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Abstract

Understanding the connection between DNA organization in the nucleus, and cell
functioning is one of the most intriguing problems in biology. Although many
interdisciplinary efforts have been developed for this aim, the mechanisms of DNA
folding in such a large scale are largely unknown. Therefore, the complexity of

genome structure requires different techniques to tackle several resolution levels.

In this thesis, several scales of genome folding are studied using theoretical
methods. First, we focus on the DNA sequence dependent properties which define
the propensity of specific loci to be recognized by proteins, finding that the

flexibility of specific DNA sequences might explain their prevalence in the genome.

DNA sequence dependent properties are also important to define the first layer of
chromatin organization: the nucleosome. Physical descriptors of the DNA sequence
combined with the propensity for transcription factor binding are highly
informative on the location of nucleosome depleted regions, which guide the
position of +1 and -last nucleosomes, the rest of nucleosomes in the gene body
being placed by statistical phasing. There is a clear correlation between
transcriptional activity and nucleosome phasing at gene body, the causal

relationship is transcription>nucleosome organization rather than the opposite

A package for the comparative analysis of nucleosome organization was also
developed in this thesis to quantitative predict changes in nucleosome organization

occurring when perturbations are introduced to the cell.

Finally, we studied both the changes at the nucleosome level and at larger scale
produced by the induction of DNA methylation on a natively unmethylated
genome, developing a Hi-C based 3D model to gain insights into the chromatin
rearrangements observed. We found very significant changes in chromatin
structure induced by methylation, which are reflected in gene expression and
cellular phenotype. Interestingly, these changes are found in a model organism that
has not proteins prepared to recognize methylation, and accordingly can be

assigned to intrinsic (not protein-mediated) effects of methylation.






Thesis organization

This thesis is a compilation of five works, three published and two in the process of
publication, that study DNA and chromatin structure and its relation to gene
regulation. They are presented following the level of resolution analyzed, rather
than the chronological order of publication, starting from the structural properties
of DNA sequences, following to the nucleosome organization and finally studying
the 3D organization of the chromatin in the nucleus. Chapter 1 starts with an
introduction of the state-of-the-art about many of the aspects addressed in this
thesis, as well as the general objectives proposed in this work. Chapter 2
summarizes the methods used along the different projects, comprising the
theoretical study of DNA physical properties as well as several next generation
sequencing experiments, and the bioinformatics algorithms for their analysis. These
methods allow the study of different genomic features such as nucleosome
positioning, 3D genome organization, protein binding mapping and gene
expression. Chapters 3-6 present the results of this thesis as a compendium of five
publications, each one preceded by a brief contextualization and summary of the
main results. Chapter 3 covers two publications concerning the importance of
sequence dependent physical properties of the DNA on its flexibility and protein
binding. Chapter 4 presents a study of determinants of nucleosome positioning and
its relationship with gene expression, combining information about intrinsic
physical properties of the DNA with extrinsic features such as transcription factor
binding. Chapter 5 moves to the analysis of experimental data for nucleosome
positioning, presenting a package developed not only to extensively analyze the
nucleosome organization in a given experiment, but also to compare between
different experimental conditions and to put the results in context with other
genomic information. Chapter 6 studies the effect of DNA methylation on
chromatin structure at the nucleosome and whole-genome 3D levels, in engineered
yeast to which DNA methyltransferases were transferred. Finally, Chapter 7
contains a general discussion of the results presented in this work and the

conclusions of this PhD thesis.
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Chapter 1. Introduction

DNA is a long molecule that under physiological conditions forms a complementary
right-handed duplex containing the genetic information necessary to build life.
Although the human DNA fiber is about two meters long, it is packed tightly to fit
inside the small space defined by the cell nucleus with a diameter of approximately
10 micrometers [1]. The DNA compaction is aided by proteins that guide DNA
folding inside the nucleus of eukaryotic cells. The complex of DNA and proteins
inside the nucleus is known as chromatin. Many experimental evidences [2]-[4]
demonstrate that DNA packing inside the nuclei is not random, as the accessibility
to DNA of genome regulators must be preserved, ensuring the correct function of
processes such as transcription, replication, and DNA repair. Other evidences have
shown that this organization is dynamic and undergoes different rearrangements
along several cellular processes such as differentiation [2], cell cycle progression [5]

or damage response [6].

1.1 Nucleosomes are the primary units of genome

organization

The fundamental unit of DNA compaction in eukaryotes is the nucleosome. A
canonical nucleosome is formed by ~147 base pairs (bp) of double-stranded DNA
that coil in approximately 1.65 super helical turns around a core of histone proteins,
which contain two copies of each histone H2A, H2B, H3 and H4. X-ray crystal

structures of the nucleosome [7], [8] revealed (Figure 1.1) that histone proteins are
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formed by a globular domain constituting the nucleosome core with a disk-like shape
(approximately 10 nm of diameter and 5.5 nm of height) and N-terminal histone tails
that are relatively unstructured and highly flexible. Moreover, they can undergo
post-translational modifications (methylation, acetylation, ubiquitination) altering

chromatin accessibility [9].

Figure 1.1. Nucleosome core particle derived from crystal structure at 2.8 A resolution. Histone
ribbon traces colored in blue (H3), green (H4), yellow (H2A) and red (H2B). Adapted from [7].

The central bases of the nucleosomal DNA coincide with a pseudo 2-fold symmetry
axis, the dyad axis [10]. The high curvature of the DNA in the nucleosome requires
significant bending energy [11]. The structure is stabilized by positively charged
histones in complex with negatively charged DNA backbone that form interactions
every 10 bp (formed by salt-bridges, hydrogen bonds and hydrophobic contacts [10])
and interactions between the histones, forming H3-H4 and H2A-H2B dimers. The
DNA wraps around the histones are parallel except in the entry/exit of the DNA to
the nucleosome, where and additional histone binds, known as linker histone (H1 or
H5), present in higher eukaryotes. Linker histones have an important role in
interactions between nucleosomes and, hence, in folding of the nucleosomes in space

and chromatin compaction [12].
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Figure 1.2. Nucleosome occupancy and positioning. A nucleosome in a pool of cells can be
characterized by the relative number of cells that contain it (occupancy) and the variability between
cells in the sequence position (positioning). Adapted from [13].
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1.2 Genome-wide nucleosome organization

Nucleosome positions along genomes in vivo have been determined using several
experimental protocols, such as FAIRE (Formaldehyde-Assisted Isolation of
Regulatory Elements) [14], ATAC-seq (Assay for Transposase-Accessible Chromatin
using sequencing) [15] and MNase-seq (Micrococcal Nuclease digestion followed by
high throughput sequencing) [16]. The latter is the most widely used technique and
provides detailed information on nucleosomal architecture. It is based on cross-
linking nucleosomal DNA and histones using formaldehyde prior to treatment with
MNase, which cleaves the linker fragments. These experiments contain information
from a population of cells, therefore nucleosome profiles can be noisy [17] and are
typically characterized by two important properties: occupancy and positioning
(Figure 1.2). The first is related to the percentage of cells in an experiment that
contains a given nucleosome, the latter denotes the variability in its genomic position
among all the cells. A nucleosome is called well-positioned (W) when it is present in

a large percentage of the cells, and the fragments from different cells present low
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variability with respect to the genomic position. When a nucleosome has low

coverage and/or large positioning variability, it is called fuzzy (F) [17].

Nucleosome organization along the linear DNA sequence is not random and it has
been related to different cellular processes such as transcription and replication [13].
Moreover, it is highly dynamic in space and time, and influenced by several factors
such as: (i) the local context determined by sequence-dependent properties (cis-
factors), (ii) protein complexes that interact with the DNA and can compete with
nucleosomes ( frans-factors), such as transcription factors [18], replication machinery
[13] or ATP-dependent remodelers that can slide or evict nucleosomes (partially or
totally) [19], and (iii) the effect of neighboring nucleosomes that impose steric
constrains for nucleosome positioning [20]. A summary of these factors is presented

in the remaining of this section.

1.2.1 Sequence determinants of nucleosome positioning

As explained above, the B-DNA conformation is highly distorted as it is wrapped
around the histone core. Since DNA sequences are characterized by different
physical properties depending on the bp composition, it is expected that some
sequences are more favorable to form nucleosomes [21], [22], [23]. Efforts to
determine the sequence contribution to position nucleosomes have been performed

in vivo and in vitro [20], [19], [24].

High resolution nucleosome maps in budding yeast have revealed that nucleosome
formation is favored in GC-rich sequences whereas poly(dA:dT) sequences tend to
be nucleosome depleted [20]. Alignment of thousands of well positioned
nucleosomes showed a preferential periodic pattern (Figure 1.3) of AA, TT, TA and
AT steps every DNA turn (10 bp) offset by 5 bp of another periodic pattern of G/C
dinucleotides [13]. This is related with the thermodynamically favoring of AA, TT
and TA to expand the DNA major groove and CG to contract it [22], [23].
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Figure 1.3. Preferential periodic positioning of A/T and C/G di-nucleotides relative to the nucleosome
dyad. Nucleosome dyad tends to be enriched in A/T di-nucleotides. A 10 bp periodic pattern of A/T di-
nucleotides is preferentially found, offset 5 bp by C/G di-nucleotides. Adapted from [13].

The observation of this preferential sequence positioning pattern for nucleosomes led
to a large number of models that predict nucleosome positioning from sequence
composition [24]. Some of these models (reviewed in [20]) compute the elastic
energies associated with DNA bending characteristic to each genomic sequence,
others use the periodicity of favorable or unfavorable dinucleotides or the frequency
of different k-mers in nucleosomal sequences, coupled with machine learning (ML)
algorithms to predict nucleosome positions genome-wide. In vifro predictions are
more accurate, since the effect of interacting proteins or chromatin remodelers is
removed [22]. However, the predictive ability of classical sequence-based models is
moderate in vivo as the trans-acting factors are also important for nucleosome

positioning [25].

1.2.2 Transcription regulation influences nucleosome positioning

Genome-wide nucleosome positioning studies have revealed the presence of a
nucleosome free region (NFR) around promoters [13], [26], surrounded by two
strongly positioned nucleosomes referred to as -1 and +1 (the nucleosomes
immediately upstream or downstream the transcription starting site, TSS,
respectively). Genes can be characterized by these NFRs surrounding nucleosomes,
taking into account their positioning (F or W) and the distance between their dyads

(forming open or close conformations) [17].

Promoters of active genes tend to be associated with open NFRs (Figure 1.4), where

transcription factors or RNA polymerases can be bound [27]-[29]. On the contrary,
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genes with low transcription levels tend to present narrower linkers where
transcription factor (TF) binding site might be occluded by the nucleosomes [30].
However, this tendency is not present in all genes, and in fact some TFs can bind
nucleosomal DNA either at the nucleosome exit or dyad, at motifs formed by the two
parallel DNA chains that surround the histones, or at 10 bp periodic motifs favored
by the conformation of the DNA in the nucleosome [18], [31]. Moreover, nucleosome-
bound TFs can have opposite roles in gene activation (TF binding leads to
nucleosome dissociation) or repression (nucleosome stability is increased upon TF

binding, for instance in T-box TFs) [18], [32].

200 most transcribed genes
seseseeeees Al other genes

2D & 2 @ 9D &5

@4 3

N
o

no

Relative dyad density
-~ &

o
o

0 - :
-1000 -500 0 500 1000
Position relative to +1 nucleosome dyad (bp)

Figure 1.4. Nucleosome free regions around TSS of genes according to transcription levels. Highly
transcribed genes present wider NFRs. Adapted from [30].

The nucleosome architecture around TSS could be both cause or consequence of the
transcriptional activity in a given cell condition. During transcription, RNA
polymerase II (RNA pol II) passage seems to require partial disruption of the DNA-
histone contacts within promoters and coding regions but rapid reestablishment of
the chromatin organization occurs after polymerase passage [13]. In particular, loss
of -1 nucleosome due to RNA pol II binding has been reported as well as shortening
of the NFR due to increased occupancy at nucleosome -1 under polymerase activity
loss [33]. At +1 nucleosome, histone variant H2A.Z might facilitate the passage of
RNA polymerase [34]. Along gene bodies, transcriptionally inhibited cells exhibit

low nucleosome positioning [35]. Recent cryoEM studies [36], [37] have determined
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the structure of RNA pol Il passage along nucleosomal DNA, showing how
transcription elongation factors can accommodate to the nucleosome core, and how
the DNA is peeled from the nucleosome core. Although these studies are
preliminary, they set the path for further investigation on transcriptional elongation

along chromatin.

Further evidence about the relationship between transcription and nucleosome
positioning was presented in studies showing how nucleosome shifts or evictions
might appear related to gene activation. Moreover, binding of pre-initiation complex
in order to activate transcription might require a specific nucleosome position around
the TSS, possibly to allow accessibility to the TF binding site [35]. For instance, under
heat-shock, Saccharomyces cerevisiae ribosomal protein promoters are
downregulated, accompanied with an eviction of DNA binding factors and an
upstream shift of the +1 nucleosome [38]. Shifts and evictions of nucleosomes around
gene promoters, related to transcriptional activation, have also been reported in

human cells [16], [29].

The strong positioning of the +1 nucleosome has led to development of models that
hypothesize the presence of barriers at promoters imposing a periodic organization
of the downstream nucleosomes [13]. Several models [24] have proposed the
prediction of nucleosome profiles using an emitting signal from these barriers and
positioning nucleosomes at an average distance between nucleosomes, known as
nucleosome repeat length (NRL), which varies between cell types and chromatin
states [16], [29], [39], [40]. Moreover, the periodicity in nucleosome spacing varies
along the chromosomes [41], but there is no consensus regarding the correlation
between nucleosome periodicity and transcription level of the corresponding genes.
From MNase-seq studies, including nucleosomal fragments from a population of
cells, contradictory results have been found, since periodically positioned
nucleosomes have been found both to promote and inhibit transcription initiation
[13]. On the contrary, studies analyzing single-cell nucleosome profiles found that
silent genes display periodic nucleosome arrays (although with large variation of the
exact genomic positioning between cells) while nucleosomes in actively transcribed

genes are less periodic, but their position is more conserved among the different cells.
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These results were found using single cell MNase-seq [42] and Array-seq [43], a
technique sequencing di-, tri-, tetra-nucleosomes to extract nucleosome spacing in
individual DNA molecules. Hence, the study of nucleosome periodicity should
consider possible artefacts caused by cancelling effects between the different cells in

population-based MNase-seq data.

The effect of the transcription termination site, TTS, as an emitting signal for
nucleosome positioning is less clear. There is evidence supporting the existence of a
barrier for nucleosome positioning from the 3’ gene end in 5. cerevisiae [44] but it
can be influenced by the proximity between its TTS and the TSS from downstream
genes [45]. However, in human cells, where intergenic regions are wider, presence of
poly(A) sequences at 3’ gene ends suggests that the nucleosome positioning barriers

at TTS are not an artefact of neighboring genes [46].

1.2.3 Nucleosome architecture and DNA replication

Replication is initiated at specific locations of eukaryotic genomes, where the origins
recognition complex (ORC) binds to some consensus sequences and recruits factors
required for DNA replication [13]. Replication origins have different firing times:
those activated shortly after entrance to S-phase called “early” origins and those
active at the end of S-phase called “late” origins [47]. In S. cerevisiae, replication
origins, also known as autonomously replicating sequences (ARS) have been broadly
identified [48]. Budding yeast ARS consensus sequences (ACS) display two different
nucleosome architectures depending on their activity. Active ACS coincide with long
NFRs surrounded by strongly positioned nucleosomes, that are enriched in histone
variant H2A.Z [13]. On the other hand, functionally inactive ACS are partially
covered by nucleosomes [49]. Replication origins in mammalian cells have also been
found to coincide with NFRs although a combination of several factors determines

the final origin profile in different cell types [50].

As replication progresses, nucleosome structure is perturbed, since the replication
complexes need access to single stranded template DNA [47]. Rapid restoration of

chromatin organization must take place now in two DNA molecules, which implies
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two octamers of histones are required per each original nucleosome. Moreover,
histone variants and modifications must be faithfully preserved. Three models of
histone H3-H4 inheritance have been proposed [13]: (i) conservative, where one of
the daughter DNA duplexes remains bound to the original histones and the other is
a assembled with a new set of histones, (ii) semi-conservative, where each daughter
keeps half of the original histone content, and (iii) dispersive, which is a mix of the

previous two, depending on the histone variant composition.

1.2.4 ATP-dependent chromatin remodelers

We have seen that transcription and replication might require nucleosome
displacements or disassemble. In order to achieve this, ATP-dependent chromatin
remodeling complexes use the energy from ATP hydrolysis to reposition
nucleosomes [19]. Transcription, DNA replication and DNA repair can also require
histone turnover, mediated by chromatin remodelers. Although turnover rate is
higher in active promoters, enhancers and origins of replication, opposing evidence
shows that nucleosome at highly transcribed regions are maintained, suggesting that
nucleosome turnover upon gene activation could be only partial [13]. Moreover,
there is evidence that binding of remodelers to promoters contributes to define a

strong NFR and phased arrays of nucleosomes [35], [51].

Different types of ATP-dependent chromatin remodelers have been described,
depending on the catalytic subunit of the remodeling enzymes. A summary of their

main roles [19], [52] is presented in the following:

e SWI/SNF is highly conserved in eukaryotic cells, implicated in regulation of

stress response.

e RSC is highly abundant and required for cell viability. It can produce

nucleosome shifts at promoters producing wide NFRs in active genes.

e CHDisinvolved in DNA replication and repair. It participates in the regular

spacing of nucleosomes.
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e ISWI is a highly conserved complex important in transcription and DNA
replication. Repositions nucleosomes similarly to SWI/SNF and can also

affect nucleosome spacing.

e INOS80 is involved in transcription, DNA repair and replication. Many
eukaryotes share a conserved core of subunits from this complex, but other

subunits have largely diverged through evolution.

1.2.5 Evidence of subnucleosomal structures

Besides from the canonical histone octamer, the existence of subnucleosomal
structures has been reported. For instance, centromeric nucleosomes in Drosophila
melanogaster were reported to contain only one copy of each histone protein
centromeric H3 (cenH3), H4, H2A, H2B forming an “hemisome” structure [53], while
S. cerevisiae centromeric nucleosomes were found to be hexamers formed by Cse4

(instead of H3), H4 and Smc3 (in place of H2A and H2B), named hexasome [54].

