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ABSTRACT
We use a computational model to investigate the emergence of interaction forces between pairs of intruders in a horizontally vibrated granular
fluid. The time evolution of a pair of particles shows a maximum of the likelihood to find the pair at contact in the direction of shaking. This
relative interaction is further studied by fixing the intruders in the simulation box where we identify effective mechanical forces and torques
between particles and quantify an emergent long range attractive force as a function of the shaking relative angle, the amplitude, and the
packing density of grains. We determine the local density and kinetic energy profiles of granular particles along the axis of the dimer to find
no gradients in the density fields and additive gradients in the kinetic energies.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5123304., s

I. INTRODUCTION

Granular matter has attracted recent attention because of its
intrinsically different nature as compared to equilibrium solid, liq-
uid, and gas states;1 due to its ubiquity in industry in the form of
plastic beads, sand, as well as edible grains, i.e., coffee and wheat;
and because of jamming and clogging processes and stress distribu-
tion which lead to the formation of stable structures. Jamming in
granular matter has been widely studied in the past.2,3

Shaken granular matter is an actuated system out of equi-
librium due to a steady flux of energy from the container to
the grains that is finally dissipated through contact interactions.
Striking phenomena occur in mixtures of particles where shak-
ing leads to species segregation ranging from clusters to stripes.4–6

The best known manifestation of this granular separation is the
so-called Brazil nut effect.7–9 For horizontally driven matter, grav-
ity is no longer a relevant parameter, and a mixture can phase
separate into stripes orthogonal to the shaking direction10–13 or

even form clusters for swirling shakings.14 Understanding the abil-
ity of granular mixtures to demix is of direct industrial rele-
vance and can help explain diverse phenomena, such as strat-
ification in terrestrial environments or in asteroid or planetoid
formation.15

As a paradigmatic example of the qualitative change that gran-
ular systems experience under shaking, we have the case of granular
flow through a bottleneck—like the flow of sand in an hourglass.
Under the sole effect of a constant force, such as gravity, the granu-
lar flow can be spontaneously interrupted16,17 if the exit is not wide
enough. On the contrary, for granular matter under shaking, the
nature of the flux interruption dramatically changes and the system,
once clogged, may spontaneously unclog.18

In the nonequilibrium state induced by shaking, granular mat-
ter has been reported to fluidize for vertical and horizontal19–21

forcing. Once granular matter fluidizes, large density fluctuations
have been reported and such a situation leads to the opening of
Casimir-like scenarios22 for the effective granular interactions.23
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Band segregation for a binary mixture of horizontally agi-
tated granular matter has been analyzed in terms of attractive and
anisotropic pairwise interactions between inclusions.24 However,
the details of the interactions were not directly addressed. Posi-
tion tracking experiments of metallic spheres immersed in a dense
poppy-seed granular monolayer have revealed not only an attrac-
tion between a pair but an aligning interaction relative to the shak-
ing direction.25 Following this experimental evidence, we present
this model that captures and quantifies the pair interaction between
intrusive particles.

This paper is structured as follows. In Sec. II, we present a
model for both grains and inclusions under horizontal vibration. In
Sec. III, we study the free motion of an intruder pair in a shaken
granular bed and identify the probability to locate particles as a func-
tion of their separation. In Sec. IV, we fix the inclusion pair in order
to quantify the emergent effective radial and tangential forces; the
mechanical formation energy of the dimers is then compared to the
pair distance distribution previously obtained in Sec. IV; and finally,
the effect of the pair in the kinetic energy of the granular bed is
explained.

II. MODEL
Recent experiments have studied the dynamics and structure

of a pair of phosphor-bronze spheres immersed in a horizontally
shaken monolayer of poppy seeds. Poppy seeds are kidney shaped
granular particles with typical diameters ranging 0.5 mm–1 mm with
a material density of ρ = 0.2 g cm−3. Poppy seeds have a wide con-
tact area with the surface of the tray, so their friction is large, and
periodically displace with the vibrated tray. Bronze spheres, on the
contrary, are smooth and uniform in size with a diameter of 1.5 mm
and a material density26 of ρ = 8.8 g cm−3.

Spheres easily rotate on the vibrated flat surface of the sys-
tem,26 whereas grains have a tendency to follow the moving tray.
Inspired by this situation, and as sketched in Fig. 1, we consider a
simplified two dimensional model for the dynamics of grains and
inclusions which captures the essential features of the forced grain
monolayer and develop an integration scheme to computationally
solve the equations of motion of the granular system.

A. Equations of motion
We treat grains as N disks at positions x of diameter σ, drawn

from a uniform distribution with average ⟨σ⟩ = σg and 10% disper-
sion to account for experimental polydispersity,25 in a 2d periodic
box of side L. We define an averaged packing fraction of the mono-
layer as ϕ = Nπ⟨σ2⟩/(4L2). Each grain with a mass that depends
on their diameter as mi = m0(σi/σg)3, where m0 is the mass of a
grain of size σg . Grains are periodically driven with the tray velocity
vs(t). Bronze spheres, inclusions, are modeled as disks of diameter
σ = 1.5σg and mass M = 50 m0 at positions X. Experimental observa-
tions indicate that inclusions roll on the vibrating plate, and hence,
we can consider inclusions not being displaced by the plate. We then
consider the dynamics of the inclusions not to be altered by the sub-
strate velocity vs. At larger packing densities of the granular bed,
inclusions will be unable to rotate solidly with the substrate due to
the interactions with the grains. Therefore, we incorporate a dissipa-
tive term in the dynamics of the inclusions −γsdX/dt that accounts

FIG. 1. Representation of the granular system. (a) Granular particles have a large
contact area with the shaking surface and are modeled as cylinders, whereas
rotating inclusions are modeled as spheres. (b) Projection of the shaken granular
system in the shaking plane.

for the sliding of inclusions on the substrate. In an effective way, the
friction term associated with the dynamics of the inclusion accounts
for the hindrance of the rotation.

