
j = ns
while i > 0 or j > 0:

if backtrack[i][j] == "down":
s_aligned.append("-")
t_aligned.append(t[i-1])
i -= 1

elif backtrack[i][j] == "right":
s_aligned.append(s[j-1])
t_aligned.append("-")
j -= 1

else:
s_aligned.append(s[j-1])
t_aligned.append(t[i-1])
j -= 1
i -= 1

s_aligned.reverse()
t_aligned.reverse()
s_aligned_as_string = ’’.join(s_aligned)
t_aligned_as_string = ’’.join(t_aligned)
result = str(longest_path[nt][ns]) + "\n" + s_aligned_as_string
+ "\n" + t_aligned_as_string
return result

if __name__ == "__main__":



A.6 The local alignment problem 61

m,mu,sigma = map(int,sys.stdin.readline().strip().split())
s,t = [sys.stdin.readline().strip() for _ in range(2)]
print(align(m,mu,sigma,s,t))

A.6 The local alignment problem

Find a highest-scoring local alignment between two strings using a scoring
matrix.

• Input: A match score m, a mismatch penalty µ, a gap penalty σ and two
DNA strings s and t.

• Input Format: The first line contains m, µ and σ separated by spaces. The
second and third lines contain DNA strings s and t, respectively.

• Output: The maximum alignment score of a local alignment between s and
t and an actual local alignment achieving this maximum score.

• Output Format: The first line should contain the score of an optimal local
alignment between s and t. The second and third lines should contain an
alignment of s and t, respectively, with gaps placed appropriately, achieving
this maximum score.

• Answer:

import sys

def align(m,mu,sigma,s,t):
nt = len(t)
ns = len(s)
longest_path = [0] * (nt + 1)
backtrack = [" "] * (nt + 1)
for k in range(nt + 1):

longest_path[k] = [0] * (ns + 1)
backtrack[k] = [" "] * (ns + 1)

longest_path[0][0] = 0
for k in range (1, nt + 1):

longest_path[k][0] = 0
backtrack[k][0] = "free_ride"

for k in range (1, ns + 1):



62 Algorithms

longest_path[0][k] = 0
backtrack[0][k] = "free_ride"

for i in range (1, nt + 1):
for j in range(1, ns + 1):

path0 = 0
path1 = longest_path[i - 1][j] - sigma
path2 = longest_path[i][j - 1] - sigma
if s[j - 1] == t[i - 1]:

path3 = longest_path[i-1][j-1] + m
else:

path3 = longest_path[i-1][j-1] - mu
if path0 >= path1 and path0 >= path2 and path0 >= path3:

longest_path[i][j] = path0
backtrack[i][j] = "free_ride"

elif path1 >= path2 and path1 >= path3:
longest_path[i][j] = path1
backtrack[i][j] = "down"

elif path2 >= path3:
longest_path[i][j] = path2
backtrack[i][j] = "right"

else:
longest_path[i][j] = path3
backtrack[i][j] = "diagonal"

max_path = float("-inf")
for i in range (0, nt + 1):

for j in range(0, ns + 1):
if longest_path[i][j] > max_path:

max_path = longest_path[i][j]
max_i = i
max_j = j

t_aligned = []
s_aligned = []
i = max_i
j = max_j
longest_path[nt][ns] = max_path
while backtrack[i][j] != "free_ride" and (i > 0 or j > 0):

if backtrack[i][j] == "down":
s_aligned.append("-")
t_aligned.append(t[i-1])



A.7 The alignment with affine gap penalties problem 63

i -= 1
elif backtrack[i][j] == "right":

s_aligned.append(s[j-1])
t_aligned.append("-")
j -= 1

else:
s_aligned.append(s[j-1])
t_aligned.append(t[i-1])
j -= 1
i -= 1

s_aligned.reverse()
t_aligned.reverse()
s_aligned_as_string = ’’.join(s_aligned)
t_aligned_as_string = ’’.join(t_aligned)
result = str(longest_path[nt][ns]) + "\n" + s_aligned_as_string
+ "\n" + t_aligned_as_string
return result

if __name__ == "__main__":
m,mu,sigma = map(int,sys.stdin.readline().strip().split())
s,t = [sys.stdin.readline().strip() for _ in range(2)]
print(align(m,mu,sigma,s,t))

A.7 The alignment with affine gap penalties problem

Find a highest-scoring global alignment between two strings (with affine gap
penalties).

