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Abstract

This thesis studies Gentzen relations from the perspective of abstract
algebraic logic and generalizes to Gentzen relations the results of [28]
concerning the contextual deduction-detachment theorem (CDDT)
and some of its variants.

We correct a statement in [27] that syntactically characterizes
protoalgebraic Gentzen relations and we obtain a new version of it
that is more suitable when working with sequents. Then, we general-
ize Raftery’s bridge theorem of [28], connecting the CDDT and the
algebraic property of having equationally semi-definable principal
relative congruences (ESPRC), and we present an alternative proof
of it based on the work of Blok and Pigozzi in [6] that shows more
clearly the connection between a CDD-sequence and the equations
that semi-define the principal relative congruences.

Keywords: Abstract algebraic logic, Gentzen relation, con-
textual deduction-detachment theorem, CDDT, equationally semi-
definable principal relative congruences, ESPRC.
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Resum

Aquest treball estudia les relacions Gentzen des de la perspectiva de
la lògica algebraica abstracta i generalitza a relacions Gentzen els
resultats de [28] que tracten del teorema contextual de la deducció-
separació (CDDT) i d’algunes de les seves variants.

Corregim un enunciat de [27] que proporciona una caracteritza-
ció sintàctica de les relacions Gentzen protoalgebraiques i obtenim
una nova versió que resulta més útil quan es treballa amb seqüents.
Després, generalitzem el teorema de Raftery de [28] que connecta
el CDDT i la propietat algebraica de tenir congruències relatives
principals semidefinibles per equacions (ESPRC), i presentem una
demostració alternativa basada en el treball de Blok i Pigozzi a [6]
que mostra més clarament la connexió entre una CDD-seqüència i les
equacions que semidefineixen les congruències relatives principals.

Paraules clau: Lògica algebraica abstracta, relació Gentzen,
teorema contextual de la deducció-separació, CDDT, congruències
relatives principals semidefinibles per equacions, ESPRC.
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Resumen

Este trabajo estudia las relaciones Gentzen desde la perspectiva de
la lógica algebraica abstracta y generaliza a relaciones Gentzen los
resultados de [28] acerca del teorema contextual de la deducción-
separación (CDDT) y de algunas de sus variantes.

Corregimos un enunciado de [27] que caracteriza sintácticamente
las relaciones Gentzen protoalgebraicas y obtenemos una nueva ver-
sión que resulta más útil cuando se trabaja con secuentes. Después,
generalizamos el teorema de Raftery de [28] que conecta el CDDT
y la propiedad algebraica de tener congruencias relativas principales
semidefinibles por ecuaciones (ESPRC), y presentamos una demos-
tración alternativa basada en el trabajo de Blok y Pigozzi en [6] que
muestra más claramente la conexión entre una CDD-secuencia y las
ecuaciones que semidefinen las congruencias relativas principales.

Palabras clave: Lógica algebraica abstracta, relación Gentzen,
teorema contextual de la deducción-separación, CDDT, congruen-
cias relativas principales semidefinibles por ecuaciones, ESPRC.
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Introduction

Abstract algebraic logic studies the connections between logic and universal al-
gebra. More precisely, it seeks to provide a formal ground to the notion of the
algebraic counterpart of any given logic, that is, a general procedure whereby
classes of algebras, or of other objects of an algebraic nature, such as matrices,
can be associated with logics in a way that is both natural and allows the tools of
universal algebra to be applied to logic (and vice versa).

In its beginnings, abstract algebraic logic focused on sentential logics, i.e., on
logics considered as consequence relations between (sets of) formulas. The notion
of algebraizability, introduced by Blok and Pigozzi in [4], was one of the first
major steps towards a general, formal definition of the algebraic counterpart of a
sentential logic. Informally,

A logic is algebraizable if there exists a class of algebras related to
the logic in the same way as the class of Boolean algebras is related
to classical propositional logic ([15, p. 38]).

Gentzen relations (also known as Gentzen systems) were introduced into ab-
stract algebraic logic in the early 1990’s by Torrens [31] and Rebagliato and Verdú
[29], as a means of extending the theory of algebraizability to non-algebraizable
logics that ‘nevertheless have a clear algebraic character’ ([15, p. 55]).

As an example, consider C`∧∨, the conjunction-disjunction fragment of classical
propositional logic. One would expect C`∧∨ to be algebraizable and have the class
of distributive lattices as its algebraic counterpart, but in fact it is well known
that C`∧∨ is not algebraizable (cf. [14, p. 118]). Despite this, Font and Verdú
showed in [16] that there exists a Gentzen relation that is in some precise, strong
sense equivalent to C`∧∨ and has the distributive lattices as algebraic counterpart.
Another paradigmatic example of how Gentzen relations can be used to understand
the algebraic aspects of non-algebraizable logics is the implication-less fragment of
intuitionistic propositional logic (cf. [15, p. 59]).

This thesis studies Gentzen relations from the perspective of abstract algebraic
logic, focusing mainly on protoalgebraic ones, and generalizes to Gentzen relations
big portions of Raftery’s [28] concerning the contextual deduction-detachment
theorem.

xi



xii INTRODUCTION

Chapter 1 deals with the basic preliminaries of logic and universal algebra that
are needed to understand the rest of our work.

In Chapter 2 we generalize several results of abstract algebraic logic to Gentzen
relations. In particular, we introduce the notion of direct product of matrices in
the context of Gentzen relations, we correct a statement in Raftery’s [27] that
syntactically characterizes protoalgebraicity and we obtain a new version of it
that we consider to be more akin to Gentzen relations.

Chapter 3 employs the tools presented in Chapter 2 to study the contextual
deduction-detachment theorem (CDDT), among some of its variants, in the context
of Gentzen relations. The CDDT was introduced by Raftery in [28] to extend
some of the desirable features of the well-known deduction-detachment theorem
(DDT) to logics that do not have a DDT. We generalize Raftery’s bridge theorem
connecting the CDDT and the algebraic property of having equationally semi-
definable principal relative congruences (ESPRC), and we present an alternative
proof of it based on the work of Blok and Pigozzi in [6] that shows more clearly
the connection between a CDD-sequence and the equations that semi-define the
principal relative congruences.

Finally, in Chapter 4 we give indications for future work regarding some lines
of research that are natural continuations of this thesis.

Acknowledgements. I am grateful to Ramon Jansana for introducing me
into the field of abstract algebraic logic, for suggesting the topic of this thesis and
for his advice during its elaboration.



CHAPTER 1

Preliminaries

This chapter introduces the basic concepts and results, mainly from universal
algebra and logic, upon which our thesis rests.

We work in Zermelo-Fraenkel set theory with the axiom of choice (ZFC). Be-
sides elementary notions of set theory, which will not be defined, we assume that the
reader is familiar with the basic concepts of universal algebra (homomorphisms,
congruences, varieties...), lattice theory (algebraic lattices, distributivity, modu-
larity...), abstract algebraic logic (closure systems, sentential logics, the Leibniz
operator, protoalgebraicity...) and order theory (posets). Most of these concepts
will be defined in order to introduce our notation for them.

One of the main topics of this thesis is the contextual deduction-detachment
theorem in the context of Gentzen relations and the correspondence between it
and the semi-definability of principal relative congruences via equations. For this
reason it is convenient, though not strictly necessary, that the reader be familiar
with the deduction-detachment theorem for sentential logics and its connection
with the equational definability of principal relative congruences.

1.1. Basic notation

The set of the natural numbers {0, 1, 2, . . . } is denoted by ω.

For any set A, its power set is denoted by P(A), and its cardinality by |A|.

If f : A→ B is a function and X ⊆ A, then f�X denotes the restriction of f
to X, i.e., the function f�X : X → B given by f�X(x) := f(x) for all x ∈ X.

Any map f : A→ B induces two functions on power sets: fP : P(A)→ P(B),
defined by fP(X) := {f(x) : x ∈ X} for all X ⊆ A; and f−1 : P(B) → P(A),
defined by f−1(Y ) := {a ∈ A : f(a) ∈ Y } for all Y ⊆ B. Since the context will
always avoid ambiguity, we denote fP by f to simplify certain expressions.

If {Ai : i ∈ I} is a family of sets, its (generalized) Cartesian product is denoted
by

∏
i∈I Ai. The elements of

∏
i∈I Ai are of the form 〈ai : i ∈ I〉, with each ai ∈ Ai.

If a ∈
∏

i∈I Ai, then for every i ∈ I we denote by a(i) the element of Ai such that
a = 〈a(i) : i ∈ I〉. The Cartesian product of finitely many sets A1, . . . , An may be

1



2 1. PRELIMINARIES

also denoted by A1 × · · · × An, and when A1 = · · · = An = A for some set A, we
may simply write An.

An n-ary relation on a set A, with n ∈ ω, is a subset of An.

Given n ∈ ω, we denote a finite sequence of the form 〈a1, . . . , an〉 by the
symbol ~an, so that the subindex is the length of the sequence. The empty sequence
is identified with the empty set, and both are denoted by ∅. Note that ~a0 = ∅.
As is usual in set theory, the set of all finite sequences of elements of a set A
is denoted by A<ω, and, for any s1, s2 ∈ A<ω, the concatenation of s1 and s2 is
written as s1

as2. We use the symbol ~A to denote the collection of all sequences (of
any length, finite or infinite) of elements of A. We shall mainly work with finite
or countably infinite sequences.

We usually use sequences to refer to the elements contained in them. For exam-

ple, by ‘~am,~bn, c are pairwise different’ we actually mean ‘the elements a1, . . . , am,
b1, . . . , bn, c are pairwise different’. Also, we often abuse notation and write b ∈ ~a
or say that b is in ~a to denote that the element b appears in the sequence ~a.

The ordered pair formed by a and b (in that order) is identified with the
sequence of length 2 whose first element is a and whose second element is b, and
thus denoted by 〈a, b〉.

Given any function f : A→ B, we also denote by f , as no ambiguity will ever
arise, the function f : ~A → ~B given by f(〈ai : i ∈ I〉) := 〈f(ai) : i ∈ I〉 for every

sequence 〈ai : i ∈ I〉 ∈ ~A.

When defining a function f : A→ B, we often write f(~an) := ~bn, where n ∈ ω,

~an ∈ ~A and ~bn ∈ ~B, as an abbreviation of f(a1) := b1, . . . , f(an) := bn.

The end of a proof of a claim is marked by �, whereas the rest of the proofs
end with the more visible symbol �.

1.2. Universal algebra

For a comprehensive introduction to the topics of universal algebra with which we
shall be concerned, the reader is referred to [7], [8] and [22].

1.2.1. Languages and algebras.

Definition 1.1. An algebraic language is a pair L = 〈L, ar〉, where L is a set
and ar : L → ω. The elements of L are called symbols , and for every λ ∈ L the
number ar(λ) is called the arity of λ. Given any λ ∈ L, we say that λ is an n-ary
symbol, n ∈ ω, if ar(λ) = n. If c ∈ L is a 0-ary symbol, we say that c is a constant
symbol , and the n-ary symbols, for all n > 0, are called function symbols .
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The words ‘unary’, ‘binary’ and ‘ternary’ mean ‘1-ary’, ‘2-ary’ and ‘3-ary’,
respectively.

Definition 1.2. Let L = 〈L, ar〉 be an algebraic language. An algebra of type
L, or, briefly, an L-algebra, is a pair A = 〈A, 〈λA : λ ∈ L〉〉, where A is a set, that
satisfies:

(i) A 6= ∅.

(ii) For every constant symbol c ∈ L, we have cA ∈ A.

(iii) For every function symbol f ∈ L, we have fA : Aar(f) → A.

The set A is called the universe of A. If A is a singleton, A is said to be trivial .

When L is finite, say L = {λ1, . . . , λn}, n ∈ ω, we write just 〈A, λA1 , . . . , λAn 〉 in
place of 〈A, 〈λA : λ ∈ L〉〉, often omitting a separate specification of the language,
and say that A is an algebra of type 〈m1, . . . ,mn〉, where mi = ar(λi) for all
i = 1, . . . , n. Finally, when f ∈ L is a binary function symbol, we frequently
denote fA(a, b) by afAb, for all a, b ∈ A.

Algebras are denoted by bold Latin letters A,B, . . . , and the universe of an
algebra is denoted by the corresponding regular Latin letter A,B, . . . In order to
reduce verbosity, results about algebras of an arbitrary type are stated without
mentioning the algebraic language involved, except when this omission would be
a source of ambiguity.

Henceforward we shall only consider classes of algebras of the same type, even
when we do not explicitly specify it, so that, for example, by ‘let K be a class of
algebras’ we shall always mean ‘let K be a class of algebras of the same type’.

Definition 1.3. Let L = 〈L, ar〉 be an algebraic language and A an L-algebra.
A subset B ⊆ A is said to be L-closed (in A), or a subuniverse (of A), if:

(i) For every constant symbol c ∈ L, we have cA ∈ B.

(ii) For every n > 0 and every n-ary function symbol f ∈ L, we have
fA(b1, . . . , bn) ∈ B for all b1, . . . , bn ∈ B.

Note that ∅ is a subuniverse of A iff L has no constant symbols.

The collection of all subuniverses of a given algebra A is denoted by Sub(A).
It is easy to see that Sub(A) is closed under intersections of non-empty families,
so, since A ∈ Sub(A), for every X ⊆ A there exists the least (with respect to set
inclusion) subuniverse of A containing X, denoted by SgA(X).

Definition 1.4. Let L = 〈L, ar〉 be an algebraic language and let A and B
be L-algebras. We say that B is a subalgebra of A, and we write B ⊆ A, if:

(i) B is a subuniverse of A.
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(ii) For every constant symbol c ∈ L, we have cB = cA.

(iii) For every function symbol f ∈ L, we have fB = fA�Bar(f).

Remark 1.5. A subuniverse B of an algebra A is the universe of a subalgebra
of A iff B 6= ∅.

If B is a subalgebra of A, we define the inclusion map j : B → A by setting
j(b) := b for all b ∈ B.

Definition 1.6. Let A be an algebra and X ⊆ A. We say that A is generated
by X if SgA(X) = A, and we call X a set of generators (for A).

When X is finite, say X = {g1, . . . , gn}, n ∈ ω, we drop the brackets and
simply say that A is (finitely) generated by g1, . . . , gn.

Remark 1.7. Let L = 〈L, ar〉 be an algebraic language, and let A be an
L-algebra generated by some X ⊆ A. If L has no constant symbols, then X 6= ∅.

Proposition 1.8 (cf. [22, Thm. 1.9]). Let L = 〈L, ar〉 be an algebraic language
and A an L-algebra. For every X ⊆ A, let

E(X) := {fA(a1, . . . , am) : m > 0, f ∈ L is m-ary and a1, . . . , am ∈ X}

and define Xn, for every n ∈ ω, recursively as follows:

• X0 := X ∪ {cA : c is a constant symbol of L}.
• Xn+1 := Xn ∪ E(Xn).

Then, SgA(X) =
⋃
n∈ωXn.

Note that Proposition 1.8 allows us to obtain results concerning generated
algebras using induction.

1.2.2. Homomorphisms.

Definition 1.9. Let L = 〈L, ar〉 be an algebraic language, and let A and B
be L-algebras. A function h : A → B is said to be a homomorphism (from A to
B) if the following hold:

(i) For every constant symbol c ∈ L, we have h(cA) = cB.

(ii) For every n > 0, and every n-ary function symbol f ∈ L, we have
h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)) for all a1, . . . , an ∈ A.

If in addition h is bijective, then we say that h is an isomorphism (between A
and B) and we write h : A ∼= B : h−1. In this case the algebras A and B are said
to be isomorphic, and we may simply write A ∼= B when the isomorphism h need
not be specified.
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The family of all homomorphisms from A to B is denoted by Hom(A,B). If
h ∈ Hom(A,B) and A = B, then h is said to be an endomorphism (of A). We
define End(A) := Hom(A,A).

It is well known that the composition of two homomorphisms is also a homo-
morphism. Also, if B is a subalgebra of A and j : B → A is the corresponding
inclusion map, then j ∈ Hom(B,A). Another well-known algebraic result is that if
A and B are algebras of the same type and h ∈ Hom(A,B), then h(A), the image
of h, is the universe of a subalgebra of B, which we denote by h(A). Therefore,
A ∼= h(A) ⊆ B.

Definition 1.10. Let A and B be algebras of the same type, and let h ∈
Hom(A,B). The kernel of h, denoted by kerh, is the binary relation on A given
by kerh := {〈a, b〉 ∈ A× A : h(a) = h(b)}.

The following results can be easily obtained by induction, using Proposition 1.8:

Proposition 1.11. Let B be an algebra generated by some X ⊆ B, let A be
an algebra of the same type as B, and let h ∈ Hom(A,B) be such that X ⊆ h(A).
Then, h is surjective.

Proposition 1.12. Let A be an algebra generated by some X ⊆ A, and let B
be an algebra of the same type as A. If g1, g2 ∈ Hom(A,B) are two homomor-
phisms such that g1(x) = g2(x) for every x ∈ X, then g1 = g2.

1.2.3. Free algebras and the algebra of formulas.

Definition 1.13. Let L be an algebraic language, K a class of L-algebras and
A an L-algebra generated by some X ⊆ A. We say that A is free for K over
X if, for every algebra B ∈ K, every function g : X → B can be extended to a
homomorphism g ∈ Hom(A,B).

In this situation, we say that A is freely generated by X. And if K is the class
of all L-algebras, then we say that A is absolutely free over X.

Definition 1.14. Let L := 〈L, ar〉 be an algebraic language and X a non-
empty set such that X ∩ L = ∅ and (X ∪ L) ∩ (X ∪ L)<ω = ∅. The set of
L-formulas over X is the smallest subset FmL(X) of (X ∪ L)<ω satisfying:

(i) If x ∈ X, then 〈x〉 ∈ FmL(X).

(ii) For every constant symbol c ∈ L, we have 〈c〉 ∈ FmL(X).

(iii) For every n > 0, every n-ary function symbol f ∈ L and all ψ1, . . . , ψn ∈
FmL(X), we have 〈f〉aψ1

a · · · aψn ∈ FmL(X).

As is customary, from now on we denote concatenation by juxtaposition and
drop the (outermost) angle brackets when writing formulas (e.g., we write c and
fψ1 . . . ψn instead of 〈c〉 and 〈f〉aψ1

a · · · aψn, respectively).
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Definition 1.15. Let L and X be as in Definition 1.14. The algebra of L-
formulas over X is the L-algebra FmL(X) with universe FmL(X) and such that:

(i) For every constant symbol c ∈ L, we have cFmL(X) = c.

(ii) For every n > 0, every n-ary function symbol f ∈ L and all ψ1, . . . , ψn ∈
FmL(X), we have fFmL(X)(ψ1, . . . , ψn) = fψ1 . . . ψn.

The elements of X are called variables . Given x ∈ X and ϕ ∈ FmL(X), we say
that x occurs in ϕ if the sequence ϕ has x as one of its elements. If ~x is a sequence
of variables, we write ϕ(~x) or ϕ = ϕ(~x) to indicate that the variables occurring in
ϕ are all in ~x. And if ψ = ψ(~x) for every ψ ∈ Γ, where Γ ⊆ FmL(X), we write
Γ(~x) or Γ = Γ(~x). When ~x is finite, say ~x = 〈x1, . . . , xn〉, n ∈ ω, we usually write
ϕ(x1, . . . , xn) and Γ(x1, . . . , xn) for, respectively, ϕ(~x) and Γ(~x).

Until the end of this subsection, let FmL(X) be as in Definition 1.15, for an
algebraic language L and a set of variables X.

Theorem 1.16 (cf. [7, Thm. 10.8]). FmL(X) is absolutely free over X.

Arguing inductively on the complexity of the formulas we can obtain:

Proposition 1.17. Let A be L-algebra. If h, h′ ∈ Hom(FmL(X),A) are such
that h(~x) = h′(~x) for some sequence of variables ~x, then h(ϕ) = h′(ϕ) for every
ϕ(~x) ∈ FmL(X).

Therefore, the following definition makes sense:

Definition 1.18. Let ~x := 〈xi : i ∈ I〉 be a sequence of variables, A an L-
algebra and ~a := 〈ai : i ∈ I〉 a sequence of elements of A of the same length as ~x.
For every formula ϕ(~x) ∈ FmL(X), the interpretation of ϕ in A with respect to ~a,
denoted by ϕA(~a), is the image of ϕ by any homomorphism h ∈ Hom(FmL(X),A)
such that h(~x) = ~a.

For any Γ(~x) ⊆ FmL(X), we define ΓA(~a) := {ψA(~a) : ψ(~x) ∈ Γ}.

As usual, we drop the superindex A when A = FmL(X). And when ~a is
finite, say ~a = 〈a1, . . . , an〉 for some n ∈ ω, we frequently write ϕA(a1, . . . , an) and
ΓA(a1, . . . , an) for ϕA(~a) and ΓA(~a), respectively.

Remark 1.19. The interpretation of a formula depends only on the interpre-
tations of the variables that actually occur in it.

Another useful result that can be easily proved by induction is:

Lemma 1.20. Let A be an L-algebra, B ⊆ A, ϕ(u1, . . . , un) ∈ FmL(X) and
b1, . . . , bn ∈ B. Then, ϕA(b1, . . . , bn) ∈ SgA(B), and if, additionally, B is the
universe of a subalgebra B of A, then ϕA(b1, . . . , bn) = ϕB(b1, . . . , bn).
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An expression of the form ϕ(~y), where ϕ ∈ FmL(X) and ~y is a sequence of
variables, is ambiguous: it can denote either the fact that all the variables occurring
in ϕ are in ~y, or the interpretation of ϕ in FmL(X) with respect to ~y. The next
proposition, which can be easily proved by induction, shows that this ambiguity is
not problematic. In order to properly state it, we write the superindex FmL(X)
whenever interpreting a formula in FmL(X):

Proposition 1.21. Let ϕ(~x) ∈ FmL(X), σ ∈ End(FmL(X)) and ψ := σ(ϕ).
If a variable y occurs in σ(ϕ) = ϕFmL(X)(σ(~x)), then y occurs in σ(x) for some
x ∈ ~x. In particular, if σ(~x) = ~y, where ~y is a sequence of variables, then all the
variables that occur in ϕFmL(X)(~y) are in ~y.

The algebra of formulas FmL(X) is the ‘template’ from which all the L-
algebras generated by at most |X|-many elements are built, in the following sense:

Theorem 1.22. Let A be an L-algebra and B ⊆ A such that |B| ≤ |X|. Then,
A is generated by B iff for all a ∈ A there are n ∈ ω and ϕ(u1, . . . , un) ∈ FmL(X),
u1, . . . , un ∈ X, such that a = ϕA(b1, . . . , bn) for some b1, . . . , bn ∈ B.

Proof. (⇒) Pick any surjective map h : X → B. Note that h : X → A, so by
Theorem 1.16 and Proposition 1.11 we can extend h to a surjective homomorphism
h ∈ Hom(FmL(X),A). Let ϕ ∈ FmL(X) be such that h(ϕ) = a, and let
u1, . . . , un be the variables that occur in ϕ, for suitable n ∈ ω. Then,

a = h(ϕ) = ϕA(h(u1), . . . , h(un)),

and h(ui) ∈ B for all i = 1, . . . , n.

(⇐) Let a ∈ A. By assumption, there is a formula ϕ(u1, . . . , un) such that a =
ϕA(b1, . . . , bn) for some b1, . . . , bn ∈ B, so by Lemma 1.20 we have a ∈ SgA(B). �

Lemma 1.23 (cf. [14, Lem. 1.2]). Let A and B be L-algebras, g ∈ Hom(A,B)
a surjective homomorphism and f ∈ Hom(FmL(X),B). Then, there is some
homomorphism h ∈ Hom(FmL(X),A) such that f = g ◦ h.

1.2.4. Congruences and quotient algebras. If A is a set, we define the
following relations on A: ∆A := {〈a, a〉 : a ∈ A}, called the identity relation (on
A); and ∇A := A× A, called the total relation (on A).

Definition 1.24. Let L = 〈L, ar〉 be an algebraic language and A an L-
algebra. A set θ ⊆ A× A is said to be a congruence of A if:

(i) θ is an equivalence relation.

(ii) θ satisfies the so-called compatibility condition: for every n > 0, every

n-ary function symbol f ∈ L and all ~an,~bn ∈ ~A, if 〈ai, bi〉 ∈ θ for all
1 ≤ i ≤ n, then 〈fA(a1, . . . , an), fA(b1, . . . , bn)〉 ∈ θ.
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If a ∈ A, the equivalence class of a with respect to θ is denoted by a/θ, and
for every F ⊆ A we define F/θ := {a/θ : a ∈ F}.

Remark 1.25. Given an algebra A, both ∆A and ∇A are congruences of A.
Therefore, ∆A is the least congruence of A and ∇A the largest one.

The collection of all congruences of an algebra A is denoted by Co(A). As with
subuniverses, the intersection of any non-empty family of congruences of an algebra
A is also a congruence of A. So, since ∇A ∈ Co(A), for every X ⊆ A× A there
exists the least congruence of A that includes X, which we denote by ΘA(X),
called the congruence (of A) generated by X. We abbreviate ΘA({〈a, b〉}) to
ΘA(a, b). Congruences of this form, i.e., generated just by one element 〈a, b〉, are
said to be principal .

Congruences play an important role in abstract algebra because they allow the
formation of quotients that preserve the algebraic structure:

Definition 1.26. Let L = 〈L, ar〉 be an algebraic language, A an L-algebra
and θ a congruence of A. The quotient algebra A/θ is the L-algebra having A/θ
as its universe and such that:

(i) For every constant symbol c ∈ L, we have cA/θ = cA/θ.

(ii) For every n > 0, every n-ary function symbol f ∈ L and all elements
a1/θ, . . . , an/θ ∈ A/θ, we have fA/θ(a1/θ, . . . , an/θ) = fA(a1, . . . , an)/θ.

Note that fA/θ is well defined by the compatibility condition.

Given an algebra A and a congruence θ ∈ Co(A), the natural projection (with
respect to θ) is the function πθ : A → A/θ given by πθ(a) := a/θ for all a ∈ A.
When the context avoids ambiguity, we may denote πθ by π. It is well known that
πθ is a surjective homomorphism from A to A/θ.

Besides ∆A and ∇A, another well-known example of congruence of an algebra
A is kerh for any h ∈ Hom(A,B), where B is any algebra of the same type as
A. In this situation, the first isomorphism theorem says that A/ kerh ∼= h(A).

Using induction, we can easily prove that formulas are interpreted in quotient
algebras as expected:

Proposition 1.27. Let FmL(X) be as in Definition 1.15, A an L-algebra
and θ ∈ Co(A). For every formula ϕ(~xn) ∈ FmL(X), where x1, . . . , xn ∈ X,
n ∈ ω, and all elements a1, . . . , an ∈ A, we have:

ϕA/θ(a1/θ, . . . , an/θ) = ϕA(a1, . . . , an)/θ.

And Theorem 1.22 yields:
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Proposition 1.28. Let A be an algebra generated by some B ⊆ A, and let
θ ∈ Co(A). Then, A/θ is generated by B/θ.

Definition 1.29. Let L be an algebraic language, K a class of L-algebras and
A any L-algebra (not necessarily in K). We say that a congruence θ ∈ Co(A) is a
K-relative congruence of A, or, briefly, a K-congruence of A, if A/θ ∈ K.

The collection of all K-congruences of A is denoted by CoK(A).

1.2.5. Direct products and ultraproducts.

Definition 1.30. Let L := 〈L, ar〉 be an algebraic language, and {Ai : i ∈ I}
a family of L-algebras. The direct product of {Ai : i ∈ I}, in symbols

∏
i∈I Ai, is

the L-algebra A with universe A :=
∏

i∈I Ai and such that:

(i) For every constant symbol c ∈ L, we have cA = 〈cAi : i ∈ I〉.
(ii) For every n > 0, every n-ary function symbol f ∈ L and all elements

a1, . . . , an ∈ A, we have fA(a1, . . . , an) = 〈fAi(a1(i), . . . , an(i)) : i ∈ I〉.

If A :=
∏

i∈I Ai is the direct product of some algebras {Ai : i ∈ I}, for every
i ∈ I the i-th projection is the function πi : A → Ai defined as πi(a) := a(i) for
every a ∈ A, so that a = 〈πi(a) : i ∈ I〉. It is well known that each πi is a surjective
homomorphism from

∏
i∈I Ai to Ai.

Using induction, we can easily prove that formulas are interpreted in direct
products as expected:

Proposition 1.31. Let FmL(X) be as in Definition 1.15, and {Ai : i ∈ I} a
family of L-algebras. For every formula ϕ(~xn) ∈ FmL(X), where x1, . . . , xn ∈ X,
n ∈ ω, and every a1, . . . , an ∈

∏
i∈I Ai, we have:

ϕ
∏

i∈I Ai(a1, . . . , an) = 〈ϕAi(a1(i), . . . , an(i)) : i ∈ I〉.

The following is a well-known result that will be needed in Subsection 3.1.2:

Proposition 1.32. Let L be an algebraic language and {Ai : i ∈ I} a family
of L-algebras. If the direct product A :=

∏
i∈I Ai is generated by some set X ⊆ A,

then each Ai is generated by πi(X).

Definition 1.33. Let A be a set. A filter over A is a family F ⊆ P(A) of
subsets of A such that:

(i) A ∈ F .

(ii) If X, Y ∈ F , then X ∩ Y ∈ F , for all X, Y ⊆ A.

(iii) If X ∈ F and X ⊆ Y , then Y ∈ F , for all X, Y ⊆ A.

If ∅ /∈ F , i.e., if F 6= P(A), then we say that F is proper .
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Definition 1.34. Let A be a set. An ultrafilter over A is a proper filter U
over A such that, for all X ⊆ A, either X ∈ U or A \X ∈ U (but not both, since
U is proper).

Let L := 〈L, ar〉 be an algebraic language, {Ai : i ∈ I} a family of L-algebras,
A :=

∏
i∈I Ai and U and ultrafilter over I. Define the binary relation θU on A by

setting:

〈a, b〉 ∈ θU ⇐⇒ {i ∈ I : a(i) = b(i)} ∈ U
for all a, b ∈ A. It is easy to see that θU is a congruence of A (cf. [7, Lem. 6.2]).
Therefore, the following definition makes sense:

Definition 1.35. Let L := 〈L, ar〉 be an algebraic language, {Ai : i ∈ I} a
family of L-algebras and U and ultrafilter over I. The ultraproduct of {Ai : i ∈ I},
in symbols

∏
i∈I Ai/U , is the L-algebra (

∏
i∈I Ai)/θU .

For every a ∈
∏

i∈I Ai, we denote a/θU by a/U .

1.2.6. Equations and quasiequations. Let L be an algebraic language and
X a set of variables, as in Definition 1.15.

Definition 1.36. An equation (over FmL(X)) is a pair of formulas 〈δ, ε〉.

When working with equations, we write δ ≈ ε interchangeably with 〈δ, ε〉.

Definition 1.37. Given an L-algebra A, a set of equations Θ and a homo-
morphism h ∈ Hom(FmL(X),A), we say that A satisfies Θ with respect to h, in
symbols A |= ΘJhK, if h(δ) = h(ε) for all equations δ ≈ ε ∈ Θ.

If there are some x1, . . . , xn ∈ X, n ∈ ω, such that δ = δ(x1, . . . , xn) and
ε = ε(x1, . . . , xn) for every equation δ ≈ ε ∈ Θ, then we write A |= ΘJa1, . . . , anK
or A |= ΘJ~anK to denote that A |= ΘJhK holds for any h ∈ Hom(FmL(X),A)

such that h(~xn) = ~an, where ~an ∈ ~A.

When Θ is a singleton we omit the curly braces, so that, for example, we write
A |= δ ≈ εJhK instead of A |= {δ ≈ ε}JhK.

Definition 1.38. Given a class of L-algebras K and a set of equations Θ, we
say that Θ is valid in K, in symbols K |= Θ, if A |= ΘJhK for all A ∈ K and all
h ∈ Hom(FmL(X),A).

When K or Θ are singletons we omit the curly braces, so that, for example, we
write A |= δ ≈ ε instead of {A} |= {δ ≈ ε}.

Definition 1.39. Let Θ be a set of equations. The equational models of Θ is
the class of L-algebras Mod(Θ) := {A : A is an L-algebra and A |= Θ}.

Remark 1.40. Mod(Θ) |= Θ for every set of equations Θ.
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Definition 1.41. A class of L-algebras K is said to be an equational class if
there is a set of equations Θ such that K = Mod(Θ).

Definition 1.42. A quasiequation (over FmL(X)) is an expression of the form
α1 ≈ β1 & · · · & αn ≈ βn ⇒ δ ≈ ε, where n ∈ ω and α1 ≈ β1, . . . , αn ≈ βn, δ ≈ ε
are equations. We may abbreviate it to &1≤i≤n αi ≈ βi ⇒ δ ≈ ε.

When n = 0, we identify the quasiequation ⇒ δ ≈ ε with the equation δ ≈ ε,
so that every equation is a quasiequation.

As with equations, we now define satisfaction and validity for quasiequations:

Definition 1.43. Given an L-algebra A, a set of quasiequations Θ and a
homomorphism h ∈ Hom(FmL(X),A), we say that A satisfies Θ with respect to
h, in symbols A |= ΘJhK, if, for every quasiequation &1≤i≤nαi ≈ βi ⇒ δ ≈ ε ∈ Θ,
if A |= αi ≈ βiJhK for all i = 1, . . . , n, then A |= δ ≈ εJhK.

If there are some x1, . . . , xn ∈ X, n ∈ ω, such that for every quasiequation
&1≤i≤mαi ≈ βi ⇒ δ ≈ ε ∈ Θ we have η = η(x1, . . . , xn) for every formula η ∈
{α1, . . . , αm, β1, . . . , βm, δ, ε}, then we write A |= ΘJa1, . . . , anK or A |= ΘJ~anK to
denote that A |= ΘJhK holds for any h ∈ Hom(FmL(X),A) such that h(~xn) = ~an,

where ~an ∈ ~A.

When Θ is a singleton we omit the curly braces, so that, for example, we write
A |= &1≤i≤nαi ≈ βi ⇒ δ ≈ εJhK instead of A |= {&1≤i≤nαi ≈ βi ⇒ δ ≈ ε}JhK.