For each particle, either grain, xi, or inclusion, Xi, we present
its corresponding equation of motion,

mi
d2xi
dt2 = −γs,i(

dxi
dt
− vs(t)) + Fc

i + Fd
i + Fr

i , (1)

M
d2Xi

dt2 = −γs,i
dXi

dt
+ Fc

i + Fd
i + Fr

i , (2)

where we introduce an oscillatory velocity of the tray, vs(t)
= A0ω sinωtêx, characterized by its displacement amplitude, A0, and
frequency, ω. The motion of the grains relative to the tray introduces
a friction force whose magnitude γs,i(dxi/dt − vs) depends on the
velocity of the grain relative to the tray and a dissipation constant,
γs ,i, proportional to the contact area of the disk, σ2

i .
The excluded volume interaction among particles, as well as the

energy dissipated in particle collisions, is described through a lin-
ear spring-dashpot model for the interactions between particles. The
total conservative and dissipative forces on particle i are pairwise
additive, F(c/d)i = ∑j F

(c/d)
ij , that activate when grains overlap.20,27,28

The degree of compression between two disks i and j is quantified by
ξij=(σj+σi)/2−∣rj−ri∣. Accordingly, the elastic pairwise conservative force
reads

Fc
ij = −kξijθ(ξij)n̂ij , (3)
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with k as an elastic constant (a material dependent parameter) and
n̂ij = (rj − ri)/(∣rj − ri∣) as the center-center unit vector. Fc

ij does not
vanish only when the two disks overlap, i.e., ξij > 0 as accounted to
by the Heaviside function, θ(ξ).

The dissipative pairwise interaction, responsible of the energy
loss, reads

Fd
ij = γn(vij ⋅ nij)θ(ξij)nij , (4)

with γn as a dissipation constant, vij = vj − vi, and its direction
opposes the direction of the relative velocity between pairs. This
dissipation mechanism between pairs may lead to configurations of
small overlaps with the elastic and dissipative forces canceling each
other. In these situations, pairs of particles tend to remain close to
each other. To avoid such computational artifacts, as proposed in
Ref. 28, we use the total force of interaction between pairs to be
always either repulsive or zero, Fij = max(0, (Fc

ij + Fd
ij) ⋅ n̂ij) n̂ij.

Additionally, we introduce random forces, Fr , to account
for irregularities and vertical collisions. The source of noise is
Gaussian for each component with zero mean and variance,
⟨êα ⋅ Fr

i (t)êβ ⋅ Fr
j (t′)⟩ = 2Λαδijδαβδ(t − t′). The Λα parameter

accounts for the asymmetry in the noise strength in the parallel and
perpendicular directions relative to the tray shaking.

In Secs. III and IV, we will consider the tray oscillation period
τ−1 = 2πω, the average grain size σg , and its mass m0 as time,
length, and mass units, respectively. In terms of these magnitudes,
we define the elastic constant k and the dissipation constants γn,
and γs, and Λx with standard values present in the literature19

and given in Appendix B. The integration of the equations is per-
formed by a stochastic integrator inspired by Ref. 29 and detailed in
Appendix A.

In Appendix B, we characterize a bed of granular particles and
analyze their kinetic energies. We observe that the packing fraction
of the grain monolayer has an impact on the inclusion energy loss
above ϕ = 0.6, whereas beyond ϕ ≈ 0.75 the dynamics of the grains
slows down, and the displacement statistics of grains show the caging
effects introduced by the formation of a quasicrystalline structure of
the grains. In the rest of this paper, we consider granular beds within
the density range ϕ ∈ [0.6, 0.75].

III. FREE MOVING DIMER
In order to analyze the emergent features induced by a forced

granular system on embedded intruders, we will analyze the dynam-
ics of a pair of intruders. To this end, we consider the free evolution
of a dimer of inclusion particles in a granular bed. In Sec. III A,
we define the relative coordinates that describe the pair motion. In
Sec. III B, we extract the relative arrangement of the inclusion pair
from its evolution as a function of the granular shaking amplitudes
and packing fractions. Finally, in Sec. III C, we analyze the averaged
probability distribution of the pair relative positions to measure the
pair separated by a distance d and the relative orientation for both
touching and distant pairs.

A. An inclusion dimer
In a periodically driven granular system, the energy is intro-

duced by the external forcing through both A0 and ω. On the
one hand, the shaking amplitude A0 introduces a length scale that

may lead to structural system deformations of typical length ∼2A0.
On the other hand, the shaking frequency ω modifies the dissi-
pation rate of the granular system. In this paper, we control the
tray vibration by changing the shaking amplitude, A0, and fixing its
frequency.

A doublet of intruders of diameter σ, {Xa, Xb}, defines a dimer
whose center-center vector is r = Xa − Xb. The position vector
r = (rx, ry) is equally described by its modulus r and angle α relative
to the shaking direction, r = r(cosα, sinα). We define a “paral-
lel” (“perpendicular”) configuration of the dimer for a configuration
α ≈ 0 (π/2). For simplicity, we also use the distance between the
surfaces of inclusions d = r − σ to define the dimer separation.

B. Probability landscapes
In order to understand the dynamics of a dimer of intruders in

a shaken granular bed, we have prepared a large collection of ini-
tial conditions with d ∈ [4, 7] and α ∈ [0, 2π] to sample between
106 (ϕ = 0.6) and 6 ⋅ 106 (ϕ = 0.75) cycles for systems of box size
L = 32σg at shaking amplitudes A0 = 0.75σg and A0 = 1.5σg .