Hexasomes at +1 nucleosomes in S. cerevisiae with an unbalanced composition of
H3-H4 histones were reported, which coincide with regions of high histone turnover
[55]. Moreover, as explained before, RNA polymerase passage can induce partial
unwrapping of the nucleosomal DNA leading to opening or dissociation of H2A-
H2B dimers, and therefore to nucleosomes with lower number of histones.
Additionally, evidence for the existence of half-nucleosomes linking DNA replication

with H3-H4 tetramers has been reported [13].
1.3 Epigenetics dynamically modulates chromatin structure

1.3.1 Histone post-translational modifications

Histone tails largely contribute to dynamics of the chromatin structure related to
gene transcriptional regulation [9]. Tails interact with the DNA influencing
nucleosome stability and recruitment of regulatory proteins [56] and they also

interact between nucleosomes, modulating higher order structures[57]. Histone tails
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can be subject to several post-translational modifications such as methylation,
acetylation, phosphorylation and ubiquitination. More condensed groups of
nucleosomes are observed in heterochromatic regions generally associated with
H3K27me3 and H3K9me3/2 and less compact and more accessible in euchromatin,
marked by H3K4 methylation lysine acetylation and preferentially located in the

interior part of the nucleus [58].

Histone acetylation has generally been related to higher gene expression by
decreasing chromatin compaction [57]. Histone acetyltransferases add acetyl groups
to lysine residues, neutralizing the positive charge of histone tails and therefore
reducing its affinity to the negatively charged DNA. An opposite role is attributed
to histone deacetylases which, by removing acetyl groups from histone lysine

residues, make chromatin more compact and therefore have a repressive role [59].

Histone methylation has a dual role in transcription activation or repression,
depending on the target residue and the number of methyl groups added [56].
Although methylation of lysines and arginines does not alter the electrostatics of
DNA-histone interactions, as it occurs with acetylation, its effect on activation or
repression is related to different regulatory proteins that are recruited depending on

the precise modification [9].

The effect of histone phosphorylation and ubiquitination is coupled to other histone
modifications, defining an interplay between them where the presence of one
modified residue can induce the epigenetic modification of another [9]. Histone
phosphorylation is related to several processes such as DNA repair, chromatin
compaction in mitosis and regulation of gene expression [56]. Ubiquitination is also
related to different activities, such as DNA damage signaling and transcriptional

activation (both activation or repression, depending on the target residue) [60].

1.3.2 DNA methylation

Another dynamic epigenetic modification that is correlated with gene silencing and
chromatin conformation in bacteria, plants and mammalian cells is DNA

methylation. This modification it is not present in all eukaryotes; it is absent in several
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model organisms such as S. pombe, S. cerevisiae and C. elegans, and barely
detectable in D. melanogaster [61]. DNA methylation occurs preferentially at
cytosines, mainly at CpG steps, that are covalently modified. CpG steps are under-
represented in the genome of complex organisms but enriched in approximately 60%
of human promoters (mainly at CpG islands), suggesting a role for CpG methylation
in gene regulation that might be coupled to the unusual conformational properties

of CpG steps [62].

Methylation is established by DNA methyltransferases (DNMTs) whereas TET
proteins are responsible for removal of the methyl groups. DNMT3a and DNMT3b
are responsible for de-novo CpG methylation in both strands while DNMT1
participates in maintenance of CpG methylation after DNA replication [63].
Additionally, several methyl CpG binding domain (MDB) proteins are readers of
methylated DNA and can modulate gene expression through changes in DNA
accessibility and recruitment of different protein complexes [64]-[66] in higher

eukaryotes.

In early stages of mammalian development, DNA methylation patterns are
established, with most CpGs methylated except those located at CpG islands [63].
Upon differentiation, CpG islands in promoters of housekeeping genes remain
unmethylated, but genes that are inactivated at a particular developmental stage get
de-novo methylation [67] whereas other promoters and regulatory regions are
demethylated [63]. Research has suggested that DNA methylation does not lead to
gene repression, however it maintains the gene at inactive state [68] whereas

demethylation can re-activate its expression [69].

Alterations in DNMTs have been linked to important effects in gene regulation
associated to diseases and cell viability. For instance, mutations in DNMT3b are
implicated in Immunodeficiency, Centromere instability and Facial anomalies (ICF)
syndrome [70], while those in DNMT1 cause autosomal dominant cerebellar ataxia,
deafness and narcolepsy [71] and DNMT3a mutations are present in acute myeloid
leukemia patients [72]. Furthermore, changes in DNA methylation patterns have

been associated with many different types of cancer in humans [73], [74], related to
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activation of oncogenes or repression of genes involved in DNA damage response

[75], [76].

It is still unclear whether the effect of DNA methylation on gene expression is direct,
or it is correlated with chromatin structure [77]. Theoretical analysis of the physical
properties of DNA revealed that while CpG steps are very flexible [62], mCpG are
stiffer and harder to bend, and have lower ability to circularize and to form
nucleosomes [23], [78], [79]. However, in vivo studies on mammals and plants are
contradictory, with some suggesting that methylation occurs preferentially on
nucleosomal DNA [80], [81] and others concluding the opposite [82], [83]. NOMe-seq
experiments have shown that DNA methylation and nucleosome occupancy were
strongly anti-correlated surrounding CCCTC-binding factor (CTCF) sites, but at

promoters the correlation seemed to be less clear [84].

1.4 Chromatin structure at higher level

1.4.1 Nucleosome arrays form a second layer of chromatin organization

Nucleosomes are separated by fragments of DNA called “linkers”, between 10 and
100 bp long depending on the cell type and transcriptional state of the region [85].
Nucleosomes are connected by linkers in a beads-on-a-string array as detected
initially by electron microscopy [86], [87]. Different experimental approaches have
tried to elucidate their 3D folding. Early electron microscopy studies suggested that
nucleosomes fold into a regular 30-nanometer fibers, but different folding motifs
were identified, probably as a consequence of differences in experimental conditions
[88]: one-start solenoid model [89], two-start helical ribbon model [90], and two-start
crossed-linker model with left-handed double-helical symmetry [91]. Posteriorly,
analysis of in vitroreconstituted nucleosomes also derived different folding patterns
such as the zig-zag model [92]. However, in vivo studies questioned the existence of
the regular 30 nm fiber and instead found evidence for random and irregular
nucleosome arrangement [93], [94]. In recent years, with the advances in super-

resolution microscopy, it has been observed that the chromatin fiber is not a regular
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structure, but rather it is formed by groups with varying sizes that can be cell type

specific [95], [96].

As pointed out in a recent review [88], the lack of consensus on a common folding
motif for nucleosomes among different experiments can be due to differences in
experimental conditions (for instance chromatin folding is dependent on salt
concentration), but also to intrinsic variability of DNA sequences, epigenetic
modifications, histone variants, or the effect of linker histones (H1). Chromatin
conformation capture (3C) techniques (see Methods for detailed explanation) have
provided very valuable information on the arrangement of the nucleosome fiber in
the nucleus. Particularly, Hi-C experiments count the frequency of interaction
between pairs of loci genome-wide, and a variant of the 3C technology named Micro-
C [97], [98] (see Methods), allows the study of contact frequencies at the nucleosome
resolution. These studies have been performed in S cerevisiae and S pombe,
revealing the presence of self-associating domains that span 1 to 5 genes, usually
separated by promoters of highly transcribed genes. They also found evidence for
structural tri or tetra-nucleosome motifs. Another study using ionizing radiation-
induced spatially correlated cleavage of DNA with sequencing (RICC-seq) found
evidence for zig-zag nucleosome arrays in heterochromatic regions and solenoid
structures in open chromatin [99]. Recently, Hi-C with nucleosome orientation (Hi-
CO) [58], a method combining Hi-C with simulated annealing molecular dynamics,
proposed alpha-tetrahedron and beta-rhombus tetra-nucleosome motifs, occurring

preferentially at gene bodies and promoter regions, respectively.

1.4.2 Higher level chromatin organization

Hi-C [100], (see Methods) allows the interrogation of chromatin structure genome-
wide at kilo base scale, revealing that chromosomes fold hierarchically in the nuclear
space during interphase [101], [102], as illustrated in Figure 1.5. At the whole nucleus
level, Hi-C experiments showed the segregation into chromosome territories, since
contact frequencies between regions in the same chromosome (cis-contacts) are larger
than between regions in different chromosomes (frans-contacts), as had been

previously observed by FISH experiments in interphase nuclei [103]. At the mega
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base scale, contact frequencies between loci have revealed the separation of A/B
compartments, corresponding to actively transcribed euchromatin and repressed
heterochromatin, respectively [100], the latter being preferentially attached to the

nuclear lamina [104].
Wcmomosome territories

partments  Superdomains TADs/CIDs Loops Loop extrusion/
boundaries

Figure 1.5. Hierarchical chromatin organization. Adapted from [105]

At finer scale, chromosomes are organized into topologically associated domains
(TADs), regions of the genome with high self-interaction, insulated from regions of
neighboring domains [106]. TADs might reflect the presence of gene loops that
enforce promoter directionality [107] or loops formed to bring in proximity
regulatory elements which can be separated by a large genomic distance, such as
enhancers and their target sites, or co-regulated genes, [105], [108]. Loops have also
been observed in mammalian genomes using ligation-free methods such as Genome
Architecture Mapping (GAM) [109], that also reveals the abundance of three-way
contacts between highly transcribed regions or super-enhancer loci. In smaller
genomes such as S. cerevisiae, although Hi-C experiments initially failed to detect
the presence of TADs [110], Micro-C allowed the detection of chromosomal

interaction domains (CIDs), containing similar number of genes as a TAD [97], [98].

The link between chromatin structure and epigenetic states has also been studied.
TADs tend to be formed by regions displaying similar accessibility and usually
coincide with segmentation of chromatin by epigenetic profiles [108], [111].
Nonetheless, the effect of epigenetic marks, such as DNA methylation, on chromatin

structure is still unclear. A/B compartments in many cell types can be



16 Understanding the link between chromatin structure, chromosome conformation and gene regulation

computationally predicted by DNA methylation profiles [112]. However, a recent
study showed that, although the establishment of A/B compartments defines DNA
methylation patterns in cardiac myocytes, alteration of DNA methylation signatures
does not have an impact on chromatin compartmentalization or TAD formation

[113].

1.4.3 TAD formation

TAD borders in mammalian cells strongly colocalize with CTCF target sites [114]. A
proposed mechanism for TAD formation in interphase involves the role of loop
extrusion factors (LEFs), for instance cohesin, that are loaded into DNA and extrude
it through their ring-shaped structure [115], [116]. The loop formation continues until
the LEF finds either another LEF or a boundary factor (BF), for instance an insulator
CTCF in convergent orientation at the loop boundaries. Loops are not stable unities
but rather as LEFs dissociate from chromatin the contacts between TAD boundaries

can be lost and hence not detected in all cells of a population Hi-C experiment.

The loop extrusion model is supported by computer models that have shown that in
metazoans, interphase domain formation requires cohesin-dependent looping [115],
[116]. Moreover, reorganization in the TAD structure is observed upon depletion of
cohesin or its loading factors [3], [117]. Either deleting CTCF binding motif or
reversing its orientation can increase contacts between the two surrounding TADs,

hence globally loosing insulation between TADs [106], [118].

1.4.4 Role of TADs in transcriptional regulation

As described above, TAD boundaries are enriched in bound CTCF in mammalians,
but in organisms such as D. melanogaster, the role of CTCF in TAD insulation is
lower, and some organisms, for instance 5. cerevisiae, do not have this protein (or a
homolog). In those organisms, TAD or CID boundaries have been associated to
promoters of actively transcribed genes and are typically bound by RSC remodeling

complex [97], [119]. Moreover, mammalian TADs not only are enriched in CTCF
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sites, but also coincide with promoters of housekeeping genes and open-chromatin

marks [111].

Specific defects in genome folding have been related to failures in genome regulation
leading to diseases and cancer [118], [120]. TADs seem to favor enhancer promoter
interactions or promote co-localization of functionally related genes and hence are
related to transcription activation [4], [121]. Additionally, chromatin compaction at
gene level, obtained from Micro-C contact frequencies [97], is anticorrelated with
transcriptional activity. Altogether, these results show wide evidence suggesting that
TADs have an active role in transcription regulation. The converse relation, the effect
of transcription on TAD formation, has also been studied. Although transcription
alteration in D. melanogaster has shown effects in domain segregation, activation of
a single gene does not create a TAD boundary in mammalian cells, suggesting that

in the latter case the effect of CTCF might be stronger[122].

1.5 Chromatin organization in yeast

The first Hi-C studies in budding yeast revealed several features of its chromatin
organization in asynchronous populations of cells, some of them confirming
observations from microscopy experiments. Like other eukaryotes, contact
frequencies are lower between chromosomes than within chromosomes and
exponentially decrease with genomic distance [110]. On the other hand, longer
chromosomes tend to have less interactions with other chromosomes. However, S.
cerevisiae presents differences in chromatin folding with respect to higher

eukaryotes that are enumerated below (Figure 1.6).

First, centromeres are clustered at the spindle pole body (SPB) through kinetochore
microtubule attachment and have low interaction frequency with regions further in
the same chromosome, presenting a Rabl-like organization, as observed by imaging

and 3C studies [98], [110], [124].

Second, telomeres tend to localize towards the nuclear membrane and interact more

frequently than expected considering their genomic separation. Several clusters of
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telomers are observed within each single cell, preferentially formed by arms of

similar length [125], [126].

Figure 1.6. Saccharomyces cerevisiae chromatin structure in interphase. Centromeres are clustered
attached to the SPB, telomeres preferentially located at nuclear periphery and rDNA
segregated from the rest of chromatin at the nucleolus, opposite the centromere cluster.
Adapted from Wang et al. 2015 [123].

Third, ribosomal DNA (rDNA) confined at the nucleolus is located in opposite side
of the centromere cluster in interphase [110]. This region splits chrXII into two lowly
interacting domains. Nucleolus volume in exponentially growing cells is

approximately the third of the total nucleus volume [123]

These features are globally preserved in the two matting types in yeast: a and «,
which are determined by the MAT locus on chromosome III. The only difference in
chromosome folding between the two matting types occurs precisely in chrlll, where
MAT locus is in contact with the heterochromatic locus HML in MATa cells but not
in MATa cells. Moreover, a single loci, the recombination enhancer, is determinant

in the reorganization of the whole chromosome [127].

1.5.1 Cell cycle chromatin dynamics

Along the cell cycle, the global patterns of budding yeast chromatin are preserved to
some extent, although the intensity of centromere clustering, intra/inter contact
ratio, rDNA compaction and nucleus sphericity suffer some variations. Hi-C

experiments in cells arrested at different points along the cell cycle revealed



Chapter 1. Introduction 19

progressive increase in chromosome compaction between G1 and M [5], [128].
Structural maintenance of chromosomes (SMC) complexes are essential in mitotic
chromosome condensation as well as chromatin structure in interphase [129]. By
disruption of cohesin activity it was shown, both experimentally and through
computer models, that the increased compaction achieved in M is dependent on

cohesin but not condensin [128].

S phase M phase
cohesmn segregauon

+ nocodazole

QO centromere Chromosome individualization:
® telomere @ cohesin # intra (SC) contacts
*= microtubules @ condensin # intra (C) contacts

Figure 1.7. Chromatin organization throughout the cell cycle in Saccharomyces cerevisiae. Increase
of intra-contacts at S phase mediated by cohesin leads to chromosome individualization. During M
phase chromosomes are more elongated due to spindle elongation and condensin loading. Bottom:

chromatin structure in cdc20- and cdc15-arrested S. cerevisiae cells, which correspond to metaphase

and anaphase, respectively. Chromosome Xl|I is highlighted in orange (right arm) and blue (left arm).
The right arm folds into a loop in anaphase (pink arrowhead). Adapted from [5].

Progressing further into the cell cycle, in the transition from metaphase to anaphase,
a third state of chromatin organization is observed. The structure resembles a
polymer brush (Figure 1.7), with increased short-range contact frequency and
decrease in long-range contacts. In anaphase, a strong loop between the upstream

flanking region of rDNA and centromere is formed, and rDNA presents a stretched
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conformation. Condensin participates in the formation of this loop, as well as in the

increase in centromere contacts (also observed in other stages of the cell cycle, [128]).

1.5.2 Chromatin organization under quiescence

Under nutrient starvation, cells exit mitosis and enter quiescent state, referred to the
G zero phase (G0), which produces changes in chromatin organization. Glucose
starvation produces chromatin condensation, as observed by the reduction of nuclear
volume in fluorescence microscopy [130] and the changes in chromatin contacts in
Hi-C (increase in intra-chromosomal long-range contacts as well as contacts between
the centromeric region and the rest of the chromosome, and decrease in inter-

centromeric contacts, [131]).

rDNA acts as a barrier separating chrXII into two domains with very low interaction
frequencies, but since it is more compact in quiescence due to ribosome biogenesis

[132], the changes in long range contacts are stronger.

Additionally, telomeres, which form groups attached to the nuclear envelope in
exponentially growing cells, form a single cluster in quiescent cells that is located in

the center of the nucleus [131], [133].

1.5.3 Replication origins

Super-resolution microscopy revealed that replication origins are grouped into
discrete points inside the cell nucleus, with high variability between different cells,
forming foci of ARS that start replication simultaneously [134]. Mapping of ARS in
S. cerevisiaerevealed that their replication time is highly correlated with the distance
to centromeres, with early activated ARS preferentially located close to centromeres
and depleted towards the telomeres [5]. Since centromeres are clustered at the SPB,
this might cause the clustering of early replication origins. Hence, it is not clear if the
hypothesis of clustering of early ARS is mechanistic or it is only imposed by the
clustering of centromeres in the Rabl-like organization, since those ARS tend to be
close to the centromeres. Similarly, some ARS are more clustered during quiescence

(far from the centromeric regions) and other are more clustered in exponential
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growth (those close to the centromeric regions) but this might also be a consequence

of centromere dynamics in quiescent cells.

154 tRNA genes

Transfer RNA (tRNA) genes are regulated by RNA Pol III and their transcription is
initiated by TFIIIC protein complex [135]. They are usually bound by SMC proteins,
chromatin remodelers and other architectural proteins [136]-[138], showing their
importance on chromatin organization. Fluorescent in situ hybridization (FISH)
studies reported increased contacts between tRNA genes mediated by condensing
activity [139]. On the other hand, initial Hi-C studies at low resolution [110] detected
a cluster of tRNA genes close to the nucleolus. Hi-C analyses at higher resolution
[131] found that groups of tRNA genes are also correlated with the distance to
centromere and so divided into two groups: close and far from centromere cluster.
This separation into two groups does not change in quiescence, although the group
of tRNA genes closer to centromeres tend to have lower interaction frequencies
among them. Recently, it was shown that nucleosome positioning, binding of SMC
complexes and centromere clustering are affected by the deletion of tRNA genes

from an entire chromosome in yeast [140].

