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Abstract: In this study, the effect of a plasma ion carburizing process to duplex and superduplex 

stainless steels (DSS and SDSS), at 925 °C for a long time, as thermochemical process influencing the 

microstructural evolution is presented. The objective is to analyse the diffusion elements’ influence 

on the precipitation of secondary phases after additional short thermal treatment. A comparison 

among the different treatments was performed after the resulting microstructures were analysed by 

Field Emission – Scanning Electron Microscope. Precipitation of secondary phases—sigma (σ), chi 

(χ), nitrides and carbides—seemed to occur during the treatments in a similar way for both steels 

(DSS and SDSS), although they showed a different morphology and precipitation mode. General 

corrosion behaviour of untreated and treated samples was investigated by potentiodynamic tests in 

order to prove their corrosion resistance. It was found that an improvement of the surface protection 

after the plasma carburizing process occurred. 

Keywords: corrosion; duplex stainless steel; plasma ion carburizing; superduplex stainless steel; 

secondary phases; thermal treatments 

 

1. Introduction 

Duplex stainless steels (DSS) are nowadays one of the most widely used groups of steels and are 

extensively applied in the petrochemical industry for example as oil and gas containers, mainly due 

to their mechanical properties as well as their corrosion resistance. The combination of austenite and 

ferrite phases in almost equal percentage exerts a powerful effect on both mechanical and 

degradation properties of the duplex and superduplex stainless steels [1–6]. However, the 

performance of DSSs can be limited in particular conditions. For instance, DSS corrosion behaviour 

can be adversely affected under high temperature processes such as welding. As a result, 

microstructural rearrangement can significantly decrease corrosion resistance and some mechanical 

properties relevant for specific applications [2,7–11]. 

Additionally, they are sometimes unsatisfying expected wear and friction properties. This 

drawback has recently enhanced increasingly rapid advances in the field of surface modification 

technologies applied to this family of steels. There are different procedures to improve stainless steels 

surface properties. With the aim of increased hardness and wear resistance, thermochemical diffusion 

such as nitriding, carburizing, carbonitriding or nitrocarburizing is among the most industrially 

carried out processes. Generally, this is considered a poor practice because of the temperature range, 
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from 500 to 950 °C, that results in precipitation of chromium nitrides (Cr2N) or carbides (M23C6, M7C3) 

known as sensitization. Consequently, the improvement in surface hardness because of these 

secondary phases is frequently accompanied by a loss in corrosion resistance when the surface 

treatment is carried out at high temperatures. 

To affront this issue, plasma-based treatments were considered advantageous over gaseous 

processes as removing the natural passive layer of the stainless steels facilitates the inward diffusion 

of carbon/nitrogen. Moreover, plasma processes enable high temperatures (Tp > 900 °C) which 

circumvent the formation of unwanted nitrides or carbides associated with the depletion of Cr or low 

temperatures (Tp < 450 °C) where metastable expanded austenite (γ2) is formed because of the 

supersaturated nitrogen or carbon solid solution that increases to a large extent the hardness of the 

surface [12–15]. 

Plasma carburizing appears to be a promising alternative for such hardness and wear resistance 

improvement. It is a thermochemical process consisting of the diffusion of carbon at a sufficient 

temperature through the surface layer of usually low-carbon steels and high-chromium steels [16], 

among others. Carburized layers are then fixed between 0.8 and 1.0 wt% carbon. At high temperature, 

carbon shows its maximum solubility at the stable equilibrium phase of austenite. After that, 

hardening of the components is achieved by rapid cooling and tempering or cooling down slowly 

and then reheating to the austenitizing temperature to maintain the very hard surface. The carbon 

gradient content below the surface determines the hardness of the surface layer, which is usually 

wear resistant [16]. Plasma ion carburizing is considered an advantageous alternative procedure also 

due to the oxygen-free atmosphere operation. It is basically a vacuum process using glow-discharge 

technology to introduce active soluble carbon to the steel surface for its subsequent diffusion, 

producing greater carburized case depth than gas carburizing [16]. This method has increased its 