• Input: A match score m, a mismatch penalty µ, a gap opening penalty σ, a
gap extension penalty ε and two DNA strings s and t.

• Input Format: The first line contains m, µ, σ and ε separated by spaces.
Second and third lines contain DNA strings s and t, respectively.

• Output: The maximum alignment score of an alignment between s and t (us-
ing affine gap penalties) followed by an alignment achieving this maximum
score.

• Output Format: The first line should contain the maximum score of an align-
ment between s and t using affine gap penalties. The second and third lines



64 Algorithms

should contain an alignment of s and t, respectively, with gaps placed ap-
propriately, achieving this maximum score.

• Answer:

import sys

def align(m,mu,sigma,eps,s,t):
nt = len(t)
ns = len(s)
lower = [0] * (nt + 1)
upper = [0] * (nt + 1)
middle = [0] * (nt + 1)
backtrack_lower = [" "] * (nt + 1)
backtrack_upper = [" "] * (nt + 1)
backtrack_middle = [" "] * (nt + 1)
for k in range(nt + 1):

lower[k] = [0] * (ns + 1)
upper[k] = [0] * (ns + 1)
middle[k] = [0] * (ns + 1)
backtrack_lower[k] = [" "] * (ns + 1)
backtrack_upper[k] = [" "] * (ns + 1)
backtrack_middle[k] = [" "] * (ns + 1)

middle[0][0] = 0
lower[0][0] = float("-inf")
upper[0][0] = float("-inf")
for k in range (1, nt + 1):

upper[k][0] = float("-inf")
backtrack_upper[k][0] = "midtoup"

for k in range (1, ns + 1):
lower[0][k] = float("-inf")
backtrack_lower[0][k] = "midtolow"

for k in range (1, nt + 1):
path1 = lower[k-1][0] - eps
path2 = middle[k-1][0] - sigma
if path1 >= path2:

lower[k][0] = path1
backtrack_lower[k][0] = "lowtolow"

else:
lower[k][0] = path2



A.7 The alignment with affine gap penalties problem 65

backtrack_lower[k][0] = "midtolow"
middle[k][0] = lower[k][0]
backtrack_middle[k][0] = "lowtomid"

for k in range (1, ns + 1):
path1 = upper[0][k-1] - eps
path2 = middle[0][k-1] - sigma
if path1 >= path2:

upper[0][k] = path1
backtrack_upper[0][k] = "uptoup"

else:
upper[0][k] = path2
backtrack_upper[0][k] = "midtoup"

middle[0][k] = upper[0][k]
backtrack_middle[0][k] = "uptomid"

for i in range (1, nt + 1):
for j in range(1, ns + 1):

path1 = lower[i-1][j] - eps
path2 = middle[i-1][j] - sigma
if path1 >= path2:

lower[i][j] = path1
backtrack_lower[i][j] = "lowtolow"

else:
lower[i][j] = path2
backtrack_lower[i][j] = "midtolow"

path1 = upper[i][j-1] - eps
path2 = middle[i][j-1] - sigma
if path1 >= path2:

upper[i][j] = path1
backtrack_upper[i][j] = "uptoup"

else:
upper[i][j] = path2
backtrack_upper[i][j] = "midtoup"

path1 = lower[i][j]
if s[j - 1] == t[i - 1]:

path2 = middle[i-1][j-1] + m
else:

path2 = middle[i-1][j-1] - mu
path3 = upper[i][j]
if path1 >= path2 and path1 >= path3:



