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Ice rule fragility via topological charge transfer
in artificial colloidal ice
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Artificial particle ices are model systems of constrained, interacting particles. They have been
introduced theoretically to study ice-manifolds emergent from frustration, along with domain
wall and grain boundary dynamics, doping, pinning-depinning, controlled transport of topo-
logical defects, avalanches, and memory effects. Recently such particle-based ices have been
experimentally realized with vortices in nano-patterned superconductors or gravitationally
trapped colloids. Here we demonstrate that, although these ices are generally considered
equivalent to magnetic spin ices, they can access a novel spectrum of phenomenologies that
are inaccessible to the latter. With experiments, theory and simulations we demonstrate that
in mixed coordination geometries, entropy-driven negative monopoles spontaneously appear
at a density determined by the vertex-mixture ratio. Unlike its spin-based analogue, the
colloidal system displays a “fragile ice” manifold, where local energetics oppose the ice rule,
which is instead enforced through conservation of the global topological charge. The fragile
colloidal ice, stabilized by topology, can be spontaneously broken by topological charge
transfer.
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he ice rule! has a long, fascinating history that has influ-

enced thermodynamics, physical chemistry, statistical

mechanics, magnetism, materials science, and soft matter.
In the 1930s Giaque and Ashley?3 found that the specific entropy
of water at very low temperature was not zero, despite the
ordered, solid structure of ice. In water ice the oxygen atoms
reside at the center of tetrahedra, sharing four hydrogen atoms
with four nearest neighboring oxygen atoms. Two hydrogen
atoms are covalently bound to each oxygen, and two form
hydrogen bonds with neighboring oxygen atoms. In the so-called
ice rule introduced by Bernal and Fowler!, this situation is
described as having two hydrogen atoms pointing “in”, and two
pointing “out” of the tetrahedron. As Linus Pauling explained?,
the freedom in choosing such an arrangement on a large lattice
leads to a degeneracy that grows exponentially with the number
of tetrahedra, generating the residual entropy.

This idea proved to be not limited to water. The ice rule was
recognized to occur in exotic magnets, namely the rare earth tita-
nates such as Ho,Ti,0, and Dy, Ti,O,>°. These pyrochlore systems
were called “spin ices” because the cations Ho?+ and Dy>+ carry a
large magnetic moment directed along the lattice bonds, which can
be associated to a classical, binary Ising spin. At low temperature,
frustration ensures that two spins point in and two out of each
vertex, reproducing the ice rule and preventing the spontaneous
magnetization of the material.

The ice rule was eventually exploited to design new artificial
frustrated systems based on magnetic nano-islands, confined
colloidal particles, or vortices in superconductors’~2¢ that gen-
eralize spin ices and are broadly called artificial spin ices. There,
exotic states of matter and emergent dynamics often not found in
natural systems can be deliberately designed and externally
controlled in artificial nano- and micro-scale materials.

In such systems frustration produces complex disordered
manifolds where fascinating effects, such as dimensionality reduc-
tion?”, emergent descriptions*$-3, topological constraints 3132, and
complex dynamics of magnetic (or more generally topological)
charges!73334 can be tailored, nano- or micro-engineered, and
characterized at the level of the constitutive degrees of freedom,
often providing remarkable vistas of statistical mechanics in
action®-37. Such generality is not surprising since the ice-rule is a
powerful topological prescription for conceptualizing the effects of
frustration in a broad class of physical systems.

To understand the topological nature of the ice rule in the
broadest generality, consider a general lattice, even a graph, or
network3® with nodes of various coordination number z. Assign
binary variables on the edges of the graph, in the form of spins
directed along the edges and impinging in the nodes. Then we can
define a “topological charge” g for each vertex as the difference in
the number of spins # pointing toward the vertex and the number
of spins z — n pointing away from it, or ¢ =2n — z. In magnetic
spin ices g is proportional to the magnetic charge of the ver-
tex3%40 leading to a rich phenomenology for magnetic charge
currents*!, charge ordering3#4243, charge screening?®33 or
dynamical arrest*. In this language, the ice rule corresponds to
the minimization of the absolute value of the topological charge |
q|- The charge is called “topological” insofar as it depends upon
the connectivity of the system, and its definition does not change
for continuous deformations of the lattice. It is therefore a
topological invariant for the vertex configuration (though it does
not completely define the spin configuration3%344). On vertices
of even coordination the minimization of |g| on each vertex
implies that g = 0, and when z = 4 we recover the original 2-in/2-
out ice rule of water ice. On vertices of coordination z = 3, the
minimum occurs for g = +1, corresponding to 2-in/1-out or 1-in/
2-out.

In the magnetic spin ice-like systems mentioned above, the low
energy ensembles all obey the ice rule, which has proven to be
extremely robust. The ice rule survives all sorts of weak or strong
alterations, including decimation?’, mixed coordination?”-*%, and
the introduction of dislocations;*? indeed it was found that even
isolated clusters of magnetic vertices obey the ice rule at low
energy*.

