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Abstract 
We present a unified approach to describing and linking several methods for representing cate-
gorical data in a contingency table. These methods include: correspondence analysis, Hellinger 
distance analysis, the log-ratio alternative, which is appropriate for compositional data, and the 
non-symmetrical correspondence analysis. We also present two solutions working with cummula-
tive frequencies. 
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1. Introduction 
In multivariate analysis, it is usual to link several methods in a closed expression, which depends on a set of 
parameters. Thus, in cluster analysis, some criteria (single linkage, complete linkage, median), can be unified by 
using parametric coefficients. The biplot analysis on a centered matrix X , is based on the singular value de- 
composition (SVD) X U V ′= Λ . The general solution is 1X U Vα α− ′= Λ Λ  with 0 1α≤ ≤ , providing the GH, 
JK, SQ and other biplot types depending on α . Also, some orthogonal rotations in factor analysis (varimax, 
quartimax) are particular cases of an expression depending on one or two parameters. 

There are several methods for visualizing the rows and columns of a contingency table. These methods can be 
linked by using parameters and some well-known matrices. This parametric approach shows that correspon- 
dence analysis (CA), Hellinger distance analysis (HD), non-symmetric correspondence analysis (NSCA) and 
log-ratio analysis (LR), are particular cases of a general expression. In these methods, the decomposition of the 
inertia is used as well as a generalized version of Pearson contingency coefficient. With the help of triangular 
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matrices, it is also possible to perform two analyses, Taguchi’s analysis (TA) and double accumulative analysis 
(DA), both based on cumulative frequencies. This paper unifies and extends some results by Cuadras and Green- 
acre [1]-[4]. 

2. Weighted Metric Scaling  
A common problem in data analysis consists in displaying several objects as points in Euclidean space of low 
dimension. 

Let { }1, , kω ωΩ =   be a set with k  objects, δ  a distance function on Ω  providing the k k×  Eu- 
clidean distance matrix ( )k ijδ∆ = , where ( ),ij i jδ δ ω ω=  Let ( )1, , kw w ′=w   a weight vector such that 

1 1k
ii w

=
′ = =∑w 1  with 0iw >  and 1  the column vector of ones.  
The weighted metric scaling (WMS) solution using k∆  finds the spectral decomposition  

( ) ( ) ( )21 2 1 2 21
2w k wD I I D U U ′ ′ ′− − ∆ − = Λ 

 
1w w1 ,                          (1) 

where I  is the identity matrix, ( ) ( )2 2
k ijδ∆ = , 2Λ  is p p×  diagonal with p  positive eigenvalues arranged 

in descending order, U  is k p×  such that U U I′ = , and ( )diagwD = w  [5].  
The k p×  matrix 1 2

wX D U−= Λ  contains the principal coordinates of Ω , which can be represented as a 
configuration of k  points 1, , kP P  in Euclidean space. This means that the Euclidean distance between the 
points iP , jP  with coordinates the rows ix , jx  of X , equals ijδ . 

The geometric variability of Ω  with respect to δ  is defined by 

( )22

, 1

1 1
2 2

k

i ij j k
i j

V w wδ δ
=

′= = ∆∑ w w . 

The geometric variability (also called inertia) can be interpreted as a generalized variance [6]. 
If G XX ′=  and g  is the column vector with the diagonal entries in G , then ( )2 2k G′ ′∆ = + −g1 1g . Since 
X′ =w 0  and 1′ =w 1 , we have ( ) ( ) ( )1 2 1 2 2 2tr tr trw wD GD U U′ ′= = Λ = Λg w . Thus, if ( )2rankk ′ = Λ , the 

geometric variability is  

   
2

1

k

i
i

Vδ λ
′

=

= ∑ . 

We should use the first m columns of X  to represent the k  objects in low dimension m , usually 2m = . 
This provides an optimal representation, in the sense that the geometric variability taking m k≤  first di- 
mensions is ( ) 2

1
m

iiV mδ λ
=

= ∑  and this quantity is maximum. 