66 Algorithms

middle[i][j] = path1
backtrack_middle[i][j] = "lowtomid"

elif path3 >= path2:
middle[i][j] = path3
backtrack_middle[i][j] = "uptomid"

else:
middle[i][j] = path2
backtrack_middle[i][j] = "midtomid"

t_aligned = []
s_aligned = []
i = nt
j = ns
floor = "middle"
while i > 0 or j > 0:

if floor == "middle":
if backtrack_middle[i][j] == "lowtomid":

floor = "lower"
elif backtrack_middle[i][j] == "midtomid":

s_aligned.append(s[j-1])
t_aligned.append(t[i-1])
j -= 1
i -= 1

else:
floor = "upper"

elif floor == "lower":
if backtrack_lower[i][j] == "lowtolow":

s_aligned.append("-")
t_aligned.append(t[i-1])
i -= 1

else:
s_aligned.append("-")
t_aligned.append(t[i-1])
i -= 1
floor = "middle"

else:
if backtrack_upper[i][j] == "uptoup":

s_aligned.append(s[j-1])
t_aligned.append("-")
j -= 1



A.8 The multiple alignment problem 67

else:
s_aligned.append(s[j-1])
t_aligned.append("-")
j -= 1
floor = "middle"

s_aligned.reverse()
t_aligned.reverse()
s_aligned_as_string = ’’.join(s_aligned)
t_aligned_as_string = ’’.join(t_aligned)
result = str(middle[nt][ns]) + "\n" + s_aligned_as_string
+ "\n" + t_aligned_as_string
return result

if __name__ == "__main__":
m,mu,sigma,eps = map(int,sys.stdin.readline().strip().split())
s,t = [sys.stdin.readline().strip() for _ in range(2)]
print(align(m,mu,sigma,eps,s,t))

A.8 The multiple alignment problem

Find an alignment of three strings.

• Input: Strings r, s and t.

• Input Format: The first, second and third lines contain strings r, s and t,
respectively.

• Output: The maximum score of a multiple alignment of these three strings
and an actual multiple alignment of the three strings achieving this maxi-
mum using a scoring function in which the score of an alignment column is
1 if all three symbols are identical and 0 otherwise.

• Output Format: The first line should contain the maximum score of an align-
ment between the three input strings. The second, third and fourth lines
should contain an alignment of r, s and t, respectively, with gaps placed
appropriately, achieving this maximum score.

• Answer:

import sys



68 Algorithms

def align(r,s,t):
# Despite it would be easier to take advantage of the simple
# scoring function to simplify the algorithm,
# we will construct something easily adaptable
# to more complicated scoring systems
nt = len(t)
ns = len(s)
nr = len(r)
longest_path = [0] * (nt + 1)
backtrack = [" "] * (nt + 1)
for i in range(nt + 1):

longest_path[i] = [0] * (ns + 1)
backtrack[i] = [" "] * (ns + 1)
for j in range(ns + 1):

longest_path[i][j] = [0] * (nr + 1)
backtrack[i][j] = [0] * (nr + 1)

longest_path[0][0][0] = 0
for k in range (1, nt + 1):

longest_path[k][0][0] = longest_path[k - 1][0][0]
backtrack[k][0][0] = "down"

for k in range (1, ns + 1):
longest_path[0][k][0] = longest_path[0][k - 1][0]
backtrack[0][k][0] = "right"

for k in range (1, nr + 1):
longest_path[0][0][k] = longest_path[0][0][k - 1]
backtrack[0][0][k] = "front"

for i in range(1, nt + 1):
for j in range(1, ns + 1):

path1 = longest_path[i - 1][j][0]
path2 = longest_path[i][j - 1][0]
path3 = longest_path[i - 1][j - 1][0]
if path1 >= path2 and path1 >= path3:

longest_path[i][j][0] = path1
backtrack[i][j][0] = "down"

elif path2 >= path3:
longest_path[i][j][0] = path2
backtrack[i][j][0] = "right"

else:
longest_path[i][j][0] = path3



A.8 The multiple alignment problem 69

backtrack[i][j][0] = "down-right"
for j in range(1, ns + 1):

for k in range(1, nr + 1):
path1 = longest_path[0][j - 1][k]
path2 = longest_path[0][j][k - 1]
path3 = longest_path[0][j - 1][k - 1]
if path1 >= path2 and path1 >= path3:

longest_path[0][j][k] = path1
backtrack[0][j][k] = "right"

elif path2 >= path3:
longest_path[0][j][k] = path2
backtrack[0][j][k] = "front"

else:
longest_path[0][j][k] = path3
backtrack[0][j][k] = "right-front"

for i in range(1, nt + 1):
for k in range(1, nr + 1):

path1 = longest_path[i - 1][0][k]
path2 = longest_path[i][0][k - 1]
path3 = longest_path[i - 1][0][k - 1]
if path1 >= path2 and path1 >= path3:

longest_path[i][0][k] = path1
backtrack[i][0][k] = "down"

elif path2 >= path3:
longest_path[i][0][k] = path2
backtrack[i][0][k] = "front"

else:
longest_path[i][0][k] = path3
backtrack[i][0][k] = "down-front"

for i in range (1, nt + 1):
for j in range(1, ns + 1):

for k in range(1, nr + 1):
path1 = longest_path[i - 1][j][k]
path2 = longest_path[i][j - 1][k]
path3 = longest_path[i][j][k - 1]
path4 = longest_path[i - 1][j - 1][k]
path5 = longest_path[i - 1][j][k - 1]
path6 = longest_path[i][j - 1][k - 1]
if r[k - 1] == s[j - 1] and r[k - 1] == t[i - 1]



70 Algorithms

and s[j - 1] == t[i - 1]:
path7 = longest_path[i - 1][j - 1][k - 1] + 1

else:
path7 = longest_path[i - 1][j - 1][k - 1]

paths = [path1, path2, path3, path4, path5, path6, path7]
if max(paths) == path1:

longest_path[i][j][k] = path1
backtrack[i][j][k] = "down"

elif max(paths) == path2:
longest_path[i][j][k] = path2
backtrack[i][j][k] = "right"

elif max(paths) == path3:
longest_path[i][j][k] = path3
backtrack[i][j][k] = "front"

elif max(paths) == path4:
longest_path[i][j][k] = path4
backtrack[i][j][k] = "down-right"

elif max(paths) == path5:
longest_path[i][j][k] = path5
backtrack[i][j][k] = "down-front"

elif max(paths) == path6:
longest_path[i][j][k] = path6
backtrack[i][j][k] = "right-front"

else:
longest_path[i][j][k] = path7
backtrack[i][j][k] = "diagonal"

t_aligned = []
s_aligned = []
r_aligned = []
i = nt
j = ns
k = nr
while i > 0 or j > 0 or k > 0:

if backtrack[i][j][k] == "down":
r_aligned.append("-")
s_aligned.append("-")
t_aligned.append(t[i - 1])
i -= 1

elif backtrack[i][j][k] == "right":



A.8 The multiple alignment problem 71

r_aligned.append("-")
s_aligned.append(s[j - 1])
t_aligned.append("-")
j -= 1

elif backtrack[i][j][k] == "front":
r_aligned.append(r[k - 1])
s_aligned.append("-")
t_aligned.append("-")
k -= 1

elif backtrack[i][j][k] == "down-right":
r_aligned.append("-")
s_aligned.append(s[j - 1])
t_aligned.append(t[i - 1])
i -= 1
j -= 1

elif backtrack[i][j][k] == "down-front":
r_aligned.append(r[k - 1])
s_aligned.append("-")
t_aligned.append(t[i - 1])
i -= 1
k -= 1

elif backtrack[i][j][k] == "right-front":
r_aligned.append(r[k - 1])
s_aligned.append(s[j - 1])
t_aligned.append("-")
j -= 1
k -= 1

else:
r_aligned.append(r[k - 1])
s_aligned.append(s[j - 1])
t_aligned.append(t[i - 1])
j -= 1
i -= 1
k -= 1

r_aligned.reverse()
s_aligned.reverse()
t_aligned.reverse()
r_aligned_as_string = ’’.join(r_aligned)
s_aligned_as_string = ’’.join(s_aligned)