Here we add to the already rich history of the ice rule by
introducing a system where the ice rule becomes “fragile”,
meaning that it can be easily destabilized by topology. Through a
combination of theory, simulations, and experiments, we
demonstrate that the colloidal ice falls in a different class of
geometrically frustrated ices, or “fragile ices.” There, the ice rule is
spontaneously broken in lattices of mixed coordination, leading
to a rich and unique set of phenomena, including topological
charge transfer and charge screening, that are completely absent
in nanoscale magnetic ices or indeed in most ice systems known
to us. It is important to understand that we are describing fra-
gility, not a breakdown. As we will see, most of the system still
obeys the ice rule, and only specific charges, in the form of
negative monopoles, appear. Crucially, these monopoles are not
excitations, but instead belong to the low energy state, and their
density can be controlled.

Results

The system. The content of this article can be summarized by
referring to its figures. In Figs. 1, 2 we illustrate the system:
repulsive colloids are gravitationally trapped in microgrooves
with two preferential positions at the extremes, making each
groove equivalent to a binary Ising spin. The grooves are arranged
along the edges of a square lattice, the colloids repel each other,
and the system obeys the ice rule (Fig. 3a), as already found in
Refs11-13:23, When we decimate our system by removing colloids
(Fig. 2), we obtain a lattice of mixed z = 3,4 coordination. There,
we observe, the ice-rule is spontaneously yet selectively violated as

negative q = —2 charges form on the z=4 vertices (Figs. 3, 4).
The z = 3 vertices still all obey the ice rule; however, the relative
ratio of g =1 to g = —1 charges changes in order to compensate

the negative charge of the z =4 vertices (Fig. 5), since the total
topological charge of a system of “dipoles” must remain zero.
This global fragility of the ice rule introduces further local phe-
nomenology, as charges also rearrange locally to screen the g =
—2 monopoles appearing on z = 4 vertices (Fig. 5). This happens
because, as previously noted by one of us*3, the ice rule in
magnetic spin ice systems is enforced locally by the vertex
energetics, but globally in colloidal spin ices, by the conservation
of topological charge. In fact, in colloidal systems the ice rule is
actually opposed by the local vertex energy, as we explain below.
Since magnetic ices are locally at an energy minimum, they are
structurally “robust” ices. In contrast, the colloidal ice has a
collective low-energy manifold that is composed of an energetic
compromise between locally excited vertices and is thus a “fra-
gile” ice. Since the resulting energetically unstable arrangement is
stabilized by topology, it can also be easily and deliberately
destabilized through topology to create new emergent states.

The system under study is shown schematically in Fig. 1. We
start from an array of bistable traps arranged along the edges of a
square lattice. Each trap contains a colloid, gravitationally
confined, that can preferentially occupy the two ends of the
traps. The colloids are paramagnetic and can be magnetized by a
field perpendicular to the plane of the array, introducing
repulsive, isotropic, colloid-colloid repulsion. This system is
known to obey the ice rule! 12324,

We then consider a “decimation” of such an array, in which we
remove certain traps (or, equivalently, certain colloids from the
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traps) in a random fashion, in order to create a lattice of mixed
coordination z = 3,4. The result is a decimated square array of
traps as shown in Fig. 2(a). Without any decimation protocol, the
simple elimination of traps at random from the structure would
create vertices of coordination z= 3, z=2, and z= 1. To reduce
complexity, however, we prefer to generate only z=3 vertices
through decimation (although our considerations also apply to
other cases where z=2 and z =1 vertices are present*’*%), We
achieve our decimation using a partial, random dimer covering of
the edges (Fig. 2(a)), where randomly chosen edges are covered
by dimers in such a way that each vertex is covered by at most
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Fig. 1 Schematic of the system. The experimental system consists of
paramagnetic colloids placed via optical tweezers in lithographic double
wells arranged along the edges of a square lattice. Each colloid is
gravitationally trapped in one microgroove, and it can sit in one of the two
wells. A perpendicular field B magnetizes the colloids, thus introducing a
repulsive dipolar interaction. The edges of the square lattice can be
decimated by simply removing the colloids from the corresponding
microgrooves (dashed green rectangles). Red and blue glows denote
positive and negative topological charges, respectively
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one dimer. We then remove an edge between two “dimerized”
vertices of coordination z =4, in order to obtain only vertices of
coordination z = 3.

We introduce some nomenclature that will prove to be useful
later. Considering the thermodynamical limit of the system, and
neglecting boundary effects, we call N, the number of traps in the
original square lattice, which form a total of N, = N,/2 vertices of
coordination z=4 (Fig. 2(a)). We decimate the lattice by
removing Ny traps, in accordance with the dimer model protocol.
Each time a trap is removed, two z — 4 vertices change into two z
= 3 vertices. We call N and N the resulting number of vertices
of coordination z =3 and 4, respectively. The decimation density
is defined as £ = N4/N,, while y = N, / N, is the ratio between the
two vertex types. Our dimer-cover based decimation strategy thus
gives N, = N, — 2N, N, = 2N, and therefore = 4&/(1 — 4).

