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Abstract 

 

Understanding the connection between DNA organization in the nucleus, and cell 

functioning is one of the most intriguing problems in biology. Although many 

interdisciplinary efforts have been developed for this aim, the mechanisms of DNA 

folding in such a large scale are largely unknown. Therefore, the complexity of 

genome structure requires different techniques to tackle several resolution levels.  

In this thesis, several scales of genome folding are studied using theoretical 

methods. First, we focus on the DNA sequence dependent properties which define 

the propensity of specific loci to be recognized by proteins, finding that the 

flexibility of specific DNA sequences might explain their prevalence in the genome.   

DNA sequence dependent properties are also important to define the first layer of 

chromatin organization: the nucleosome. Physical descriptors of the DNA sequence 

combined with the propensity for transcription factor binding are highly 

informative on the location of nucleosome depleted regions, which guide the 

position of +1 and –last nucleosomes, the rest of nucleosomes in the gene body 

being placed by statistical phasing. There is a clear correlation between 

transcriptional activity and nucleosome phasing at gene body, the causal 

relationship is transcription→nucleosome organization rather than the opposite 

A package for the comparative analysis of nucleosome organization was also 

developed in this thesis to quantitative predict changes in nucleosome organization 

occurring when perturbations are introduced to the cell. 

Finally, we studied both the changes at the nucleosome level and at larger scale 

produced by the induction of DNA methylation on a natively unmethylated 

genome, developing a Hi-C based 3D model to gain insights into the chromatin 

rearrangements observed.  We found very significant changes in chromatin 

structure induced by methylation, which are reflected in gene expression and 

cellular phenotype. Interestingly, these changes are found in a model organism that 

has not proteins prepared to recognize methylation, and accordingly can be 

assigned to intrinsic (not protein-mediated) effects of methylation.  



 

 
 

  



 

 

 

Thesis organization 

This thesis is a compilation of five works, three published and two in the process of 

publication, that study DNA and chromatin structure and its relation to gene 

regulation. They are presented following the level of resolution analyzed, rather 

than the chronological order of publication, starting from the structural properties 

of DNA sequences, following to the nucleosome organization and finally studying 

the 3D organization of the chromatin in the nucleus. Chapter 1 starts with an 

introduction of the state-of-the-art about many of the aspects addressed in this 

thesis, as well as the general objectives proposed in this work. Chapter 2 

summarizes the methods used along the different projects, comprising the 

theoretical study of DNA physical properties as well as several next generation 

sequencing experiments, and the bioinformatics algorithms for their analysis. These 

methods allow the study of different genomic features such as nucleosome 

positioning, 3D genome organization, protein binding mapping and gene 

expression. Chapters 3-6 present the results of this thesis as a compendium of five 

publications, each one preceded by a brief contextualization and summary of the 

main results.  Chapter 3 covers two publications concerning the importance of 

sequence dependent physical properties of the DNA on its flexibility and protein 

binding. Chapter 4 presents a study of determinants of nucleosome positioning and 

its relationship with gene expression, combining information about intrinsic 

physical properties of the DNA with extrinsic features such as transcription factor 

binding. Chapter 5 moves to the analysis of experimental data for nucleosome 

positioning, presenting a package developed not only to extensively analyze the 

nucleosome organization in a given experiment, but also to compare between 

different experimental conditions and to put the results in context with other 

genomic information. Chapter 6 studies the effect of DNA methylation on 

chromatin structure at the nucleosome and whole-genome 3D levels, in engineered 

yeast to which DNA methyltransferases were transferred. Finally, Chapter 7 

contains a general discussion of the results presented in this work and the 

conclusions of this PhD thesis.  
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Chapter 1. Introduction 

 

 

DNA is a long molecule that under physiological conditions forms a complementary 

right-handed duplex containing the genetic information necessary to build life. 

Although the human DNA fiber is about two meters long, it is packed tightly to fit 

inside the small space defined by the cell nucleus with a diameter of approximately 

10 micrometers [1]. The DNA compaction is aided by proteins that guide DNA 

folding inside the nucleus of eukaryotic cells. The complex of DNA and proteins 

inside the nucleus is known as chromatin. Many experimental evidences [2]–[4] 

demonstrate that DNA packing inside the nuclei is not random, as the accessibility 

to DNA of genome regulators must be preserved, ensuring the correct function of 

processes such as transcription, replication, and DNA repair. Other evidences have 

shown that this organization is dynamic and undergoes different rearrangements 

along several cellular processes such as differentiation [2],  cell cycle progression [5] 

or damage response [6].  

1.1 Nucleosomes are the primary units of genome 

organization 

The fundamental unit of DNA compaction in eukaryotes is the nucleosome. A 

canonical nucleosome is formed by ~147 base pairs (bp) of double-stranded DNA 

that coil in approximately 1.65 super helical turns around a core of histone proteins, 

which contain two copies of each histone H2A, H2B, H3 and H4. X-ray crystal 

structures of the nucleosome [7], [8] revealed (Figure 1.1) that histone proteins are 
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formed by a globular domain constituting the nucleosome core with a disk-like shape 

(approximately 10 nm of diameter and 5.5 nm of height) and N-terminal histone tails 

that are relatively unstructured and highly flexible. Moreover, they can undergo 

post-translational modifications (methylation, acetylation, ubiquitination) altering 

chromatin accessibility [9].  

Figure 1.1. Nucleosome core particle derived from crystal structure at 2.8 Å resolution. Histone 

ribbon traces colored in blue (H3), green (H4), yellow (H2A) and red (H2B). Adapted from [7]. 

The central bases of the nucleosomal DNA coincide with a pseudo 2-fold symmetry 

axis, the dyad axis [10]. The high curvature of the DNA in the nucleosome requires 

significant bending energy [11]. The structure is stabilized by positively charged 

histones in complex with negatively charged DNA backbone that form interactions 

every 10 bp (formed by salt-bridges, hydrogen bonds and hydrophobic contacts [10]) 

and interactions between the histones, forming H3-H4 and H2A-H2B dimers. The 

DNA wraps around the histones are parallel except in the entry/exit of the DNA to 

the nucleosome, where and additional histone binds, known as linker histone (H1 or 

H5), present in higher eukaryotes. Linker histones have an important role in 

interactions between nucleosomes and, hence, in folding of the nucleosomes in space 

and chromatin compaction [12].  
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Figure 1.2. Nucleosome occupancy and positioning. A nucleosome in a pool of cells can be 

characterized by the relative number of cells that contain it (occupancy) and the variability between 

cells in the sequence position (positioning). Adapted from [13]. 

1.2 Genome-wide nucleosome organization 

Nucleosome positions along genomes in vivo have been determined using several 

experimental protocols, such as FAIRE (Formaldehyde-Assisted Isolation of 

Regulatory Elements) [14], ATAC-seq (Assay for Transposase-Accessible Chromatin 

using sequencing) [15] and MNase-seq (Micrococcal Nuclease digestion followed by 

high throughput sequencing) [16]. The latter is the most widely used technique and 

provides detailed information on nucleosomal architecture. It is based on cross-

linking nucleosomal DNA and histones using formaldehyde prior to treatment with 

MNase, which cleaves the linker fragments. These experiments contain information 

from a population of cells, therefore nucleosome profiles can be noisy [17] and are 

typically characterized by two important properties: occupancy and positioning 

(Figure 1.2). The first is related to the percentage of cells in an experiment that 

contains a given nucleosome, the latter denotes the variability in its genomic position 

among all the cells. A nucleosome is called well-positioned (W) when it is present in 

a large percentage of the cells, and the fragments from different cells present low 
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variability with respect to the genomic position. When a nucleosome has low 

coverage and/or large positioning variability, it is called fuzzy (F) [17]. 

Nucleosome organization along the linear DNA sequence is not random and it has 

been related to different cellular processes such as transcription and replication [13]. 

Moreover, it is highly dynamic in space and time, and influenced by several factors  

such as: (i) the local context determined by sequence-dependent properties (cis-

factors), (ii) protein complexes that interact with the DNA and can compete with 

nucleosomes (trans-factors), such as transcription factors [18],  replication machinery 

[13] or ATP-dependent remodelers that can slide or evict nucleosomes (partially or 

totally) [19], and (iii) the effect of neighboring nucleosomes that impose steric 

constrains for nucleosome positioning [20]. A summary of these factors is presented 

in the remaining of this section. 

1.2.1 Sequence determinants of nucleosome positioning 

As explained above, the B-DNA conformation is highly distorted as it is wrapped 

around the histone core. Since DNA sequences are characterized by different 

physical properties depending on the bp composition, it is expected that some 

sequences are more favorable to form nucleosomes [21], [22], [23]. Efforts to 

determine the sequence contribution to position nucleosomes have been performed 

in vivo and in vitro [20], [19], [24]. 

High resolution nucleosome maps in budding yeast have revealed that nucleosome 

formation is favored in GC-rich sequences whereas poly(dA:dT) sequences tend to 

be nucleosome depleted [20]. Alignment of thousands of well positioned 

nucleosomes showed a preferential periodic pattern (Figure 1.3) of AA, TT, TA and 

AT steps every DNA turn (10 bp) offset by 5 bp of another periodic pattern of G/C 

dinucleotides [13]. This is related with the thermodynamically favoring of AA, TT 

and TA to expand the DNA major groove and CG to contract it [22], [23].  



Chapter 1. Introduction   5 

 

Figure 1.3. Preferential periodic positioning of A/T and C/G di-nucleotides relative to the nucleosome 

dyad. Nucleosome dyad tends to be enriched in A/T di-nucleotides. A 10 bp periodic pattern of A/T di-

nucleotides is preferentially found, offset 5 bp by C/G di-nucleotides. Adapted from [13]. 

The observation of this preferential sequence positioning pattern for nucleosomes led 

to a large number of models that predict nucleosome positioning from sequence 

composition [24]. Some of these models (reviewed in [20]) compute the elastic 

energies associated with DNA bending characteristic to each genomic sequence, 

others use the periodicity of favorable or unfavorable dinucleotides or the frequency 

of different k-mers in nucleosomal sequences, coupled with machine learning (ML) 

algorithms to predict nucleosome positions genome-wide. In vitro predictions are 

more accurate, since the effect of interacting proteins or chromatin remodelers is 

removed [22]. However, the predictive ability of classical sequence-based models is 

moderate in vivo as the trans-acting factors are also important for nucleosome 

positioning [25].  

1.2.2 Transcription regulation influences nucleosome positioning 

Genome-wide nucleosome positioning studies have revealed the presence of a 

nucleosome free region (NFR) around promoters [13], [26], surrounded by two 

strongly positioned nucleosomes referred to as -1 and +1 (the nucleosomes 

immediately upstream or downstream the transcription starting site, TSS, 

respectively). Genes can be characterized by these NFRs surrounding nucleosomes, 

taking into account their positioning (F or W) and the distance between their dyads 

(forming open or close conformations) [17].    

Promoters of active genes tend to be associated with open NFRs (Figure 1.4), where 

transcription factors or RNA polymerases can be bound [27]–[29]. On the contrary, 
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genes with low transcription levels tend to present narrower linkers where 

transcription factor (TF) binding site might be occluded by the nucleosomes [30]. 

However, this tendency is not present in all genes, and in fact some TFs can bind 

nucleosomal DNA either at the nucleosome exit or dyad, at motifs formed by the two 

parallel DNA chains that surround the histones, or at 10 bp periodic motifs favored 

by the conformation of the DNA in the nucleosome [18], [31]. Moreover, nucleosome-

bound TFs can have opposite roles in gene activation (TF binding leads to 

nucleosome dissociation) or repression (nucleosome stability is increased upon TF 

binding, for instance in T-box TFs) [18], [32].  

 

Figure 1.4. Nucleosome free regions around TSS of genes according to transcription levels. Highly 

transcribed genes present wider NFRs. Adapted from [30]. 

The nucleosome architecture around TSS could be both cause or consequence of the 

transcriptional activity in a given cell condition. During transcription, RNA 

polymerase II (RNA pol II) passage seems to require partial disruption of the DNA-

histone contacts within promoters and coding regions but rapid reestablishment of 

the chromatin organization occurs after polymerase passage [13]. In particular, loss 

of -1 nucleosome  due to RNA pol II binding has been reported as well as shortening 

of the NFR due to increased occupancy at nucleosome -1 under polymerase activity 

loss [33]. At +1 nucleosome, histone variant H2A.Z might facilitate the passage of 

RNA polymerase [34]. Along gene bodies, transcriptionally inhibited cells exhibit 

low nucleosome positioning [35]. Recent cryoEM studies [36], [37] have determined 
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the structure of RNA pol II passage along nucleosomal DNA, showing how 

transcription elongation factors can accommodate to the nucleosome core, and how 

the DNA is peeled from the nucleosome core. Although these studies are 

preliminary, they set the path for further investigation on transcriptional elongation 

along chromatin.  

Further evidence about the relationship between transcription and nucleosome 

positioning was presented in studies showing how nucleosome shifts or evictions 

might appear related to gene activation.  Moreover, binding of pre-initiation complex 

in order to activate transcription might require a specific nucleosome position around 

the TSS, possibly to allow accessibility to the TF binding site [35]. For instance, under 

heat-shock, Saccharomyces cerevisiae ribosomal protein promoters are 

downregulated, accompanied with an eviction of DNA binding factors and an 

upstream shift of the +1 nucleosome [38]. Shifts and evictions of nucleosomes around 

gene promoters, related to transcriptional activation, have also been reported in 

human cells [16], [29].  

The strong positioning of the +1 nucleosome has led to development of models that 

hypothesize the presence of barriers at promoters imposing a periodic organization 

of the downstream nucleosomes [13]. Several models [24] have proposed the 

prediction of nucleosome profiles using an emitting signal from these barriers  and 

positioning nucleosomes at an average distance between nucleosomes, known as 

nucleosome repeat length (NRL), which varies between cell types and chromatin 

states [16], [29], [39], [40]. Moreover, the periodicity in nucleosome spacing varies 

along the chromosomes [41], but there is no consensus regarding the correlation 

between nucleosome periodicity and transcription level of the corresponding genes. 

From MNase-seq studies, including nucleosomal fragments from a population of 

cells, contradictory results have been found, since periodically positioned 

nucleosomes have been found both to promote and inhibit transcription initiation 

[13]. On the contrary, studies analyzing single-cell nucleosome profiles found that 

silent genes display periodic nucleosome arrays (although with large variation of the 

exact genomic positioning between cells) while nucleosomes in actively transcribed 

genes are less periodic, but their position is more conserved among the different cells. 
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These results were found using single cell MNase-seq [42] and Array-seq [43], a 

technique sequencing di-, tri-, tetra-nucleosomes to extract nucleosome spacing in 

individual DNA molecules. Hence, the study of nucleosome periodicity should 

consider possible artefacts caused by cancelling effects between the different cells in 

population-based MNase-seq data.  

The effect of the transcription termination site, TTS, as an emitting signal for 

nucleosome positioning is less clear. There is evidence supporting the existence of a 

barrier for nucleosome positioning from the 3’ gene end in S. cerevisiae [44] but  it 

can be influenced by the proximity between its TTS and the TSS from downstream 

genes [45]. However, in human cells, where intergenic regions are wider, presence of 

poly(A) sequences at 3’ gene ends suggests that the nucleosome positioning barriers 

at TTS are not an artefact of neighboring genes [46].  

1.2.3 Nucleosome architecture and DNA replication 

Replication is initiated at specific locations of eukaryotic genomes, where the origins 

recognition complex (ORC) binds to some consensus sequences and recruits factors 

required for DNA replication [13]. Replication origins have different firing times: 

those activated shortly after entrance to S-phase called “early” origins and those 

active at the end of S-phase called “late” origins [47]. In S. cerevisiae, replication 

origins, also known as autonomously replicating sequences (ARS) have been broadly 

identified [48]. Budding yeast ARS consensus sequences (ACS) display two different 

nucleosome architectures depending on their activity. Active ACS coincide with long 

NFRs surrounded by strongly positioned nucleosomes, that are enriched in histone 

variant H2A.Z [13]. On the other hand, functionally inactive ACS are partially 

covered by nucleosomes [49]. Replication origins in mammalian cells have also been 

found to coincide with NFRs although a combination of several factors determines 

the final origin profile in different cell types [50].  

As replication progresses, nucleosome structure is perturbed, since the replication 

complexes need access to single stranded template DNA [47]. Rapid restoration of 

chromatin organization must take place now in two DNA molecules, which implies 
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two octamers of histones are required per each original nucleosome. Moreover, 

histone variants and modifications must be faithfully preserved. Three models of 

histone H3-H4 inheritance have been proposed [13]: (i) conservative, where one of 

the daughter DNA duplexes remains bound to the original histones and the other is 

a assembled with a new set of histones, (ii) semi-conservative, where each daughter 

keeps half of the original histone content, and (iii) dispersive, which is a mix of the 

previous two, depending on the histone variant composition.  

1.2.4 ATP-dependent chromatin remodelers 

We have seen that transcription and replication might require nucleosome 

displacements or disassemble. In order to achieve this, ATP-dependent chromatin 

remodeling complexes use the energy from ATP hydrolysis to reposition 

nucleosomes [19]. Transcription, DNA replication and DNA repair can also require 

histone turnover, mediated by chromatin remodelers. Although turnover rate is 

higher in active promoters, enhancers and origins of replication, opposing evidence 

shows that nucleosome at highly transcribed regions are maintained, suggesting that 

nucleosome turnover upon gene activation could be only partial [13]. Moreover, 

there is evidence that binding of remodelers to promoters contributes to define a 

strong NFR and phased arrays of nucleosomes [35], [51].  

Different types of ATP-dependent chromatin remodelers have been described, 

depending on the catalytic subunit of the remodeling enzymes. A summary of their 

main roles [19], [52] is presented in the following:  

• SWI/SNF is highly conserved in eukaryotic cells, implicated in regulation of 

stress response.  

• RSC is highly abundant and required for cell viability. It can produce 

nucleosome shifts at promoters producing wide NFRs in active genes. 

• CHD is involved in DNA replication and repair. It participates in the regular 

spacing of nucleosomes. 
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• ISWI is a highly conserved complex important in transcription and DNA 

replication. Repositions nucleosomes similarly to SWI/SNF and can also 

affect nucleosome spacing.  

• INO80 is involved in transcription, DNA repair and replication. Many 

eukaryotes share a conserved core of subunits from this complex, but other 

subunits have largely diverged through evolution.  