1.6 Chromatin modeling

The ability to obtain information about chromatin contacts at the genome-wide scale
from Hi-C experiments boosted the development of several physical models aiming
to explain its 3D conformation. In general, contact frequencies are assumed to be a
proxy for structural proximity. These models arise from the observation that contact
frequencies decay at similar rates as observed in polymer physics [141]. They can be
divided into two main groups. The first group of ‘bottom-up’ approaches model a
hypothesized mechanism of chromatin folding, trying to reproduce the contact
probabilities observed from the 3C models. The second group, ‘top-down” models
use the information from the contact frequencies applied as restraints to find possible
configurations of the chromatin in 3D, searching to derive possible mechanisms of

chromatin folding.
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1.6.1 Bottom-up chromatin models

From the observation that TADs are highly related to chromatin modifications, and
the clear characterization of chromatin domains in D. melanogaster (active,
Polycomb-repressed, HP1 repressed or black chromatin), Jost et al. [142] proposed to
model chromatin as beads on a string co-polymer (see Figure 1.8) imposing larger
attraction between beads of the same epigenetic type and repulsion between beads
of different type. It was shown that the model could generate chromatin structures
that are consistent with Hi-C contact maps in regions of approximately 1.3 Mbp.
However, all chromatin types have the same parameters and the model should be
refined to account for the different density and compaction of each epigenetic type,

as observed from super resolution microscopy [95].

. . . specific interactions:

... epigenomics

Figure 1.8. Chromatin polymer model as beads on a string array with monomers of 10Kb from
epigenomic domains. The color of each bead represents its epigenomic state and is used to define the
specific (between beads of the same color) and non-specific (beads of different color) interactions in

the model. Taken from [142]

Another approach is the Strings and Binders Switch (SBS) polymer model [143]
which introduces the effect of proteins that might act as looping factors, attracting
close in space regions containing its recognition motif (Figure 1.9). Here, the

chromatin is also represented as self-avoiding beads on a string interacting with
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binders following a Lennard-Jones attractive potential with a given energy of
interaction and concentration of binders. The model can reach a coiled open state at
low energy of interaction and concentration, or more closed globular states that can
be disordered or organized depending on the magnitude of the energies of

interaction and the concentration of binders.

B
Binding sites
- ™
o
Open Closed Closed
Binders Disordered Ordered

Figure 1.9. Representation of the SBS model of chromatin. (A) Chromatin is organized by binding
factors such as transcription factors. (B) Three classes of stable conformations can be obtained: (left)
an open Self-Avoiding Walk chain randomly folded, (center) a closed disordered globule state and
(right) a closed ordered globule state produced by higher interaction energies or concentrations.
Taken from [144]

Other bottom-up approaches include the loop extrusion model [115], [116] that takes
into account the effect of cohesin and CTCF to extrude chromatin through the cohesin
ring and stop when CTCF bound to DNA is encountered in convergent orientation
and models that introduce the effect of supercoiling in 3D structure, for instance by

torsional stress produced by RNA polymerases [145].

1.6.2 Top-down chromatin models

Top-down models typically transform the binned contact matrices from 3C-based
experiments to spatial restraints that are posteriorly applied to obtain structures that
resemble the original contact data to some extent [110], [141]. These models can be
validated with other available experimental data such as distances between target
loci obtained from FISH, measurements of structure volume, compaction marks
obtained from sequencing experiments such as chromatin accessibility or chromatin
modifications or information about LADs. In this section, three types of top-down

models are summarized, as presented by Polles et al. [146]
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The first type of models searches for a consensus structure that represents an average
conformation from the population data. They minimize the deviations between the
distances in the model and those derived from the experimental contact frequencies,
assuming that the larger the contact frequency, the shorter the expected distance
between each pair of loci. Several methods have been proposed to achieve this
minimization, such as scoring function optimization [110], [141], Bayesian likelihood
function maximization [147] or generalized linear models [148]. A disadvantage of
this strategy is that, since 3C-based data is obtained from a population of cells, the
obtained structures are average representations that are not necessarily observed in

single cells.
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Xist TAD
Tsix TAD

Figure 1.10. Example of results from a top-down chromatin model. (A) Experimental (left panel) and

simulated (right panel) contact matrices for a region containing the Tsix and Xist TADs. (B) Sample

conformations from the optimized simulation showing the two TADs in different colors. Adapted from
[153]
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The second group, resampling models, also make a conversion from contact
frequencies from the 3C experiment to spatial restraints but obtain an ensemble of
structures by defining optimizations with multiple minima or thermodynamic
fluctuations. Since the variability in chromatin structure between individual cells is
large, as reported from single cell Hi-C and super-resolution microscopy
experiments [149], some of these models use only a part of the cells from the contact

matrix [150]-[152].

Finally, in population-based deconvolution methods, the 3C-based contacts are
transformed into single structures that only contain a subset of the original contacts
that are conformationally possible obtaining an ensemble of possible configurations

(see an example in Figure 1.10) [153], [154].
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Objectives

The main objective of this thesis is to study the structure and organization of the

DNA fiber at different levels of detail, from local sequence specific properties to

global 3D structure within the nucleus. For this purpose, the following specific

objectives are proposed and grouped in three categories:

1.

DNA sequence dependent properties

To characterize the genome wide distribution and function of highly

flexible DNA sequences.

To assess mechanisms for protein-DNA recognitions defining statistical
tests for the detection of significant differences in the physical DNA
descriptors between experimental protein-bound and naked DNA

structure from molecular dynamics simulations.

To predict nucleosome organization profiles using machine learning
methods based on the deformation energy of the DNA, transcription

factor affinity and periodicity of the nucleosome signal.

Tools to study nucleosome positioning in vivo

To develop an algorithm for comparing nucleosome positioning profiles

between two cell populations.

To integrate different tools for the analysis of nucleosome organization

into a pipeline available through different distribution models (web-
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servers, containerized distributions) facilitating the analysis of results in
the context of other genomic information.

3. Effect of DNA methylation on chromatin structure

To analyze the effect of DNA methylation on nucleosome positioning in
vivo, applying the proposed algorithm for comparison of nucleosome

profiles.

To study the chromatin changes at whole-genome 3D structure level
applying statistical methods for the detection of differential interacting

regions in Hi-C data.

To develop a coarse-grained 3D model of the chromatin based on restraints
obtained from Hi-C contact matrices for further analysis of the structural

changes produced by the DNA methylation.



Chapter 2 . Methods

This chapter presents a summary of the main methods used in this thesis for the
analysis of the physical properties of the DNA, chromatin structure and gene
expression. Further details about the usage of each method and experimental details

can be found in the Results section, and in the corresponding papers.

2.1 DNA physical properties

The DNA is an oligomer of nucleotides, forming a double helix where the base pairs
are joined by hydrogen bonds. Every base pair step (two consecutive base pairs along
the DNA sequence) can be described in the helical space by three translational (shift
(), slide (1), rise (s)) and three rotational (tilt (t), roll (r), twist (w)) movements (see
Figure 2.1). These physical and geometrical descriptors were derived from molecular
dynamics (MD) simulations and were used to study the sequence-dependent DNA
equilibrium conformation and deformability at the base pair step level, and to

evaluate protein-DNA complex formation energy.

The equilibrium values and stiffness constants for each individual base pair step
were taken from MD simulations that cover all the unique base pair steps in all the
possible tetranucleotide environments from microsecond-long parmbscl simulations
[1]. For this, the DNA geometries extracted from the MD simulations were projected
into a helical reference system. By collecting the values of these helical parameters, a

covariance matrix (C) for each unique base pair step was obtained as follows:
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where x;, and xj;, are the base pair step parameter values at frame k, i and j are one
of the six movements (shift, slide, rise, tilt, roll, twist), u; and u; are their

corresponding means, and n is the total number of frames analyzed.
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Figure 2.1. Base pair step helical parameters representation. Adapted from [2]

The inverse of this covariance matrix was used to obtain the elastic force constants
that represent the energetic cost of the deformation of the DNA molecule along the

helical coordinates (eq. 2.2).
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where kg is the Boltzmann constant and T is the absolute temperature.

The intrinsic properties of naked DNA that favor protein binding, for instance
transcription factor binding at promoters or nucleosomal DNA binding around
histones, can be characterized using the stiffness matrix. The energy associated to the
deformation of a given base pair step j was computed using a harmonic

approximation, given by
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16 6
E = -Z k. AX) X (23)
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where k., are the stiffness constants associated with the displacements with respect

to the equilibrium values (eq. 2.2) and AX 7 and Ath are the differences between the
equilibrium values and the protein-bound DNA conformation for the 6 base pair step

helical parameters [3], [4].

Finally, the deformation energy associated to the DNA transition from the naked
conformation to the protein-bound conformation was calculated in the harmonic
regime using (eq. 2.4):

B

m

Def.Energy = (2.4)

where jstands for each of the m base pair steps of the DNA stretches (m = 147 in the
case of the deformation energy to wrap around the histones) and E; is the elastic

energy required at each base pair step (eq. 2.3).

2.2 Transcription factor binding

Transcription factors (TFs) are proteins that can recognize and bind to specific
sequence motifs to control the expression of genes. As explained above, the protein
binding propensities to given DNA sequences can be theoretically studied from the
deformation energy associated to the binding process. Additionally, transcription
factor binding site (TFBS) affinity can be studied from experiments, such as ChIP-seq
(see Section 2.6 for a description of the technique), identifying the position of specific
proteins along the genome. This type of analyses have been extensively studied for
many TFs in different organisms, and summarized in several databases such as
TRANSFAC [5] or JASPAR [6]. We used the binding affinities from JASPAR, given
as matrices for each TF containing the frequency of every base (A, C, T or G) in every
position of the sequences where the TF is bound. These frequencies were transformed
into position weight matrices (PWM) containing normalized scores (in log-scale) [7].
Then, the binding affinity of a given TF to a DNA sequence was estimated adding

the corresponding nucleotide values in the PWM. Binding site affinities from every
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PWM in JASPAR database were computed for the yeast genome, using
R/Bioconductor Biostrings [8] library with default parameters. Finally, a global score
of TFBS density was computed pooling the affinities from all TFs in the database at

every genome position.

2.3 Nucleosome positioning

The physical properties of DNA can be used to theoretically estimate the propensity
of a genomic sequence to form a nucleosome (see Section 2.1). However, other #rans-
factors are important for the in vivo positioning of nucleosomes such as the effect of
nucleosome remodeler proteins and the local competition with transcription
machinery. Hence, methods to determine nucleosome positions are required to be
able to study differences in chromatin organization between experimental conditions

or cell types.

2.3.1 Studying nucleosome positioning in vivo

The most widely used techniques to experimentally map nucleosome positions
typically treat a group of cells (in the range 10°-10°) with enzymes acting on
nucleosome-free DNA, after cross-linking with formaldehyde (see Figure 2.2).
Micrococcal nuclease (MNase) is used to degrade linker DNA preserving
preferentially the DNA segments wrapped in the nucleosomes [9], [10]. To obtain the
DNA fragments for posterior analysis, the cross-linking is reversed, and the proteins

and RNA are digested. Finally, the segments of DNA are sequenced.

Although MNase can be affected by the enzyme concentration and sequence-
preference biases limiting the detection of the so called “fragile” nucleosomes, it is
the most widely used technique to detect nucleosome positioning for its versatility
and accuracy [11]. Chemical cleavage methods have been proposed for
circumventing the limitations from MNase-seq, but it requires to do genetic
engineering replacing the endogenous histone H4 (or H3 (23)) by a mutated version,

therefore restricting its use [12], [13](24-27). Moreover, it has been shown that the
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MNase sequence bias can be corrected using digested naked DNA as baseline [14],

[15](20, 21), obtaining more pronounced nucleosome coverage peaks.
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Figure 2.2. MNase-seq experimental procedure. Adapted from [14]

Additionally, the level of MNase digestion should be optimized for each sample to

obtain approximately 80% of mono-nucleosomes, using different MNase digestion

times with a small amount of semi-intact cells from every batch preparation. The

percentage of mono-nucleosomal DNA fragments is examined in agarose gels and

the integrity and size distribution of digested fragments are determined using the

microfluidics-based platform Bioanalyzer (Agilent) prior to sample preparations and

sequencing. The samples are prepared for whole genome sequencing, following
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corresponding standard protocols from sequencer manufacturers and the libraries

are paired-end sequenced.

The depth of sequencing required for obtaining good quality nucleosome maps
should be very high [16], which implies a high sequencing cost. Therefore, a
modification of the experimental procedure, Capture-MNase-seq, can be useful to
reduce the cost by focusing on target regions in large genomes. Probes designed to
hybridize to the objective sequences are added to capture and enrich preferentially

the fragments corresponding to the target region prior to sequencing.

2.3.2 Mapping and noise filtering of the MNase signal

The reference genomes corresponding to the samples used along this work were
obtained from UCSC: sacCer3 (Apr. 2011, S288C) for yeast samples and hg19 (Feb.
2009, GRCh37) for human cells. Sequenced reads stored in FASTQ files are mapped
to the corresponding reference genome using Bowtie [17] aligner, allowing up to two
mismatches and an insert length of 500 bp. Reads aligned to multiple regions in the
genome are suppressed. The obtained BAM file contains the positions of the reads
mapped to the genome and their quality of the alignment. BAM files can be
visualized as continuous tracks containing the depth of the coverage at every base
pair across the genome (see Figure 2.3 A and B). Quality control is performed with

htSeqTools R/Bioconductor package to remove PCR over-amplification artifacts [18].

2.3.3 Nucleosome calling with nucleR

Mapped fragments that pass the quality control filters are then processed with
R/Bioconductor package nucleR [19] as follows (steps to run nucleR can be found at

https://github.com/nucleosome-

dynamics/nucleosome dynamics/blob/master/bin/nucleR.R):

i.  Fragments wider than 170 are discarded to keep only those corresponding

to mono-nucleosomes.


https://github.com/nucleosome-dynamics/nucleosome_dynamics/blob/master/bin/nucleR.R
https://github.com/nucleosome-dynamics/nucleosome_dynamics/blob/master/bin/nucleR.R
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ii.

iii.

iv.

Fragments are trimmed to 50bp maintaining the original center to remove
noise from MNase digestion variability among cells and regions in the

nucleosome coverage profile (see Figure 2.3 C).

The nucleosome coverage per base pair is computed genome-wide and

transformed to reads per million mapped.

Noise is filtered through Fast Fourier Transform, keeping 1% or 2% of the
principal components in human and yeast experiments, respectively (see

Figure 2.3 D).

Finally, peak calling is performed using the parameters: peak width 147 bp,
peak detection threshold 35%, maximum overlap 80 bp, dyad length 50 bp.
Nucleosome calls are considered well-positioned (W) when nucleR peak

width score and height score are higher than 0.6 and 0.4, respectively, and as

fuzzy (F) otherwise (see Figure 2.3 E).

Figure 2.3. Nucleosome positioning from MNase-seq data with nucleR. (A) Reads are mapped to the

reference genome. (B) The coverage of nucleosomal reads per base pair is noisy and must be

processed further. (C) Reads are trimmed around their center to remove experimental noise, and the

coverage is re-computed. (D) Signal is smoothed with Fast Fourier Transform. (E) Peaks are

identified from the local maxima and scored according to their height and width. Adapted from [20]

2.4 Chromatin 3D structure

In this section, I describe some methods that have been developed to study 3D

chromatin organization. First, I describe three experimental techniques that capture

interactions between genomic loci at different resolution and scale. Then, I present

the computational processing of the data to remove experimental artifacts, obtain
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quantification of the interactions between pairs of regions and find significant
differential interacting regions among experimental conditions. Finally, I present
some tools that were used in the different projects to visualize the interactions and

put them into the corresponding genomic context.

2.4.1 Chromosome conformation capture

Chromosome Conformation Capture (3C) allows us to quantify the frequency of
interaction between pairs of loci by crosslinking chromatin, DNA fragmentation and
ligation of ends in spatial proximity. Further developments of 3C were proposed to
investigate the 3D conformation of chromatin in a population of cells at larger scale.
Circular Chromosome Conformation Capture (4C) aims to detect all regions that
interact with a single locus of interest [21], [22], Chromosome Conformation Capture
Carbon Copy (5C) detects contacts between fragments located within a chromosomal
domain of size up to several Mbp [23], Hi-C interrogates genome-wide contacts of all
vs. all regions of the genome [24] and finally Capture Hi-C restricts the analysis to
contacts between regions targeted by designed probes [25], [26]. Micro-C is another
3C-based technique to quantify genome-wide contacts, but at the nucleosome level

resolution due to the DNA cleavage with MNase instead of a restriction enzyme [27].
24.1.1 HiC

The Hi-C experimental protocol was originally proposed in [24]. In this technique
(summarized in Figure 2.4), the chromatin is cross-linked with formaldehyde to
obtain a static view of its conformation. Then, it is fragmented with a restriction
enzyme that recognizes a target DNA motif. The selection of the restriction enzyme
will determine the maximum resolution attainable in a given experiment. Four base
pair cutters will cut more frequently producing shorter fragments and larger

resolution than six base pair cutters.

Next, the ends are filled with nucleotides marked with biotin to facilitate posterior
selection of the actual interactions. The fragments in proximity are ligated producing
chimeric molecules formed by the two regions that were previously cross-linked.

Then, the DNA is purified and sheared by sonication producing fragments of size
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appropriate for next generation sequencing. Sonication is not specific and, apart from
the chimeric fragments formed by spatial proximity, it produces fragments
corresponding to only one region in the genome. Those uninformative fragments can
be discarded, since ligation products were previously marked with biotin and can be

pulled down and paired-end sequenced.

Crosslink DNA Cut with Fill ends Ligate Purify and shear DNA; ~ Sequence using

restriction and mark pull down biotin paired-ends
enzyme with biotin Nh(\

AAGCT|AGCT?

TTCGAA [TCGA|TCGAA

= I W/(»
\._ \ \» J =%

Figure 2.4. Overview of the steps to perform a Hi-C experiment. Adapted from [24]
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24.1.2 Capture Hi-C

Capture Hi-C is a variation of the Hi-C protocol to enrich the contacts in specific
genomic regions. A pool of primers is designed to selectively purify a set of regions

and can be used to enrich Hi-C ligation product libraries.
2.4.1.3 Micro-C

Micro-C is another 3C-derived technique aiming to target nucleosome-nucleosome
interactions. For this purpose, DNA is fragmented with MNase instead of using a
restriction enzyme. Linker DNA is then preferentially cleaved, and the obtained
chimeric reads contain sequences corresponding to two nucleosomes that are in

spatial proximity.