The maximum p0551ble decimation corresponds to a complete
random dimer covering realized when all the vertices are
covered by one and only one dimer. Then the number of dimers
is half of the number of vertices and therefore a quarter of the
number of traps. Thus the maximum decimation corresponds to
a removal of 25% of the traps, or £=1/4. Note that 5 — + o
when £ — 1/47, since N, = 0 at this maximal decimation: all
vertices have coordination z = 3.

Figure 2(b) shows the energetics of the resulting vertices of
coordination z=3 and z=4 arranged in order of increasing
energy, which also corresponds to increasing topological charge.
Note that in computing the vertex energy we adopt a nearest
neighbor approximation and consider only the interaction of the
particles close to the vertex. Vertices of coordination z=4 can
have even charges q=—4, —2, 0, 2, 4, whereas vertices of
coordination z=3 can have odd charges g=—3, —1, 1, 3. We
label the vertices by their topological charge, and call N, , and
N, , the number of vertices of charge q and coordination 7 = 4,3,
respectlvely We deﬁne the relative vertex frequencies as n,

g/ Nz, and n gl Nz, e

Fig. 2 Schematics of the decimation. a A decimation of the square lattice that creates only z=3 and z = 4 vertices, but no z= 2 vertices, is equivalent to a
partial dimer covering (red dumbbells) of the edges. b Colloid configurations for vertices of coordination z= 4,3, in order of increasing topological charge
and thus energy. The ice rule vertices have minimal absolute charge, which is g = %1 for z=3 vertices and g =0 for z =4 vertices (dashed green
underline), and yet, unlike in magnetic spin ice, their energy is not the lowest. Red (blue) disks denote positive (negative) charges. A gray disk onaz=4
vertex indicates a zero charge excitation corresponding to a biased ice rule vertex. The vertex without a disk represents the “ground state” of the square
ice. Arrows aligned along the groove and pointing toward the colloids represent the analogy with a spin ice system
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Fig. 3 Experimental results. a An experimental image of the undecimated system shows the expected antiferromagnetic ordered configuration. The blue
arrows denote spins associated with the double wells occupied by the colloids. b-e Experimental images of the colloidal system at increasing decimation
corresponding to (b) n = NZ3/NZA =0.19, £=Ny/N,=0.04, () n=13158, £=0.142, (d) n=2.3846, £ =0.176 and (e) n =5.2857, £ = 0.21. Dashed

green rectangles denote decimated traps corresponding to z = 3 vertices. Negative charges of g = —2 monopoles (blue glows) form on z = 4 vertices as a
consequence of decimation, in violation of the ice rule. Meanwhile z= 3 vertices still obey the ice rule, but develop an overabundance of g = —1 charges to
adsorb the negative charge of the z= 4 vertices. This phenomenon increases as decimation increases. Scale bars (yellow) are 20 pm. See Supplementary

Movies 1 and 2 for corresponding movie clips

We have performed experiments on mixed-coordination
lattices at various levels of decimation. We corroborate our
experimental results using overdamped Langevin dynamics on
larger samples. For both experiments and simulations, at each
level of decimation the results are obtained by averaging over ten
different, randomly generated lattices obtained via the random
dimer algorithm described above.

Experimental and numerical results. The experimental system is
based on a monolayer of paramagnetic colloids confined above a
square lattice of lithographic, microscopic double-wells (Fig. 1).
Each gravitational trap permanently confines a colloid, and
contains a small central hill that the colloid can cross under the
influence of colloid-colloid interactions (see Methods). We apply
an external magnetic field B perpendicular to the plane to induce
a tunable, perpendicular dipole moment m & B in each colloid.
The resulting interaction between two colloids a distance r apart
is repulsive, isotropic, and given by U, ~ m?/r®. We use optical
tweezers to load one colloid into each double-well, or to eliminate
colloids from the traps during lattice decimation. Using video
microscopy and particle tracking, we extract real-time dynamics
and visualize the collective low-energy configurations. As the field
B increases, so does the mutual repulsion, and the colloids, ori-
ginally disposed randomly, rearrange to a collective low-energy
configuration?324, Our experimental system extends over a
square lattice composed by 11 x 8 vertices corresponding to a
total of N; =195 traps in the undecimated case. We note that the
size of the experiments is limited by two factors: the trapping

objective constrains the field of view, and the time required to
populate the system must be small enough to keep the suspension
electrostatically stable.

In Fig. 3 we show snapshots of experimental results for
different decimations. At zero decimation, the system obeys the
ice rule, as shown in Fig. 3(a). At nonzero decimation, the ice rule
is broken in the z = 4 sublattice, but very specifically: only g = —2
charges appear spontaneously, while all other vertex type follow
the ice rule. At the same time, the ice rule is still obeyed on the z
= 3 sublattice, where only charges q = £1 are present.