Definition 1.44. Given a class of L-algebras K and a set of quasiequations
Θ, we say that Θ is valid in K, in symbols K |= Θ, if A |= ΘJhK for all A ∈ K and
all h ∈ Hom(FmL(X),A).

When K or Θ are singletons we omit the curly braces, so that, for example, we
write A |= &1≤i≤nαi ≈ βi ⇒ δ ≈ ε instead of {A} |= {&1≤i≤nαi ≈ βi ⇒ δ ≈ ε}.

Definition 1.45. Let Θ be a set of quasiequations. The quasiequational mod-
els of Θ is the class of L-algebras Mod(Θ) := {A : A is an L-algebra and A |= Θ}.

Remark 1.46. Mod(Θ) |= Θ for every set of quasiequations Θ.

Definition 1.47. A class of L-algebras K is said to be a quasiequational class
if there is a set of quasiequations Θ such that K = Mod(Θ).

1.2.7. Varieties and quasivarieties.

Definition 1.48. Let K be a class of algebras. We define the following families
of algebras:

• I(K): isomorphic copies of algebras of K.

• H(K): homomorphic images of algebras of K.
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• S(K): subalgebras of algebras of K.

• P(K): direct products of non-empty families of algebras of K.

• PU(K): ultraproducts of non-empty families of algebras of K.

We call I,H,S,P,PU class operators , since they can be seen as functions that
map classes of algebras to classes of algebras. When applying several class opera-
tors at once, we omit all the parenthesis save the innermost ones: for example, we
write HSP(K) in place of H(S(P(K))).

Remark 1.49. If K is a class of algebras, then K ⊆ I(K), K ⊆ H(K), K ⊆ S(K),
K ⊆ IP(K) and PU(K) ⊆ HP(K).

If K is a class of algebras and O is a class operator, we say that K is closed
under O if O(K) ⊆ K.

Definition 1.50. Let K be a non-empty class of algebras. We say that K is
a variety if K is closed under H, S and P. We say that K is a quasivariety if K
contains a trivial algebra and is closed under I, S, P and PU.

Remark 1.51. Every variety is a quasivariety.

Theorem 1.52 (cf. [7, Thm. 11.9]). A class of algebras K is a variety iff K is
an equational class.

Theorem 1.53 (cf. [7, Thm. 2.25]). A class of algebras K is a quasivariety iff
K is a quasiequational class.

1.3. Partially ordered sets

Definition 1.54. Let A be a set. A partial order on A is a binary relation on
A such that, for all a, b, c ∈ A, writing a ≤ b for 〈a, b〉 ∈ ≤, we have:

(i) a ≤ a. (Reflexivity)

(ii) a ≤ b and b ≤ c imply a ≤ c. (Transitivity)

(iii) a ≤ b and b ≤ a imply a = b. (Antisymmetry)

Definition 1.55. A partially ordered set , or a poset , is a pair 〈A,≤〉, where
A is a set and ≤ is a partial order on A.

Definition 1.56. Let 〈A,≤〉 be a poset, X ⊆ A and a ∈ A. Then, a is said
to be an upper bound of X if x ≤ a for all x ∈ X, and the lowest upper bound , or
the supremum, of X if for any upper bound b of X we have a ≤ b. Analogously,
a is said to be a lower bound of X if a ≤ x for all x ∈ X, and the greatest lower
bound , or the infimum, of X if for any lower bound b of X we have b ≤ a.

It is straightforward to see that the supremum and infimum of X, if they
exist, are unique. The supremum of X is denoted by supX, and the infimum by
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inf X. Whenever we write supX (respectively, inf X), we are assuming that the
supremum (respectively, infimum) of X exists.

The following are well-known properties of the supremum and the infimum:

Proposition 1.57. Let 〈A,≤〉 be a poset, and X, Y ⊆ A. Then:

(i) If X ⊆ Y , then supX ≤ supY and inf Y ≤ inf X.

(ii) sup(X ∪ Y ) = sup{supX, supY }.
(iii) inf(X ∪ Y ) = inf{inf X, inf Y }.

Let P := 〈P,≤P 〉 and Q := 〈Q,≤Q〉 be two posets. A function h : P → Q
is said to be order-preserving or monotone if a ≤P b implies h(a) ≤Q h(b) for all
a, b ∈ P . If, moreover, h is bijective and its inverse h−1 is also order-preserving,
then we call h an order-isomorphism and say that P and Q are isomorphic, in
symbols h : P ∼= Q : h−1. When the map h need not be specified, we simply write
P ∼= Q.

Definition 1.58. Let 〈A,≤〉 be a poset. A subset D ⊆ A is upwards directed
if for every a, b ∈ D there is a c ∈ D such that a ≤ c and b ≤ c.

1.4. Lattices

Lattices are ubiquitous both in universal algebra and in abstract algebraic logic.
The reader is referred to [20] and [7, Ch. 1] for a comprehensive introduction to
lattice theory, as we shall only present a few basic concepts and results.

There are two (equivalent) ways to define the notion of lattice: an order-
theoretic approach and an algebraic approach. We shall need to see lattices both
as posets and as algebras, so we state both definitions:

Definition 1.59. From the order-theoretic perspective, a lattice is a poset
〈L,≤〉 such that sup{a, b} and inf{a, b} exist in L for all a, b ∈ L.

Definition 1.60. From the (universal) algebraic perspective, a lattice is an
algebra 〈L,∧,∨〉 of type 〈2, 2〉 such that, for all a, b, c ∈ L:

(L1) a ∧ a = a and a ∨ a = a. (Idempotency)

(L2) a ∧ b = b ∧ a and a ∨ b = b ∨ a. (Commutativity)

(L3) a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∨ (b ∨ c) = (a ∨ b) ∨ c. (Associativity)

(L4) a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a. (Absorption)

The operation ∧ is called meet , and ∨ is called join.

It is well known that Definition 1.59 and Definition 1.60 are equivalent, in the
following sense:
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Theorem 1.61 (cf. [20, Thm. 3]).

(i) If L := 〈L,≤〉 is a lattice, then Lalg := 〈L,∧,∨〉, where a ∧ b := inf{a, b}
and a ∨ b := sup{a, b} for all a, b ∈ L, is a lattice.

(ii) If L := 〈L,∧,∨〉 is a lattice, then Lord := 〈L,≤〉, where a ≤ b iff a∧ b = a
(equivalently, a ∨ b = b) for all a, b ∈ L, is a lattice.

(iii) If L := 〈L,≤〉 is a lattice, then (Lalg)
ord

= L.

(iv) If L := 〈L,∧,∨〉 is a lattice, then (Lord)
alg

= L.

The partial order defined in Theorem 1.61(ii) is called the lattice order of L.

If L1,L2 are lattices, then clearly every isomorphism between L1 and L2, con-
sidered as algebras, is an order-isomorphism between L1 and L2, considered as
posets, and vice versa.

Given a lattice 〈L,≤〉 and X ⊆ L, we define
∨
X := supX and

∧
X := inf X.

This notation is justified by Theorem 1.61.

Definition 1.62. A lattice 〈L,∧,∨〉 is said to be complete if
∧
X and

∨
X

exist in L for every X ⊆ L.

Complete lattices play a major role in abstract algebraic logic due to their
relation to closure systems (cf. Section 1.5 below). Note that if L := 〈L,∧,∨〉 is a
complete lattice, then

∨
L and

∧
L are, respectively, the maximum and minimum

elements of L with respect to the lattice order.

Definition 1.63. Let 〈L,≤〉 be a lattice. An element a ∈ L is said to be
compact if, for all X ⊆ L, if

∨
X exists and a ≤

∨
X, then there is a finite Y ⊆ X

such that
∨
Y exists and a ≤

∨
Y .

If a lattice 〈L,≤〉 has a minimum element ⊥ with respect to the lattice order,
then clearly ⊥ is a compact element.

Definition 1.64. A complete lattice 〈L,∧,∨〉 is algebraic if for every a ∈ L
there is a (possibly infinite) set of compact elements X ⊆ L such that a =

∨
X.

Definition 1.65. Let L := 〈L,∧,∨〉 be a lattice, ≤ its lattice order and
a, b ∈ L. If the set {c ∈ L : a ≤ b ∨ c} has a minimum element (with respect to
≤), we call it the dual relative pseudocomplement of a and b (in that order), and
denote it by a .− b.

If a .− b exists for all a, b ∈ L, we say that L is dually Brouwerian.

Lemma 1.66 (cf. [7, Thm. 3.2]). Let 〈L,∧,∨〉 be a lattice and ≤ its lattice
order. The following conditions are equivalent:

• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for every a, b, c ∈ L.
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• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for every a, b, c ∈ L.

Definition 1.67. A distributive lattice is a lattice 〈L,∧,∨〉 such that any of
the equivalent conditions of Lemma 1.66 holds in L.

Definition 1.68. A modular lattice is a lattice 〈L,∧,∨〉 such that, for all
a, b, x ∈ L, if a ≤ b, where ≤ is the lattice order, then:

b ∧ (x ∨ a) = (b ∧ x) ∨ a.

Proposition 1.69 (cf. [7, Thm. 3.4]). Every distributive lattice is modular.

Distributive and modular lattices will be used at the end of Chapter 3 to
characterize certain particular cases of the local contextual deduction-detachment
theorem.

1.4.1. Semilattices. We now turn our attention to join-semilattices, i.e., ‘lat-
tices’ lacking the meet operation, which will become important in Chapter 3. As
with lattices, we can define them as posets or as algebras:

Definition 1.70. From the order-theoretic perspective, a join-semilattice is a
poset 〈S,≤〉 such that sup{a, b} exists in A for all a, b ∈ S.

Definition 1.71. From the (universal) algebraic perspective, a join-semilattice
is an algebra 〈S,∨〉 of type 〈2〉 such that, for all a, b, c ∈ S:

(S1) a ∨ a = a. (Idempotency)

(S2) a ∨ b = b ∨ a. (Commutativity)

(S3) a ∨ (b ∨ c) = (a ∨ b) ∨ c. (Associativity)

The operation ∨ is called join.

It is straightforward to obtain a theorem for join-semilattices analogous to
Theorem 1.61:

Theorem 1.72.

(i) If S := 〈S,≤〉 is a join-semilattice, then Salg := 〈S,∨〉, where a ∨ b :=
sup{a, b} for all a, b ∈ S, is a join-semilattice.

(ii) If S := 〈S,∨〉 is a join-semilattice, then Sord := 〈S,≤〉, where a ≤ b iff
a ∨ b = b for all a, b ∈ S, is a join-semilattice.

(iii) If S := 〈S,≤〉 is a join-semilattice, then (Salg)
ord

= S.

(iv) If S := 〈S,∨〉 is a join-semilattice, then (Sord)
alg

= S.

As before, the order relation defined in Theorem 1.72(ii) is called the lattice
order of S, and given a join-semilattice 〈S,≤〉 and X ⊆ S, we define

∨
X := supX.
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If S1,S2 are join-semilattices, then clearly every isomorphism between S1 and
S2, considered as algebras, is an order-isomorphism between S1 and S2, considered
as posets, and vice versa.

Given a lattice 〈L,∧,∨〉 and X ⊆ L, we say that the elements of X form a
join-semilattice if 〈X,∨�(X ×X)〉 is a join-semilattice.

Proposition 1.73. Let L := 〈L,∧,∨〉 be a complete lattice. The compact
elements of L form a join-semilattice with a minimum element.

Proof. Let K be the set of compact elements of L. Clearly, it suffices to
prove that k1 ∨ k2 ∈ K for all k1, k2 ∈ K. So let X ⊆ L be such that

∨
X exists

and k1 ∨ k2 ≤
∨
X. Then, k1, k2 ≤

∨
X, so there are finite Y1, Y2 ⊆ X such that

k1 ≤
∨
Y1 and k2 ≤

∨
Y2. Hence, k1∨k2 ≤

∨
Y1∨

∨
Y2 =

∨
Y1∪Y2, so k1∨k2 ∈ K.

Finally, the minimum element of L, namely
∧
L, is clearly compact, and thus

it is also the minimum element of the join-semilattice. �

The notions of compact element, of dual relative pseudocomplement and of
being dually Brouwerian are defined for join-semilattices in ways analogous to
those of Definition 1.63 and Definition 1.65, since these definitions do not depend
on the meet operation.

The following lemmas, the second one of which is almost a triviality, will be
needed in Chapter 3:

Lemma 1.74 (cf. [28, Rk. 3.16]). Let L be an algebraic lattice whose join-
semilattice of compact elements 〈K,∨〉 is dually Brouwerian. Let a, b ∈ K, so that
a .− b exists (and is in K). Then, for all c ∈ L, compact or not, we have:

a ≤ b ∨ c ⇐⇒ a .− b ≤ c.

Proof. (⇒) Assume a ≤ b ∨ c, and let {ci : i ∈ I} ⊆ K be such that
c =

∨
i∈I ci. Then, a ≤ b ∨

∨
i∈I ci, so, since a is compact, there is a finite J ⊆ I

such that a ≤ b ∨
∨
j∈J cj. Given that a .− b exists in K and every cj is compact,

we get a .− b ≤
∨
j∈J cj ≤

∨
i∈I ci = c.

(⇐) Assume a .−b ≤ c. Since a ≤ b∨(a .−b), the assumption yields a ≤ b∨c. �

Lemma 1.75. Let L1,L2 be complete lattices, and, for i = 1, 2, let Ki be the
join-semilattice of compact elements of Li. If L1

∼= L2, then K1 is dually Brouw-
erian iff K2 is dually Brouwerian.

Even though the notions of distributivity and modularity depend both on the
meet and the join operations, they can be generalized to join-semilattices:
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Definition 1.76. Let S := 〈S,∨〉 be a join-semilattice with lattice order ≤,
and let a, b ∈ S. We say that D(a, b) holds in S if, for every c, d ∈ S, if b ≤ a ∨ c
and b ≤ a ∨ d, then there is some e ∈ S such that e ≤ c, e ≤ d and b ≤ a ∨ e.

Following Raftery [28, p. 300], who in turn follows Grätzer [19, p. 99], we say
that S is distributive if D(a, b) holds in S for every a, b ∈ S.

Definition 1.77. Let S := 〈S,∨〉 be a join-semilattice with lattice order ≤,
and let a, b ∈ S. We say that M(a, b) holds in S if, for every c, d ∈ S, if b ≤ a ∨ c
and b ≤ a ∨ d, then there is some e ∈ S such that e ≤ c, e ≤ a ∨ d and b ≤ a ∨ e.

Following Raftery [28, p. 304], who in turn follows Czelakowski [11, p. 172],
we say that S is modular if M(a, b) holds in S for every a, b ∈ S.

Remark 1.78. Every distributive join-semilattice is modular.

Lemma 1.79 (cf. [28, Lem. 6.5] and [11, Lem. 2.7.4]). Let S := 〈S,∨〉 be a
join-semilattice generated as an algebra by some X ⊆ S and with a minimum
element ⊥. If D(a, b) (respectively, M(a, b)) holds in S for all a, b ∈ X, then S is
distributive (respectively, modular).

Lemma 1.80 (cf. [28, Lem. 6.6] and [11, Cor. 2.7.3]). An algebraic lattice
is distributive (respectively, modular) iff its compact elements form a distributive
(respectively, modular) join-semilattice.

1.5. Closure operators, closure systems and consequence relations

For a more detailed exposition of the contents of this section, the reader is referred
to [7, Ch. 1, §5], [8, Ch. 2, §1] and [14, Ch. 1, §§1.2-1.5].

1.5.1. Closure operators and closure systems.

Definition 1.81. Let A be a set. A closure operator on A is a function
C : P(A)→ P(A) satisfying:

(i) X ⊆ C(X) for every X ⊆ A.

(ii) X ⊆ Y implies C(X) ⊆ C(Y ) for all X, Y ⊆ A.

(iii) C(C(X)) = C(X) for every X ⊆ A.

A subset X ⊆ A is said to be closed if C(X) = X.

When X is finite, say X = {a1, . . . , am}, we usually write C(a1, . . . , am) in
place of C({a1, . . . , am}). Also, for every X ∪ {b1, . . . , bn} ⊆ A, we abbreviate
C(X ∪ {b1, . . . , bn}) to C(X, b1, . . . , bn).

Definition 1.82. Let A be a set. A closure system on A is a collection of
subsets C ⊆ P(A) satisfying:
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(i) A ∈ C.
(ii) If B ⊆ C and B 6= ∅, then

⋂
B ∈ C.

The elements of C are called closed sets .

We adopt the convention that
⋂
∅ := A.

The expression ‘closed set’ may seem ambiguous, but it is not due to the
following bijective correspondence between the closure operators on a set A and
the closure systems on A:

Theorem 1.83 (cf. [8, Thm. 1.1]). Let A be a set.

(i) If C is a closure operator on A, then CC := {X ⊆ A : C(X) = X} is a
closure system on A.

(ii) If C is a closure system on A, then the map CC : P(A)→ P(A), given by

CC(X) :=
⋂
{Y ∈ C : X ⊆ Y }

for all X ⊆ A, is a closure operator on A.

(iii) If C is a closure operator on A, then CCC = C.

(iv) If C is a closure system on A, then CCC = C.

If C is a closure operator on a set A, then CC is called the closure system
associated with C. And if C is a closure system on A, then CC is called the closure
operator associated with C.

As stated in Section 1.4, closure systems are related to complete lattices, in
the following sense:

Theorem 1.84 (cf. [14, Prop. 1.28]). Let C be a closure system on a set A.
Then, 〈C,⊆〉 is a complete lattice and, for every B := {Xi : i ∈ I} ⊆ C, we have∧
B =

⋂
i∈I Xi and

∨
B = CC(

⋃
i∈I Xi).

Definition 1.85. Let C be a closure operator on a set A. We say that C is
finitary if

C(X) =
⋃
{C(Y ) : Y ⊆ X, Y is finite}

for all X ⊆ A.

Definition 1.86. Let C be a closure system on a set A. We say that C
is inductive if it is closed under unions of non-empty families that are upwards
directed (with respect to set inclusion).

Proposition 1.87 (Schmidt’s Theorem, cf. [14, Thm. 1.42]). A closure oper-
ator is finitary iff its associated closure system is inductive.
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Definition 1.88. Let C be a closure system on A. A closed set X is said to
be finitely generated if X = CC(Y ) for some finite Y ⊆ X.

The finitely generated elements of C are closely related to the compact elements
of the lattice 〈C,⊆〉:

Proposition 1.89 (cf. [7, Thm. 5.5]). Let C be a closure system on a set A.

(i) If X ∈ C is compact in 〈C,⊆〉, then X is finitely generated.

(ii) If CC is finitary, then X ∈ C is compact iff X is finitely generated.

Proposition 1.90. Let C be an inductive closure system on a set A. Then,
〈C,⊆〉 is an algebraic lattice.

Proof. By Theorem 1.84, 〈C,⊆〉 is a complete lattice, so it suffices to show
that every element of C is a join of compact elements.

Let C be the closure operator associated with C, and let X ∈ C. Then, C(X) =
X, so, by Proposition 1.87, for every x ∈ X there is a finite Yx ⊆ X such that
x ∈ C(Yx), whence X =

⋃
x∈X C(Yx). Therefore:

X = C(X) = C(
⋃
x∈X

C(Yx)),

i.e., X =
∨
x∈X C(Yx), and each C(Yx) is compact by Proposition 1.89(ii). �

Let A be an algebra and K a class of algebras of the same type as A. In
Section 1.2 we showed that Sub(A) and Co(A) are closure systems with associated
closure operators SgA and ΘA, respectively. The K-congruences of A, however,
do not in general form a closure system, but we have:

Proposition 1.91. Let A be an algebra and K a class of algebras of the same
type as A closed under I,S,P and containing a trivial algebra. Then, CoK(A) is a
closure system (on A× A).

Sketch of the proof. Let At be a trivial algebra in K. From A/∇A
∼= At

we get ∇A ∈ CoK(A). Now let {θi : i ∈ I} ⊆ CoK(A), I 6= ∅, and θ :=
⋂
i∈I θi. To

show that A/θ ∈ K, define h : A/θ →
∏

i∈I A/θi by setting h(a/θ) := 〈a/θi : i ∈ I〉
for all a/θ ∈ A/θ. It is easy to see that h is a homomorphism, and thus

A/θ ∼= h(A/θ) ⊆
∏
i∈I

A/θi ∈ K,

so θ ∈ CoK(A). �

Corollary 1.92. Let A be an algebra and K a quasivariety of algebras of the
same type as A. Then, CoK(A) is a closure system, and thus a complete lattice.
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When CoK(A) is a closure system, we denote its associated closure operator by
ΘA

K , and the meet and join operations of the complete lattice CoK(A) are denoted
by ∧AK and ∨AK , respectively.

1.5.2. Consequence relations.

Definition 1.93. Let A be a set. A consequence relation (or closure relation)
on A is a relation ` ⊆ P(A)× A such that, writing X ` a in place of 〈X, a〉 ∈ `,
for all X ∪ Y ∪ {a} ⊆ A we have:

(i) If a ∈ X, then X ` a. (Identity)

(ii) If X ` b for all b ∈ Y and Y ` a, then X ` a. (Cut)

(iii) If X ` a and X ⊆ Y , then Y ` a. (Monotonicity)

Remark 1.94. The monotonicity condition of Definition 1.93 is redundant.

A result analogous to Theorem 1.83 can easily be obtained for consequence
relations and closure operators:

Theorem 1.95. Let A be a set.

(i) If C is a closure operator on A, then the relation `C ⊆ P(A)× A, given
by

X `C a ⇐⇒ a ∈ C(X)

for all X ∪ {a} ⊆ A, is a consequence relation on A.

(ii) If ` is a consequence relation on A, then the map C` : P(A) → P(A),
given by

C`(X) := {a ∈ A : X ` a}
for all X ⊆ A, is a closure operator on A.

(iii) If C is a closure operator on A, then C`C = C.

(iv) If ` is a consequence relation on A, then `C` = `.

Therefore, the consequence relations on a set A are in bijective correspondence
both with the closure operators and with the closure systems (on A). If C is a
closure operator on A, then `C is called the consequence relation associated with
C. And if ` is a consequence relation on A, then C` is called the closure operator
associated with `.

Definition 1.96. Let ` be a consequence relation on a set A. We say that `
is finitary if C` is finitary.



CHAPTER 2

Abstract Algebraic Logic for Gentzen Relations

Henceforward we shall work with a fixed but arbitrary algebraic language L and
a countably infinite set of variables Var, which we take to be the disjoint union of
the (countably infinite) sets of variables Varx := {x1, x2, . . . }, Vary := {y1, y2, . . . }
and Varz := {z1, z2, . . . }. The letters u, v, w, with and without indices, denote
variables, and we define x := x1, y := y1 and z := z1 to reduce verbosity. As usual,
we drop the references to L and Var in regards to the algebra of formulas, so that,
for example, FmL(Var) is denoted by Fm.

Even when we do not explicitly say so, all the algebras that we shall consider
will be L-algebras. In particular, the classes of algebras will always be classes of
L-algebras.

2.1. Sequents

Definition 2.1. A trace is any non-empty set tr ⊆ ω × ω.

Definition 2.2. Let A be a set and tr a trace. A tr-sequent of A is a pair of

finite sequences 〈~am,~bn〉 of elements of A, for some m,n ∈ ω such that 〈m,n〉 ∈ tr.
For any m,n ∈ ω, we abbreviate ‘{〈m,n〉}-sequent’ to ‘〈m,n〉-sequent’, and the

sequent 〈~am,~bn〉 is written as a1, . . . , am B b1, . . . , bn or ~am B~bn.

Sequents are denoted by lower-case Gothic letters, a, b, . . . , r, s, t, . . . , and sets
of sequents by upper-case Gothic letters, D,E, . . . ,P,S, . . . , when working with
Fm and with upper-case Latin letters, F,G,H, . . . , when working with other
algebras. This distinction is made to notationally highlight the analogies that
exist between several results for sentential logics and the corresponding ones for
Gentzen relations.

The type of a sequent s = ~am B~bn, denoted by tp(s), is the pair 〈m,n〉 ∈ ω×ω.
A type of the form 〈m0,m1〉 is frequently denoted by m̂, and Σ(m̂) denotes m0+m1.
If P is a set of sequents, we define tp(P) := {tp(p) : p ∈ P}. When writing the
type of a sequent as a subindex or a superindex, we drop the angle brackets for
readability; for example, if tp(s) = 〈m,n〉, we use xm,n interchangeably with xtp(s).

Remark 2.3. There is only one sequent of type 〈0, 0〉, namely ∅B∅.

21
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The set of all tr-sequents of A is denoted by tr-Seq(A), and when A = Fm
we simply write tr-Seq. When tr is a singleton, say tr = {〈m,n〉}, we write just
〈m,n〉-Seq in place of {〈m,n〉}-Seq. Also, Seq(A) abbreviates (ω × ω)-Seq(A), and
Seq means Seq(Fm).

Given u ∈ Var and s ∈ Seq, say s = ~ϕm B ~ψn, we say that u occurs in s if
u occurs in any of the formulas ϕ1, . . . , ϕm, ψ1, . . . , ψn that make up s. If ~u is
a sequence of variables, we write s(~u) or s = s(~u) to indicate that the variables
occurring in s are all in ~u. And if r = r(~u) for every r ∈ P, where P ⊆ Seq, we
write P(~u) or P = P(~u). When ~u is finite, say ~u = 〈u1, . . . , un〉, n ∈ ω, we usually
write s(u1, . . . , un) and P(u1, . . . , un) for, respectively, s(~u) and P(~u).

By Fmn, where n ∈ ω, we mean the set of all formulas in which all the variables
that occur are among ~xn = 〈x1, . . . , xn〉, and we define tr-Seqn := tr-Seq(Fmn) for
all traces tr. In this situation we say that n is a context . The following facts about
Fmn are straightforward to prove:

Proposition 2.4.

(i) For every n > 0, Fmn is the universe of a subalgebra Fmn of Fm.

(ii) If Fm0 6= ∅, then Fm0 is the universe of a subalgebra Fm0 of Fm.

(iii) If Fmm,Fmn are non-empty and m ≤ n, then Fmm ⊆ Fmn.

(iv) If Fmn 6= ∅, then Fmn = SgFmn(x1, . . . , xn).

(v) If Fmn 6= ∅, then Fmn is absolutely free over {x1, . . . , xn}.

Since our notation will always avoid any ambiguity, given a trace tr and a
function f : A→ B, we also denote by f the function f : tr-Seq(A)→ tr-Seq(B)

defined by f(~am B~bn) := f(~an)B f(~bm) for every sequent ~am B~bn ∈ Seq(A).1

Definition 2.5. Let A be an algebra, ~u a sequence of variables and ~a ∈ ~A a
sequence of elements of A of the same length as ~u. For every sequent s(~u) ∈ Seq,
say s = ϕ1(~u), . . . , ϕm(~u)B ψ1(~u), . . . , ψn(~u), the interpretation of s (with respect
to A and ~a), written as sA(~a), is the sequent ϕA

1 (~a), . . . , ϕA
m(~a)B ψA

1 (~a), . . . , ψA
n (~a).

For any P(~u) ⊆ Seq, we define PA(~a) := {rA(~a) : r(~u) ∈ P}.

As usual, we drop the superindex A when A = Fm. And when ~a is fi-
nite, say ~a = 〈a1, . . . , an〉 for some n ∈ ω, we frequently write sA(a1, . . . , an) and
PA(a1, . . . , an) for sA(~a) and PA(~a), respectively.

We shall often interpret sequents with respect to sequents, in the following
sense: if s(~um+n) ∈ Seq is a sequent, A an algebra and a ∈ 〈m,n〉-Seq(A), say
a = a1, . . . , am B am+1, . . . , am+n, then we define sA(a) := sA(a1, . . . , am+n).

1Cf. page 2 for the meaning of f(~am).
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As an immediate consequence of Proposition 1.17, we have:

Proposition 2.6. Let A be an algebra, h, h′ ∈ Hom(Fm,A) and ~u a sequence
of variables. If h(~u) = h′(~u), then h(s) = h′(s) for any s(~u) ∈ Seq.

When we have a sequent u1, . . . , um B um+1, . . . , um+n such that ui ∈ Var for
i = 1, . . . ,m + n and we want to define a homomorphism h ∈ Hom(Fm,A),
for an algebra A, we often write h(u1, . . . , um B um+1, . . . , um+n) := a, where a ∈
〈m,n〉-Seq(A), say a = a1, . . . , am B am+1, . . . , am+n, as an abbreviation of h(u1) :=
a1, . . . , h(um+n) := am+n.

Having to always write a sequent separating the elements of the two sequences
that constitute it would hinder or obscure many of the proofs to come. For exam-
ple, in order to prove certain results we shall eventually need to transform a sequent
a1, . . . , am B am+1, . . . , am+n into another sequent b1, . . . , bm B bm+1, . . . , bm+n step-
by-step, i.e., considering all the intermediate sequents

b1, . . . , bi, ai+1, . . . , am B am+1, . . . , am+n (2.1)

and
b1, . . . , bm B bm+1, . . . , bm+j, am+j+1, . . . , am+n (2.2)

for i = 0, . . . ,m and j = 0, . . . , n. The presence of the symbol ‘B’ makes it
impossible to write a single general form for such intermediate sequents. Hence,
it is convenient to define a more homogeneous notation, one in which the two
sequences that make up a sequent are not separated from each other.

Given any m,n ∈ ω, any algebra A and any elements a1, . . . , at ∈ A, with
t ≥ m+ n, we define

〈a1, . . . , at〉m,n := a1, . . . , am︸ ︷︷ ︸
m elements

B at−n+1, . . . , at︸ ︷︷ ︸
n elements

, (2.3)

that is, 〈a1, . . . , at〉m,n is the 〈m,n〉-sequent (the subindex always indicates the type
of the sequent) constituted by the first m and the last n elements of a1, . . . , at. For
instance, we have:

〈a1, a2, a3, a4, a5, a6, a7〉2,3 = a1, a2 B a5, a6, a7.

Note that we can now refer to all the intermediate sequents of (2.1) and (2.2) with
just one expression, namely:

〈b1, . . . , bi, ai+1, . . . , am+n〉m,n
for i = 0, . . . ,m+ n.

The reason why in (2.3) we allow t to be strictly greater than m + n and
decide to take the elements of a1, . . . , at both from the left and from the right is to
accommodate cases where we need to specify a general form for a sequent with some
distinguished elements that must always appear on the same side of the symbol ‘B’.
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An example will make this clear: let m,n ∈ ω, n > 0 for simplicity, and suppose
that we need to consider the following 〈m,n〉-sequents, where l := max{m− 1, 0}:

c, a1, . . . , al B b1, . . . , bn

a1, c, a2, . . . , al B b1, . . . , bn
... (2.4)

a1, . . . , al−1, c, al B b1, . . . , bn

a1, . . . , al, c B b1, . . . , bn

In this situation the notation that uses the symbol ‘B’ would not be convenient,
since we cannot write (2.4) as

a1, . . . , ai−1, c, ai, . . . , al B b1, . . . , bn (2.5)

because, if m = 0, then (2.5) simplifies to cB b1, . . . , bn, which is not an 〈m,n〉-
sequent. Hence, our new notation must be capable of handling cases in which we
intend to denote an 〈m,n〉-sequent using more than (m+n)-many elements. More-
over, in (2.4) we want c to always occur among the ai’s, that is, on the left of the
symbol ’B’, so we want an expression like 〈c, b1, . . . , bn〉0,n to denote ∅B b1, . . . , bn,
and not ∅B c, b1, . . . , bn−1. Thus, the n elements b1, . . . , bn must be taken from
the right of the sequence a1, . . . , ai−1, c, ai, . . . , al, b1, . . . , bn (an analogous example
shows that the m elements a1, . . . , ai−1, c, ai, . . . , al must be taken from the left).
Using our new notation, (2.4) can be compactly written as

〈a1, . . . , ai−1, c, ai, . . . , al, b1, . . . , bn〉m,n, i = 1, . . . ,m,

which always denotes an 〈m,n〉-sequent with c on the left of ‘B’.

2.2. Substitutions

Definition 2.7. A substitution is any map σ ∈ End(Fm).

As an immediate consequence of Proposition 1.12, we have:

Proposition 2.8. Let σ, σ′ ∈ End(Fm) be two substitutions. If σ(u) = σ′(u)
for every variable u, then σ = σ′.

If σ is a substitution and ϕ(~u) a formula, by Proposition 1.21 we know that if
a variable occurs in σ(ϕ), then that variable occurs in σ(u) for some u ∈ ~u. This
yields:

Proposition 2.9. Let σ ∈ End(Fm) be a substitution. If σ(Var) ⊆ V for
some V ⊆ Var, then all the variables occurring in σ(ϕ) are in V , for every ϕ ∈ Fm.

As a first use of substitutions, let us generalize Theorem 1.22 to sequents:
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Proposition 2.10. Let A be an algebra generated by some B ⊆ A such that
|B| ≤ |Var|. Then, for every a ∈ Seq(A) there is some n ∈ ω and some s(~xn) ∈ Seq

such that a = sA(~bn) for some b1, . . . , bn ∈ B.

Proof. Since |Var| = |Varx|, pick any injective function f : B → Varx.

Let 〈m,n〉 := tp(a), so that we may write a = a1, . . . , am B am+1, . . . , am+n for
some a1, . . . , am+n ∈ A. By Theorem 1.22, for each i = 1, . . . ,m + n there is a
formula ϕi(ui,1, . . . , ui,li), li ∈ ω, such that ai = ϕA

i (bi,1, . . . , bi,li) for some elements
bi,1, . . . , bi,li ∈ B. Let U := {u1,1, . . . , um+n,lm+n}.

If U = ∅, then we can simply take

s := ϕ1, . . . , ϕm B ϕm+1, . . . , ϕm+n,

so assume U 6= ∅. Note that this implies B 6= ∅, so fix any b ∈ B.

Let σ ∈ End(Fm) be such that σ(ui,j) := f(bi,j) for every ui,j ∈ U . Let
n := max{m ∈ ω : (∃u ∈ U) σ(u) = xm}.