2.4.2 Quantification of contact frequencies

Several computational algorithms are available for processing the paired-end
sequences obtained from 3C experiments (reviewed in [28], [29]). In this work we

used TADbit [30] , a python library designed for mapping of the paired reads,
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filtering and quantification of the obtained contacts and further analyses on the

interaction matrices. Below, the steps to process the sequenced reads are explained.
24.2.1 Quality control

The quality control was performed also by TADbit, using an algorithm that is based
on FastQC program [31] and which checks the PHRED score [32] in the input FASTQ
files and the number of “N” positions as a function of the sequence position in the
reads. Additionally, TADbit generates plots for the number of undigested sites,
dangling ends and re-ligated sites as a function of the nucleotide position in the

reads.
2.4.2.2 Mapping

Reads are mapped to the reference genome using GEM mapper [33]. The mapping
algorithm must consider that the ligation junction might be contained in any part of
the read; therefore, the full length of each read side might not be successfully mapped
to the genome. Two mapping strategies accounting for this problem are available in

TADDbit (see Figure 2.5):

o Iterative mapping: The first 25 bp at the 5" end of each read are mapped to
the genome. If this sequence is not uniquely mapped, then it is extended 5
bp more and a second attempt to uniquely map it is performed. The process
is iterated adding 5 bp each step until either a unique match is found, or the

full length of the read is achieved.

e Fragment-based mapping: contrary to iterative mapping, the full length of
the fragment is mapped first. Those fragments that fail to be mapped to the
genome are split searching for the ligation site, which is known from the
motif targeted by the restriction enzyme used in the experiment. It should be
noticed that this strategy is not applied to Micro-C experiments, since the

MNase digestion is not specific to a given sequence.
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Figure 2.5. Mapping strategies implemented in TADbit. Taken from [34]

2.4.2.3 Fragment-level filtering

Some biases and errors from the experiment can be detected and corrected

computationally. These include (see Figure 2.6):

e Self-circle: when the two ends of the same restriction fragment are ligated. It
is identified when both read-ends map to the same fragment in opposed

orientation.

e Dangling-end: when a fragment was not ligated. Identified in reads where

the two sides map to the same restriction fragment in facing orientation.

e Error: when both sides of the read map to the same restriction fragment in

the same orientation.

e PCRartefacts or duplicated: when the two reads have the same start position,

mapped length, and strand, only one copy is kept.

e Random breaks: produced by non-canonical enzyme activity or random

physical cleavage. They are detected when the distance from the read start
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in any read-end and the restriction enzyme cut site is larger than a given

threshold.
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Figure 2.6. Fragment filtering in Hi-C data. Identification of molecule type in the mapped reads to
discard artifacts based on their orientations relative to the restriction sites. Adapted from [35]

2.4.24 Bin-level filtering and normalization

The filtered fragments are binned at a user-specified resolution and summarized in
a contact matrix where each cell represents the number of contacts identified between
the two corresponding bins. Contact matrices are cleaned before normalization by
removing columns with zero counts and those with less contacts than a given
threshold. Normalization is based on the ICE (iterative correction and eigenvector
decomposition) [36] and corrects for several sequence biases such as GC content or
restriction site density. It iteratively balances the total counts of all bins, giving equal

visibility to all genomic loci.

2.4.3 ldentification of differential interactions

We used diffHiC [37], an R package to assess whether the interactions between pairs
of loci significantly differ between two experimental conditions. It can model
biological variability through quasi-likelihood (QL) methods considering the
information of replicas. The counts y,; of each bin pair b in the contact matrix of

experimental sample i, are modeled using a Generalized Linear Model defined by
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P
E(Ypi) = tpi = injﬁbj + op; (2.5)

j=1
where x;; are the elements of the design matrix that specify the experimental
conditions of each sample and f,; the corresponding unknown effects. The offsets
op; represent normalization factors, for instance for the sequencing depth. The

variability of each bin pair is given by

V(i) = 0§ (Upi + Polipi) (2.6)

where o} is the QL dispersion parameter and ¢, the Negative Binomial dispersion.
With this model, a QL F-test can be applied to each bin pair obtaining the fold change
(FC) and the false discovery rate (FDR) correction for multiple testing of the obtained
p-values. Then, significantly increasing interactions were defined as those bin pairs
with FDR<0.5 and logFC>1, and significantly decreasing interactions if the FDR<0.5
and logFC<-1.

2.4.4 Visualization

The statistically significant differential interactions can be visualized in a Circos plot
[38], where the interactions are displayed as links joining the two bins that interact
on a circular ideogram layout. Other annotations of genomic features can also be
displayed for the genomic regions in the plot. We generated Circos plots for

differentially increasing and decreasing interactions in cisand in trans.

Normalized contact matrices were transformed into Binary Upper TrianguLar
MatRix (BUTLR) file format, using BUTLRtools
(https:/ /github.com/yuelab/BUTLRTools), suited for 3D Genome Browser

(http:/ /3dgenome.org) to visualize contact maps together with genome annotations

[39]. Other genomic features can be included in the visualization to help in the

interpretation of results (see Figure 2.7).

Another widely used software for visualizing Hi-C contact matrices is Juicebox [40].
It allows to display inter and intra chromosomal interaction matrices, interactively

zooming and adjusting the binning level. Additionally, two experimental matrices
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can be compared (displaying the ratio or the difference), 2D information such as
TADs or loops can be displayed on top of the matrix and 1D data can also be added

to the genomic axes.
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Figure 2.7. Visualization of a Hi-C contact matrix fromK562 cells at 5kb resolution in the 3D Genome
Browser. The intensity of the color (red) is based on the contact frequency between every bin pair.
TADs are marked as yellow and blue bars. Histone marks (H3K4mel, H3K4me3 and H3K27ac),
chromHMM chromatin types and gene positions are marked for every locus in the contact matrix.
Adapted from [39]

2.5 DNA methylation

CpG methylation is important in gene regulation through different mechanisms.
Methylation of cytosines in CpG steps changes the stiffness of DNA and therefore
alters the nucleosome stability and the transcription factor binding affinity intrinsic
to a given sequence [41]. This section presents some experimental techniques

employed for the investigation of genome-wide DNA methylation.

2.5.1 Whole-genome bisulfite sequencing

Whole-genome bisulfite sequencing (WGBS) is a next-generation sequencing

technique to detect the position of methylated cytosines (5mC) in a genome at single-
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nucleotide resolution. It has allowed the analysis of cytosine methylation patterns in
a wide range of organisms and cell types [42]. The DNA is treated with sodium
bisulfate, causing unmethylated cytosines to be transformed to uraciles whereas
methylated cytosines are not modified. Then, the treated samples are sequenced and
the unmethylated cytosines are read as thymines from the polymerase change
reaction (PCR) amplification. Comparing the obtained reads with the untreated
genome, the mismatches between C and T upon treatment correspond to the
unmethylated cytosines and the matching C’s correspond to methylated sites (see

Figure 2.8).

Bisulfite Treatment - ATTACGATTGATAT-3" Original top (OT)

T TAATGCTAACTATA-S’ igi
ATTA(‘:GAT(GATATAS' ATTACGATUGATAT-3" Complementary to original top (CTOT)
TAATGETAGCTATA'S: TARTSSTAGUTATAS ~ ATTACGATCAATAT-3" Complementary to original bottom (CTOB)

m g TAATGCTAGTTATA-5’ Original bottom (OB)

Figure 2.8. Conversion of cytosines after treatment with bisulfite. Methylated cytosines (in red) are
not modified upon treatment while unmethylated cytosines (in blue) are transformed to uraciles and
then read as thymines after PCR amplification. Taken from [43]

In this work, the WGBS reads were processed using the gemBS pipeline v3.0 [42].
Reads with MAPQ scores < 20 or mapping to the same start and end points on the
genome were filtered out. The first 5 bases from each read were trimmed before the
variant and methylation calling step to avoid artifacts due to end repair. For each
sample, CpG sites were selected where both bases were called with a Phred score of
at least 20, corresponding to an estimated genotype error level of <=1%. To exclude
repetitive regions, loci with >500x coverage depth were excluded. From the
successfully aligned reads, the methylation level of each CpG was computed as the
ratio between the number of reads with an unconverted cytosine over the total

number of reads (either with cytosine or thymine at that position).

2.5.2 Nanopore sequencing

As mentioned above, a disadvantage of WGBS is the inability to map sequenced
reads in repetitive genomic regions. Additionally, it is not possible to determine
whether two methylated cytosines separated by more than the fragment length occur

in the same DNA molecule or come from different cells. Using Oxford Nanopore
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Technology (ONT), much longer read lengths (>10kbp) can be obtained to identify
methylated cytosines. Hence, it is possible to study the methylation at repetitive
regions from the nanopore reads as well as the correlation of methylation at multiple

CpG sites on the same DNA molecule.

2.6 ChlIP-seq

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is employed for
the experimental study of protein-DNA interactions (transcription factors, histone
modifications, RNA polymerase, etc.). It combines chromatin immunoprecipitation,
where an antibody selects the regions bound by the target protein, and massively

parallel sequencing for the detection of the binding sites.

The protocol starts with cross-linking of protein and DNA by treating cells with
formaldehyde, to fix the position of the interaction. Then, the DNA is sheared with
sonication or MNase to obtain short fragments that are then immunoprecipitated
with the antibody specific to the protein of interest. The cross-linking in the selected
DNA-protein complexes is then reversed and the DNA is purified and sequenced

after size selection (typically fragment length ranges between 150 and 300 bp).

The experimental protocol presents some biases [44] such as the specificity of the
antibody or the uneven fragmentation in open or closed chromatin. To account for
the effect of these biases, it is important to include a control experiment. Three main

types of control samples can be included:

e Input DNA (IP): before immunoprecipitation, a portion of the cross-linked

and sheared fragments are selected.
e Mock IP DNA: the sample is immunoprecipitated without antibodies.

e DNA from nonspecific IP: the sample is immunoprecipitated using an
antibody against a protein that does not bind to DNA and is not involved in

chromatin modification, such as immunoglobulin G.

In this work, the sequenced reads were computationally analyzed using tools

available in the Galaxy web platform [45]. First, reads were mapped to the reference
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genome using BWA aligner [46]. Non-uniquely mapped reads were removed based
on the mapping quality scores [47]. The coverage of mapped reads per base pair was
then computed genome-wide and peak calling with MACS2 [48] performed to detect

the protein binding regions, correcting the signal with the control samples.

2.7 RNA-seq

RNA sequencing (RNA-seq) is employed to quantify expression in a given
transcriptome using next generation sequencing. The population of RNA in a sample
is reverse transcribed into complementary DNA (cDNA) and adaptors are attached
to both ends of the fragments. The library is high-throughput sequenced following
manufacturer protocols. In the experiments analyzed in this thesis, TruSeq™ RNA
Sample Prep Kit v2 (Illumina Inc.) was used to paired-end sequence the fragments
with a read length of 2x76bp. Images analysis, base calling and quality scoring of the
data was performed using the manufacturer’s software Real Time Analysis (RTA

1.13.48) and FASTQ sequence files were generated with CASAVA.

RNA-seq reads were aligned to the reference genome using GEM mapper [33]
allowing for split maps. Genes were quantified using Flux-Capacitor [49], obtaining
a table of the number of reads per gene in each sample. Comparison of expression
levels between samples requires normalization of the gene counts, since library sizes
can be different. The data was normalized by the trimmed mean of M-values (TMM)
method of the edgeR software [50], which considers the possible differences in RNA
distribution that might appear when changing experimental conditions (e.g. under
stress conditions a specific set of genes might severely increase their expression
levels). The normalized values were used to perform differential expression analysis
using the “robust” version of the edgeR R package [51], which removes the bias from

outliers while preserving high power detecting significant changes in expression.



54 Understanding the link between chromatin structure, chromosome conformation and gene regulation

Bibliography for Chapter 2

[1] P.D.Dans et al, “The physical properties of B-DNA beyond Calladine-Dickerson rules.”

[2] X.J. Lu and W. K. Olson, “3DNA: a software package for the analysis, rebuilding and
visualization of three-dimensional nucleic acid structures,” Nucleic Acids Res., vol. 31,
no. 17, pp. 5108-5121, Sep. 2003.

[3] F. Lankas, J. époner, J. Langowski, and T. E. Cheatham, “DNA Basepair Step
Deformability Inferred from Molecular Dynamics Simulations,” Biophys. J., vol. 85, no. 5,
pp. 2872-2883, Nov. 2003.

[4] W. K. Olson, A. A. Gorin, X.-J. Lu, L. M. Hock, and V. B. Zhurkin, “DNA sequence-
dependent deformability deduced from protein-DNA crystal complexes,” Proc. Natl.
Acad. 5ci., vol. 95, no. 19, pp. 11163-11168, Sep. 1998.

[5] V. Matys, “TRANSFAC(R) and its module TRANSCompel(R): transcriptional gene
regulation in eukaryotes,” Nucleic Acids Res., vol. 34, no. 90001, pp. D108-D110, Jan.
2006.

[6] A. Mathelier et al, “JASPAR 2016: a major expansion and update of the open-access
database of transcription factor binding profiles,” Nucleic Acids Res., p. gkv1176, Nov.
2015.

[71 W. W. Wasserman and A. Sandelin, “Applied bioinformatics for the identification of
regulatory elements,” Nat. Rev. Genet., vol. 5, no. 4, pp. 276-287, Apr. 2004.

[8] H. Pages, P. Aboyoun, R. Gentleman, and S. DebRoy, “Biostrings: String objects
representing biological sequences, and matching algorithms.” R package version 2.34.0.,
2015.

[9] B.Sollner-Webb and G. Felsenfeld, “Comparison of the digestion of nuclei and chromatin
by staphylococcal nuclease,” Biochemistry, vol. 14, no. 13, pp. 2915-2920, Jul. 1975.

[10] R. Axel, “Cleavage of DNA in nuclei and chromatin with staphylococcal nuclease,”
Biochemistry, vol. 14, no. 13, pp. 2921-2925, Jul. 1975.

[11] W. K. M. Lai and B. F. Pugh, “Understanding nucleosome dynamics and their links to
gene expression and DNA replication,” Nat Rev. Mol Cell Biol, vol. 18, no. 9, pp. 548—
562, May 2017.

[12] K. Brogaard, L. Xi, ].-P. Wang, and J. Widom, “A map of nucleosome positions in yeast at
base-pair resolution,” Nature, vol. 486, no. 7404, pp. 496-501, Jun. 2012.

[13] R. V. Chereji, S. Ramachandran, T. D. Bryson, and S. Henikoff, “Precise genome-wide
mapping of single nucleosomes and linkers in vivo,” Genome Biol, vol. 19, no. 1, Dec.
2018.

[14] O. Deniz, O. Flores, F. Battistini, A. Pérez, M. Soler-Lépez, and M. Orozco, “Physical
properties of naked DNA influence nucleosome positioning and correlate with
transcription start and termination sites in yeast,” BMC Genomics, vol. 12, no. 1, Dec.
2011.

[15] G. Gutiérrez et al., “Subtracting the sequence bias from partially digested MNase-seq data
reveals a general contribution of TFIIS to nucleosome positioning,” Epigenetics
Chromatin, vol. 10, no. 1, Dec. 2017.

[16] O. Flores, O. Deniz, M. Soler-Lépez, and M. Orozco, “Fuzziness and noise in nucleosomal
architecture,” Nucleic Acids Res., vol. 42, no. 8, pp. 4934-4946, Apr. 2014.

[17] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome,” Genome Biol, vol. 10, no. 3,
p- R25, 2009.

[18] E. Planet, C. S.-O. Attolini, O. Reina, O. Flores, and D. Rossell, “htSeqTools: high-
throughput sequencing quality control, processing and visualization in R,”
Bioinformatics, vol. 28, no. 4, pp. 589-590, Feb. 2012.



Chapter 2. Methods 55

[19] O. Flores and M. Orozco, “nucleR: a package for non-parametric nucleosome
positioning,” Bioinformatics, vol. 27, no. 15, pp. 2149-2150, Aug. 2011.

[20] D. Buitrago et al, “Nucleosome Dynamics: a new tool for the dynamic analysis of
nucleosome positioning,” Nucleic Acids Res., p. gkz759, Aug. 2019.

[21] M. Simonis et al, “Nuclear organization of active and inactive chromatin domains
uncovered by chromosome conformation capture—on-chip (4C),” Nat. Genet., vol. 38, no.
11, pp. 1348-1354, Nov. 2006.

[22] Z. Zhao ef al, “Circular chromosome conformation capture (4C) uncovers extensive
networks of epigenetically regulated intra- and interchromosomal interactions,” Nat.
Genet., vol. 38, no. 11, pp. 1341-1347, Nov. 2006.

[23] ]. Dostie et al, “Chromosome Conformation Capture Carbon Copy (5C): A massively
parallel solution for mapping interactions between genomic elements,” Genome Res., vol.
16, no. 10, pp. 1299-1309, Oct. 2006.

[24] E. Lieberman-Aiden et al, “Comprehensive Mapping of Long-Range Interactions Reveals
Folding Principles of the Human Genome,” Science, vol. 326, no. 5950, pp. 289-293, Oct.
2009.

[25] J. R. Hughes et al,, “ Analysis of hundreds of cis-regulatory landscapes at high resolution
in a single, high-throughput experiment,” Nat. Genet., vol. 46, no. 2, pp. 205-212, Feb.
2014.

[26] S. Schoenfelder et al, “The pluripotent regulatory circuitry connecting promoters to their
long-range interacting elements,” Genome Res., vol. 25, no. 4, pp. 582-597, Apr. 2015.

[27] T-H. S. Hsieh, A. Weiner, B. Lajoie, J. Dekker, N. Friedman, and O. J. Rando, “Mapping
Nucleosome Resolution Chromosome Folding in Yeast by Micro-C,” Cell, vol. 162, no. 1,
pp- 108-119, Jul. 2015.

[28] M. Forcato, C. Nicoletti, K. Pal, C. M. Livi, F. Ferrari, and S. Bicciato, “Comparison of
computational methods for Hi-C data analysis,” Nat. Methods, vol. 14, no. 7, pp. 679-685,
Jun. 2017.

[29] P. Hansen et al, “Computational Processing and Quality Control of Hi-C, Capture Hi-C
and Capture-C Data,” Genes, vol. 10, no. 7, p. 548, Jul. 2019.

[30] F. Serra, D. Bau, M. Goodstadt, D. Castillo, G. ]J. Filion, and M. A. Marti-Renom,
“Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural
features of the fly chromatin colors,” PLOS Comput. Biol.,, vol. 13, no. 7, p. e1005665, Jul.
2017.

[31] S. Andrews, “FastQC: A quality control tool for high throughput sequence data.,” 2010.
[Online]. Available: http:/ /www .bioinformatics.babraham.ac.uk/projects/fastqc/.

[32] B. Ewing, L. Hillier, M. C. Wendl, and P. Green, “Base-Calling of Automated Sequencer
Traces Using Phred. 1. Accuracy Assessment,” Genome Res., vol. 8, no. 3, pp. 175-185,
Mar. 1998.