We corroborate these experimental findings with numerical
simulations on larger samples (2500 vertices with periodic
boundary conditions) than those used in experiments (which
contained only 88 vertices). We employ over-damped, Brownian
dynamics precisely parametrized to mimic the experimental
setting (see Methods and refl74%.). In Fig. 4 we show snapshots of
the results of simulations at different decimation levels. Exactly as
in the experiment, the simulations confirm that breakdown of the
ice rule occurs on z =4 vertices only. Furthermore, on a larger
scale we find that the disordered charge transfer between z =4
and z=3 vertices implies the breakdown of the well known
antiferromagnetic order®!! of the square ice manifold. This
structural transition to disorder has been recently proved
theoretically®3, but here we experimentally observe it at a
decimation of approximately 12% of the traps, about halfway to
the maximal decimation of 25%.

In Fig. 5 we provide a quantitative analysis of the numerical
and experimental results along with our theoretical predictions,
which are described later. In Fig. 5(a, b) we plot the relative
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Fig. 4 Numerical results. Snapshots of numerical simulations for increasing decimation with color coding as in Fig. 2(b) indicating vertex charges. At zero
decimation (n = 0) large regions of the expected antiferromagnetic order separated by domain walls are visible. At low decimation of 2-6% (= 0.086,5
=0.315), almost all of the z= 3 vertices are positively charged, while negative charges (g = —2) that appear on the z = 4 vertices can pin the domain walls,
causing the ordered domains to shrink. At a decimation of 12%, there is already no discernible order, while at high decimation, about half of the z=4
vertices violate the ice rule and host positive charges, which destroy the remaining ordering. In the zoomed portion of the £ =12% and 5 = 0.923 sample,
the colloidal positions are visible and show details of violation of the ice rule at z= 4 vertices by negative, g = —2 monopoles only, but little or no ice rule
violation at z= 3 vertices. See Supplementary Movies 3-6 for corresponding movie clips

frequencies n, , and n, . of vertices grouped by topological
charge versus # =N, /N , the ratio between the two vertex
coordinations. Figure S(a) shows more precisely that in the z=
4 sector vertices obey the ice rule, with the only violations arising
from negative topological monopoles of charge q= —2. These
negative charges appear spontaneously and increase in relative
number as the amount of decimation increases, which increases
the strength of the violation of the ice rule on vertices of
coordination z=4. A measure of ice rule violation, the total
density of negative charge 9., = Z n,, .q appearing on the z =
vertices, is plotted in Fig. 5(c) as a function of the lattlce
decimation.

Remarkably we find that the z = 3 vertices (Fig. 5(b)) always obey
the ice rule, as was theoretically proposed in*”*8, Indeed, only
charge g=x1 vertices are present for all but the very lowest
decimations, with small deviations at # < 1 (see later). Figure 5(b)
also shows that g =1 vertices always exceed g = —1 vertices in
number and thus the z =3 vertices have an overall positive charge.
They can therefore adsorb the extra negative charge introduced by
the z=4 vertices without leaving the ice-manifold simply by
shifting their relative ratio in favor of vertices of charge q=1.
Moreover, Fig. 5(b) indicates that as 7 = N, /N, tends to infinity
(which means that the density of z=4 vertices tends to zero), the
fraction of vertices of charge =1 and g= —1 both tend to the
same value of 1/2 as expected in a single coordination, z = 3 lattice.

Small deviations from this picture only happen at < 1. There,
z=3 vertices are sparse and surrounded by z =4 vertices. The

density of z=3 is too small to adsorb all the available charge
coming from the z=4 and therefore the numerical simulations
show larger g =+3 charges forming on them. In the experi-
mental data only, we also see very few g=+2 monopoles
forming on z=4 vertices at low decimation. This is likely a
consequence of lack of complete equilibration at low decimation,
where the system is close to order, and of finite size of the sample,
where positive charges can form on the boundaries as explained
in the next subsection and in ref.43. Indeed, this type of defects
was also present in previous work on non-decimated, ordered
square lattice systems?3.

Moving away from the global picture, disorder of the ensemble
produces fascinating local effects of spontaneous screening of
topological charge. In Fig. 5(d) we plot Qun, the average charge
neighboring a z=4 vertex. We find that negative q= -2
monopoles are surrounded by a positive average charge that
largely exceeds the average charge surrounding non-charged z =
4 vertices. Thus, as monopoles of charge g = —2 spontaneously
appear on z =4 vertices, they are screened by positive charges g
=1 on the surrounding vertices of coordination z=3. This
suggests that charge screening is not unique to magnetic charges
that interact via a Coulomb law in magnetic ices?®333445, In fact,
charge rearrangement and ordering was also recently observed
numerically in the disordered ensemble of kagome colloidal ice*
There, it was shown, it is a consequence of the 1/r3 long range
interaction among colloids, the same present in this work. Charge
effects driven by charge-charge interactions were also seen in
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nz4v q