interest in many applications, partly due to its faster carburizing rates, which are associated with a 

faster rate of carbon saturation, and to the effectively avoided steps in the dissociation process that 

produce active soluble carbon. Active carbon can be formed directly by the ionizing effect of the 

plasma. Hence, carbon saturation and carbon diffusion can be easier controlled to follow a greater 

uniform carburized layer. Moreover, oxides are avoided in the grain boundaries, thus fatigue 

properties of components are improved through this process [16]. It is generally a temperature and 

time-dependence diffusion process that follows the square root of time relation [17]. Thus, low 

temperature and high temperature plasma carburizing results will also depend on the processing 

time. 

On the other hand, despite the higher temperatures allowed to carry out the plasma carburizing 

treatment, the control of high temperature and geometry of samples have limited the plasma-based 

techniques, especially for industrial applications. Thus, many authors in the literature are focused on 

investigating the low temperature plasma carburizing process and its implication in the hardness 

improvement of families of steels in correlation to the corrosion behaviour [14–19]. Most of the studies 

have emphasized the mechanical and tribocorrosion properties of low carbon steels after carburizing 

processes at low temperature. However, few studies have investigated the evolution of the 

microstructure after the plasma carburizing process at a high temperature and for a long duration. It 

is very well known that during the exposure to high temperatures (600–1000 °C), microstructural 

changes occur and may cause serious problems. For instance, precipitation of secondary phases such 

as sigma (σ) and chi (χ) as well as carbides and nitrides, as mentioned previously, may deteriorate 

mechanical and corrosion resistance of the material. In addition, since alloying elements and, 

especially carbon diffusion, influence the microstructure evolution of stainless steels, investigation in 

high temperature plasma carburizing effects on duplex stainless steels, seems to be necessary. 

The aim of this project, therefore, is to evaluate the influence of the thermochemical treatment 

of plasma carburizing at a high temperature over a long period on the microstructure evolution of 

duplex and superduplex stainless steel and their general corrosion behaviour after this treatment. 

2. Materials and Methods 
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Samples of duplex stainless steel (UNS S2205) of 2-mm-thick hot-rolled plate and superduplex 

stainless steel (UNS S2750) of 10-mm-thick hot rolled tub were used in this investigation. Chemical 

composition in weight percent is shown in Table 1. Previously, all samples were isothermally 

annealed at 1080 °C for 30 min followed by water quenching in order to obtain a homogenous two-

phase microstructure, where austenite phase (γ-fcc) is distributed in the matrix of the delta ferrite 

phase (δ-bcc) without secondary phases precipitated (Figure 1). Afterwards, all specimens were 

polished to a mirror finish with successive SiC papers, diamond pastes and colloidal silica. 

Thermochemical surface treatment of carburizing was carried out through the plasma 

carburizing process in carbon atmosphere at 925°C over 10 h. The scheme of the process is shown in 

Figure 2. It is worth mentioning the followed cooling in air, as no hardness increase was meant to be 

achieved by this carburizing process, but phase precipitation. In order to analyse any further 

precipitation after the carburizing process, short holding time post-thermal treatments were carried 

out at 830 ± 2 °C to carburize samples followed by water quenching. These conditions of thermal 

treatment were selected in order to compare the results to previous precipitation research [20]. 

In parallel to this treatment, isothermal aging at the same temperature and during the same 

time—925 °C, 10 h—was carried out after homogenization of the samples in order to compare the 

secondary phases to those after the carburizing process. 

High resolution scanning electron microscope (FE-SEM) JEOL J-7100F (JEOL Ltd, Tokyo, Japan) 

with a coupled Robinson BSE detector and energy dispersive X-ray spectroscopy (EDS) was used to 

characterize the carburized layer and to determine semi-quantitatively the phase’s chemical 

composition. 

Potentiodynamic polarization tests were performed following ASTM [21] standard by using 

AUTOLAB potentiometer (Metrohm Autolab, Utrecht, The Netherlands). The electrochemical cell 

was a three-electrode system with a Pt mesh electrode as a counter against the sample as a working 

electrode with ~2 cm2 area exposed and a reference electrode of silver–silver chloride (Ag/AgCl 3 M). 