For any 1 ≤ i ≤ m+n, let ψi := σ(ϕi). By Proposition 1.21 and the definition
of n, we have ψi = ψi(~xn) for each i = 1, . . . ,m + n. Let h ∈ Hom(Fm,A) be
such that

h(xk) :=

{
bi,j if xk = f(bi,j) for some bi,j
b otherwise

for all k = 1, . . . , n. Since f is injective, h is well defined. Let bk := h(xk),
k = 1, . . . , n, and let h′ ∈ Hom(Fm,A) be such that h′(ui,j) := bi,j for every
i = 1, . . . ,m+ n and every j = 1, . . . , li.

Since f(bi,j) ∈ ~xn by the definition of n, for all k = 1, . . . , n we have:

h(σ(ui,j)) = h(f(bi,j)) = bi,j = h′(ui,j).

So, by Proposition 2.6, for every i = 1, . . . ,m+ n we get:

ψA
i (~bn) = h(ψi) = h(σ(ϕi)) = h′(ϕi) = ϕA

i (bi,1, . . . , bi,li) = ai.

Therefore, we can take s := ψ1, . . . , ψm B ψm+1, . . . , ψm+n. �

Corollary 2.11. Let A be an algebra generated by some b1, . . . , bm ∈ A,
with m ∈ ω. Then, for every a ∈ Seq(A) there is some s(~xm) ∈ Seq such that

a = sA(~bm).

Proof. Let B := {b1, . . . , bm}. By Proposition 2.10, there is some n ∈ ω and
some r(~xn) ∈ Seq such that a = rA(b′1, . . . , b

′
n) for some b′1, . . . , b

′
n ∈ B. For every

i = 1, . . . , n, let g(i) ∈ {1, . . . ,m} be such that b′i = bg(i).

Pick a substitution σ ∈ End(Fm) such that σ(xi) := xg(i) for all i = 1, . . . , n.
Let s := σ(r). Note that, by Proposition 1.21, s = s(~xm).
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Let h, h′ ∈ Hom(Fm,A) be such that h′(xi) := b′i for all i = 1, . . . , n and
h(xj) := bj for all j = 1, . . . ,m. For every i = 1, . . . , n, we have

h(σ(xi)) = h(xg(i)) = bg(i) = b′i = h′(xi),

and thus, by Proposition 2.6 we get

sA(~bm) = h(s) = h(σ(r)) = h′(r) = rA(b′1, . . . , b
′
n) = a. �

The following corollary of Theorem 1.22, analogous to Corollary 2.11, will be
needed in Chapter 3:

Corollary 2.12. Let A be an algebra generated by some b1, . . . , bm ∈ A, with

m ∈ ω. Then, for every a ∈ A there is a ϕ(~xm) ∈ Fm such that a = ϕA(~bm).

Indication for the proof. Consider the sequent ∅B a ∈ Seq(A) and use
Corollary 2.11. �

2.3. Gentzen relations

Definition 2.13. An L-Gentzen relation with trace tr is a pair G = 〈L,`G〉,
where L is an algebraic language and `G is a consequence relation on tr-Seq satis-
fying the so-called structurality condition, i.e., a relation `G ⊆ P(tr-Seq)× tr-Seq
such that, writing P `G s in place of 〈P, s〉 ∈ `G, for all P∪P′ ∪ {s} ⊆ tr-Seq we
have:

(i) If s ∈ P, then P `G s. (Identity)

(ii) If P `G r for all r ∈ P′ and P′ `G s, then P `G s. (Cut)

(iii) If P `G s, then σ(P) `G σ(s) for every σ ∈ End(Fm). (Structurality)

The following condition follows immediately from (i) and (ii):

(iv) If P `G s and P ⊆ P′, then P′ `G s. (Monotonicity)

The trace of G is denoted by tr(G).

Remark 2.14. A Gentzen relation G with trace tr is finitary iff for every
P∪{s} ⊆ tr-Seq such that P `G s there is some finite P0 ⊆ P satisfying P0 `G s.

Since we shall only work with the (arbitrary) algebraic language L that we
have already fixed, we abbreviate ‘L-Gentzen relation’ to ‘Gentzen relation’.

Given P,P′ ⊆ tr-Seq, we write P `G P′ to mean that P `G s holds for
all s ∈ P′. And when P = {s1, . . . , sn}, we write s1, . . . , sn `G r instead of
{s1, . . . , sn} `G r. Finally, by P a`G P′ we mean that both P `G P′ and P′ `G P
are the case.
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If G = 〈L,`G〉 is a Gentzen relation, the closure operator associated with `G is
denoted by CnG, and the corresponding closure system by T h(G). The elements
of T h(G) are called G-theories , and CnG(P) is the G-theory generated by P, for
every P ⊆ tr(G)-Seq.

The following lemma will be needed in Chapter 3:

Lemma 2.15. Let G be a Gentzen relation with trace tr, A an algebra, ~u :=
〈ui : i ∈ I〉 a sequence of variables such that |Var| = |Var \ {ui : i ∈ I}| and
~a := 〈ai : i ∈ I〉 a sequence of elements of A of the same length as ~u. Then,
for all P ∪ {s} ⊆ tr-Seq such that P `G s and all h ∈ Hom(Fm,A), there are
P′ ∪ {s′} ⊆ tr-Seq and h′ ∈ Hom(Fm,A) such that:

(i) P′ `G s′.

(ii) h′(P′) = h(P).

(iii) h′(s′) = h(s).

(iv) h′(ui) = ai for all i ∈ I.

(v) ui does not occur in P′ ∪ {s′} for any i ∈ I.

Proof. Pick any bijection σ : Var → Var \ {ui : i ∈ I}, and extend it to a
substitution σ ∈ End(Fm). Let P′ := σ(P) and s′ := σ(s). Note that (i) holds
by structurality, and (v) by Proposition 2.9.

Define h′ ∈ Hom(Fm,A) by setting h′(ui) := ai for all i ∈ I and h′(v) :=
h(σ−1(v)) for every variable v not in ~u. Clearly, (iv) holds. If w is a variable that
occurs in s, we have:

h′(σ(w)) = h(σ−1(σ(w))) = h(w),

so (iii) holds by Proposition 2.6. The same reasoning shows that h′(σ(p)) = h(p)
for every p ∈ P, so (ii) also holds. �

Gentzen relations, under the name of ‘Gentzen systems’, are ubiquitous in proof
theory, where they have proved to be useful in the study of formal properties of
mathematical proofs (cf. [32, Chs. 3-4]). We now define two kinds of Gentzen
relations of particular importance in abstract algebraic logic.

2.3.1. Sentential logics. Abstract algebraic logic has mainly been concerned
with structural consequence relations between sets of formulas and formulas, i.e.,
with the study of the so-called sentential logics. If we adopt the (rather natu-
ral) convention of identifying each 〈0, 1〉-sequent ∅B a with the element a, then
Gentzen relations are a generalization of sentential logics:

Definition 2.16. A sentential logic is a Gentzen relation with trace {〈0, 1〉}.
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Two prominent examples of sentential logics are, of course, classical proposi-
tional logic and intuitionistic propositional logic.

2.3.2. Blok and Pigozzi’s k-dimensional deductive systems. In [6],
Blok and Pigozzi introduced the notion of a k-dimensional deductive system (or
k-deductive system for short), where k > 0, motivated ‘by a desire to find a general
framework in which both deductive systems [sentential logics] [...] and equational
logic [cf. Section 2.8] can be treated in a uniform way’ ([6, p. 26]).

Intuitively, k-deductive systems are ‘sentential logics’ in which every formula
is actually a sequence of k-many formulas, i.e., they are essentially consequence
relations on Fmk. Hence, they can easily be seen as Gentzen relations:

Definition 2.17. Let k > 0. A k-dimensional deductive system, or k-deductive
system for short, is a Gentzen relation with trace {〈0, k〉}.

Of course, every sentential logic is a 1-dimensional deductive system, as in [6].

2.4. Congruences and compatibility

Given an algebra A, a trace tr ⊆ ω × ω and a congruence θ ∈ Co(A), the nat-
ural projection πθ : A → A/θ induces a (surjective) function πθ : tr-Seq(A) →
tr-Seq(A/θ) given by

πθ(a1, . . . , am B b1, . . . , bn) := πθ(a1), . . . , πθ(am)B πθ(b1), . . . , πθ(bn)

for every 〈m,n〉 ∈ tr and every ~am B~bn ∈ tr-Seq(A). As stated in Subsection 1.2.4,
when the context avoids ambiguity we write just π in place of πθ.

Following Raftery [27, p. 929], for all a ∈ tr-Seq(A) we usually write a/θ for
πθ(a). Also, for every F ∪ {a} ⊆ tr-Seq(A) we define

F/θ := πθ(F ) = {b/θ : b ∈ F}
and

[a]θ := {b ∈ tr-Seq(A) : a/θ = b/θ}.
Note that b ∈ [a]θ implies tp(b) = tp(a).

In the context of sentential logics, i.e., when tr = {〈0, 1〉}, we have a = ∅B a
for some a ∈ A, and thus, provided that we identify each sequent ∅B b ∈ tr-Seq(A)
with the element b ∈ A, we obtain [a]θ = π(a) = a/θ. In general, however, [a]θ and
a/θ are fundamentally different objects (the latter being a sequent while the former
a set of sequents), and both are needed to generalize some well-known important
facts concerning the compatibility of congruences (e.g., Proposition 2.20 below).

Remark 2.18. Let A be an algebra, a, b ∈ Seq(A) and θ1, θ2 ∈ Co(A). If
a/θ1 = b/θ1 and θ1 ⊆ θ2, then a/θ2 = b/θ2.



2.4. CONGRUENCES AND COMPATIBILITY 29

Definition 2.19. A congruence θ of an algebra A is said to be compatible
with a set of sequents F ⊆ Seq(A) if π−1(π(F )) ⊆ F .

Proposition 2.20. Let A be an algebra, F ⊆ Seq(A) and θ ∈ Co(A). The
following conditions are equivalent:

(i) θ is compatible with F .

(ii) F = π−1(π(F )).

(iii) F =
⋃
a∈F

[a]θ.

(iv) For every a, b ∈ Seq(A), if a ∈ F and a/θ = b/θ, then b ∈ F .

(v) For every a ∈ Seq(A), a ∈ F iff a/θ ∈ F/θ.

Proof. (i)⇒ (ii) Clear, as F ⊆ π−1(π(F )).

(ii)⇒ (iii)

b ∈ F (ii)⇐⇒ b ∈ π−1(π(F ))

⇐⇒ b/θ ∈ π(F )

⇐⇒ (∃a ∈ F ) b/θ = a/θ

⇐⇒ (∃a ∈ F ) b ∈ [a]θ

⇐⇒ b ∈
⋃
a∈F

[a]θ

(iii)⇒ (iv) Since b/θ = a/θ, we have b ∈ [a]θ, so b ∈
⋃

a∈F [a]θ
(iii)
= F .

(iv)⇒ (v): If a ∈ F , then clearly a/θ ∈ F/θ. Conversely, if a/θ ∈ F/θ, then
there is some b ∈ F such that a/θ = b/θ, so a ∈ F by (iv).

(v)⇒ (i) a ∈ π−1(π(F )) ⇐⇒ a/θ ∈ π(F ) ⇐⇒ a/θ ∈ F/θ (v)⇐⇒ a ∈ F . �

With respect to sets of sequents, homomorphisms behave as expected, in the
sense that we have:

Proposition 2.21. Let A and B be algebras, h ∈ Hom(A,B), F ⊆ Seq(A)
and G ⊆ Seq(B). Then:

(i) F ⊆ h−1(h(F )).

(ii) F = h−1(h(F )) iff kerh is compatible with F .

(iii) h(h−1(G)) ⊆ G.

(iv) If h is surjective, then h(h−1(G)) = G.

Proof.
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(i) Clear, as h(F ) ⊆ h(F ).

(ii) Assume F = h−1(h(F )). Let a, b ∈ Seq(A) be such that a ∈ F and
a/ kerh = b/ kerh. Then, h(b) = h(a) ∈ h(F ), so b ∈ h−1(h(F )) ⊆ F .
By Proposition 2.20(iv), kerh is compatible with F .

Conversely, assume kerh is compatible with F . By (i), it suffices to show
that h−1(h(F )) ⊆ F , so let a ∈ h−1(h(F )). Then, h(a) ∈ h(F ), so there is
some b ∈ F such that h(a) = h(b), whence a/ kerh = b/ kerh, so a ∈ F
by Proposition 2.20(iv).

(iii) If b ∈ h(h−1(G)), there is some a ∈ h−1(G) such that h(a) = b, so b ∈ G.

(iv) By (iii), it suffices to show that G ⊆ h(h−1(G)), so let b ∈ G. Since h is
surjective, there is some a ∈ A such that h(a) = b. Then, a ∈ h−1(G), so
b ∈ h(h−1(G)). �

Lemma 2.22. Let A and B be algebras and h ∈ Hom(A,B). Then, kerh is
compatible with h−1(X) for every X ⊆ Seq(B).

Proof. Let s, r ∈ Seq(B) be such that s ∈ h−1(X) and s/ kerh = r/ kerh.
Then, h(r) = h(s) ∈ X, so r ∈ h−1(X), whence kerh is compatible with h−1(X)
by Proposition 2.20(iv). �

The following definition, inspired by [27, p. 929], will simplify many statements
to come:

Definition 2.23. Let tr be a trace and A an algebra. For any n ∈ ω, an n-ary
tr-valued polynomial function of A is a function p : An → tr-Seq(A) for which there
is some sequent s(~un, ~vm) ∈ tr-Seq, where m ∈ ω and ~un, ~vm are pairwise different

variables, and some elements ~bm ∈ ~A, such that

p(a1, . . . , an) = sA(~an,~bm)

for all ~an ∈ An. When tr is a singleton, say tr = {〈m,n〉}, we abbreviate ‘{〈m,n〉}-
valued’ to ‘〈m,n〉-valued’.

Proposition 2.24. Let A be an algebra, tr a trace and n ∈ ω. There is at
least one n-ary tr-valued polynomial function of A.

Proof. Since traces are non-empty, fix any 〈r, s〉 ∈ tr. Define the sequent:

x = x1, . . . , xr B xr+1, . . . , xr+s.

If r + s ≤ n, then x = x(~xn), so the function p : An → tr-Seq(A) given by
p(~an) := xA(~an) for all ~an ∈ An is an n-ary tr-valued polynomial function of A.
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Now suppose that r + s > n. Let m := r + s− n and pick any ~bm ∈ Am. The

function p : An → tr-Seq(A) defined by setting p(~an) := xA(~an,~bm) for all ~an ∈ An
is an n-ary tr-valued polynomial function of A. �

The following is a well-known fact that can be easily proved by induction on
the complexity of the formulas:

Proposition 2.25. Let A be an algebra, θ ∈ Co(A) and a, b ∈ A. If 〈a, b〉 ∈ θ,

then 〈µA(a,~cl), µ
A(b,~cl)〉 ∈ θ for every formula µ(u,~vl) and all elements ~cl ∈ ~A,

where l ∈ ω and u,~vl are pairwise different variables.

Corollary 2.26. Let A be an algebra, θ ∈ Co(A) and a, b ∈ A. If 〈a, b〉 ∈ θ,
then p(a)/θ = p(b)/θ for every unary tr-valued polynomial function of A.

Proof. Let s(u,~vl) ∈ Seq, l ∈ ω, ~dl ∈ ~A and u,~vl pairwise different variables

be such that p(c) = sA(c, ~dl) for all c ∈ A. Then, apply Proposition 2.25 to every
formula in s. �

Our goal now is to prove that, for any algebra A and any F ⊆ Seq(A), the
largest (with respect to set inclusion) congruence of A compatible with F always
exists. Even though we could argue algebraically, generalizing [14, Thm. 4.20] to
show that the congruences of A compatible with F form a complete sublattice of
the lattice Co(A), we take the more direct path of Raftery’s [27, p. 929].

We need the following result, which appears without proof as [27, Lem. 11.6]:

Theorem 2.27. Let tr be a trace, A an algebra, F ⊆ tr-Seq(A) a set of sequents
of A and θ ∈ Co(A) a congruence of A. The following are equivalent:

(i) θ is compatible with F .

(ii) If 〈a, b〉 ∈ θ, then p(a) ∈ F iff p(b) ∈ F for every unary tr-valued polyno-
mial function p of A.

Proof. (i)⇒ (ii) By Corollary 2.26, p(a)/θ = p(b)/θ, so (ii) follows from (i)
and Proposition 2.20(iv).

(ii)⇒ (i) Let a, b ∈ tr-Seq(A) be such that a/θ = b/θ and a ∈ F . By Proposi-
tion 2.20(iv), we need to prove that b ∈ F .

Let 〈m,n〉 := tp(a) = tp(b), so that we may write a = 〈a1, . . . , am+n〉m,n and
b = 〈b1, . . . , bm+n〉m,n for some elements a1, . . . , am+n, b1, . . . , bm+n ∈ A. For every
i = 1, . . . ,m+ n, define the function pi : A→ tr-Seq(A) by setting

pi(c) := 〈b1, . . . , bi−1, c, ai+1, . . . , am+n〉m,n
for all c ∈ A. Clearly, each pi is a unary tr-valued polynomial function of A. Note
that pi(bi) = pi+1(ai+1) for every 1 ≤ i < m + n. Thus, since 〈ai, bi〉 ∈ θ for all
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i = 1, . . . ,m+ n, we have:

p1(a1) ∈ F (ii)⇐⇒ p1(b1) ∈ F ⇐⇒ p2(a2) ∈ F
(ii)⇐⇒ p2(b2) ∈ F ⇐⇒ p3(a3) ∈ F
...

(ii)⇐⇒ pm+n(bm+n) ∈ F.

We know p1(a1) = a ∈ F , so we obtain pm+n(bm+n) = b ∈ F . �

Corollary 2.28. Given a trace tr, an algebra A and F ⊆ tr-Seq(A), let
ΩA(F ) be the set of all pairs 〈a, b〉 ∈ A× A such that:

p(a) ∈ F ⇐⇒ p(b) ∈ F for every unary tr-valued polynomial function p of A.

Then, ΩA(F ) is the largest congruence of A compatible with F .

Proof. By Theorem 2.27, every congruence of A compatible with F is in-
cluded in ΩA(F ), so all we need to check is that ΩA(F ) is a congruence of A.

Clearly, ΩA(F ) is an equivalence relation. Let f ∈ L be an m-ary function
symbol, m > 0, and let a1, . . . , am, b1, . . . , bm ∈ A be such that 〈ai, bi〉 ∈ ΩA(F )
for i = 1, . . . ,m. Let p be a unary tr-valued polynomial function of A and define,
for every 1 ≤ i ≤ m, a function qi : A→ tr-Seq(A) by setting, for all c ∈ A:

qi(c) := p(fA(b1, . . . , bi−1, c, ai+1, . . . , am)).

Note that every qi is a unary tr-valued polynomial function of A, because if s(u,~vl)

and ~dl ∈ ~A, for some l ∈ ω and some pairwise different variables u,~vl, are such

that p(c) = sA(c, ~dl) for every c ∈ A, then

qi(c) = rA(c, b1, . . . , bi−1, ai+1, . . . , am, ~dn),

where r(wi, w1, . . . , wi−1, wi+1, . . . , wm, ~vl) := s(fw1 . . . wm, ~vl), with the variables
~wm chosen to be pairwise different from u,~vl.

Also, note that qi(bi) = qi+1(ai+1) for all 1 ≤ i < m.

Therefore, since 〈ai, bi〉 ∈ ΩA(F ) for i = 1, . . . ,m, we get:

q1(a1) ∈ F ⇐⇒ q1(b1) ∈ F ⇐⇒ q2(a2) ∈ F
⇐⇒ q2(b2) ∈ F ⇐⇒ q3(a3) ∈ F

...

⇐⇒ qm(bm) ∈ F.
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Hence, q1(a1) = p(fA(a1, . . . , am)) belongs to F iff qm(bm) = p(fA(b1, . . . , bm)) be-
longs to F . As p was arbitrary, we get 〈fA(a1, . . . , am), fA(b1, . . . , bm)〉 ∈ ΩA(F ).
Thus, ΩA(F ) is a congruence. �

Definition 2.29. Let A be an algebra. The Leibniz operator (on A) is the
function ΩA : P(Seq(A))→ Co(A) that maps each F ⊆ Seq(A) to the largest con-
gruence of A compatible with F , which exists by Corollary 2.28. The congruence
ΩA(F ) is called the Leibniz congruence of F .

As usual, when A = Fm we write just Ω in place of ΩFm.

The Leibniz operator has been extensively studied for sentential logics, and
it has led to the classification of a large amount of them in the so-called Leibniz
hierarchy (cf. [14, Ch. 6]). According to [15, §3.1] and [14, §4.2], the notion of the
Leibniz congruence was first introduced by  Los in [21] for the algebra of formulas,
and in general by Wójcicki in [33]. It was named after Leibniz by Blok and Pigozzi
in their monograph [4], arguing that ΩA(F ) is the first-order analogue of Leibniz’s
(second-order) principle of the identity of indiscernibles (cf. [4, §1.4]).

Combining Theorem 2.27 and Corollary 2.28, we obtain:

Proposition 2.30. Let A be an algebra, θ ∈ Co(A) and F ⊆ Seq(A). Then,
θ is compatible with F iff θ ⊆ ΩA(F ).

In Section 2.7 we shall make use of the following generalization of Theorem 2.27
to provide a syntactic characterization of protoalgebraic Gentzen relations:

Lemma 2.31. Let tr be a trace, A an algebra, θ ∈ Co(A) a congruence and
F ⊆ tr-Seq(A). The following conditions are equivalent:

(i) θ is compatible with F .

(ii) For every n ∈ ω and every n-ary tr-valued polynomial function p of A,
we have

p(~an) ∈ F ⇐⇒ p(~bn) ∈ F
for every ~an,~bn ∈ ~A such that 〈a1, b1〉, . . . , 〈an, bn〉 ∈ θ.

Proof. (i)⇒ (ii) For every 1 ≤ i ≤ n, define the map pi : A→ tr-Seq(A) as:

pi(c) := p(b1, . . . , bi−1, c, ai+1, . . . , an)

for all c ∈ A. Clearly, each pi is a unary tr-valued polynomial function of A and
pi(bi) = pi+1(ai+1) for all 1 ≤ i < n. By Theorem 2.27, we have:

p1(a1) ∈ F ⇐⇒ p1(b1) ∈ F ⇐⇒ p2(a2) ∈ F
⇐⇒ p2(b2) ∈ F ⇐⇒ p3(a3) ∈ F

...
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⇐⇒ pn(bn) ∈ F

Thus, p1(a1) = p(~an) belongs to F iff pn(bn) = p(~bn) belongs to F .

(ii)⇒ (i) By Theorem 2.27. �

2.5. Filters

Definition 2.32. Let G be a Gentzen relation with trace tr, and let A be an
algebra. A set F ⊆ tr-Seq(A) is said to be a G-filter of A if, for all P∪{s} ⊆ tr-Seq
such that P `G s and all h ∈ Hom(Fm,A) such that h(P) ⊆ F , we have h(s) ∈ F .

For every algebra A, the set of all G-filters of A is denoted by FiG(A). It
is clear that tr-Seq(A) ∈ FiG(A), and it is easy to see that the intersection of
a non-empty family of G-filters of A is also a G-filter of A. Hence, FiG(A) is
a closure system on tr-Seq(A), whose associated closure operator is denoted by
FgA

G . By Theorem 1.84, 〈FiG(A),⊆〉 is a complete lattice, whose meet and join
operations are denoted by ∧A and ∨A, respectively (as usual, when A = Fm we
drop the superindices).

In the case of finitary Gentzen relations, the filters of an algebra form an
algebraic lattice whose compact elements are exactly the finitely generated ones:

Proposition 2.33. Let G be a finitary Gentzen relation and A an algebra.
Then, 〈FiG(A),⊆〉 is an algebraic lattice and F ∈ FiG(A) is compact iff F is
finitely generated.

Proof. By Proposition 1.90, Proposition 1.87 and Proposition 1.89(ii), it suf-
fices to show that FiG(A) is inductive. So let {Fi : i ∈ I} ⊆ FiG(A) be a
non-empty upwards directed family, and let F :=

⋃
i∈I Fi. We need to prove that

F ∈ FiG(A).

Let P ∪ {s} ⊆ tr(G)-Seq and h ∈ Hom(Fm,A) be such that P `G s and
h(P) ⊆ F . Since G is finitary, there is a finite P0 ⊆ P such that P0 `G s. Pick
a finite J ⊆ I for which h(P0) ⊆

⋃
j∈J Fj. Given that {Fi : i ∈ I} is upwards

directed, there is some k ∈ I such that
⋃
j∈J Fj ⊆ Fk, and therefore h(s) ∈ Fk ⊆ F

because Fk is a G-filter of A. �

The G-filters of the formula algebra are simply the G-theories:

Proposition 2.34. Let G be a Gentzen relation with trace tr. Then, for every
P ⊆ tr-Seq we have FgG(P) = CnG(P), and thus FiG(Fm) = T h(G).

Proof. We prove that CnG(P) is the least G-filter of Fm containing P.

Clearly, P ⊆ CnG(P).
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Let S ∪ {s} ⊆ tr-Seq and h ∈ End(Fm) be such that S `G s and h(S) ⊆
CnG(P). Note that h is a substitution, so h(S) `G h(s) by structurality, and thus
h(s) ∈ CnG(P) by cut. Hence, CnG(P) ∈ FiG(Fm).

Let G ∈ FiG(Fm) be such that P ⊆ G. If r ∈ CnG(P), i.e., if P `G r, then
r ∈ G because the identity function on Fm is a homomorphism. �

Corollary 2.35. Let G be a Gentzen relation with trace tr, and let n ∈ ω be
such that Fmn 6= ∅, so that Fmn is the universe of a subalgebra Fmn of Fm.
Then, for every P ⊆ tr-Seqn we have:

FgFmn
G (P) = FgG(P) ∩ tr-Seqn.

Proof. Let F := FgG(P) ∩ tr-Seqn. We prove that F is the least G-filter of
Fmn containing P.

By Proposition 2.34, F = CnG(P) ∩ tr-Seqn, and thus P ⊆ F .

Let S ∪ s ⊆ tr-Seq and h ∈ Hom(Fm,Fmn) be such that S `G s and
h(S) ⊆ F . Then, h(S) ⊆ FgG(P), so h(s) ∈ FgG(P), and thus h(s) ∈ F . Hence,
F ∈ FiG(Fmn).

Let G ∈ FiG(Fmn) be such that P ⊆ G. If r ∈ F , then r ∈ tr-Seqn and
P `G r by Proposition 2.34. Let h ∈ Hom(Fm,Fmn) be such that h(~xn) := ~xn
and h(u) is any element of Fmn. Then, h(P) = P ⊆ G, so r = h(r) ∈ G because
G is a G-filter of Fmn. �

As regards the behaviour of homomorphisms with respect to filters, we have
the following important result:

Proposition 2.36. Let G be a Gentzen relation with trace tr. Let A,B be
any algebras, h ∈ Hom(A,B), F ∈ FiG(A) and G ∈ FiG(B). Then:

(i) h−1(G) ∈ FiG(A).

(ii) If h is surjective and kerh is compatible with F , then h(F ) ∈ FiG(B).

Proof.

(i) Assume P `G s holds for some P∪{s} ⊆ tr-Seq, and let g ∈ Hom(Fm,A)
be such that g(P) ⊆ h−1(G). Then, h(g(P)) ⊆ G, so, since h ◦ g is a
homomorphism and G ∈ FiG(B), we obtain h(g(s)) ∈ G, whence g(s) ∈
h−1(G). Thus, h−1(G) is a G-filter of A.

(ii) Assume P `G s for some P ∪ {s} ⊆ tr-Seq, and let g ∈ Hom(Fm,B)
be such that g(P) ⊆ h(F ). Then, h−1(g(P)) ⊆ h−1(h(F )) = F by
Proposition 2.21(ii). By Lemma 1.23, there is an f ∈ Hom(Fm,A) such
that g = h ◦ f . Thus, f(P) ⊆ h−1(h(f(P))) = h−1(g(P)) ⊆ F , whence
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f(s) ∈ F because F ∈ FiG(A). Hence, g(s) = h(f(s)) ∈ h(F ), so h(F ) is
a G-filter of B. �

The ‘quotients’ of the filters of an algebra are filters of the quotient algebra, in
the following sense:

Proposition 2.37. Let G be a Gentzen relation, A an algebra, F ∈ FiG(A)
and θ ∈ Co(A) compatible with F . Then, F/θ ∈ FiG(A/θ).

Proof. Let P∪{s} ⊆ tr(G)-Seq be such that P `G s and fix a homomorphism
h ∈ Hom(Fm,A/θ) satisfying h(P) ⊆ F/θ. We need to prove that h(s) ∈ F/θ.

By Lemma 1.23, there is some g ∈ Hom(Fm,A) such that h = πθ ◦ g, so
πθ(g(P)) ⊆ F/θ = πθ(F ). Thus, g(P) ⊆ π−1

θ (πθ(F )) = F , where the last equality
is given by Proposition 2.21(ii) because ker πθ = θ. Since F ∈ FiG(A), we obtain
g(s) ∈ F , whence h(s) = πθ(g(s)) ⊆ πθ(F ) = F/θ. �

2.6. Matrices

Definition 2.38. An L-matrix is a pair 〈A, F 〉, where A is an algebra and
F ⊆ Seq(A). The set F is called the set of designated elements . 〈A, F 〉 is said to
be finite if A is finite, and finitely generated if A is finitely generated.

When F ⊆ 〈0, 1〉-Seq(A), we say that 〈A, F 〉 is a sentential matrix .

Remark 2.39. Since we identify each 〈0, 1〉-sequent ∅B a with the element a,
sentential matrices are just the matrices usually considered in abstract algebraic
logic (i.e., when working with sentential logics).

Definition 2.40. Let 〈A, F 〉 be an L-matrix. A submatrix of 〈A, F 〉 is an
L-matrix 〈B, Seq(B) ∩ F 〉, where B is a subalgebra of A.

We shall seldom work with arbitrary L-matrices. Instead, we shall consider
matrices that serve as ‘models’ for a given Gentzen relation, in the following sense:

Definition 2.41. Let G be a Gentzen relation with trace tr. A G-matrix , or
a (matrix) model of G, is an L-matrix 〈A, F 〉 such that F ⊆ tr-Seq(A) and, for
every P ∪ {s} ⊆ tr-Seq and every h ∈ Hom(Fm,A), if P `G s and h(P) ⊆ F ,
then h(s) ∈ F .

Combining Definition 2.32 and Definition 2.41, we get:

Proposition 2.42. Let G be a Gentzen relation. An L-matrix 〈A, F 〉 is a
G-matrix iff F ∈ FiG(A).
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When working with a G-matrix 〈A, F 〉, where G is a given Gentzen relation,
we will sometimes be interested in the G-filters of A that include the G-filter F ,
which we denote by FiG(A)F . It is straightforward to check that FiG(A)F is a
sublattice of FiG(A).

Proposition 2.43. Let G be a Gentzen relation. The class of all matrix models
of G is closed under taking submatrices.

Proof. Let tr := tr(G) and let 〈A, F 〉 be a G-matrix.

Let 〈B, Seq(B) ∩ F 〉 be a submatrix of 〈A, F 〉, P ∪ {s} ⊆ tr-Seq such that
P `G s, and h ∈ Hom(Fm,B) such that h(P) ⊆ Seq(B)∩F . Let j ∈ Hom(B,A)
be the inclusion map, so that j ◦ h ∈ Hom(Fm,A) and (j ◦ h)(P) ⊆ F . Since F
is a G-filter, h(s) = (j ◦ h)(s) ∈ F , so h(s) ∈ Seq(B) ∩ F . Thus, 〈B, Seq(B) ∩ F 〉
is a G-matrix. �

Definition 2.44. Let G be a Gentzen relation and 〈A, F 〉 a G-matrix. A
contraction of 〈A, F 〉 is a G-matrix 〈A, G〉 such that G ⊇ F .

2.6.1. Homomorphisms of matrices.

Definition 2.45. Let 〈A, F 〉 and 〈B, G〉 be L-matrices. A (matrix) homo-
morphism from 〈A, F 〉 to 〈B, G〉 is a homomorphism h ∈ Hom(A,B) satisfying
h(F ) ⊆ G. We write h : 〈A, F 〉 → 〈B, G〉 to denote that h is a matrix homomor-
phism from 〈A, F 〉 to 〈B, G〉.

If, moreover, h−1(G) ⊆ F , we say that h is strict .

Remark 2.46. If h : 〈A, F 〉 → 〈B, G〉 is strict, then F = h−1(G).

2.6.2. Gentzen relations defined by matrices. If M is a class of L-matrices,
then it is straightforward to check that

P `M r ⇐⇒ for all 〈A, F 〉 ∈ M and all h ∈ Hom(Fm,A),

h(P) ⊆ F implies h(r) ∈ F
defines a Gentzen relation GM := 〈L,`M〉 with trace ω×ω. We call it the Gentzen
relation defined by M. When M is a singleton, say M = {M}, we write GM and
`M for GM and `M, respectively, and call GM the Gentzen relation defined by M.

Remark 2.47. An L-matrixM is a model of a Gentzen relation G iff `G ⊆ `M.

2.6.3. Direct products of matrices. Let M := {〈Ai, Fi〉 : i ∈ I} be a
non-empty family of L-matrices. In the context of sentential logics, the direct
product of M is defined to be the L-matrix 〈A, F 〉 := 〈

∏
i∈I Ai,

∏
i∈I Fi〉, but this

definition makes no sense when working with sequents because
∏

i∈I Fi 6⊆ Seq(A).
Nevertheless, we can generalize the notion of direct product of matrices to sequents.
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Let A :=
∏

i∈I Ai, and let tr :=
⋃
i∈I tp(Fi) be the collection of all the types of

the sequents in
⋃
i∈I Fi. For every 〈m,n〉 ∈ tr, define

Fm,n :=
∏
i∈I

(Fi ∩ 〈m,n〉-Seq(Ai)).

If a ∈ Fm,n, then a = 〈ai : i ∈ I〉, where ai ∈ Fi and tp(ai) = 〈m,n〉 for each i ∈ I,
so that we may write:

ai = ai,1, . . . , ai,m B ai,m+1, . . . , ai,m+n

for some elements ai,1, . . . , ai,m+n ∈ Ai. Define the following sequent:

ã := 〈ai,1 : i ∈ I〉, . . . , 〈ai,m : i ∈ I〉B 〈ai,m+1 : i ∈ I〉, . . . , 〈ai,m+n : i ∈ I〉.