We define P(rx, ry) as the probability to measure the dimer in
a configuration with rx ∈ [rx, rx + Δx] and ry ∈ [ry, ry + Δy], where
Δx = Δy = 0.05σg , which results from simulations sampling at each
shaking cycle. From this probability, we can extract − lnP(rx, ry),
which identifies the most probable configurations of the dimer freely
evolving in the granular bed. If the system were in equilibrium, the
logarithm of the probability − lnP would be proportional to the
energy landscape U(rx, ry) of the system. We leave the compari-
son between P and the dimer mechanical formation energy, U, for
Sec. IV C. Here, we associate minima of the magnitude−ln P to more
probable configurations (effective attractions) and maxima to more
unlikely configurations (effective repulsions). Probability landscapes
− lnP(rx, ry), see Fig. 2, identify r ≈ σ as the most probable pair
distance for all studied granular beds. Additionally, all four granu-
lar beds show a high degree of anisotropy at contact, r ≈ σ, where
− lnP(σ,α) is always smaller for α ≈ 0 than for α ≈ π/2. This clear
asymmetry shows a strong tendency of dimer to align in the shaking
direction.

FIG. 2. Landscape of dimer configurations. The heat map with solid contour lines of
− lnP as a function of the relative configuration of the dimer, (rx , ry ), for different
grain packing fractions, ϕ, and forcing strength, A0. The gray shaded regions cor-
respond to configurations of (rx/σ)2 + (ry/σ)2

< 1 and thus cannot be reached
by the inclusion. The x-component is aligned with the sinusoidal forcing imposed
on the tray. From left to right: (a) A0 = 0.75σ and (b) A0 = 1.5σ for ϕ = 0.6;
(c) A0 = 0.75σg and (d) A0 = 1.5σg for ϕ = 0.75.
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The structure of the granular bed is clearly manifested in
the probability landscape as a sequence of concentric oscillat-
ing rings. At long distances from contact, contour lines manifest
the anisotropy of the interaction. Moreover, the probability land-
scape decays faster along the shaking direction than perpendicular
to it.

Figure 3 further details the probability landscape for A0 = 1.5σg
and packing fraction ϕ = 0.75. The granular structure is rapidly lost
in the parallel direction, whereas it shows stronger persistence for
configurations where the dimer is oriented perpendicular to the tray
shaking direction. At long distances, we observe that perpendicu-
lar configurations are favored and an island of repulsion emerges
centered at r = 8σg and α = 0.

C. Marginal probability densities
We can provide a more compact description of the distance and

angular dependence that characterize the dimer interaction through
the corresponding marginal probability densities. These quanti-
ties are also more attractive experimentally because they require
less statistics. Specifically, we quantify the distance behavior of P
through P(r), the averaged angular distribution, obtained by inte-
grating P(r,α) over the angular configurations of the dimer.

Figure 4 displays the angular averaged probability density, P(d),
as a function of d = r − σ, so that d = 0 corresponds to the contact
position r = σ. We identify three different features in P(d). First, at
contact (d = 0), −ln P(d) reaches its lowest value; hence, it is the pre-
ferred and most probable configuration. Second, the oscillations of
−ln P(d) at short distances clearly show the structure of the bed since
the periodicity corresponds to the granular size. The surroundings
of minima are locally stable and correspond to an integer num-
ber of grains in the internal region of the inclusion dimer. Third,
the oscillations are superimposed on a monotonous decay toward
zero. The stronger the decay is, the more compact the system is—the
signal is stronger at ϕ = 0.75. Within the available range of dis-
tances, we have tested that the decay in −ln P(d) is compatible with
an algebraic tail − ln (P(d)/P(∞)) ∼ d−1, shown as dashed lines
in Fig. 4.

To quantify anisotropy, we compute the conditional probabil-
ity densities P<(r⋆; α) and P>(r⋆; α) as integrals of P(r,α) over r in

FIG. 3. Anisotropy in the dimer configurations. The heat map with solid contour
lines of the landscape, − lnP, for a system at ϕ = 0.75 and A0 = 1.5σg, an
extension in the r domain of Fig. 2 to show the long distance behavior. To fully
comprehend the behavior of − lnP, we introduce different symbols in the contour
lines, as detailed in the upper key. We observe an exclusion zone, in magenta,
where the probability to find the dimer is below the value of P at infinity.

FIG. 4. Angular averaged probability density. The plot for different values of the
packing density ϕ and shaking amplitude A0. As a guide to the eye, we plot the
fitted −ln P(d) = a/d in cyan and magenta.

the ranges r ∈ (σ, σ + r⋆) and r ∈ (σ + r⋆,∞) for P< and P>, respec-
tively. P<(>) (r⋆; α) quantifies the anisotropy of the configurations of
the dimer at short(long) distances.

The angular distributions displayed in Fig. 5 have been
obtained for r⋆ = 2σg . At short distances, P<(2σ; α), we observe a
preference for parallel configurations. The anisotropy in the config-
urations has a major dependence on the shaking amplitude, while
it shows a mild dependence on packing density. At larger distances,
d > 2σg , on the contrary, the dimer tends to orient perpendicular
to the shaking direction. In this case, the degree of anisotropy is
relatively weak except for large densities and shaking amplitudes,
ϕ = 0.75 and A0 = 1.5σ, where the anisotropy increases revealing the
instability island clearly appreciable in the 2d heat map in Fig. 3.