[33] S. Marco-Sola, M. Sammeth, R. Guigd, and P. Ribeca, “The GEM mapper: fast, accurate
and versatile alignment by filtration,” Nat. Methods, vol. 9, no. 12, pp. 1185-1188, Oct.
2012.

[34] E.Serra, D. Bau, M. Goodstadt, D. Castillo, G.]. Filion, and M. A. Marti-Renom, “Iterative
vs fragment-based mapping,” TADbit Tutorial, 2017. [Online]. Available:
https://3dgenomes.github.io/TADbit/tutorial / tutorial_4-Mapping.html. [Accessed: 09-
Sep-2019].

[35] J.-M. Belton, R. P. McCord, J. H. Gibcus, N. Naumova, Y. Zhan, and J. Dekker, “Hi-C: A
comprehensive technique to capture the conformation of genomes,” Methods, vol. 58, no.
3, pp. 268-276, Nov. 2012.

[36] M. Imakaev ef al., “Iterative correction of Hi-C data reveals hallmarks of chromosome
organization,” Nat. Methods, vol. 9, no. 10, pp. 999-1003, Sep. 2012.

[37]1 A. T. L. Lun and G. K. Smyth, “diffHic: a Bioconductor package to detect differential
genomic interactions in Hi-C data,” BMC Bioinformatics, vol. 16, no. 1, Dec. 2015.



56 Understanding the link between chromatin structure, chromosome conformation and gene regulation

[38] M. Krzywinski et al, “Circos: An information aesthetic for comparative genomics,”
Genome Res., vol. 19, no. 9, pp. 1639-1645, Sep. 2009.

[39] Y. Wang et al, “The 3D Genome Browser: a web-based browser for visualizing 3D
genome organization and long-range chromatin interactions,” Genome Biol., vol. 19, no.
1, p. 151, Dec. 2018.

[40] N. C. Durand ef al, “Juicer Provides a One-Click System for Analyzing Loop-Resolution
Hi-C Experiments,” Cell Syst., vol. 3, no. 1, pp. 95-98, Jul. 2016.

[41] G. Portella, F. Battistini, and M. Orozco, “Understanding the Connection between
Epigenetic DNA Methylation and Nucleosome Positioning from Computer Simulations,”
PLoS Comput. Biol,, vol. 9, no. 11, p. e1003354, Nov. 2013.

[42] A.Merkel ef al., “GEMBS - high through-put processing for DNA methylation data from
Whole Genome Bisulfite Sequencing (WGBS),” Bioinformatics, preprint, Oct. 2017.

[43] C. Grehl, M. Kuhlmann, C. Becker, B. Glaser, and I. Grosse, “How to Design a Whole-
Genome Bisulfite Sequencing Experiment,” Epigenomes, vol. 2, no. 4, p. 21, Dec. 2018.

[44] P. ]. Park, “ChIP-seq: advantages and challenges of a maturing technology,” Nat. Rev.
Genet., vol. 10, no. 10, pp. 669-680, Oct. 2009.

[45] E. Afgan et al, “The Galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2018 update,” Nucleic Acids Res., vol. 46, no. W1, pp. W537-W544,
Jul. 2018.

[46] H. Li and R. Durbin, “Fast and accurate short read alignment with Burrows-Wheeler
transform,” Bioinforma. Oxf. Engl, vol. 25, no. 14, pp. 1754-1760, Jul. 2009.

[47] H.Li,]. Ruan, and R. Durbin, “Mapping short DNA sequencing reads and calling variants
using mapping quality scores,” Genome Res., vol. 18, no. 11, pp. 1851-1858, Nov. 2008.

[48] Y. Zhang et al, “Model-based Analysis of ChIP-Seq (MACS),” Genome Biol, vol. 9, no. 9,
p- R137, 2008.

[49] S. B. Montgomery ef al, “Transcriptome genetics using second generation sequencing in
a Caucasian population,” Nature, vol. 464, no. 7289, pp. 773-777, Apr. 2010.

[50] M. D. Robinson and A. Oshlack, “A scaling normalization method for differential
expression analysis of RNA-seq data,” Genome Biol, vol. 11, no. 3, p. R25, 2010.

[51] X. Zhou, H. Lindsay, and M. D. Robinson, “Robustly detecting differential expression in
RNA sequencing data using observation weights,” Nucleic Acids Res., vol. 42, no. 11, pp.
€91-e91, Jun. 2014.



Chapter 3. Sequence dependent DNA
flexibility and protein recognition

The shape of the DNA duplex was first described from diffraction data several
years ago [1], [2], and since then many experimental techniques have completed our
view of how DNA duplex is under physiological conditions: a very flexible and
polymorphic duplex [3], [4] which can adopt different conformations depending on
the sequence, environment and presence of DNA-binding proteins [5]-[8]. Such an

intrinsic polymorphism is crucial for its functionality.

As explained in Chapter 2, the base pair step geometry can be represented by a set
of six helical parameters describing translations and rotations of one given base pair
with respect to the neighboring one. The DNA flexibility was evident from the
structural variability observed for the same complex in different crystals [9], which
suggested that flexibility could be simulated by using an harmonic model with
stiffness constants derived from the observed variability in the distributions. This
work was posteriorly extended retrieving the helical coordinates from trajectories
obtained from molecular dynamics (MD) simulations [10], [11], which helped to
solve the problem of the lack of experimental data. Nowadays, the developments in
atomistic MD simulations and accurate forcefields [12] allowed obtaining long
reliable trajectories and sampling the conformational space of different DNA
sequences, and revealed that the dinucleotide-model is not sufficient for describing
the high flexibility of DNA molecules [13], [14], and that at least a tetranucleotide
model should be used [13], [14].



58 Understanding the link between chromatin structure, chromosome conformation and gene regulation

Extending the analysis to the nearest neighbors of each dinucleotide, a tetramer
model of sequence dependence has been studied on a large collection of trajectories
from MD simulations from the Ascona B-DNA Consortium (ABC,
https://bisi.ibcp.fr/ABC) and the BigNASim database [15]. These studies

confirmed that, for most tetramers, considering only the nearest neighbors is
sufficient for describing their structure and flexibility, but a few tetranucleotides
exhibit highly polymorphic behavior and dependence on the sequence context
beyond the tetramer level. One of these tetramers, CTAG, has been extensively
studied in the work Modulation of the helical properties of DNA: next-to-nearest
neighbor effects and beyond, that is attached below as part of this thesis, where we
found evidence of the unique structural properties of this sequence, which might
confer special flexibility related to its particular location in the genome and its low

mutation rate.

The tetramer base (pseudo) harmonic model (or its extension to the hexamer level;
see below) can be used to describe the energetic cost of deforming a DNA structure.
Particularly, the model can be used to determine the ease in which a given DNA
sequence can be deformed to adopt the conformation when bound to an effector
protein, and accordingly can provide information on the sequence-preference of a
given DNA interacting protein. In this thesis, the structural differences between the
free and the protein-bound DNA were studied and the energetic cost related to the
structural changes of the DNA to adopt the conformation in the protein complex
were calculated (see publication How B-DNA Dynamics Decipher Sequence-
Selective Protein Recognition). Using statistical tests to analyze the helical motions,
it was found that a large percentage of the DNA sequences studied can
spontaneously sample the bioactive conformation, while a small percentage is
highly distorted by the protein binding, due to strong non-harmonic deformations

such as base opening.
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3.1 Modulation of the helical properties of DNA: next-to-

nearest neighbor effects and beyond

Our group studied the physical properties of DNA sequences corresponding to the
ten possible base pair steps in all the possible tetramer environments [16]. The
study showed that while several base pair step helical parameters can sample
different configurations along the MD simulations, having a population of values
that correspond to a normal distribution, some deviate from normality and have
multimodal distributions. Therefore, more general models including information
beyond the dinucleotide level are required. Moreover, it was found that some
tetramers were ultra-flexible, and their conformation might be modulated by effects
beyond the tetramer level which are rare for the rest. In this work, structural
analysis of one of these highly flexible tetramers, CTAG, is presented as well as a

genomic analysis of its prevalence in different species.

We analyzed 40 different sequence contexts containing CTAG in a central position
carefully selected to cover all the possible hexamers. First, examining the
distributions of helical parameters of the central TA base pair step retrieved from
individual trajectories, we observed deviations from the normal distributions
showing multimodal densities for some parameters (shift, slide and twist).
Important differences in their distributions were also detected when different
sequence contexts were considered. Our analysis suggests that the multimodality
can be explained by sequence effects beyond the nearest neighbors, at the hexamer

or even octamer level.

Additionally, data mining of experimental structural data, obtained from the
Protein Data Bank (PDB, [17]), was performed in order to validate our conclusions.
Although the obtained data is scarce, limiting the generality of the conclusions, the
results are in line with our MD-based observations, showing that the multimodality

in the distributions is not an artefact of the force-field used in the MD simulations.

Furthermore, we investigated whether the high flexibility of CTAG tetramer might
confer some specific functionality in different eukaryotic genomes. Interestingly,

this tetramer sequence is unfrequently found in several genomes analyzed. We
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evaluated whether its low frequency was because it contains one of the stop codons
(TAG) and we concluded that it is not the case, since the frequency of other
tetramers that contain this stop codon is on the average compared to all possible
tetramers. We found out that this very peculiar tetramer is underpopulated along
the genome and preferentially found in intergenic regions, and unfrequently
detected in coding regions. Moreover, investigating data collected for different
cancer types, we observed that its mutation frequency is low compared to other

tetramers.
Publication:

Alexandra Balaceanu, Diana Buitrago, Jurgen Walther, Adam Hospital, Pablo D.
Dans. and Modesto Orozco. (2019). Modulation of the helical properties of DNA:
next-to-nearest neighbour effects and beyond. Nucleic Acids Research, 47, 4418-
4430. https:/ /doi.org/10.1093 /nar/gkz255.

Supplementary material for this article can be found in the Annex I.
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ABSTRACT

We used extensive molecular dynamics simulations
to study the structural and dynamic properties of
the central d(TpA) step in the highly polymorphic
d(CpTpApG) tetranucleotide. Contrary to the as-
sumption of the dinucleotide-model and its nearest
neighbours (tetranucleotide-model), the properties
of the central d(TpA) step change quite significantly
dependent on the next-to-nearest (hexanucleotide)
sequence context and in a few cases are modulated
by even remote neighbours (beyond next-to-nearest
from the central TpA). Our results highlight the exis-
tence of previously undescribed dynamical mecha-
nisms for the transmission of structural information
into the DNA and demonstrate the existence of cer-
tain sequences with special physical properties that
can impact on the global DNA structure and dynam-
ics.

INTRODUCTION

Early structural models of DNA derived from fibre diffrac-
tion data provide a static and averaged picture of the dou-
ble helix (1-3), which despite its simplicity was sufficient to
represent the general shape of DNA in physiological con-
ditions. However, as more accurate structural techniques
appeared, the intrinsic polymorphism of double-stranded
DNA become evident (4-7) as significantly different con-
formations were described depending on the sequence, the
environment or the presence of ligands (8-11). Six decades
after the development of the first duplex models, we under-
stand that DNA as a flexible and polymorphic molecule is
able to sample a wide range of helical geometries, thanks
to a complex choreography of backbone rearrangements,
which allows the conformational changes required for DNA
functionality (11-19).

Attempts to determine the principles relating sequence
and structure originated in the eighties when by process-

ing the scarce experimental data available, Calladine et al.
(20), developed a series of heuristic rules relating sequence
with some structural characteristics of DNA (21,22). In the
late nineties (23), Olson ez al. developed a complete set of
parameters defining the expected distribution of helical pa-
rameters of the 10 unique base pair steps (bps). Parame-
ters were derived from the analysis of the available crystal
data on DNA-protein complexes and provided information
not only on the equilibrium geometry but also on the ex-
pected flexibility of the bps (extracted from the variability
of the same bps in different crystals). Twenty years after
their generation, Olson-Zhurkin parameters are still used
to represent DNA by means of helical mesoscopic descrip-
tors. However, we cannot ignore the strong assumptions in-
volved in their derivation: (i) the ensemble of configurations
obtained from the analysis of crystal structures should de-
fine a densely populated Gaussian distribution; (ii) a dinu-
cleotide (step) model is enough to represent DNA sequence
variability, i.e. the helical geometry can be decomposed at
the bps level; (iii) conformational variability found in struc-
tures in PDB should exclusively depend on the flexibility of
the step and finally (iv) binding of a protein should not in-
troduce anharmonic distortions in the duplex geometry.
The eruption of atomistic molecular dynamics (MD) sim-
ulations gave the community an alternative source of pa-
rameters to describe DNA structure and flexibility. Com-
pared with results derived from the analysis of experimen-
tal structures, the MD-based ones are more robust as they
are obtained from processing an extremely large number
of snapshots, and provide information on flexibility that is
not contaminated by the presence of ligands, crystal lat-
tice or any other environmental artifacts. As a major caveat,
MD-derived descriptions of DNA properties are dependent
on the length of trajectories as well as on the quality of
the force field parameters used to describe DNA interac-
tions. Thus, early attempts to describe DNA from multi-
nanosecond trajectories led to artefactual results due to a
previously unknown error of the most used force field at
that time (24). A newer force field (25) and higher computa-
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tional capabilities provided descriptions of DNA properties
that were more reasonable, but still far from the required
accuracy (12,26,27). The availability of the highly accurate
PARMBSC]1 force field (28,29) and the development of new
MD codes taking advantage of a new generation of com-
puters (30-33) provide the community with the possibility
to derive reliable representation of the sequence-dependent
physical properties of DNA from the analysis of microsec-
ond long trajectories collected under highly controlled sim-
ulation conditions,

Results collected by the Ascona B-DNA Consortium
(34-37) revealed two major findings that challenged current
models of DNA flexibility. First, the dinucleotide-model is
insufficient to describe DNA flexibility, as the variability
in bps parameters depending on tetranucleotide environ-
ment can be more pronounced than the variability found
when comparing different bps for a given tetranucleotide
context. Second, several distributions of helical parameters
considering the nearest neighbours deviate from normality
and a part of them are in fact multi-modal, which means
that the physical properties of such tetranucleotides cannot
be represented by a single set of elastic parameters (equi-
librium values and associated stiffness). Analysis of MD
data revealed that the changes between substates happen
towards a series of coordinated changes along the back-
bone (17,37.38), where unusual H-bond interactions and
subtle changes in the solvent environment play a key role
(18.39). The analysis of ABC data and of additional trajec-
tories stored in our BigNASim database (40) suggested that
anearest neighbour-based model was in general sufficient to
derive transferable descriptors of DNA structure and flexi-
bility, but a few exceptions to this general rule emerged: the
clearest one is the d(CpTpApG) tetranucleotide (in the fol-
lowing CTAG): a very polymorphic stretch of DNA, with
50% G-C content, for which results were significantly dif-
ferent depending on the simulation. The structural pecu-
liarities of TpA steps have been qualitatively pointed out in
the past by analysing a small number of experimental struc-
tures, especially when immersed in short A-tracks (41.42).

We present here a detailed analysis of CTAG in differ-
ent sequence contexts. Results demonstrate that next-to-
nearest effects modulate the geometrical properties of the
central d(TpA) step. Such structural effects are very visi-
ble when hexanucleotides are considered, but quite surpris-
ingly extend beyond the next-to-nearest level, indicating the
existence of a complex mechanism of information transfer
across DNA through the coordinated backbone and base
movements,

MATERIALS AND METHODS
The choice of sequences and the simulation details

The systematic study of sequence-dependent effects be-
yond the tetranucleotide level has been to date impossi-
ble, due to the huge number of sequences that need to be
considered. For example, the study of all hexanucleotides
would require the simulation of 2,080 sequences, while
to consider all octanucleotides 32,826 sequence combina-
tions are needed. Fortunately, the analysis of ABC simu-
lations where tetranucleotides appear in different molecu-
lar environments suggests that sequences effects beyond the

Nucleic Acids Research, 2019, Vol. 47, No. 9 4419

tetranucleotide are rare, and if they exist, are localized in
certain ultra-flexible sequences. We focused our interest here
in one of the most flexible tetranucleotide: CTAG. Thus, we
built a library of 40 different sequences covering the entire
hexanucleotide space (XpCpTpApGpX) as well as all pos-
sible pyrimidine(Y)/purine(R) combinations at the octanu-
cleotide level in several repeats (see Supplementary Meth-
ods). All the sequences were prepared using the leap mod-
ule of AMBERTOOLS 16 (43) and standard ABC proto-
col (37). Accordingly, systems were built from Arnott’s B-
DNA average parameters, neutralizing the DNA with K~
ions, adding water (at least 10 A of water separate DNA
from the faces of the box) and extra 150 mM KCI. Systems
were then optimized, thermalized and equilibrated before
production (34,35). Water was represented with the SCP/E
model (44), Smith-Dang parameters were used for ions (45—
47) and the recent PARMBSCT1 force field was considered to
represent nucleic acids interactions (28). Trajectories (col-
lected in the NPT ensemble 7= 298 K, P = 1 atm) were
extended from 0.5 ps to up to 9 ps. All simulations were per-
formed with the pmemd.cuda code using periodic boundary
conditions and Particle Mesh Ewald (31,48). Movements of
hydrogen atoms were annihilated using SHAKE (49), which
allowed us the use of a 2 fs integration step. All trajectories
collected here are accessible through the MuG BigNASIim
portal (40): https://mmb.irbbarcelona.org/BIGNASim/

Analysis

Standard analysis was done using c¢pptraj module of the
AMBERTOOLS 16 package (43), the NAFlex server (50)
CURVES+ and CANAL programs (51), following the stan-
dard ABC-conventions (37). The CANION module from
Curves+ (38) was used to determine distributions of ion
populations in curvilinear cylindrical coordinates for each
snapshot of the simulations with respect to the instanta-
neous helical axis. Duplexes were named following the Wat-
son strand (e.g. ATGG stands for (ATGG)-(CCAT)). The
letters R, Y and X stand for a purine, a pyrimidine or
any base respectively, while X:X and XX represent a base
pair and base pair step, respectively. Base pairs flanking the
CTAG were denoted using two dots to represent the central
tetrad (e.g. R--Y). The normality and modality of the heli-
cal distributions were evaluated using Bayesian Information
Criteria (52,53) and Helguerro’s theorem (54) as described
elsewhere (12). Classification of the torsional states of the
different rotatable bonds in the DNA backbone was done
using standard criteria (55). Correlations between different
torsions were determined by circular correlation analysis
(see Supplementary Methods for additional details). The
meta-trajectory analysis was used to define the global char-
acteristic of the d(TpA) essential deformation space. With
this purpose, the 40 individual trajectories were grouped
and subjected to principal component analysis (56,57) in the
helical space of the central d(TpA) step after Lankas’ nor-
malization of the different rotational and translational de-
grees of (reedom (58). The essential dynamics of the central
d(TpA) step is then used to define the set of key movements
explaining the global deformation at the d(TpA) step. The
distributions of the four informative bps deformations were
subjected to detailed analysis (see Supplementary Method
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Figure 1. Normalized frequencies of those bps helical parameters found to be bi-normal and tri-normal according to the BIC analysis. First row: Density
obtained from the meta-trajectory (black line), and the BIC decomposition in two Gaussians (slide, roll and twist: red and green lines) or in three Gaussians
(shift: red, green and blue lines). Second row: Overlapped density of the shift, slide, roll and twist parameters at the central TpA step of the 40 sequences

studied (see Supplementary Table S1).

for additional details). Comparison and clustering of the
individual trajectories of the central d(TpA) for the 40 se-
quences studied (all with a common CTAG central tetranu-
cleotide) were done using symmetrized Kullback-Leibler
(KL) divergences (58) followed by hierarchical cluster anal-
ysis using Ward’s clustering criterion (59), where the dissim-
ilarities are squared before cluster updating (60), using as
descriptive variable the six distinguished helical variables
detected by the PCA of the meta-trajectory (see Supple-
mentary Methods for additional details). The clusters ob-
tained in this manner were subsequently analysed in detail,
further highlighting the differences between their individ-
ual accessible helical spaces. Ion analysis was performed as
described elsewhere (18,38) to unravel the connections be-
tween the binding of cations on the DNA and its mecha-
nistic properties. Stacking strengths were followed by ge-
ometrical criteria for the central dinucleotide in the meta-
trajectory filtered by the three main states in helical space, as
described in detail in Supplementary Methods. Structural
database analysis was done using all DNA structures con-
taining the CTAG tetranucleotide. Genomic analysis was
done to determine the prevalence of the CTAG tetranu-
cleotide in different wild-type genomes and its resilience to
mutation. Genomes of Homo sapiens (hgl9), Escherichia
coli (NC_000913.3) and Saccharomyces cerevisiae (sacCer3)
were analysed. Occurrences of this tetranucleotide were
then mapped, using Homer software (61), to the annotated
regions of each organism obtained from UCSC and com-
pared to the overall frequency of each annotation type. To

compute the resilience to mutation, the frequency of muta-
tions for each tetranucleotide along the genome in 30 differ-
ent cancer types (data from (62)) was determined normaliz-
ing by tetranucleotide occurrence along the genome. Single-
nucleotide polymorphisms (SNPs) in the human genome
were retrieved from Ensembl Variation database (63), and
the number of SNPs per tetranucleotide was computed, nor-
malizing by genome-wide tetranucleotide frequency.