Finally, let F̃m,n := {ã : a ∈ Fm,n} and F :=
⋃
〈m,n〉∈tr F̃m,n. Since ã ∈ 〈m,n〉-Seq(A)

for every 〈m,n〉 ∈ tr and every a ∈ Fm,n, we have F ⊆ tr-Seq(A).

Remark 2.48. A sequent a ∈ Seq(A) of type 〈m,n〉 ∈ tr is in F iff for every
i ∈ I there is an 〈m,n〉-sequent 〈ai,1, . . . , ai,m+n〉m,n ∈ Fi and we have:

a = 〈〈ai,1 : i ∈ I〉, . . . , 〈ai,m+n : i ∈ I〉〉m,n.

This construction, whose notation we shall use until the end of the current
subsection, leads to the following:

Definition 2.49. Let M := {〈Ai, Fi〉 : i ∈ I} be a non-empty family of L-
matrices. The direct product of M, in symbols

∏
M or

∏
i∈I〈Ai, Fi〉, is the L-matrix

〈A, F 〉, where A :=
∏

i∈I Ai and F is built as before.

In this situation, we write F :=
a
i∈I Fi.

Remark 2.50. If tr ⊆ {〈0, 1〉} in the context of Definition 2.49, then we recover
the usual direct product of sentential matrices (provided, of course, that we identify
each 〈0, 1〉-sequent ∅B a with the element a).

Therefore, Definition 2.49 is really a generalization of the direct product for
sentential matrices. Now we need to check that it preserves the property of being
a matrix model (for a given Gentzen relation), as otherwise it would be a rather
useless construction.

Theorem 2.51. Let G be a Gentzen relation and M := {〈Ai, Fi〉 : i ∈ I} a
non-empty family of G-matrices. Then, 〈A, F 〉 :=

∏
M is also a G-matrix.

Proof. Note that, since the matrices in M are all G-matrices, the trace ob-
tained in the construction of

∏
M is included in tr := tr(G).

Let P∪{s} ⊆ tr-Seq and h ∈ Hom(Fm,A) be such that P `G s and h(P) ⊆ F .
We need to prove that h(s) ∈ F .
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Fix any p ∈ P, and let 〈m,n〉 := tp(p). Since h(p) ∈ F , by Remark 2.48 we
know that for every i ∈ I there is a sequent 〈ai,1, . . . , ai,m+n〉m,n ∈ Fi and

h(p) = 〈〈ai,1 : i ∈ I〉, . . . , 〈ai,m+n : i ∈ I〉〉m,n.

Thus, (πi ◦ h)(p) = 〈ai,1, . . . , ai,m+n〉m,n ∈ Fi, where πi : A → Ai is the i-th
projection. As p was an arbitrary element of P, we obtain (πi ◦ h)(P) ⊆ Fi,
whence (π ◦ h)(s) ∈ Fi for every i ∈ I because Fi is a G-filter of Ai.

Let 〈r, s〉 := tp(s). If, for every i ∈ I, we write (πi ◦ h)(s) = 〈bi,1, . . . , bi,r+s〉r,s
for some elements bi,1, . . . , bi,r+s ∈ Ai, we obtain

h(s) = 〈〈bi,1 : i ∈ I〉, . . . , 〈bi,r+s : i ∈ I〉〉r,s,

whence h(s) ∈ F by Remark 2.48. �

The following lemma will be used in Subsection 3.1.2.

Lemma 2.52. Let G be a Gentzen relation with trace tr, {〈Ai, Fi〉 : i ∈ I} a
family of G-matrices and 〈A, F 〉 :=

∏
i∈I〈Ai, Fi〉. For every s(~ul) ∈ tr-Seq, l ∈ ω,

and every a1, . . . , al ∈ A, we have:

sA(~al) ∈ F ⇐⇒ sAi(~al(i)) ∈ Fi for all i ∈ I, (2.6)

where ~al(i) := 〈a1(i), . . . , al(i)〉.

Proof. Let 〈m,n〉 := tp(s), so that we may write s = 〈ϕ1, . . . , ϕm+n〉m,n for
some formulas ϕ1, . . . , ϕm+n ∈ Fm. For every i ∈ I, we have:

sAi(~al(i)) = 〈ϕAi
1 (~al(i)), . . . , ϕ

Ai
m+n(~al(i))〉m,n. (2.7)

And, as a consequence of Proposition 1.31:

sA(~al) = 〈〈ϕAi
1 (~al(i)) : i ∈ I〉, . . . , 〈ϕAi

m+n(~al(i)) : i ∈ I〉〉m,n. (2.8)

By Remark 2.48, we know that sA(~al) ∈ F iff for every i ∈ I there are some
elements bi,1, . . . , bi,m+n ∈ Ai satisfying 〈bi,1, . . . , bi,m+n〉m,n ∈ Fi and such that

sA(~al) = 〈〈bi,1 : i ∈ I〉, . . . , 〈bi,m+n : i ∈ I〉〉m,n,

whence (2.6) follows immediately using (2.7) and (2.8). �

Even though we shall only work with direct products of matrices to prove a
minor result (cf. Proposition 3.14), we have decided to introduce them in order to
present a construction that is notably more convoluted for Gentzen relations than
it is so for sentential logics.
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2.7. Protoalgebraic Gentzen relations

Definition 2.53. Following Raftery’s [27, Def. 13.3], we say that a Gentzen
relation G is protoalgebraic if the Leibniz operator Ω is monotone on the lattice of
G-theories.

Protoalgebraic logics have been extensively studied since they were first in-
troduced, for finitary sentential logics, by Blok and Pigozzi in [3]. Under a very
different form, they were independently presented by Czelakowski, who named
them ‘non-pathological’, in [10] (this article is a continuation of [9], which already
contains the key elements of Czelakowski’s definition of protoalgebraicity). Both
definitions were proved to be essentially equivalent in [5], where Blok and Pigozzi
generalized the notion of being protoalgebraic to finitary k-deductive systems us-
ing a definition analogous to Definition 2.53. Comprehensive introductions to the
subject of protoalgebraic logics can be found in [11, Part I] and [14, Sec. 6.2].

Many different characterizations of protoalgebraicity are currently well known.
We shall generalize some of them to arbitrary Gentzen relations, as well as proving
a new, useful version of a syntactic one and correcting [27, Thm. 13.4].

2.7.1. Blok and Pigozzi’s original definition. The original definition due
to Blok and Pigozzi can be easily adapted to our framework. To properly state it
(as a characterization, of course), we first need:

Definition 2.54. Let G be a Gentzen relation with trace tr, T a G-theory and
s, r ∈ tr-Seq. We say that s and r are T-indiscernible if s/Ω(T) = r/Ω(T), and
that they are T-interderivable if both T, s `G r and T, r `G s are the case.

Theorem 2.55. A Gentzen relation G with trace tr is protoalgebraic iff for
every G-theory T and every s, r ∈ tr-Seq, if s and r are T-indiscernible, then they
are T-interderivable.

Proof. (⇒) Let T′ := CnG(T, s). Since T ⊆ T′, we have Ω(T) ⊆ Ω(T′) by
protoalgebraicity, so from s/Ω(T) = r/Ω(T) we obtain s/Ω(T′) = r/Ω(T′) by
Remark 2.18. As s ∈ T′, compatibility yields r ∈ T′ by Proposition 2.20(iv), i.e.,
T, s `G r. By symmetry, exchanging the roles of s and r shows T, r `G s.

(⇐) Let T1,T2 ∈ T h(G) be such that T1 ⊆ T2. To prove Ω(T1) ⊆ Ω(T2)
it suffices to show that Ω(T1) is compatible with T2, so let s, r ∈ tr-Seq be such
that s ∈ T2 and s/Ω(T1) = r/Ω(T1). Since CnG(T1, s) ⊆ T2 and, by assumption,
T1, s `G r, we get r ∈ T2. By Proposition 2.20(iv), Ω(T1) is compatible with T2.

�

2.7.2. Syntactic characterizations. We are now going to characterize pro-
toalgebraic Gentzen relations in the spirit of the initial definition given in [3] by
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Czelakowski, namely, as those for which there is a set of sequents satisfying a form
of reflexivity and modus ponens. This characterization has proven to be quite use-
ful for sentential logics, because it ‘facilitates the classification of a large number of
logics as protoalgebraic’ ([14, p. 325]). In [5, Thm. 13.2], Blok and Pigozzi gener-
alized it to finitary k-deductive systems, but their statement contained a mistake
that was independently noticed by Pa lasińska in [25, §3.1], by Pynko in [26, §5]
and by Elgueta and Jansana in [13]. For a detailed analysis of the mistake, the
reader is referred to the recently2 published [24], in which Pa lasińska states and
proves a corrected version ([24, Thm. 6]) of Blok and Pigozzi’s theorem.

First, we generalize [24, Thm. 6] to Gentzen relations. Then, we correct an
attempt in Raftery’s [27] of obtaining a similar result. Finally, at the end of the
subsection we present a new generalization, which we consider to be closer in spirit
to Gentzen relations.

With few changes, Pa lasińska’s [24, Thm. 6] can be easily seen to hold for
Gentzen relations:

Theorem 2.56. A Gentzen relation G with trace tr is protoalgebraic iff for
every 〈m,n〉 ∈ tr there is a set Em,n(x, y, ~zt) ⊆ tr-Seq, where t := max{m+n−1, 0},
satisfying the following conditions:

(RBP) `G Em,n(x, x, ~zt).

(MPBP) 〈z1, . . . , zi−1, x, zi, . . . , zt〉m,n,Em,n(x, y, ~zt) `G 〈z1, . . . , zi−1, y, zi, . . . , zt〉m,n
for all i = 1, . . . ,m+ n.

Moreover, if G is finitary then all the sets Em,n can be taken finite.

Proof. (⇐) Let T1,T2 ∈ T h(G) be such that T1 ⊆ T2. We need to prove
that Ω(T1) ⊆ Ω(T2), so fix any 〈α, β〉 ∈ Ω(T1).

Let p : Fm→ tr-Seq be a unary tr-valued polynomial function of Fm, and let
l ∈ ω, s(w,~vl) ∈ tr-Seq and ϕ1, . . . , ϕl ∈ Fm be such that p(ψ) = s(ψ, ~ϕl) for all
ψ ∈ Fm. Let 〈m,n〉 := tp(s), so that we may write

s = 〈χ1(w,~vl), . . . , χm+n(w,~vl)〉m,n

for some formulas χ1, . . . , χm+n.

Assume p(α) ∈ T2. For every i = 1, . . . ,m + n, define αi := χi(α, ~ϕl) and
βi := χi(β, ~ϕl). By (RBP), we have:

Em,n(αi, αi, β1, . . . , βi−1, αi+1, . . . , αm+n) ∈ T1 (2.9)

2March 2018.
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for all 1 ≤ i ≤ m + n. By Proposition 2.25, 〈αi, βi〉 ∈ Ω(T1), so applying Theo-
rem 2.27 to (2.9) yields:

Em,n(αi, βi, β1, . . . , βi−1, αi+1, . . . , αm+n) ∈ T1 ⊆ T2. (2.10)

Hence, if 〈β1, . . . , βi−1, αi, αi+1, . . . , αm+n〉m,n ∈ T2, from (2.10) and (MPBP) we
get 〈β1, . . . , βi−1, βi, αi+1, . . . , αm+n〉m,n ∈ T2, for all i = 1, . . . ,m+ n. Since

〈α1, . . . , αm+n〉m,n = p(α) ∈ T2,

iterating this step (m+ n)-many times we obtain p(β) = 〈β1, . . . , βm+n〉m,n ∈ T2.

This proves that p(α) ∈ T2 implies p(β) ∈ T2. Since we also have 〈β, α〉 ∈
Ω(T1), the same argument, exchanging the α’s with the β’s, proves that p(β) ∈ T2

implies p(α) ∈ T2. Therefore, 〈α, β〉 ∈ Ω(T2).

(⇒) Fix any 〈m,n〉 ∈ tr and let t := max{m+ n− 1, 0}.

Define a substitution σ ∈ End(Fm) as follows: if t = 0, let σ(u) := x for every
variable u, and otherwise let σ be any substitution mapping Var \ {x, y, z1, . . . , zt}
onto {z1, . . . , zt} and such that σ(~zt) := ~zt and σ(x) := σ(y) := x.

Now define another substitution σ′ ∈ End(Fm) by setting σ′(y) := y and
σ′(u) := σ(u) for every variable u 6= y. By Proposition 2.9, the variables occurring
in σ′(ϕ) are all among x, y, ~zt for every ϕ ∈ Fm.

Let Tm,n := {s ∈ tr-Seq : ∅ `G σ(s)}.

Claim 2.56.1. Tm,n ∈ T h(G).

Proof. Let r ∈ tr-Seq be such that Tm,n `G r. Then, σ(Tm,n) `G σ(r) by
structurality. By the definition of Tm,n, we have `G σ(Tm,n), so `G σ(r) by cut.
Thus, r ∈ Tm,n. �

Claim 2.56.2. 〈x, y〉 ∈ Ω(Tm,n).

Proof. Let p be a unary tr-valued polynomial function of Fm. Let s(u, ~wl) ∈
tr-Seq, l ∈ ω, and ϕ1, . . . , ϕl ∈ Fm be such that p(ψ) = s(ψ, ~ϕl) for all ψ ∈ Fm.
We have

p(x) ∈ Tm,n ⇐⇒ s(x, ~ϕl) ∈ Tm,n ⇐⇒ `G σ(s(x, ~ϕl)) ⇐⇒ `G s(x, σ(~ϕl))

and

p(y) ∈ Tm,n ⇐⇒ s(y, ~ϕl) ∈ Tm,n ⇐⇒ `G σ(s(y, ~ϕl)) ⇐⇒ `G s(x, σ(~ϕl)),

so 〈x, y〉 ∈ Ω(Tm,n). �

Let us see that the set Em,n(x, y, ~zt) := σ′(Tm,n) satisfies (RBP) and (MPBP).
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For i = 1, . . . ,m + n, let Si := CnG(Tm,n, 〈z1, . . . , zi−1, x, zi, . . . , zt〉m,n). Since
G is protoalgebraic and Tm,n ⊆ Si, the claims yield 〈x, y〉 ∈ Ω(Si). Hence, by
Theorem 2.27 we get 〈z1, . . . , zi−1, y, zi, . . . , zt〉m,n ∈ Si, i.e.:

〈z1, . . . , zi−1, x, zi, . . . , zt〉m,n,Tm,n `G 〈z1, . . . , zi−1, y, zi, . . . , zt〉m,n. (2.11)

By structurality, applying σ′ to both sides of (2.11) yields (MPBP).

As regards (RBP), we first need the following:

Claim 2.56.3. σ ◦ σ′ = σ′ ◦ σ.

Proof. If t = 0, then σ(σ′(u)) = x = σ′(x) = σ′(σ(u)) for every u ∈ Var.

Suppose t > 0. Since neither x nor ~zt are changed by σ or σ′, we have σ(σ′(u)) =
σ′(σ(u)) if u is among x, ~zt. For the variable y, we have:

σ(σ′(y)) = σ(y) = x = σ′(x) = σ′(σ(y)).

Finally, if u is not in x, y, ~zt, then σ′(u) = σ(u) ∈ {z1, . . . , zt}, so:

σ(σ′(u)) = σ′(u) = σ(u) = σ(σ(u)) = σ′(σ(u)).

In any case we have σ(σ′(u)) = σ′(σ(u)) for every u ∈ Var, so the claim holds
by Proposition 2.8. �

By the definition of Tm,n, we have `G σ(Tm,n), so by structurality we get
`G σ′(σ(Tm,n)), which, as we have just seen, is equivalent to `G σ(σ′(Tm,n)), i.e.,
`G σ(Em,n(x, y, ~zt)), and this is (RBP).

Finally, if G is finitary, then there is some finite Fm,n ⊆ Em,n such that (MPBP)
holds with Fm,n in place of Em,n, and clearly (RBP) holds for Fm,n as well. �

A variation of Theorem 2.56 appears in [18, Thm. 2.17] for multi-dimensional
Gentzen relations. For Gentzen relations, Raftery adapts Pa lasińska’s [23, Thm.
5.12] and presents it without proof as [27, Thm. 13.4], but his statement contains
two errors that we shall now discuss.

In what follows, concatenation of sequences is denoted by a comma, and se-
quences of length one are written without the angle brackets. For example, an

expression of the form ~a, b,~cB ~d, e, ~f denotes the sequent ~aa〈b〉a~cB ~da〈e〉a ~f . We
adopt this convention here to facilitate the comparison of the corrected version of
Raftery’s statement with the original one.

Raftery states that a Gentzen relation G with trace tr is protoalgebraic iff for
every 〈m,n〉 ∈ tr there is Em,n(x, y, z, w, ~r, ~s,~t, ~u) ⊆ tr-Seq, where x, y, z, w, ~r, ~s,~t, ~u
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are pairwise different variables,3 ~r and ~t have both length max{m − 1, 0}, and ~s
and ~u have both length max{n− 1, 0}, such that:

(R∗R) `G Em,n(x, y, x, y, ~r, ~s,~t, ~u).

(MP∗R) ~r, x, ~sB ~t, y, ~u, Em,n(x, y, z, w, ~r, ~s,~t, ~u) `G ~r, z, ~sB ~t, w, ~u.

In order for (MP∗R) to make sense, the types of ~r, x, ~sB ~t, y, ~u and ~r, z, ~sB ~t, w, ~u,
which are shown in Table 2.1, must be in tr. The only type we assume to be in tr

Case Type

m = 0, n = 0 〈1, 1〉

m = 0, n > 0 〈n, n〉

m > 0, n = 0 〈m,m〉

m > 0, n > 0 〈m+ n− 1,m+ n− 1〉
Table 2.1. Possible types of ~r, x, ~sB ~t, y, ~u and ~r, z, ~sB ~t, w, ~u.

is 〈m,n〉, so either those two sequents are both of type 〈m,n〉 or we must assume
that, for each 〈m,n〉 ∈ tr, the corresponding type of the ones depicted in Table 2.1
is in tr. This assumption would overcomplicate the statement of the theorem and,
besides, it is clear that Raftery does not assume it, since the only type he ever
mentions is 〈m,n〉.

Therefore, the sequents ~r, x, ~sB ~t, y, ~u and ~r, z, ~sB ~t, w, ~u must be of type
〈m,n〉, which, as Table 2.1 indicates, is not the case in general. This is due
to the fact that the lengths of the sequences ~r, ~s,~t, ~u have not been chosen ad-
equately: note that ~ra~s and ~ta~u have both either length max{m + n − 1, 0}, if
m = 0 or n = 0, or length m+ n− 2 otherwise, when their lengths should always
be max{m− 1, 0} and max{n− 1, 0}, respectively.

But the problem would not be entirely solved even if those lengths were correct,
because Raftery’s notation forces the variables x, y (respectively, z, w) to occur in
~r, x, ~sB ~t, y, ~u (respectively, ~r, z, ~sB ~t, w, ~u), and thus makes it impossible for these
two sequents to be of type 〈m,n〉 whenever m = 0 or n = 0: for example, if m = 0
and n > 0, then ~ra~s has length 0 and ~r, x, ~sB ~t, y, ~u simplifies to xB ~t, y, ~u, which
is not of type 〈m,n〉. In order to allow for the empty sequence ∅ to occur at either
side of the symbol ‘B’, we must use a more flexible notation, one capable of picking
exactly m elements from ~r, x, ~s and exactly n elements from ~t, y, ~u. Hence, we can
solve the problem if we use the notation 〈~r, x, ~s,~t, y, ~u〉m,n that we introduced in
Section 2.1, which always denotes an 〈m,n〉-sequent.

3We use Raftery’s denotation for those variables to facilitate the comparison with his result.
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Having discussed the two problems with Raftery’s statement, we can use a
proof analogous to that of Theorem 2.56 to obtain a corrected version of it:

Theorem 2.57 (Correction of [27, Thm. 13.4]). A Gentzen relation G with
trace tr is protoalgebraic iff for every type 〈m,n〉 ∈ tr there is a set of sequents
Em,n(x, y, z, w, ~r, ~s,~t, ~u) ⊆ tr-Seq, where x, y, z, w, ~r, ~s,~t, ~u are pairwise different

variables, ~ra~s has length max{m−1, 0} and ~ta~u has length max{n−1, 0}, satisfying
the following conditions:

(RR) `G Em,n(x, y, x, y, ~r, ~s,~t, ~u).

(MPR) 〈~r, x, ~s,~t, y, ~u〉m,n,Em,n(x, y, z, w, ~r, ~s,~t, ~u) `G 〈~r, z, ~s,~t, w, ~u〉m,n.

Moreover, if G is finitary then all the sets Em,n can be taken finite.

The proof of Theorem 2.56 can also be easily adapted to obtain a variant of it
with a simpler set Em,n:

Theorem 2.58. A Gentzen relation G with trace tr is protoalgebraic iff for
every 〈m,n〉 ∈ tr there is a set Em,n(x, y) ⊆ tr-Seq such that:

(R∗BP) `G Em,n(x, x).

(MP∗BP) 〈z1, . . . , zi−1, x, zi, . . . , zt〉m,n,Em,n(x, y) `G 〈z1, . . . , zi−1, y, zi, . . . , zt〉m,n
for all i = 1, . . . ,m+ n, where t := max{m+ n− 1, 0}.

Moreover, if G is finitary then all the sets Em,n can be taken finite.

Indication for the proof. For the ‘⇒’ part, make σ map Var \ {x, y, ~zt}
onto {x, y} and let σ′(u) := x for every variable u ∈ {z1, . . . , zt}. Everything else
is just as in the proof of Theorem 2.56, with some minor, obvious changes. �

Of course, the price to pay for Theorem 2.58 is that variables that do not
occur in Em,n, namely z1, . . . , zt, will in general occur in the sequents that appear
in (MP∗BP) alongside Em,n.

In the context of Theorem 2.56, it is clear that the variables x, y have a more
prominent role than the ones in ~zt, since the latter are just there in order to make
it possible to build 〈m,n〉-sequents ‘around’ x and y. Following a usual convention
in logic, we say that the variables ~zt are the parameters of the set Em,n. A natural
question, then, is: can we get rid of the parameters? In a sense, we have already
done so in Theorem 2.58, but in reality we have just swiped them under the
carpet because they reappear in condition (MP∗BP). Nevertheless, we can prove a
characterization of protoalgebraicity similar to that of Theorem 2.56 but in which
no parameters are needed.

For this, we need to see certain sequents as variables:
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Definition 2.59. Let tr be a trace. For every 〈m,n〉 ∈ tr, the 〈m,n〉-Gentzen
variables are defined as follows:

• xm,n := x1, . . . , xm B xm+1, . . . , xm+n.

• ym,n := y1, . . . , ym B ym+1, . . . , ym+n.

• zm,n := z1, . . . , zm B zm+1, . . . , zm+n.

Note that, for every sequent s(~um, ~vn), where ~um, ~vn are pairwise different, we have
s(xm,n) = s(~xm+n), s(ym,n) = s(~ym+n) and s(zm,n) = s(~zm+n).

Definition 2.60. Let G be a Gentzen relation with trace tr. For all 〈m,n〉 ∈ tr,
let σm,n ∈ End(Fm) be such that σm,n(ym,n) := xm,n and σm,n(u) := u for every
variable u not in ~ym+n. The 〈m,n〉-fundamental set is defined as follows:

Sm,n
G := σ−1

m,n(CnG(∅)) = {t ∈ tr-Seq : ∅ `G σm,n(t)}.
We call σm,n the 〈m,n〉-fundamental substitution.

According to [14, p. 324], the concept of fundamental set ‘was introduced by
Blok and Pigozzi, but it was Hermann who fully exploited its crucial role in the
theory of protoalgebraic [sentential] logics’. The notion of Gentzen variables, i.e.,
sequents that play the same role played by ordinary variables in sentential logics,
already appears in [18, p. 59] under the name of ‘sequent-variables’; for k-deductive
systems, the idea is present in [6, p. 26].

The fundamental sets will help us prove our characterization of protoalgebraic-
ity. Let us see some of their properties:

Proposition 2.61. Let G be a Gentzen relation with trace tr. For every type
〈m,n〉 ∈ tr, we have:

(i) Sm,n
G ∈ T h(G).

(ii) xm,n/Ω(Sm,n
G ) = ym,n/Ω(Sm,n

G ).

(iii) If G is protoalgebraic, then xm,n,S
m,n
G `G ym,n.

Proof.

(i) By Proposition 2.34 and Proposition 2.36(i).

(ii) Let p be any tr-valued polynomial function of Fm, and let s(u,~vl) ∈ tr-Seq
and ϕ1, . . . , ϕl ∈ Fm, with l ∈ ω, be such that p(ψ) = s(ψ, ~ϕl) for all
ψ ∈ Fm. We have

s(xi, ~ϕl) ∈ Sm,n
G ⇐⇒ `G σm,n(s(xi, ~ϕl)) ⇐⇒ `G s(xi, σm,n(~ϕl))

and

s(yi, ~ϕl) ∈ Sm,n
G ⇐⇒ `G σm,n(s(yi, ~ϕl)) ⇐⇒ `G s(xi, σm,n(~ϕl)).

Hence, 〈xi, yi〉 ∈ Ω(Sm,n
G ) for i = 1, . . . ,m+ n, so (ii) holds.
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(iii) By (ii) and Theorem 2.55. �

Finally, our version of the syntactic characterization, the proof of which gen-
eralizes the one of [14, Thm. 6.7]:

Theorem 2.62. A Gentzen relation G with trace tr is protoalgebraic iff for
every 〈m,n〉 ∈ tr there is a set Em,n(~xm+n, ~ym+n) ⊆ tr-Seq for which the following
conditions hold:

(R) `G Em,n(xm,n, xm,n).

(MP) xm,n,Em,n(xm,n, ym,n) `G ym,n.

Moreover, if G is finitary then all the sets Em,n can be taken finite.

Proof. (⇐) Let T1,T2 ∈ T h(G) be such that T1 ⊆ T2. In order to prove
that Ω(T1) ⊆ Ω(T2) it suffices to show that Ω(T1) is compatible with T2, so let
s, r ∈ tr-Seq be such that s/Ω(T1) = r/Ω(T1) and s ∈ T2. By Proposition 2.20(iv),
we need to prove that r ∈ T2.

Let 〈m,n〉 := tp(s) = tp(r). If 〈m,n〉 = 〈0, 0〉 then s = r, so r ∈ T2 and we are
done. Thus, assume 〈m,n〉 6= 〈0, 0〉. Let σ ∈ End(Fm) be any substitution such
that σ(xm,n) := s and σ(ym,n) := r. By structurality, applying σ to both sides of
(MP) yields

s,Em,n(s, r) `G r,

so we shall get r ∈ T2 by proving Em,n(s, r) ⊆ T2, i.e., σ(Em,n(~xm+n, ~ym+n)) ⊆ T2.

To this end, let t ∈ Em,n(~xm+n, ~ym+n). By (R) we have `G t(~xm+n, ~xm+n),
so by structurality we get `G σ(t(~xm+n, ~xm+n)), i.e., `G t(s, s). As T1 is a theory,
t(s, s) ∈ T1. Given that Ω(T1) is compatible with T1 and that s/Ω(T1) = r/Ω(T1),
by Lemma 2.31 we get σ(t) = t(s, r) ∈ T1 ⊆ T2. Hence, Em,n(s, r) ⊆ T2.

(⇒) Fix any 〈m,n〉 ∈ tr. If 〈m,n〉 = 〈0, 0〉, then xm,n = ym,n = ∅B∅ and the
set E0,0 := ∅ clearly satisfies (R) and (MP), regardless of protoalgebraicity.

Assume now that 〈m,n〉 6= 〈0, 0〉. Then, the variable x1 occurs among ~xm+n.
Let σ ∈ End(Fm) be given by σ(~xm+n) := ~xm+n, σ(~ym+n) := ~ym+n and σ(u) := x1

for all variables u not appearing among ~xm+n, ~ym+n. By Proposition 2.9, all the
variables occurring in σ(ϕ), where ϕ is any formula, are among ~xm+n, ~ym+n. Define
the set Em,n as follows:

Em,n(~xm+n, ~ym+n) := σ(Sm,n
G ).

Let us see that Em,n satisfies conditions (R) and (MP).

By Proposition 2.61(iii) we have

xm,n,S
m,n
G `G ym,n, (2.12)
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whence (MP) follows by structurality, applying σ to both sides of (2.12).

As regards (R), note that, by Proposition 2.8, we have σ ◦ σm,n = σm,n ◦ σ
because (σ ◦ σm,n)(u) = (σm,n ◦ σ)(u) for every u ∈ Var. This is clear for the
variables ~xm,n, as they are not changed by σ or σm,n. For the variables ~ym+n, we
have:

σ(σm,n(~ym+n)) = σ(~xm+n) = ~xm+n = σm,n(~ym+n) = σm,n(σ(~ym+n)).

And for every variable u not appearing in ~xm+n, ~ym+n:

σm,n(σ(u)) = σm,n(x1) = x1 = σ(u) = σ(σm,n(u)).

By Definition 2.60, `G σm,n(Sm,n
G ), so by structurality we get `G σ(σm,n(Sm,n

G )),
which, as we have just seen, is equivalent to `G σm,n(σ(Sm,n

G )), i.e., `G σm,n(Em,n),
and this is (R).

Finally, if G is finitary, then there is some finite Fm,n ⊆ Em,n such that (MP)
holds with Fm,n in place of Em,n, and clearly (R) holds for Fm,n as well. �

Both Theorem 2.56 and Theorem 2.62 characterize protoalgebraic Gentzen
relations. The former employs m + n + 1 variables for each type 〈m,n〉, of which
max{m+n−1, 0} are parameters. The latter uses almost twice as many (ordinary)
variables per type, 2(m + n), but no parameters, and, moreover, the variables
~xm+n, ~ym+n actually appear as two 〈m,n〉-Gentzen variables, since none of them
is ever treated individually, but rather as forming part of the sequent xm,n or ym,n.
This is the reason why the modus ponens of Theorem 2.62 is much simpler than
that of Theorem 2.56 (which is actually a conjunction of several modi ponentes),
hence easier to work with, and also why Theorem 2.62 bears a closer resemblance
to the syntactic characterization of protoalgebraic sentential logics (cf. [14, Thm.
6.7]) than Theorem 2.56.

2.7.3. Algebraic characterizations. We now prove some characterizations
of protoalgebraicity of an algebraic flavour, including the generalization to Gentzen
relations of the so-called correspondence theorem.

The first one, concerning the behaviour of the Leibniz operator in arbitrary
algebras, is a consequence of Theorem 2.62:

Theorem 2.63. A Gentzen relation G with trace tr is protoalgebraic iff for
every algebra A the Leibniz operator ΩA is monotone on FiG(A).

Proof. (⇒) Let F,G ∈ FiG(A) be such that F ⊆ G. To show that ΩA(F ) ⊆
ΩA(G) it suffices to prove that ΩA(F ) is compatible with G, so let a, b ∈ Seq(A)
be such that a ∈ G and a/ΩA(F ) = b/ΩA(F ). Let 〈m,n〉 := tp(a) = tp(b). By
Proposition 2.20(iv), we need to prove b ∈ G.
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If 〈m,n〉 = 〈0, 0〉 then b = a ∈ G, so assume 〈m,n〉 6= 〈0, 0〉. By Theorem 2.62,
there is a set Em,n(~xm+n, ~ym+n) ⊆ tr-Seq for which (R) and (MP) hold.

Let h ∈ Hom(Fm,A) be such that h(~xm+n) := a and h(~ym+n) := b. Then,
since h(xm,n) = a ∈ G and EA(a, a) ⊆ F by (R), Lemma 2.31 yields

h(Em,n(~xm+n, ~ym+n)) = EA(a, b) ⊆ F ⊆ G,

whence h(ym,n) = b ∈ G by (MP).

(⇐) By Definition 2.53 and Proposition 2.34, taking A := Fm. �

The following lemma provides another algebraic characterization of protoalge-
braicity, which will mainly be used in the proof of Theorem 2.67 below.

Definition 2.64 (cf. [5, Def. 7.3]). A Gentzen relation G is said to have the
compatibility property if the following holds for every algebra A, every θ ∈ Co(A)
and every G-filters F,G of A: if F ⊆ G and θ is compatible with F , then θ is
compatible with G.

Lemma 2.65. A Gentzen relation G is protoalgebraic iff G has the compatibility
property.

Proof. (⇒) Let A be an algebra and F,G ∈ FiG(A) be such that F ⊆ G. If
θ ∈ Co(A) is compatible with F , then θ ⊆ ΩA(F ). By Theorem 2.63, ΩA(F ) ⊆
ΩA(G), so θ ⊆ ΩA(G), whence θ is compatible with G by Proposition 2.30.

(⇐) Let A be an algebra and F,G ∈ FiG(A) be such that F ⊆ G. Since
ΩA(F ) is compatible with F , the assumption yields that ΩA(F ) is compatible
with G, so ΩA(F ) ⊆ ΩA(G). Hence, G is protoalgebraic by Theorem 2.63. �

We are now prepared for the generalization of the correspondence theorem to
Gentzen relations:

Definition 2.66. A Gentzen relation G is said to have the correspondence
property if, for every G-matrices 〈A, F 〉, 〈B, G〉 and every strict surjective homo-
morphism h : 〈A, F 〉 → 〈B, G〉, we have F ′ = h−1(h(F ′)) for every F ′ ∈ FiG(A)F .

Theorem 2.67 (Correspondence Theorem). Let G be a Gentzen relation with
trace tr. The following are equivalent:

(i) G has the correspondence property.

(ii) G is protoalgebraic.

(iii) For all algebras A,B, all F ∈ FiG(A), all G ∈ FiG(B) and all surjective
homomorphisms h ∈ Hom(A,B), we have:

h−1(FgB
G (h(F )) ∨B G) = F ∨A h−1(G). (2.13)
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(iv) If h : 〈A, F 〉 → 〈B, G〉 is a strict surjective homomorphism, where 〈A, F 〉
and 〈B, G〉 are G-matrices, then:

h : 〈FiG(A)F ,⊆〉 ∼= 〈FiG(B)G,⊆〉 : h−1.