1.2.5 Evidence of subnucleosomal structures 

Besides from the canonical histone octamer, the existence of subnucleosomal 

structures has been reported. For instance, centromeric nucleosomes in Drosophila 

melanogaster were reported to contain only one copy of each histone protein 

centromeric H3 (cenH3), H4, H2A, H2B forming an “hemisome” structure [53], while 

S. cerevisiae centromeric nucleosomes were found to be hexamers formed by Cse4 

(instead of H3), H4 and Smc3 (in place of H2A and H2B), named hexasome [54].  

Hexasomes at +1 nucleosomes in S. cerevisiae with an unbalanced composition of 

H3-H4 histones were reported, which coincide with regions of high histone turnover 

[55]. Moreover, as explained before, RNA polymerase passage can induce partial 

unwrapping of the nucleosomal DNA leading to opening or dissociation of H2A-

H2B dimers, and therefore to nucleosomes with lower number of histones. 

Additionally, evidence for the existence of half-nucleosomes linking DNA replication 

with H3-H4 tetramers has been reported [13].  

1.3 Epigenetics dynamically modulates chromatin structure 

1.3.1 Histone post-translational modifications 

Histone tails largely contribute to dynamics of the chromatin structure related to 

gene transcriptional regulation [9]. Tails interact with the DNA influencing 

nucleosome stability and recruitment of regulatory proteins [56] and they also 

interact between nucleosomes, modulating higher order structures[57]. Histone tails 
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can be subject to several post-translational modifications such as methylation, 

acetylation, phosphorylation and ubiquitination. More condensed groups of 

nucleosomes are observed in heterochromatic regions generally associated with 

H3K27me3 and H3K9me3/2 and less compact and more accessible in euchromatin, 

marked by H3K4 methylation lysine acetylation and preferentially located in the 

interior part of the nucleus [58].  

Histone acetylation has generally been related to higher gene expression by 

decreasing chromatin compaction [57]. Histone acetyltransferases add acetyl groups 

to lysine residues, neutralizing the positive charge of histone tails and therefore 

reducing its affinity to the negatively charged DNA.  An opposite role is attributed 

to histone deacetylases which, by removing acetyl groups from histone lysine 

residues, make chromatin more compact and therefore have a repressive role [59].  

Histone methylation has a dual role in transcription activation or repression, 

depending on the target residue and the number of methyl groups added [56]. 

Although methylation of lysines and arginines does not alter the electrostatics of 

DNA-histone interactions, as it occurs with acetylation, its effect on activation or 

repression is related to different regulatory proteins that are recruited depending on 

the precise modification [9].  

The effect of histone phosphorylation and ubiquitination is coupled to other histone 

modifications, defining an interplay between them where the presence of one 

modified residue can induce the epigenetic modification of another [9]. Histone 

phosphorylation is related to several processes such as DNA repair, chromatin 

compaction in mitosis and regulation of gene expression [56]. Ubiquitination is also 

related to different activities, such as DNA damage signaling and transcriptional 

activation (both activation or repression, depending on the target residue) [60]. 

1.3.2 DNA methylation 

Another dynamic epigenetic modification that is correlated with gene silencing and 

chromatin conformation in bacteria, plants and mammalian cells is DNA 

methylation. This modification it is not present in all eukaryotes; it is absent in several 
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model organisms such as S. pombe, S. cerevisiae and C. elegans, and barely 

detectable in D. melanogaster [61]. DNA methylation occurs preferentially at 

cytosines, mainly at CpG steps, that are covalently modified. CpG steps are under-

represented in the genome of complex organisms but enriched in approximately 60% 

of human promoters (mainly at CpG islands), suggesting a role for CpG methylation 

in gene regulation that might be coupled to the unusual conformational properties 

of CpG steps [62]. 

Methylation is established by DNA methyltransferases (DNMTs) whereas TET 

proteins are responsible for removal of the methyl groups. DNMT3a and DNMT3b 

are responsible for de-novo CpG methylation in both strands while DNMT1 

participates in maintenance of CpG methylation after DNA replication [63]. 

Additionally, several methyl CpG binding domain (MDB) proteins are readers of 

methylated DNA and can modulate gene expression through changes in DNA 

accessibility and recruitment of different protein complexes [64]–[66] in higher 

eukaryotes.  

In early stages of mammalian development, DNA methylation patterns are 

established, with most CpGs methylated except those located at CpG islands [63]. 

Upon differentiation, CpG islands in promoters of housekeeping genes remain 

unmethylated, but genes that are inactivated at a particular developmental stage get 

de-novo methylation [67] whereas other promoters and regulatory regions are 

demethylated [63]. Research has suggested that DNA methylation does not lead to 

gene repression, however it maintains the gene at inactive state [68] whereas 

demethylation can re-activate its expression [69].  

Alterations in DNMTs have been linked to important effects in gene regulation 

associated to diseases and cell viability. For instance, mutations in DNMT3b are 

implicated in Immunodeficiency, Centromere instability and Facial anomalies (ICF) 

syndrome [70], while those in DNMT1 cause autosomal dominant cerebellar ataxia, 

deafness and narcolepsy [71] and DNMT3a mutations are present in acute myeloid 

leukemia patients [72]. Furthermore, changes in DNA methylation patterns have 

been associated with many different types of cancer in humans [73], [74], related to 
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activation of oncogenes or repression of genes involved in DNA damage response 

[75], [76].  

It is still unclear whether the effect of DNA methylation on gene expression is direct, 

or it is correlated with chromatin structure [77]. Theoretical analysis of the physical 

properties of DNA revealed that while CpG steps are very flexible [62], mCpG are 

stiffer and harder to bend, and have lower ability to circularize and to form 

nucleosomes [23], [78], [79]. However, in vivo studies on mammals and plants are 

contradictory, with some suggesting that methylation occurs preferentially on 

nucleosomal DNA [80], [81] and others concluding the opposite [82], [83]. NOMe-seq 

experiments have shown that DNA methylation and nucleosome occupancy were 

strongly anti-correlated surrounding CCCTC-binding factor (CTCF) sites, but at 

promoters the correlation seemed to be less clear [84]. 

1.4 Chromatin structure at higher level 

1.4.1 Nucleosome arrays form a second layer of chromatin organization 

Nucleosomes are separated by fragments of DNA called “linkers”, between 10 and 

100 bp long depending on the cell type and transcriptional state of the region [85]. 

Nucleosomes are connected by linkers in a beads-on-a-string array as detected 

initially by electron microscopy [86], [87]. Different experimental approaches have 

tried to elucidate their 3D folding. Early electron microscopy studies suggested that 

nucleosomes fold into a regular 30-nanometer fibers, but different folding motifs 

were identified, probably as a consequence of differences in experimental conditions 

[88]: one-start solenoid model [89], two-start helical ribbon model [90], and two-start 

crossed-linker model with left-handed double-helical symmetry [91]. Posteriorly, 

analysis of in vitro reconstituted nucleosomes also derived different folding patterns 

such as the zig-zag model [92]. However, in vivo studies questioned the existence of 

the regular 30 nm fiber and instead found evidence for random and irregular 

nucleosome arrangement [93], [94]. In recent years, with the advances in super-

resolution microscopy, it has been observed that the chromatin fiber is not a regular 
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structure, but rather it is formed by groups with varying sizes that can be cell type 

specific [95], [96].  

As pointed out in a recent review [88], the lack of consensus on a common folding 

motif for nucleosomes among different experiments can be due to differences in 

experimental conditions (for instance chromatin folding is dependent on salt 

concentration), but also to intrinsic variability of DNA sequences, epigenetic 

modifications, histone variants, or the effect of linker histones (H1). Chromatin 

conformation capture (3C) techniques (see Methods for detailed explanation) have 

provided very valuable information on the arrangement of the nucleosome fiber in 

the nucleus.  Particularly, Hi-C experiments count the frequency of interaction 

between pairs of loci genome-wide, and a variant of the 3C technology  named Micro-

C [97], [98] (see Methods), allows the study of contact frequencies at the nucleosome 

resolution. These studies have been performed in S. cerevisiae and S. pombe, 

revealing the presence of self-associating domains that span 1 to 5 genes, usually 

separated by promoters of highly transcribed genes. They also found evidence for 

structural tri or tetra-nucleosome motifs. Another study using ionizing radiation-

induced spatially correlated cleavage of DNA with sequencing (RICC-seq) found 

evidence for zig-zag nucleosome arrays in heterochromatic regions and solenoid 

structures in open chromatin [99]. Recently, Hi-C with nucleosome orientation (Hi-

CO) [58], a method combining Hi-C with simulated annealing molecular dynamics, 

proposed alpha-tetrahedron and beta-rhombus tetra-nucleosome motifs, occurring 

preferentially at gene bodies and promoter regions, respectively. 

1.4.2 Higher level chromatin organization 

Hi-C [100], (see Methods) allows the interrogation of chromatin structure genome-

wide at kilo base scale, revealing that chromosomes fold hierarchically in the nuclear 

space during interphase [101], [102], as illustrated in Figure 1.5. At the whole nucleus 

level, Hi-C experiments showed the segregation into chromosome territories, since 

contact frequencies between regions in the same chromosome (cis-contacts) are larger 

than between regions in different chromosomes (trans-contacts), as had been 

previously observed by FISH experiments in interphase nuclei [103]. At the mega 
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base scale, contact frequencies between loci have revealed the separation of A/B 

compartments, corresponding to actively transcribed euchromatin and repressed 

heterochromatin, respectively [100], the latter being preferentially attached to the 

nuclear lamina [104].  

 

Figure 1.5. Hierarchical chromatin organization. Adapted from [105] 

At finer scale, chromosomes are organized into topologically associated domains 

(TADs), regions of the genome with high self-interaction, insulated from regions of 

neighboring domains [106]. TADs might reflect the presence of gene loops that 

enforce promoter directionality [107] or loops formed to bring in proximity 

regulatory elements which can be separated by a large genomic distance, such as 

enhancers and their target sites, or co-regulated genes, [105], [108]. Loops have also 

been observed in mammalian genomes using ligation-free methods such as Genome 

Architecture Mapping (GAM) [109], that also reveals the abundance of three-way 

contacts between highly transcribed regions or super-enhancer loci. In smaller 

genomes such as S. cerevisiae, although Hi-C experiments initially failed to detect 

the presence of TADs [110], Micro-C allowed the detection of chromosomal 

interaction domains (CIDs), containing similar number of genes as a TAD [97], [98].  

The link between chromatin structure and epigenetic states has also been studied. 

TADs tend to be formed by regions displaying similar accessibility and usually 

coincide with segmentation of chromatin by epigenetic profiles [108], [111]. 

Nonetheless, the effect of epigenetic marks, such as DNA methylation, on chromatin 

structure is still unclear.  A/B compartments in many cell types can be 
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computationally predicted by DNA methylation profiles [112]. However, a recent 

study showed that, although the establishment of A/B compartments defines DNA 

methylation patterns in cardiac myocytes, alteration of DNA methylation signatures 

does not have an impact on chromatin compartmentalization or TAD formation 

[113].  

1.4.3 TAD formation 

TAD borders in mammalian cells strongly colocalize with CTCF target sites [114]. A 

proposed mechanism for TAD formation in interphase involves the role of loop 

extrusion factors (LEFs), for instance cohesin, that are loaded into DNA and extrude 

it through their ring-shaped structure [115], [116]. The loop formation continues until 

the LEF finds either another LEF or a boundary factor (BF), for instance an insulator 

CTCF in convergent orientation at the loop boundaries. Loops are not stable unities 

but rather as LEFs dissociate from chromatin the contacts between TAD boundaries 

can be lost and hence not detected in all cells of a population Hi-C experiment. 

The loop extrusion model is supported by computer models that have shown that in 

metazoans, interphase domain formation requires cohesin-dependent looping [115], 

[116]. Moreover, reorganization in the TAD structure is observed upon depletion of 

cohesin or its loading factors [3], [117]. Either deleting CTCF binding motif or 

reversing its orientation can increase contacts between the two surrounding TADs, 

hence globally loosing insulation between TADs [106], [118]. 

1.4.4 Role of TADs in transcriptional regulation 

As described above, TAD boundaries are enriched in bound CTCF in mammalians, 

but in organisms such as D. melanogaster, the role of CTCF in TAD insulation is 

lower, and some organisms, for instance S. cerevisiae, do not have this protein (or a 

homolog). In those organisms, TAD or CID boundaries have been associated to 

promoters of actively transcribed genes and are typically bound by RSC remodeling 

complex [97], [119]. Moreover, mammalian TADs not only are enriched in CTCF 
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sites, but also coincide with promoters of housekeeping genes and open-chromatin 

marks [111].  

Specific defects in genome folding have been related to failures in genome regulation 

leading to diseases and cancer [118], [120]. TADs seem to favor enhancer promoter 

interactions or promote co-localization of functionally related genes and hence are 

related to transcription activation [4], [121]. Additionally, chromatin compaction at 

gene level, obtained from Micro-C contact frequencies [97], is anticorrelated with 

transcriptional activity. Altogether, these results show wide evidence suggesting that 

TADs have an active role in transcription regulation. The converse relation, the effect 

of transcription on TAD formation, has also been studied. Although transcription 

alteration in D. melanogaster has shown effects in domain segregation, activation of 

a single gene does not create a TAD boundary in mammalian cells, suggesting that 

in the latter case the effect of CTCF might be stronger[122]. 

1.5 Chromatin organization in yeast 

The first Hi-C studies in budding yeast revealed several features of its chromatin 

organization in asynchronous populations of cells, some of them confirming 

observations from microscopy experiments. Like other eukaryotes, contact 

frequencies are lower between chromosomes than within chromosomes and 

exponentially decrease with genomic distance [110]. On the other hand, longer 

chromosomes tend to have less interactions with other chromosomes. However, S. 

cerevisiae presents differences in chromatin folding with respect to higher 

eukaryotes that are enumerated below (Figure 1.6). 

First, centromeres are clustered at the spindle pole body (SPB) through kinetochore 

microtubule attachment and have low interaction frequency with regions further in 

the same chromosome, presenting a Rabl-like organization, as observed by imaging 

and 3C studies [98], [110], [124].  

Second, telomeres tend to localize towards the nuclear membrane and interact more 

frequently than expected considering their genomic separation. Several clusters of 
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telomers are observed within each single cell, preferentially formed by arms of 

similar length [125], [126].  

 

Figure 1.6. Saccharomyces cerevisiae chromatin structure in interphase. Centromeres are clustered 

attached to the SPB, telomeres preferentially located at nuclear periphery and rDNA 

segregated from the rest of chromatin at the nucleolus, opposite the centromere cluster. 

Adapted from Wang et al. 2015 [123]. 

Third, ribosomal DNA (rDNA) confined at the nucleolus is located in opposite side 

of the centromere cluster in interphase [110]. This region splits chrXII into two lowly 

interacting domains. Nucleolus volume in exponentially growing cells is 

approximately the third of the total nucleus volume [123] 

These features are globally preserved in the two matting types in yeast: a and 𝛼, 

which are determined by the MAT locus on chromosome III. The only difference in 

chromosome folding between the two matting types occurs precisely in chrIII, where 

MAT locus is in contact with the heterochromatic locus HML in MATa cells but not 

in MAT𝛼 cells. Moreover, a single loci, the recombination enhancer, is determinant 

in the reorganization of the whole chromosome [127].  

1.5.1 Cell cycle chromatin dynamics 

Along the cell cycle, the global patterns of budding yeast chromatin are preserved to 

some extent, although the intensity of centromere clustering, intra/inter contact 

ratio, rDNA compaction and nucleus sphericity suffer some variations. Hi-C 

experiments in cells arrested at different points along the cell cycle revealed 
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progressive increase in chromosome compaction between G1 and M [5], [128]. 

Structural maintenance of chromosomes (SMC) complexes are essential in mitotic 

chromosome condensation as well as chromatin structure in interphase [129]. By 

disruption of cohesin activity it was shown, both experimentally and through 

computer models, that the increased compaction achieved in M is dependent on 

cohesin but not condensin [128].  

 

Figure 1.7. Chromatin organization throughout the cell cycle in Saccharomyces cerevisiae. Increase 

of intra-contacts at S phase mediated by cohesin leads to chromosome individualization. During M 

phase chromosomes are more elongated due to spindle elongation and condensin loading. Bottom: 

chromatin structure in cdc20‐ and cdc15‐arrested S. cerevisiae cells, which correspond to metaphase 

and anaphase, respectively. Chromosome XII is highlighted in orange (right arm) and blue (left arm). 

The right arm folds into a loop in anaphase (pink arrowhead). Adapted from [5].  

Progressing further into the cell cycle, in the transition from metaphase to anaphase, 

a third state of chromatin organization is observed. The structure resembles a 

polymer brush (Figure 1.7), with increased short-range contact frequency and 

decrease in long-range contacts. In anaphase, a strong loop between the upstream 

flanking region of rDNA and centromere is formed, and rDNA presents a stretched 
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conformation. Condensin participates in the formation of this loop, as well as in the 

increase in centromere contacts (also observed in other stages of the cell cycle, [128]).  

1.5.2 Chromatin organization under quiescence 

Under nutrient starvation, cells exit mitosis and enter quiescent state, referred to the 

G zero phase (G0), which produces changes in chromatin organization. Glucose 

starvation produces chromatin condensation, as observed by the reduction of nuclear 

volume in fluorescence microscopy [130] and the changes in chromatin contacts in 

Hi-C (increase in intra-chromosomal long-range contacts as well as contacts between 

the centromeric region and the rest of the chromosome, and decrease in inter-

centromeric contacts, [131]). 

rDNA acts as a barrier separating chrXII into two domains with very low interaction 

frequencies, but since it is more compact in quiescence due to ribosome biogenesis 

[132], the changes in long range contacts are stronger.  

Additionally, telomeres, which form groups attached to the nuclear envelope in 

exponentially growing cells, form a single cluster in quiescent cells that is located in 

the center of the nucleus [131], [133]. 

1.5.3 Replication origins 

Super-resolution microscopy revealed that replication origins are grouped into 

discrete points inside the cell nucleus, with high variability between different cells, 

forming foci of ARS that start replication simultaneously [134]. Mapping of ARS in 

S. cerevisiae revealed that their replication time is highly correlated with the distance 

to centromeres, with early activated ARS preferentially located close to centromeres 

and depleted towards the telomeres [5]. Since centromeres are clustered at the SPB, 

this might cause the clustering of early replication origins. Hence, it is not clear if the 

hypothesis of clustering of early ARS is mechanistic or it is only imposed by the 

clustering of centromeres in the Rabl-like organization, since those ARS tend to be 

close to the centromeres. Similarly, some ARS are more clustered during quiescence 

(far from the centromeric regions) and other are more clustered in exponential 



Chapter 1. Introduction   21 

growth (those close to the centromeric regions) but this might also be a consequence 

of centromere dynamics in quiescent cells.  