Fig. 5 Comparison between experiments, numerics and theoretical predictions. Panels show experimental results (bullets) and numerical results
(diamonds) compared to theoretical predictions (solid lines). a Vertex statistics n,, , at equilibrium vs = NZa/NZA for z= 4 vertices grouped by topological
charge q. Dark blue: g = —4; light blue: g = —2; black: g = 0; pink: g = +2; red: g = +4. All the non-ice-rule vertices are suppressed except g = —2
monopoles, which increase with # as the availability of z= 3 vertices for charge transfer increases. b Vertex statistics Ny q VS for z =3 vertices. Dark blue:
q = —3; light blue: g = —1; pink: g = +1; red: g = +3. Only ice rule vertices are present (g = £1), but there is an excess density of positive g = +1 charges in
order to screen the charge transfer from the z= 4 sector. As 57 — oo, the z= 4 sector disappears and thus n, ., and n,, ., tend to the same value of
L 1/2, as also found in kagome ice?. ¢ Net density of charge a,, forming on z= 4 vertices vs 5 as a measure of ice rule violation.

d Charge screening Qun of g = —2 monopoles (blue) and “screening” of g =0 ice rule vertices (black) on z= 4 vertices vs 5. At large decimation we find
sparse z =4 vertices embedded in a background of z = 3 vertices. The z = 3 vertices have an average charge of (Q3) = +0.15, but the charge is much larger

((Q3) = +1.25) in the nearest neighborhood of g = —2 monopoles. This indicates that the disordered sea of z=3 charges screens the monopoles

-3

z (um)

Fig. 6 Experimental double well structure a Optical profilometer image of the square lattice of double wells after the lithographic process. b Profile of one

double well characterized by a central hill of elevation h=0.33 um

magnetic ice systems: charge ordering within the ice state of
kagome artificial spin ice’**2, and monopole screening by
magnetic charges in Shakti ice?8. Unlike in Shakti, here charges
screen not excitations, but rather monopoles which belong to low
energy state.

These results unambiguously demonstrate the breakdown of
the ice rule in particle based ice as suggested in Ref.#’, along with
non-trivial rearrangement of the topological charge being
transferred. We reiterate that such a breakdown is not possible
in magnetic spin ice systems, where the ice manifold has been
shown to be completely robust?7-29-32:46,

Entropic nature of ice rule fragility. To understand the nature of
the ice rule breakdown in colloidal ice, we first need to under-
stand its origin, as the former differs essentially from the mag-
netic ices. In magnetic spin ice the topological charge
minimization that corresponds to the ice rule is enforced by the
local energetics, since the energy of frustrated spins meeting at a
vertex typically scales quadratically with the vertex charge, or E ~
q? (ignoring geometrical effects®®). In colloidal ices, however, the
energy of s repulsive colloids in a vertex scales as
E, ~s(s—1)/2~q*/8 + q,(z — 1)/4¥, thus favoring vertices of
large, negative charge, in violation of the ice rule. Obviously, the
total charge must be zero, so it is not possible for all vertices to be

negatively charged. Individual vertices can only push their charge
to the boundaries, and the resulting charge accumulation is
limited by the size of the edges. Therefore, the density of topo-
logical charge in the bulk must scale at least as the reciprocal
length of the boundaries, leading to the emergence of the ice rule
(zero charge) in the thermodynamic limit. There is thus a col-
lective, non-local reason for the ice rule in colloidal systems,
which is quite unlike the local, energy-enforced origin of the ice
rule in magnetic systems. Indeed, the latter is observed locally
even in small spin ice clusters4.

The boundary size constraint is lifted in our decimated system,
since the z = 4 vertices now have an internal boundary consisting
of z=3 sub-lattices onto which topological charges can be
pushed. Because the global charge must remain zero, the two sub-
lattices develop opposite nonzero charges. As a consequence, the
ice rule is very selectively broken in the z=4 sector by the
appearance of negative charges g = —2, corresponding to 1-in/3-
out vertices. The ice rule still applies to the z=3 vertices, since
the plasma of charges in an odd-coordination spin ice can absorb
and screen charges without breaking the ice rule.

We now make these considerations more quantitative?”. For
simplicity, we can treat vertices as uncorrelated, but constrain the
total charge to be zero. Then the thermodynamic ensemble at
equilibrium still follows a Boltzmann distribution but in the
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effective vertex energies E, = E, — q,¢, where ¢ is a Lagrange
multiplier enforcing the requirement of zero total charge. Thus,
for a lattice of coordination z, the choice ¢ = (z — 1)/4 returns a
spin-ice-like effective energetics, given by E, ~ q?, that explains
the ice rule of colloidal ice in simple lattices. When the lattice has
multiple coordinations, however, there is no single value of ¢ that
can generate an effective ice-like energetics for vertices of more
than one coordination. For z = 4,3, charge conservation imposes
¢=(3—1)/2=1/2 and thus the effective energetics maintains
the ice rule on z=3 vertices. On z=4 vertices, however, it
ascribes the same effective energy to the negative (q=—2)
monopoles and to the ice rule (g =0) vertices?”. This explains
why those are the only vertices seen in our simulations and
experiments.