Proof. (i)⇒ (ii) Let A be an algebra, F,G ∈ FiG(A) such that F ⊆ G and
θ ∈ Co(A) such that θ is compatible with F . By Proposition 2.37 and Proposi-
tion 2.42, 〈A/θ, F/θ〉 is a G-matrix, so the natural projection πθ : A → A/θ is a
strict surjective homomorphism from 〈A, F 〉 to 〈A/θ, F/θ〉 because π−1

θ (F/θ) ⊆ F
by Definition 2.19. Since F ⊆ G, (i) yields π−1

θ (πθ(G)) = G, so θ is compatible
with G. By Lemma 2.65, G is protoalgebraic.

(ii)⇒ (iii) We need to prove that h−1(FgB
G (h(F ))∨B G) is the least G-filter of

A that contains F ∪ h−1(G).

By Proposition 2.36(i), h−1(FgB
G (h(F )) ∨B G) is a G-filter of A.

Since h(F ) ∪G ⊆ FgB
G (h(F ) ∨B G), we have:

F ∪ h−1(G) ⊆ h−1(h(F ) ∪G) ⊆ h−1(FgB
G (h(F )) ∨B G).

Finally, let H ∈ FiG(A) be such that F ∪h−1(G) ⊆ H. By Proposition 2.36(i),
we have h−1(G) ∈ FiG(A), and by Lemma 2.22 kerh is compatible with h−1(G),
so kerh is compatible with H by Lemma 2.65. Thus, h(H) ∈ FiG(B) by Proposi-
tion 2.36(ii), so the surjectivity of h yields FgB

G (h(F ))∨BG ⊆ h(H) and, therefore,

h−1(FgB
G (h(F )) ∨B G) ⊆ h−1(h(H)) = H,

where the equality is due to Proposition 2.21(ii).

(iii)⇒ (i) Let h : 〈A, F 〉 → 〈B, G〉 be a strict surjective homomorphism be-
tween two G-matrices, and let F ′ ∈ FiG(A)F . By Proposition 2.42, G ∈ FiG(B),
so (iii) yields

h−1(h(F ′)) ⊆ h−1(FgB
G (h(F ′)) ∨B G) = F ′ ∨A h−1(G) = F ′ ⊆ h−1(h(F ′)),

where the last equality is due to the strictness of h.

(i)⇒ (iv) Let H : FiG(A)F → FiG(B)G be defined by H(F ′) := h(F ′) for all
F ′ ∈ FiG(A)F . By (i) and Proposition 2.21(ii), kerh is compatible with F ′ for all
F ′ ∈ FiG(A)F . So, since h is surjective, h(F ′) ∈ FiG(B) by Proposition 2.36(ii).
Moreover, the surjectivity and the strictness of h yield G = h(h−1(G)) = h(F ) ⊆
h(F ′). Hence, H is well defined and by (i) we have:

h−1(H(F ′)) = F ′ (2.14)

for all F ′ ∈ FiG(A)F .



2.8. RELATIVE EQUATIONAL GENTZEN RELATIONS 51

If F1, F2 ∈ FiG(A)F are such that H(F1) = H(F2), then

F1 = h−1(H(F1)) = h−1(H(F2)) = F2

by (2.14), so H is injective.

Let G′ ∈ FiG(B)G. By Proposition 2.36(i), h−1(G′) is a G-filter of A. Also,
F = h−1(G) ⊆ h−1(G′), so h−1(G′) ∈ FiG(A)F . As H(h−1(G)) = h(h−1(G)) = G
because h is surjective, H is surjective.

If F1, F2 ∈ FiG(A)F are such that F1 ⊆ F2, then clearly H(F1) ⊆ H(F2), so H
is order-preserving.

Finally, h−1 : FiG(B)G → FiG(A)F is the inverse of H by (2.14) and, if
h−1(G1) ⊆ h−1(G2) for some G1, G2 ∈ FiG(B)G, then the surjectivity of h yields
G1 = h(h−1(G1)) ⊆ h(h−1(G2)) = G2, so h−1 is also order-preserving.

(iv)⇒ (i) Let h : 〈A, F 〉 → 〈B, G〉 be a strict surjective homomorphism, where
〈A, F 〉 and 〈B, G〉 are G-matrices. If F ′ ∈ FiG(A)F , then h−1(h(F ′)) = F ′ holds
by (iv). �

2.8. Relative equational Gentzen relations

Recall (cf. Definition 1.36) that an equation is a pair of formulas.

Technically, a 〈1, 1〉-sequent of a set A is a pair of the form 〈〈a〉, 〈b〉〉 for some
a, b ∈ A, but we identify 〈1, 1〉-sequents and pairs, so that, in particular, we make
no distinction among equations, pairs of formulas and 〈1, 1〉-sequents of Fm.

Definition 2.68. Let K be a class of algebras. The equational Gentzen relation
relative to K, denoted by EQ(K), is the Gentzen relation 〈L,`EQ(K)〉 with trace
{〈1, 1〉} defined as follows, for every E ∪ {δ B ε} ⊆ 〈1, 1〉-Seq:

E `EQ(K) δ B ε ⇐⇒ for all A ∈ K and all h ∈ Hom(Fm,A),

if A |= EJhK, then A |= δ ≈ εJhK.

It is straightforward to check that EQ(K) is indeed a Gentzen relation.

We frequently write E |=K δ ≈ ε in place of E `EQ(K) δ B ε.

Under the identification of 〈1, 1〉-sequents and pairs, we have:

Proposition 2.69 (cf. [14, Thm. 1.76]). If K is a quasivariety, then

FiEQ(K)(A) = CoK(A)

for every algebra A (so FgA
EQ(K)(X) = ΘA

K (X) for every X ⊆ A× A).

As a consequence, we obtain:
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Proposition 2.70. Let K be a quasivariety. For every algebra A and every
F ∈ FiEQ(K)(A), we have ΩA(F ) = F .

Proof. By Proposition 2.69, F ∈ Co(A).

Let αB β, γ B δ ∈ 〈1, 1〉-Seq(A) be such that αB β/F = γ B δ/F and with
αB β ∈ F . Then, 〈α, β〉, 〈α, γ〉, 〈β, δ〉 ∈ F . Let h ∈ Hom(Fm,A) be such that
h(x1) := α, h(x2) := β, h(y1) := γ and h(y2) := δ. Since

x1 ≈ x2, x1 ≈ y1, x2 ≈ y2 |=K y1 ≈ y2

and F is an EQ(K)-filter of A, we get γ B δ ∈ F . By Proposition 2.20(iv), F is
compatible with F .

Finally, let θ ∈ Co(A) be compatible with F , and let 〈α, β〉 ∈ θ. Define
the unary 〈1, 1〉-valued polynomial function p of A by setting p(γ) := αB γ for
every γ ∈ A. Let h ∈ Hom(Fm,A) be such that h(x) := α. Since F is an
EQ(K)-filter of A and |=K x ≈ x, we have p(α) = αB α ∈ F . By Theorem 2.27,
p(β) = αB β ∈ F .

Therefore, F is the largest congruence of A compatible with F . �

The EQ(K)-theories are the K-congruences of the formula algebra:

Proposition 2.71. Let K be a quasivariety, and let E ∪ {δ ≈ ε} ⊆ 〈1, 1〉-Seq.
Then:

E |=K δ ≈ ε ⇐⇒ 〈δ, ε〉 ∈ ΘK(E).

Proof.

E |=K δ ≈ ε ⇐⇒ E `EQ(K) δ B ε

⇐⇒ δ B ε ∈ CnEQ(K)(E)

⇐⇒ δ B ε ∈ FgEQ(K)(E) (by Proposition 2.34)

⇐⇒ 〈δ, ε〉 ∈ ΘK(E) (by Proposition 2.69) �

Corollary 2.72. Let K be a quasivariety, and let E ∪ {δ ≈ ε} ⊆ 〈1, 1〉-Seqn
for some n ∈ ω. Then:

E |=K δ ≈ ε ⇐⇒ 〈δ, ε〉 ∈ ΘFmn
K (E).

Proof.

E |=K δ ≈ ε ⇐⇒ 〈δ, ε〉 ∈ ΘK(E) (by Proposition 2.71)

⇐⇒ 〈δ, ε〉 ∈ FgEQ(K)(E) (by Proposition 2.69)

⇐⇒ 〈δ, ε〉 ∈ FgFmn

EQ(K)(E) (by Corollary 2.35)

⇐⇒ 〈δ, ε〉 ∈ ΘFmn
K (E) (by Proposition 2.69) �
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When K is a quasivariety (in particular, a variety), EQ(K) is protoalgebraic
and finitary:

Proposition 2.73. If K is a quasivariety, then EQ(K) is protoalgebraic.

Proof. By Proposition 2.70 and Theorem 2.63. �

Proposition 2.74 (cf. [30, Lem. 0.6]). Let K be a class of algebras. If K is
closed under ultraproducts, then EQ(K) is finitary.

Corollary 2.75. If K is a quasivariety, then EQ(K) is finitary.

2.9. Equivalent Gentzen relations

One of the main goals of abstract algebraic logic is to determine, given a logic,
the class of algebras (or other structures heavily based on algebras, like matrices)
that can most naturally be associated with that logic, in the sense of there being
so nice a correspondence between the two, that the tools of universal algebra can
be used to study the logic (and vice versa).

In [4], Blok and Pigozzi gave a mathematical definition of what it means for
a (finitary) sentential logic to be ‘algebraizable’, i.e., to be, in some precise sense
(cf. Definition 2.88 below), equivalent to the equational sentential logic relative
to a class of algebras. They broadened the concept in [6] to encompass (finitary)
k-deductive systems, by defining algebraizability as a particular case of a notion of
equivalence between k-deductive systems. In [30], Rebagliato and Verdú general-
ized the notions of equivalence and algebraizability to finitary Gentzen relations.
Our presentation closely follows that of [27, §6], which is essentially the same as
Rebagliato and Verdú’s but without finitarity assumptions.

Definition 2.76. Let tr and tr′ be traces. A transformer from tr-sequents to
tr′-sequents is a function τ : tr-Seq→ P(tr′-Seq) that commutes with substitutions,
in the sense that τ(σ(s)) = σ(τ(s)) for every σ ∈ End(Fm) and every s ∈ tr-Seq.
Such a transformer is said to be finitary if the set τ(s) is finite for all s ∈ tr-Seq.

When the traces tr and tr′ need not be mentioned, we simply say that τ is a
transformer.

In abstract algebraic logic transformers are sometimes defined without the
commutativity requirement, and then those that satisfy it are called ‘structural
transformers’ (cf. [14, Defs. 3.1,3.2]). We have decided not to make this distinction
because we shall only work with ‘transformers’ that commute with substitutions.

If τ is a transformer from tr-sequents to tr′-sequents, for some traces tr and tr′,
then τ induces a function τ : P(tr-Seq)→ P(tr′-Seq) given by

τ(P) :=
⋃
{τ(s) : s ∈ P}
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for all P ⊆ tr-Seq.

Lemma 2.77. Transformers commute with arbitrary unions, i.e., if tr, tr′ are
traces, τ is a transformer from tr-sequents to tr′-sequents and {Pi : i ∈ I} is a
family of sets of tr-sequents, then:

τ(
⋃
i∈I

Pi) =
⋃
i∈I

τ(Pi).

Proof.

τ(
⋃
i∈I

Pi) =
⋃
{τ(s) : s ∈

⋃
i∈I

Pi} =
⋃
i∈I

⋃
{τ(s) : s ∈ Pi} =

⋃
i∈I

τ(Pi).

�

Lemma 2.78. Let tr, tr′ be traces, τ a transformer from tr-sequents to tr′-
sequents and s ∈ tr-Seq. For every u ∈ Var, if u occurs in τ(s), then u occurs
in s.

Proof. Suppose u does not occur in s. Let v be a variable different than u,
and let σ ∈ End(Fm) be the substitution given by σ(u) := v and σ(w) := w
for every variable w 6= u. By Proposition 2.9, u does not occur in σ(r) for any
r ∈ tr-Seq. By the assumption, σ(s) = s, so we have:

τ(s) = τ(σ(s)) = σ(τ(s)).

But this is impossible, since u occurs in τ(s) and not in σ(τ(s)). Hence, u does
occur in s. �

Corollary 2.79. In the conditions of Lemma 2.78, if no variable occurs in
s, then no variable occurs in τ(s).

Remark 2.80. The converse of Lemma 2.78 does not hold, so transformers
do not preserve variables (they simply do not add new ones). For example, let
tr := {〈0, 1〉}, tr′ := {〈0, 0〉} and define τ : tr-Seq → P(tr′-Seq) by setting
τ(s) := {∅B∅} for all s ∈ tr. Clearly, τ is a transformer from tr-sequents to
tr′-sequents, and τ(∅B x1) = {∅B∅} provides a counterexample to the converse
of Lemma 2.78.

Raftery defines in [27, Def. 5.2] the notion of ‘definable transformer’ as any
function τ : tr-Seq → P(tr′-Seq), where tr, tr′ are traces, such that for every
〈m,n〉 ∈ tr there is a set τm,n(~xm+n) ⊆ tr′-Seq satisfying τ(s) = τm,n(s) for all s ∈
〈m,n〉-Seq. He then proves that this condition is equivalent to the commutativity
with substitutions, so in our terminology we have:

Proposition 2.81 (cf. [27, Thm. 5.4]). Let tr and tr′ be traces. A function
τ : tr-Seq → P(tr′-Seq) is a transformer from tr-sequents to tr′-sequents iff for
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every 〈m,n〉 ∈ tr there is a set of tr′-sequents τm,n(~xm+n) ⊆ tr′-Seq such that
τ(s) = τm,n(s) for every s ∈ 〈m,n〉-Seq.

Definition 2.82. Let G and G′ be Gentzen relations with traces tr and tr′,
respectively. We say that G and G′ are equivalent if there are transformers τ :
tr-Seq→ P(tr′-Seq) and ρ : tr′-Seq→ P(tr-Seq) such that, for all P∪{p} ⊆ tr-Seq
and all S ∪ {s} ⊆ tr′-Seq, the following hold:

(ALG1) P `G p ⇐⇒ τ(P) `G′ τ(p).

(ALG2) s a`G′ τ(ρ(s)).

(ALG3) S `G′ s ⇐⇒ ρ(S) `G ρ(s).

(ALG4) p a`G ρ(τ(p)).

In this situation, we say that G is equivalent to G′ (in that order) with respect to
the transformers τ and ρ (in that order), and we denote this by τ : G ∼= G′ : ρ.

Remark 2.83. τ : G ∼= G′ : ρ implies ρ : G′ ∼= G : τ . Therefore, we may
simply say that G and G′ are equivalent, and write G ∼= G′ or G′ ∼= G, when the
transformers establishing the equivalence need not be mentioned.

Remark 2.84. Let G and G′ be Gentzen relations with traces tr and tr′, re-
spectively. Suppose that the following hold:

(i) 〈0, 0〉 ∈ tr.

(ii) 〈0, 0〉 /∈ tr′.

(iii) Our current algebraic language has no constant symbols.

Then, we must have τ(∅B∅) = ∅ for every transformer τ from tr-sequents to
tr′-sequents. This is not a problem because we have not imposed that transformers
must map sequents to non-empty sets of sequents. If one wishes to do so, then
there are two main ways in the literature of dealing with τ(∅B∅). Either one
defines transformers as in Definition 2.76 but with the only additional condition
that their images be non-empty, or one adds that condition and, additionally,
allows at most one variable, say x, to occur in τ(∅B∅). The first option makes
it impossible for G and G′ to be equivalent if the three conditions (i)-(iii) stated
above hold, because then one must have τ(∅B∅) = {∅B∅} 6⊆ tr′-Seq. The
second option allows G ∼= G′, hence is more general, but invalidates Lemma 2.78
and introduces a distinction between ∅B∅ and the other tr-sequents.

Both Blok and Pigozzi in [6] and Rebagliato and Verdú in [30] choose the
second option. Although Raftery never explicitly states that the images of a
transformer must be non-empty, the footnote in [27, p. 910] makes it clear that,
at least in [27, §5], he is working with transformers whose images are non-empty.
Later, in [27, §9], when defining algebraizability, he does allow empty images.
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We have decided to allow transformers with possibly empty images to gain a
little simplicity in some cases. The changes required should we wish to restrict
ourselves to working with transformers whose images are non-empty are all minor
and obvious. In fact, ‘the only effect of prohibiting empty transformers is that
inconsistent Gentzen relations become non-algebraizable rather than algebraizable
by a class of trivial algebras’ ([27, p. 922]).

The four conditions stated in Definition 2.82 exhibit the symmetry between τ
and ρ, but they are actually redundant:

Proposition 2.85. Let G,G′ be Gentzen relations with traces tr and tr′, re-
spectively. The following are equivalent:

(i) τ : G ∼= G′ : ρ for some transformers τ and ρ.

(ii) G and G′ satisfy conditions (ALG1) and (ALG2) with respect to some
transformers τ and ρ.

(iii) G and G′ satisfy conditions (ALG3) and (ALG4) with respect to some
transformers τ and ρ.

Moreover, the transformers τ, ρ of any of the previous conditions work for the rest.

Proof. (i)⇒ (ii) By Definition 2.82.

(ii)⇒ (iii) Let S ∪ {s} ⊆ tr′-Seq. We have

S `G′ s
(ALG2)⇐⇒ τ(ρ(S)) `G′ τ(ρ(s))

(ALG1)⇐⇒ ρ(S) `G ρ(s),

so (ALG3) holds.

Now let p ∈ tr. We have:

p a`G ρ(τ(p))
(ALG1)⇐⇒ τ(p) a`G′ τ(ρ(τ(p)))

(ALG2)⇐⇒ τ(p) a`G′ τ(p).

Therefore, (ALG4) also holds.

(iii)⇒ (i) By assumption, (ALG3) and (ALG4) hold for τ and ρ, and an ar-
gument analogous to the previous one shows that (ALG1) and (ALG2) also hold
for τ and ρ. �

Theorem 2.86 (cf. [27, Thm. 6.6]). Let G,G′ be Gentzen relations such that
τ : G ∼= G′ : ρ for some transformers τ and ρ. Then:

ρ−1 : 〈T h(G),⊆〉 ∼= 〈T h(G′),⊆〉 : τ−1

If τ and τ ′ are two transformers from tr-sequents to tr′-sequents, where tr and
tr′ are traces, then we write τ ′ ⊆ τ to denote that τ ′(s) ⊆ τ(s) is the case for every
s ∈ tr-Seq.



2.9. EQUIVALENT GENTZEN RELATIONS 57

Proposition 2.87. Let G,G′ be Gentzen relations such that τ : G ∼= G′ : ρ for
some transformers τ and ρ. If G is finitary, then there is a finitary transformer
τ ′ ⊆ τ such that τ ′ : G ∼= G′ : ρ.

Proof. Let tr := tr(G) and tr′ := tr(G′). For any 〈m,n〉 ∈ tr, let τm,n be as in
Proposition 2.81. Fix any 〈m,n〉 ∈ tr. By (ALG4), ρ(τ(xm,n)) `G xm,n, so, since G
is finitary, there is a finite

P0 ⊆ ρ(τ(xm,n)) = ρ(τm,n(xm,n)) =
⋃
{ρ(p) : p ∈ τm,n(xm,n)}

such that P0 `G xm,n, whence there is a finite τ ′m,n(~xm+n) ⊆ τm,n(xm,n) such that

ρ(τ ′m,n(xm,n)) `G xm,n. (2.15)

Define τ ′ : tr-Seq → P(tr′-Seq) by setting τ ′(s) := τ ′m,n(s) for all 〈m,n〉 ∈ tr
and all s ∈ 〈m,n〉-Seq. By Proposition 2.81, τ ′ is a transformer from tr-sequents
to tr′-sequents, and it is finitary by construction. It remains to see τ ′ : G ∼= G′ : ρ.

Since τ : G ∼= G′ : ρ, condition (ALG3) clearly holds for τ ′ and ρ. To see that
(ALG4) also holds for τ ′ and ρ, let 〈m,n〉 ∈ tr and s ∈ 〈m,n〉-Seq. As (ALG4)
holds for τ and ρ, we have s `G ρ(τ(s)), whence s `G ρ(τ ′(s)) because

τ ′(s) = τ ′m,n(s) ⊆ τm,n(s) = τ(s),

and ρ(τ ′(s)) `G s follows from (2.15) and structurality.

Therefore, τ ′ : G ∼= G′ : ρ by Proposition 2.85(iii). �

2.9.1. Algebraizable Gentzen relations. We present now the notion of
algebraizability of a Gentzen relation as a special case of equivalence between
Gentzen relations. The definition is the one first introduced by Rebagliato and
Verdú in [30] but without finitarity assumptions, as Raftery’s [27, Def. 9.1].

Definition 2.88. A Gentzen relation G is said to be algebraizable if there
exists a class of algebras K such that G ∼= EQ(K). If, moreover, K is a quasivariety,
then we say that G is elementarily algebraizable, and if K is a variety we say that
G is strongly algebraizable.

As expected, algebraic Gentzen relations are protoalgebraic:

Theorem 2.89. Let G be a Gentzen relation with trace tr. If G is algebraizable,
then G is protoalgebraic.

Proof. Let K be a class of algebras such that τ : G ∼= EQ(K) : ρ, for suitable
transformers τ, ρ. We prove that G is protoalgebraic using Theorem 2.62, so let
〈m,n〉 ∈ tr and define:

Em,n :=
⋃

1≤i≤m+n

ρ(xi ≈ yi).
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Note that each ρ(xi ≈ yi) is a set of tr-sequents in the variables xi, yi, and thus
Em,n = Em,n(~xm+n, ~ym+n). Let us see that Em,n satisfies conditions (R) and (MP).

For every i = 1, . . . ,m+n, we have |=K xi ≈ xi, so (ALG3) yields `G ρ(xi ≈ xi),
whence `G Em,n(xm,n, xm,n). Thus, Em,n satisfies (R).

As regards (MP), we clearly have

τ(xm,n), x1 ≈ y1, . . . , xm+n ≈ ym+n |=K τ(ym,n),

so (ALG3) and (ALG4) yield

xm,n, ρ(x1 ≈ y1), . . . , ρ(xm+n ≈ ym+n) `G ym,n,

i.e.,
xm,n,E(xm,n, ym,n) `G ym,n.

Thus, Em,n satisfies (MP). �



CHAPTER 3

Contextual Deduction-Detachment Theorems

The contextual deduction-detachment theorem was introduced by Raftery in [28]
to extend some of the desirable features of the deduction-detachment theorem
to logics that do not have it. We are now going to employ the tools presented
in Chapter 2 to study the contextual deduction-detachment theorem (CDDT),
among some of its variants, in the context of Gentzen relations.

Recall (cf. Section 2.1) that a context is just a natural number n ∈ ω, that
Fmn is the set of all formulas in which all the variables that occur are among
x1, . . . , xn, and that we defined tr-Seqn := tr-Seq(Fmn) for all traces tr.

3.1. The CDDT for Gentzen relations

Definition 3.1. A Gentzen relation G with trace tr is said to have the contex-
tual deduction-detachment theorem (CDDT ) if for every context n ∈ ω and every
m̂1, m̂2 ∈ tr there is a set D[n, m̂1, m̂2](~xt) ⊆ tr-Seqt, where t = n+Σ(m̂1)+Σ(m̂2),
such that, for every P ∪ {s, r} ⊆ tr-Seqn, with tp(s) = m̂1 and tp(r) = m̂2, the
following holds:

P, s `G r ⇐⇒ P `G D[n, m̂1, m̂2](~xn, s, r).

In this situation, the sequence 〈{D[n, m̂1, m̂2] : m̂1, m̂2 ∈ tr} : n ∈ ω〉 is said to be
a CDD-sequence for G, and we denote it by 〈D[n] : n ∈ ω〉 when tr is a singleton.

Moreover, if D[n, m̂1, m̂2] = D[0, m̂1, m̂2] for every n ∈ ω and every m̂1, m̂2 ∈ tr,
we say that G has the deduction-detachment theorem (DDT ).

It was already known in the 1920’s that classical propositional logic has the
DDT (cf. [14, p. 163]), and since then the DDT and many variants of it have been
extensively studied for a wide variety of sentential logics. Blok and Pigozzi intro-
duced the DDT in [6] for finitary k-deductive systems. In [30, §3.1], Rebagliato
and Verdú generalized the DDT to Gentzen relations. The CDDT, as we have
said, was first introduced by Raftery in [28], for sentential logics.

Remark 3.2. In the context of Definition 3.1, if G is a sentential logic, then
tr(G) = {〈0, 1〉} and we recover Raftery’s original definition [28, Def. 3.1] by

59
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identifying each singleton {D[n]} with its unique element, which Raftery denotes
by Σn.

In the context of Definition 3.1, we call the left-to-right implication the con-
textual deduction theorem, and the right-to-left contextual detachment .

Proposition 3.3. Let 〈{D[n, m̂1, m̂2] : m̂1, m̂2 ∈ tr} : n ∈ ω〉 be a CDD-
sequence for a Gentzen relation G with trace tr. For every n ∈ ω and every
s, r ∈ tr-Seqn with tp(s) = m̂1 and tp(r) = m̂2, the following hold:

(i) `G D[n, m̂1, m̂2](~xn, s, s).

(ii) s,D[n, m̂1, m̂2](~xn, s, r) `G r.

(iii) D[n, m̂1, m̂2](~xn, s, r) `G D[n+ 1, m̂1, m̂2](~xn+1, s, r).

Proof.

(i) Apply the contextual deduction theorem to s `G s.

(ii) Apply contextual detachment to

D[n, m̂1, m̂2](~xn, s, r) `G D[n, m̂1, m̂2](~xn, s, r).

(iii) Since tr-Seqn ⊆ tr-Seqn+1, applying the contextual deduction theorem to
(ii) yields (iii). �

Point (ii) of Proposition 3.3 allows us to obtain a uniqueness result for CDD-
sequences, in the following sense:

Theorem 3.4. Let 〈{D[n, m̂1, m̂2] : m̂1, m̂2 ∈ tr} : n ∈ ω〉 and 〈{D′[n, m̂1, m̂2] :
m̂1, m̂2 ∈ tr} : n ∈ ω〉 be two CDD-sequences for a Gentzen relation G with trace tr.
For every context n ∈ ω and every s, r ∈ tr-Seqn, with tp(s) = m̂1 and tp(r) = m̂2,
we have:

D[n, m̂1, m̂2](~xn, s, r) a`G D′[n, m̂1, m̂2](~xn, s, r).

Proof. From Proposition 3.3(ii) we have s,D[n, m̂1, m̂2](~xn, s, r) `G r, so

D[n, m̂1, m̂2](~xn, s, r) `G D′[n, m̂1, m̂2](~xn, s, r)

holds because 〈{D′[n, m̂1, m̂2] : m̂1, m̂2 ∈ tr} : n ∈ ω〉 is a CDD-sequence. By
symmetry, the converse also holds. �

Therefore, CDD-sequences are unique up to ‘trace-wise’ interderivability, a
fact that justifies our use of the determinate article in the expression ‘to have the
CDDT’ in Definition 3.1.

Even though in principle a CDD-sequence allows us to move only one sequent
to the other side of the symbol ‘`G’, we can built from it a family of sets that allow
us to move several sequents at once:
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Theorem 3.5. Let 〈{D[n, m̂1, m̂2] : m̂1, m̂2 ∈ tr} : n ∈ ω〉 be a CDD-sequence
for a Gentzen relation G with trace tr. Then, for every k ∈ ω, every context p ∈ ω
and every m̂1, . . . , m̂k+1, n̂ ∈ tr, there is a set

D∗k[p, m̂1, . . . , m̂k+1, n̂](~xt) ⊆ tr-Seqt,

where t = p+Σ(m̂1)+· · ·+Σ(m̂k+1)+Σ(n̂), such that, for all P∪{s1, . . . , sk+1, r} ⊆
tr-Seqp with tp(r) = n̂ and tp(si) = m̂i for i = 1, . . . , k + 1, we have:

P, s1, . . . , sk+1 `G r ⇐⇒ P `G D∗k[p, m̂1, . . . , m̂k+1, n̂](~xp, s1, . . . , sk+1, r).

Proof. By induction on k. If k = 0 the statement of the theorem is just
the defining property of any CDD-sequence for G, so we can take D∗0[p, m̂1, n̂] :=
D[p, m̂1, n̂]. Assuming that the theorem holds for k (IH), let us consider the case
of k + 1.

Let t = p + Σ(m̂1) + · · · + Σ(m̂k+2) + Σ(n̂) and E := D∗k[p, m̂2, . . . , m̂k+2, n̂].
Note that E = E(~xt−Σ(m̂1)) by IH.

Define:

D∗k+1[p, m̂1, . . . , m̂k+2, n̂] :=
⋃
t∈E

D[p, m̂1, tp(t)](~xp+Σ(m̂1), t(~xp, xp+Σ(m̂1)+1, . . . , xt)).

Note that D∗k+1[p, m̂1, . . . , m̂k+2, n̂] = D∗k+1[p, m̂1, . . . , m̂k+2, n̂](~xt).

We have:

P, s1, . . . ,sk+2 `G r

IH⇐⇒ P, s1 `G

E︷ ︸︸ ︷
D∗k[p, m̂2, . . . , m̂k+2, n̂](~xp, s2, . . . , sk+2, r)︸ ︷︷ ︸

⊆ tr-Seqp

⇐⇒ P `G D[p, m̂1, tp(t)](~xp, s1, t) for all t ∈ E(~xp, s2, . . . , sk+2, r)

⇐⇒ P `G D[p, m̂1, tp(t)](~xp, s1, t(~xp, s2, . . . , sk+2, r)) for all t ∈ E

⇐⇒ P `G D∗k+1[p, m̂1, . . . , m̂k+2, n̂](~xp, s1, . . . , sk+2, r). �

When working with Gentzen relations having the CDDT, we may use the sets
whose existence the previous theorem guarantees without defining them again.

Theorem 3.5 holds as well in arbitrary finitely generated algebras, in the fol-
lowing form:

Theorem 3.6. Let 〈{D[n, m̂1, m̂2] : m̂1, m̂2 ∈ tr} : n ∈ ω〉 be a CDD-sequence
for a Gentzen relation G with trace tr, A an algebra finitely generated by some
g1, . . . , gp ∈ A, a1, . . . , ak+1 ∈ tr-Seqp(A) and m̂i := tp(ai) for i = 1, . . . , k + 1.
Then:
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(i) For any F ∈ FiG(A) and any b ∈ tr-Seqp(A), we have:

b ∈ FgA
G (F, a1, . . . , ak+1) ⇐⇒ D∗k[n̂]A(~gp, a1, . . . , ak+1, b) ⊆ F,

where n̂ := tp(b) and D∗k[n̂] := D∗k[p, m̂1, . . . , m̂k+1, n̂].

(ii) If G is finitary, then for each b ∈ tr-Seqp(A) there is a finite set D ⊆
D∗k[p, m̂1, . . . , m̂k+1, tp(b)] such that, for any F ∈ FiG(A), we have:

b ∈ FgA
G (F, a1, . . . , ak+1) ⇐⇒ DA(~gp, a1, . . . , ak+1, b) ⊆ F.

Proof. By Corollary 2.11, let si ∈ tr-Seqp be such that ai = sAi (~gp), for
i = 1, . . . , k + 1. Also, for every r ∈ tr-Seq(A) let n̂r := tp(r).

Note that, by Theorem 3.5, for every r ∈ tr-Seq we have:

D∗k[p, m̂1, . . . , m̂k+1, n̂r](~xp, s1, . . . , sk+1, r), s1, . . . , sk+1 `G r. (3.1)

As p, m̂1, . . . , m̂k+1 will remain fixed throughout this proof, to improve readability
let us denote the sets D∗k[p, m̂1, . . . , m̂k+1, n̂r] by D∗k[n̂r].

(i) Define

G := {b ∈ tr-Seq(A) : D∗k[n̂b]
A(~gp, a1, . . . , ak+1, b) ⊆ F}.

We prove that G = FgA
G (F, a1, . . . , ak+1), whence (i) clearly follows.

Claim 3.6.1. F ⊆ G.

Proof. Let b ∈ F and, by Corollary 2.11, let r ∈ tr-Seqp be such that

b = rA(~gp). Since r, s1, . . . , sk+1 `G r, by Theorem 3.5 we have

r `G D∗k[n̂b](~xp, s1, . . . , sk+1, r),

whence D∗k[n̂b]
A(~gp, a1, . . . , ak+1, b) ⊆ F because rA(~gp) = b ∈ F and F is

a G-filter. So b ∈ G. �

Claim 3.6.2. {a1, . . . , ak+1} ⊆ G.

Proof. For every i = 1, . . . , k + 1 we have s1, . . . , sk+1 `G si, so

`G D∗k[m̂i](~xp, s1, . . . , sk+1, si)

by Theorem 3.5, and thus D∗k[m̂i]
A(~gp, a1, . . . , ak+1, ai) ⊆ F , so ai ∈ G. �

Claim 3.6.3. For all H ∈ FiG(A) such that H ⊇ F ∪ {a1, . . . , ak+1},
we have H ⊇ G.
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Proof. Let b ∈ G and, by Corollary 2.11, let r ∈ tr-Seqp be such that

b = rA(~gp). By the definition of G we have D∗k[n̂r]
A(~gp, a1, . . . , ak+1, b) ⊆

F ⊆ H, so, since H also contains {a1, . . . , ak+1} and H is a G-filter, (3.1)
implies b = rA(~gp) ∈ H. �

Claim 3.6.4. G ∈ FiG(A).

Proof. Let P ∪ {q} ⊆ tr-Seq be such that P `G q, and let h ∈
Hom(Fm,A) be such that h(P) ⊆ G. We need to prove that h(q) ∈ G.

By Lemma 2.15 we may assume, without loss of generality, that the
variables in Varx do not occur in P∪ {q} and, moreover, that h(~xp) = ~gp.
Note that this implies h(si) = ai for all 1 ≤ i ≤ k + 1.