72 Algorithms

t_aligned_as_string = ’’.join(t_aligned)
result = str(longest_path[nt][ns][nr]) + "\n" + r_aligned_as_string
+ "\n" + s_aligned_as_string + "\n" + t_aligned_as_string
return result

if __name__ == "__main__":
r,s,t = [sys.stdin.readline().strip() for _ in range(3)]
print(align(r,s,t))



Bibliography

[1] R.E. Larson and J.L. Casti, Principles of Dynamic Programming, Part I: Basic
Analytic and Computational Methods, (Marcel Dekker, Inc., New York, NY,
USA, 1978).

[2] R.E. Larson and J.L. Casti, Principles of Dynamic Programming, Part II: Ad-
vanced Theory and Applications, (Marcel Dekker, Inc., New York City, New
York, USA, 1982).

[3] M. Minoux, Mathematical programming: Theory and alglrithms, (John Wiley
and Sons, Chichester, UK, 1986).

[4] M. Sniedovich, Dynamic Programming: Foundations and Principles, (CRC Press,
Taylor & Francis Group, Boca Ratón, Florida, USA, 2011).

[5] N.C. Jones and P.A. Pevzner, An Introduction to Bioinformatics Algorithms,
(The MIT Press, Cambridge, Massachusetts, USA, 2004).

[6] D. Pestana, J.M. Rodríguez, E. Romera, E. Touris, V. Álvarez and A. Portilla,
Curso práctico de Cálculo y Precálculo, (Editorial Ariel, S.A., Barcelona, Spain,
2007).

[7] J.E. Marsden and A.J. Tromba, Cálculo Vectorial, (Addison-Wesley Iberoamer-
icana, S.A., Wilmington, Delaware, USA, 1991).

[8] R. Bellman, The theory of dynamic programming, Bull. Amer. Math. Soc., 60,
no. 6, (1954), 503-515.

[9] T.L. Morin, Monotonicity and the Principle of Optimality, Journal of Mathemat-
ical Analysis and Applications 86, (1982), 665-674.

[10] P. Compeau and P. Pevzner, Dynamic Programming: Applications In Machine
Learning and Genomics, (MOOC offered by The University of California (San
Diego, California, USA) in edX, 2018-2020). Retrieved from:
https://courses.edx.org/courses/course-v1:UCSanDiegoX+ALGS205x+1T2017/course/

73



74 BIBLIOGRAPHY

[11] T.K. Carne, Codes and Cryptography, (Department of Pure Mathematics
and Mathematical Statistics, University of Cambridge, Cambridge, UK).
Retrieved from:
https://www.dpmms.cam.ac.uk/ tkc/CodesandCryptography/CodesandCryptography.pdf

[12] S.Y. Cheung, Directed Acyclic Graph (DAG): topological ordering, (CS323: Data
Structures and Algorithms, Department of Computer Science, Emory Uni-
versity, Atlanta, Georgia, USA). Retrieved from:
http://www.mathcs.emory.edu/ cheung/Courses/323/Syllabus/Graph/DAG.html

[13] K. Schwarz, Fundamental Graph Algorithms, Part II, (CS161: Design and Anal-
ysis of Algorithms, Department of Computer Science, Stanford University,
Stanford, California, USA). Retrieved from:
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/lectures/02/Small02.pdf

[14] M. Insall, T. Rowland and E.W. Weisstein, Embedding, (MathWorld - A Wol-
fram Web Resource). Retrieved from:
http://mathworld.wolfram.com/Embedding.html

[15] E.W. Weisstein, Hypercube, (MathWorld - A Wolfram Web Resource). Re-
trieved from:
http://mathworld.wolfram.com/Hypercube.html

[16] B.J. Culliton, E.R. Winstead, K. Ruder, C.S. Silver and B. Reinert, 1961: Mar-
shall Nirenberg (1927-) cracks the genetic code, (Genome News Network, J.
Craig Venter Institute, 2000 - 2004). Retrieved from:
http://www.genomenewsnetwork.org/resources/timeline/1961_Nirenberg.php