Another way to understand the same effect was reported
recently*8. It was demonstrated theoretically that a decimated
particle-based ice is energetically equivalent to a spin ice stuffed
with extra, negative topological charges, placed at the two ends of
each decimated trap. For a spin system this implies accumulation
of positive charge on decimated vertices (in the current system,
z =3 vertices) and, because the total charge of the occupied traps
must be zero, the consequent formation of negative monopoles
on undecimated vertices (here z=4) vertices.

From these considerations one can quantitatively predict the
charge transfer and thus the vertex statistics using a very simple
entropic argument. In Methods we show how to obtain a very
simple entropy density based on the simplifying assumption of
uncorrelated vertices. Such entropy depends only on the amount
of the charge transferred g, . By maximizing that entropy, we
obtain ¢, , which is plotted in Fig. 5(c). Since the vertex
populations are controlled by the charge transfer, we also obtain
all the other relevant nonzero quantities.

Our purely entropic predictions in Fig. 5, obtained without any
fitting parameters, agree remarkably well with the numerical
results of simulations of large lattices with periodic boundary
conditions. Small deviations from the theoretical predictions at
low decimation come from the simplifying hypothesis of
uncorrelated vertices. While such an assumption works well in
a disordered ensemble, it is expected to produce deviations from
the numerical results at low decimation # < 1 where the system is
still largely in an ordered state (see also Fig. 4).

We also find very good agreement with the experimental data.
There, deviations occur due to the limited size of the system
which inevitably causes some charges to be confined at the
boundaries. The agreement confirms the purely entropic nature
of the ice rule fragility in this system as explained in the previous
subsection.

The focus of this work is to prove the ice rule fragility in particle-
based ices. We now describe another interesting effect brought
about by the topological charge entropy which invites further study:
the breakdown of order in the system. Undecimated square ice is
antiferromagnetically ordered!’>?3. It has been recently proved
theoretically*® that under decimation, square ice crosses through a
structural transition to disorder. At zero temperature, the system is
ordered below a critical decimation, and disordered above it. The
exact value of the critical decimation has not been computed exactly
(though our current numerical analysis places it at about 10%, or &
~0.1); it corresponds to a percolation threshold in the dimer model
on which our decimation protocol is based*$, a subject currently
under numerical study by others®. The formalism reported above
and in?’, relying on uncorrelated charges, applies to disordered
manifolds, and therefore does not predict such a transition.

Clearly in the low-decimation, ordered phase there no topological
charge transfer and no ice-rule fragility is predicted. Instead we see
in Fig. 4 that the breakdown of the ice rule is continuous as a
function of decimation. The reason is that our numerical model is a

Brownian dynamics simulation devised to faithfully reproduce the
experimental apparatus; like the latter, it does not reach the true
ground state but enters a state close to it!7»?3. For instance, the first
panel of Fig. 4 (zero decimation) shows the presence of ordered
domains separated by domain walls. These contain topological
charges, though their net charge is zero. It is easily proven that the
negative and positive charges of these excitations must alternate
along such domain walls in the absence of decimation, giving no net
charge transfer. At low decimation, as shown in Fig. 4, the domain
walls pin to the decimated plaquettes, which preferentially carry
negative charge (a situation analogous to that of doped colloidal
ice!?). The charge alternation is thus broken on those pinning sites,
generating a net topological charge on the z =4 sector.

This mechanism is better understood by considering how the
disorder of the ground state sets in above critical decimation.
Following ref, the residual entropy of the ground state and the
topological charge transfer are associated with the appearance of
emergent lines composed solely of negative charges, connecting g =
—2 monopoles on the z=4 vertices that belong to decimated
plaquettes. These lines must thread through nearest neighboring
decimated plaquettes, and thus they exist only at decimations large
enough that the decimated plaquettes percolate. Below that
threshold, in the ground state, no such emergent lines exist, no
topological charge transfer occurs, and the system remains ordered.
The lines can still appear as small energy excitations, where they
must include not only g = —2 monopoles, but also ice rule vertices
that do not belong to the ground state (more precisely the fourth
vertex from the left in the second line of Fig. 2(b), depicted as a gray
disk). These excited emergent lines can still thread through
decimated plaquettes even when the latter are not percolating. As
the decimation is further reduced, such lines become simple domain
walls, shown pinned to the decimated plaquettes in Fig. 4 at low
decimation (¢ = 0.02, 0.06).

Thus we have the following interesting picture: in the
equilibrium ground state below a critical decimation, the system
is ordered and obeys the ice rule, while above it the system is
disordered and the ice-rule is violated*S. In slightly excited states
at low decimation, the system forms ordered domains separated
by lines pinned to the decimated plaquettes. As the decimation
increases, these domains shrink, until at the percolation threshold
for the decimated plaquettes, no order is discernible. This
mechanism is apparent in the panels of Fig. 4 and consistent with
previous observations in doped colloidal ice!. While the domains
of the system are strongly correlated at low decimation, the
domain walls are not, explaining why our uncorrelated-charge
treatment above can capture the numerical data even at low
correlation, and testifying to the solidity of the use of topological
charges as degrees of freedom for describing this phenomenon.
Indeed it was suggested®® that dynamical arrests of the
topological charges, though not necessarily of the colloids, could
occur. The associated weak ergodicity breaking might thus make
it impractical to observe the predicted structural transition in real
systems, an issue that invites further theoretical and experimental
investigation.