3. Parametric Analysis of Contingency Tables  
Let ( )ijN n=  be an I J×  contingency table and 1P n N−=  the correspondence matrix, where ijijn n= ∑ . 
Let { }min ,K I J=  and P=r 1 , ( )diagrD = r , P′=c 1 , ( )diagcD = c , the vectors and diagonal matrices 
with the marginal frequencies of P . In order to represent the rows and columns of N , Goodman [7] intro- 
duces the generalized non-independence analysis (GNA) by means of the SVD:  

( ) ( )1 2 1 1 1 2
r r c cD I r R D PD D U V− −′ ′− ⋅ ⋅ = Λ1 , 

where Λ  is diagonal with the singular values in descending order, and ,  U V  are matrices of appropriate 
order with U U I′ = , and V  orthogonal. ( )R x , with 0x > , is any monotonically increasing function. Here  
( )R M  with ( )ijM m= , means ( )( )ijR m . The principal coordinates for rows and columns are given by  

1 2
rA D U−= Λ , 1 2

cB D V−= Λ . Clearly GNA reduces to CA when ( ) 1R x = . 
A suitable choice of ( )R x  is the Box-Cox transformation 

( ) ( )
( )

1 , if  0;

ln , if  0.

x
R x

x

α α α

α

 − >= 
=

 

With this transformation, let us consider the following SVD depending on three parameters: 
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( ) ( )( )1 2 1 11
r r c cD I D PD D U V

α βγ
α

− −  ′ ′ ′− − = Λ    
1r 11 ,                      (2) 

where ( ) ( )ijM mα α=  and 0 ,  1α β≤ ≤ . Then the principal coordinates for the I  rows and the standard 
coordinates for the J  columns of N  are given by 1 2

rA D U−= Λ  and cB D Vβ−∗ = , respectively, in the sense 
that these coordinates reconstitute the model: 

( ) ( )( )1 11
r cI D PD AB

α
γ

α
− −

∗
  ′ ′ ′− − =    

1r 11 . 

However, different weights are used for the column representation, e.g., cB D Vβ= Λ . Implicit with this (row) 
representation is the squared distance between rows 

2

2 2

1

J
ij i j

ii j
j i j i j

p p
c

r c r c

α α

βδ ′
′

= ′

    
 = −           

∑ .                                (3) 

The first principal coordinates account for a relative high percentage of inertia, see Section 2. This parametric 
approach satisfies the principle of distributional equivalence and has been explored by Cuadras and Cuadras [2] 
and Greenacre [4]. Here we use Greenacre’s parametrization. 

The geometric variability for displaying rows, is the average of the distances weighted by the row marginal 
frequencies:  

 
( )21

2
Vδ ′= ∆r r , 

where ( ) ( )2 2
iiδ ′∆ =  is the I I×  matrix of squared parametric distances (3). 

For measuring the dispersion in model (2), let us introduce the generalized Pearson contingency coefficient 

( )
2

2 2

1 1
, 1

I J
ij

i j
i j i j

p
r c

r c

α

βφ α β
= =

  
 = −     

∑∑ . 

Note that ( )2 , 0Vδ φ α β= =  if P ′= rc , i.e., under “statistical independence” between row and column vari- 
ables. In general ( )2 ,Vδ φ α β≠ . 

The unified approach for all methods (centered and uncentered) discussed below, are given in Table 1. It is 
worth noting that, from  

( )( )1 1 1 1
r c r cI D PD D PD− − − −′ ′ ′− − = −1r 11 11 ,                             (4) 

the centered ( )1γ =  and uncentered ( )0γ =  solutions coincide in CA, NSCA and TA (Taguchi’s analysis, 
see below). 

To give a WMS approach compatible with (1), we mainly consider generalized versions without right-  

centering, i.e., post-multiplying ( )( )1 1
r cD PD

α− − ′−  
11  by ( )I ′− c1 . In fact, we can display columns in the same  

 
Table 1. Four methods for representing rows and columns in a contingency table.                                           

 Uncentered Centered 

Method 
0γ =  1γ =  

α  β  α  β  

CA correspondence analysis 1 1 2  1 1 2  

HD Hellinger distance analysis 1 2  1 2  1 2  1 2  

NSCA non-symmetric CA 1 1 1 1 

LR Log-ratio analysis 0 1 2  0 1 2  
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graph of rows without applying this post-multiplication. To do this compute the SVD ( ) ( )I IH Q H A RDS′ ′=  
with D diagonal and HI the unweighted I I×  centering matrix. Then ( ) ( )I IH Q H A RS=  and if we take prin- 
cipal coordinates IH A  for the rows, and identify each column as the dummy row profile ( )0, ,0,1,0, ,0  , 
then the centered projection JB H RS ′=  provides standard coordinates for the columns, see [2] [3]. 