If the system were to be in equilibrium, the interpretation
of the probabilities would be straightforward. The minimum and

FIG. 5. Angular dependence of the conditional probability densities as a function
of ϕ and A0. (a) For distances d < 2σg. (b) For distances d > 2σg. Black dashed
lines display the value of an isotropic distribution, 2/π.
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slow decay of the radial probability −ln P(d) would translate into
an energy minimum at d = 0 and an emergent attractive long
range interaction U ∼ d−1. The results in the anisotropy shown
in Fig. 5(a) would imply the emergence of an aligning torque at
short distances, a torque that would align the dimer toward the
shaking direction. However, the system is not in equilibrium, and
thus, we cannot relate the probability of the dimer configurations
to the interaction energies in the system. In Sec. IV, we compute
mechanically the effective interaction forces and formation ener-
gies of a dimer following similar procedures to the ones used by
Refs. 30–32.

IV. FIXED INCLUSIONS
In this section, we mechanically compute the effective inter-

action forces and formation energies for an inclusion dimer. As
seen in Figs. 2–4, the free evolution of the dimer strongly favors
configurations at short inclusion-inclusion separation distances.
The measure of the relative forces, F2(R2) − F1(R1), following
the dynamics concentrates on the sampling of the interaction at
short separation distances, whereas long distance configurations are
explored less efficiently. In equilibrium systems, methods such as
umbrella sampling33–35 have given astonishing results in the explo-
ration of nontrivial energy landscapes where an external bias per-
mits the system to explore states that are otherwise computationally
expensive to explore. The out of equilibrium nature of the con-
sidered system does not provide a systematic method to extract
such an external bias. To overcome this difficulty, we prepare sys-
tems with fixed values of the dimer configuration (r, α) and freeze
its evolution during the granular dynamics. This measure protocol
has previously been applied to either fluidized or jammed gran-
ular systems36–38 and has been extended to other out of equilib-
rium systems where inclusions are placed in baths of self-propelled
particles.30–32

First, in Sec. IV A, we extract the averaged values of the rela-
tive and tangential forces between inclusions. Second, in Sec. IV B,
we propose a model that captures the long distance behavior of
the radial force as a simple function of the shaking amplitude
A0, the relative angle α, and the inclusions’ separation distance d.
Third, in Sec. IV C, we define the mechanical formation energy
of the dimer and compare it to the configurations’ probabilities
for the freely evolving dimers measured in Sec. III C. Finally,
in Sec. IV D, we compute local profile measures of the granu-
lar bed along the axis of the dimer to provide further insight
into the mechanism underlying the effective interactions between
inclusions.

A. Radial and tangential forces
We fix the pair of inclusions at positions Xa and Xb, but we

let the velocity of the inclusions evolve in time, i.e., we introduce
inclusions of infinite mass.37,38 By allowing the inclusions to acquire
a velocity, magnitude present in the grain-inclusion interactions,
the disturbance on the granular dynamics introduced by constrain-
ing the inclusion displacements is decreased and Fr(d) curves are
qualitatively equivalent to the ones obtained by setting to zero the
velocity of the inclusions. The forces given by the granular bed on
the inclusions are Fa and Fb and define the effective interaction

between inclusions. Computing the relative force Fb(Xb) − Fa(Xa),
we extract the relevant information of the relative force acting on the
dimer. Finally, we project along the radial and transverse directions
to extract the averaged contribution of each particle to the effective
interactions,

Fr(d) = ⟨
Fb(Xb) − Fa(Xa)

2
⋅ r̂⟩, (5)

Ft(d) = ⟨
Fb(Xb) − Fa(Xa)

2
⋅ t̂⟩, (6)

where unit vectors r̂ and t̂ define an orthonormal basis of R2 with
r̂ = (Xb − Xa)/∣Xb − Xa∣ and, after rotating π/2, we obtain t̂ = Rπ/2r̂.
The brackets ⟨⋅⟩ denote the average of the magnitude (⋅) over cycles
and independent realizations of the system.

Inclusions have been placed at configurations with surface to
surface distance of the range d ∈ [0, 8] and angles relative to shaking
α ∈ [0,π/2]. We average on various sets with fixed parameters α, d,
A0, ϕ to extract the mean values Fr and Ft .

Within this definition of r̂ and t̂, the projection Fr defines the
behavior of the interaction in the radial direction with attractive
effective forces captured by negative values of the relative force,
Fr < 0, and repulsive otherwise. The transverse effective force, Ft ,
indicates the emergence of a neat torque acting on the dimer with
clockwise torques identified by Ft < 0 and counterclockwise other-
wise. For our dimer configurations in the first quadrant of the plane,
clockwise tangential forces align the dimer in the shaking direction.

The relative radial force Fr in Fig. 6 reflects that the effec-
tive interaction for a pair of inclusions at contact is attractive. We
observe that the magnitude of the force at contact also depends on
the orientation of the dimer relative to the shaking direction. The
stronger the interaction is, the more aligned—to the shaking—the
dimer is. As the distance increases, the force reaches a local max-
imum before d = σg and then Fr oscillates with an amplitude that
reflects the structure of the grain suspension.

The magnitude and sign of the radial force are sensitive to
the orientation of the dimer with respect to the tray shaking direc-
tion, α. For perpendicular configurations, the decaying oscillations
in the force reflect the structure of the granular bed for long dis-
tances as is clear from the persistence of the force oscillations. As
the angle is reduced, α < π/2, the oscillation structure in the radial
force is gradually destroyed at long distances, while a neat attrac-
tive force remains for several inclusion diameters. Overall, shaking
destroys the structure of the granular bed and induces an effec-
tive attraction that increases as the dimer aligns relative to the
shaking.