1.5.4 tRNA genes 

Transfer RNA (tRNA) genes are regulated by RNA Pol III and their transcription is 

initiated by TFIIIC protein complex [135]. They are usually bound by SMC proteins, 

chromatin remodelers and other architectural proteins [136]–[138], showing their 

importance on chromatin organization. Fluorescent in situ hybridization (FISH) 

studies reported increased contacts between tRNA genes mediated by condensing 

activity [139]. On the other hand, initial Hi-C studies at low resolution [110] detected 

a cluster of tRNA genes close to the nucleolus. Hi-C analyses at higher resolution 

[131] found that groups of tRNA genes are also correlated with the distance to 

centromere and so divided into two groups: close and far from centromere cluster. 

This separation into two groups does not change in quiescence, although the group 

of tRNA genes closer to centromeres tend to have lower interaction frequencies 

among them. Recently, it was shown that nucleosome positioning, binding of SMC 

complexes and centromere clustering are affected by the deletion of tRNA genes 

from an entire chromosome in yeast [140]. 

1.6 Chromatin modeling 

The ability to obtain information about chromatin contacts at the genome-wide scale 

from Hi-C experiments boosted the development of several physical models aiming 

to explain its 3D conformation. In general, contact frequencies are assumed to be a 

proxy for structural proximity. These models arise from the observation that contact 

frequencies decay at similar rates as observed in polymer physics [141]. They can be 

divided into two main groups. The first group of ‘bottom-up’ approaches model a 

hypothesized mechanism of chromatin folding, trying to reproduce the contact 

probabilities observed from the 3C models. The second group, ‘top-down’ models 

use the information from the contact frequencies applied as restraints to find possible 

configurations of the chromatin in 3D, searching to derive possible mechanisms of 

chromatin folding.  
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1.6.1 Bottom-up chromatin models 

From the observation that TADs are highly related to chromatin modifications, and 

the clear characterization of chromatin domains in D. melanogaster (active, 

Polycomb-repressed, HP1 repressed or black chromatin), Jost et al. [142] proposed to 

model chromatin as beads on a string co-polymer (see Figure 1.8) imposing larger 

attraction between beads of the same epigenetic type and repulsion between beads 

of different type. It was shown that the model could generate chromatin structures 

that are consistent with Hi-C contact maps in regions of approximately 1.3 Mbp. 

However, all chromatin types have the same parameters and the model should be 

refined to account for the different density and compaction of each epigenetic type, 

as observed from super resolution microscopy [95]. 

 

Figure 1.8. Chromatin polymer model as beads on a string array with monomers of 10Kb from 

epigenomic domains. The color of each bead represents its epigenomic state and is used to define the 

specific (between beads of the same color) and non-specific (beads of different color) interactions in 

the model. Taken from [142] 

Another approach is the Strings and Binders Switch (SBS) polymer model [143] 

which introduces the effect of proteins that might act as looping factors, attracting 

close in space regions containing its recognition motif (Figure 1.9). Here, the 

chromatin is also represented as self-avoiding beads on a string interacting with 
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binders following a Lennard-Jones attractive potential with a given energy of 

interaction and concentration of binders. The model can reach a coiled open state at 

low energy of interaction and concentration, or more closed globular states that can 

be disordered or organized depending on the magnitude of the energies of 

interaction and the concentration of binders.  

 

Figure 1.9. Representation of the SBS model of chromatin. (A) Chromatin is organized by binding 

factors such as transcription factors. (B) Three classes of stable conformations can be obtained: (left) 

an open Self-Avoiding Walk chain randomly folded, (center) a closed disordered globule state and 

(right) a closed ordered globule state produced by higher interaction energies or concentrations. 

Taken from [144] 

Other bottom-up approaches include the loop extrusion model [115], [116] that takes 

into account the effect of cohesin and CTCF to extrude chromatin through the cohesin 

ring and stop when CTCF bound to DNA is encountered in convergent orientation 

and models that introduce the effect of supercoiling in 3D structure, for instance by 

torsional stress produced by RNA polymerases [145]. 

1.6.2 Top-down chromatin models 

Top-down models typically transform the binned contact matrices from 3C-based 

experiments to spatial restraints that are posteriorly applied to obtain structures that 

resemble the original contact data to some extent [110], [141]. These models can be 

validated with other available experimental data such as distances between target 

loci obtained from FISH, measurements of structure volume, compaction marks 

obtained from sequencing experiments such as chromatin accessibility or chromatin 

modifications or information about LADs. In this section, three types of top-down 

models are summarized, as presented by Polles et al. [146]  
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The first type of models searches for a consensus structure that represents an average 

conformation from the population data. They minimize the deviations between the 

distances in the model and those derived from the experimental contact frequencies, 

assuming that the larger the contact frequency, the shorter the expected distance 

between each pair of loci. Several methods have been proposed to achieve this 

minimization, such as scoring function optimization [110], [141], Bayesian likelihood 

function maximization [147] or generalized linear models [148]. A disadvantage of 

this strategy is that, since 3C-based data is obtained from a population of cells, the 

obtained structures are average representations that are not necessarily observed in 

single cells. 

 

Figure 1.10. Example of results from a top-down chromatin model. (A) Experimental (left panel) and 

simulated (right panel) contact matrices for a region containing the Tsix and Xist TADs. (B) Sample 

conformations from the optimized simulation showing the two TADs in different colors. Adapted from 

[153] 
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The second group, resampling models, also make a conversion from contact 

frequencies from the 3C experiment to spatial restraints but obtain an ensemble of 

structures by defining optimizations with multiple minima or thermodynamic 

fluctuations. Since the variability in chromatin structure between individual cells is 

large, as reported from single cell Hi-C and super-resolution microscopy 

experiments [149], some of these models use only a part of the cells from the contact 

matrix [150]–[152].   

Finally, in population-based deconvolution methods, the 3C-based contacts are 

transformed into single structures that only contain a subset of the original contacts 

that are conformationally possible obtaining an ensemble of possible configurations 

(see an example in Figure 1.10) [153], [154]. 
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Objectives 

 

 

The main objective of this thesis is to study the structure and organization of the 

DNA fiber at different levels of detail, from local sequence specific properties to 

global 3D structure within the nucleus. For this purpose, the following specific 

objectives are proposed and grouped in three categories: 

1. DNA sequence dependent properties 

• To characterize the genome wide distribution and function of highly 

flexible DNA sequences. 

• To assess mechanisms for protein-DNA recognitions defining statistical 

tests for the detection of significant differences in the physical DNA 

descriptors between experimental protein-bound and naked DNA 

structure from molecular dynamics simulations.  

• To predict nucleosome organization profiles using machine learning 

methods based on the deformation energy of the DNA, transcription 

factor affinity and periodicity of the nucleosome signal. 

2. Tools to study nucleosome positioning in vivo 

• To develop an algorithm for comparing nucleosome positioning profiles 

between two cell populations. 

• To integrate different tools for the analysis of nucleosome organization 

into a pipeline available through different distribution models (web-
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servers, containerized distributions) facilitating the analysis of results in 

the context of other genomic information. 

3. Effect of DNA methylation on chromatin structure 

• To analyze the effect of DNA methylation on nucleosome positioning in 

vivo, applying the proposed algorithm for comparison of nucleosome 

profiles. 

• To study the chromatin changes at whole-genome 3D structure level 

applying statistical methods for the detection of differential interacting 

regions in Hi-C data.  

• To develop a coarse-grained 3D model of the chromatin based on restraints 

obtained from Hi-C contact matrices for further analysis of the structural 

changes produced by the DNA methylation. 

 



   

 

 

Chapter 2 . Methods  

 

 

This chapter presents a summary of the main methods used in this thesis for the 

analysis of the physical properties of the DNA, chromatin structure and gene 

expression. Further details about the usage of each method and experimental details 

can be found in the Results section, and in the corresponding papers. 

2.1 DNA physical properties 

The DNA is an oligomer of nucleotides, forming a double helix where the base pairs 

are joined by hydrogen bonds. Every base pair step (two consecutive base pairs along 

the DNA sequence) can be described in the helical space by three translational (shift 

(f), slide (l), rise (s)) and three rotational (tilt (t), roll (r), twist (w)) movements (see 

Figure 2.1). These physical and geometrical descriptors were derived from molecular 

dynamics (MD) simulations and were used to study the sequence-dependent DNA 

equilibrium conformation and deformability at the base pair step level, and to 

evaluate protein-DNA complex formation energy.  

The equilibrium values and stiffness constants for each individual base pair step 

were taken from MD simulations that cover all the unique base pair steps in all the 

possible tetranucleotide environments from microsecond-long parmbsc1 simulations 

[1].  For this, the DNA geometries extracted from the MD simulations were projected 

into a helical reference system. By collecting the values of these helical parameters, a 

covariance matrix (C) for each unique base pair step was obtained as follows: 
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𝐶 =
∑ (𝑥𝑖𝑘 − 𝜇𝑖)(𝑥𝑗𝑘 − 𝜇𝑗)

𝑛
𝑘=1

𝑁 − 1
(2.1) 

where 𝑥𝑖𝑘 and 𝑥𝑗𝑘 are the base pair step parameter values at frame 𝑘, 𝑖 and 𝑗 are one 

of the six movements (shift, slide, rise, tilt, roll, twist), 𝜇𝑖 and 𝜇𝑗 are their 

corresponding means, and 𝑛 is the total number of frames analyzed. 

 

Figure 2.1. Base pair step helical parameters representation. Adapted from [2] 

The inverse of this covariance matrix was used to obtain the elastic force constants 

that represent the energetic cost of the deformation of the DNA molecule along the 

helical coordinates (eq. 2.2).  

𝛩 = 𝑘𝐵𝑇𝐶−1 =

[
 
 
 
 
 
 
𝑘𝑤 𝑘𝑤𝑟 𝑘𝑤𝑡
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𝑘𝑠𝑙 𝑘𝑙 𝑘𝑙𝑓

𝑘𝑠𝑓 𝑘𝑙𝑓 𝑘𝑓 ]
 
 
 
 
 
 

(2.2) 

where kB is the Boltzmann constant and T is the absolute temperature. 

The intrinsic properties of naked DNA that favor protein binding, for instance 

transcription factor binding at promoters or nucleosomal DNA binding around 

histones, can be characterized using the stiffness matrix. The energy associated to the 

deformation of a given base pair step j was computed using a harmonic 

approximation, given by 
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𝐸𝑗 =
1

2
∑ ∑ 𝑘𝑠𝑡

𝑗
𝛥𝑋𝑠

𝑗
𝛥𝑋𝑡

𝑗
6

𝑡=1

6

𝑠=1
(2.3) 

where  𝑘𝑠𝑡
𝑗

 are the stiffness constants associated with the displacements with respect 

to the equilibrium values (eq. 2.2) and Δ𝑋𝑠
𝑗
 and Δ𝑋𝑡

𝑗
 are the differences between the 

equilibrium values and the protein-bound DNA conformation for the 6 base pair step 

helical parameters [3], [4]. 

Finally, the deformation energy associated to the DNA transition from the naked 

conformation to the protein-bound conformation was calculated in the harmonic 

regime using (eq. 2.4): 

𝐷𝑒𝑓. 𝐸𝑛𝑒𝑟𝑔𝑦 =
∑ 𝐸𝑗

𝑚
𝑗=1

𝑚
(2.4) 

where j stands for each of the m base pair steps of the DNA stretches (m = 147 in the 

case of the deformation energy to wrap around the histones) and 𝐸𝑗 is the elastic 

energy required at each base pair step (eq. 2.3).  

2.2 Transcription factor binding   

Transcription factors (TFs) are proteins that can recognize and bind to specific 

sequence motifs to control the expression of genes. As explained above, the protein 

binding propensities to given DNA sequences can be theoretically studied from the 

deformation energy associated to the binding process. Additionally, transcription 

factor binding site (TFBS) affinity can be studied from experiments, such as ChIP-seq 

(see Section 2.6 for a description of the technique), identifying the position of specific 

proteins along the genome. This type of analyses have been extensively studied for 

many TFs in different organisms, and summarized in several databases such as 

TRANSFAC [5] or JASPAR [6]. We used the binding affinities from JASPAR, given 

as matrices for each TF containing the frequency of every base (A, C, T or G) in every 

position of the sequences where the TF is bound. These frequencies were transformed 

into position weight matrices (PWM) containing normalized scores (in log-scale) [7]. 

Then, the binding affinity of a given TF to a DNA sequence was estimated adding 

the corresponding nucleotide values in the PWM. Binding site affinities from every 



40            Understanding the link between chromatin structure, chromosome conformation and gene regulation 

PWM in JASPAR database were computed for the yeast genome, using 

R/Bioconductor Biostrings [8] library  with default parameters. Finally, a global score 

of TFBS density was computed pooling the affinities from all TFs in the database at 

every genome position. 

2.3 Nucleosome positioning  

The physical properties of DNA can be used to theoretically estimate the propensity 

of a genomic sequence to form a nucleosome (see Section 2.1). However, other trans-

factors are important for the in vivo positioning of nucleosomes such as the effect of 

nucleosome remodeler proteins and the local competition with transcription 

machinery. Hence, methods to determine nucleosome positions are required to be 

able to study differences in chromatin organization between experimental conditions 

or cell types. 

2.3.1 Studying nucleosome positioning in vivo 

The most widely used techniques to experimentally map nucleosome positions 

typically treat a group of cells (in the range 106-109) with enzymes acting on 

nucleosome-free DNA, after cross-linking with formaldehyde (see Figure 2.2). 

Micrococcal nuclease (MNase) is used to degrade linker DNA preserving 

preferentially the DNA segments wrapped in the nucleosomes [9], [10]. To obtain the 

DNA fragments for posterior analysis, the cross-linking is reversed, and the proteins 

and RNA are digested. Finally, the segments of DNA are sequenced. 

Although MNase can be affected by the enzyme concentration and sequence-

preference biases limiting the detection of the so called “fragile” nucleosomes, it is 

the most widely used technique to detect nucleosome positioning for its versatility 

and accuracy [11]. Chemical cleavage methods have been proposed for 

circumventing the limitations from MNase-seq, but it requires to do genetic 

engineering replacing the endogenous histone H4 (or H3 (23)) by a mutated version, 

therefore restricting its use [12], [13](24–27). Moreover, it has been shown that the 
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MNase sequence bias can be corrected using digested naked DNA as baseline [14], 

[15](20, 21), obtaining more pronounced nucleosome coverage peaks. 

 

Figure 2.2. MNase-seq experimental procedure. Adapted from [14] 

Additionally, the level of MNase digestion should be optimized for each sample to 

obtain approximately 80% of mono-nucleosomes, using different MNase digestion 

times with a small amount of semi-intact cells from every batch preparation. The 

percentage of mono-nucleosomal DNA fragments is examined in agarose gels and 

the integrity and size distribution of digested fragments are determined using the 

microfluidics-based platform Bioanalyzer (Agilent) prior to sample preparations and 

sequencing. The samples are prepared for whole genome sequencing, following 
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corresponding standard protocols from sequencer manufacturers and the libraries 

are paired-end sequenced. 

The depth of sequencing required for obtaining good quality nucleosome maps 

should be very high [16], which implies a high sequencing cost. Therefore, a 

modification of the experimental procedure, Capture-MNase-seq, can be useful to 

reduce the cost by focusing on target regions in large genomes. Probes designed to 

hybridize to the objective sequences are added to capture and enrich preferentially 

the fragments corresponding to the target region prior to sequencing. 

2.3.2 Mapping and noise filtering of the MNase signal 

The reference genomes corresponding to the samples used along this work were 

obtained from UCSC: sacCer3 (Apr. 2011, S288C) for yeast samples and hg19 (Feb. 

2009, GRCh37) for human cells. Sequenced reads stored in FASTQ files are mapped 

to the corresponding reference genome using Bowtie [17] aligner, allowing up to two 

mismatches and an insert length of 500 bp. Reads aligned to multiple regions in the 

genome are suppressed. The obtained BAM file contains the positions of the reads 

mapped to the genome and their quality of the alignment. BAM files can be 

visualized as continuous tracks containing the depth of the coverage at every base 

pair across the genome (see Figure 2.3 A and B). Quality control is performed with 

htSeqTools R/Bioconductor package to remove PCR over-amplification artifacts [18]. 

2.3.3 Nucleosome calling with nucleR 

Mapped fragments that pass the quality control filters are then processed with 

R/Bioconductor package nucleR [19] as follows (steps to run nucleR can be found at 

https://github.com/nucleosome-

dynamics/nucleosome_dynamics/blob/master/bin/nucleR.R):  

i. Fragments wider than 170 are discarded to keep only those corresponding 

to mono-nucleosomes.  

https://github.com/nucleosome-dynamics/nucleosome_dynamics/blob/master/bin/nucleR.R
https://github.com/nucleosome-dynamics/nucleosome_dynamics/blob/master/bin/nucleR.R
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ii. Fragments are trimmed to 50bp maintaining the original center to remove 

noise from MNase digestion variability among cells and regions in the 

nucleosome coverage profile (see Figure 2.3 C). 

iii. The nucleosome coverage per base pair is computed genome-wide and 

transformed to reads per million mapped.  

iv. Noise is filtered through Fast Fourier Transform, keeping 1% or 2% of the 

principal components in human and yeast experiments, respectively (see 

Figure 2.3 D).  

v. Finally, peak calling is performed using the parameters: peak width 147 bp, 

peak detection threshold 35%, maximum overlap 80 bp, dyad length 50 bp. 

Nucleosome calls are considered well-positioned (W) when nucleR peak 

width score and height score are higher than 0.6 and 0.4, respectively, and as 

fuzzy (F) otherwise (see Figure 2.3 E). 