For every variable u /∈ Varx we have h(u) ∈ A, so by Corollary 2.12
there is some formula ηu(~xp) such that h(u) = ηAu (~gp) = h(ηu). Let
σ ∈ End(Fm) be any substitution mapping u to ηu for every variable
u /∈ Varx.

Arguing inductively, let us see that h(σ(ϕ)) = h(ϕ) for every formula
ϕ in which none of the variables in Varx occurs. We have just seen that
this holds for all u /∈ Varx, and clearly h(σ(c)) = h(c) for every constant
c. Thus, let f be an n-ary function symbol, n > 0, and suppose ϕ =
fψ1 . . . ψn, where none of the variables in Varx occurs in ψ1, . . . , ψn and
h(σ(ψi)) = h(ψi) for i = 1, . . . , n (IH). Then, since h ◦ σ : Fm→ A is a
homomorphism,

h(σ(fψ1 . . . ψn)) = fA(h(σ(ψ1)), . . . , h(σ(ψn))

IH
= fA(h(ψ1), . . . , h(ψn))

= h(fψ1 . . . ψn),

so we are done. In particular:

(a) h(σ(p)) = h(p) ∈ G for all p ∈ P.

(b) h(σ(q)) = h(q).

By Theorem 3.5, we have:

s1, . . . , sk+1,
⋃
p∈P

D∗k[n̂p](~xp, s1, . . . , sk+1, σ(p)) `G σ(P). (3.2)

Applying cut to (3.2) and σ(P) `G σ(q), which holds by structurality, we
obtain:

s1, . . . , sk+1,
⋃
p∈P

D∗k[n̂p](~xp, s1, . . . , sk+1, σ(p)) `G σ(q).
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So, again by Theorem 3.5, we have:⋃
p∈P

D∗k[n̂p](~xp, s1, . . . , sk+1, σ(p)) `G D∗k[n̂q](~xp, s1, . . . , sk+1, σ(q)). (3.3)

From (a) we deduce that, for every p ∈ P,

h(D∗k[n̂p](~xp, s1, . . . , sk+1, σ(p))) = D∗k[n̂p]
A(~gp, a1, . . . , ak+1, h(p)) ⊆ F,

so, since F ∈ FiG(A), (3.3) and (b) imply:

F ⊇ h(D∗k[n̂q](~xp, s1, . . . , sk+1, σ(q))) = D∗k[n̂q]
A(~gp, a1, . . . , ak+1, h(q)).

Therefore, h(q) ∈ G. �

From the previous claims it follows that G = FgA
G (F, a1, . . . , ak+1), so

we are done.

(ii) Let H := FgA
G (F, a1, . . . , ak+1) and, by Corollary 2.11, let r ∈ tr-Seqp be

such that b = rA(~gp). If G is finitary, from (3.1) we know there is a finite
set D ⊆ D∗k[n̂r] such that

D(~xp, s1, . . . , sk+1, r), s1, . . . , sk+1 `G r. (3.4)

If DA(~gp, a1, . . . , ak+1, b) ⊆ F , then

DA(~gp, a1, . . . , ak+1, b) ∪ {a1, . . . , ak+1} ⊆ H,

so, since H ∈ FiG(A), (3.4) implies b = rA(~gp) ∈ H.

Conversely, assume b ∈ H. By (i), D∗k[n̂r]
A(~gp, a1, . . . , ak+1, b) ⊆ F , so

in particular DA(~gp, a1, . . . , ak+1, b) ⊆ F . �

Items (i) and (ii) of Proposition 3.3 resemble conditions (R) and (MP) of Theo-
rem 2.62, and in fact the existence of a CDD-sequence guarantees protoalgebraicity.
However, we shall later see that the converse does not hold.

Proposition 3.7. Every Gentzen relation G with the CDDT is protoalgebraic.

Proof. Let tr := tr(G) and let 〈{D[n, m̂1, m̂2] : m̂1, m̂2 ∈ tr} : n ∈ ω〉 be a
CDD-sequence for G. We use Theorem 2.62 to prove that G is protoalgebraic, so
fix any 〈m,n〉 ∈ tr. If 〈m,n〉 = 〈0, 0〉, then we can take E0,0 := ∅, which clearly
satisfies conditions (R) and (MP) of Theorem 2.62, so let us assume 〈m,n〉 6= 〈0, 0〉.

Let s := 〈x1, . . . , xm+n〉m,n and r := 〈xm+n+1, . . . , x2(m+n)〉m,n. Note that all
the variables occurring in s or r are among x1, . . . , x2(m+n). Let σ ∈ End(Fm)
be the substitution given by σ(r) := 〈y1, . . . , ym+n〉m,n and σ(u) := u for every
variable u not occurring in r. Note that σ(s) = s = xm,n and σ(r) = ym,n.
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Let Em,n(~xm+n, ~ym+n) := D[0, 〈m,n〉, 〈m,n〉](xm,n, ym,n). Points (i) and (ii) of
Proposition 3.3 yield, respectively, conditions (R) and (MP) of Theorem 2.62 for
Em,n. �

3.1.1. The finite model property. Now we generalize [28, Thm. 3.6, Cor.
3.7] to show that if a Gentzen relation having the CDDT has the finite model
property, then it has the strong finite model property.

Definition 3.8. Let G be a Gentzen relation, tr := tr(G) and M a class of
G-matrices. We say that G is (weakly) complete with respect to M if `M s implies
`G s for every s ∈ tr-Seq.

We say that G is strongly complete with respect to M if P `M s implies P `G s
for all P ∪ {s} ⊆ tr-Seq, with P finite.

Definition 3.9. A Gentzen relation G is said to have the [strong] finite model
property if it is [strongly] complete with respect to the class of its finite matrix
models.

Theorem 3.10. Let G be a Gentzen relation with trace tr and M a class of
G-matrices closed under taking contractions and finitely generated submatrices. If
G has the CDDT and is complete with respect to M, then G is strongly complete
with respect to M.

Proof. Let 〈{D[p, m̂, n̂] : m̂, n̂ ∈ tr} : p ∈ ω〉 be a CDD-sequence for G. We
show that G is strongly complete with respect to M by contraposition, so assume
that s1, . . . , sl 6`G r is the case for some s1, . . . , sl, r ∈ tr-Seq, with l ∈ ω. If l = 0
there is nothing to prove because G is assumed to be complete with respect to M,
so assume l > 0.

For every j = 1, . . . , l, let m̂j := tp(sj), let n̂ := tp(r) and let p > 0 be such that
s1, . . . , sl, r ∈ tr-Seqp. By Theorem 3.5, there is a t ∈ D∗l−1[p, m̂1, . . . , m̂l, n̂] such
that 6`G t(~xp, s1, . . . , sl, r). By completeness, there is some G-matrix 〈A, F 〉 ∈ M
and some h ∈ Hom(Fm,A) such that tA(~gp, a1, . . . , al, b) /∈ F , where ~gp := h(~xp),
aj := h(sj) = sAj (~gp) for j = 1, . . . , l and b := h(r) = rA(~gp).

Let B := SgA(g1, . . . , gp). Since p > 0, B is the universe of a subalgebra B
of A. By Lemma 1.20, we have a1, . . . , al, b ∈ Seq(B). Let G := FgB

G (a1, . . . , al),
H := (Seq(B) ∩ F ) ∨B G and M := 〈B, H〉. Note that M is a contraction of
a finitely generated submatrix of 〈A, F 〉, so M ∈ M. By Proposition 2.43 and
Proposition 2.42, Seq(B) ∩ F is a G-filter of B. By Lemma 1.20,

tB(~gp, a1, . . . , al, b) = tA(~gp, a1, . . . , al, b) /∈ Seq(B) ∩ F,

so we get b /∈ H by Theorem 3.6(i).
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Therefore, if h′ ∈ Hom(Fm,B) is such that h′(~xp) := ~gp, by Lemma 1.20 we
have h(sj) = aj ∈ H for j = 1, . . . , l but h(r) = b /∈ H.

Conclusion: s1, . . . , sl 6`M r. �

Corollary 3.11. If a Gentzen relation G having the CDDT has the finite
model property, then it has the strong finite model property.

Proof. By Proposition 2.43, the class of finite matrix models of G is closed
under taking submatrices, and it is clearly also closed under contractions, so G
has the strong finite model property by Theorem 3.10. �

3.1.2. Factor-determined principal filters. Recall (cf. Subsection 2.6.3)
that if we have a family of G-matrices {〈Ai, Fi〉 : i ∈ I}, where G is a given Gentzen
relation, then

a
i∈I Fi denotes the G-filter F such that 〈A, F 〉 =

∏
i∈I〈Ai, Fi〉,

where A :=
∏

i∈I Ai.

In this situation, for each sequent a ∈ Seq(A) of the direct product
∏

i∈I Ai,
say a := 〈〈ai,1 : i ∈ I〉, . . . , 〈ai,m+n : i ∈ I〉〉m,n, let us define

a(i) := πi(a) = 〈ai,1, . . . , ai,m+n〉m,n ∈ Seq(Ai)

for all i ∈ I.

Definition 3.12 (cf. [11, p. 140]). A Gentzen relation G has factor-determined
n-principal filters on direct products (n-FDPF), where n > 0, if for every family
of G-matrices {〈Ai, Fi〉 : i ∈ I}, setting 〈A, F 〉 :=

∏
i∈I〈Ai, Fi〉 we have:

FgA
G (F, a1, . . . , an) =

i

i∈I

FgAi
G (Fi, a1(i), . . . , an(i))

for all a1, . . . , an ∈ tr-Seq(A).

In [11, §2.4], Czelakowski proved that every protoalgebraic sentential logic
having a variant of the DDT known as the parametrised DDT ([14, p. 336]) has
n-FDPF for every n ≥ 1. We can obtain a similar result for the CDDT and a
weakening of n-FDPF.

Definition 3.13. A Gentzen relation G is said to have factor-determined prin-
cipal filters on finitely generated direct products (FDPFfg) if, for every finitely gen-
erated direct product 〈A, F 〉 of a family of G-matrices {〈Ai, Fi〉 : i ∈ I}, every
n > 0 and all a1, . . . , an ∈ tr-Seq(A), we have:

FgA
G (F, a1, . . . , an) =

i

i∈I

FgAi
G (Fi, a1(i), . . . , an(i)).

Proposition 3.14. Let G be a Gentzen relation with trace tr. If G has the
CDDT, then G has FDPFfg.
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Proof. Let {〈Ai, Fi〉 : i ∈ I} be a family of G-matrices, and suppose that
their direct product 〈A, F 〉 :=

∏
i∈I〈Ai, Fi〉 is finitely generated by some elements

g1, . . . , gl ∈ A, l ∈ ω. By Proposition 1.32, each Ai is finitely generated by the
elements in ~gl(i) := 〈g1(i), . . . , gl(i)〉.

Fix any k > 0 and any sequents a1, . . . , ak ∈ tr-Seq(A). Let m̂j := tp(aj) for

j = 1, . . . , k and Gi := FgAi
G (Fi, a1(i), . . . , ak(i)) for every i ∈ I. Pick any sequent

b ∈ tr-Seq(A) and let n̂ := tp(b), so that we may write

b = 〈〈bi,1 : i ∈ I〉, . . . , 〈bi,Σ(n̂) : i ∈ I〉〉n̂
for some elements bi,1, . . . , bi,Σ(n̂) ∈ Ai and all i ∈ I. We need to prove:

b ∈ FgA
G (F, a1, . . . , ak) ⇐⇒ b ∈

i

i∈I

Gi. (3.5)

Since G has the CDDT, let E := D∗k−1[l, m̂1, . . . , m̂k, n̂]. We have:

b ∈ FgA
G (F, a1, . . . , ak)

⇐⇒ EA(~gl, a1, . . . , ak, b) ⊆ F (Theorem 3.6(i))

⇐⇒ (∀i ∈ I) EAi(~gl(i), a1(i), . . . , ak(i), b(i)) ⊆ Fi (Lemma 2.52)

⇐⇒ (∀i ∈ I) b(i) ∈ FgAi
G (Fi, a1(i), . . . , ak(i)) (Theorem 3.6(i))

⇐⇒ (∀i ∈ I) b(i) ∈ Gi

⇐⇒ (∀i ∈ I) 〈bi,1, . . . , bi,Σ(n̂)〉n̂ ∈ Gi. (3.6)

We know (cf. Remark 2.48) that b ∈
a
i∈I Gi iff for every i ∈ I there is an n̂-sequent

〈ci,1, . . . , ci,Σ(n̂)〉n̂ ∈ Gi and b = 〈〈ci,1 : i ∈ I〉, . . . , 〈ci,Σ(n̂) : i ∈ I〉〉n̂. Therefore,
(3.5) follows from (3.6). �

3.2. A Bridge between the CDDT and ESPRC

As stated in Section 2.9, one of the main goals of abstract algebraic logic is to find
connections between logic and (abstract) algebra in such a way that the tools of
universal algebra can be used in the study of logic (and vice versa). Results that
establish a correspondence between a property of a logic (or a class of logics) and a
property of its algebraic counterpart are known as bridge theorems , a term coined
by Andréka, Németi and Sain in [1], where they indicate that this technique of
solving logical problems by algebraic means can be traced back to Leibniz and
Pascal.

The purpose of this section is to prove a bridge theorem connecting the CDDT
with having equationally semi-definable principal relative congruences (cf. Defini-
tion 3.16 below), first obtained by Raftery in [28] for sentential logics.
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Definition 3.15. A quasivariety K is said to have equationally definable prin-
cipal relative congruences (EDPRC ) if there is a finite set Ψ ⊆ 〈1, 1〉-Seq4 of
equations in 4 variables such that, if A ∈ K and a, b, c, d ∈ A, then:

〈c, d〉 ∈ ΘA
K (a, b) ⇐⇒ A |= ηJa, b, c, dK for all η ∈ Ψ.

If, moreover, K is a variety, we say that K has equationally definable principal
congruences (EDPC ), since then CoK(A) = Co(A) for every A ∈ K.

According to [30, p. 12], the notion of EDPC was first introduced by Fried,
Grätzer and Quackenbush in [17]. In [28, Def. 8.5], Raftery generalized the prop-
erty of having EDPRC to:

Definition 3.16. A quasivariety K is said to have equationally semi-definable
principal relative congruences (ESPRC ) if, for every n ∈ ω, there is a finite set
Ψn ⊆ 〈1, 1〉-Seqn+4 of equations in n+ 4 variables such that, if A ∈ K is generated
by some elements g1, . . . , gn ∈ A and a, b, c, d ∈ A, then:

〈c, d〉 ∈ ΘA
K (a, b) ⇐⇒ A |= ηJ~gn, a, b, c, dK for all η ∈ Ψn.

If, moreover, K is a variety, we say that K has equationally semi-definable principal
congruences (ESPC ).

Remark 3.17. In the context of Definition 3.16, if Ψn = Ψ0 for all n ∈ ω, then
K has EDPRC.

Having EDPRC implies having ESPRC. The converse, however, does not hold,
as is shown in [28, Exmpl. 9.5].

One of the most well-known bridge theorems is the one connecting the DDT
with having EDPRC (cf. [14, pp. 163-75]). This result, due to Blok and Pigozzi,
was obtained in [2] for strongly algebraizable finitary sentential logics (thus, for
EDPC), and was later generalized in [6, Thm. 5.5] to elementarily algebraizable
finitary k-deductive systems. Rebagliato and Verdú generalized it further to ele-
mentarily algebraizable finitary Gentzen relations in [30, Cor. 3.12].

Raftery proved an analogous bridge theorem for elementarily algebraizable fini-
tary sentential logics connecting the CDDT and having ESPRC, [28, Thm. 9.2].
His proof, however, employs a strategy quite different than the one followed by
Blok and Pigozzi in [6]: their proof is more syntactic and clearly shows the cor-
respondence between the sets witnessing the DDT and the equations defining the
principal relative congruences, while Raftery’s is more algebraic and conceals the
correspondence between the CDD-sequence and the equations, a fact that Raftery
himself acknowledges and the reason why he goes on to explicitly stating it in a
separate result, namely [28, Thm. 9.4].
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We shall now generalize Raftery’s bridge theorem to elementarily algebraizable
finitary Gentzen relations, first presenting an alternative proof that follows Blok
and Pigozzi’s strategy and then generalizing the one given by Raftery.

3.2.1. Tools for building the bridge. Both proofs of the bridge theorem
that we shall present rely on two results: the first (Lemma 3.18) is a special case
of the correspondence theorem (Theorem 2.67), and the second (Theorem 3.21)
shows that finitary Gentzen relations that have the CDDT have CDD-sequences
made up of finite sets, and also an equivalence between having the CDDT and an
algebraic property of the compact filters of finitely generated algebras.

Lemma 3.18. Let K be a quasivariety, A an algebra, B ∈ K and h ∈ Hom(A,B)
a surjective homomorphism. For every a, b ∈ A, we have:

h−1(ΘB
K (h(a), h(b))) = ΘA

K (a, b) ∨AK kerh.

Proof. By Proposition 2.73, EQ(K) is protoalgebraic, so the correspondence
theorem (Theorem 2.67) yields:

h−1(ΘB
K (h(ΘA

K (a, b))) ∨BK ∆B︸ ︷︷ ︸
ΘB

K (h(ΘA
K (a,b)))

) = ΘA
K (a, b) ∨AK h−1(∆B).

Hence, given that h−1(∆B) = kerh, it suffices to prove:

ΘB
K (h(ΘA

K (a, b))) = ΘB
K (h(a), h(b)).

From 〈a, b〉 ∈ h−1(ΘB
K (h(a), h(b))) we get ΘA

K (a, b) ⊆ h−1(ΘB
K (h(a), h(b))) by

Proposition 2.69 and Proposition 2.36(i), i.e., h(ΘA
K (a, b)) ⊆ ΘB

K (h(a), h(b)), and
thus ΘB

K (h(ΘA
K (a, b))) ⊆ ΘB

K (h(a), h(b)).

For the other inclusion, note that 〈a, b〉 ∈ ΘA
K (a, b) implies 〈h(a), h(b)〉 ∈

h(ΘA
K (a, b)), whence ΘB

K (h(a), h(b)) ⊆ ΘB
K (h(ΘA

K (a, b))). �

For the proof of the other main result of this subsection, we shall need two
lemmas:

Lemma 3.19. Let G be a Gentzen relation with trace tr, A,B algebras, X ⊆
tr-Seq(A), Y ⊆ tr-Seq(B) and h ∈ Hom(A,B) a surjective homomorphism such
that kerh is compatible with FgA

G (h−1(FgB
G (Y )) ∪X). Then:

h(FgA
G (h−1(FgB

G (Y )) ∪X)) = FgB
G (Y ∪ h(X)).

Proof. Let F := FgA
G (h−1(FgB

G (Y )) ∪X). We need to prove that h(F ) is the
least G-filter of B containing Y ∪ h(X).
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By Proposition 2.36(ii), h(F ) ∈ FiG(B). From h−1(Y ) ⊆ h−1(FgB
G (Y )) ⊆ F

we get Y ⊆ h(F ) by the surjectivity of h, and from X ⊆ F we get h(X) ⊆ h(F ),
so Y ∪ h(X) ⊆ h(F ).

Let G be any G-filter of B such that Y ∪h(X) ⊆ G. Then, FgB
G (Y )∪h(X) ⊆ G,

whence h−1(FgB
G (Y ) ∪ h(X)) = h−1(FgB

G (Y )) ∪ h−1(h(X)) ⊆ h−1(G). Since X ⊆
h−1(h(X)), we obtain h−1(FgB

G (Y )) ∪X ⊆ h−1(G). We know h−1(G) is a G-filter
of A by Proposition 2.36(i), so F ⊆ h−1(G), and thus h(F ) ⊆ h(h−1(G)) ⊆ G. �

Lemma 3.20. Let G be a Gentzen relation with trace tr, A an algebra and
F ∈ FiG(A) such that F 6= ∅. If F is finitely generated, then there are some
a1, . . . , an+1, n ∈ ω, such that F = FgA

G (a1, . . . , an+1).

Proof. Let a1, . . . , am ∈ tr-Seq(A), m ∈ ω, be such that F = FgA
G (a1, . . . , am).

If m > 0 there is nothing to prove, so assume m = 0. Then,
⋂
FiG(A) =

FgA
G (∅) = F 6= ∅, so pick any a ∈

⋂
FiG(A). Clearly, F = FgA

G (a). �

Theorem 3.21. Let G be a finitary Gentzen relation with trace tr. The follow-
ing are equivalent:

(i) G has the CDDT.

(ii) G is protoalgebraic and, for every finitely generated algebra A, the compact
G-filters of A form a dually Brouwerian join-semilattice.

(iii) G has a CDD-sequence 〈{D[n, m̂1, m̂2] : m̂1, m̂2 ∈ tr} : n ∈ ω〉 in which
every set D[n, m̂1, m̂2] is finite.

Proof. By Proposition 3.7 we may assume, without loss of generality, that G
is protoalgebraic. So, for every 〈m,n〉 ∈ tr, let Em,n(~xm+n, ~ym+n) ⊆ tr-Seq be as in
Theorem 2.62.

(i)⇒ (ii) By Proposition 1.73, the compact elements of FiG(A) form a join-
semilattice. Let D := 〈{D[n, m̂1, m̂2] : m̂1, m̂2 ∈ tr} : n ∈ ω〉 be a CDD-sequence
for G. Let g1, . . . , gl ∈ A, l ∈ ω, be such that A = SgA(g1, . . . , gl), and let G,H be
compact G-filters of A. We need to prove that G .−H exists and is compact. We
distinguish three cases.

Case 1: G = ∅. Clearly, G .−H = ∅ = G.

Case 2: G 6= ∅ and H = ∅. Clearly, G .−H = G.

Case 3: G 6= ∅ and H 6= ∅. By Proposition 2.33 and Lemma 3.20, there are
a1, . . . , ap+1, b1, . . . , bq+1 ∈ tr-Seq(A), p, q ∈ ω, such that G = FgA

G (b1, . . . , bq+1)
and H = FgA

G (a1, . . . , ap+1). Let m̂i := tp(ai) for i = 1, . . . , p+ 1 and n̂j := tp(bj)
for j = 1, . . . , q + 1.
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For every 1 ≤ j ≤ q + 1, by Theorem 3.6(ii) there is a finite set

Ej ⊆ D∗p[l, m̂1, . . . , m̂p+1, n̂j]

such that, for every G-filter F of A:

bj ∈ FgA
G (F, a1, . . . , ap+1) iff EA

j (~gl, a1, . . . , ap+1, bj) ⊆ F. (3.7)

Let X :=
⋃q+1
j=1 E

A
j (~gl, a1, . . . , ap+1, bj). Being a finite union of finite sets, X is

finite, so FgA
G (X) is compact by Proposition 2.33. For every G-filter F of A, (3.7)

yields:

G ⊆ F ∨A H ⇐⇒ b1, . . . , bq+1 ∈ F ∨A H
⇐⇒ b1, . . . , bq+1 ∈ FgA

G (F, a1, . . . , ap+1)

⇐⇒ X ⊆ F

⇐⇒ FgA
G (X) ⊆ F.

Therefore, G .−H = FgA
G (X).

(ii)⇒ (iii) Fix a context p ∈ ω and m̂, n̂ ∈ tr. Let t := p + Σ(m̂) + Σ(n̂). We
need to find a finite set D ⊆ tr-Seqt such that

P, s `G r ⇐⇒ P `G D(~xp, s, r) (3.8)

for all P ∪ {s, r} ⊆ tr-Seqp with tp(s) = m̂ and tp(r) = n̂. This holds vacuously if
tr-Seqp = ∅ regardless of the choice of D (in particular, for D := ∅), and if t = 0
we can take D := ∅ because then s = r = ∅B∅. Hence, let us assume both that
tr-Seqp 6= ∅ and that t > 0, whence Fmp and Fmt are universes of subalgebras
Fmp and Fmt of Fm, respectively.

Define the sequents x1 := 〈xp+1, . . . , xp+Σ(m̂)〉m̂ and x2 := 〈xp+Σ(m̂)+1, . . . , xt〉n̂.
Note that x1, x2 ∈ tr-Seq(Fmt). Since G is finitary and Fmt is finitely generated,
by Proposition 2.33 and (ii) the element FgFmt

G (x2) .−FgFmt
G (x1) exists in the join-

semilattice of compact G-filters of Fmt. Thus, by Proposition 2.33 there is a finite
D(~xt) ⊆ tr-Seqt such that:

FgFmt
G (D) = FgFmt

G (x2) .− FgFmt
G (x1).

By Lemma 1.74, for any G-filter F of Fmt, compact or not, we have:

FgFmt
G (x2) ⊆ F ∨Fmt FgFmt

G (x1) ⇐⇒ FgFmt
G (D) ⊆ F ⇐⇒ D ⊆ F. (3.9)

Let h ∈ Hom(Fmt,Fmp) be given by h(~xp) := ~xp, h(x1) := s, and h(x2) := r.
By Proposition 1.11, h is surjective.

By Proposition 2.36(i), both h−1(Fg
Fmp

G (P)) and h−1(Fg
Fmp

G (P, s)) are G-

filters of Fmt, and kerh is compatible with h−1(Fg
Fmp

G (P)) by Lemma 2.22.
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Hence, by protoalgebraicity and Lemma 2.65, kerh is compatible with

H := h−1(Fg
Fmp

G (P)) ∨Fmt FgFmt
G (x1) = FgFmt

G (h−1(Fg
Fmp

G (P)), x1).

Therefore, h(H) = Fg
Fmp

G (P, s) by Lemma 3.19.

Claim 3.21.1. P, s `G r ⇐⇒ r ∈ h(H).

Proof. (⇒) Let g ∈ Hom(Fm,Fmp) be such that g(~xp) := ~xp. Then,
g(P ∪ {s}) = P ∪ {s} ⊆ h(H), so g(r) = r ∈ h(H) because h(H) ∈ FiG(Fmp).

(⇐) By Corollary 2.35 we have r ∈ tr-Seq(Fmp)∩FgG(P, s), whence P, s `G r
by Proposition 2.34. �

We have:

P, s `G r

⇐⇒ r ∈ h(H) (Claim 3.21.1)

⇐⇒ h(x2) ∈ h(H)

⇐⇒ x2 ∈ H (Proposition 2.20(v))

⇐⇒ x2 ∈ h−1(Fg
Fmp

G (P)) ∨Fmt FgFmt
G (x1) (definition of H)

⇐⇒ FgFmt
G (x2) ⊆ h−1(Fg

Fmp

G (P)) ∨Fmt FgFmt
G (x1) (H ∈ FiG(Fmt))

⇐⇒ D ⊆ h−1(Fg
Fmp

G (P)) (by (3.9))

⇐⇒ h(D) ⊆ Fg
Fmp

G (P)

⇐⇒ h(D) ⊆ tr-Seq(Fmp) ∩ FgG(P) (Corollary 2.35)

⇐⇒ h(D) ⊆ FgG(P) (h(D) ⊆ tr-Seq(Fmp))

⇐⇒ P `G h(D) (Proposition 2.34)

⇐⇒ P `G D(~xp, s, r) (definition of h)

Conclusion: (3.8) holds.

(iii)⇒ (i) Clear. �

We are finally ready to present the two proofs that an elementarily algebraiz-
able finitary Gentzen relation G has the CDDT iff K has ESPRC, where K is a
quasivariety satisfying G ∼= EQ(K).

3.2.2. Blok and Pigozzi’s strategy. Following Blok and Pigozzi’s proofs
of [6, Thms. 5.4,5.5], where they connect the DDT with having EDPRC, we show
that an elementarily algebraizable finitary Gentzen relation G has the CDDT iff
EQ(K) has the CDDT, where K is a quasivariety such that G ∼= EQ(K). We then
show that EQ(K) has the CDDT iff K has ESPRC.
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By Proposition 2.87 and Remark 2.83, if two finitary Gentzen relations G,G′

are equivalent then there are finitary transformers τ, ρ such that τ : G ∼= G′ : ρ.
This allows us to prove that the CDDT is preserved by equivalence between finitary
Gentzen relations:

Theorem 3.22. Let G and G′ be finitary equivalent Gentzen relations with
traces tr and tr′, respectively. Then, G has the CDDT iff G′ has the CDDT.

Proof. Let τ : tr-Seq → P(tr′-Seq) and ρ : tr′-Seq → P(tr-Seq) be finitary
transformers such that τ : G ∼= G′ : ρ. Note that, by Remark 2.83, it suffices to
prove that if G has the CDDT then G′ has the CDDT.

Assume G has the CDDT, and let 〈{D[p, m̂, n̂] : m̂, n̂ ∈ tr} : p ∈ ω〉 be a
CDD-sequence for G.

Let us build a CDD-sequence 〈{E[p, m̂, n̂] : m̂, n̂ ∈ tr′} : p ∈ ω〉 for G′. Fix any
context p ∈ ω and any m̂, n̂ ∈ tr′. Since ρ is finitary, by Proposition 2.81 there are
finite sets of tr-sequents

ρm̂ := {m1, . . . ,ml} ⊆ tr-SeqΣ(m̂) and ρn̂ := {n1, . . . , nt} ⊆ tr-SeqΣ(n̂),

with l, t ∈ ω, such that ρ(s) = ρm̂(s) and ρ(r) = ρn̂(r) for every s, r ∈ tr′-Seq with
tp(s) = m̂ and tp(r) = n̂.

For every j = 1, . . . , t let qj := p + Σ(tp(m1)) + · · · + Σ(tp(ml)) + Σ(tp(nj)).
Define the set E[p, m̂, n̂] ⊆ tr′-Seq as follows: if l = 0, i.e., ρm̂ = ∅, let

E[p, m̂, n̂] := {〈xp+Σ(m̂)+1, . . . , xp+Σ(m̂)+Σ(n̂)〉n̂},

and otherwise let

E[p, m̂, n̂] := τ(
t⋃

j=1

D∗l−1[p, tp(m1), . . . , tp(ml), tp(nj)](~xp, m̃1, . . . , m̃l, ñj)),

where m̃i := mi(xp+1, . . . , xp+Σ(m̂)) and ñj := nj(xp+Σ(m̂)+1, . . . , xp+Σ(m̂)+Σ(n̂)) for
i = 1, . . . , l and j = 1, . . . , t.

Claim 3.22.1. E[p, m̂, n̂] = E[p, m̂, n̂](~xp+Σ(m̂)+Σ(n̂)).

Proof. This is clear if l = 0, so assume l > 0. By Lemma 2.77 we have

E[p, m̂, n̂] =
t⋃

j=1

τ(D∗l−1[p, tp(m1), . . . , tp(ml), tp(nj)](~xp, m̃1, . . . , m̃l, ñj)),

so all we need to show is that the variables that occur in τ(Cj) are all among
x1, . . . , xp+Σ(m̂)+Σ(n̂) for every j = 1, . . . , t, where

Cj := D∗l−1[p, tp(m1), . . . , tp(ml), tp(nj)](~xp, m̃1, . . . , m̃l, ñj),
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and this is a consequence of Lemma 2.78 because the variables occurring in Cj are
all in ~xp+Σ(m̂)+Σ(n̂). �

To see that 〈{E[p, m̂, n̂] : m̂, n̂ ∈ tr′} : p ∈ ω〉 is indeed a CDD-sequence for G′,
let P ∪ {s, r} ⊆ tr′-Seqp be such that tp(s) = m̂ and tp(r) = n̂.

Assume first that l = 0, i.e., ρm̂ = ∅. We have:

P, s `G′ r
(ALG3)⇐⇒ ρ(P), ρ(s) `G ρ(r)

⇐⇒ ρ(P) `G ρ(r)

(ALG1)⇐⇒ τ(ρ(P)) `G′ τ(ρ(r))

(ALG2)⇐⇒ P `G′ r

⇐⇒ P `G′ E[p, m̂, n̂](~xp, s, r),

so we are done.

Assume now that l > 0, so that ρm̂ 6= ∅. Let σ ∈ End(Fm) be any substitution
such that:

• σ(~xp) := ~xp.

• σ(〈xp+1, . . . , xp+Σ(m̂)〉m̂) := s.

• σ(〈xp+Σ(m̂)+1, . . . , xp+Σ(m̂)+Σ(n̂)〉n̂) := r.

Note that σ(m̃i) = mi(s) ∈ tr-Seqp and σ(ñj) = nj(r) ∈ tr-Seqp for all i = 1, . . . , l
and all j = 1, . . . , t. Therefore, setting D∗j := D∗l−1[p, tp(m1), . . . , tp(ml), tp(nj)] we
have:

P, s `G′ r
(ALG3)⇐⇒ ρ(P), ρ(s) `G ρ(r)

⇐⇒ ρ(P),m1(s), . . . ,ml(s) `G ρ(r)

⇐⇒ ρ(P),m1(s), . . . ,ml(s) `G nj(r) for all j = 1, . . . , t

⇐⇒ ρ(P) `G D∗j(~xp,m1(s), . . . ,ml(s), nj(r)) for all j = 1, . . . , t

⇐⇒ ρ(P) `G
⋃t
j=1 D

∗
j(~xp,m1(s), . . . ,ml(s), nj(r))

(ALG1)⇐⇒ τ(ρ(P)) `G′ τ(
⋃t
j=1 D

∗
j(~xp,m1(s), . . . ,ml(s), nj(r)))

(ALG2)⇐⇒ P `G′ τ(
⋃t
j=1 D

∗
j(~xp,m1(s), . . . ,ml(s), nj(r)))

⇐⇒ P `G′ τ(
⋃t
j=1 σ(D∗j(~xp, m̃1, . . . , m̃l, ñj)))

⇐⇒ P `G′
⋃t
j=1 τ(σ(D∗j(~xp, m̃1, . . . , m̃l, ñj))), by Lemma 2.77

⇐⇒ P `G′
⋃t
j=1 σ(τ(D∗j(~xp, m̃1, . . . , m̃l, ñj)))

⇐⇒ P `G′ σ(
⋃t
j=1 τ(D∗j(~xp, m̃1, . . . , m̃l, ñj)))
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⇐⇒ P `G′ σ(E[p, m̂, n̂](~xp+Σ(m̂)+Σ(n̂)))

⇐⇒ P `G′ E[p, m̂, n̂](~xp, s, r).

Conclusion: 〈{E[p, m̂, n̂] : m̂, n̂ ∈ tr′} : p ∈ ω〉 is a CDD-sequence for G′. �

Theorem 3.23. Let K be a quasivariety. Then, EQ(K) has the CDDT iff K
has ESPRC.