In addition to the radial interaction, a torque captured as a
relative tangential force Ft appears for configurations with neither
α ≠ 0 nor α ≠ π/2. We have observed a maximum value in the
tangential force strength for α = π/4, which we select to display in
Fig. 6. This noncentral force is present in the system for short sep-
aration distances, d ≲ 2σg , and orients the pair along the shaking
direction. At ϕ = 0.75 and A0 = 1.5, a finite dealigning torque clearly
emerges at long distances, d ≳ 2σg . The nature of the tangential force
shown in Fig. 6 is compatible with the anisotropy found in the prob-
ability P(rx, ry) for moving inclusions reported in Figs. 2 and 5 in
Sec. III.
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FIG. 6. Effective radial and tangential forces Fr in (a) and (b) and Ft in (c) and
(d), respectively. Plots [(a) and (c)] for density ϕ = 0.6 and [(b) and (d)] for density
ϕ = 0.75. Different amplitudes are labeled by squares, A0 = 1.5σg, and circles,
A0 = 0.75σg. Different shades of colors identify the dimer angle relative to the
shaking direction.

B. Long distance behavior of the radial force
Figure 4 shows that the effective force between inclusions

generically displays an attractive, long-range interaction in length
scales larger than 10σg . Even though we are not able to analyze the
functional dependence of this asymptotic decay over several decades,
the observed decay is consistent with an algebraic dependence. In
granular media, long range forces arising from their nonequilibrium
fluctuations have already been described in vibrated systems.23 For
the weak decaying signal of the radial force measure for configura-
tions aligned close to the perpendicular direction, an algebraic fitting
curve of the form F2(σg/d)2 has proven to be numerically more
robust than an exponential decay which is largely interfered by the
strong oscillations; see Fig. 7(a). For an algebraic fitting, the strength
of the long range interaction is given by the force F2 and presented
in Fig. 7.

FIG. 7. Long range interaction Fr as a function of interparticle distance, angle,
and shaking amplitude. (a) At amplitude A0 = 1.5σg, the external forcing is
strong enough to clearly destroy the internal structure of the gains at α < 60○.
(b) At A0 = 0.5σg, the internal structure persists for angles α ≳ 30○. (c)
Strength of the long range force F2 as a function of cos2 α for different
shaking amplitudes. (d) Value of the prefactor of cos2 α(σg/d)2 as a function
of A0/σg.

To capture the full dependence on α and A0 on the long range
interaction amplitude, F2, we have systematically swept the space of
parameters α and A0. The structure of the bed of grains is appre-
ciable in both Figs. 7(a) and 7(b); at perpendicular configurations,
the emergent long range interaction vanishes, F2 ≈ 0. At low values
of the shaking amplitude, the grain bed structure persists at lower
angles—denoted in dashed lines. As the angle of the dimer decreases,
the effect of the external forcing increases and the local granular
structure is lost. In this regime, a clear interaction between parti-
cles develops and increases as the dimer aligns toward the forcing
direction.

To quantify the dependence on the orientation α, we present
F2 as a function of cos2 α, F2 = F0 cos2 α + B0, the lowest power of
cos α allowed by the dimer and shaking symmetry, and B0 ≈ 0. The
results in Fig. 7(c) confirm a quadratic dependence of the cosine on
F2. The analysis of B2(A0) in Fig. 7(d) indicates that B2 essentially
remains constant for shaking amplitudes below a value Ac

0 followed
by a linear increase for A0 > Ac

0.
We combine the previous results to model the effective radial

interaction. We report two different behaviors in terms of the shak-
ing amplitude. For shaking amplitudes, A0 < Ac

0, the interac-
tion depends only on the shaking angle and the distance between
inclusions as Fr(ϕ) = F0(ϕ)(σg/r)2 cos2 α. Second, as the shak-
ing amplitude increases, A0 > Ac

0, the term F0 acquires an addi-
tional term linear on A0 − Ac

0, with slope F0κ1, and can be
expressed as
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Fr(ϕ, r) = F0(ϕ)[1 + κ1(ϕ)
A0 − Ac

0(ϕ)
σg

](σg
r
)

2
cos2 α, A0 > Ac

0(ϕ).

(7)

Here, we have prescribed an a priori dependence on the packing
density on each of the parameters. For a system at packing frac-
tion ϕ = 0.75, we obtain the values of the interaction strength
F0 = −(21 ± 1)⟨tk⟩/σg ; Ac

0 = (0.6 ± 0.1)σg , the shaking amplitude
above which the interaction increases linearly with increasing A0;
and the dimensionless slope κ1 = 3.2 ± 0.3.

C. Mechanical formation energies
We benefit from Sec. IV B and, in particular, from the radial

force displayed in Fig. 6 to define the mechanical formation energy
of a dimer aligned at an angle α with respect to the imposed external
driving, Uα(d). Specifically, we define the dimer formation energy as
the total mechanical work to bring a pair of inclusions from infinity
to a relative distance d along a line at a constant angle,

Uα(d) = ∫
∞→d

Fint ⋅ dl = ∫
d

∞
Fr(r,α)dr. (8)

In equilibrium, the energy of formation is derived from the
probability to measure the pair at a given configuration (d, α) by
the simple expression U = −kBT lnP. This relation implies, in par-
ticular, that the energy of formation scales with the system tem-
perature, kBT. Since the granular bed is subject to an energy flux,
induced by the tray shaking, we cannot take the previous equal-
ity for granted. We subsequently test the validity of this previ-
ous relation through an effective bath temperature,39 kBTeff, that
could connect the formation energy to the probability to measure
a dimer configuration. To this end, we fit the formation energy of
the dimer to the probability to measure the pair of moving inclu-
sions in that dimer configuration. To extract an effective kBTeff for
each set of formation energies {Uα(di)} and probabilities {P(di,α)}
defined at distances {di}, we minimize the chi squared function
χ2 = ∑i[Uα(di) − (kBTeff lnP(di,α) + U0)]

2, with kBTeff and U0 as
the fitting parameters.