 

Figure 2.3. Nucleosome positioning from MNase-seq data with nucleR. (A) Reads are mapped to the 

reference genome. (B) The coverage of nucleosomal reads per base pair is noisy and must be 

processed further. (C) Reads are trimmed around their center to remove experimental noise, and the 

coverage is re-computed. (D) Signal is smoothed with Fast Fourier Transform. (E) Peaks are 

identified from the local maxima and scored according to their height and width. Adapted from [20] 

2.4 Chromatin 3D structure 

In this section, I describe some methods that have been developed to study 3D 

chromatin organization. First, I describe three experimental techniques that capture 

interactions between genomic loci at different resolution and scale. Then, I present 

the computational processing of the data to remove experimental artifacts, obtain 
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quantification of the interactions between pairs of regions and find significant 

differential interacting regions among experimental conditions. Finally, I present 

some tools that were used in the different projects to visualize the interactions and 

put them into the corresponding genomic context. 

2.4.1 Chromosome conformation capture 

Chromosome Conformation Capture (3C) allows us to quantify the frequency of 

interaction between pairs of loci by crosslinking chromatin, DNA fragmentation and 

ligation of ends in spatial proximity. Further developments of 3C were proposed to 

investigate the 3D conformation of chromatin in a population of cells at larger scale. 

Circular Chromosome Conformation Capture (4C) aims to detect all regions that 

interact with a single locus of interest [21], [22], Chromosome Conformation Capture 

Carbon Copy (5C) detects contacts between fragments located within a chromosomal 

domain of size up to several Mbp [23], Hi-C interrogates genome-wide contacts of all 

vs. all regions of the genome [24] and finally Capture Hi-C restricts the analysis to 

contacts between regions targeted by designed probes [25], [26]. Micro-C is another 

3C-based technique to quantify genome-wide contacts, but at the nucleosome level 

resolution due to the DNA cleavage with MNase instead of a restriction enzyme [27]. 

2.4.1.1 Hi-C 

The Hi-C experimental protocol was originally proposed in [24]. In this technique 

(summarized in Figure 2.4), the chromatin is cross-linked with formaldehyde to 

obtain a static view of its conformation. Then, it is fragmented with a restriction 

enzyme that recognizes a target DNA motif. The selection of the restriction enzyme 

will determine the maximum resolution attainable in a given experiment. Four base 

pair cutters will cut more frequently producing shorter fragments and larger 

resolution than six base pair cutters.  

Next, the ends are filled with nucleotides marked with biotin to facilitate posterior 

selection of the actual interactions. The fragments in proximity are ligated producing 

chimeric molecules formed by the two regions that were previously cross-linked. 

Then, the DNA is purified and sheared by sonication producing fragments of size 
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appropriate for next generation sequencing. Sonication is not specific and, apart from 

the chimeric fragments formed by spatial proximity, it produces fragments 

corresponding to only one region in the genome. Those uninformative fragments can 

be discarded, since ligation products were previously marked with biotin and can be 

pulled down and paired-end sequenced. 

 

Figure 2.4. Overview of the steps to perform a Hi-C experiment. Adapted from [24] 

2.4.1.2 Capture Hi-C 

Capture Hi-C is a variation of the Hi-C protocol to enrich the contacts in specific 

genomic regions. A pool of primers is designed to selectively purify a set of regions 

and can be used to enrich Hi-C ligation product libraries.  

2.4.1.3 Micro-C 

Micro-C is another 3C-derived technique aiming to target nucleosome-nucleosome 

interactions. For this purpose, DNA is fragmented with MNase instead of using a 

restriction enzyme. Linker DNA is then preferentially cleaved, and the obtained 

chimeric reads contain sequences corresponding to two nucleosomes that are in 

spatial proximity. 

2.4.2 Quantification of contact frequencies 

Several computational algorithms are available for processing the paired-end 

sequences obtained from 3C experiments (reviewed in [28], [29]). In this work we 

used TADbit [30] , a python library designed for mapping of the paired reads,  
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filtering and quantification of the obtained contacts and further analyses on the 

interaction matrices. Below, the steps to process the sequenced reads are explained. 

2.4.2.1  Quality control 

The quality control was performed also by TADbit, using an algorithm that is based 

on FastQC program [31] and which checks the PHRED score [32] in the input FASTQ 

files and the number of “N” positions as a function of the sequence position in the 

reads. Additionally, TADbit generates plots for the number of undigested sites, 

dangling ends and re-ligated sites as a function of the nucleotide position in the 

reads. 

2.4.2.2 Mapping 

Reads are mapped to the reference genome using GEM mapper [33]. The mapping 

algorithm must consider that the ligation junction might be contained in any part of 

the read; therefore, the full length of each read side might not be successfully mapped 

to the genome. Two mapping strategies accounting for this problem are available in 

TADbit (see Figure 2.5): 

• Iterative mapping: The first 25 bp at the 5’ end of each read are mapped to 

the genome. If this sequence is not uniquely mapped, then it is extended 5 

bp more and a second attempt to uniquely map it is performed. The process 

is iterated adding 5 bp each step until either a unique match is found, or the 

full length of the read is achieved.  

• Fragment-based mapping: contrary to iterative mapping, the full length of 

the fragment is mapped first. Those fragments that fail to be mapped to the 

genome are split searching for the ligation site, which is known from the 

motif targeted by the restriction enzyme used in the experiment. It should be 

noticed that this strategy is not applied to Micro-C experiments, since the 

MNase digestion is not specific to a given sequence.  
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Figure 2.5. Mapping strategies implemented in TADbit. Taken from [34] 

2.4.2.3 Fragment-level filtering 

Some biases and errors from the experiment can be detected and corrected 

computationally. These include (see Figure 2.6): 

• Self-circle: when the two ends of the same restriction fragment are ligated. It 

is identified when both read-ends map to the same fragment in opposed 

orientation.  

• Dangling-end: when a fragment was not ligated. Identified in reads where 

the two sides map to the same restriction fragment in facing orientation.  

• Error: when both sides of the read map to the same restriction fragment in 

the same orientation.  

• PCR artefacts or duplicated: when the two reads have the same start position, 

mapped length, and strand, only one copy is kept.  

• Random breaks: produced by non-canonical enzyme activity or random 

physical cleavage. They are detected when the distance from the read start 
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in any read-end and the restriction enzyme cut site is larger than a given 

threshold.  

 

Figure 2.6. Fragment filtering in Hi-C data. Identification of molecule type in the mapped reads to 

discard artifacts based on their orientations relative to the restriction sites. Adapted from [35] 

2.4.2.4 Bin-level filtering and normalization 

The filtered fragments are binned at a user-specified resolution and summarized in 

a contact matrix where each cell represents the number of contacts identified between 

the two corresponding bins. Contact matrices are cleaned before normalization by 

removing columns with zero counts and those with less contacts than a given 

threshold. Normalization is based on the ICE (iterative correction and eigenvector 

decomposition) [36] and corrects for several sequence biases such as GC content or 

restriction site density. It iteratively balances the total counts of all bins, giving equal 

visibility to all genomic loci.   

2.4.3 Identification of differential interactions 

We used diffHiC [37], an R package to assess whether the interactions between pairs 

of loci significantly differ between two experimental conditions. It can model 

biological variability through quasi-likelihood (QL) methods considering the 

information of replicas. The counts 𝑦𝑏𝑖 of each bin pair 𝑏 in the contact matrix of 

experimental sample 𝑖, are modeled using a Generalized Linear Model defined by 
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𝐸(𝑦𝑏𝑖) = 𝜇𝑏𝑖 = ∑𝑥𝑖𝑗𝛽𝑏𝑗 + 𝑜𝑏𝑖

𝑝

𝑗=1

(2.5) 

where 𝑥𝑖𝑗  are the elements of the design matrix that specify the experimental 

conditions of each sample and 𝛽𝑏𝑗 the corresponding unknown effects.  The offsets 

𝑜𝑏𝑖  represent normalization factors, for instance for the sequencing depth. The 

variability of each bin pair is given by 

𝑉(𝑦𝑏𝑖) = 𝜎𝑏
2(𝜇𝑏𝑖 + 𝜙𝑏𝜇𝑏𝑖

2 ) (2.6) 

where 𝜎𝑏
2 is the QL dispersion parameter and 𝜙𝑏 the Negative Binomial dispersion. 

With this model, a QL F-test can be applied to each bin pair obtaining the fold change 

(FC) and the false discovery rate (FDR) correction for multiple testing of the obtained 

p-values. Then, significantly increasing interactions were defined as those bin pairs 

with FDR<0.5 and logFC>1, and significantly decreasing interactions if the FDR<0.5 

and logFC<-1.  

2.4.4 Visualization 

The statistically significant differential interactions can be visualized in a Circos plot 

[38], where the interactions are displayed as links joining the two bins that interact 

on a circular ideogram layout. Other annotations of genomic features can also be 

displayed for the genomic regions in the plot. We generated Circos plots for 

differentially increasing and decreasing interactions in cis and in trans.   

Normalized contact matrices were transformed into Binary Upper TrianguLar 

MatRix (BUTLR) file format, using BUTLRtools 

(https://github.com/yuelab/BUTLRTools), suited for 3D Genome Browser 

(http://3dgenome.org) to visualize contact maps together with genome annotations 

[39]. Other genomic features can be included in the visualization to help in the 

interpretation of results (see Figure 2.7). 

Another widely used software for visualizing Hi-C contact matrices is Juicebox [40]. 

It allows to display inter and intra chromosomal interaction matrices, interactively 

zooming and adjusting the binning level. Additionally, two experimental matrices 

https://github.com/yuelab/BUTLRTools
http://3dgenome.org/
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can be compared (displaying the ratio or the difference), 2D information such as 

TADs or loops can be displayed on top of the matrix and 1D data can also be added 

to the genomic axes.  

 

Figure 2.7. Visualization of a Hi-C contact matrix fromK562 cells at 5kb resolution in the 3D Genome 

Browser. The intensity of the color (red) is based on the contact frequency between every bin pair.  

TADs are marked as yellow and blue bars. Histone marks (H3K4me1, H3K4me3 and H3K27ac), 

chromHMM chromatin types and gene positions are marked for every locus in the contact matrix. 

Adapted from [39] 

2.5 DNA methylation 

CpG methylation is important in gene regulation through different mechanisms. 

Methylation of cytosines in CpG steps changes the stiffness of DNA and therefore 

alters the nucleosome stability and the transcription factor binding affinity intrinsic 

to a given sequence [41]. This section presents some experimental techniques 

employed for the investigation of genome-wide DNA methylation.  

2.5.1 Whole-genome bisulfite sequencing 

Whole-genome bisulfite sequencing (WGBS) is a next-generation sequencing 

technique to detect the position of methylated cytosines (5mC) in a genome at single-
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nucleotide resolution. It has allowed the analysis of cytosine methylation patterns in 

a wide range of organisms and cell types [42]. The DNA is treated with sodium 

bisulfate, causing unmethylated cytosines to be transformed to uraciles whereas 

methylated cytosines are not modified. Then, the treated samples are sequenced and 

the unmethylated cytosines are read as thymines from the polymerase change 

reaction (PCR) amplification. Comparing the obtained reads with the untreated 

genome, the mismatches between C and T upon treatment correspond to the 

unmethylated cytosines and the matching C’s correspond to methylated sites (see 

Figure 2.8). 

 

Figure 2.8. Conversion of cytosines after treatment with bisulfite. Methylated cytosines (in red) are 

not modified upon treatment while unmethylated cytosines (in blue) are transformed to uraciles and 

then read as thymines after PCR amplification. Taken from [43] 

In this work, the WGBS reads were processed using the gemBS pipeline v3.0 [42].  

Reads with MAPQ scores < 20 or mapping to the same start and end points on the 

genome were filtered out.  The first 5 bases from each read were trimmed before the 

variant and methylation calling step to avoid artifacts due to end repair. For each 

sample, CpG sites were selected where both bases were called with a Phred score of 

at least 20, corresponding to an estimated genotype error level of <=1%. To exclude 

repetitive regions, loci with >500x coverage depth were excluded. From the 

successfully aligned reads, the methylation level of each CpG was computed as the 

ratio between the number of reads with an unconverted cytosine over the total 

number of reads (either with cytosine or thymine at that position).  

2.5.2 Nanopore sequencing 

As mentioned above, a disadvantage of WGBS is the inability to map sequenced 

reads in repetitive genomic regions. Additionally, it is not possible to determine 

whether two methylated cytosines separated by more than the fragment length occur 

in the same DNA molecule or come from different cells. Using Oxford Nanopore 
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Technology (ONT), much longer read lengths (>10kbp) can be obtained to identify 

methylated cytosines. Hence, it is possible to study the methylation at repetitive 

regions from the nanopore reads as well as the correlation of methylation at multiple 

CpG sites on the same DNA molecule. 

2.6 ChIP-seq 

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is employed for 

the experimental study of protein-DNA interactions (transcription factors, histone 

modifications, RNA polymerase, etc.). It combines chromatin immunoprecipitation, 

where an antibody selects the regions bound by the target protein, and massively 

parallel sequencing for the detection of the binding sites.  

The protocol starts with cross-linking of protein and DNA by treating cells with 

formaldehyde, to fix the position of the interaction. Then, the DNA is sheared with 

sonication or MNase to obtain short fragments that are then immunoprecipitated 

with the antibody specific to the protein of interest. The cross-linking in the selected 

DNA-protein complexes is then reversed and the DNA is purified and sequenced 

after size selection (typically fragment length ranges between 150 and 300 bp).  

The experimental protocol presents some biases [44] such as the specificity of the 

antibody or the uneven fragmentation in open or closed chromatin. To account for 

the effect of these biases, it is important to include a control experiment. Three main 

types of control samples can be included:  

• Input DNA (IP): before immunoprecipitation, a portion of the cross-linked 

and sheared fragments are selected. 

• Mock IP DNA: the sample is immunoprecipitated without antibodies. 

• DNA from nonspecific IP: the sample is immunoprecipitated using an 

antibody against a protein that does not bind to DNA and is not involved in 

chromatin modification, such as immunoglobulin G. 

In this work, the sequenced reads were computationally analyzed using tools 

available in the Galaxy web platform [45]. First, reads were mapped to the reference 
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genome using BWA aligner [46]. Non-uniquely mapped reads were removed based 

on the mapping quality scores [47]. The coverage of mapped reads per base pair was 

then computed genome-wide and peak calling with MACS2 [48] performed to detect 

the protein binding regions, correcting the signal with the control samples.  

2.7 RNA-seq 

RNA sequencing (RNA-seq) is employed to quantify expression in a given 

transcriptome using next generation sequencing. The population of RNA in a sample 

is reverse transcribed into complementary DNA (cDNA) and adaptors are attached 

to both ends of the fragments. The library is high-throughput sequenced following 

manufacturer protocols. In the experiments analyzed in this thesis, TruSeq™ RNA 

Sample Prep Kit v2 (Illumina Inc.) was used to paired-end sequence the fragments 

with a read length of 2x76bp. Images analysis, base calling and quality scoring of the 

data was performed using the manufacturer’s software Real Time Analysis (RTA 

1.13.48) and FASTQ sequence files were generated with CASAVA. 

RNA-seq reads were aligned to the reference genome using GEM mapper [33] 

allowing for split maps. Genes were quantified using Flux-Capacitor [49], obtaining 

a table of the number of reads per gene in each sample. Comparison of expression 

levels between samples requires normalization of the gene counts, since library sizes 

can be different. The data was normalized by the trimmed mean of M-values (TMM) 

method of the edgeR software [50], which considers the possible differences in RNA 

distribution that might appear when changing experimental conditions (e.g. under 

stress conditions a specific set of genes might severely increase their expression 

levels). The normalized values were used to perform differential expression analysis 

using the “robust” version of the edgeR R package [51], which removes the bias from 

outliers while preserving high power detecting significant changes in expression. 
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Chapter 3 . Sequence dependent DNA 

flexibility and protein recognition  

 

 

The shape of the DNA duplex was first described from diffraction data several 

years ago [1], [2], and since then many experimental techniques have completed our 

view of how DNA duplex is under physiological conditions: a very flexible and 

polymorphic duplex [3], [4] which can adopt different conformations depending on 

the sequence, environment and presence of DNA-binding proteins [5]–[8]. Such an 

intrinsic polymorphism is crucial for its functionality. 

As explained in Chapter 2, the base pair step geometry can be represented by a set 

of six helical parameters describing translations and rotations of one given base pair 

with respect to the neighboring one. The DNA flexibility was evident from the 

structural variability observed for the same complex in different crystals [9], which 

suggested that flexibility could be simulated by using an harmonic model with 

stiffness constants derived from the observed variability in the distributions. This 

work was posteriorly extended retrieving the helical coordinates from trajectories 

obtained from molecular dynamics (MD) simulations [10], [11], which helped to 

solve the problem of the lack of experimental data. Nowadays, the developments in 

atomistic MD simulations and accurate forcefields [12] allowed obtaining long 

reliable trajectories and sampling the conformational space of different DNA 

sequences, and revealed that the dinucleotide-model is not sufficient for describing 

the high flexibility of DNA molecules [13], [14], and that at least a tetranucleotide 

model should be used [13], [14].  
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Extending the analysis to the nearest neighbors of each dinucleotide, a tetramer 

model of sequence dependence has been studied on a large collection of trajectories 

from MD simulations from the Ascona B-DNA Consortium (ABC, 

https://bisi.ibcp.fr/ABC) and the BigNASim database [15]. These studies 

confirmed that, for most tetramers, considering only the nearest neighbors is 

sufficient for describing their structure and flexibility, but a few tetranucleotides 

exhibit highly polymorphic behavior and dependence on the sequence context 

beyond the tetramer level. One of these tetramers, CTAG, has been extensively 

studied in the work Modulation of the helical properties of DNA: next-to-nearest 

neighbor effects and beyond, that is attached below as part of this thesis, where we 

found evidence of the unique structural properties of this sequence, which might 

confer special flexibility related to its particular location in the genome and its low 

mutation rate.  

The tetramer base (pseudo) harmonic model (or its extension to the hexamer level; 

see below) can be used to describe the energetic cost of deforming a DNA structure. 

Particularly, the model can be used to determine the ease in which a given DNA 

sequence can be deformed to adopt the conformation when bound to an effector 

protein, and accordingly can provide information on the sequence-preference of a 

given DNA interacting protein. In this thesis, the structural differences between the 

free and the protein-bound DNA were studied and the energetic cost related to the 

structural changes of the DNA to adopt the conformation in the protein complex 

were calculated (see publication How B-DNA Dynamics Decipher Sequence-

Selective Protein Recognition). Using statistical tests to analyze the helical motions, 

it was found that a large percentage of the DNA sequences studied can 

spontaneously sample the bioactive conformation, while a small percentage is 

highly distorted by the protein binding, due to strong non-harmonic deformations 

such as base opening.  