Discussion

We have added a chapter to the long history of the ice rule by
demonstrating the fragile nature of particle-based ice.
Previously, in magnetic spin ice, the ice rule had proven
remarkably robust to the introduction of all types of structural
defects, doping, or dislocations. In contrast, in colloidal ice, the
ice manifold is of a collective, non-local origin and can be
destabilized by topology, leading to the spontaneous formation
and accumulation of extensive topological charges which can
rearrange and screen.
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Our work has implications beyond ice rule systems for
understanding classical topological phases. For example, the
ensemble of ice-rule-obeying configurations, most of which are
disordered, is called a Coulomb phase and is an example of a
topological phase®!~>3, Topological states are increasingly studied
in classical settings and in soft matter systems3!->4=>6, where they
are generally associated with stability produced by topological
protection. In this context, our work poses a set of questions
regarding whether such topological protections are robust to
dilution or are instead fragile.

Furthermore, from an applied perspective, the possibility of
controlling the dynamics and flow properties of topological
charges via lattice decimation can inspire the engineering of novel
dissipation-free magnetic storage and logic devices at the micro
and nano-scale. For example, in domain wall engineering, inter-
faces of mixed coordination would be charged and possibly semi-
permeable to defects, while in driven kinetics, entropically
spontaneous charges could be suppressed or enhanced by an ac
driving field.

More fundamentally, geometric frustration is a topic of con-
siderable interest, as it encompasses a large class of physical
systems in condensed matter and beyond, including biological
systems. The ice-rule’* has played a fundamental role in frus-
tration, inspiring celebrated theoretical models®”->® and appearing
in an increasing number of physical and non-physical sys-
tems38°%60, Our findings open a path toward a different phe-
nomenology in geometrically frustrated, ice-rule based systems
that is completely absent in traditional spin ices.

Methods

Experimental system. The samples used in this work were prepared following a
process similar to that described in Refs.?»24, In brief (see Fig. 6), we use soft
lithography to create two-dimensional square lattices of bistable topographic traps,
each 21 pm in length and 7 um in width. The lattice constant is 29 um. Each double
well has a lateral confinement of depth ~3 um and contains a central hill with
average elevation (h) =0.32 £ 0.08 um (see Fig. 6). Within the trap we deposit
paramagnetic colloidal particles that are 10 um in size and that have a magnetic
volume susceptibility of y,, = 0.023 + 0.002. The particles were diluted in highly
deionized water and allowed to sediment above the sample due to density mis-
match. To load one particle per double well, we use optical tweezers made with a A
=975 nm, P =330 mW butterfly laser diode focused by an oil immersion Nikon
Plan Fluor 100x objective (NA = 1.4). The optical tweezers is mounted in a custom
inverted optical microscope equipped with a white light illumination LED
(MCWHLS5 from Thorlabs) and a CCD camera (Basler A311f). The external
magnetic field is applied with a custom-made coil oriented perpendicular to the
sample cell and connected to a computer controlled power amplifier (KEPCO
BOP-20 10M).

Soft lithographic structures. For the lithographic fabrication procedure, we write
a square lattice of double wells on a mask made by a 5-inch glass wafer and covered
with a 500 nm layer of Cr. Direct Write Laser Lithography (DWL 66, Heidelberg
Instruments Mikrotechnik GmbH) was used for this purpose, based on a 405 nm
laser diode and working at a speed of 5.7 mm?min~!. The structures are designed
using commercial software (CleWin 4, PhoeniX Software). Each double well is
drawn on the mask as a stadium-shaped transparent region, with a small rectan-
gular opaque spot in the center. The outer region has a length of 21 um and a width
of 7 um, while the spot covers an area of 3 yum X 2 um. The Cr mask is then used to
etch the microfeatures on a 2.8 um layer of photoresist AZ-1512HS (Microchem,
Newton, MA). The photoresist is deposited on top of a 100 um thick glass coverslip
by spin coating (Spinner Ws-650Sz, Laurell) at 500 rpm for 5s and afterwards at
1000 rpm for 30, both steps with an acceleration of 500 rpm/s. Different thick-
nesses of the photoresist could be obtained by varying the rotating speed; however,
we find that ~3 pum works well to create topographical traps capable of capturing
the particles within the double wells for most of the applied fields. After the
deposition process, the photoresist is irradiated with UV light passing through the
Cr mask for 6s at a power of 25 mW/cm?2 (UV-NIL, SUSS Microtech). The light
passing through the motifs of the mask uncrosslink only the exposed part of the
photoresist. The exposed parts are then eliminated by submerging the film in a
AZ726MF developer solution (Microchem, Newton MA). At this thickness, the size
of the spot is too small for the lithographic process, and results in a small hill with a
lower height at the center of the islands.