All tests were performed at room temperature using 3.5 wt% NaCl solution and the potential 

magnitude is given with respect to the reference electrode denoted as VSCE. Samples were first 

conditioned to the stabilized potential for 3 h, then the open circuit potential (OCP) was measured 

for 1 h. At least three polarization tests were conducted to ensure the reproducibility of the results. 

The potential range was scanned from −0.5 to near 0.5 VSCE at a scan rate of 1 mV·s−1. 

Table 1. Chemical composition of duplex (S32205) and super duplex (S32750) stainless steels (Fe 

balanced). 

Sample Identification Chemical Composition wt% 

UNS C Si Mn P S Cr Ni Mo N Cu 

S32205 0.015 0.40 1.50 0.018 0.001 22.49 5.77 3.21 0.18 0.18 

S32750 0.018 0.26 0.84 0.019 0.001 25.08 6.88 3.82 0.29 0.17 
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Figure 1. Optical micrographs of DSS (a) and SDSS (b), after annealing process at 1080 °C for 30 min. 

Homogenous microstructure of relatively equal distribution of austenite and ferrite phases is shown 

after being etched by modified Murakami chemical reagent [22]. 

 

Figure 2. Schematic representation of the carburizing cycle holding at 925 °C for 10 h, quenched to 

820 °C, followed by cooling in air. 

3. Results and Discussion 

In order to better understand the formation of the secondary phase’s precipitation mechanism 

and consequently elucidate a better control for this deleterious effect, microstructure evolution was 

studied following carbon diffusion through the treatments carried out to DSS and SDSS samples. This 

evolution was also correlated to the corrosion resistance behaviour showed by the samples at the 

different treatment conditions. 

3.1. Microstructural Evolution After Carburizing Process 

In Figure 3, micrographs of the DSS 2205 and SDSS 2750 plasma carburized samples for 10 h at 

925 °C are shown. Precipitation of the secondary sigma phase (bright phase indicated as σ in Figure 

3) occurs in an obvious abundance. Similar precipitation of the sigma phase but in less abundance 

was previously detected in duplex and superduplex stainless steel samples thermally treated at 830 

°C for less than 5 min without any kind of surface thermochemical processes carried out [22]. 

Precipitation of heterogeneously and intragranularly dark spots are also assigned as carbides. The 

carbon supplied to the substrate combines with iron and chromium largely in the form of carbides. 

The formation of these secondary phases confirms the diffusion saturation of C that reaches the 

solubility limit in the austenite–ferrite microstructure [14]. Such carbides are mainly of the type M23C6 

(when M stands for Fe/Cr) and are also reported in other studies [13,23]. On the other hand, DSS 

sample does not show oxides when compared with slight oxides that appeared in the surface of SDSS 

sample as shown in Figure 4a, b. Internal oxidation is typical in gas carburizing processes due to the 

penetration of oxygen, where the atmosphere contain partial pressures of CO, CO2 and H2O leading 

to some internal oxidation of the samples [24,25]. However, in plasma carburizing, such an issue can 

be discarded, and no intragranular oxidation is observed as expected. 



Materials 2020, 13, x FOR PEER REVIEW 5 of 14 

 

   

Figure 3. BSE micrograph of DSS carburized samples, (a) showing γ (grey phase) and ferrite δ (greyer 

phase) as well as sigma σ (bright phase). (b) Higher magnification of a region away from the surface; 

some dark points are identified as chromium carbides (dark phase). 

  

Figure 4. BSE micrograph of SDSS carburized samples (a) indicating γ (grey phase), sigma phase σ 

(bright phase) and chromium carbides (dark phase); (b) higher magnification of an area at the surface. 