Proof. (⇒) Since tr(EQ(K)) = {〈1, 1〉} and EQ(K) is finitary (Lemma 2.75),
by Theorem 3.21(iii) there is a CDD-sequence for EQ(K) of the form 〈D[n] : n ∈ ω〉,
where each D[n] is a finite set of 〈1, 1〉-sequents of Fm (equations) in the variables
~xn+4. So let us write

D[n] = {δi(~xn+4) ≈ εi(~xn+4) : i ∈ In},
with each In finite.

Fix any n ∈ ω and let Ψn := D[n]. Also, fix any A ∈ K generated by some
elements g1, . . . , gn ∈ A, and let a, b, c, d ∈ A. Note that, if n = 0, by Theorem 1.22
we must have Fm0 6= ∅ because A 6= ∅. Thus, Fmn is the universe of a subalgebra
Fmn of Fm regardless of the choice of n.

Let h ∈ Hom(Fmn,A) be any homomorphism such that h(~xn) = ~gn. By
Proposition 1.11, h is surjective, so let ϕ0, ϕ1, ψ0, ψ1 ∈ Fmn be such that h(ϕ0) = a,
h(ϕ1) = b, h(ψ0) = c and h(ψ1) = d.

Let Φ := kerh. Since K is a quasivariety, K is closed under isomorphisms, so
Φ is a K-congruence of Fmn by the first isomorphism theorem because A ∈ K.

By Lemma 3.18 we have

h−1(ΘA
K (a, b)) = ΘFmn

K (ϕ0, ϕ1) ∨Fmn
K Φ,

so
〈ψ0, ψ1〉 ∈ ΘFmn

K (ϕ0, ϕ1) ∨Fmn
K Φ ⇐⇒ 〈c, d〉 ∈ ΘA

K (a, b). (3.10)

Since ΘFmn
K (ϕ0, ϕ1) ∨Fmn

K Φ = ΘFmn
K (Φ, 〈ϕ0, ϕ1〉), by Corollary 2.72 the left-

hand side of (3.10) is equivalent to

Φ, ϕ0 ≈ ϕ1 |=K ψ0 ≈ ψ1,

which by the CDDT for EQ(K) is equivalent to

Φ |=K δi(~xn, ϕ0, ϕ1, ψ0, ψ1) ≈ εi(~xn, ϕ0, ϕ1, ψ0, ψ1) for all i ∈ In.
As Φ is a congruence of Fmn, by Corollary 2.72 this is equivalent to

〈δi(~xn, ϕ0, ϕ1, ψ0, ψ1), εi(~xn, ϕ0, ϕ1, ψ0, ψ1)〉 ∈ Φ = kerh for all i ∈ In,
which holds iff

δAi (~gn, a, b, c, d) = εAi (~gn, a, b, c, d) for all i ∈ In,



76 3. CONTEXTUAL DEDUCTION-DETACHMENT THEOREMS

i.e., iff
A |= ηJ~gn, a, b, c, dK for all η ∈ Ψn.

Conclusion: the equations in the sets Ψn, n ∈ ω, witness that K has ESPRC.

(⇐) For all n ∈ ω, let Ψn be as in Definition 3.16. We prove that 〈Ψn : n ∈ ω〉 is
a CDD-sequence for EQ(K), i.e., that for every context n ∈ ω and every equations
E ∪ {ϕ0 ≈ ϕ1, ψ0 ≈ ψ1} ⊆ 〈1, 1〉-Seqn, we have

E, ϕ0 ≈ ϕ1 |=K ψ0 ≈ ψ1 ⇐⇒ E |=K Ψn(~xn, ϕ0, ϕ1, ψ0, ψ1). (3.11)

This is vacuously true for n = 0 if Fm0 = ∅ because then 〈1, 1〉-Seqn = ∅, and
thus for the case n = 0 we may assume Fm0 6= ∅, so that Fmn is the universe of
a subalgebra Fmn of Fm regardless of the choice of n.

Fix any n ∈ ω and E ∪ {ϕ0 ≈ ϕ1, ψ0 ≈ ψ1} ⊆ 〈1, 1〉-Seqn. By Corollary 2.72,

E, ϕ0 ≈ ϕ1 |=K ψ0 ≈ ψ1 ⇐⇒ 〈ψ0, ψ1〉 ∈ ΘFmn
K (E, 〈ϕ0, ϕ1〉)

⇐⇒ 〈ψ0, ψ1〉 ∈ ΘFmn
K (E) ∨Fmn

K ΘFmn
K (ϕ0, ϕ1).

Let B := Fmn/Θ
Fmn
K (E), and let π : Fmn → B be the natural projection.

Then, B ∈ K, π is surjective and ker π = ΘFmn
K (E), so Lemma 3.18 yields:

π−1(ΘB
K (π(ϕ0), π(ϕ1))) = ΘFmn

K (ϕ0, ϕ1) ∨Fmn
K ΘFmn

K (E).

Therefore, E, ϕ0 ≈ ϕ1 |=K ψ0 ≈ ψ1 is equivalent to

〈π(ψ0), π(ψ1)〉 ∈ ΘB
K (π(ϕ0), π(ϕ1)).

Since K has ESPRC and, by Proposition 1.28, B is generated by π(x1), . . . , π(xn),
this is equivalent to

B |=K δi ≈ εiJπ(x1), . . . , π(xn), π(ϕ0), π(ϕ1), π(ψ0), π(ψ1)K for all δi ≈ εi ∈ Ψn,

which, by Proposition 1.27, is equivalent to:

〈δi(~xn, ϕ0, ϕ1, ψ0, ψ1), εi(~xn, ϕ0, ϕ1, ψ0, ψ1)〉 ∈ ΘFmn
K (E) for all δi ≈ εi ∈ Ψn.

By Corollary 2.72, this is equivalent to

E |=K δi(~xn, ϕ0, ϕ1, ψ0, ψ1) ≈ εi(~xn, ϕ0, ϕ1, ψ0, ψ1) for all δi ≈ εi ∈ Ψn,

i.e., to
E |=K Ψn(~xn, ϕ0, ϕ1, ψ0, ψ1).

Conclusion: 〈Ψn : n ∈ ω〉 is a CDD-sequence for EQ(K). �

The bridge theorem connecting the CDDT with having ESPRC is an immediate
consequence of the two preceding theorems:

Theorem 3.24. Let G be an elementarily algebraizable finitary Gentzen rela-
tion, and let K be a quasivariety such that G ∼= EQ(K). Then, G has the CDDT
iff K has ESPRC.
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First Proof. By Theorem 3.22, G has the CDDT iff EQ(K) has the CDDT,
iff K has ESPRC by Theorem 3.23. �

Note that the proofs of Theorem 3.22 and Theorem 3.23 are constructive, in
the sense that we can easily obtain equations witnessing the property of having
ESPRC from a CDD-sequence and vice versa.

3.2.3. Raftery’s strategy. Now we obtain an alternative proof of Theo-
rem 3.24 by generalizing that of Raftery’s [28, Thm. 9.2]. This time we show
that an elementarily algebraizable finitary Gentzen relation G has the CDDT iff
K has ESPRC, where K is a quasivariety satisfying G ∼= EQ(K), by proving that
both conditions are equivalent to the statement that the compact K-congruences
of every finitely generated algebra form a dually Brouwerian join-semilattice.

If K is a quasivariety, then CoK(A) is a complete lattice by Corollary 1.92 for
every algebra A, and thus the compact K-congruences of A form a join-semilattice
by Proposition 1.73.

Theorem 3.25 (cf. [28, Thm. 8.6]). A quasivariety K has ESPRC iff for every
finitely generated algebra A, the join-semilattice of compact K-congruences of A
is dually Brouwerian.

For clarity, we restate Theorem 3.24 before its second proof:

Theorem 3.24. Let G be an elementarily algebraizable finitary Gentzen rela-
tion, and let K be a quasivariety such that G ∼= EQ(K). Then, G has the CDDT
iff K has ESPRC.

Second Proof. By Theorem 2.89, G is protoalgebraic, and thus G has the
CDDT iff the join-semilattice of compact G-filters of every finitely generated alge-
bra is dually Brouwerian, by Theorem 3.21(ii).

If A is a finitely generated algebra, then FiG(A) ∼= CoK(A) by Theorem 2.86
and Proposition 2.69, and therefore the join-semilattice of compact G-filters of
A is dually Brouwerian iff the join-semilattice of compact K-congruences of A is
dually Brouwerian, by Lemma 1.75.

Therefore, G has the CDDT iff the join-semilattice of compact K-congruences
of every finitely generated algebra A is dually Brouwerian, and by Theorem 3.25
this is equivalent to K having ESPRC. �

In contrast with the first proof, this one is not constructive, as it does not
allow us to build a CDD-sequence from equations witnessing having ESPRC nor
to obtain these equations from a CDD-sequence. For this reason, Raftery finishes
[28] by proving a theorem that allows one to perform such translation between
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equations and CDD-sequences. Of course, there is no need for us to prove it
because we have already given a constructive proof of Theorem 3.24.

3.3. The local CDDT

Definition 3.26. Let G be a Gentzen relation with trace tr. For all contexts
n ∈ ω and all types m̂1, m̂2 ∈ tr, let In,m̂1,m̂2 be a non-empty set and, for all
i ∈ In,m̂1,m̂2 , let Li[n, m̂1, m̂2](~xt) ⊆ tr-Seqt, where t := n + Σ(m̂1) + Σ(m̂2). The
sequence

〈{{Li[n, m̂1, m̂2] : i ∈ In,m̂1,m̂2} : m̂1, m̂2 ∈ tr} : n ∈ ω〉
is said to be a local CDD-sequence for G if, for all P ∪ {s, r} ⊆ tr-Seqn with
tp(s) = m̂1 and tp(r) = m̂2, we have:

P, s `G r ⇐⇒ P `G Li[n, m̂1, m̂2](~xn, s, r) for some i ∈ In,m̂1,m̂2 .

If such a sequence exists, we say that G has a local CDDT .

If |In,m̂1,m̂2| = 1 for all n ∈ ω and all m̂1, m̂2 ∈ tr, then we identify each
singleton {Li[n, m̂1, m̂2] : i ∈ In,m̂1,m̂2} with its unique element, which we denote
by L[n, m̂1, m̂2], so that we recover the notion of having the CDDT (Definition 3.1).

In the context of Definition 3.26, the left-to-right implication is called the local
contextual deduction theorem, and the right-to-left is known as local contextual
detachment .

Proposition 3.27. Let 〈{{Li[n, m̂1, m̂2] : i ∈ In,m̂1,m̂2} : m̂1, m̂2 ∈ tr} : n ∈ ω〉
be a local CDD-sequence for a Gentzen relation G with trace tr. For every context
n ∈ ω and every s, r ∈ tr-Seqn, with tp(s) = m̂1 and tp(r) = m̂2, we have:

(i) `G Li[n, m̂, m̂](~xn, s, s) for some i ∈ In,m̂,m̂.

(ii) s,Li[n, m̂1, m̂2](~xn, s, r) `G r for all i ∈ In,m̂1,m̂2.

(iii) For all i ∈ In,m̂1,m̂2 there is some j ∈ In+1,m̂1,m̂2 such that

Li[n, m̂1, m̂2](~xn, s, r) `G Lj[n+ 1, m̂1, m̂2](~xn+1, s, r).

Proof.

(i) Apply the local contextual deduction theorem to s `G s.

(ii) Apply local contextual detachment to

Li[n, m̂1, m̂2](~xn, s, r) `G Li[n, m̂1, m̂2](~xn, s, r).

(iii) As tr-Seqn ⊆ tr-Seqn+1, the local contextual deduction theorem on (ii)
yields (iii). �
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We cannot obtain a uniqueness result for local CDD-sequences analogous to
that of Theorem 3.4 because the sets Li[n, m̂1, m̂2], with n, m̂1, m̂2 fixed, need not
be pairwise ‘comparable’ with respect to `G, i.e., in principle

Li[n, m̂1, m̂2] 6`G Lj[n, m̂1, m̂2] and Lj[n, m̂1, m̂2] 6`G Li[n, m̂1, m̂2]

may both be the case for some i, j ∈ In,m̂1,m̂2 . The most we can prove towards
uniqueness is the following proposition, which establishes a (weak) relation between
any two local CDD-sequences for a given Gentzen relation:

Proposition 3.28. Let 〈{{Li[n, m̂1, m̂2] : i ∈ In,m̂1,m̂2} : m̂1, m̂2 ∈ tr} : n ∈ ω〉
and 〈{{L′i[n, m̂1, m̂2] : i ∈ I ′n,m̂1,m̂2

} : m̂1, m̂2 ∈ tr} : n ∈ ω〉 be two local CDD-
sequences for a Gentzen relation G with trace tr. For every context n ∈ ω and every
s, r ∈ tr-Seqn, with tp(s) = m̂1 and tp(r) = m̂2, we have that for all i ∈ In,m̂1,m̂2

there is some j ∈ I ′n,m̂1,m̂2
such that:

Li[n, m̂1, m̂2](~xn, s, r) `G L′j[n, m̂1, m̂2](~xn, s, r).

Proof. From Proposition 3.27(ii) we have s,Li[n, m̂1, m̂2](~xn, s, r) `G r for
every i ∈ In,m̂1,m̂2 , so Li[n, m̂1, m̂2](~xn, s, r) `G L′j[n, m̂1, m̂2](~xn, s, r) holds for
some j ∈ I ′n,m̂1,m̂2

because 〈{{L′i[n, m̂1, m̂2] : i ∈ I ′n,m̂1,m̂2
} : m̂1, m̂2 ∈ tr} : n ∈ ω〉

is a local CDD-sequence. �

Items (i) and (ii) of Proposition 3.27 resemble conditions (R) and (MP) of The-
orem 2.62, and in fact having a local CDDT is equivalent to being protoalgebraic.
To prove it, we first need to obtain another characterization of protoalgebraicity,
which first appeared for finitary sentential logics in the proof of the (only) theorem
of [12], due to Czelakowski and Dziobiak. It appeared again in the proof of [11,
Thm. 2.1.5] by Czelakowski, this time without the assumption of finitarity.

In order to simplify the proofs of the statements to come, we define the notion
of a ‘template’ of a Gentzen relation, which captures the essence of Czelakowski
and Dziobiak’s characterization of protoalgebraicity:

Definition 3.29. Let G be a Gentzen relation with trace tr. A G-template is
a quintuple of the form 〈P, s, r,T, σ〉, where P ∪ {s, r} ⊆ tr-Seq, T ∈ T h(G) and
σ ∈ End(Fm), such that:

(i) T, ytp(s) `G ztp(r).

(ii) σ(ytp(s)) = s.

(iii) σ(ztp(r)) = r.

(iv) P `G σ(T).

Remark 3.30. If 〈P, s, r,T, σ〉 is a G-template, then P, s `G r.
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Theorem 3.31. A Gentzen relation G with trace tr is protoalgebraic iff the
following holds for every P ∪ {s, r} ⊆ tr-Seq:

P, s `G r iff there is a theory T ∈ T h(G) and a substitution σ ∈ End(Fm)

such that 〈P, s, r,T, σ〉 is a G-template. (3.12)

Proof. (⇒) The right-to-left implication of (3.12) is Remark 3.30.

Assume P, s `G r. Let 〈m,n〉 := tp(s) and 〈r, s〉 := tp(r). Let σ ∈ End(Fm)
be any surjective substitution such that σ(ym,n) := s and σ(zr,s) := r. Note that
at least one such substitution exists by Proposition 1.11 because the (countably
infinite) set Var \ {y1, . . . , ym+n, z1, . . . , zr+s} can be mapped onto Var.

Let T := σ−1(CnG(P)). By Proposition 2.36(i) and Proposition 2.34, we have
T ∈ T h(G). Since σ is surjective, σ(T) = CnG(P), i.e., P `G σ(T). Also, σ is
a strict surjective homomorphism from the G-matrix 〈Fm,T〉 to the G-matrix
〈Fm,CnG(P)〉, so the correspondence theorem (Theorem 2.67(iv)) yields

σ(CnG(T, ym,n)) = CnG(σ(T), σ(ym,n)) = CnG(CnG(P), s) = CnG(P, s)

and also, as a consequence,

CnG(T, ym,n) = σ−1(CnG(P, s)).

Given that σ(zr,s) = r ∈ CnG(P, s), we have zr,s ∈ CnG(T, ym,n), so we are done.

(⇐) We prove that G is protoalgebraic using Theorem 2.62.

Fix any 〈m,n〉 ∈ tr. If 〈m,n〉 = 〈0, 0〉, then the conditions (R) and (MP) of
Theorem 2.62 are satisfied taking E0,0 := ∅, so assume 〈m,n〉 6= 〈0, 0〉. Note that,
then, x1 occurs among ~xm+n.

Since xm,n `G xm,n, there are some T ∈ T h(G) and σ ∈ End(Fm) such that:

(i) T, ym,n `G zm,n.

(ii) σ(ym,n) = xm,n.

(iii) σ(zm,n) = xm,n.

(iv) `G σ(T).

Let σ∗ ∈ End(Fm) be given by σ∗(~xm+n) := σ∗(~ym+n) := ~xm+n and σ∗(u) :=
x1 for every variable u not in ~xm+n, ~ym+n.

Let σ′ ∈ End(Fm) be such that σ′(~ym+n) := ~xm+n, σ′(~zm+n) := ~ym+n and
σ′(u) := σ∗(σ(u)) for every variable u not in ~ym+n, ~zm+n. By Proposition 2.9, for
every formula ϕ ∈ Fm, all the variables occurring in σ′(ϕ) are among ~xm+n, ~ym+n.

Define Em,n(~xm+n, ~ym+n) := σ′(T). By structurality, applying σ′ to both sides
of (i) yields (MP).
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To prove (R), recall (Definition 2.60) that σm,n is the substitution that maps
~ym,n to ~xm,n and leaves all the other variables untouched.

Claim 3.31.1. σm,n ◦ σ′ = σ∗ ◦ σ.

Proof. By Proposition 2.8, it suffices to prove that (σm,n◦σ′)(u) = (σ∗◦σ)(u)
for every u ∈ Var. For the variables in ~ym+n, we have:

σm,n(σ′(~ym+n)) = σm,n(~xm+n) = ~xm+n = σ∗(~xm+n) = σ∗(σ(~ym+n)).

For the variables in ~zm+n, we have:

σm,n(σ′(~zm+n)) = σm,n(~ym+n) = ~xm+n = σ∗(~xm+n) = σ∗(σ(~zm+n)).

Let u be a variable not occurring in ~ym,n, ~zm,n. Then:

σm,n(σ′(u)) = σm,n(σ∗(σ(u))) = σ∗(σ(u)).

�

By structurality, applying σ∗ to both sides of (iv) yields `G (σ∗ ◦ σ)(T), which
by the claim is equivalent to `G (σm,n ◦ σ′)(T). And this is precisely (R) because
σm,n(σ′(T)) = σm,n(Em,n(~xm+n, ~ym+n)) = Em,n(~xm+n, ~xm+n). �

We can now prove that having a local CDDT is equivalent to protoalgebraicity:

Theorem 3.32. A Gentzen relation G has a local CDDT iff G is protoalgebraic.

Proof. Let tr := tr(G).

(⇒) Let 〈{{Li[p, m̂, n̂] : i ∈ Ip,m̂,n̂} : m̂, n̂ ∈ tr} : p ∈ ω〉 be a local CDD-
sequence for G. We prove that G is protoalgebraic using Theorem 2.62.

Fix any 〈m,n〉 ∈ tr. By Proposition 3.27(i), there is some i ∈ Im+n,〈m,n〉,〈m,n〉
such that `G Li(~xm+n, xm,n, xm,n), where Li := Li[m+n, 〈m,n〉, 〈m,n〉]. For this i,
we also have xm,n,Li(~xm+n, xm,n, ym,n) `G ym,n by Proposition 3.27(ii). Therefore,
the set Em,n(~xm+n, ~ym+n) := Li(~xm+n, xm,n, ym,n) satisfies conditions (R) and (MP)
of Theorem 2.62.

(⇐) We build a local CDD-sequence

〈{{Li[p, m̂, n̂] : i ∈ Ip,m̂,n̂} : m̂, n̂ ∈ tr} : p ∈ ω〉
for G using Theorem 3.31.

Fix any context p ∈ ω. If p = 0 and Fm0 = ∅, then P, s `G r holds for all
P∪{s, r} ⊆ tr-Seqp because s = r = ∅B∅, so for every m̂, n̂ ∈ tr we can let I0,m̂,n̂

be any singleton and Li[0, m̂, n̂] := ∅ for all i ∈ I0,m̂,n̂.

Assume now that either p > 0 or Fm0 6= ∅, so that Fmp 6= ∅ regardless of
the choice of p, and fix any types m̂, n̂ ∈ tr. For every P ∪ {s, r} ⊆ tr-Seq, by
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Theorem 3.31 P, s `G r holds iff there are T ∈ T h(G) and σ ∈ End(Fm) such
that 〈P, s, r,T, σ〉 is a G-template. Note that, if P ∪ {s, r} ⊆ tr-Seqp, then we
may assume that σ(Fm) ⊆ Fmp, as otherwise we can replace σ by σ′ ◦ σ, where
σ′ ∈ End(Fm) is defined by setting σ′(~xp) := ~xp and letting σ′(z) be any element
of Fmp 6= ∅ for all variables z /∈ ~xp. (By Proposition 2.9, σ′(Fm) ⊆ Fmp).

Let t := p+Σ(m̂)+Σ(n̂) and let Ip,m̂,n̂ be the set of all G-templates 〈P, s, r,T, σ〉
such that: P ∪ {s, r} ⊆ tr-Seqp, tp(s) = m̂, tp(r) = n̂ and σ(Fm) ⊆ Fmp.

Claim 3.32.1. Ip,m̂,n̂ 6= ∅.

Proof. Since Fmp 6= ∅, let s, r ∈ tr-Seqp be such that tp(s) = m̂ and
tp(r) = n̂. Let T := CnG(ym̂, zn̂), and define σ ∈ End(Fm) by setting σ(ym̂) := s,
σ(zn̂) := r, and letting σ(u) be any element of Fmp for every variable u not
occurring in ym̂, zn̂. By Proposition 2.9, σ(Fm) ⊆ Fmp. Finally, let P := σ(T) ⊆
tr-Seqp. Then, 〈P, s, r,T, σ〉 ∈ Ip,m̂,n̂. �

For every i ∈ Ip,m̂,n̂, say i = 〈P, s, r,T, σ〉, let σi ∈ End(Fm) be given by:

• σi(ym̂) := 〈xp+1, . . . , xp+Σ(m̂)〉m̂ ∈ m̂-Seqt.

• σi(zn̂) := 〈xp+Σ(m̂)+1, . . . , xt〉n̂ ∈ n̂-Seqt.

• σi(u) := σ(u) ∈ Fmp for all variables u not occurring in ym̂ or zn̂.

By Proposition 2.9, σi(Fm) ⊆ Fmt. Let Li[p, m̂, n̂](~xt) := σi(T) ⊆ tr-Seqt.

Claim 3.32.2. For every 〈P, s, r,T, σ〉 ∈ Ip,m̂,n̂, the following hold:

(i) Li[p, m̂, n̂](~xp, s, r) = σ(T).

(ii) σi(ym̂),Li[p, m̂, n̂](~xt) `G σi(zn̂).

Proof.

(i) Let σ′ ∈ End(Fm) be such that:

• σ′(~xp) := ~xp.

• σ′(〈xp+1, . . . , xp+Σ(m̂)〉m̂) := s.

• σ′(〈xp+Σ(m̂)+1, . . . , xt〉n̂) := r.

It suffices to prove that σ′ ◦ σi = σ. For the variables in ym̂, we have:

(σ′ ◦ σi)(ym̂) = σ′(〈xp+1, . . . , xp+Σ(m̂)〉m̂) = s = σ(ym̂).

For the variables in zm̂, we have:

(σ′ ◦ σi)(zm̂) = σ′(〈xp+Σ(m̂)+1, . . . , xt〉n̂) = r = σ(zm̂).

Let u be a variable not in ym̂ or zn̂. Then,

(σ′ ◦ σi)(u) = σ′(σ(u)) = σ(u),
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where the last equality is due to the fact that σ(u) ∈ Fmp. Therefore, by
Proposition 2.8 we have σ′ ◦ σi = σ.

(ii) By structurality, applying σi to both sides of ym̂,T `G zn̂, which holds
because 〈P, s, r,T, σ〉 is a G-template, yields (ii). �

Let us check that 〈{{Li[p, m̂, n̂] : i ∈ Ip,m̂,n̂} : m̂, n̂ ∈ tr} : p ∈ ω〉 is indeed a
local CDD-sequence for G.

Fix any context p ∈ ω, any types m̂, n̂ ∈ tr and any P ∪ {s, r} ⊆ tr-Seqp with
tp(s) = m̂ and tp(r) = n̂. The case corresponding to p = 0 with Fm0 = ∅ has
already been checked, and thus, as we explained above, we may assume that each
σ given by Theorem 3.31 satisfies σ(Fm) ⊆ Fmp. We must prove:

P, s `G r ⇐⇒ P `G Li[p, m̂, n̂](~xp, s, r) for some i ∈ Ip,m̂,n̂.

Assume P, s `G r. By Theorem 3.31 and the construction of Ip,m̂,n̂, there is a
G-template i ∈ Ip,m̂,n̂ of the form i = 〈P, s, r,T, σ〉. Therefore, P `G σ(T), whence
P `G Li[p, m̂, n̂](~xp, s, r) by Claim 3.32.2(i).

Conversely, let i ∈ Ip,m̂,n̂ be such that P `G Li[p, m̂, n̂](~xp, s, r). Choose any
substitution σ′ ∈ End(Fm) satisfying:

• σ′(~xp) := ~xp.

• σ′(〈xp+1, . . . , xp+Σ(m̂)〉m̂) := s.

• σ′(〈xp+Σ(m̂)+1, . . . , xt〉n̂) := r.

Applying σ′ to both sides of Claim 3.32.2(ii) yields P, s `G r by cut. �

In [28, Exmpl. 3.2, 4.9], Raftery shows two examples of sentential logics hav-
ing a local CDDT but lacking the CDDT. Thus, by Proposition 3.7 we can now
conclude that having the CDDT is a strictly stronger condition than being pro-
toalgebraic.

According to Raftery (cf. [28, p. 294]), for sentential logics the proof of Theo-
rem 3.6(i) can be easily adapted to obtain the case k = 0 of [28, Thm. 4.5], which
is a result for local CDD-sequences analogous to Theorem 3.6(i). We can actually
prove much more, namely the local version of the whole Theorem 3.6, and for
arbitrary Gentzen relations. For this, we first need to obtain the local version of
Theorem 3.5:

Theorem 3.33. Let 〈{{Li[p, m̂, n̂] : i ∈ Ip,m̂,n̂} : m̂, n̂ ∈ tr} : p ∈ ω〉 be a local
CDD-sequence for a Gentzen relation G with trace tr. Then, for every k ∈ ω,
every context p ∈ ω and every types m̂1, . . . , m̂k+1, n̂ ∈ tr there is a family of sets

{L∗k,j[p, m̂1, . . . , m̂k+1, n̂](~xt) : j ∈ Jp,m̂1,...,m̂k+1,n̂},
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where Jp,m̂1,...,m̂k+1,n̂ 6= ∅ and t := p + Σ(m̂1) + · · · + Σ(m̂k+1) + Σ(n̂), such that,
for every sequents P ∪ {s1, . . . , sk+1, r} ⊆ tr-Seqp with tp(r) = n̂ and tp(si) = m̂i

for i = 1, . . . , k + 1, the following holds:

P, s1, . . . , sk+1 `G r ⇐⇒ P `G L∗k,j[p, m̂1, . . . , m̂k+1, n̂](~xp, s1, . . . , sk+1, r)

for some j ∈ Jp,m̂1,...,m̂k+1,n̂.

Proof. By induction on k. If k = 0 the statement of the theorem is just the
defining property of any local CDD-sequence for G, so we can take Jp,m̂1,n̂ := Ip,m̂1,n̂

and L∗0,j[p, m̂1, n̂] := Lj[p, m̂1, n̂] for all j ∈ Jp,m̂1,n̂.

Assuming that the theorem holds for k, let us consider the case of k + 1.

By IH, there is a family

{L∗k,j[p, m̂2, . . . , m̂k+2, n̂](~xt−Σ(m̂1)) : j ∈ Jp,m̂2,...,m̂k+2,n̂},
with Jp,m̂2,...,m̂k+2,n̂ 6= ∅, such that P, s1, . . . , sk+2 `G r holds iff

P, s1 `G L∗k,j[p, m̂2, . . . , m̂k+2, n̂](~xp, s2, . . . , sk+2, r)

is the case for some j ∈ Jp,m̂2,...,m̂k+2,n̂.

First, let us build the index set Jp,m̂1,...,m̂k+2,n̂. For every j ∈ Jp,m̂2,...,m̂k+2,n̂, let
us abbreviate L∗k,j[p, m̂2, . . . , m̂k+2, n̂] by L∗k,j, and let Aj be the set of all triples
〈j, tj, itj〉 such that tj ∈ L∗k,j and itj ∈ Ip,m̂1,tp(tj). Let Cj be the collection of all
subsets Bj ⊆ Aj such that for every tj ∈ L∗k,j there is at least one triple in Bj with
tj as its second component. Clearly, ∅ ∈ Cj iff L∗k,j = ∅. Finally, define:

Jp,m̂1,...,m̂k+2,n̂ :=
⋃
{{j} × Cj : j ∈ Jp,m̂2,...,m̂k+2,n̂}.

Note that Jp,m̂1,...,m̂k+2,n̂ 6= ∅ because by IH there is some j ∈ Jp,m̂2,...,m̂k+2,n̂, and
thus 〈j, Aj〉 ∈ Jp,m̂1,...,m̂k+2,n̂ because Aj ∈ Cj.

For every j′ ∈ Jp,m̂1,...,m̂k+2,n̂, say j′ = 〈j, Bj〉, let

L∗k+1,j′ :=
⋃

〈j,tj ,itj 〉∈Bj

Litj [p, m̂1, tp(tj)](~xp+Σ(m̂1), tj(~xp, xp+Σ(m̂1)+1, . . . , xt)).

By the IH, P, s1, . . . , sk+2 `G r is equivalent to the statement

(∃j ∈ Jp,m̂2,...,m̂k+2,n̂) P, s1 `G L∗k,j(~xp, s2, . . . , sk+2, r),

which is in turn equivalent to

(∃j ∈ Jp,m̂2,...,m̂k+2,n̂)(∀tj ∈ L∗k,j) P, s1 `G tj(~xp, s2, . . . , sk+2, r). (3.13)

And by the local CDDT, (3.13) is the case iff:

(∃j ∈ Jp,m̂2,...,m̂k+2,n̂)(∀tj ∈ L∗k,j)(∃itj ∈ Ip,m̂1,tp(tj))

P `G Litj [p, m̂1, tp(tj)](~xp, s1, tj(~xp, s2, . . . , sk+2, r)). (3.14)
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We need to prove that (3.14) is equivalent to:

(∃j′ ∈ Jp,m̂1,...,m̂k+2,n̂) P `G L∗k+1,j′(~xp, s1, . . . , sk+2, r). (3.15)

Assume (3.14). Let C be the collection of all triples 〈j, tj, itj〉, with tj ∈ L∗k,j
and itj ∈ Ip,m̂1,tp(tj), such that

P `G Litj [p, m̂1, tp(tj)](~xp, s1, tj(~xp, s2, . . . , sk+2, r)).

By (3.14), we must have C ∈ Cj. So, by the way C has been defined, it is clear
that we can take j′ := 〈j, C〉 to make (3.15) hold.

Conversely, assume (3.15). Then, j′ = 〈j, Bj〉 for some j ∈ Jp,m̂2,...,m̂k+2,n̂ and
some Bj ∈ Cj. If Bj = ∅, then we must have L∗k,j = ∅, whence (3.14) holds
trivially. Assume now that Bj 6= ∅ and fix any tj ∈ L∗k,j. Since Bj ∈ Cj, there is
some itj ∈ Ip,m̂1,tp(tj) such that 〈j, tj, itj〉 ∈ Bj, and thus

Litj [p, m̂1, tp(tj)](~xp+Σ(m̂1), tj(~xp, xp+Σ(m̂1)+1, . . . , xt)) ⊆ L∗k+1,j′ ,

whence

Litj [p, m̂1, tp(tj)](~xp, s1, tj(~xp, s2, . . . , sk+2, r)) ⊆ L∗k+1,j′(~xp, s1, . . . , sk+2, r).

Therefore, (3.14) holds. �

Now we are ready to prove the local version of Theorem 3.6:

Theorem 3.34. Let 〈{{Li[p, m̂, n̂] : i ∈ Ip,m̂,n̂} : m̂, n̂ ∈ tr} : p ∈ ω〉 be a local
CDD-sequence for a Gentzen relation G with trace tr, and let the family

{L∗k,j[p, m̂1, . . . , m̂k+1, n̂] : j ∈ Jp,m̂1,...,m̂k+1,n̂}
be as in Theorem 3.33, for all k, p ∈ ω and all types m̂1, . . . , m̂k+1, n̂ ∈ tr. Let A
be an algebra finitely generated by some elements g1, . . . , gp ∈ A, let a1, . . . , ak+1 ∈
tr-Seqp(A) and let m̂i := tp(ai) for i = 1, . . . , k + 1. Then:

(i) For any G-filter F of A and any b ∈ tr-Seqp(A), we have:

b ∈ FgA
G (F, a1, . . . , ak+1) ⇐⇒ L∗k,j[n̂]A(~gp, a1, . . . , ak+1, b) ⊆ F

for some j ∈ Jp,m̂1,...,m̂k+1,n̂,

where n̂ := tp(b) and L∗k,j[n̂] := L∗k,j[p, m̂1, . . . , m̂k+1, n̂].