4. Testing Independence   
Suppose that the rows and columns of ( )ijN n=  are two sets of categorical variables with I  and J  states, 
and that ijn  is the observed frequencies of the corresponding combination, according to a multinomial model. 
Assuming 1 2β = , the test for independence between row and column variables can be performed with 

( )2 ,1 2φ α . Under independence we have, as n →∞ , ( ) ( ) ( )( )
2 2 2

1 1,1 2 I Jn α φ α χ − −→  if 0α > , and  
( ) ( )( )

2 2
1 10,1 I Jnφ χ − −→  if 0α = , where ( )( )

2
1 1I Jχ − −  is the chi-square distribution with ( )( )1 1I J− −  d.f. The con-  

vergence is in law. 
To prove this asymptotic result, suppose 0α >  a fix value. Let ( )ij i jx p r c= . From 

2
1ij i j i ip rc rc − = 

( ) ( )2
ij i j i jp rc rc−  we get  

( ) ( )
2

2 211 1
1i j i j

xx r c x r c
x

α
α  −
− = − − 

. 

But ( ) ( )
2 2

1lim 1 1x x xα α→
 − − =  . Hence, under independence, 1x →  as n →∞ . Thus 

( )( )

2 2

2

1 1 1 1

2 2
1 1

lim 1 lim

                                             .

I J I J
ij ij i j

i i jn ni j i ji j i j

I J

p p r c
n r c n rc

r c r c

α

α

α χ

→∞ →∞= = = =

− −

    −
 − =           

=

∑∑ ∑∑ . 

If 0α →  then 
2

1, 0 2

1 1lim 1
1x

x
x

α

α α→ →

 −
= − 

 and the above limit reduces to ( ) ( )( )
2 2

1 10,1 I Jnφ χ − −→ . 

5. Correspondence Analysis  
In this and the following sections, we present several methods of representation, distinguishing, when it is 
necessary, the centered from the uncentered solution. The inertia is given by the geometric variability and the 
generalized Pearson coefficient, respectively. 

Centered and Uncentered ( )1, 1 2α β= =   

( )1 2 1 1 1 2
r r c cD D PD D U V− − ′ ′− = Λ11 . 

1) Chi-square distance between rows: 
2

2
1

1J ij i j
ii j

i i j

p p
r r c

δ ′
′ =

′

 
= − 

 
∑ . 

2) Rows and columns coordinates: 1 2 1 2,  r cA D U B D V− −= Λ = Λ . 

3) Inertia: ( )
2

2
1 11,1 2 1I J ij

i ji j
i j

p
V r c

r cδφ
= =

 
= = −  

 
∑ ∑ . 

Some authors considered CA the most rational method for analyzing contingency tables, because its ability to 
display in a meaningful way the relationships between the categories of two variable [8]-[10]. For the history of 
CA, see [11], and for a continuous extension, see [12] [13]. CA can be understood as the first order approxima- 
tion to the alternatives HD and LR given below [3]. Besides, LR would be a limiting case of parametric CA 
[14]. 

6. Hellinger Distance Analysis  
Centered ( )1 2, 1 2, 1α β γ= = = , Uncentered ( ( )1 2, 1 2, 0α β γ= = =  
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( ) ( )( )
( )( )

1 21 2 1 2 1 2 1 2

1 21 2 1 2 1 2 1 2

Centered .

Uncentered .

r r c c

r r c c

D I D P D D U V

D D P D D U V

− −

− −

′ ′ ′− − = Λ

′ ′− = Λ

1r 11

11
 

1) Hellinger distance between rows: ( )22
1

J
ii ij i i j ij p r p rδ ′ ′ ′=
= −∑ . 