Figure 4 micrographs show the microstructure obtained for the SDSS sample. A different 

morphology of the brighter phase among the austenite phase is observed. Such a phase was identified 

as a sigma phase. A similar transformation has been identified in previous studies as eutectoid 

transformation of ferrite to sigma phase and secondary austenite (δ → σ + γ2) [26,27]. The ferrite phase 

in this SDSS sample has been completely transformed compared to the microstructure observed in 

Figure 3a, b of the DSS sample, in which only incipient transformation is detected. Carbides were 

identified also near the surface that are attributed to the supersaturation of carbon after its diffusion 

by the plasma process. 

3.2. Microstructural Evolution After Carburizing Process and Short Aging Treatment 

In view of the microstructures and the absence of secondary chi phase after the large 

thermochemical cycle, samples were then aged for around 3 min at 830 °C in order to see the effect 

of the short thermal treatment as seen in previous samples after the same aging [22]. The cross-

sectional microstructural images of the carburized DSS sample with an additional thermal cycle are 

shown in Figure 5. The micrographs show almost similar microstructures as the ones in Figure 3. 

Nevertheless, observing the transversal microstructure of DSS in Figure 5a, a brighter phase than 

sigma elongated in the rolling direction near the surface of the sample is observed. Its characterization 

by semiquantitative EDS with higher content in Mo than sigma phase confirms the identification as 

chi-phase (indicated as χ in Figure 5a). 
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The precipitation of the chi phase use to happen in a previous stage of sigma phase [2,22,27–30]. 

At higher temperature or thermal treatment duration, the chi phase usually converts into the sigma 

phase. Hence, as seen in the micrographs, the sigma phase is appearing in a greater amount, partly 

due to the high presence of chromium as well. Most of this secondary phase is distributed in the 

rolling direction of the sample, involving the ferrite phase. It is also possible the precipitation of both 

sigma and chi phases simultaneously at a particular temperature and some residual chi phase can 

also be detected while the sigma phase progresses in its precipitation [3,5,22,30–32]; this is why both 

phases are observed in Figure 5a. 

The particular morphology of the sigma phase, which is similar to the same butterfly shape 

reported by Nilsson et al. [27], is also observed in Figure 5b (marked with circles). Its nucleation 

occurs at ferrite/ferrite/austenite triple point. Compared to the precipitation shown in Figure 3a,b, 

after the aging process, the sigma phase shows more elongated morphology within the thinner 

austenite phase along it. Carbides still appear randomly in the core and case of the carburized sample 

after the additional aging treatment as observed in the cross section of the DSS sample (Figure 5c). 

However, longitudinally, as seen in the micrograph in Figure 5b, carbides have been less detected, at 

least at the surface. At a different region inside the sample, the displacement of such carbides can be 

seen from the γ/σ boundary. Such displacement could be due to several microstructural distortions 

such as grain boundary movement, phase boundary displacement or dislocation movements (Figure 

5d). 

  

  

Figure 5. BSE micrographs of cross-section DSS specimens after 10 h plasma carburizing at 925 °C and 

thermal treatment at 830 °C for a short time. (a) Microstructure of the surface indicating ferrite δ 

(greyer phase) as well as sigma σ (bright phase) and chi χ (brightest phase). (b) Longitudinal cross 

section of the microstructure indication butterfly-like precipitation with black circles. (c) Higher 

magnification of central zone indicating austenite γ (grey phase), δ and σ. (d) Higher magnification 

of (b) indicating chromium carbides (black phase). 
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The thermodynamics and kinetics of SDSS and DSS differ. For instance, the kinetics of nucleation 

and growth of secondary phases is faster for the former than the latter. Since the intermetallic phases 

are enriched in Cr and Mo, the higher content of these elements in UNS S32750 (SDSS) leads to a 

greater formation of such phases than in the UNS S32205 (DSS). 

As can be seen in the microstructure of the micrographs in Figure 6, chi phase precipitated in 

the austenite (Figure 6a, b, d) and in the δ ferrite phase (Figure 6c) in the SDSS sample after the same 

carburizing and annealing process (830 °C for 3 min) as processed with the DSS sample. Sigma phase 

precipitation is predominant and elongated in the ferrite phase due to its higher diffusion rate and 

the higher content of Cr and Mo in this ferrite phase [33]. Moreover, M23C6 has also been found to 

nucleate in the ferrite phase and seems to be an initial site of nucleation for the chi-phase (Figure 6a–c). 