 

 

https://bisi.ibcp.fr/ABC
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3.1 Modulation of the helical properties of DNA: next-to-

nearest neighbor effects and beyond 

Our group studied the physical properties of DNA sequences corresponding to the 

ten possible base pair steps in all the possible tetramer environments [16]. The 

study showed that while several base pair step helical parameters can sample 

different configurations along the MD simulations, having a population of values 

that correspond to a normal distribution, some deviate from normality and have 

multimodal distributions. Therefore, more general models including information 

beyond the dinucleotide level are required. Moreover, it was found that some 

tetramers were ultra-flexible, and their conformation might be modulated by effects 

beyond the tetramer level which are rare for the rest. In this work, structural 

analysis of one of these highly flexible tetramers, CTAG, is presented as well as a 

genomic analysis of its prevalence in different species.  

We analyzed 40 different sequence contexts containing CTAG in a central position 

carefully selected to cover all the possible hexamers. First, examining the 

distributions of helical parameters of the central TA base pair step retrieved from 

individual trajectories, we observed deviations from the normal distributions 

showing multimodal densities for some parameters (shift, slide and twist). 

Important differences in their distributions were also detected when different 

sequence contexts were considered. Our analysis suggests that the multimodality 

can be explained by sequence effects beyond the nearest neighbors, at the hexamer 

or even octamer level. 

Additionally, data mining of experimental structural data, obtained from the 

Protein Data Bank (PDB, [17]), was performed in order to validate our conclusions. 

Although the obtained data is scarce, limiting the generality of the conclusions, the 

results are in line with our MD-based observations, showing that the multimodality 

in the distributions is not an artefact of the force-field used in the MD simulations. 

Furthermore, we investigated whether the high flexibility of CTAG tetramer might 

confer some specific functionality in different eukaryotic genomes. Interestingly, 

this tetramer sequence is unfrequently found in several genomes analyzed. We 
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evaluated whether its low frequency was because it contains one of the stop codons 

(TAG) and we concluded that it is not the case, since the frequency of other 

tetramers that contain this stop codon is on the average compared to all possible 

tetramers. We found out that this very peculiar tetramer is underpopulated along 

the genome and preferentially found in intergenic regions, and unfrequently 

detected in coding regions. Moreover, investigating data collected for different 

cancer types, we observed that its mutation frequency is low compared to other 

tetramers.  

Publication: 

Alexandra Balaceanu, Diana Buitrago, Jurgen Walther, Adam Hospital, Pablo D. 

Dans. and Modesto Orozco. (2019). Modulation of the helical properties of DNA: 

next-to-nearest neighbour effects and beyond. Nucleic Acids Research, 47, 4418–

4430. https://doi.org/10.1093/nar/gkz255.     

Supplementary material for this article can be found in the Annex I.   

https://doi.org/10.1093/nar/gkz255
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3.2 Sequence selective protein-DNA recognition 

In the previous section, the polymorphic nature of a specific tetramer sequence was 

explored. Next, we studied a broader set of DNA structures to understand whether 

the DNA physical properties are enough to explain the structural difference 

between the naked DNA sequences and the bioactive conformation found in 

protein-DNA complexes taken from the PDB. The study of the structures of the 

protein-bound DNA available revealed the prevalence of a shape readout model on 

protein recognition of DNA binding sites.  Here, two mechanisms can lead to the 

DNA to adopt the bioactive conformation:  

• Conformational selection when the structural changes occur spontaneously 

in the absence of the protein. Then, the deformation energy required to 

adopt the protein-bound conformation is within the energy range sampled 

by the free DNA (thermal energy fluctuations).  

• Induced fit when the changes occur after the binding event. In this case the 

DNA is highly distorted by the protein and consequentially the 

deformation energy required is high.  

In this work, we selected structures from the PDB containing protein-DNA 

complexes, applying a set of filters to discard those comprising single-stranded or 

extremely distorted B-DNA conformations (for instance including opened base-

pairs), and investigated the evidence towards conformational selection or induced 

fit in these complexes using MD simulations and essential dynamics analyses. The 

helical parameters were collected from the MD simulations of the naked DNA and 

a statistical test was computed to evaluate whether the values explored by each 

physical descriptor contained those from the experimentally determined structures. 

We used Hoteling’s multivariate statistical test for each helical movement, 

computing 

𝐹 =
𝑛 − 𝑚

𝑚
(𝜇 − �̅�)𝑡𝑆−1(𝜇 − �̅�) (3.1) 

where 𝑛 is the number of frames in the MD simulation, 𝑚 is the number of base 

pair steps in each sequence, 𝜇 is the vector containing the observed values of the 
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helical parameter in the PDB structure, �̅� is the vector containing the average values 

along time of the helical parameters and 𝑆 the covariance matrix of these values. A 

significant 𝐹 value (that is 𝐹 > 𝐹1−𝛼;𝑚,𝑛−𝑚 at 1 − 𝛼 = 95%, where 𝐹1−𝛼;𝑚,𝑛−𝑚 is the 

1 − 𝛼 quantile of an F distribution with 𝑚, 𝑛 − 𝑚 degrees of freedom) indicates that 

the bound conformation is not sampled by the naked DNA trajectory. With this 

analysis we found that in a large proportion of the cases, the helical motions 

required for the bound conformation are sampled by naked DNA. 

Then, we characterized those structures having a significant Hoteling’s statistic, i.e. 

the conformation in the protein-DNA complex is not sampled by the naked DNA 

simulations. Detailed statistical analysis of each base pair step helical parameter 

revealed the positions that caused the global 𝐹 value to be large, comparing the 

experimental value in the complex with the values sampled in the naked DNA 

simulations. When large distortions are observed in the protein-bound 

conformation, usually they are found at regions that directly interact with the 

bound protein, linked to changes in the backbone angles and to the tendency of the 

phosphates to approach cationic residues.  

Additionally, computing the deformation energy associated with protein-DNA 

binding, we observed the prevalence of a conformational selection in a large 

proportion of the cases (71%) over a small percentage where the induced-fit was the 

major driver for the complex formation (11%) (the remaining 18% is in a zone 

where both processes might be occurring).  

In summary, the statistical analysis of our trajectories supports the shape readout 

mechanism of protein-DNA binding. However, although the sequence dependent 

physical properties are important for adopting the required conformation in most 

of the complexes analyzed, they are not sufficient to explain the mechanism of 

protein binding in all the cases as specific sequence-reading may contribute to 

significant DNA-protein interaction. 
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Chapter 4 . Determinants of nucleosome 

architecture in yeast  

 

 

In the previous chapter we described how the protein-DNA binding is highly 

dependent on the physical properties and intrinsic flexibility of the DNA. In the 

following we will focus on a very important protein-DNA complex, the 

nucleosome, that is present genome-wide and crucial for the regulation of gene 

expression in the cell. We study the role of DNA physical properties to define clear 

regions of nucleosome depletion as well as other determinants of nucleosome 

positioning in Saccharomyces cerevisiae.  

As previously reported ([1], [2]), the correlation between gene expression and 

nucleosome architecture at promoters is high. Typically, there is a clear nucleosome 

free region (NFR) around the transcription start site (TSS) of actively transcribed 

genes, having a strongly positioned +1 nucleosome and becoming fuzzier as 

nucleosomes are further downstream the TSS [3]–[6]. On the other side, at the 

transcription termination sites (TTS) the existence of these nucleosome depletion 

signals is controversial. Our group and others supported the existence of NFRs 

around TTS [5], [7], linked to the unusual physical properties at these loci, while 

others claimed that NFRs at TTS are an artefact of the small distance between the 

TSS of neighboring genes[8]. Here, we evaluated the nucleosome organization at 

the 3’ end of genes from MNase-seq data, but centering at the -last nucleosome (last 

nucleosome within the gene body, upstream from the TTS) instead of the TTS (see 
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Figure 4.1), finding that an NFR downstream of the -last nucleosome is present both 

when there is a nearby TSS (tandem oriented genes) or TTS (convergent 

orientation). Then we conclude that there is an area depleted of nucleosomes at the 

3’ end of the genes. 

 

Figure 4.1. Nucleosome coverage, averaged among all genes, centered around the -last nucleosome 

(left panel) or the transcription termination site (TTS). Separate curves are shown according to the 

orientation of the downstream gene: tandem (black line, →→) or convergent (red line,  →←).   

Next, we explored the possibility to predict nucleosome architecture along the gene 

body by statistical positioning, leading to the maximum occupancy of nucleosomes 

in between two well-positioned nucleosomes in the vicinities of the TSS (the +1 

nucleosome) and the TTS (the -last nucleosome). Particularly, we tested the ability 

of a simple signal transduction model with two emitters (at the +1 and -last 

positions) and a periodic distance-decay signal. We demonstrated that this simple 

model, with a periodicity of 165 bp (for yeast), can predict with high accuracy the 

nucleosome coverage at gene bodies (see an example for one gene in Figure 4.2). 

The high predictive power of this simple model supports the idea that once the 

strong signals (intrinsic or protein-mediated) are responsible for positioning the +1 

and -last nucleosomes, simple statistical positioning explains the nucleosome 

distribution along the gene body. 
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From the experimental and predicted intra-genic nucleosome coverages, we 

observed two classes of genes according to their nucleosome coverage profile: a set 

of genes where the two signals from the +1 and -last nucleosomes overlap 

significantly and the nucleosomes tend to be well-positioned (phased genes), and a 

second set of genes where the two signals are not in phase and the nucleosomes 

along the gene body are fuzzier (unphased genes).  

 

Figure 4.2. Example of prediction of nucleosome coverage for a gene body. Experimental normalized 

nucleosome coverage (black dotted line) for YOR039W gene between the +1 and the -last 

nucleosomes. The predicted coverage (black continuous line) is computed by combining the signal 

emitted from the +1 nucleosome (blue line) and from the -last nucleosome (red line). 

We experimentally explored the effect of phasing on the gene body by adding an 

81-nucleotide (81-nt) sequence to eight selected genes: four phased genes and four 

control not phased genes. The experiment revealed that the nucleosome 

organization changed as consequence of the sequence addition, obtaining fuzzier 

and less periodic nucleosomes in the originally phased group, but negligible 

changes in the control genes.  

We found that genes with well-located nucleosomes in the gene body tend to have 

a larger expression level than those with fuzzy nucleosomes, which would suggest 

a causal relationship: ordered nucleosomes in the gene body leads to higher 

expression. To check this hypothesis, we analyzed the impact of the addition of the 

81-nt sequence, finding little effect on transcription levels of the eight genes, 
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including those originally phased. The lack of effect of periodicity on gene 

expression led us to examine the opposite relation: is nucleosome periodicity 

affected by transcription? For this, we performed MNase-seq experiments in cells 

treated by 1,10-phenantroline, a metal chelator that stalls the polymerase at the 

promoters and stops transcription [9]–[11]. We observed that addition of 1,10-

phenantroline leads to larger NFRs (mostly from -1 nucleosome displacement, see 

Figure 4.3), an increase in the proportion of fuzzy nucleosomes and a decrease in 

the proportion of phased genes. This strongly suggests that it is the presence of 

RNA polymerase that affects nucleosome architecture and not the reverse. 

 

Figure 4.3. Effect of transcription inhibition on nucleosome coverage. Nucleosome coverage, 

normalized to reads per million, in a strain treated by 1,10 phenanthroline (red curve) and in the 

control strain (black line). The average coverage among all genes, centered at +1 nucleosome is 

shown.  

Finally, since we observed that the two NFRs at the 5’ and 3’ ends of the genes are 

important to define the nucleosome architecture, we investigated the determinants 
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of the observed nucleosome depletion at those loci. We hypothesized that 

nucleosome architecture is a combination of intrinsic (sequence-dependent) and 

extrinsic (DNA-binding proteins, transcriptional or replication machinery, 

nucleosome remodelers) factors in the nucleus. We used the deformation energy of 

the DNA to form a nucleosome derived from physical descriptors to model intrinsic 

effects, and the predicted transcription factor binding site (TFBS) affinity to model 

extrinsic effects (see Chapter 2 for their definition). With these two variables, we 

built a machine learning classifier for NFR prediction along the yeast genome. We 

trained an ExtraTrees [12] predictor using all the TSS-NFRs and TTS-NFRs defined 

by well-positioned nucleosomes, except those regions in chrI, which were used for 

testing the performance of the classifier, obtaining an Area Under the Curve (AUC) 

of 0.77 in the test set, which include an entire chromosome. Hence, the position of 

many NFRs in the yeast genome can be explained by the high stiffness of the DNA 

sequence and the presence of binding proteins that compete with nucleosomes.  

 

Publication: 

Diana Buitrago*, Mireia Labrador*, Pau De Jorge, Federica Battistini, Isabelle Brun 

Heath and Modesto Orozco. The interplay between periodicity, DNA physical 

properties and effector binding define nucleosome architecture in yeast (in 

preparation). 

Supplementary material for this article can be found in the Annex III.  
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Chapter 5 . Nucleosome Dynamics: a new 

tool for the dynamic analysis of nucleosome 

positioning 

 

 

Nucleosomes are the main unit of eukaryotic chromatin, modulating the 

accessibility of DNA to effector proteins. The nucleosome architecture is then 

related to gene regulation, DNA replication and other cellular processes [1], [2]. 

Accordingly, determination of the arrangement of nucleosomes in the cell is crucial 

to gain a function view on the chromatin structure. Our group previously 

developed an algorithm, nucleR [3], for nucleosome positioning from experimental 

MNase-seq data (see details in Chapter 2) that is one of the most widely used tools 

to define average nucleosome configuration in living cells. Unfortunately, despite 

its power nucleR presents a series of shortcomings that lead us to develop a more 

universal and flexible tool. First, due to the noisy nature of experimental data such 

as MNase-seq, it is not easy to compare the results obtained between two 

experimental conditions to study the dynamics of nucleosome organization when 

changing cellular conditions. Second, analyses are not automatized, nor 

standardized or FAIR-certified. Third, it is not easy to directly integrate the results 

from nucleR with other features obtained from several techniques (ChIP-seq, RNA-

seq, etc.). Finally, other experimental protocols (different to MNase-seq) for 

nucleosome mapping have emerged in recent years and it is not clear whether 

nucleR can be applied to this type of data. Therefore, in this chapter, I present the 
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theoretical and methodological developments we performed to cope with the 

above-mentioned user demands.  

First, we developed an algorithm for the differential analysis of two MNase-seq 

experiments, NucDyn. It uses directly the mapped reads, allowing the detection of 

changes that occur even in a small percentage of the cells in the population. The 

method, very robust and fast, vastly outperforms other available software, such as 

Danpos [4] or Dimnp [5]. NucDyn employs a dynamic programing algorithm and 

statistical metrics detecting, even in noisy experiments, changes in nucleosome 

architecture (see Figure 5.1).  

 

Figure 5.1. Comparison of two nucleosome profiles obtained from MNase-seq (Sample 1 and Sample 

2) using NucDyn (evictions and shifts identified). 

To gain a more quantitative description of changes in nucleosome arrangements, 

we developed a series of methods and metrics (see Figure 5.2Error! Reference 

source not found.): 

i. Periodicity: the autocorrelation and phasing scores (see Chapter 4) to study 

the periodicity of nucleosomes along the gene body can be computed from 

the nucleR results. Also, nucleosome occupancy profiles can be predicted 

based on signal propagation theory using two opposing emitting signals 

from the +1 and the -last nucleosomes.  

ii. TSS-classification: each gene can be characterized by the nucleosome free 

region (NFR) around its promoter (open (o), closed (c) or missing -1 or +1 
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nucleosome) and the degree of localization of the +1 (downstream the TSS) 

and -1 (upstream the TSS) nucleosomes (fuzzy or well-positioned). 

iii. Nucleosome stiffness: sliding propensity of a nucleosome can be estimated 

from the variability in nucleosome position among the cell population. A 

Gaussian curve is fitted to the dyad distribution for each nucleosome and 

the estimated standard deviation is used to derive the apparent stiffness by 

an elastic approximation. 

iv. NFR detection: from the nucleR results we can detect NFRs, excluding low 

mappability regions. These loci are typically related to regulatory elements 

such as transcription factor binding sites or replication origins.     

 

Figure 5.2. Example of results of nucleR and other nucleosome-related analyses using MNase-seq 

data (coverage in grey). 

We have integrated these tools, written in R and available in our GitHub repository  

(https://github.com/nucleosome-dynamics), into a package called Nucleosome 

Dynamics (available under the Apache 2.0 License). Besides directly running the R 

source code, it can be executed under several distribution models: as a software 

container (Docker and Singularity containers are available) that includes all the 

https://github.com/nucleosome-dynamics
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dependencies required, or as a web tool in the MuGVRE workspace [6] or in a 

Galaxy server [7]. In the web implementations, the user can either upload files 

containing the mapped reads (typically BAM files) or upload the sequencing files 

(FASTQ) and use one of the aligners available to map the reads to the reference 

genome. Then, the user can execute all (or some) of the tools available in 

Nucleosome Dynamics and monitor the status of the calculations from the web. The 

documentation, tutorials and access to the different distribution options are 

summarized in the web http://mmb.irbbarcelona.org/NucleosomeDynamics/. 

 

Figure 5.3. Example of visualization of Nucleosome Dynamics results in the MuGVRE. 

The MuGVRE allows the representation of the results from nucleR, NucDyn and all 

nucleosome related analyses in an integrated genome browser (see Figure 5.3), 

where additional genomic data can be contrasted and jointly analyzed with the 

nucleosome information. Furthermore, summary statistics from every one of our 

tools are automatically generated for every gene as well as some results at the 

genome-wide level.  

http://mmb.irbbarcelona.org/NucleosomeDynamics/
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Finally, we explored the performance of our algorithms to analyze data obtained 

with recent chemical cleavage methods for nucleosome positioning, that have been 

proposed aiming to remove the sequence bias and the effect of digestion level of 

MNase [8], [9]. However, these methods have another limitation for their broad use, 

since this technique requires genetic engineering replacing the endogenous histone 

H4 or H3 by a mutated version. Nonetheless, we have demonstrated with some 

published data from [9] that Nucleosome Dynamics can also be applied to analyze 

nucleosome profiles from chemical cleavage data.  