Figure 8 compares the formation energy derived from the rel-
ative force and from the angular constrained probabilities with
the best fit for kBTeff. The corresponding temperatures depend, in

FIG. 8. Mechanical formation energy Uα in solid lines and the corresponding effec-
tive potentials as obtained after minimizing χ2 for the probability densities P(r,α)
restricted at α. We present shaking amplitudes A0 = 0.75σg (a) and A0 = 1.5σg

(b) at ϕ = 0.75 with the best fits for the effective temperature kBTeff, as listed in
Table I.

TABLE I. Effective temperature obtained by minimizing χ2 combining measures of
the mechanical formation energy and for the different densities, shaking amplitudes,
and orientation angles. Values with missing α correspond to the angular averaged
formation energies and probabilities.

A0 ϕ α kBTeff A0 ϕ α kBTeff

0.75 0.6 0 0.35 0.75 0.75 0 0.24
0.75 0.6 π/4 0.64 0.75 0.75 π/4 0.42
0.75 0.6 π/2 7.4 0.75 0.75 π/2 1.21
0.75 0.6 . . . 0.61 0.75 0.75 . . . 0.46
1.5 0.6 0 0.35 1.5 0.75 0 0.16
1.5 0.6 π/4 0.46 1.5 0.75 π/4 0.26
1.5 0.6 π/2 −0.47 1.5 0.75 π/2 0.95
1.5 0.6 . . . 0.39 1.5 0.75 . . . 0.21

particular, on α, which indicates that it is impossible to describe the
dimer behavior as if it was immersed in an effective equilibrium
bath; see Table I. Specifically, the obtained formation energies dis-
play qualitatively different dependence on the dimer distance when
compared to −kBTeff ln P(d). For perpendicular configurations, the
formation energy of the dimer presents a maximum with U > 0
that decays to zero. The minus logarithm of the probability, instead,
presents an absolute minimum and then increases asymptomatically
to zero. These qualitative differences do not allow us to describe this
system in terms of a Teff.

Alternatively, we can extract an effective temperature from the
angular averaged probability, P(d); see Fig. 4. To this end, we intro-
duce the angular averaged mechanical formation energy, ⟨U(d)⟩α,
obtained by integrating ⟨Fr⟩α ≡ 2/π ∫ π/2

0 dα Fr(d,α). Figure 9 shows
that the formation energy obtained by the two routes shows semi-
quantitative agreement, and also, by construction, we can assign a
Teff for each system. Hence, even if the comparison may be mislead-
ing, it is possible to interpret the angular average quantities in terms
of an effective equilibrium.

Given the distance, and orientation dependence of the radial
force, see Eq. (7), the formation energy computed from the angu-
lar averaged Fr exhibits a d−1 distance dependence. As is shown in

FIG. 9. Angular averaged formation energy ⟨U⟩α in solid lines compared to the
fitted values for −kBTeff ln P(d) in points. The values of the corresponding of kBTeff
are given in Table I and labeled by α−.
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Fig. 4, the same distance decay is found for −ln P(d), and hence
a linear relation between −ln P(d) and ⟨U⟩α is captured at long
distances.

D. Kinetic energy excess profiles
We analyze the impact that the inclusions have in the gran-

ular bed. Fixing the inclusions allows us not only to measure the
relative forces and torques between them but also to quantify the
spatial dependence of the physical properties of the grains. We focus
on the relative variations of the granular properties along the axis
that joins the two dimers. To measure this profile, we consider a
rectangular box of size L × σg that encloses the inclusions in the
axis of the dimer. We subsequently slice this box in cells of width
Δx = 0.2σ and height Δy = 0.2σ and use them to build the corre-
sponding histograms.

We compute the local density, ϕ(x′, y′), and kinetic energies,
ek(x′, y′) and tk(x′, y′), at each cell with the center at (x′, y′) and
average over oscillation cycles for different initial conditions of the
sea of grains. The result is then integrated in the vertical dimension
to obtain the dependence on the distance from the surface of an
inclusion h. The pair of inclusions define an internal region which
is identified as −d/2 < h < 0 and an external region h > 0. To gain
statistics, we combine the results from the profiles centered on each
inclusion. For visualization purposes, we plot the negative region
from surface to surface (−d < h < 0),

δek(h) =
ek(h) − ⟨ek⟩
⟨ek⟩

, δtk(h) =
tk(h) − ⟨tk⟩
⟨tk⟩

. (9)

In Fig. 10, we display the relative excess of density and kinetic
energies for ϕ = 0.75, A0 = 1.5σg relative to the bulk values (9).
We compute the profiles for parallel and perpendicular configura-
tions of the dimer and two different separation distances, d = 2σ and
d = 6σg . For positive values of h, the behavior of each profile does
not depend on the dimer separation d. To confirm this dependence,
we have computed the profile for a sole inclusion in the system and
obtained the same external profiles.

We do not observe a significant deviation of the averaged den-
sity along the axis. Moreover, in the region between inclusions, the
local density equals to the averaged density outside—except for the
density at contact that decays due to the sampling size and the cur-
vature of the disks. However, both kinetic energies—absolute and
relative—are not kept constant along h. On the one hand, the excess
relative kinetic energy δtk has a positive value at contact and relaxes
to zero. On the other hand, the excess of absolute kinetic energy
departs from the negative value and relaxes to zero. For orienta-
tions of the dimer perpendicular to the external shaking, δek jumps
to a positive value and follows the decay of δtk > 0 and relaxes to
0, whereas for parallel configurations δek does not follow the rela-
tive kinetic energy but slowly increases to zero keeping its negative
sign.