RESULTS AND DISCUSSION

The CTAG shows dramatic and complex structural polymor-
phism

We collected trajectories for 40 oligonucleotides containing
the CTAG tetranucleotide in a central position (see ‘Mate-
rials and Methods’ and Supplementary Table S1). All the
trajectories were stable along time in the sub-microsecond
timescale, sampling structures that fit well in the B-like dou-
ble helical conformation. As suggested by the analysis of
ABC-simulations (37), and of trajectories deposited in Big-
NASim, (40) CTAG is highly polymorphic as seen from
clear bimodal distributions of some helical parameters. To
check that the multi-peaked distributions were not artefacts
due to limited sampling, we extended trajectories for se-
lected tetranucleotides up to 9 ps (Supplementary Table
S1), tracing the changes in the distribution of helical pa-
rameters. The good convergence shown in Supplementary
Figure S1 supports the robustness of our results and sug-



64 Understanding the link between chromatin structure, chromosome conformation and gene regulation

5
[
q
b=l
-

w
8
8
=
u
h [

M3
M1
M2 |
M
M

s
hift  slide

Figure 2. Relative propensities of the multi-modal bps helical coordi-
nates of the central TpA in all 40 sequence contexts. Comparison to the
global average propensities over all sequence contexts per component of
the multi-modal distributions with standard deviations that reflect the
variation of the propensity of each component amongst sequences. The
propensity values were computed BIC analysis (see “Materials and Meth-
ods’ section and Supplementary Methods).

-
=

twist

w

gests a fast dynamic of interchange of the different states
(see ‘Discussion’ section below).

In order to obtain a global average picture of the con-
formational space accessible to the CTAG tetranucleotide,
we joined the 40 individual trajectories (equal number of
snapshots in all cases) to generate a meta-trajectory, which
was then subjected to PCA and BIC analysis. Four base-
parameters (the symmetric buckle and propeller twist of
d(T-A) and d(A-T)) and four bps parameters at the cen-
tral d(TpA) step (roll, twist, shift and slide) emerged as
determinant to explain 60% of the variance in the meta-
trajectory; Six of which were used for further analysis. As
seen in the BIC analysis summarized in Figure 1, devia-
tions from Gaussianity in the form of multi-peaked distri-
butions are the main responsible for the structural poly-
morphisms detected at the bps level. Such deviations could
in principle emerge from two different sources: (i) intrinsic
multi-modality in the individual trajectories and (i) indi-

Nucleic Acids Research, 2019, Vol. 47, No. 9 4421

vidual distributions (coming from the 40 sequences stud-
ied) are Gaussian, but they are centred at different average
values. To analyse which is the real origin of the deviation
from normality in meta-trajectories, we repeated the anal-
ysis for individual trajectories (Figure 1). Roll distributions
were unimodal in all cases, but the position of the peak was
displaced towards slightly higher values when the central
tetranucleotide is surrounded by R at 5 and Y at 3’ (i.e.
RpCpTpApGpY hexanucleotides), leading to a bi-normal
distribution of the meta-trajectory (see Figure 2). The situ-
ation is completely different for twist, slide and shift where
bi- or even tri-modality (three peaks in the distribution) is
clear for individual sequences (see Figure 2 and Supplemen-
tary Figure S2), with the different substates being sampled
in a fast equilibrium along the time scale of the simulations
(see examples in Supplementary Figure S3).

As shift distribution is tri-modal and twist and slide
distributions are bi-modal, we could in principle expect
12 states. However, many of the combinations of twist,
slide and shift substates are not possible, and in prac-
tice, only four states appear when meta-trajectory is pro-
jected in the twist-slide-shift 3D space (Figure 3). In
fact. one of them (high twist/positive slide/zero shift;
HPZ) is populated only in some of the simulations and
has globally a reduced impact in the meta-trajectory en-
semble, which is dominated by three main states (Fig-
ure 4): high twist/positive slide/negative shift (HPN);
high twist/positive slide/positive shift (HPP) and low
twist/negative slide/zero shift (LNZ). Experimental valida-
tion of the suggested polymorphisms is difficult as experi-
mental structures are always averaged (i.e. assuming a nor-
mal unimodal distribution). However, plotting the scarce
experimental data available for the CTAG tetranucleotide
on the 2D population plots (shift-twist, shift-slide and twist-
slide) derived from meta-trajectories provides an indirect,
but strong support to our results. For example, the shift dis-
tribution is very narrow and centred around zero for low
slide values, while when slide increases, larger values (either
positive or negative) of shift are sampled, in perfect agree-
ment with MD meta-trajectories. Similarly, low twist ap-
pears experimentally only in zero shift conformations, while
high shift (either negative or positive) is found only in ex-
perimental structures with a high twist. Although the ma-
jor discrepancies between MD and experiments seem to oc-
cur for the twist-shift plane, filtering the shift values accord-
ing to low/high twist reconcile partially the matching be-
tween experiments and theory (Supplementary Figure S4).
Finally, the twist-slide plot shows only two regions of high
probability consistent with the same slide/twist correlation
found experimentally (see Figure 3 and ‘Discussion’ section
below).

Next-to-nearest dependence in central d(TpA) conformation

All the sequences studied here correspond to the same
tetranucleotide, so a similar distribution of helical parame-
ters at the central d(TpA) step could be expected. However,
this is not the case as shown in selected examples in Sup-
plementary Figure S2, where large differences in the distri-
butions of helical coordinates for the d(TpA) step appear.
Analysis of the trajectories (Figure 1) reveals that the origin
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of the difference emerges from the different weights of the
individual substates defining the global distributions (see a
global summary in Figure 2). Moreover, we observe that
the varying populations of these substates are a direct con-
sequence of sequence context. To go deeper in the analy-
sis of this hexanucleotide variability, we perform Kullback-
Leibler (KL) analysis of the 40 trajectories in the 6D space
defined from the PCA analysis as informative of the entire
flexibility space of the helix (see above). Clustering analy-
sis can be performed from the KL results to determine the
similarity between sequences based on the dynamics of the
central d(TpA) step and organized in the relational den-
drogram (Figure 5), which clearly shows the presence of at
least two major clusters. The first one is populated mainly
by sequences where the central tetranucleotide is flanked
by Y at 5 and R at 3', but also contains two 5'Y-3'Y se-
quences. The other cluster, the largest one, is subdivided

into three different subclusters, two of which are formed
almost exclusively of sequences where the central tetranu-
cleotide is surrounded by R at 5" and Y at 3'; finally, the last
cluster corresponds to situations where the CTAG tetrad
is surrounded by 5'R--3'R. Examples of prototypical distri-
butions obtained for representative sequences in each clus-
ter are shown in Supplementary Figure S5, which demon-
strate that the hexanucleotide content has a non-negligible
role in defining the properties of the central d(TpA) step in
the CTAG tetranucleotide, a clear exception of the nearest
neighbour model. Furthermore, the presence of some hex-
anucleotides in different clusters suggests that some cou-
plings might be possible even beyond the next-to-nearest
neighbour level (see below). The rules that govern the sam-
pling of a given substate of the sequences in each cluster can
be understood by analysing sequence-dependent stabilizing
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factors that give rise to the characteristic distributions of
helical parameters depicted in Supplementary Figure S5.
The existence of such effects implies that the motion of
the central TpA step must be somehow connected to the
distant base pairs. Mechanical information should travel
from one site to the other to allow the TpA step to ‘feel’
its environment and respond in a different way according
to the nature of the base pairs located almost half heli-
cal turn away. We were able to find a possible explanation
based on the concerted and correlated movements of the
backbone and bases, by first noting that the twist polymor-
phism at TpA was behaving as the better well-known YpR
step: d(CpG) (18,34,37,39). The two possible twist substates
(HT/LT) at the TpA step were connected to the backbone
BI/BII polymorphism at the next GA junction (note that
BI/BII interconversion is mainly governed by the { tor-
sion). Furthermore, the BI/BII polymorphism at GpA is
possible due to the formation of the intra C8H8-O3" h-bond
and the shift polymorphism in the same junction (Figure
6A and B) (39). Similar results were found if looking to the
correlation of twist at the central TpA step with the bps
at the 5'-side (CpT). It is then clear that the main back-
bone polymorphism (BI/BII) is linked to the base poly-
morphisms, mainly to shift and twist (Supplementary Ta-
ble S2) up to the next-to-nearest neighbours. The informa-
tion travels through successive backbone and base poly-
morphisms, which are limited to some specific substates

due to DNA’s crankshaft motion (Supplementary Table S2).
This dynamically concerted movement of either (alone or
in combination) shift/slide/twist step parameters and the {
torsion could be appreciated from the Pearson correlation
coefficients that clearly show a correlation/anti-correlation
pattern in successive bps. Since intra-molecular CH-O h-
bonds are mainly responsible for the information transfer
between the backbone and the base (39) (with perhaps a
small contribution from the known sugar puckering flex-
ibility, see Supplementary Table S2), both backbone and
base polymorphisms can be followed by looking only to
the formation of those C8H8-O3’ hbonds in RpR and YpR
steps, or C6H6-O3" hbonds in RpY and YpY steps. The
correlated/anti-correlated formation of these h-bonds away
from the central TpA step clearly explains the transfer of
mechanical information up to the next-to-nearest neigh-
bours, and also beyond depending on the sequence (see
‘Discussion’ section below and Figure 6C). As a general
rule, at the tetranucleotide level, the BII backbone state is
significantly favoured at the 3’ side on either strand (i.e. at
GpA step). The correlations of backbone substates with the
helical parameters at TpA paint a picture where negative
shift is related to having more BI at the GpA of the Watson
strand and more BII at GpA on the Crick strand, with pos-
itive shift being favoured in the exactly opposite situation.
Additionally, the TpA can be found in a low twist state only
when both 3’ GpA junctions are in BII, while the simultane-
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the buckle of dA (see Supplementary Methods).

ous Bl state on both strands at GpA will promote high twist
at TpA. The next-to-nearest context and sometimes more
remote sequence effects can modulate the relative popula-
tions of BI/BII on the two strands, which in turn will affect
the helical parameters at the central TpA. It’s worth noting
that the correlations between helical parameters in consec-
utive steps are mostly anti-correlations, and in general the
global twist distribution of a tetra- or hexanucleotide seg-
ment can be perfectly described by a single Gaussian func-
tion. This means that, from a static and averaged view, the
correlations/anti-correlations between substates in consec-
utive steps are leading to compensatory effects.

In addition to the backbone movements and h-bonds,
each substate at the TpA step is modulated and stabilized
by other factors, such as interactions with ions and stack-
ing between consecutive bases. For CpG, a relatively sim-
ple mechanism was found where the entrance of Na+/K+
inside the minor groove triggered and stabilized the low
twist state and hence BII (18). For TpA, the mechanism
is much more complex, since it involves a combination of
shift/slide/twist substates and the movements of K+ from
the major groove of CpT to the major groove of ApG,
when going from HPN (high twist/positive slide/negative
shift) to HPP (high twist/positive slide/positive shift) (Sup-

plementary Figure S6). A depletion of cations inside both
grooves for the whole tetranucleotide was observed when
moving to the LNZ substate (low twist/negative slide/zero
shift). All the sequences studied share the same redistribu-
tion of K+ when moving between the substates, but the
sequence-specific populations of each substate lead to dif-
ferent overall ion distributions when changing the next-to-
nearest neighbour’s context (Supplementary Figure S7). Fi-
nally, we found that at the TpA step, the stacking strength
on either strand increased significantly when shift moves to-
ward the minor groove at high twist and positive slide, an
interaction that further stabilizes the BII state at the 3’ junc-
tion (Supplementary Figure S8).

Structural information travels beyond next-to-nearest neigh-
bours

Sequences studied here cover all the next-to-nearest neigh-
bours’ space with some redundancy that allowed us to check
for some remote effects beyond this level. As noted above,
such effects are clearly visible already in Figure 5, where se-
quences containing the same hexanucleotide sequence ap-
pear in two very different branches of the dendrogram, in-
dicating the tuning of hexanucleotide preferences by more
remote effects. Analysis of the different octanucleotidic en-
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to BII propensities, stabilizing the BII substate.

vironments (R--R/Y--Y), (Y--R) and (R--Y) reveals the ex-
istence of a quite differential behaviour (see Figure 7). For
example, the conformational substates of the central TpA
step in YpCpTpApGpR sequences (Y--R) are fully defined
at the next-to-nearest neighbours level, with remote effects
being negligible: all (Y--R) hexanucleotides appear in the
same cluster in the dendrogram of Figure 5, and they dis-
play consistent distributions in all multi-modal helical pa-
rameters (shift has two main populations at +2 A, with
the zero shift state being less favoured). Slide and Twist
are, as a consequence, pushed towards higher values. This
makes sense, considering that, irrespective of the octanu-
cleotide level base, when ApG is followed by an R base
on both strands, the junction at ApG will be pushed out
of the BII state. This frustration of high BII propensity of

two adjacent bps (a direct consequence of the crankshaft
effect) will result in an overall higher BI population at
ApG, which corresponds to the high twist, positive slide
and negative/positive shift equilibrium at TpA. On the con-
trary, R--Y hexanucleotides (RpCpTpApGpY sequences)
have two very distinct behaviours depending on the next
flanking base: Central TpA steps in RpRpCpTpApGpYpY
(RR--YY) octanucleotides tend to populate zero shift states
and have equal populations of high/low twist as well as of
negative/positive slide. On the contrary, TpA in YR--YR
octanucleotide contexts have a strong preference for posi-
tive shift and rarely visit low twist or negative slide. Inspec-
tion of the trajectories suggests that this is probably due to
a domino effect of h-bond proclivity so that depending on
the base pairs flanking the R--Y hexanucleotide there is ei-
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ther an equally strong preference towards BII at ApG on
the two strands, or the Watson strand BII state is favoured
over the Crick, which is necessarily compensated by shift-
ing the bases towards the major groove. Finally, remote se-
quence effects are present just in a few cases for R-R/Y-Y
hexanucleotides and lead to a change in shift from the mi-
nor to the major groove, maintaining similar distributions
of twist and slide (Figure 7). In summary, our results sug-
gest that CTAG is one of the few tetranucleotides (amongst
the unique 136) where next-to-nearest neighbours and be-
yond effects are observed, while in general, nearest neigh-
bour models can accurately explain by ‘concatenation of
tetranucleotides’ the described remote effects in longer se-
quences.

Data mining of structural databases and genomic implica-
tions

We analysed the structures of DNA obtained experimen-
tally (X-ray and NMR) and stored in the Protein Data Bank
that contained the CTAG tetranucleotide sequence in or-
der to validate our results. Only 106 occurrences of CTAG
in naked DNA structures were found (some with small lig-
ands or metal ions), and 160 occurrences in structures of

protein—-DNA complexes. Moreover, only a fraction of the
tetranucleotide sequence space is covered (next-to-nearest
neighbours), and barely any of the hexanucleotide context
(octanucleotides of the type XpXpCpTpApGpXpX, where
X =C, T, A, G) is found (Supplementary Table S3). This
scarcity of data clearly limits the generality of the conclu-
sions that could be derived from the data mining of the
PDB, although a BIC analysis of the experimental struc-
tural parameters of TpA steps flanked by 5'C-3'G at least
confirms that multi-modality is not a force field artefact
(Supplementary Figure S9). PDB structures containing the
CTAG tetranucleotide have values for the shift, slide, roll
and twist helical parameters that cover the multi-modal
distributions obtained in our trajectories, confirming our
claims on the bimodal nature of slide and twist, with peaks
in the distributions that fit well to our results (see Figure 8
and Supplementary Figure S9). For shift, TpA steps distri-
bution displays peaks 2 A towards both the minor or ma-
jor groove in several protein-bound DNA structures, but
the data on naked DNA seem to be insufficient to cover
these deformations: there is a small peak at +2 A, but highly
underestimated compared to our results. Finally, roll has a
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broad distribution, similar to what we obtain from MD sim-
ulations, being bi-normal, but unimodal.