(ii) If G is finitary, then for each b ∈ tr-Seqp(A) there is a family

{Lj : j ∈ Jp,m̂1,...,m̂k+1,tp(b)},
where each Lj is a finite subset of L∗k,j[p, m̂1, . . . , m̂k+1, tp(b)], such that,
for any G-filter F of A, we have:

b ∈ FgA
G (F, a1, . . . , ak+1) ⇐⇒ LA

j (~gp, a1, . . . , ak+1, b) ⊆ F

for some j ∈ Jp,m̂1,...,m̂k+1,tp(b).
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Proof. For i = 1, . . . , k + 1, let si ∈ tr-Seqp be such that ai = sAi (~gp), by
Corollary 2.11. Also, for every b ∈ tr-Seq(A) let n̂b := tp(b).

As p and m̂1, . . . , m̂k+1 will remain fixed throughout this proof, to improve
readability let us denote, for every b ∈ tr-Seq(A), Jp,m̂1,...,m̂k+1,n̂b

by Jn̂b
and, for

every j ∈ Jn̂b
, the set L∗k,j[p, m̂1, . . . , m̂k+1, n̂b] by L∗k,j[n̂b].

Note that, by Theorem 3.33, for every r ∈ tr-Seqp we have

L∗k,j[n̂r](~xp, s1, . . . , sk+1, r), s1, . . . , sk+1 `G r (3.16)

for all j ∈ Jn̂r , where n̂r := tp(r).

(i) Let G := {b ∈ tr-Seq(A) : (∃j ∈ Jn̂r) L
∗
k,j[n̂b]

A(~gp, a1, . . . , ak+1, b) ⊆ F}.
We shall prove that G = FgA

G (F, a1, . . . , ak+1), whence (i) clearly follows.

Claim 3.34.1. FiG(A)F∪{a1,...,ak+1} ⊆ FiG(A)G.

Proof. Let H ∈ FiG(A)F∪{a1,...,ak+1}. Let b ∈ G and, by Corol-
lary 2.11, let r ∈ tr-Seqp be such that b = rA(~gp). Then, by the defini-

tion of G there is some j ∈ Jn̂b
for which L∗k,j[n̂b]

A(~gp, a1, . . . , ak+1, b) ⊆
F ⊆ H, so, since H ⊇ {a1, . . . , ak+1} and H is a G-filter, (3.16) implies
rA(~gp) ∈ H, i.e., b ∈ H. �

Claim 3.34.2. F ⊆ G.

Proof. Let b ∈ F , and, by Corollary 2.11, let r ∈ tr-Seqp be such

that b = rA(~gp). Since r, s1, . . . , sk+1 `G r, by Theorem 3.33 there is some
j ∈ Jn̂r such that

r `G L∗k,j[n̂r](~xp, s1, . . . , sk+1, r),

whence L∗k,j[n̂b]
A(~gp, a1, . . . , ak+1, b) ⊆ F because F is a G filter of A.

Therefore, b ∈ G. �

Claim 3.34.3. {a1, . . . , ak+1} ⊆ G.

Proof. For every i = 1, . . . , k + 1 we have s1, . . . , sk+1 `G si, so by
Theorem 3.33 there is some ji ∈ Jm̂i

such that

`G L∗k,ji [m̂i](~xp, s1, . . . , sk+1, si),

whence L∗k,ji [m̂i]
A(~gp, a1, . . . , ak+1, ai) ⊆ F because F is a G-filter of A,

and thus ai ∈ G. �

Claim 3.34.4. G is a G-filter of A.
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Proof. Assume P `G q holds for some P ∪ {q} ⊆ tr-Seq, and let
h ∈ Hom(Fm,A) be such that h(P) ⊆ G. We need to prove that
h(q) ∈ G.

By Lemma 2.15, we may assume, without loss of generality, that the
variables in Varx do not occur in P∪ {q} and, moreover, that h(~xp) = ~gp.
Note that this implies h(si) = ai for all 1 ≤ i ≤ k + 1.

For every variable u /∈ Varx we have h(u) ∈ A, so by Corollary 2.12
there is some ηu ∈ Fmp such that h(u) = ηAu (~gp) = h(ηu). Let σ ∈
End(Fm) be any substitution mapping u to ηu for every variable u /∈ Varx.

The same induction carried on in the proof of Theorem 3.6 shows that
h(σ(ϕ)) = h(ϕ) for every formula ϕ in which none of the variables in Varx
occurs. In particular:

(a) h(σ(p)) = h(p) ∈ G for all p ∈ P.

(b) h(σ(q)) = h(q).

For every p ∈ P we have h(p) ∈ G, so there is some jp ∈ Jn̂p for which

L∗k,jp [n̂p]
A(~gp, a1, . . . , ak+1, h(p)) ⊆ F. (3.17)

And since σ(p) ∈ tr-Seqp, (3.16) implies:

s1, . . . , sk+1,
⋃
p∈P

L∗k,jp [n̂p](~xp, s1, . . . , sk+1, σ(p)) `G σ(P). (3.18)

Applying cut to (3.18) and σ(P) `G σ(q), which holds by structurality,
we obtain:

s1, . . . , sk+1,
⋃
p∈P

L∗k,jp [n̂p](~xp, s1, . . . , sk+1, σ(p)) `G σ(q).

So by Theorem 3.33 there is some j′ ∈ Jn̂q for which:⋃
p∈P

L∗k,jp [n̂p](~xp, s1, . . . , sk+1, σ(p)) `G L∗k,j′ [n̂q](~xp, s1, . . . , sk+1, σ(q)). (3.19)

From (a) and (3.17) we deduce that, for every p ∈ P,

h(L∗k,jp [n̂p](~xp, s1, . . . , sk+1, σ(p))) = L∗k,jp [n̂p]
A(~gp, a1, . . . , ak+1, h(p)) ⊆ F,

so, since F ∈ FiG(A), (3.19) and (b) imply:

F ⊇ h(L∗k,j′ [n̂q](~xp, s1, . . . , sk+1, σ(q))) = L∗k,j′ [n̂q]
A(~gp, a1, . . . , ak+1, h(q)).

Therefore, h(q) ∈ G. �

From the previous claims it follows that G = FgA
G (F, a1, . . . , ak+1), so

we are done.
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(ii) Let H := FgA
G (F, a1, . . . , ak+1), n̂ := tp(b) and, by Corollary 2.11, let

r ∈ tr-Seq be such that b = rA(~gp).

If G is finitary, (3.16) implies that for every j ∈ Jp,m̂1,...,m̂k+1,n̂ there is
a finite Lj ⊆ L∗k,j[p, m̂1, . . . , m̂k+1, n̂] such that

Lj(~xp, s1, . . . , sk+1, r), s1, . . . , sk+1 `G r. (3.20)

Assume there is some j ∈ Jp,m̂1,...,m̂k+1,n̂ for which

LA
j (~gp, a1, . . . , ak+1, b) ⊆ F.

Then,

LA
j (~gp, a1, . . . , ak+1, b) ∪ {a1, . . . , ak+1} ⊆ H,

so, since H ∈ FiG(A), (3.20) implies b = rA(~gp) ∈ H.
Conversely, assume b ∈ H. By (i), there is some j ∈ Jp,m̂1,...,m̂k+1,n̂

such that

L∗k,j[p, m̂1, . . . , m̂k+1, n̂]A(~gp, a1, . . . , ak+1, b) ⊆ F,

so in particular LA
j (~gp, a1, . . . , ak+1, b) ⊆ F . �

3.3.1. Axiomatic extensions. In this subsection we generalize [28, Thm.
4.2] to prove that [local] CDD-sequences are invariant under axiomatic extensions,
i.e., that every [local] CDD-sequence for a Gentzen relation G is also a [local]
CDD-sequence for every axiomatic extension of G.

Definition 3.35. Let G := 〈L,`G〉 be a Gentzen relation with trace tr. An
extension of G is a Gentzen relation G′ := 〈L,`G′〉 with trace tr satisfying `G ⊆ `G′ .
If, moreover, there is a set of sequents A ⊆ tr-Seq, closed under substitutions, such
that, for every P ∪ {s} ⊆ tr-Seq, we have

P `G′ s ⇐⇒ A,P `G s,

then G′ is an axiomatic extension of G.

Theorem 3.36. Let G be a Gentzen relation with trace tr. Any local CDD-
sequence for G is a local CDD-sequence for every axiomatic extension of G.

Proof. Let 〈{{Li[p, m̂, n̂] : i ∈ Ip,m̂,n̂} : m̂, n̂ ∈ tr} : p ∈ ω〉 be a local
CDD-sequence for G. Let G′ be an axiomatic extension of G, and let A be as in
Definition 3.35. Fix any context p ∈ ω, any types m̂, n̂ ∈ tr and any sequents
P ∪ {s, r} ⊆ tr-Seqp with tp(s) = m̂ and tp(r) = n̂.

Suppose there is some i ∈ Ip,m̂,n̂ such that P `G′ Li[p, m̂, n̂](~xp, s, r). By Propo-
sition 3.27(ii), s,Li[p, m̂, n̂](~xp, s, r) `G r, so s,Li[p, m̂, n̂](~xp, s, r) `G′ r. Therefore,
we get P, s `G′ r by cut.
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Conversely, suppose P, s `G′ r. Since G′ is an axiomatic extension of G, we
have:

A,P, s `G r. (3.21)

Assume first that p = 0 and that there are no constant symbols in the algebraic
language. Then, s = r = ∅B∅, and thus P, s `G r. Hence, there is some i ∈ Ip,m̂,n̂
such that P `G Li[p, m̂, n̂](~xp, s, r), so P `G′ Li[p, m̂, n̂](~xp, s, r).

Assume now that either p > 0 or there is some constant symbol c in the
algebraic language. Let σ ∈ End(Fm) be a substitution such that σ(~xp) := ~xp
and that maps Var \ {x1, . . . , xp} onto {x1, . . . , xp}, if p > 0, and onto {c} if p = 0.
By structurality, applying σ to both sides of (3.21) yields A∗,P, s `G r, where
A∗ := σ(A). Note that A∗ ⊆ A ∩ tr-Seqp because A is closed under substitutions,
so there exists some i ∈ Ip,m̂,n̂ such that A∗,P `G Li[p, m̂, n̂](~xp, s, r), whence
P `G′ Li[p, m̂, n̂](~xp, s, r).

Conclusion: 〈{{Li[p, m̂, n̂] : i ∈ Ip,m̂,n̂} : m̂, n̂ ∈ tr} : p ∈ ω〉 is a local CDD-
sequence for G′. �

Note that a CDD-sequence 〈{D[p, m̂, n̂] : m̂, n̂ ∈ tr} : p ∈ ω〉 can be seen as
a local CDD-sequence 〈{{D[p, m̂, n̂] : i ∈ Ip,m̂,n̂} : m̂, n̂ ∈ tr} : p ∈ ω〉 in which
every Ip,m̂,n̂ is a singleton. Therefore, by Theorem 3.36 CDD-sequences also remain
CDD-sequences in axiomatic extensions.

3.3.2. Directed local CDDTs. To finish the chapter we present two spe-
cial cases of the local CDDT: the directed local CDDT and the M -directed local
CDDT. Both notions are introduced by Raftery in [28, §§6-7], where he provides
characterizations of both of them in terms of well-known lattice-theoretic proper-
ties of the lattices of theories. We generalize these results to Gentzen relations.

Definition 3.37. Let G be a Gentzen relation with trace tr. A local CDD-
sequence 〈{{Li[p, m̂, n̂] : i ∈ Ip,m̂,n̂} : m̂, n̂ ∈ tr} : p ∈ ω〉 for G is said to be directed
if, for every context p ∈ ω, all types m̂, n̂ ∈ tr, all i, j ∈ Ip,m̂,n̂ and all s, r ∈ tr-Seqp
with tp(s) = m̂ and tp(r) = n̂, there is some k ∈ Ip,m̂,n̂ such that

Li[p, m̂, n̂](~xp, s, r) `G Lk[p, m̂, n̂](~xp, s, r)

and

Lj[p, m̂, n̂](~xp, s, r) `G Lk[p, m̂, n̂](~xp, s, r).

In this situation, G is said to have a directed local CDDT .

We are going to prove that a local CDD-sequence for a finitary Gentzen relation
is directed iff its lattice of theories is distributive.
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Lemma 3.38. Let G be a finitary Gentzen relation with trace tr. Then, the
compact G-theories form a join-semilattice with a minimum element generated, as
an algebra, by {CnG(s) : s ∈ tr} if ∅ /∈ T h(G), and by {∅} ∪ {CnG(s) : s ∈ tr} if
∅ ∈ T h(G).

Proof. LetK be the collection of all compact G-theories. By Proposition 2.33,
Proposition 1.73 and Proposition 2.34, K is the universe of a join-semilattice K
that has a minimum element.

By Proposition 2.33, CnG(s) ∈ K for every s ∈ tr, and ∅ ∈ K if ∅ ∈ T h(G).

Conversely, let T ∈ K be a compact theory, with T 6= ∅. By Proposition 2.33,
there are s1, . . . , sn ∈ tr-Seq, n ∈ ω, such that:

T = CnG(s1, . . . , sn) =
∨

1≤i≤n

CnG(si) ∈ SgK({CnG(s) : s ∈ tr}).

�

Theorem 3.39. A local CDD-sequence for a finitary Gentzen relation G is
directed iff the lattice of G-theories is distributive.

Proof. Let 〈{{Li[p, m̂, n̂] : i ∈ Ip,m̂,n̂} : m̂, n̂ ∈ tr} : p ∈ ω〉 be a local CDD-
sequence for G, where tr := tr(G), and let K be the collection of all compact
G-theories, which, by Proposition 2.33, are exactly the finitely generated ones.

(⇒) Suppose that 〈{{Li[p, m̂, n̂] : i ∈ Ip,m̂,n̂} : m̂, n̂ ∈ tr} : p ∈ ω〉 is directed.

By Lemma 3.38, K is the universe of a join-semilattice K that has a minimum
element and is generated by {CnG(s) : s ∈ tr}, if ∅ /∈ T h(G), and by {∅} ∪
{CnG(s) : s ∈ tr} if ∅ ∈ T h(G).

By Lemma 1.80, Proposition 2.33 and Proposition 2.34, the lattice T h(G) is
distributive iff the join-semilattice K is distributive. So, by Lemma 1.79, T h(G)
is distributive iff the following two conditions hold:

(a) D(CnG(s),CnG(r)) holds in K for all s, r ∈ tr-Seq.

(b) If ∅ ∈ T h(G), then D(T,∅) and D(∅,T) hold in K for all T ∈ K.

To prove (a), let s, r ∈ tr-Seq and T,T′ ∈ K be such that:

(i) CnG(r) ⊆ CnG(s) ∨ T.

(ii) CnG(r) ⊆ CnG(s) ∨ T′.

We need to find a T∗ ∈ K such that T∗ ⊆ T ∩ T′ and CnG(r) ⊆ CnG(s) ∨ T∗. Let
P ∪ P′ ⊆ tr-Seq be finite and such that T = CnG(P) and T′ = CnG(P′). By (i)
and (ii), we have P, s `G r and P′, s `G r, respectively.
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Let p ∈ ω be such that P ∪P′ ∪ {s, r} ⊆ tr-Seqp, m̂ := tp(s) and n̂ := tp(r).
By the local CDDT, there are i, j ∈ Ip,m̂,n̂ such that P `G Li[p, m̂, n̂](~xp, s, r) and
P′ `G Lj[p, m̂, n̂](~xp, s, r). So, since the local CDD-sequence is directed, there is
some k ∈ Ip,m̂,n̂ such that P `G Lk[p, m̂, n̂](~xp, s, r) and P′ `G Lk[p, m̂, n̂](~xp, s, r).
By Proposition 3.27(ii), we have s,Lk[p, m̂, n̂](~xp, s, r) `G r, so by finitarity there
is a finite P∗ ⊆ Lk[p, m̂, n̂](~xp, s, r) such that s,P∗ `G r. Therefore, we can take
T∗ := CnG(P∗) ∈ K.

Finally, to prove (b) let T1,T2,T3,T4 ∈ K be such that ∅ ⊆ T∨T1, ∅ ⊆ T∨T2,
T ⊆ ∅ ∨ T3 = T3 and T ⊆ ∅ ∨ T4 = T4. Clearly, we can take T∗1 := T1 ∩ T2 ∈ K
and T∗2 := T3 ∩ T4 ∈ K to see that D(T,∅) and D(∅,T) hold in K, respectively.

Conclusion: the lattice T h(G) is distributive.

(⇐) Conversely, suppose that the lattice T h(G) is distributive. By Lemma 1.80,
Proposition 2.33 and Proposition 2.34, K is the universe of a distributive join-
semilattice K.

Fix a context p ∈ ω, any types m̂, n̂ ∈ tr, any i, j ∈ Ip,m̂,n̂ and any sequents
s, r ∈ tr-Seqp with tp(s) = m̂ and tp(r) = n̂. By Proposition 3.27(ii), we have
s,Li[p, m̂, n̂](~xp, s, r) `G r and s,Lj[p, m̂, n̂](~xp, s, r) `G r, so by finitarity there
are finite sets Pi ⊆ Li[p, m̂, n̂](~xp, s, r) and Pj ⊆ Lj[p, m̂, n̂](~xp, s, r) such that
s,Pi `G r and s,Pj `G r. Then, CnG(r) ⊆ CnG(s) ∨ CnG(Pi) and CnG(r) ⊆
CnG(s) ∨ CnG(Pj), so, since K is distributive, there is a compact theory T ∈ K
such that T ⊆ CnG(Pi) ∩ CnG(Pj) and CnG(r) ⊆ CnG(s) ∨ T. Let P ⊆ tr-Seq be
finite and such that T = CnG(P). Thus, we have:

Pi `G P and Pj `G P and s,P `G r. (3.22)

Assume first that p = 0 and that there are no constant symbols in the algebraic
language. Then, s = r = ∅B∅, and thus s `G r. Hence, there is some k ∈ Ip,m̂,n̂
such that `G Lk[p, m̂, n̂](~xp, s, r), so Li[p, m̂, n̂](~xp, s, r) `G Lk[p, m̂, n̂](~xp, s, r) and
Lj[p, m̂, n̂](~xp, s, r) `G Lk[p, m̂, n̂](~xp, s, r).

Assume now that either p > 0 or there is some constant symbol c in the
algebraic language. Let σ ∈ End(Fm) be a substitution such that σ(~xp) := ~xp
and that maps Var \ {x1, . . . , xp} onto {x1, . . . , xp}, if p > 0, and onto {c} if p = 0.
By structurality, applying σ to (3.22) yields:

Pi `G σ(P) and Pj `G σ(P) and s, σ(P) `G r.

Since σ(P)∪{s, r} ⊆ tr-Seqp, by the local CDDT there is some k ∈ Ip,m̂,n̂ such that
σ(P) `G Lk[p, m̂, n̂](~xp, s, r), whence Li[p, m̂, n̂](~xp, s, r) `G Lk[p, m̂, n̂](~xp, s, r) and
Lj[p, m̂, n̂](~xp, s, r) `G Lk[p, m̂, n̂](~xp, s, r) follow by cut and monotonicity.

Conclusion: 〈{{Li[p, m̂, n̂] : i ∈ Ip,m̂,n̂} : m̂, n̂ ∈ tr} : p ∈ ω〉 is directed. �



92 3. CONTEXTUAL DEDUCTION-DETACHMENT THEOREMS

Finally, we turn our attention to another special case of the local CDDT, very
similar to the directed version.

Definition 3.40. Let G be a Gentzen relation with trace tr. A local CDD-
sequence 〈{{Li[p, m̂, n̂] : i ∈ Ip,m̂,n̂} : m̂, n̂ ∈ tr} : p ∈ ω〉 for G is said to be
M-directed if, for every context p ∈ ω, all traces m̂, n̂ ∈ tr, all i, j ∈ Ip,m̂,n̂ and all
s, r ∈ tr-Seqp with tp(s) = m̂ and tp(r) = n̂, there is some k ∈ Ip,m̂,n̂ such that

Li[p, m̂, n̂](~xp, s, r) `G Lk[p, m̂, n̂](~xp, s, r)

and
s,Lj[p, m̂, n̂](~xp, s, r) `G Lk[p, m̂, n̂](~xp, s, r).

In this situation, G is said to have an M-directed local CDDT .

For the M -directed local CDDT, a result analogous to Theorem 3.39 holds,
with modularity in place of distributivity:

Theorem 3.41. A local CDD-sequence for a finitary Gentzen relation G is
M-directed iff the lattice of G-theories is modular.

Indication for the proof. With some minor, obvious changes, the proof is
almost identical to the one of Theorem 3.39, using modularity, M(CnG(s),CnG(r))
and M -directedness instead of distributivity, D(CnG(s),CnG(r)) and directedness,
respectively. �



CHAPTER 4

Conclusion and Further Research

We have generalized many results from abstract algebraic logic to the context of
Gentzen relations. Particularly, we have presented and discussed multiple charac-
terizations of protoalgebraicity, given a corrected version of Raftery’s [27, Thm.
13.4] and proved a new syntactic one that simplifies the modus ponens condition.

After that, we have studied the CDDT and its local variant in the framework
of Gentzen relations, generalizing the bridge theorem connecting the CDDT with
having ESPRC using two strategies: the first, based on Blok and Pigozzi’s work
in [6], clearly shows the connection between a CDD-sequence and the equations
that semi-define the principal relative congruences, while the second generalizes
the one from Raftery’s [28] and has a much more algebraic flavour.

We now present some indications for future work that would be a natural
continuation of this thesis.

4.1. Protoalgebraic multi-dimensional Gentzen relations

In [18, Thm. 2.17], Gil and Rebagliato prove a syntactic characterization of pro-
toalgebraic multi-dimensional Gentzen relations similar to Theorem 2.56, which
we have adapted from Pa lasińska’s [23, Thm. 5.12].

We have argued that Theorem 2.62 is more suitable when working with Gentzen
relations than Theorem 2.56, mainly due to the simplification of the modus ponens
condition, and thus a natural continuation of Subsection 2.7.2 would be to gen-
eralize Theorem 2.62 to multi-dimensional Gentzen relations. No difficulty, other
than an increase in the complexity of the notation, should arise.

4.2. Filter distributivity and modularity

Recall (cf. Theorem 3.39 and Theorem 3.41) that a local CDD-sequence for a
finitary Gentzen relation G is directed (respectively, M -directed) iff the algebraic
lattice of G-theories is distributive (respectively, modular).

In [28, §§6-7], Raftery goes one step further and proves that every finitary
sentential logic S with a directed (respectively, M -directed) local CDDT is filter
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distributive (respectively, filter modular), i.e., the lattice FiS(A) is distributive
(respectively, modular) for all algebras A. His proofs make use of the following
result, due to Czelakowski:

Theorem 4.1 (cf. [11, Thm. 1.7.1]). Let S be a protoalgebraic finitary senten-
tial logic. Then, every universal sentence of first-order lattice theory that is true
in the lattice T h(S) is also true in the lattice FiS(A) for all algebras A.

Czelakowski’s proof of Theorem 4.1 is quite involved, but we have not found
any obstacle that would make it impossible to generalize it to Gentzen relations
and then use it in conjunction with Theorem 3.39 and Theorem 3.41 to prove that
every finitary Gentzen relation G with a directed (respectively, M -directed) local
CDDT is filter distributive (respectively, filter modular). We have not done so
here because we were more focused on the bridge between the CDDT and ESPRC
than on the directed variants of the local CDDT.

4.3. A family of CDDTs

The CDDT was introduced by Raftery in [28] as a generalization of the DDT in
order to extend some of its desirable features to logics lacking a DDT.

In the literature, one can find several variants of the DDT for sentential logics;
among them, the following are probably the most well known:

• The local DDT (LDDT).

• The parametrised DDT (PDDT).

• The parametrised local DDT (PLDDT).

The reader in need of their definitions is referred to [14, pp. 173-4, 334-6].

Bridge theorems for each of these versions of the DDT are known to hold in
the case of sentential logics:1

Theorem 4.2 (cf. [6, Thm. 5.5]). Let S be a finitary elementarily algebraizable
sentential logic, and K a quasivariety such that S ∼= EQ(K). Then, S has the DDT
iff K has EDPRC.

Definition 4.3 (cf. [10, §II]). Let G be a Gentzen relation, and M a class
of G-matrices. M is said to have the filter extension property (FEP) if, for every
submatrix 〈B, G〉 of a G-matrix 〈A, F 〉 ∈ M and every G′ ∈ FiG(B)G, there is
some F ′ ∈ FiG(A)F such that G′ = F ′ ∩B.

Theorem 4.4 (cf. [10, Thm. II.1]). Let S be a finitary protoalgebraic sentential
logic. Then, S has the LDDT iff the class of all S-matrices has the FEP.

1Note that protoalgebraicity can be viewed as an algebraic property, due to its many algebraic
characterizations (cf. Subsection 2.7.3).



4.3. A FAMILY OF CDDTS 95

Theorem 4.5 (cf. [11, Thm. 2.4.1]). Let S be a protoalgebraic sentential logic.
Then, S has the PDDT iff S has 1-FDPF (equivalently, n-FDPF for all n > 0).

Theorem 4.6 (cf. [14, Thm. 6.22]). Let S be a sentential logic. Then, S has
the PLDDT iff S is protoalgebraic.

Nothing should prevent these theorems to be generalized to Gentzen relations.
In fact, as we said in Section 3.2, Rebagliato and Verdú proved Theorem 4.2 for
elementarily algebraizable finitary Gentzen relations in [30].

We have proved (Theorem 3.24) a bridge theorem analogous to Theorem 4.2
for the CDDT and having ESPRC. Also, Theorem 3.32 shows that having a local
CDDT (LCDDT) is equivalent to being protoalgebraic. All these bridge theorems
are summarized in Table 4.1. Note that, in the contextual case, the local version is

Non-contextual Contextual

Logic Algebra Logic Algebra

DDT EDPRC CDDT ESPRC

LDDT FEP ?? ??

PDDT FDPF ?? ??

PLDDT protoalgebraicity LCDDT protoalgebraicity

Table 4.1. Algebraic counterparts of the deduction-detachment theorems.

already equivalent to protoalgebraicity, whereas in the non-contextual case being
protoalgebraic is equivalent to the PLDDT and there are two variants of the DDT,
namely the LDDT and the PDDT, in between EDPRC and protoalgebraicity.

Therefore, a natural continuation of Chapter 3 would be to investigate the
existence of variants of the CDDT equivalent to some (possibly weakened) versions
of the FEP and having n-FDPF for Gentzen relations.

In Subsection 3.1.2 we presented a variant of having n-FDPF for all n > 0,
namely having FDPFfg, and we proved (Proposition 3.14) that it is implied by
having the CDDT. Nevertheless, we have been unable to replicate the proofs of
Theorem 4.4 and Theorem 4.5 for the contextual case and some suitable variants of
the FEP and having n-FDPF, respectively, so we believe that there are no versions
of the CDDT filling the gaps of Table 4.1.
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Index of Terms

algebra, 3
— absolutely free, 5
— free, 5
— generated, 4

— finitely, 4
— freely, 5

— of formulas, 6
— of type L, 3
— quotient, 8
— trivial, 3
algebraic language, 2
arity, 2

bridge theorem, 67

CDD-sequence, see contextual
deduction-detachment
theorem (CDDT)

class operator, 12
closed set, 17, 18
— finitely generated, 19
closed under a class operator, 12
closure operator, 17
— associated with a closure system,

18
— associated with a consequence

relation, 20
— finitary, 18
closure relation, see consequence

relation
closure system, 17
— associated with a closure

operator, 18
— inductive, 18
compact element, 14

compatibility property, 49
congruence, 7
— compatible, 29
— generated by a set, 8
— principal, 8
— relative, 9
consequence relation, 20
— associated with a closure

operator, 20
— finitary, 20
context, 22
contextual deduction theorem, 60
— local, 78
contextual deduction-detachment

theorem (CDDT), 59
— local, 78

— directed, 89
— M -directed, 92

contextual detachment, 60
— local, 78
contraction, 37
correspondence property, 49
cut, 20, 26

deduction-detachment theorem
(DDT), 59

designated elements, 36
direct product
— of algebras, 9
— of matrices, 38
dual relative pseudocomplement, 14

endomorphism, 5
equation, 10
— satisfied, 10
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— valid, 10
equational class, 11
equational model, 10
equationally definable principal

congruences (EDPC), 68
equationally definable principal

relative congruences
(EDPRC), 68

equationally semi-definable principal
congruences (ESPC), 68

equationally semi-definable principal
relative congruences
(ESPRC), 68

equivalent Gentzen relations, 55
extension, 88
— axiomatic, 88

factor-determined n-principal filters
on direct products
(n-FDPF), 66

factor-determined principal filters on
finitely generated direct
products (FDPFfg), 66

filter, 9
— proper, 9
filter distributive, 94
filter extension property (FEP), 94
filter modular, 94
finite model property, 65
— strong, 65
formulas, 5
fundamental set, 46

G-matrix, 36
G-template, see template
G-theory, see theory
G-filter, 34
generators, 4
Gentzen relation, 26
— algebraizable, 57

— elementarily, 57
— strongly, 57

— complete, 65

— strongly, 65
— defined by a class of matrices, 37
— defined by a matrix, 37
— equational, 51
— protoalgebraic, 40
— weakly complete, see Gentzen

relation, complete
Gentzen variable, 46
greatest lower bound, see infimum

homomorphism, 4
— of matrices, 37

— strict, 37

identity, 20, 26
identity relation, 7
inclusion map, 4
indiscernible, 40
infimum, 12
interderivable, 40
interpretation
— of formulas, 6
— of sequents, 22
isomorphism, 4
— order-isomorphism, 13

join, 13, 15
join-semilattice
— as a poset, 15
— as an algebra, 15
— distributive, 17
— modular, 17

K-congruence, see congruence,
relative

k-deductive system, see
k-dimensional deductive
system

k-dimensional deductive system, 28
kernel, 5

L-algebra, see algebra, of type L
L-closed set, see subuniverse
L-matrix, see matrix
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lattice
— algebraic, 14
— as a poset, 13
— as an algebra, 13
— complete, 14
— distributive, 15
— dually Brouwerian, 14
— modular, 15
lattice order, 14, 15
Leibniz congruence, 33
Leibniz hierarchy, 33
Leibniz operator, 33
local CDD-sequence, see contextual

deduction-detachment
theorem (CDDT), local

— directed, see contextual
deduction-detachment
theorem (CDDT), local,
directed

— M -directed, see contextual
deduction-detachment
theorem (CDDT), local,
M -directed

lower bound, 12
lowest upper bound, see supremum

matrix, 36
— finite, 36
— finitely generated, 36
— model, 36
— sentential, 36
meet, 13
model
— equational, see equational model
— matrix, see matrix, model
— quasiequational, see

quasiequational model
monotone, see order-preserving map
monotonicity, 20, 26

natural projection, 8

order-preserving map, 13

partial order, 12
partially ordered set, 12
polynomial function, 30
poset, see partially ordered set
projection, 9

quasiequation, 11
— satisfied, 11
— valid, 11
quasiequational class, 11
quasiequational model, 11
quasivariety, 12

sentential logic, 27
sequent, 21
structurality, 26
subalgebra, 3
submatrix, 36
substitution, 24
— fundamental, 46
subuniverse, 3
supremum, 12
symbol, 2
— binary, 3
— constant, 2
— function, 2
— n-ary, 2
— ternary, 3
— unary, 3

T-indiscernible, see indiscernible
T-interderivable, see interderivable
template, 79
theory, 27
— generated by a set, 27
total relation, 7
trace, 21
transformer, 53
— finitary, 53
type, 21

ultrafilter, 10
ultraproduct, 10
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universe, 3

upper bound, 12

upwards directed set, 13

variable, 6
— occurrence in formulas, 6
— occurrence in sequents, 22
variety, 12
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ω 1
P(A) 1
|A| 1
f�X 1∏

i∈I Ai 1
× 2
An 2
~an 2
∅ 2
A<ω 2
s1
as2 2

~A 2
b ∈ ~a 2
L 2, 21
ar 2
A 3
λA 3
Sub(A) 3
SgA 3
B ⊆ A 3
∼= 4, 13, 55
Hom(A,B) 5
End(A) 5
h(A) 5
kerh 5
FmL(X) 5
FmL(X) 6
ϕ(~x) 6
Γ(~x) 6
ϕA(~a) 6
ΓA(~a) 6
∆A 7

∇A 7
a/θ 8
F/θ 8
Co(A) 8
ΘA 8
ΘA(a, b) 8
A/θ 8
πθ 8
CoK(A) 9∏

i∈I Ai 9
θU 10∏

i∈I Ai/U 10
a/U 10
≈ 10
|= 10, 11
Mod(Θ) 10, 11
&1≤i≤n αi ≈ βi ⇒ δ ≈ ε 11
I 11
H 11
S 12
P 12
PU 12
supX 12
inf X 13∨
X 14∧
X 14

a .− b 14
D(a, b) 17
M(a, b) 17
CC 18
CC 18
ΘA

K 20
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∧AK 20
∨AK 20
` 20
`C 20
C` 20
Var 21
Varx 21
Vary 21
Varz 21
Fm 21
tr 21
B 21
tp 21
m̂ 21
Σ(m̂) 21
tr-Seq(A) 22
tr-Seq 22
〈m,n〉-Seq 22
Seq(A) 22
Seq 22
s(~u) 22
P(~u) 22
Fmn 22
tr-Seqn 22
Fmn 22
sA(~a) 22
PA(~a) 22
sA(a) 22
〈a1, . . . , at〉m,n 23
G 26
`G 26
tr(G) 26
a`G 26
CnG 27
T h(G) 27

a/θ 28
F/θ 28
[a]θ 28
ΩA 33
ΩA(F ) 33
Ω 33
FiG(A) 34
FgA

G 34
∧A 34
∨A 34
FiG(A)F 37
GM 37
`M 37
GM 37
`M 37∏

M 38∏
i∈I〈Ai, Fi〉 38a
i∈I Fi 38

xm,n 46
ym,n 46
zm,n 46
Sm,n

G 46
σm,n 46
EQ(K) 51
`EQ(K) 51
`EQ(K) 51
|=K 51
τ ′ ⊆ τ 56
D[n, m̂1, m̂2] 59
D[n] 59
D∗k[p, m̂1, . . . , m̂k+1, n̂] 61
In,m̂1,m̂2 78
Li[n, m̂1, m̂2] 78
L∗k,j[p, m̂1, . . . , m̂k+1, n̂] 83
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