2) Rows and columns coordinates: 1 2 1 2,  r cA D U B D V− −
∗= Λ = . 

3) Inertia: ( )2
1 2 1 2 1 2 1 2

1 11 1 J I
r r ij ij iV r D P P D r p rδ
− −

= =
′ ′= − = −∑ ∑ , 

( ) ( )2
1 11 2,1 2 2 1 I J

ij i ji j p r cφ
= =

= −∑ ∑ . 

Although the distances between rows are the same, the principal coordinates in the centered and uncentered  
solutions are distinct. Note that ( ), ij i ji j p r c∑  is the so-called affinity coefficient and that ( )2 1 2,1 2Vδ φ< .  

HD is suitable when we are comparing several multinomial populations and the column profiles should not have 
influence on the distance. See [15] [16]. 

7. Non-Symmetric Correspondence Analysis  
Centered and Uncentered ( )1, 1α β= =   

( )1 2 1 1
r r c cD D PD D U V− − ′ ′− = Λ11 . 

1) Distance between rows: 
2

2
1

J ij i j
ii j

i i

p p
r r

δ ′
′ =

′

 
= − 

 
∑ . 

2) Rows and columns coordinates: 1 2 ,  rA D U B V−= Λ = Λ . 

3) Inertia: ( )
2

2
1 11,1 I J ij

j ii j
i

p
V c r

rδφ
= =

 
= = − 

 
∑ ∑ . 

Note that Vδ  is related to the Goodman-Kruskal coefficient τ  in a contingency table. This measure is 
2

1 1

2
11

I J ij
j ii j

i
I

ii

p
c r

r

r
τ

= =

=

 
− 

 =
−

∑ ∑

∑
. 

The numerator of τ  represents the overall predictability of the columns given the rows. Thus NSCA may be 
useful when a categorical variable plays the role of response depending on a predictor variable, see [17]-[19]. 

8. Log-Ratio Analysis   
Centered ( )0, 1 2, 1α β γ= = = , Uncentered ( )0, 1 2, 0α β γ= = =  

( ) ( )
( )

1 2 1 1 1 2

1 2 1 1 1 2

Centered ln .

Uncentered ln .

r r c c

r r c c

D I D PD D U V

D D PD D U V

− −

− −

′ ′− = Λ

′= Λ

1r
 

1) Log-ratio distance between rows: 
2

2
1 ln lnJ ij i j

ii jj
i i

p p
c

r r
δ ′

′ =
′

 
= − 

 
∑ . 

2) Rows and columns coordinates: 1 2
rA D U−= Λ , 1 2

cB D V−
∗ = Λ . 

3) Inertia: 
2 2

1 1 1ln lnJ I Iij ij
j i ij i i

i i

p p
V c r r

r rδ = = =

    
 = −   
     

∑ ∑ ∑ , 
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( )
2

2
1 10,1 2 lnI J ij

i ji j
i j

p
r c

r c
φ

= =

 
=   

 
∑ ∑ . 

In spite of having the same distances, the principal coordinates (centered and uncentered) are different. Note 
that ( )2 0,1 2Vδ φ< . This method satisfies the principle of subcompositional coherence and is appropriate for 
positive compositional data [20]. 

The inertia and the geometric variability in these four methods, as well as Taguchi’s method given in Section 
2, are summarized in Table 2. For a comparison between CA, HD, and LR see [3] [21]. Besides, by varying the 
parameters there is the possibility of a dynamic presentation linking these methods [22]. 

9. Double-Centered Log-Ratio Analysis  
In LR analysis Lewi [23] and Greenacre [4] considered the weighted double-centered solution  

( ) ( )( )1 2 1 1 1 2lnr r c cD I D PD I D U V− − ′′ ′ ′− − = Λ1r 1c , 

called “spectral map”. The unweighted double-centered solution, called “variation diagram”, was considered by 
Aitchison and Greenacre [20]. They show that log-ratio and centered log-ratio biplots are equivalent. In this 
solution the role of rows and columns is symmetric. 