We have shown the usefulness of Nucleosome Dynamics in several experimental 

settings (changes throughout the cell cycle, along the yeast metabolic cycle and in 

response to different carbon sources) where it allowed to correlate changes in 

nucleosome organization with differential gene activity. The package is presented 

in the publication Nucleosome Dynamics: A new tool for the dynamic analysis of 

nucleosome positioning attached in the following pages.  

 

Publication: 
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Josep LLuís Gelpí, Isabelle Brun Heath and Modesto Orozco. (2019). Nucleosome 
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Supplementary material for this article can be found in the Annex IV.  
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Chapter 6 . Impact of DNA methylation on 3D 

genome structure 

 

 

DNA methylation is a well-known epigenetic mark implicated in development and 

disease [1]. It has been shown that CpG methylation affects the physical properties 

of DNA, increasing its stiffness, which in turns affects nucleosome binding [2,3]. Here 

we present a comprehensive study about the effect of DNA methylation on 

chromatin structure, both at the nucleosome level and at the whole genome 3D 

configuration in the nucleus. Although many studies have explored the correlation 

between nucleosome positioning and DNA methylation, it is still unclear whether 

the two factors are correlated or anti correlated [2]–[4] Moreover, although typically 

DNA methylation was considered a hallmark of repression at promoters [5], 

nowadays we know that the relationship is more complex [1,6]. 

The contradictory results found to this day on the relationship methylation → 

nucleosome arrangement→gene expression might be due to the presence of other 

methylation readers present in higher eukaryotes controlling directly or indirectly 

nucleosome positioning and epigenetic-dependent gene expression. For this reason, 

we employed a natively unmethylated genome and induced the expression of four 

murine DNA methyltransferases (DNMTs) to methylate the DNA. This allows to 

directly study the intrinsic effect of DNA methylation on the chromatin structure of 

this system in the absence of methylated DNA recognition proteins. 

The induced methylation in yeast follows a similar pattern as in mammalian cells, 

lower at the TSS and increasing towards the TTS. Here, we found that in our system 
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all the four DNMTs are active and removing each of them, one at the time, produced 

a significant decrease in the level of methylation reached. In general, similar patterns 

of DNA methylation are observed in all cases, although we detected some specific 

DNA sequence preferences for DNMT3a and DNMT3b. Combining all of them we 

managed to obtain a very high level of DNA methylation in yeast genome. We found 

that nucleosome positioning strongly guides the position of the CpG methylation, 

since well-positioned (W) nucleosomes are depleted of methylation around the dyad 

accumulating towards the linkers, while fuzzy (F) nucleosomes can be methylated at 

equal rates at any position. On the other hand, nucleosome changes are also 

produced by the DNA methylation: the proportion of F nucleosomes increased, 

especially towards the 3’ end of the genes, and at highly methylated promoters we 

detected differential nucleosome positioning with our Nucleosome Dynamics 

package (see Chapter 5 for a description of the algorithm).  

Among the highly methylated promoters, we also found differential expression, 

which was not present in low-methylated. Some genes are repressed upon 

methylation, which can be explained considering the steric hindrance that a 

displaced nucleosome generates, but surprisingly several over-expressed genes are 

detected and quite interestingly are related to meiosis. We investigated the 

corresponding promoters finding a common motif that is CpG rich, URS1, target site 

for UME6 protein, known to be a repressor for meiosis-related genes. Since the level 

of methylation in this motif is proportional to the increase in transcription, the over 

expression could be explained by the unbinding of UME6 repressor. It is interesting 

to notice that this effect is direct, not protein-mediated and by might be related to 

intrinsic changes in DNA-URS1 binding related to cytosine methylation. 

Next, to explore the intrinsic effect of DNA methylation on global 3D chromatin 

structure, we performed Hi-C experiments and developed a restraint-based 

chromatin model. We produced an ensemble of structures for each yeast 

chromosome based on restraints derived from the Hi-C contact matrices binned at 

5kbp. The 3D models of several chromosomes show lower flexibility in the 

methylated chromatin, revealed by the lower RMSD of each structure in the 

ensemble and lower RMSF of each bead among the structures in the ensemble. 
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Globally, yeast chromatin reorganizes upon DNA methylation induction, loosing 

interactions in trans and gaining contacts in cis, especially around the centromeres. 

This might be explained by the high density of chromatin in these loci, since yeast 

centromeres are attached to the Spindle Pole Body.  

Particularly, we found large chromatin changes in chromosome XII, containing the 

rDNA repeats. In our unmethylated controls, cells are in stationary phase and the 

expression of these genes decreases, relaxing the barrier that this locus represents for 

separating the two sides of the chromosome, upstream and downstream from this 

region. In the methylated strain however, the contacts between the two parts of the 

chromosome are lost, suggesting that the chromatin structure is blocked upon 

methylation while the cells are dividing, keeping the rDNA region separated from 

the rest of the chromatin, as is known to occur in replicating cells [8], [9], even after 

the cells enter the stationary phase.  

Overall, our results show the intrinsic effect of DNA methylation on structural 

changes in chromatin organization, independent of DNA methylation readers as our 

model organism does not contain the complex cellular machinery that recognizes 

methylation signatures. 
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Figure 1. Methylation pattern across several samples and along the gene body. (A) The 

pattern of methylation is conserved in all samples as illustrated for this 20kb region of 

chromosome III (208135..227458) where the level of methylation at each position is represented 

for two samples with the four DNMTs expressed and four samples with each combination of 3 

DNMTs.  (B) Circular plot comparing DNA methylation for the samples in (A) and a control without 

methylation (None). Methylation levels decrease when one DNMT is missing, the strongest effect 

being without DNMT1 and the mildest effect when DNMT3b is not present. (C) Correlation 

between the sequence effect on methylation status among samples with different combinations of 

three DNMTs. Motif effects are estimated from logistic regression (for details see Materials and 

Methods) and correlation plots are produced for each pair of samples. Motifs have nearly the same 

effect in the two replicates with all DNMTs induced (correlation coefficient is cor=0.999) and 

when DNMT1 (cor=0.996) or DNMT3L (cor=0.954) are removed. In contrast, the estimated effect 

of some motifs on methylation probability is different in samples lacking DNMT3a (cor=0.793) or 

DNMT3b (cor=0.631).  The left panels show the sequence logo of the motifs preferentially 

methylated in each sample. (D,F,G) Comparison of methylation pattern in samples in exponential 

phase and at saturation (D) Average methylation level around TSS and TTS (850 bp upstream and 

downstream from each point). (E) Superposition of the pattern of DNA methylation and the 

pattern of H3K4 methylation along the average gene body (from 3kb upstream TSS to 3kb 

downstream TTS). DNA methylation preferentially occurs where H3K4 is not methylated. (F) 

Heatmap showing the correlation between methylation probabilities in samples in G1 and at 

saturation. (G) The pattern of methylation is conserved in samples in G1 and samples at saturation 

as illustrated for this 20Kb region of chromosome III (208135..227458) where the level of 

methylation at each position is represented for 2 replicas of each condition.   
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Figure 2.  Correlation between DNA methylation and nucleosome coverage genome wide 

(A) Nucleosome positioning (in red) in a sample before (dashed lane) and after (plain lane) 

induction of methylation and average methylation probabilities (in blue). Plots are built around 

TSS and TTS (850 bp upstream and downstream from each point). Average nucleosome 

positioning does not change drastically upon methylation. (B) Percentage of CpG with methylation 

probability above 0.01 around well positioned nucleosomes. Nucleosome calls were considered 

well-positioned (W) or fuzzy (F) when nucleR peak width score and height score were higher than 

0.6 and 0.4, respectively. DNA methylation is anti-correlated with nucleosome occupancy in W 

nucleosomes. (C,D) Average methylation probability around nucleosome call center (150 bp  

upstream and downstream) for (C) W and (D) F nucleosomes. (E) Average methylation probability 

per strand around nucleosome call center (75 bp upstream and downstream) of well-positioned 

nucleosomes 
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Figure 3. Nucleosome dynamics upon methylation at promoters. (A) NucDyn score around 

highly methylated and lowly methylated CpGs at promoters. (B) Nucleosome coverage around +1 

nucleosome for genes with highly or lowly methylated promoters. (C) Nucleosome architecture 

around promoters according to their methylation level. 
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Figure 4.  Correlation of DNA methylation, nucleosome positioning and gene expression.  

(A) Methylation probability and nucleosome coverage (solid lines) around genes with expression 

in the top 10% (blue) or bottom 10% (red) expression level. (B) Log2 of the fold change in 

expression for genes with highly and lowly methylated promoters. (C) Gene expression difference 

between methylated and not methylated samples. RNA level difference is plotted on the x-axis and 

the Adj. p-value on the y-axis. Downregulated (20 genes) and upregulated (63 genes) genes are 

shown in red and green, respectively. The genes with the highest changes are highlighted.  (D) 

Promoter motif enrichment for genes with highly methylated promoters and increase in 

expression level. 
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Figure 5. Effect of DNA methylation on 3D genome structure (A,B) Differential contact 

frequencies in control and methylation induced samples in replica 1 for (A) whole genome and 

(B) focus on four chromosomes.  Blue indicates interaction with a higher frequency in the non-

methylated control sample and red indicates interactions with a higher frequency in the 

methylated samples. (C) Comparison of contact frequencies between control and methylated Hi-

C samples in cis (+/- 50Kb from the centromere, top panel) and in trans (lower panel). (D,E) Circos 

plots displaying the significant (FDR<0.5) differential interactions identified with diffHiC: (D) 

gained interactions (log2FC>1) are clustered around the centromeres (red tick marks) and (E) 

lost interactions (log2FC< -1) preferentially occur between chromosomes. 
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Figure 6. Chromosome conformation changes under DNA methylation. Structural changes 

measured on the ensemble of structures obtained with our restraint-based 3D model for each 

chromosome: (A) Mean radius of gyration computed around the centromeres (+/-100Kb) and (B) 

flexibility of each chromosome measured by the RMSD for the control (black) and methylated 

(red) samples. (C) Circos diagrams of significant interactions in chromosome III for the control 

(left) and methylated (right) samples. (D,E) Heatmaps displaying the log2 ratio 

(Methylated/Control) of (D) the contact frequencies and (E) the distances in the ensemble for 

chromosome III. Blue indicates interaction with a higher frequency or shorter distance in the non-

methylated control sample and red indicates interactions with a higher frequency or shorter 
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distance in the methylated samples. (F) Average distances between matting type loci in the 

ensemble of structures for chromosome III. (G) Circos diagrams of significant interactions in 

chromosome XII for the control (left) and methylated (right) samples. (H,I) Log2 ratio 

(Methylated/Control) of (H) the contact frequencies and (I) the distances in the ensemble for 

chromosome XII.  

 

Table 1: Average methylation in CpG and non-CpG context. 

1Samples corresponding to replica1                  2 Samples corresponding to replica2 

 

  

       All Contexts CpG Contexts Non-CpG Contexts 

Sample  DNMT expressed 

Hours of 

induction State of the culture 

Avg. 

meth No. Cyt Frac. > 0 

Avg. 

meth No. Cyt Frac. > 0 

Avg. 

meth No. Cyt Frac. > 0 

T859 DNMT1, 3a, 3L 30 hrs Not synchronized 0.75% 3066478 2.74% 3.14% 525937 15.60% 0.16% 2538540 0.08% 

T860 DNMT1, 3b, 3L 30 hrs Not synchronized 0.70% 2584192 2.65% 2.77% 463127 14.36% 0.13% 2118519 0.10% 

T861 DNMT3a, 3b, 3L 30 hrs Not synchronized 0.49% 2889913 2.03% 1.97% 502806 11.46% 0.11% 2385079 0.04% 

T869 DNMT1, 3a, 3b 30hrs Not synchronized 0.56% 3066743 1.86% 2.08% 524612 10.73% 0.18% 2539830 0.03% 

T870 None 30hrs Not synchronized 0.15% 2732598 0.00% 0.13% 464513 0.00% 0.16% 2265439 0.00% 

T862 All1 27.5 hrs Not synchronized 2.03% 2810320 6.66% 8.55% 506621 34.88% 0.24% 2301426 0.45% 

T863 All2 27.5 hrs Not synchronized 2.13% 2937375 6.90% 9.14% 522749 36.43% 0.26% 2412449 0.51% 
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Chapter 7 . General discussion and conclusions  

 

 

Understanding the complex mechanisms of gene regulation in the nucleus requires 

a detailed knowledge of chromatin structure and this implies the study of DNA at 

different levels of resolution, from atomistic details up to whole genome 

organization. In this thesis, several studies have been performed in order to analyze 

genome organization based on DNA intrinsic factors determined by the nucleotide 

sequence as well as extrinsic features such as histones, transcription factors or RNA 

polymerase.  

7.1 Sequence dependent DNA flexibility and protein 

recognition 

The development of a new accurate forcefield for Molecular Dynamics (MD) 

simulations by our group has allowed the structural analysis of trajectories of many 

DNA sequences that provide input for the study of sequence dependent properties 

of the DNA. In this thesis, three publications (Chapters 3 and 4) address the role of 

this intrinsic features on DNA structure, protein binding and nucleosome formation. 

In the first publication, we characterized a tetra-nucleotide sequence that was 

previously identified to be unusually flexible and for which it was not possible to 

understand its dynamics using available dimer or tetramer models. We analyzed the 

structural polymorphisms of this tetramer in different sequence contexts, 

considering long range (beyond the tetramer level) sequence effects by means of MD 
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simulations, as well as from data mining of experimental structures deposited in 

PDB. The flexibility inherent to this tetramer implies that it can be present in the 

chromatin in very different states and this might have impact in genome structure 

which should be reflected in its prevalence. We observed that this tetramer is rather 

infrequently found in the genome of several eukaryotes, despite containing one of 

the stop codons, it is enriched in intergenic regions and depleted in coding sequences, 

and it has low mutation rate in different cancer types compared to other tetramers. 

Our results suggest that its unique conformational properties might be important for 

its significant underrepresentation in the genome. 

The second publication shows that the sequence dependent structural flexibility is 

also important for protein recognition of target binding sites. Consensus sequences 

for a large number of proteins have been identified, but the mechanism of recognition 

is not well understood. Here, using the physical properties of DNA and theoretical 

studies based on MD simulations we have found prevalence of conformational 

selection in many protein-DNA complexes from structures in the PDB. This implies 

that most of the motifs can spontaneously sample the conformation required for 

protein binding, reducing the prevalence of the induce-fit paradigm to a minority of 

cases, where specific backbone rearrangements are required leading to strong 

disruptions of the DNA structure.  

Finally, in the third publication we have used the physical descriptors obtained from 

the MD simulations to study the deformation energy of the DNA in the nucleosome, 

that is a key element to understand most of the processes in the nucleus required for 

cell functioning. We demonstrated the existence of energetic barriers that define the 

positioning of the two nucleosomes at the 5’ (+1 nucleosome) and 3’ (-last 

nucleosome) gene ends in the yeast genome. Although previous studies obtained low 

accuracy predicting nucleosome organization from the sequence dependent features, 

our study shows that combined with protein binding affinity scores we could predict 

with good accuracy the position of nucleosome free regions (NFR) at the 

transcription start site and transcription termination site. These two barriers define 

the position of the +1 and -last nucleosome in the gene, for which the nucleosome 

organization along the gene body can be predicted by signal theory using two 
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periodic signals running in opposite direction from the +1 and -last nucleosomes. 

When the two signals are in phase, the nucleosomes are well-positioned along the 

gene body. On the contrary, anti-phased signals produce fuzzier configurations. A 

series of synthetic biology experiments, followed by computational analysis of the 

obtained profiles, showed that altering the periodicity does not lead to differential 

expression, but gene regulation is more determinant on nucleosome positioning.  We 

also demonstrated that ordered nucleosome string in the gene body correlates with 

active genes. A series of experiments complemented with bioinformatics analysis 

uncover the causal relationship: more polymerase activity  higher nucleosome 

ordering. 

7.2 Nucleosome Dynamics: a new tool for the dynamic 

analysis of nucleosome positioning 

Besides theoretical study of nucleosome positioning, along this thesis we have 

analyzed several MNase-seq experiments performed under different conditions. In 

our group, a software for the mapping of nucleosome positions from this 

experimental technique, nucleR, was developed several years ago. Although it 

allows to study the nucleosome organization in an experiment very accurately, it 

cannot perform direct comparison between two different experimental conditions. 

Moreover, since the MNase-seq data come from a population of cells, the noise 

sometimes masks the real differences occurring between two experimental 

conditions and adding up the coverage for all cells obstructs the detection of changes. 

For this reason, we developed a new algorithm, NucDyn, that works at the fragment 

level, to capture variability from the different cells in the experiment. Comparing our 

results with other software on synthetically produced nucleosome maps, we found 

that NucDyn is superior to detect nucleosome rearrangements affecting a part of the 

cell population.  

Nucleosome Dynamics package, comprising NucDyn together with nucleR and 

other tools that we developed for the analysis of nucleosome positioning (e.g. 

classification of the NFR around the TSS, nucleosome periodicity, nucleosome 
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stiffness), has been integrated into a virtual research environment (MuGVRE). This 

framework allows not only easy and automatized analyses of nucleosome 

experimental data, but also to put the results in the context of genomic information 

(ChIP-seq, DNA methylation, etc.) relevant to understand the role of nucleosome 

organization in different cellular processes. For instance, analyses performed with 

our package for MNase-seq experiments on different stages of the cell cycle, along 

the yeast metabolic cycle or in different sources of carbon showed important 

nucleosome rearrangements in promoters of genes that are activated or repressed in 

response to the different conditions. 

7.3 Impact of DNA methylation on 3D genome structure 

DNA methylation can influence chromatin organization and DNA. Previous in vitro 

and in silico studies found increasing DNA stiffness due to CpG methylation at the 

local level. We were interested in understanding how it might affect chromatin 

structure at larger scale: at the nucleosome level and whole genome 3D structure. To 

perform this analysis, we used an organism that is natively unmethylated, 

Saccharomyces cerevisiae, and induced DNA methylation expressing four DNMTs, 

allowing us to directly study the effect of this epigenetic factor on chromatin, 

removing the effect of methylation readers present in more complex organisms.  