This mechanism differs from what was found without the plasma carburizing for the same alloys. The 

main role of carbon is the formation of carbides, M23C6 and Cr7C3. In the absence of nitrides or in 

detrimental amount compared to them, these carbides accomplish the nucleation site for χ phase. 

  

  

Figure 6. BSE micrographs of SDSS specimen cross-sections after 10 h plasma carburizing at 925 °C 

and thermal treatment at 830 °C for short time. (a) Details of the microstructure indicating austenite 

(γ), ferrite (δ), sigma (σ), chi χ (brightest phase) and chromium carbides (dark spots). (b–d) are 

different zones more in deep of the sample, showing the nucleation site of the chi-phase, which is 

M23C6. 

3.3. Microstructural Evolution After Isothermal Aging Treatment 

An isothermal aging treatment at the same temperature as carburizing, 925 °C for 10 h, was 

carried out in order to observe the precipitation of the secondary phases in the samples and then 

these were compared to the ones precipitated after the carburizing process. 

As seen in the micrographs of SDSS samples in Figure 7, precipitation of the sigma phase is 

almost equal to the sigma detected in SDSS after carburizing (Figure 6). However, micrographs in Figure 
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7a, b show an increase of dark spots near the surface of the sample. Such small little dark spots were also 

detected in the samples after carburizing and were assigned to the precipitation of carbides. In 

contrast, dark spots encircled in Figure 7a were analyzed and correspond to the precipitation of 

nitrides. According to the literature, almost all nitrides found in SDSS are assigned to Cr2N [1,34]. A 

displacement of these nitrides from the γ/σ boundary can also be seen, which has been denoted 

previously, due to several microstructural distortions and as the sigma phase takes place. Thus, the 

identified nitrides form a circle between the boundaries of γ/σ (Figure 7b). Besides, as seen in Figure 

6c, in Figure 7c it is observed that the secondary chi phase also has an initial point for nucleation, 

which is the already formed nitride at the boundary of γ/δ. Additionally, as seen in Figure 7d, the 

chi-phase appears directly on the boundary between γ/δ. 

From this aging treatment, it has been seen that in the absence of carbon concentration, in 

comparison with the carburizing process, nitrides precipitate preferably near the surface of the SDSS 

samples instead of carbides and as a barrier and/or at γ/σ boundaries. 

 

  

Figure 7. BSE micrographs of SDSS specimen cross-sections after isothermal aging for 10 h at 925 °C. 

(a) Microstructure of the sample near the surface, indicating austenite (γ), ferrite (δ), sigma (σ) and 

chromium nitrides (dark spots). (b) Higher magnification of a zone near the surface indicating with 

arrows the displacement of the nitrides from the γ/σ boundary, forming a circle. (c,d) show the 

microstructure away from the surface of the sample indicating chi-phase nucleation. 

On the other hand, carbides are the ones predominating in the DSS samples, heterogeneously 

distributed almost like in the samples after carburizing. The absence of nitrogen, which probably 

dissolved in the austenite phase, was verified by EDS analysis, which then lead us to confirm that the 

dark phases were carbides (Figure 8a, b). Moreover, the ferrite phase is still appearing, as in the DSS 

samples after the carburizing cycle, but there is no visible displacement of carbides as seen in Figures 

3b and 5d or at least it has not been detected at this particular point of the sample. 
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Figure 8. BSE micrographs of cross-section DSS specimens after isothermal aging for 10 h at 925 °C. 

(a) Microstructure of the sample indicating ferrite δ (greyer phase) as well as sigma σ (bright phase) 

and austenite γ (grey phase). (b) Higher magnification of central zone. Black spots presented 

heterogeneously in both micrographs are assigned to chromium carbides. 

In order to determine if the carburizing process is superficially effective while internal 

precipitation occurs and does not alter the material on the surface, in the sense of decreasing 

protection against corrosion, plasma carburized samples were tested by a potentiodynamic 

polarization before and after annealing treatment. Thus, general corrosion behaviour has been 

analysed as follows. 