10. Analysis Based on Cumulative Frequencies 
Let ( )ijN n=  be the I J×  contingency table, in ⋅  and jn⋅  the row and column marginals. Given a row i  
let us consider the cumulative frequencies 

1 1 2 1 2 1,   ,   ...,   i i i i i iJ i iJz n z n n z n n= = + = + + , 

and cumulative column proportions 

11 1 2
1 2,   ,   ...,   J

J
n nn n nd d d

n n n
⋅ ⋅⋅ ⋅ ⋅ + ++

= = =


. 

The Taguchi’s statistic [24], is given by 
2

1

1 1

J I
ij

j i j
j i i

z
T w n d

n

−

⋅
= = ⋅

   = −    
∑ ∑ , 

 
Table 2. Inertia expressions for five methods for representing rows in contingency tables. In CA and NSCA the geometric 
variability coincides with the contingency coefficient. This coefficient does not apply in TA.                                   

Method Inertia (centered) 2
iVδ λ=∑  Inertia (uncentered) ( )2 2, iφ α β λ=∑  

CA Benzécri-Greenacre-Lebart 
2

,
1ij

i ji j
i j

p
rc

rc
 

−  
 

∑  ( )2 1,1 2 Vδφ =  

HD Domenge-Volle-Rao ( )2

1 ij ii i
p r−∑ ∑  ( ) ( )2

,
1 2,1 2 2 1 ij i ji j

p rcφ = −∑  

NSCA Lauro-D’Ambra 
2

,

ij
j ii j

i

p
c r

r
 

− 
 

∑  ( )2 1,1 Vδφ =  

LR Aitchison-Greenacre 
2 2

1 1 1
ln lnJ I Iij ij

j i ij i i
i i

p p
c r r

r r= = =

    
−    

     
∑ ∑ ∑  ( )

2

2

,
0,1 2 ln ij

i ji j
i j

p
rc

rc
φ

 
=   

 
∑  

TA Beh-D’Ambra-Simonetti ( )2

,

j ij i j

i j
i

w P rC
r
−

∑  Same Vδ  
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where 1 1, , Jw w −  are weights. Two choices are possible: ( ) 1
1j j jw d d

−
 = −   and 1jw J= . The test based  

on T  is better than Pearson chi-square when there is an order in the categories of the rows or columns of the 
contingency table [25]. 

The so-called Taguchi’s inertia aT T n=  is  
21

1 1

21

1 1

1    .

J I
ik

a j i j
j i i

J I
ik

j i j
j i i

z nT w r d
r

zw rd
n r

−

= =

−

= =

  
 = −    
  = −     

∑ ∑

∑ ∑
 

By using ( )1 2, ,d d ′=d   and the J J×  triangular matrix 

1 0 0
1 1 0

1 1 1 1

M

 
 
 =
 
 
 





   

, 

then M ′=d c  and ( )ikz n PM ′= . Thus Ta  depends on ( ) ( )PM P M′ ′ ′ ′− = −rd rc  and can be expressed as 

( ) ( )( )1 2 1 2tra r rT D P M WM P D− −′′ ′ ′= − −rc rc . 

As it occurs in CA, where the inertia is the trace ( )tr QQ′  with ( )1 2 1 2
r rQ D P D− −′= − rc , Beh et al. [26] 

considered the decomposition of Taguchi’s inertia. In our matrix notation. using the above M , we have 

( )1 2 1 1 1 2
r r c cD D PD D M W U V− − ′ ′ ′− = Λ11 . 

From (4), centering is not necessary here .  This SVD provides an alternative for visualizing the rows and 
columns of N . The main aspects of this solution, where 1ij i ijP p p= + +  is the cumulative sum for row i  
and 1j jC c c= + + , are: 

1) Distance between rows: 
2

2
1

J ij i j
ii jj

i i

P P
w

r r
δ ′

′ =
′

 
= − 

 
∑ . 

2) Rows and columns coordinates: 1 2
rA D U−= Λ , 1 2B W V−= Λ . 