Finally, we have analyzed the additivity of one-inclusion pro-
files for the inner region of the dimer, h < 0. From the dis-
turbance profile generated by a single particle δp(h), as pre-
sented in (9), we compute the total disturbance profile in the
inner region between independent inclusions located at h = 0 and
h = −d as δp(−h) + δp(d − h). We show the additivity of the pro-
files by comparing the hollow squares and dots to the solid lines in

FIG. 10. Excess kinetic energy and density profiles of the granular bed in a system
at packing ϕ = 0.75, forcing amplitude A0 = 1.5σg, and orientation α = π/2 in [(a)
and (c)] and α = 0 in [(b) and (d)]. Positive values of h denote the outer region of
the dimer, while negative values of h denote the region between inclusions. Hollow
symbols represent the result of the superposition of independent profiles with the
origin at h = 0 and h = −d. In cyan, we plot the relative excess density profile,
practically zero, but parallel shaking [(a) and (c)] shows weak oscillations close to
the inclusions.

Fig. 10, resulting from the addition of one-inclusion profiles and the
computation of the profiles for two-inclusion systems, respectively.

V. CONCLUSIONS
In summary, we have introduced a mechanical model to cap-

ture the effective behavior of inclusion in a horizontally shaken gran-
ular bed. The analysis of the behavior of an inclusion pair has shown
that they have granular mediated noncentral and long range interac-
tions. We have considered a freely moving pair and have computed
the forces for a pair at a fixed distance. These two approaches have
provided complementary insight.

We have extracted the two dimensional probability density of
the relative vector between inclusions and measured a preference of
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dimers at contact to align parallel to the external forcing. Consis-
tently, the force measurements with fixed inclusions have revealed
the emergence of an attractive force with a maximum for parti-
cles at contact plus the emergence of an aligning torque at short
distances. The detailed computation of the forces between the two
inclusions as a function of the angle they form with the driving
force indicates that inclusions tend to remove the ordered struc-
ture of the granular bed for α < π/2 and moderate amplitudes of the
shaking A0 > σg/2. When the granular structure around the inclu-
sions becomes weak in the internal region of the pair, the long range
attractive force between the pair becomes apparent. We have char-
acterized the interaction in terms of the parameters of the dimer
configuration and shaking of the granular bed with a simple model
of interaction at a distance (7). We have matched the anisotropy
in the probability P(rx, ry) to the appearance of a neat torque for
fixed inclusions. The torque aligns close inclusions d ≲ 2σg parallel
to the shaking, whereas at d ≳ 4σg and large shaking amplitudes and
granular densities, an emergent torque aligns inclusions perpendic-
ularly to the shaking. The appearance of this dealigning torque could
be the mechanism leading toward the segregation of mixtures of
grains and inclusions into bands perpendicular to the shaking direc-
tion.10,11,24,26 Finally, we have captured the kinetic energy profiles
in the granular bed in the immediacies of the inclusion dimer and
observed a differentiated behavior of the absolute kinetic energy on
the orientation of the dimer. Additionally, we observe that the per-
turbation of the granular kinetic energies in the internal region of the
dimer results from the addition of two independent facing inclusion
surfaces.
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APPENDIX A: STOCHASTIC DYNAMICS OF GRAINS
We present a stochastic integrator for the granular system

which the equations of motion (2) presented in Sec. II. In this
appendix, we detail the integration of the momenta.

Granular particles are described by the pair of variables posi-
tion, r, and momentum, p. With the usual definition of momentum,

d
dt
ri(t) =

1
mi

pi(t), (A1)

where mi is the mass of each granular particle and the integral of r is
direct. The evolution of the momenta of the particles in the system,
p, is governed by the following Langevin equation for each particle i:

d
dt
pi(t) = Fi(t) − γs,i(

pi(t)
mi
− vs(t)) + f i(t), (A2)

where γs ,i is the dissipation constant of each grain with the sub-
strate; vs(t) is the velocity of the substrate; and F(t) and f (t) are the

deterministic and random forces, respectively. See Sec. II for the
complete description of the model. The random forces, f , are mod-
eled as a two dimensional vector with Gaussian components with
zero mean and variance ⟨f αi (t)f βj (t

′)⟩ = 2Λαδαβδijδ(t − t′), where
Greek indices identify the spatial coordinates and Latin ones label
the particles.

To solve Eq. (A2), we separate the terms that depend on the
momenta p on the LHS from the deterministic Φ = F + γsvs and
random forces f on the RHS,

( d
dt

+
γs,i
mi
)pi(t) = Fi(t) + γs,ivs(t) + f i(t) = Φi(t) + f i(t). (A3)

The solution to Eq. (A3) is given by the combination p(t) = p(h) (t)
+ p(p) (t), where p(h) (t) solve the homogeneous equation,

( d
dt

+
γs,i
mi
)p(h)i (t) = 0, (A4)

after imposing the initial condition on the momenta of the particles
p(t0),

p(h)i (t0 + Δt) = pi(t0) exp(−γs,i
mi

Δt). (A5)

p(p) (t) are a particular solution of (A3) and have the form p(p) (t)
= π(t) exp(−γs/m t), where π(t) satisfy the equation,

d
dt
πi(t) = exp(γs,it

mi
)[Φi(t) + f i(t)]. (A6)

Assuming a slow dynamics of the deterministic force Φ(t) in the
interval [t0, t0 + Δt], the equation is integrated from t0 to t0 + Δt,

πi(t0 + Δt) = πi(t0) +
mi

γs,i
exp(γs,i

mi
t0)[exp(γs,i

mi
Δt) − 1]Φi(t0)