3.4. Potentiodynamic Polarization Tests 

Potentiodynamic polarization test is a very useful experiment to determine general corrosion 

behaviour. It is an excellent method to identify parameters such as the corrosion potential (Ecorr) and 

the corrosion current density (jcorr) by analysing the obtained polarization graphs. This test helps to 

compare qualitatively the protection for different systems as well. 

Figure 9 shows the anodic polarization curves or potentiodynamic curves measured in a solution 

of 3.5%wt NaCl for untreated (DSS F and SDSS F), plasma carburized samples (DSS C and SDSS C) 

and plasma carburized samples with additional thermal treatment at 830 °C (DSS C + TT and SDSS 

C + TT). Almost all the tested specimens showed good corrosion resistance as expected. Untreated 

samples (DSS F and SDSS F) present quite similar values of Ecorr due to their similar corrosion 

behaviour. When compared to the untreated samples, the plasma carburizing process of both samples 

(DSS C and SDSS C) carried out at 925 °C slightly improved the corrosion behaviour even though 

internal precipitation of the sigma phase was detected in a significant amount. This is an important 

issue in order to apply surface modification thermal treatments. This beneficial protection can also 

be seen by the low measured current densities as presented in Table 2. The summarized values (Ecorr 

and icorr) extracted from the potentiodynamic polarization curves were calculated by carrying out the 

cathodic-anodic Tafel slope. Moreover, the corrosion potential of samples without plasma 

carburizing, DSS F (−0.149 ± 0.004 V) and SDSS F (−0.143 ± 0.014 V) is higher than that of the plasma 

carburized samples DSS C (−0.089 ± 0.022 V) and SDSS C (−0.064 ± 0.010 V). The obtained information 

for the untreated samples (DSS F and SDSS F) can be comparable to previous studies [35,36]. Knowing 

that as more positive the corrosion potential and lower the current density, as better the corrosion 

behaviour, there is an improvement of the surface protection in the corrosion behaviour after the 

plasma carburizing process. On the other hand, Ecorr becomes more negative (worse corrosion 

resistance) for samples of DSS C + TT (−0.261 ± 0.033 V) in comparison with the untreated and plasma 

carburized samples, indicating that corrosion behaviour slightly decreases. BSE micrographs of the 

plasma carburized samples showed a slightly different aspect when additionally treated at 830 °C 

after the plasma carburizing process. For instance, for the DSS C + TT sample, the precipitation of the 

chi-phase near the surface seems that affects and it is revealed by the potentiodynamic polarization 
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behaviour, where an increase in the corrosion potential was analysed. As it is a superficial test, the 

presence of the chi phase in the sub surface of the DSS sample easily provoked a decrease in its 

corrosion resistance. However, the presence of the chi-phase in the core of the SDSS C + TT, and not 

on the surface, leads to the fact that the relatively low distribution of carbides in this sample does not 

harm it from the corrosion properties point of view. 

Usually carbides and nitrides are responsible for the decrease in corrosion resistance in such 

processes at low temperatures [13,25,37]. Herein, due to the extremely low amount of nitrogen, the 

small dark phases were identified mainly as carbides. These are distributed heterogeneously and 

have not appeared to be harmful for the surface properties of the plasma carburized samples. 

Polarization curves in Figure 9 and values in Table 2 show the differences between samples and 

treatments. Experiments have evidenced that plasma carburized samples have not shown passivation 

potential within the potential range from −0.5 to 0.5 VSCE at a scan rate of 1 mV·s−1. There are no visible 

passivation regions corresponding to abrupt increments in current density as can be seen in the 

curves shown in Figure 9. 

It is relevant to discuss the oscillatory region observed between ~0.0 and ~0.3 V for the carburized 

samples. Such behaviour is observed previously [42,43] and is typical of metals immersed in chloride 

solutions. However, the DSS C + TT sample does not present such behaviour. The sharp fluctuations 

in current density are defined as the metastable pit growth that initiates below the pitting potential, 

but they cannot propagate for an indefinite period and, therefore, repassivate fairly quickly [44–47]. 