All analyses performed in this work suggests that CTAG
has really unique physical properties, which should provide
the genome with a point of high flexibility and polymor-
phism. Very remarkably, CTAG is one of the lowest popu-
lated tetranucleotides in the analysed species (see Figure 9)
appearing mainly on intergenic regions and very rarely on
genes (Supplementary Figure S10). We further highlighted
this by analysing comparatively, with and without including
exons, all the tetranucleotides containing the trinucleotide
TpApG (XTAG or TAGX, where X could be A, C, G or
T), which is known as the amber stop codon. Our results
still confirm the low rate of the CTAG tetranucleotide, even
removing the TpApG stop codon (Supplementary Figure
S11). Interestingly, this infrequent CTAG tetranucleotide
is well conserved, which suggest that (i) despite being far
from coding regions they are important for the functional-
ity of the cell, or alternatively, (ii) they are easily accessible
to the mismatch repairing machinery, avoiding the stabiliza-
tion of mutations. The same conclusion can be reached from

the analysis of cancer genomic data, which show that again
CTAG is very rarely mutated in cancer (Supplementary Fig-
ure S12). The unusual physical properties of the CTAG
tetranucleotide matches its unusual prevalence and distri-
bution in the genome and its extreme resilience to somatic
(cancer) mutations. It is tempting to believe that cell takes
advantage of the unusual properties of CTAG as points of
high flexibility that might help to fold chromatin.

CONCLUSIONS

We present here an in-depth study of one of the most “struc-
turally speaking’ polymorphic tetranucleotides found in B-
DNA. The complete helical space of the CTAG tetranu-
cleotide has been analysed by means of extensive molec-
ular dynamics simulations and by data mining the Pro-
tein Data Bank, confirming its highly polymorphic be-
haviour at several helical parameters: shift, slide, twist and
BI/BII. This confers to CTAG the possibility to exist in
several different substates, being particularly flexible. We
present here clear evidence that the type of substate dis-
played by CTAG in a given sequence context, and in conse-
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quence its dynamics, is sequence dependent, and fine-tuned
by next-to-nearest neighbours and beyond. Based on the
concerted and correlated movements of bases and back-
bone torsions for the described multi-modal degrees of free-
dom, and driven by the mechanical limitations imposed by
DNA's crankshaft motions, we were able to found a pos-
sible explanation on how structural information can travel
almost half helical turn away from the central TpA step.
This remote structural ‘connection’ allows the TpA step to
‘feel’ its sequence environment beyond the next-to-nearest
neighbours, and eventually adopts a different substate if
needed. Moreover, we found that previously described un-
conventional intra-molecular hydrogen bonds of the type
C8HS8-03" and C6H6-03' that link the movements of the
bases with the torsions in the backbone, could be used as
descriptors of such correlated motions. Finally, we estab-
lished that although this highly flexible tetranucleotide is
extremely under-represented in several genomes along the
animal Kingdome, being mostly present in intergenic se-
quences, it has been preserved with a low rate of mutation
implying a possible physical role for CTAG at the genomic
level.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

M.O.is an ICREA (Institucié Catalana de Recerca i Estudis
Avangats) academia researcher. P.D.D. is a PEDECIBA
(Programa de Desarrollo de las Ciencias Basicas) and SNI
(Sistema Nacional de Investigadores, Agencia Nacional de
Investigacion e Innovacion, Uruguay) researcher.

Author contributions: The sequence library was designed by
P.D.D. and A.B. Simulations were performed by A.B., with
the assistance of JW. and P.D.D. Analysis of the simula-
tions was designed and performed by A.B., with all au-
thors involved in assessing results and further discussions.
D.B. did the genome-wide analysis, and A.H. helped with
the data mining of PDB structures. M.O. and P.D.D. inte-
grated all the results, discussed the analysis and wrote the
manuscript with contributions from all the co-authors. The
original idea of the project came from P.D.D. and M.O.

FUNDING

Spanish  Ministry of Science [BFU2014-61670-EXP,
BFU2014-52864-R]; Catalan SGR, Instituto Nacional
de Bioinformatica; European Research Council (ERC
SimDNA); European Union’s Horizon 2020 Research and
Innovation Program [676556]; Biomolecular and Bioin-
formatics Resources Platform (ISCIIT PT 13/0001/0030)
co-funded by the Fondo Europeo de Desarrollo Regional
(FEDER) (to M.O.); MINECO Severo Ochoa Award
of Excellence (Government of Spain) (awarded to IRB
Barcelona). Funding for open access charge: European
Union’s Horizon 2020 Research and Innovation Program
[676556].

Conflict of interest statement. None declared.

REFERENCES

. Wilkins,M.H.F., Stokes,A.R. and Wilson,H.R. (1953) Molecular
structure of nucleic acids: molecular structure of deoxypentose
nucleic acids. Nature, 171, 738-740.

. Franklin,R.E. and Gosling,R.G. (1953) Molecular configuration in
sodium thymonucleate. Nature, 171, 740-741.

. Lucas,A.A., Lambin,P.,, Mairesse,R. and Mathot,M. (1999)

Revealing the backbone structure of B-DNA from laser optical

simulations of its X-ray diffraction diagram. J. Chem. Educ.,76, 378.

Kypr.J., Kejnovska,l., Renciuk,D. and Vorlickova,M. (2009) Circular

dichroism and conformational polymorphism of DNA. Nucleic Acids

Res., 37, 1713-1725.

. Kato,M. (1999) Structural bistability of repetitive DNA elements
featuring CA/TG dinucleotide steps and mode of evolution of
satellite DNA. Eur. J. Biochem., 265, 204-209.

. Kielkopf,C.L., Ding,S., Kuhn,P. and Rees,D.C. (2000)
Conformational flexibility of B-DNA at 0.74 a resolution:
d(CCAGTACTGG)2. J. Mol. Biol., 296, 787-801.

. Machigashi,T., Hsiao,C., Kruger Woods,K., Moulaei, T., Hud,N.V.
and Dean Williams,L. (2012) B-DNA structure is intrinsically
polymorphic: even at the level of base pair positions. Nucleic Acids
Res., 40, 3714-3722.

. Monchaud,D., Allain,C., Bertrand,H., Smargiasso,N., Rosu,F.,
Gabelica,V., De Cian,A., Mergny,J.-L. and Teulade-Fichou,M.-P.
(2008) Ligands playing musical chairs with G-quadruplex DNA: A
rapid and simple displacement assay for identifying selective
G-quadruplex binders. Biochimie., 90, 1207-1223.

. Radhakrishnan,I. and Patel,D.J. (1994) DNA Triplexes: Solution
structures, hydration sites, energetics, interactions, and function.
Biochemistry, 33, 11405-11416.

10. Kaushik,M., Kaushik,S., Bansal,A., Saxena,S. and Kukreti,S. (2011)
Structural diversity and specific recognition of four stranded
G-quadruplex DNA. Curr. Mol. Med., 11, 744-769.

. Dai,J., Carver,M. and Yang,D. (2008) Polymorphism of human
telomeric quadruplex structures. Biochimie., 90, 1172-1183.

2. Dans,P.D., Pérez,A., Faustino,l., Lavery,R. and Orozco,M. (2012)
Exploring polymorphisms in B-DNA helical conformations. Nucleic
Acids Res., 40, 10668-10678.

. Dans,P.D., Danilane,L., Ivani,l., Dr3ata,T., Lankas,F., Hospital,A.,
Walther,J., Pujagut,R.1., Battistini,F., Gelpi,J.L. et al. (2016)

[

w

>

w

=

-

o

o

2

w



20.

[

22.

2

[
[

W

3

Y

3

»

72

Understanding the link between chromatin structure, chromosome conformation and gene regulation

Long-timescale dynamics of the Drew-Dickerson dodecamer. Nucleic
Acids Res., 44, 4052-4066.

. Imeddourene,A. Ben, Xu,X., Zargarian,L., Oguey,C., Foloppe,N.,

Mauffret,O. and Hartmann,B. (2016) The intrinsic mechanics of
B-DNA in solution characterized by NMR. Nucleic Acids Res., 44,
3432-3447.

. Ben Imeddourene,A., Elbahnsi,A., Guéroult,M., Oguey,C.,

Foloppe,N. and Hartmann,B. (2015) Simulations meet experiment to
reveal new insights into DNA intrinsic mechanics. PLOS Comput.
Biol., 11, €1004631.

. Tian,Y., Kayatta,M., Shultis,K., Gonzalez,A., Mueller,L.J. and

Hatcher,M.E. (2009) *! P NMR investigation of backbone dynamics
in DNA binding sites’. J Phys. Chem. B, 113, 2596-2603.

. Zgarbova,M., Jurecka,P., Lanka3,F., Cheatham,T.E., Sponer,J. and

Otyepka,M. (2017) Influence of BII backbone substates on DNA
Twist: A unified view and comparison of simulation and experiment
for all 136 distinct tetranucleotide sequences. J. Chem. Inf. Model.,
57,275-287.

. Dans,P.D., Faustino,I., Battistini,F., Zakrzewska,K., Lavery,R. and

Orozco,M. (2014) Unraveling the sequence-dependent polymorphic
behavior of d(CpG) steps in B-DNA. Nucleic Acids Res., 42,
11304-11320.

. Balaceanu,A., Pérez,A., Dans,P.D. and Orozco,M. (2018) Allosterism

and signal transfer in DNA. Nucleic Acids Res., 46, 7554-7565.
Calladine,C.R., Drew,H.R., Luisi,B.F. and Travers,A.A. (2004)
Understanding DNA: The molecule and how it works. Elsevier
Academic Press, London and San Diego.

. Dickerson,R.E. and Klug,A. (1983) Base sequence and helix

structure variation in B and A DNA. J Mol. Biol., 166, 419-441.
Fratini,A. V, Kopka,M.L., Drew,H.R. and Dickerson,R.E. (1982)
Reversible bending and helix geometry in a B-DNA dodecamer:
CGCGAATTBrCGCG. J Biol. Chem., 257, 14686-14707.

3. Olson,W.K., Gorin,A.A., Lu,X.J., Hock,L.M. and Zhurkin,V.B.

(1998) DNA sequence-dependent deformability deduced from
protein-DNA crystal complexes. Proc. Natl. Acad. Sci. US.A., 95,
11163-11168.

. Cheatham, T.E., Cieplak.P. and Kollman,P.A. (1999) A modified

version of the Cornell et al. Force field with improved sugar pucker
phases and helical repeat. J. Biomol. Struct. Dyn., 16, 845-862.

. Pérez,A., Marchan,l., Svozil,D., Sponer,J., Cheatham,T.E.,

Laughton,C.A., Orozco,M. and Orozco,M. (2007) Refinement of the
AMBER force field for nucleic acids: improving the description of
alpha/gamma conformers. Biophys. J., 92, 3817-3829.

. Driata,T. and Lankas,F. (2015) Multiscale modelling of DNA

mechanics. J. Phys. Condens. Matter, 27, 323102.

. Dr3ata,T., Pérez,A., Orozco,M., Morozov,A. V., Sponer..l. and

Lanka3,F. (2013) Structure, stiffness and substates of the
Dickerson-Drew dodecamer. J. Chem. Theory Comput., 9, 707-721.

. Ivani,I., Dans,P.D., Noy,A., Pérez,A., Faustino,l., Hospital,A.,

Walther,J., Andrio,P., Goni,R., Balaceanu,A. et al. (2016) Parmbscl:
a refined force field for DNA simulations. Nat. Methods, 13, 55-58.

. Dans,P.D., Ivani,l., Hospital,A., Portella,G., Gonzilez,C. and

Orozco,M. (2017) How accurate are accurate force-fields for B-DNA?
Nucleic Acids Res., 45, 4217-4230.

. Jiang, W,, Phillips,J.C., Huang,L., Fajer,M., Meng.Y., Gumbart,J.C.,

Luo,Y., Schulten,K. and Roux,B. (2014) Generalized scalable
multiple copy algorithms for molecular dynamics simulations in
NAMD. Comput. Phys. Conunun., 185, 908-916.

. Salomon-Ferrer,R., Gotz,A.W., Poole,D., Le Grand,S. and

Walker,R.C. (2013) Routine microsecond molecular dynamics
simulations with AMBER on GPUs. 2. explicit solvent particle mesh
ewald. J. Chem. Theory Comput.,9, 3878-3888.

2. Lee,J., Cheng,X., Swails,JM., Yeom,M.S., Eastman,PK.,

LemkulJ.A., Wei,S., Buckner,J., Jeong,J.C., Qi.Y. e al. (2016)
CHARMM-GUI Input generator for NAMD, GROMACS,
AMBER, OpenMM, and CHARMM/OpenMM simulations using
the CHARMM 36 additive force field. J. Chem. Theory Comput., 12,
405-413.

. Pall,S., Abraham,M.J., Kutzner,C., Hess,B. and LindahlLE. (2015)

Tackling Exascale Software Challenges in Molecular Dynamics
Simulations with GROMACS. Springer, Cham, Stockholm, pp. 3-27.
Beveridge,D.L., Barreiro,G., Suzie Byun,K., Case,D.A.,

Cheatham, T.E., Dixit,S.B., Giudice,E., Lankas,F., Lavery,R.,
Maddocks,J.H. er al. (2004) Molecular dynamics simulations of the

3

3

=

37.

3

3

=l

4

4

42.

4

4

4

46.

4

4

4

=l

5

5

w
¥

53.

5

'S

bl

i

=

P

ks

“

N~

oo

S

Nucleic Acids Research, 2019, Vol. 47, No. 9 4429

136 unique tetranucleotide sequences of DNA Oligonucleotides. I.
research design and results on d(CpG) steps. Biophys. J., 87,
3799-3813.

Dixit,S.B., Beveridge,D.L., Case,D.A., Cheatham,T.E., Giudice,E.,
Lankas.F., Lavery.R., Maddocks.J.H., Osman,R ., Sklenar,H. et al.
(2005) Molecular dynamics simulations of the 136 unique
tetranucleotide sequences of DNA Oligonucleotides. I1: Sequence
context effects on the dynamical structures of the 10 unique
dinucleotide steps. Biophys. J., 89, 3721-3740.

. Lavery,R., Zakrzewska K., Beveridge,D., Bishop,T.C., Case,D.A.,

Cheatham,T., Dixit,S., Jayaram,B., Lankas,F., Laughton,C. er al.
(2010) A systematic molecular dynamics study of nearest-neighbor
effects on base pair and base pair step conformations and fluctuations
in B-DNA. Nucleic Acids Res., 38, 299-313.

Pasi,M., Maddocks,J.H., Beveridge,D., Bishop,T.C., Case,D.A.,
Cheatham,T., Dans,P.D., Jayaram,B., Lankas,F., Laughton,C. er al.
(2014) pABC: A systematic microsecond molecular dynamics study
of tetranucleotide sequence effects in B-DNA. Nucleic Acids Res., 42,
12272-12283.

Pasi,M., Maddocks,J.H. and Lavery,R. (2015) Analyzing ion
distributions around DNA: sequence-dependence of potassium ion
distributions from microsecond molecular dynamics. Nucleic Acids
Res., 43, 2412-2423.

. Balaceanu,A., Pasi,M., Dans,P.D., Hospital,A., Lavery,R. and

Orozco,M. (2017) The role of unconventional hydrogen bonds in
determining BII propensities in B-DNA. J. Phys. Chem. Lett., 8,
21-28.

Hospital,A., Andrio,P., Cugnasco,C., Codo,L., Becerra,Y.,
Dans,P.D., Battistini,F., Torres,J., Goii,R., Orozco,M. et al. (2016)
BIGNASim: A NoSQL database structure and analysis portal for
nucleic acids simulation data. Nucleic Acids Res., 44, D272-D278.

. Yuan,H., Quintana,J. and Dickerson,R.E. (1992) Alternative

structures for alternating poly(dA-dT) tracts: the structure of the
B-DNA decamer C-G-A-T-A-T-A-T-C-G. Biochemistry, 31,
8009-8021.

Mack,D.R., Chiu,T.K. and Dickerson,R.E. (2001) Intrinsic bending
and deformability at the T-A step of CCTTTAAAGG: a comparative
analysis of T-A and A-T steps within A-tracts. J Mol. Biol., 312,
1037-1049.

Case,D.A., Betz,R.M., Cerutti,D., Cheatham,T.E. III, Darden,T.A.,
Duke,R.E., Giese,T.J., Gohlke,H., Goetz,A.W., Homeyer,N. et al.
(2016) AMBER 2016.

Berendsen,H.J.C., Grigera,J.R., Straatsma,T.P., Grigera,J.R.,
Straatsma,T.P., Berendsen,H., Grigera,J., Straatsma,T., Grijera,J.,
Berendsen,H.J.C. er al. (1987) The missing term in effective pair
potentials. J. Phys. Chem., 91, 6269-6271.

Smith,D.E. and Dang,L.X. (1994) Computer simulations of NaCl
association in polarizable water. J. Chem. Phys., 100, 3757-3766.
Dang,L.X. (1995) Mechanism and thermodynamics of ion selectivity
in aqueous solutions of 18-Crown-6 Ether: A molecular dynamics
study. J. Am. Chem. Soc., 117, 6954-6960.

Dang,L.X. and Kollman,P.A. (1995) Free energy of association of the
K+:18-Crown-6 complex in Water: A new molecular dynamics study.
J. Phys. Chem., 99, 55-58.

Darden,T., York,D. and Pedersen,L. (1993) Particle mesh Ewald: An
N -log(N) method for Ewald sums in large systems. J. Chem. Phys.,
98, 10089-10092.

. Ryckaert,J.-P., Ciccotti,G. and Berendsen,H.J. (1977) Numerical

integration of the cartesian equations of motion of a system with
constraints: molecular dynamics of n-alkanes. J. Comput. Phys., 23,
327-341.

Hospital,A., Faustino,l., Collepardo-Guevara,R., Gonzilez,C.,
Gelpi,J.L. and Orozco,M. (2013) NAFlex: a web server for the study
of nucleic acid flexibility. Nucleic Acids Res., 41, W47-W55.

. Lavery,R., Moakher,M., Maddocks.J.H., Petkeviciute,D. and

Zakrzewska,K. (2009) Conformational analysis of nucleic acids
revisited: curves+. Nucleic Acids Res., 37, 5917-5929.

2. Schwarz,G. (1978) Estimating the dimension of a Model. Ann. Stat.,

6,461-464.
Kass,R.E. and Raftery,A.E. (1995) Bayes factors. J. Am. Stat. Assoc.,
90, 773-795.

. Schilling,M.F., Watkins,A.E. and Watkins,W. (2002) Is human height

bimodal? Am. Stat., 56, 223-229.