Although yeast does not have any of the machinery required to read or write the 

DNA methylation fingerprint, the pattern observed along genes is similar in other 

organisms that have the DNA methylation machinery. This shows that histone marks 

such as H3K4 methylation could be important in writing the DNA methylation at the 

correct positions by direct effects which should be related to the different binding 

affinities of normal and methylated DNAs. Our results suggest that although DNA 

methylation can alter the physical properties of DNA producing more fuzzy 

nucleosome profiles, the global pattern of nucleosome occupancy is not largely 

altered, which explains cell viability. However, for the promoters with largest levels 

of DNA methylation, we identified large changes in nucleosome positioning. Several 

genes are repressed upon methylation, which can be explained considering the steric 

hindrance that a displaced nucleosome generates, but those which are activated are 
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more difficult to understand. We found that these genes share a common motif 

(URS1, that is a binding site for UME6 protein which represses the expression of 

those genes) containing CpG steps that are highly methylated. We hypothesized that 

the differential expression could be due to the inability to bind to the target motif due 

to the methylation and therefore the genes cannot be repressed. This hypothesis is 

supported by the fact that the expression level is highly correlated with the 

methylation level at those sites. Again, this relationship can be explained only by the 

different protein-binding properties of normal and methylated DNA as no 

methylated-recognition protein exist in yeast. 

Then, we studied at the large scale the 3D conformation of chromatin changes using 

Hi-C data. Upon methylation less inter-chromosome contacts are observed, and 

chromosomes become more condensed, especially around the centromere. An 

exception is chromosome XII, containing the rDNA region, that forms a barrier 

separating the two ends of the chromosome in the methylated sample, but allows the 

contacts between the two regions in the control sample in saturation. We built a 

restraint-based model from the contact matrices. It confirmed the differential 

structure around the centromeric regions, showing decrease in the radius of gyration, 

and the segregation of the two regions separated by the rDNA in chromosome XII. 

Another chromosome where many significant differential interactions are observed 

is chromosome III. Interestingly, it contains the heterochromatic regions of matting 

type loci. Moreover, the telomere-telomere contacts are also reduced in the presence 

of DNA methylation. These results suggest that the chromatin structure is blocked in 

heterochromatic regions upon methylation while the cells are dividing, keeping the 

heterochromatic regions segregated after the cells enter the stationary phase.  

In summary, our analysis revealed the intrinsic effect of DNA methylation on 

chromatin organization, independent of the effect of DNA methylation readers that 

recognize methylation signatures, which are absent in our model organism. 

 

 

 



180             Understanding the link between chromatin structure, chromosome conformation and gene regulation 

Conclusions 

• The study of the unusually flexible CTAG tetramer reveals that its unique 

conformational properties might have impact in genome structure, reflected in 

its significant underrepresentation in the genome. 

• The conformational selection protein readout mechanism is prevalent in the 

recognition of DNA by effector proteins, except in a few specific cases where 

base opening or extreme distortions of the fiber are required. 

• A machine learning algorithm was proposed for the detection of nucleosome 

free regions, based on the deformation energy of the DNA and transcription 

factor binding affinity. It performs accurately in the yeast genome and allows to 

identify barriers from which periodic signals are sent to define the nucleosome 

architecture at gene bodies. 

• NucDyn, an algorithm for the detection of changes in nucleosome architecture 

comparing two MNase-seq experiments was developed. It can find differences 

occurring even in small percentages of the cells, outperforming other available 

methods. This algorithm and other tools for the analysis of nucleosome 

positioning have been integrated into a package called Nucleosome Dynamics, 

available through different distribution models (R packages, web-servers, 

containerized distributions). In particular, the implementation in the MuGVRE 

showed to be useful for the analysis of three test cases where the changes were 

correlated to response to different cell conditions.  

• We explored the intrinsic effect of DNA methylation on nucleosome positioning 

using an engineered yeast to which we transferred all methylation machinery. 

Although it is not a common universal reorganization, increase in fuzziness is 

observed and at some specific promoters the high methylation and nucleosome 

displacements are related to changes in gene expression. The 3D chromatin 

model developed based on restraints from Hi-C experiments allows to obtain a 

set of structures that represent a high percentage of the observed experimental 

contacts. With this model, we observed that methylation induces the 
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reorganization of chromatin at the intra and inter chromosomal levels. Globally, 

more contacts are formed around the centromeres while inter-chromosomal 

contacts are reduced. Moreover, we found that methylation is important in 

maintaining the structure in heterochromatin regions in chromosomes III and 

XII and at telomeric regions. 

 

 





   

Resumen 

 

Comprender la conexión entre la organización del ADN en el núcleo y el 

funcionamiento celular es uno de los problemas más interesantes en biología. 

Aunque se han desarrollado muchos esfuerzos interdisciplinarios para este 

objetivo, los mecanismos de plegamiento del ADN son en gran medida 

desconocidos. Por lo tanto, la complejidad de la estructura del genoma 

requiere diferentes técnicas para abordar varios niveles de resolución. 

En esta tesis, se estudian varias escalas de plegamiento del genoma utilizando 

métodos teóricos. Primero, nos centramos en las propiedades dependientes 

de la secuencia de ADN que definen la propensión de regiones específicas a 

ser reconocidos por las proteínas, descubriendo que la flexibilidad de ciertas 

secuencias de ADN podría explicar su prevalencia en el genoma. 

Las propiedades dependientes de la secuencia de ADN también son 

importantes para definir la primera capa de organización de la cromatina: el 

nucleosoma. Los descriptores físicos de la secuencia de ADN combinados con 

la propensión a la unión de factores de transcripción son muy informativos 

sobre la posición de las regiones no afines a la formación de nucleosomas, 

que guían la posición de los nucleosomas +1 y –último, y el resto de los 

nucleosomas en el cuerpo del gen se coloca por posicionamiento estadístico. 

Existe una clara correlación entre la actividad transcripcional y la fase de 

nucleosomas en el cuerpo del gen, encontrando que la transcripción influye 

más sobre la organización de los nucleosomas que la relación opuesta.  

En esta tesis también se desarrolló un paquete para el análisis comparativo 

de la organización de nucleosomas que permite predecir cuantitativamente 
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los cambios en el posicionamiento de los nucleosomas que ocurren cuando se 

introducen perturbaciones en la célula. 

Finalmente, estudiamos tanto los cambios a nivel de nucleosomas como a 

mayor escala producidos por la inducción de la metilación del ADN en un 

genoma que originalmente no tiene metilación, desarrollando un modelo 3D 

basado en Hi-C para estudiar la reorganización de la cromatina. Encontramos 

cambios muy significativos en la estructura de la cromatina inducidos por la 

metilación, que se reflejan en la expresión génica y el fenotipo celular. 

Curiosamente, estos cambios se encuentran en un organismo modelo que no 

tiene proteínas preparadas para reconocer la metilación y, en consecuencia, 

pueden deberse a los efectos intrínsecos (no mediados por proteínas) de la 

metilación. 
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Introducción 

El ADN es una molécula larga que, en condiciones fisiológicas, forma un 

dúplex complementario que contiene la información genética necesaria para 

construir la vida. Aunque la fibra de ADN humano tiene aproximadamente 

dos metros de largo, está compactada para ajustarse dentro del pequeño 

espacio definido por el núcleo celular con un diámetro de aproximadamente 

10 micrómetros [1]. La compactación del ADN es mediada por proteínas que 

guían su plegamiento dentro del núcleo de las células eucariotas. El complejo 

de ADN y proteínas dentro del núcleo se conoce como cromatina. Muchas 

evidencias experimentales [2]–[4] demuestran que el empaquetamiento del 

ADN dentro del núcleo no es aleatorio, ya que se debe preservar la 

accesibilidad al ADN a los reguladores del genoma, asegurando la función 

correcta de procesos como la transcripción, la replicación y la reparación del 

ADN. Otras evidencias han demostrado que esta organización es dinámica y 

sufre diferentes reorganizaciones a lo largo de varios procesos celulares como 

la diferenciación [2], la progresión del ciclo celular [5] o la respuesta al daño 

celular [6]. 

La unidad fundamental de compactación del ADN en organismos eucariotas 

es el nucleosoma. Un nucleosoma canónico está formado por ~ 147 pares de 

bases (bp) de ADN bicatenario que se enrollan en aproximadamente 1.65 

vueltas súper helicoidales alrededor de dos copias de cada histona H2A, H2B, 

H3 y H4. La curvatura del ADN en el nucleosoma requiere una energía de 

flexión significativa [7]. 

Las posiciones de los nucleosomas in vivo se han determinado utilizando 

varios protocolos experimentales, como FAIRE [8], ATAC-seq [9] y MNase-

seq [10]. Esta última es la técnica más utilizada y proporciona información 

detallada sobre la organización de los nucleosomas. Estos experimentos 
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contienen información de una población de células, por lo tanto, los perfiles 

de nucleosomas pueden ser ruidosos [11] y se caracterizan típicamente por 

dos propiedades importantes: ocupación y posicionamiento. El primero está 

relacionado con el porcentaje de células en un experimento que contiene un 

nucleosoma dado, el último denota la variabilidad en su posición genómica 

entre todas las células. Un nucleosoma se llama bien posicionado (W) cuando 

está presente en un gran porcentaje de las células, y los fragmentos de 

diferentes células presentan baja variabilidad con respecto a la posición 

genómica. Cuando un nucleosoma tiene baja cobertura y / o gran 

variabilidad de posicionamiento, se llama difuso (F) [11]. 

La organización de los nucleosomas en la secuencia de ADN no es aleatoria 

y se ha relacionado con diferentes procesos celulares como la transcripción y 

la replicación [12]. Además, es dinámico en el espacio y el tiempo, y está 

influenciado por varios factores, tales como: (i) el contexto local determinado 

por propiedades dependientes de la secuencia (factores cis), (ii) complejos de 

proteínas que interactúan con el ADN y pueden competir con nucleosomas 

(factores trans), como factores de transcripción [13], maquinaria de 

replicación [12] o remodeladores dependientes de ATP que pueden deslizar 

o expulsar nucleosomas (parcial o totalmente) [14], y (iii) el efecto de los 

nucleosomas vecinos que imponen restricciones estéricas para el 

posicionamiento de nucleosomas [15]. 

A escala global los cromosomas se pliegan jerárquicamente en el espacio 

nuclear durante la interfase [16], [17]. A nivel de todo el núcleo, la cromatina 

está segregación en territorios cromosómicos [18]. A mayor escala, se ha 

observado la separación de los compartimentos A / B, que corresponden a la 

eucromatina transcrita activamente y la heterocromatina reprimida, 

respectivamente [19], estando esta última unida preferentemente a la lámina 

nuclear [20]. 
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A una escala más fina, los cromosomas se organizan en dominios asociados 

topológicamente (TAD), regiones del genoma con alta auto-interacción, 

aisladas de regiones de dominios vecinos [21]. Los TADs podrían reflejar la 

presencia de bucles de genes que imponen la direccionalidad del promotor 

[22]o bucles formados para atraer elementos reguladores en proximidad de 

los genes sobre los que influyen, que pueden estar separados por una gran 

distancia genómica, [23], [24]. Los bordes de los TADs en células de 

mamíferos se colocalizan fuertemente con los sitios de unión de CTCF [25]. 

Un mecanismo propuesto para la formación de TAD implica el papel de los 

factores de extrusión, como la cohesina, que extruyen el ADN a través de su 

estructura en forma de anillo [26], [27]. La formación del bucle continúa hasta 

que el factor de extrusión encuentra otro factor límite, por ejemplo, CTCF en 

orientación convergente en los bordes del TAD. 
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Objetivos 

El objetivo principal de esta tesis es estudiar la estructura y organización de 

la fibra de ADN a diferentes niveles de detalle, desde propiedades específicas 

de secuencia local hasta la estructura 3D global dentro del núcleo. Para este 

propósito, los siguientes objetivos específicos se proponen y agrupan en tres 

categorías: 

1. Propiedades dependientes de la secuencia de ADN 

• Caracterizar la distribución amplia del genoma y la función de 

secuencias de ADN altamente flexibles. 

• Evaluar los mecanismos para el reconocimiento de ADN de 

proteínas que definen pruebas estadísticas para la detección 

de diferencias significativas en los descriptores físicos de ADN 

entre la estructura experimental de ADN unida a proteínas y 

la estructura desnuda a partir de simulaciones de dinámica 

molecular. 

• Para predecir perfiles de organización de nucleosomas 

utilizando métodos de aprendizaje automático basados en la 

energía de deformación del ADN, la afinidad del factor de 

transcripción y la periodicidad de la señal de nucleosoma. 

2. Herramientas para estudiar el posicionamiento de nucleosomas in 

vivo 

• Desarrollar un algoritmo para comparar perfiles de 

posicionamiento de nucleosomas entre dos poblaciones 

celulares. 

• Integrar diferentes herramientas para el análisis de la 

organización de nucleosomas en una tubería disponible a 
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través de diferentes modelos de distribución (servidores web, 

distribuciones en contenedores) que facilitan el análisis de 

resultados en el contexto de otra información genómica. 

3. Efecto de la metilación del ADN en la estructura de la cromatina. 

• Analizar el efecto de la metilación del ADN en el 

posicionamiento de nucleosomas in vivo, aplicando el 

algoritmo propuesto para la comparación de perfiles de 

nucleosomas. 

• Estudiar los cambios de cromatina a nivel de estructura 3D del 

genoma completo aplicando métodos estadísticos para la 

detección de regiones de interacción diferencial en datos de 

Hi-C. 

• Desarrollar un modelo 3D de grano grueso de la cromatina 

basado en restricciones obtenidas de matrices de contacto Hi-

C para un análisis posterior de los cambios estructurales 

producidos por la metilación del ADN. 
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Discusión general  

La comprensión de los complejos mecanismos de regulación génica en el 

núcleo requiere un conocimiento detallado de la estructura de la cromatina y 

esto implica el estudio del ADN a diferentes niveles de resolución, desde 

detalles atomísticos hasta la organización del genoma completo. En esta tesis, 

se han realizado varios estudios para analizar la organización del genoma 

teniendo en cuenta tanto factores intrínsecos de ADN determinados por la 

secuencia de nucleótidos, así como características extrínsecas como histonas, 

factores de transcripción o ARN polimerasa. 

 

Flexibilidad del ADN y reconocimiento de proteínas 

asociado a la secuencia 

El desarrollo de un nuevo campo de fuerza para simulaciones de Dinámica 

Molecular (MD) por parte de nuestro grupo ha permitido el análisis 

estructural de las trayectorias de muchas secuencias de ADN que 

proporcionan información para el estudio de las propiedades dependientes 

de la secuencia del ADN. En esta tesis, tres publicaciones (capítulos 3 y 4) 

abordan el papel de estas características intrínsecas en la estructura del ADN, 

la unión a proteínas y la formación de nucleosomas. 

En la primera publicación, caracterizamos una secuencia de tetra-nucleótidos 

que previamente se identificó como inusualmente flexible y para la cual no 

fue posible comprender su dinámica utilizando los modelos de dímero o 

tetrámero disponibles. Analizamos los polimorfismos estructurales de este 

tetrámero en diferentes contextos de secuencia, considerando los efectos de 

secuencia de largo alcance (más allá del nivel del tetrámero) por medio de 

simulaciones MD, así como de la minería de datos de estructuras 
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experimentales depositadas en la base de datos Protein Data Bank (PDB). La 

flexibilidad inherente a este tetrámero implica que puede estar presente en la 

cromatina en estados muy diferentes y esto podría tener un impacto en la 

estructura del genoma que debería reflejarse en su prevalencia. Observamos 

que este tetrámero es poco frecuente en el genoma de varios organismos 

eucariotas, a pesar de contener uno de los codones de parada (TAG), está 

enriquecido en regiones intergénicas y empobrecido en secuencias 

codificantes, y tiene una baja tasa de mutación en diferentes tipos de cáncer 

en comparación con otros tetrámeros. Nuestros resultados sugieren que sus 

propiedades conformacionales únicas podrían ser importantes para su 

significativamente baja representación en el genoma. 

La segunda publicación muestra que la flexibilidad estructural dependiente 

de la secuencia también es importante para el reconocimiento de proteínas 

de los sitios de unión al ADN. Se han identificado secuencias de consenso 

para un gran número de proteínas, pero el mecanismo de reconocimiento no 

ha sido establecido. En este trabajo, utilizando las propiedades físicas del 

ADN y estudios teóricos basados en simulaciones MD, hemos encontrado la 

prevalencia de la selección conformacional en muchos complejos de proteína-

ADN de estructuras en el PDB. Esto implica que la mayoría de los motivos 

pueden muestrear espontáneamente la conformación requerida para la unión 

a proteínas, reduciendo la prevalencia del paradigma de ajuste inducido a 

una minoría de casos, donde se requieren reorganizaciones específicas del 

esqueleto que conducen a importantes modificaciones de la estructura del 

ADN. 

Finalmente, en la tercera publicación, hemos utilizado los descriptores físicos 

obtenidos de las simulaciones de MD para estudiar la energía de deformación 

del ADN en el nucleosoma, que es un elemento clave para comprender la 

mayoría de los procesos en el núcleo necesarios para el funcionamiento 
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celular. Demostramos la existencia de barreras energéticas que definen el 

posicionamiento de los dos nucleosomas en los extremos 5 '(+1 nucleosoma) 

y 3' (-último nucleosoma) de cada gen en el genoma de la levadura 

(Saccharomyces cerevisiae). Aunque estudios anteriores obtuvieron 

predicciones con poca precisión de la organización de nucleosomas a partir 

de las propiedades físicas del ADN, nuestro estudio muestra que, 

combinados con medidas de afinidad de la unión a proteínas, podemos 

predecir con buena precisión la posición de las regiones libres de 

nucleosomas en el sitio de inicio de la transcripción y el sitio de terminación 

de la transcripción. Estas dos barreras definen la posición del nucleosoma +1 

y -último en el gen, con lo cual es posible predecir la organización de 

nucleosomas a lo largo del cuerpo del gen mediante la teoría de la señal 

utilizando dos señales periódicas que se envían en dirección opuesta a partir 

de los nucleosomas +1 y -último. Cuando las dos señales están en fase, los 

nucleosomas están bien posicionados a lo largo del cuerpo del gen. Por el 

contrario, las señales en anti-fase producen configuraciones de nucleosomas 

más difusas. Una serie de experimentos de biología sintética, seguida de un 

análisis computacional de los perfiles obtenidos, mostró que alterar la 

periodicidad no conduce a la expresión diferencial, pero la regulación génica 

es más determinante en el posicionamiento de nucleosomas. También 

demostramos que la cadena de nucleosomas ordenada en el cuerpo del gen 

se correlaciona con genes activos. Una serie de experimentos 

complementados con análisis bioinformáticos descubren la relación causal: 

más actividad de polimerasa  mayor ordenación de nucleosomas. 