In addition, as mentioned before, no pitting potential is reached. 

 

Figure 9. Potentiodynamic curves of DSS and SDSS samples as received (F), after the plasma 

carburizing process (C), after plasma carburizing and additional thermal treatment at 830 °C for a 

short time (C + TT). 

Table 2. Experimental parameters of corrosion potential and current density of the corresponding 

samples. Data are expressed as mean ± standard deviation (n = 3). 

 SDSS C DSS C SDSS C + TT DSS C + TT SDSS F DSS F 

E corr [V] −0.064 ± 0.010 −0.089 ± 0.022 −0.111 ± 0.057 −0.261 ± 0.033 −0.143 ± 0.014 −0.149 ± 0.004 

jcorr [μA/cm2] 0.007 ± 0.002 0.016 ± 0.009 0.028 ± 0.049 0.594 ± 0.034 0.026 ± 0.009 0.021 ± 0.002 

Regarding the plasma carburizing at lower temperatures, carbon presents lower diffusivity, and 

consequently, low solubility in the ferrite phase (0.0025%) [53]. Therefore, the adsorbed carbon atoms 

on the surface do not have enough mobility to diffuse into the substrate, a saturation of the carbon 
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on the surface is then caused and cementite is precipitated after fast cooling. However, at higher 

temperature and cooling in the air as in this study, carbon presents diffusion depth enhancement 

[17]. The increased solubility of the ferrite matrix for carbon and the high content of Cr in the δ phase, 

during a large time of diffusion, should lead to the precipitation of chromium carbides; however, at 

the same time, ferrite transforms into sigma phase (σ). The precipitation of chi-phase secondary 

phases is enhanced after an additional aging treatment at 830 °C because of the temperature range. 

Moreover, the sigma phase is a predominant phase when compared to chromium carbides. A higher 

amount of chromium is maintained in the solid solution, and the precipitation of carbides is mostly 

heterogeneous and not near the surface [13,48–50]. Therefore, potentiodynamic polarization test 

results have not shown a decrease in the corrosion behaviour of the samples tested superficially. 

4. Conclusions 

Plasma-carburizing process, as a thermochemical surface modification process, and its influence 

on the microstructure evolution of DSS (US32205) and SDSS (US32507) materials have been carried 

out. Precipitation of secondary phases occurred at a temperature of 925 °C during the large period 

and after normal cooling. A sigma phase after the plasma cycle has been identified extensively in 

both duplex and superduplex samples. However, higher diffusion of elements in the superduplex 

material was observed as greater transformation was clearly detected. Almost all ferrite phase in the 

SDSS were transformed into a sigma phase, resulting in an elongated morphology along the 

austenitic phase in the rolling direction. Additional thermal treatment at 830 °C for a shorter time to 

the DSS carburized samples revealed an intermetallic chi-phase, richer in Mo (wt%), near the surface, 

which consequently promoted the decrease in corrosion resistance. On the other hand, a chi-phase in 

the SDSS was found in the inner microstructure. Chromium carbides were the generally preferable 

nucleation sites for this phase. These carbides have been observed homogenously in both samples 

and have not shown to have a significant influence on the corrosion decrease. A displacement of some 

carbides was detected from the γ/σ boundaries, which is attributed to different microstructural 

distortions. 

A comparison between the carburizing process at a high temperature during a large period of 

time (normal cooling afterwards) and isothermal aging treatment at the same temperature and time 

(quenching afterwards) showed similar precipitated phases. However, in the absence of carbon, 

nitrides tend to precipitate; these and the ferrite/austenite boundaries are the nucleation sites for the 

chi-phase. 

In conclusion, the plasma-carburizing procedure at a relatively high temperature was found to 

be an effective protection for the surface, from the corrosion behaviour point of view. Corrosion 

potentials were almost equal for both DSS and SDSS samples, and although precipitation occurred 

interiorly, the surface of the sample, being thermochemically protected, was not altered. 
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