+ ∫
t0+Δt

t0
exp(γs,i

mi
t1)f i(t1) dt1 , (A7)

where Φi(t0) indicates the value of the deterministic computed on
particle i with the particles’ configurations at time t0, {r(t0)}. We
place π(t) and p(h)(t) into p(t) to obtain the integral of the momenta
after a time Δt,

pi(t0 + Δt) = pi(t0) exp(−γs,i
mi

Δt) +
mi

γs,i
[1 − exp(−γs,i

mi
Δt)]Φi(t0)

+ ∫
t0+Δt

t0
exp[γs,i

mi
(t1 − t0 − Δt)]f i(t1) dt1. (A8)

Given the statistical invariance of the Gaussian noise,
f (τ) ≡ f (τ + t0), we introduce the time shift τ = t1 − t0 in the last
integral,

pi(t0 + Δt) = pi(t0) exp(−γs,i
mi

Δt) +
mi

γs,i
[1 − exp(−γs,i

mi
Δt)]Φi(t0)

+ ∫
Δt

0
exp[γs,i

mi
(τ − Δt)]f i(τ) dτ. (A9)
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We have obtained the temporal integration of the particles’
momenta up a quadrature. We substitute the last term by a Gaus-
sian random vector, ζ i, with the same average, ⟨ζαi ⟩, and variance,
σζ , as the previous integral.

The value of the average is ⟨ζαi ⟩ = 0 since ⟨f αi (t)⟩ = 0. The
variance, however, requires a detailed calculation using the explicit
form of the stochastic term in (A9),

(σαβij )
2
= ∫

Δt

0
dτ1 ∫

Δt

0
dτ2 exp[γs,i

mi
(τ1 + τ2 − 2Δt)]⟨f i(τ1)f j(τ2)⟩

= 2Λαδijδαβ exp(−2
γs,i
mi

Δt)∫
Δt

0
dτ1 exp(γs,i

mi
2τ1)

= Λαδijδαβ
mi

γs,i
[1 − exp(−2

γs,i
mi

Δt)] = 2σ2
ζ δijδαβ. (A10)

Finally, we obtain the integration of p as

pi(t + Δt) = exp(−γs,i
mi

Δt)pi(t)

+
mi

γs,i
[1 − exp(−γs,i

mi
Δt)]Φi(t) + σζ ζ i, (A11)

and ζ i is a random vector whose components are random numbers
drawn from a Gaussian distribution with zero mean and unit vari-
ance. Overall, the evolution of the positions of each particle at each
time step is updated with the averaged value of the momentum in
times t and t + Δt,

ri(t + Δt) = ri(t) +
pi(t) + pi(t + Δt)

2mi
Δt . (A12)

APPENDIX B: GRANULAR MEASURES
In order to characterize the granular bed, we introduce the

measure of kinetic energies. For a system under shaking, we can
construct either an absolute or a relative kinetic energy,

ek =
1
N ∑i

mi

2
∣vi∣2, tk =

1
N ∑i

mi

2
∣vi −Vcm∣2, (B1)

with Vcm as the center of mass velocity. The usual magnitude39

defined in granular systems is tk, but the introduction of external
bodies gives a certain relevance to ek. Here, we discuss the advan-
tages of using each of them to scale the interaction forces obtained
in Sec. IV.

The relative kinetic energy tk does not depend on the shak-
ing amplitude A0, and it is best suited to compare forces in systems
at different shaking amplitudes and granular properties such as the
mean squared displacement.

The absolute kinetic energy ek includes the flux of energy that
the shaking introduces to the grains, and it is relevant for the inter-
actions with external bodies. Even though both energies are suitable
to define an energy scale, we choose the averaged tk for the sake of
commensurability.

In Fig. 11, we present the dependence of the averaged energies
measured at different densities, forcing amplitudes, andΛx, for a sys-
tem with fixed granular parameters, Λx/Λy = 2, k = 2.5 ⋅ 104, γs = 20,
and γ = 33 in system units.

FIG. 11. Measures of kinetic energies as for increasing the packing density of
grains. In solid lines, we plot the measures. (a) The relative kinetic energy nor-
malized by the random force. (b) The difference in kinetic energies expected to be
⟨ek − tk⟩ ≈ π2A2

0. (c) The absolute kinetic energy of the grains compared to the
acceleration unit given by mgσ2

gω2.

We observe a decay of the kinetic energy as the density of grains
increases. Dissipation in particle-particle collision events in granu-
lar systems introduces an energy loss, and it is responsible for the
energy dissipation of grains as density increases. The difference in
kinetic energies is solely due to the external shaking, and it is con-
firmed in Fig. 11(b) where the kinetic energy difference remains
approximately constant in the considered packing fraction range.
We determine a monolayer to be dense when the energy loss is rel-
evant, in this case for ϕ > 0.6. Since we are interested in a dense
system, we determine our lower bound for the packing range to be
ϕ = 0.6.

The upper bound for the packing fraction must correspond
to a system within the same mobility regime. For this purpose, we
measure the jump distribution of grains, P(Δ), as the probability
density distribution of the displacement, Δ, of grains after a time
unit.

Figure 12 shows a Gaussian jump distributions for ϕ ≤ 0.75
at Λx = 50. For this reason, we set the packing upper limit for
exploration in this paper at ϕ = 0.75.

At larger densities, for example, ϕ = 0.8, the jump distribution
presents a pronounced peak at |Δ| ≈ 0 that indicates the caging effect
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FIG. 12. Displacement statistics of granular particles between shaking cycles.
Plots of the system with three representative trajectories.

of the neighboring grains and it is no longer Gaussian. Mean squared
displacements, not shown here, also confirm the caging of grains,
and thus, the system is not in a dense fluidized regime.
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