 

Nucleosome Dynamics: una nueva herramienta para el 

análisis dinámico del posicionamiento de nucleosomas 
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Además del estudio teórico del posicionamiento de nucleosomas, a lo largo 

de esta tesis se han analizado varios experimentos de MNase-seq realizados 

en diferentes condiciones. En nuestro grupo, hace varios años se desarrolló 

un software para el mapeo de las posiciones de nucleosomas a partir de datos 

obtenidos mediante esta técnica experimental, nucleR. Aunque permite 

estudiar la organización de nucleosomas en un experimento con mucha 

precisión, no puede realizar una comparación directa entre dos condiciones 

experimentales diferentes. Además, dado que los datos de MNase-seq 

provienen de una población de células, el ruido a veces oculta las diferencias 

reales que ocurren entre dos condiciones experimentales y sumar la cobertura 

para todas las células impide la detección de cambios. Por esta razón, 

desarrollamos un nuevo algoritmo, NucDyn, que funciona a nivel de los 

fragmentos secuenciados, para capturar la variabilidad de las diferentes 

células en el experimento. Al comparar nuestros resultados con otros 

programas computacionales en mapas de nucleosomas producidos 

sintéticamente, encontramos que NucDyn es superior para detectar 

reordenamientos de nucleosomas que afectan a una parte de la población 

celular. 

El paquete Nucleosome Dynamics, que comprende NucDyn junto con nucleR 

y otras herramientas que desarrollamos para el análisis del posicionamiento 

de nucleosomas (por ejemplo, clasificación de las regiones libres de 

nucleosomas alrededor de los inicios de transcripción, computo de medidas 

de periodicidad de nucleosomas, estimación de la rigidez asociada a los 

nucleosomas), se ha integrado en un entorno de investigación virtual 

(MuGVRE). Esta web permite no solo realizar el análisis de forma automática 

de datos experimentales de nucleosomas, sino también poner los resultados 

en el contexto de información genómica (ChIP-seq, metilación de ADN, etc.) 

lo cual es relevante para comprender el papel de la organización de 

nucleosomas en diferentes procesos celulares. Por ejemplo, los análisis 
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realizados con Nucleosome Dynamics para experimentos MNase-seq en 

diferentes etapas del ciclo celular, a lo largo del ciclo metabólico de la 

levadura o en diferentes fuentes de carbono mostraron importantes 

reordenamientos de nucleosomas en promotores de genes que se activan o 

reprimen en respuesta a las diferentes condiciones experimentales. 

 

Impacto de la metilación del ADN en la estructura 3D del 

genoma  

La metilación del ADN puede influir en la organización de la cromatina y el 

ADN. Estudios previos in vitro e in silico encontraron un aumento de la 

rigidez del ADN debido a la metilación de los pasos CpG a nivel local. Sin 

embargo, el efecto de la metilación en la estructura global de la cromatina no 

ha sido establecido. Por esta razón, en esta tesis se busca comprender cómo 

afecta la estructura de la cromatina a mayor escala: a nivel de nucleosomas y 

la estructura 3D del genoma completo. Para realizar este análisis, se utilizó 

un organismo que no contiene los factores necesarios para producir la 

metilación del ADN, Saccharomyces cerevisiae, y se indujo expresando 

cuatro metiltransferasas (DNMTs), lo que nos permite estudiar directamente 

el efecto de este factor epigenético en la cromatina, eliminando el efecto de 

proteínas que reconocen la metilación, presentes en organismos más 

complejos.  

Aunque la levadura no tiene la maquinaria necesaria para leer o escribir la 

metilación del ADN, el patrón observado a lo largo de los genes es similar en 

otros organismos que sí la tienen. Esto muestra que las marcas de histonas, 

como la metilación de H3K4, podrían ser importantes para escribir la 

metilación del ADN en las posiciones correctas por efectos directos que 

deberían estar relacionados con las diferentes afinidades de unión del ADN 
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normal y metilado. Nuestros resultados sugieren que, aunque la metilación 

del ADN puede alterar las propiedades físicas del ADN produciendo perfiles 

de nucleosomas más difusos, el patrón global de ocupación de nucleosomas 

no se altera en gran medida, lo que explica la viabilidad celular. Sin embargo, 

para los promotores con mayores niveles de metilación del ADN, 

identificamos grandes cambios en el posicionamiento de nucleosomas. La 

metilación reprime varios genes, lo cual puede explicarse considerando el 

obstáculo estérico que genera un nucleosoma desplazado, pero la activación 

de genes producida por la metilación es más difícil de entender. Analizando 

las funciones de estos genes, se encontró que comparten un motivo común 

(URS1, que es un sitio de unión para la proteína UME6 que reprime su 

expresión) que contiene pasos de CpG que están altamente metilados. La 

expresión diferencial podría deberse a la incapacidad de la proteína de 

reconocer y unirse a la secuencia debido a la metilación y, por lo tanto, los 

genes no pueden ser reprimidos. Esta hipótesis está respaldada por el hecho 

de que el nivel de expresión está altamente correlacionado con el nivel de 

metilación en esos sitios. Nuevamente, esta relación solo puede explicarse 

por las diferentes propiedades de unión a proteínas del ADN normal y 

metilado, ya que no existe proteína de reconocimiento metilado en la 

levadura. 

Luego, estudiamos a gran escala la conformación 3D de los cambios de 

cromatina utilizando datos Hi-C. Tras la metilación, se observan menos 

contactos entre cromosomas y estos se condensan más, especialmente 

alrededor del centrómero. La única excepción es el cromosoma XII, que 

contiene las regiones de ADN ribosomal, las cuales forman una barrera que 

separa los dos extremos del cromosoma en la muestra metilada, pero permite 

la formación de contactos entre las dos regiones en la muestra de control sin 

metilación en saturación. Para obtener más información sobre el efecto de la 

metilación del ADN en la estructura de la cromatina, construimos por 
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primera vez un modelo basado en la restricción a partir de las matrices de 

contacto y los experimentos MNase-seq. Se observó diferencias en la 

estructura alrededor de las regiones centroméricas, mostrando una 

disminución en el radio de giro y la segregación de las dos regiones separadas 

por el ADN ribosomal en el cromosoma XII. 
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Conclusiones 

• El estudio del tetrámero inusualmente flexible CTAG revela que sus 

propiedades conformacionales únicas podrían tener un impacto en la 

estructura del genoma, lo que se refleja en su importante 

subrepresentación en el genoma. 

• El mecanismo de lectura de las proteínas a través de la selección 

conformacional prevalece en el reconocimiento del ADN por las 

proteínas efectoras, excepto en algunos casos específicos donde se 

requiere una apertura de las bases o distorsiones extremas de la fibra. 

• Se propuso un algoritmo de aprendizaje automático para la detección 

de regiones libres de nucleosomas, basado en la energía de 

deformación del ADN y la afinidad de unión a factores de 

transcripción. Este algoritmo permite obtener predicciones con alta 

precisión en el genoma de la levadura e identificar barreras desde las 

cuales se envían señales periódicas para definir la arquitectura de 

nucleosomas en el cuerpo de los genes. 

• Se desarrolló un método para la detección de cambios en la 

arquitectura de nucleosomas, NucDyn, que compara dos 

experimentos de MNase-seq. Puede encontrar diferencias que 

ocurren incluso en pequeños porcentajes de las células, superando a 

otros métodos disponibles. Este algoritmo y otras herramientas para 

el análisis de posicionamiento de nucleosomas se han integrado en un 

paquete llamado Nucleosome Dynamics, disponible a través de 

diferentes modelos de distribución (paquetes R, servidores web, 

distribuciones en contenedores). En particular, la implementación en 

MuGVRE demostró ser útil para el análisis de tres ejemplos de uso 
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donde los cambios se correlacionaron con la respuesta a diferentes 

condiciones celulares. 

• Se exploró el efecto intrínseco de la metilación del ADN en el 

posicionamiento de nucleosomas utilizando una cepa levadura 

modificada a la que se transfirió la maquinaria de metilación. Aunque 

no se observa una reorganización universal común, se evidencia 

disminución en el número de nucleosomas bien posicionados. Así 

mismo, en algunos promotores específicos la alta metilación y los 

desplazamientos de nucleosomas están relacionados con cambios en 

la expresión génica. 

• El modelo tridimensional de la cromatina desarrollado con base en 

restricciones obtenidas a partir de los experimentos de Hi-C permite 

obtener un conjunto de estructuras que representan un alto porcentaje 

de los contactos experimentales observados. Con este observamos que 

la metilación produce reorganización de la cromatina a nivel intra e 

inter cromosómico. Alrededor de los centrómeros se forman más 

contactos mientras se pierden los contactos inter cromosómicos. 

Adicionalmente observamos que la metilación es importante en el 

mantenimiento de la estructura en regiones de heterocromatina.  
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II. Sequence selective protein-DNA recognition 
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III. Determinants of nucleosome architecture in yeast 
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IV. Nucleosome Dynamics: a new tool for the dynamic 

analysis of nucleosome positioning 
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V. Impact of DNA methylation on 3D genome structure 
 

Supplementary Figures 

 

Figure S1. Expression and stability of the 4 DNMTs. (A-D) The lysate from 7 

transformants expressing different combinations of the 4 DNMTS, and one control (T-) 

were loaded in (A) 6% (B,C) 8% and (D) 10% acrylamide gel, transferred onto PVDF 

membrane and revealed with (A) anti DNMT1 antibody, (B) anti-DNMT3a (C) anti 

DNMT3b and (D) anti-Flag antibody. 
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Figure S2. (A) Viability test of one yeast culture transformed with empty vectors (T-1, 

T-2) and one yeast culture expressing the 4 DNMTs (B) Flow cytometry analysis of two 

independent yeast cultures transformed with empty vectors (T-1, T-2) and two 

independent yeast cultures expressing DNMTs (Tr2-1, Tr2-2). Percentage of cells in G2 

is larger in methylated samples than in the control samples suggesting a slightly longer 

G2 phase in the methylated sample. 
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Figure S3. Heatmap showing the pairwise CpG methylation correlation in (A) two 

nanopore replicates and (B) in one nanopore vs one WGBS replicate. (C) Methylation 

pattern at the rDNA locus in WGBS (top 2 tracks) and nanopore (bottom tracks) samples 

for 2 replicas of each condition. 
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Figure S4. Density estimates of the % of CpG sites methylated per read estimated from 

Nanopore sequence data for four datasets: methylated cells in stationary phase, control 

cells in stationary phase, methylated cells in exponential phase and control cells in 

exponential phase. 
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Figure S5. Nucleosome position changes upon DNA methylation for 10 upregulated 

genes. The position of UME6 DNA binding sequence is indicated as a yellow box, and the 

methylation levels at individual CpG as a blue histogram for two replicas (Meth1, 

Meth2). The blue boxes represent the nucleosomes as called by nucleR for the two 

control and two methylated samples. 
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Figure S6. Effect of DNA methylation on 3D genome structure in replica 2. Differential 

contact frequencies in control and methylation induced samples for (A) whole genome 

and (B) focus on four chromosomes. Blue indicates interaction with a higher frequency 

in the non-methylated control sample and red indicates interactions with a higher 

frequency in the methylated samples. 



286             Understanding the link between chromatin structure, chromosome conformation and gene regulation  

 

 



Annexes   287 

 

 



288             Understanding the link between chromatin structure, chromosome conformation and gene regulation  

 

 



Annexes   289 

 

 



290             Understanding the link between chromatin structure, chromosome conformation and gene regulation  

 

 



Annexes   291 

 

 



292             Understanding the link between chromatin structure, chromosome conformation and gene regulation  

 

 

 



Annexes   293 

 

 

Figure S7. Comparison of interactions in the control and the methylated strains. Panels 

(A-N) represent each chromosome (chrI, II, IV-XI and XIII-XIV, respectively). (a) Circos 

diagrams depict each chromosome as a circle. Each arc represents a significant 

interaction in the control (top) and the methylated sample (bottom) for the two replicas 

(Cl1, Cl2). The chromosomal position of the centromeres is indicated in red and the 

telomeres in green. (b) Log2 ratio of the interaction frequencies in the control over the 

methylated for replica 1. Blue indicates interaction with a higher frequency in the 

control sample and red indicates interactions with a higher frequency in the methylated 

sample. (c) Log2 ratio of the distance in the 3D model for the control over the methylated 

for replica 1. Blue indicates shorter distance in the control sample and red indicates 

closer in the methylated sample. 
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Figure S8. Root mean square fluctuations (RMSF) by bead in each chromosome for the 

control (black) and methylated (red). The blue line indicates the position of the 

centromere. 
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Figure S9. Methylation pattern in WGBS (top 2 tracks) and nanopore (bottom tracks) 

samples for 2 replicas of each condition at (A) the HML locus, (B) the HMR locus. 
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Figure S9 (Cont.). Methylation pattern in WGBS (top 2 tracks) and nanopore (bottom 

tracks) samples for 2 replicas of each condition at (C) the MAT locus and (D) a telomeric 

region in chromosome IV. 
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Suppl. Table S2. Percentage of Fuzzy, Well positioned or not determined nucleosome 
calls from nucleR on 2 control and 2 methylated replicas in saturation.  

 

 

Suppl. Table S3. Expression changes and URS1 methylation levels of a subset of early 
meiotic genes 

 

 

 

 

 

Sample Fuzzy Well positioned Not determined total 

Ctrl Rep1 34759 (47.36%) 38320 (52.22%) 307(0.42) 73386 
Ctrl Rep2 36322(49.64%) 36544 (49.95%) 298 (0.41%) 73164 
Met Rep1 39400 (53.12%) 34362 (46.33%) 403 (0.54%) 74165 
Met Rep2 38222 (51.61%) 35425 (47.83%) 416 (0.56%) 74063 

 

  Samples in G1 Samples at saturation 

Name 
gene 

Gene ID 
Differential 
expression 
LOG2FC 

p-adj 
Methylation 
level at URS1 
site 

Differential 
expression 
LOG2FC 

p-adj 
Methylation 
level at URS1 
site 

SAE3 YHR079C 6.20 3.38E-21 0.14-0.145 7.43 7.21E-04 0.404-0.37 
MEI5 YPL212C 3.84 1.07E-04 0.354-0.318 6.98 1.44E-03 0.509-0.447 

GMC2 YLR445W 3.69 5.41E-02 0.176-0.193 6.94 5.98E-03 0.414-0.494 
HOP2 YGL033W 2.42 4.26E-03 0.074-0.074 6.83 1.17E-03 0.315-0.392 

HED1 
YDR014W-
A 2.98 3.09E-17 0.203-0.139 4.97 7.21E-04 0.418-0.339 

SPO13 YHR014W 4.06 8.93E-07 0.27-0.205 4.95 2.24E-03 0.536-0.554 

MEK1 YOR351C 3.23 1.42E-02 
0.211-0.181 
0.354-0.297 4.89 5.47E-03 

0.386-0.406 
0.517-0.476 

REC114 YMR133W 3.05 2,32E-2 0.372-0.35 4.84 4.00E-03 0.798-0.811 
MER1 YNL210W 2.65 3.06E-01 0.368-0.401 4.75 5.65E-02 0.716-0.749 
SPO11 YHL022C 3.12 1.44E-11 0.196-0.222 3.76 3.19E-03 0.727-0.69 
DMC1 YER179W 3.08 9.06E-13 0.312-0.212 2.97 1.84E-03 0.469-0443 

MEI4 
YER044C-
A 2.19 4.61E-03 0.165-0.13 2.74 1.52E-02 0.414-0.465 

HOP1 YIL072W 1.70 1.34E-03 0.088-0.034 2.55 3.19E-03 0.301-0.262 
ZIP1 YDR285W 1.28 1.01E-01 0.125-0.104 2.46 5.21E-03 0.348-0.321 
REC102 YLR329W 1.69 2.44E-02 0.311-0.197 2.29 3.66E-08 0.533-0.419 
IME2 YJL106W -0.06 2.60E-01 0.011-0.011 2.27 6.04E-03 0.07-0.08 
SPO16 YHR153C 0.65 6.16E-01 0.02-0.043 2.04 1.36E-02 0.224-0.155 
REC104 YHR157W -0.54 4.09E-01 0.039-0.033 1.15 2.50E-02 0.114-0.05 
RED1 YLR263W -0.79 1.87E-02 ND 0.18 5.88E-01 ND 
RIM4 YHL024W 2.87 4.84E-17 0.012-0 -0.12 8.22E-01 0.082-0.048 
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Suppl. Figure S4. Number of reads filtered out in the Hi-C processing with TADbit.  

 

 Empty-Cl1 Empty-Cl2 4DNTM-Cl1 4DNMT-Cl2 

 Number of 
reads 

(%) 
Number of 
reads 

(%) 
Number of 
reads 

(%) 
Number of 
reads 

(%) 

Total reads 77 290 108   84 096 809   63 980 708   60 623 554   

    Mapped both                 67 901 532 100.00% 67 901 533 100.00% 55 086 767 100.00% 53 623 524 100.00% 

   1- self-circle                1 748 467 2.58% 2190336 2.96% 1 623 463 2.95% 1291620 2.41% 

   2- dangling-end               9 508 945 14.00% 9601236 12.98% 9 017 932 16.37% 6208357 11.58% 

   3- error                      539 769 0.79% 544375 0.74% 492 032 0.89% 552491 1.03% 

   4- extra dangling-end         17 466 889 25.72% 19224967 25.99% 14 483 116 26.29% 15732626 29.34% 

   5- too close from RES         8 959 962 13.20% 9812011 13.26% 7 056 667 12.81% 7737173 14.43% 

   6- too short                  1 021 588 1.50% 1120886 1.52% 833 844 1.51% 918430 1.71% 

   7- too large                  8 551 118 12.59% 9156511 12.38% 7 686 856 13.95% 6982601 13.02% 

   8- over-represented           5 154 043 7.59% 5511705 7.45% 4 950 744 8.99% 4553967 8.49% 

   9- duplicated                 31 496 318 46.39% 41497816 56.09% 20 691 442 37.56% 20287110 37.83% 

  10- random breaks              4 162 523 6.13% 4363097 5.90% 4 007 872 7.28% 3326301 6.20% 

Filtered reads 28 515 650 42.00% 25 653 808 37.78% 25 871 440 46.96% 27 031 064 50.41% 
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