Numerical simulation. We conduct Brownian dynamics simulations of the deci-
mated colloidal ice system comprised of magnetically interacting colloids with a
radius of 5.15 um placed in an array of N, = 50 x 50 x 2 = 5000 etched double-well
grooves arranged in a square lattice with a lattice constant of 29 um giving a total of
N, = 2500 vertices. We use periodic boundary conditions in both the x and y
directions. The double-well trap consists of two halves of a parabolic well joined by
an elongated part. The particle in either parabolic half is tethered to the center of
the well with spring constant of 1.212 pN/um. Along the elongated part of the
pinning site, this same tethering force confines the particle perpendicularly, while a
repulsive force with a spring constant of k,,, = 0.352 pN/um repels the particle from
the middle of the pinning site, reaching a maximum value of F,, = 1.758 pN in the
middle of the pin and vanishing as it reaches the center of either well. These
combined substrate forces acting on particle i are written as F.. Magnetization of
the particles in the z direction produces a repulsive particle-particle interaction
force Fyp(r) = Ac/r* with A, = 3% 10°%2, V?2B?/(2my) for particles a distance r
apart. Here y,, is the magnetic susceptibility, V is the particle volume, B is the
magnetic field in mT, and all distances are measured in um. This gives Fy, =
7.231pN for r =20 um at B=50mT, the maximum field we consider. The
dynamics of colloid i are obtained using the following discretized overdamped
equation of motion:

1 Ar;

I= ,/DA ky TN[0, 1] + F}, + F (1)

WA

where the diffusion constant D = 7000 nm?/s, the mobility u = 1.729 um/s/pN and
the simulation time step At = 1ms. The first term on the right is a thermal force
consisting of Langevin kicks of magnitude Fr=2.163 pN corresponding to a
temperature of t=20°C (when NJ[0, 1] = 1). Here, N[0, 1] denotes a random
number drawn from a normal (Gaussian) distribution with a mean of 0 and a
standard deviation of 1. Each trap is initially filled with a single particle placed in a
randomly chosen well, or left empty in the case of decimation. We increase B
linearly from B=0mT to B =50 mT, consistent with the experimental range. We
average the results over 10 simulations performed with different random seeds.

Computation of theoretical curves. We let N, ,, N, ; denote the number of
vertices containing s colloids and having coordination z =43, respectively. From
this, n, (=N, /N, and n,o=N, J/N, ., are the relative frequencies of vertices
with s colloids ‘in each sector. Fmally, we write q, ,q, for the total densities of
topological charge on the sublattices z=4, z=3, ‘which are given by

qz| :E;l Oqs 24,87 qzJ 723 Oqs Z3,8°

As explained above and demonstrated in Ref’, at equilibrium all the z=4
vertices are expected to be either obeying the ice rule—and thus of type 2-in (g = 0)
—or to break the ice rule as lowest charge monopoles—and thus of type 1-in (q =
—2). In contrast, all the z= 3 vertices must obey the ice rule, meaning that they are
of type 2-in (g = 1) and 1-in (9 = —1). The z = 3 vertices screen the extra charge by
changing the relative admixture of +1 charges. From the conservation of
topological charge, we obtain the constraint

nz4,1 = ’1(”: 2 1/2)1 (2>
which implies that a complete transfer of topological charge (nz4_1 =1ln, ,= 0)
is possible in principle when # > 2.

Since configurations corresponding to partial charge transfer are in general
entropically favored, the charge transfer is mostly entropic. Consider a charge
transfer between two vertices of different coordination as in Fig. 1-Methods. If we
ignore the small energy differences between ice-rule vertices, on both vertices the
energy depends on the number of colloids in the vertex, and the charge transfer
does not change the energy. To demonstrate the entropic nature of the charge
transfer, we have shown in the main text that the ensemble can be quantitatively
predicted by a purely entropic argument, which we report here. Consider the
entropy

s= nz4_’11n<nz4yl/4> + nzé_zln(nzq_z/z) .
+'l[nz 11n<n13‘1/3) + nz3,21n (712372/3)]7

where the denominators within the logarithms corresponds to the multiplicity of

the respective vertex configurations at the numerators. We can minimize the

entropy (3) under the constraints n, ; +n, , =1, n, ; +n, , =1, and Eq. (2).

We thus obtain the density of topologlcal charge per unit of z=4 vertex q, =
—2n,,; as

1
6., =5 (VO + 81+ 16— 31 - 4), (4)

plotted in Fig. 4(c) of the main text, and which is smaller in absolute value than the
maximal charge gi:* permitted by the geometry, given by gi;i* = —# if < 2 and
Gior* = —2 if i 2 2. Indeed, Eq. (4) gives g, — —4/3 as 51 — . Knowledge of
charge transfer from Eq. (4) allows us to obtain all other relevant nonzero
quantities: 9, = —q, /1, n, | = —q, /2, n, , =1 —n, ;, which are plotted in
Fig. 4 of the main text.
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