3) Inertia: 

( )2

2

1 1 1

I J Kj ij i j
a i

i j ii

w P rC
T

r
λ

= = =

−
= =∑∑ ∑ , 

where { }min ,K I J= . 
There is a formal analogy between aT  and the Goodman-Kruskal coefficient τ . Also note that the last 

column in PM ′  and C′r  are equal, so in Ta  the index j  can run from 1 to 1J − . 

11. Double Acumulative Frequencies 
More generally, the analysis of a contingency table N  may also be approached by using cumulative fre- 
quencies for rows and columns. Thus an approach based on double accumulative (DA) frequencies is 

( ) ( )1 2 1 2 1 2 1 2
r rD L P M W D H RC W U V− −′ ′ ′ ′− = − = Λrc , 

where L  is a suitable triangular matrix with ones. Clearly matrices H LPM ′= , R L= r , C M= c  contain 
the cumulative frequencies [1]. However, both cumulative approaches TA and DA may not provide a clear 
display of the contingency table. 

Finally, from  

( )( ) ( )1 1 1 1
r r c c r cD D PD D D P D

α αα α− − − − ′ ′− = −  
11 rc , 
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all (uncentered) methods CA, HD, NSCA, LR, TA and DA can be unified by means of the SVD 

( )1 2 1 1 1 21
r r cD L D P D M W U Vαα α

α
− − −  ′ ′ ′− = Λ   

rc , 

as it is reported in Table 3. If 1α = , we suppose 10 0α− =  in the null entries of 1
rD α−  and 1

cD α− . 

12. An Example  
The data in Table 4 is well known. This table combines the hair and eye colour of 5383 individuals. We present 
the first two principal coordinates (centered solution) of the five hair colour categories for CA, HD, LR and 
NSCA. We multiply the NSCA solution (denoted by NS ) by 2 for comparison purposes. 

0.5437 0.1722 0.5776 0.1368
0.2324 0.0477 0.2145 0.0416

, ,0.0402 0.2079 0.0139 0.1791
0.5899 0.1070 0.5818 0.1057
1.0784 0.2743 1.0711 0.2182

0.6501 0.1367
0.1971 0.

CA HD

LR

− − − −   
   − − − −   
   = =− −
   

− −   
   − −   
− −
−

=

0.5356 0.1841
0282 0.2517 0.0726

, .0.0073 0.1654 0.0413 0.2246
0.6039 0.0830 0.5881 0.1128
1.2866 0.4127 1.0649 0.3018

NS

− −   
   − −   
   = −
   

− −   
   − −   

 

These four solutions are similar. 
Finally, we show the first two coordinates for Taguchi’s and double accumulative solutions ( )1α = , but 

multiplying by 3 for comparison purposes.  
 
Table 3. Correspondence analysis, Hellinger analysis, non-symmetric correspondence analysis, log-ratio analysis and two 
solutions based on cumulative frequencies. The right column suggests the type of categorical data.                               

SVD ( ){ }1 2 1 1 1 2
r r cD L D P D M W U Vαα α α− − − ′ ′ ′− = Λ rc  

Method α  L  M  W  Suitable in case of 

CA 1 Identity Identity 1
cD−  Relating two variables 

HD 1 2  Identity Identity 1
cD−  Multinomial populations 

NSCA 1 Identity Identity Identity Responses/predictors 

LR 0 Identity Identity 1
cD−  Compositional data 

TA 1 Identity Triangular Weight One ordinal variable 

DA 1 Triangular Triangular Weight Two ordinal variables 

 
Table 4. Classification of a large sample of people combining the hair colour and the eye colour.                                 

Eye colour Fair Red Hair medium Colour dark Black Total 

Light 688 116 584 188 4 1580 

Blue 326 38 241 110 3 718 

Medium 343 84 909 412 26 1774 

Dark 98 48 403 681 81 1311 

Total 1455 286 2137 1391 114 5383 
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0.5481 0.0760 0.5532 0.0134
0.2555 0.0424 3.0731 0.0812

,0.0056 0.1070 0.3936 0.0948
0.5389 0.0625 0.0763 0.0224
0.9559 0.1658 0.0000 0.0000

TA DC

− − − −   
   − − − −   
   = = −
   

− −   
   −   

. 

Both solutions are quite distinct from the previous ones. 
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