Chapter 3. Sequence dependent DNA flexibility and protein recognition 73

4430 Nucleic Acids Research, 2019, Vol. 47, No. 9

55. Ghosh,A. and Bansal,M. (2003) A glossary of DNA structures from 61. Heinz,S., Benner,C., Spann,N., Bertolino,E., Lin,Y.C., Laslo,P.,
Atto Z. Acta Crystallogr. Sect. D Biol. Crystallogr, 59, 620-626. Cheng,J.X., Murre,C., Singh,H. and Glass,C.K. (2010) Simple
56. Jolliffe,I.T. (1986) Principal Component Analysis. Springer-Verlag, combinations of Lineage-determining transcription factors Prime
NY. cis-Regulatory elements required for macrophage and B Cell
57. Hotelling,H. (1933) Analysis of a complex of statistical variables into Identities. Mol. Cell, 38, 576-589.
principal components. J. Educ. Psychol., 24, 417-441. 62. Alexandrov,L.B., Nik-Zainal,S., Wedge,D.C., Aparicio,S.A.JR.,
58. Drsata,T. and Lankas,F. (2013) Theoretical models of DNA Behjati,S., Biankin,A.V., Bignell,G.R., Bolli,N., Borg,A.,
flexibility. Wiley Interdiscip. Rev. Comput. Mol. Sci., 3, 355-363. Borresen-Dale,A -L. et al. (2013) Signatures of mutational processes
59. Ward,J.H. (1963) Hierarchical grouping to optimize an objective in human cancer. Nature, 500, 415-421.
function. J. Am. Stat. Assoc., 58, 236-244. 63. Zerbino,D.R., Achuthan,P., Akanni,W., Amode,M.R., Barrell,D.,
60. Murtagh,F. and Legendre,P. (2014) Ward’s hierarchical agglomerative Bhai,J., Billis,K., Cummins,C., Gall,A., Giron,C.G. et al. (2018)
clustering method: Which algorithms implement ward’s Criterion? J. Ensembl 2018. Nucleic Acids Res., 46, D754-D761.

Classif., 31, 274-295.



74 Understanding the link between chromatin structure, chromosome conformation and gene regulation

3.2 Sequence selective protein-DNA recognition

In the previous section, the polymorphic nature of a specific tetramer sequence was
explored. Next, we studied a broader set of DNA structures to understand whether
the DNA physical properties are enough to explain the structural difference
between the naked DNA sequences and the bioactive conformation found in
protein-DNA complexes taken from the PDB. The study of the structures of the
protein-bound DNA available revealed the prevalence of a shape readout model on
protein recognition of DNA binding sites. Here, two mechanisms can lead to the

DNA to adopt the bioactive conformation:

¢ Conformational selection when the structural changes occur spontaneously
in the absence of the protein. Then, the deformation energy required to
adopt the protein-bound conformation is within the energy range sampled

by the free DNA (thermal energy fluctuations).

e Induced fit when the changes occur after the binding event. In this case the
DNA is highly distorted by the protein and consequentially the

deformation energy required is high.

In this work, we selected structures from the PDB containing protein-DNA
complexes, applying a set of filters to discard those comprising single-stranded or
extremely distorted B-DNA conformations (for instance including opened base-
pairs), and investigated the evidence towards conformational selection or induced
fit in these complexes using MD simulations and essential dynamics analyses. The
helical parameters were collected from the MD simulations of the naked DNA and
a statistical test was computed to evaluate whether the values explored by each
physical descriptor contained those from the experimentally determined structures.
We used Hoteling’s multivariate statistical test for each helical movement,
computing

n—

m
F= -0 (u-x (3.1

m

where n is the number of frames in the MD simulation, m is the number of base

pair steps in each sequence, u is the vector containing the observed values of the
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helical parameter in the PDB structure, x is the vector containing the average values
along time of the helical parameters and S the covariance matrix of these values. A
significant F value (that is F > Fi_4.mn-m at 1 —a = 95%, where Fi_4.mn-m is the
1 — a quantile of an F distribution with m,n — m degrees of freedom) indicates that
the bound conformation is not sampled by the naked DNA trajectory. With this
analysis we found that in a large proportion of the cases, the helical motions

required for the bound conformation are sampled by naked DNA.

Then, we characterized those structures having a significant Hoteling’s statistic, i.e.
the conformation in the protein-DNA complex is not sampled by the naked DNA
simulations. Detailed statistical analysis of each base pair step helical parameter
revealed the positions that caused the global F value to be large, comparing the
experimental value in the complex with the values sampled in the naked DNA
simulations. When large distortions are observed in the protein-bound
conformation, usually they are found at regions that directly interact with the
bound protein, linked to changes in the backbone angles and to the tendency of the

phosphates to approach cationic residues.

Additionally, computing the deformation energy associated with protein-DNA
binding, we observed the prevalence of a conformational selection in a large
proportion of the cases (71%) over a small percentage where the induced-fit was the
major driver for the complex formation (11%) (the remaining 18% is in a zone

where both processes might be occurring).

In summary, the statistical analysis of our trajectories supports the shape readout
mechanism of protein-DNA binding. However, although the sequence dependent
physical properties are important for adopting the required conformation in most
of the complexes analyzed, they are not sufficient to explain the mechanism of
protein binding in all the cases as specific sequence-reading may contribute to

significant DNA-protein interaction.
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Abstract

The rules governing sequence-specific DNA—protein recognition are under a long-standing debate regarding
the prevalence of base versus shape readout mechanisms to explain sequence specificity and of the
conformational selection versus induced fit binding paradigms to explain binding-related conformational
changes in DNA. Using a combination of atomistic simulations on a subset of representative sequences and
mesoscopic simulations at the protein-DNA interactome level, we demonstrate the prevalence of the shape
readout model in determining sequence-specificity and of the conformational selection paradigm in defining
the general mechanism for binding-related conformational changes in DNA. Our results suggest that the DNA
uses a double mechanism to adapt its structure to the protein: it moves along the easiest deformation modes
to approach the bioactive conformation, while final adjustments require localized rearrangements at the base-
pair step and backbone level. Our study highlights the large impact of B-DNA dynamics in modulating DNA—

protein binding.

© 2019 Elsevier Ltd. All rights reserved.

Introduction

DNA-protein recognition, an essential step in
gene regulation, depends on both the accessibility
of the DNA and its intrinsic affinity for the protein.
Accessibility is related to the chromatin fold and to
the presence of competing proteins, while affinity is
determined by the formation of protein-DNA con-
tacts and by the cost of deforming the DNA duplex
from the naked to the bound bioactive conformation.
Two extreme situations can be envisioned in DNA—
protein binding: one where the complex formation
follows a base readout mechanism in which specific
DNA-protein contacts determine sequence speci-
ficity, and another one where the binding follows an
shape readout model; that is, DNA deformability
properties explain sequence-specific binding [1].
Shape (indirect) readout describes protein~-DNA
recognition mechanisms that depend on the ability
of a DNA sequence to adopt a conformation that
facilitates its binding to the protein or that intrinsically

0022-2836/© 2019 Elsevier Ltd. All rights reserved.

has the matching conformation for the protein
binding. Protein-DNA shape recognition involves
the formation of specific binding sites for positively
charged amino acids, ARG/LYS, indirect contacts
with phosphates, some direct hydrogen bonds
established with DNA bases and interactions medi-
ated through water molecules. Those interactions
depend on the different solvation, above all, upon
binding, the release of water molecules from the
protein—-DNA interface provide a favorable entropic
contribution, and it is important for selectivity [2—4].
Very often, protein binding leads to a conformational
change in DNA, and again two different models can
be proposed to explain the connection between
structural flexibility and binding: conformational
selection and induced fit. The recognition modes
contribute to the overall protein-ligand binding
mechanism that couples conformational selection
and conformational changes, which depend on the
ligand, in this case DNA, and protein properties and
on multiple conditions, including the interactions

Joumnal of Molecular Biology (2019) 431, 3845-3859
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between the biomolecules, their concentrations [5]
and the rate of the conformational transition [6].
Within the conformational selection paradigm, the
deformation energy required to move the DNA from
naked to bioactive conformation is small, typically
within the DNA thermal fluctuation, and it is then
sampled spontaneously in the “unbound” state. On
the contrary, according to the induced fit model the
DNA deformation energy required for binding is
large, hampering the spontaneous population of the
bound state from the naked B-DNA dynamics.

In the last decades, many experimental and
computational studies analyzed the specificity of
the protein—-DNA binding to better understand their
recognition [7—15]. Thus, databases have been built
and software has been developed to study the
interactions, affinity and selectivity in protein—-DNA
binding [7]. Databases store, for example, preferred
DNA binding sites for a large number of proteins as
determined by SELEX-seq/HT-SELEX, microarrays,
chromatin immunoprecipitation and others [8-17].
Such sequence-based information is combined with
the structural analysis of known protein—-DNA com-
plexes to derive interaction rules, which are imple-
mented in a variety of statistical methods [7,18-22].
Alternatively, ab initio approaches to the study of
protein—-DNA interactions are based on the use of
energy-based in silico methods, which use protein—
DNA direct interaction terms [21], and deformation
energies derived from DNA properties [22] to
recognize binding sites through structural signals.

Despite the variety of experimental and computa-
tional studies on DNA-protein binding, the relative
importance of base versus shape readout is unclear,
and no consensus exists on the prevalence of
induced fit or conformational selection paradigms
[1]. Certainly, part of the problem is due to the
discrepancy existing in the experimental information
available, as data obtained from HT-SELEX [17,23],
footprinting [24], protein binding microarrays [8,25]
or ChIP-chip/ChlP-seq experiments [12,26,27] de-
pend on the experimental technique and conditions
making statistical methods noisy and often over-
trained to reproduce just one type of data. For this
reason, experimentally trained statistical methods
should be complemented with approaches based on
the calculation of interaction and deformation ener-
gies by means of physical models, which are not
influenced by the noise of high-throughput experi-
mental data [28-38].

In this article, we present an in silico analysis of the
role of DNA conformational flexibility in the formation
of protein—-DNA complexes. The systematic evalua-
tion of the conformational changes of physiological
DNA associated with protein binding was performed
using molecular dynamics simulations, with the
newly refined parmbsci force field, which allowed
performing analyses of DNA structure and flexibility
with accuracy similar to that of current experimental

techniques [39-43], and mesoscopic simulations,
focusing on DNA sequence preferences. Results
presented here provide convincing evidence for the
impact of the shape readout on the DNA—protein
interactome, and for the prevalence of conforma-
tional selection mechanism in defining binding-
related conformational change in DNA, at least in
those cases where the protein does not have a clear
disruptive effect on the DNA structure. Our results
suggest that DNA adapts to the presence of the
interacting protein following a dual mechanism:
global movements are facilitated as coded in the
essential dynamics of the duplex, while local
rearrangements are related to displacements at the
base-pair step level and are coupled to complex
backbone rearrangements. In this analysis, we took
into account that the torsion angles from experimen-
tal data (NMR and x-ray) are difficult to determined
and are not completely captured and validated (for a
discussion on experimental backbone torsion angles
reliability, see Refs. [44, 45]). However, results
presented here show how sequence-dependent B-
DNA dynamics are a key player in modulating DNA—
protein recognition and that dynamics of isolated
DNA in physiological conditions is important in
determining DNA—protein interaction, independently
of the specific Protein—-DNA binding motif.

Results and Discussion

MD simulations of the 50 naked DNA sequences
(see Materials and Methods, Fig. 1) provided stable
trajectories without any remarkable distortion after
500 ns of simulation time. The origin of the starting
structure (canonical B-form or bound state) is not
relevant (see Supplementary Fig. S2) supporting the
idea that simulations are sampling equilibrium
conformations without memory of the initial structure.
The conformational space sampled in the trajecto-
ries agrees very well with the one expected for B-
DNA duplexes [39], leading to a set of structures that
lost memory of the initial experimental ones (x-ray or
NMR) [39,40,46].

How is the intrinsic geometry of the DNA
modified by protein binding?

The comparison between the experimental DNA
structure and the conformational space sampled by
the naked DNA in the MD simulations using
Hoteling's statistics (see Materials and Methods)
revealed that in general the bound DNA structure
falls within naked DNA conformational space (red
circle in Fig. 2 for rise and roll and Supplementary
Fig. S3 for the remaining bp parameters). In the few
cases, where DNA ensembles show local differ-
ences from the bound DNA structure, we checked
meticulously for potential uncertainties in the
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Fig. 1. Representation of the protein—-DNA complexes summarized with details in Table S1 [7]. The PDB IDs are

indicated.

reported experimental structure. We found three
NMR structures where doubts may exist regarding
certain structural details. For example, 1C7U
shows highly unusual rise, slide and roll values
(see Supplementary Fig. S4), in regions away from
the protein, signaling potential artifacts in the
refinement leading to abrupt and compensatory
helical profiles [40]. 1ZGW shows an unusual rise
profile at the duplex termini (d(AszA4) and d
(A1sA46)); the large rise in the latter may be

explained by the partial intercalation of Pheqa,
but the large and unusual rise (around 5 A) at the
other base-pair step is very difficult to explain as
there are no interacting protein residues in the
vicinity (see Supplementary Fig. S5). Finally, 2STW
shows further unusual rise values (see Supple-
mentary Fig. S6) at the central d(T,Tg) step, which
can be explained by the presence of the partial
intercalation of Tyrgs, and at the termini (d(C2Gg)
and d(C45G1e)) where the high rise is suspicious as
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it is not justified by any protein—DNA interactions.
Complexes 1T9l, 2KDZ, 2L1G, 1MOW, 1YTF,
2QHB, 1YFI, 1AZP, 1A0A, 1CDW, 3F27 and
3U2B show some unusual values in helical param-
eters of the DNA (Fig. 2), which could, however, be
explained by direct contacts with the protein. For
example, partial intercalation explains the large
kink in the last 3 structures (1CDW, 3F27 and
3U2B), while strong salt-bridge contacts of DNA
backbone with cationic residues of the protein could
explain unusual roll and rise values in 1A0A (see
Fig. 3 and Supplementary Figs. S7-9).

What is the backbone conformation required for
protein binding?

In general, backbone angles in DNA-protein
complexes remained in the conformational space
sampled by naked DNA simulations, like the base-
pair parameters (Fig. 2). However, when large
alterations in helical coordinates are required,
they are achieved by concerted changes in the
backbone angles (q, B, X, €, Y, phase and ¢) [47,48].
Kinks, highly bent base-pair steps, are linked to
significant alterations in sugar puckering, which are
rare in unperturbed DNA and can be coupled to
other backbone changes. It seems that coordinated
movements of a/y and, to a lesser extent, €/ are
frequent in protein-distorted DNA and are related to
the tendency of the phosphates to approach
cationic residues in the interacting protein. Chang-
es use to be localized at regions of direct contact
with the protein. An example is given in Fig. 3 that
shows a detailed analysis of Protein Data Bank
(PDB) ID 1A0A, where distortions in both helical
parameters and backbone angles are visible at
regions interacting with protein. In particular, base-
pair steps with high roll (CC and CG) are correlated
with unusual a/y angle and are in contact with
protein residues ARG, LYS and GLU (Fig. 3). We
also detected correlations between distorted base-
pair step parameters and unusual backbone values
for a/y and phase (in kinked structures also x and §3)
angles where the protein residues are in contact
with the DNA in particular for the structures PDB ID
1CDW, 3U2B and 3F27 (Supplementary Figs. S7-
S9). Overall, our analysis conclude that unbound
DNA backbone is rather flexible under physiological
conditions, and there are few cases where unusual
conformations of the backbone, not present in the
naked ensemble, are required for adopting the
bioactive conformation.

What is the energy cost of deforming helical
coordinates for binding?

The thermal energy fluctuation calculated for naked
DNA along the MD, amounts to around 2.5 + 0.1 kcal/
mol bp (see Materials and Methods) and, accordingly,
when the energy cost of achieving the bound state is
lower than this value, we can conclude that the bound
state can be spontaneously sampled (being thermo-
dynamically accessible at physiological conditions) by
the naked DNA. Inside this energetic range, the DNA-
protein binding follows a behavior that falls into the
conformational selection paradigm. In contrast, when
distortion energy cost is larger than this value, we can
conclude that the DNA needs external effector to
change structure and adopt the bioactive conforma-
tion, leading to the induced fit mechanism (Fig. 4a). We
considered a margin of twice the free DNA fluctuation
energy as a twilight zone (red area in Fig. 4a, between
2.5 and 5.0 kcal/mol bp), where hypothetically both
recognition modes, conformational selection and
induced fit, coexist [49].

Mesoscopic calculations (Fig. 4a) indicate that for 33
of the 50 complexes considered, the energy cost for
the DNA to adapt to the bioactive conformation is within
the free DNA fluctuation energy range and fall inside
the defined blue area (Fig. 4a). That is, in most cases,
binding follows the requirements of the conformational
selection mechanism. The induced fit mechanism
explains binding in 12 of the 50 complexes (white
area in Fig. 4a), while the remaining 5 cases can be
labeled as in the twilight zone (red area in Fig. 4a),
where possibly both mechanisms contribute to the
binding. Our results indicate that conformational
selection seems to be at least twice more prevalent
than induced fit in modulating DNA—protein binding in
our set of representative DNA—protein complexes.

Are essential deformation modes coupled to
protein-induced DNA deformation?

Large protein-induced conformational transitions in
DNA (initial RMSD between naked and bound
structure (RMSD;, >5 A, value to delineate the
boundary between large and small DNA distortion,
defined by the average plus one standard deviation of
the dots in the blue area in Fig. 4a) are possible thanks
to good alignment between the transition vector (from
the naked to the bound structure) and the essential
deformation (ED) modes of the naked DNA (see
Materials and Methods). Such an alignment is not a
necessary for small protein-induced transitions

Fig. 2. Base-pair parameter confidence region profile. For each protein-bound DNA structure identified by their PDB ID,
the axis represents the difference between the observed test statistic and the 95% critical value from the F distribution
(F = Fi—a;m,n-m))- The value for each base-pair parameter, translation rise and rotational roll, can be inside (<0, limit
defined by red line) or outside the naked DNA conformational space (>0). See Materials and Methods and Supplementary

Methods for discussion.
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Fig. 3. Backbone and base-pair parameter analysis for
the complex PDB ID 1A0QA. (a) Analysis of the backbone
angles (a,B,x.€,y,phase, ) is shown. Backbone angle
variation has been analyzed using the difference between
the experimental protein-bound DNA angle values and the
average MD simulated naked DNA values plus the standard
deviation, divided by the standard deviation along the MD
trajectory for each backbone angle (A(bound-MDnaked)).
(b) Comparison comparison between the experimental
(blue) and MD values (red with standard deviation contour
in pink) for base-pair step parameter roll and rise. The
distortion given by the contact of the protein helices and coil
residues (in red and blue, respectively in the image on top
and named in the left panel) at the base level, extreme roll
and rise values at steps CC, CG and GT, is correlated with
deformation of the backbone angles in the backbone.

(RMSD;, < 5 A), where only local rearrangements are
required. This is shown in the dependence of the
RMSD;, and the squared overlap calculated between
ED modes and the transition vector, as well as in the
correlation between RMSD, and the distance covered
applying the ED modes of the naked DNA (see
Materials and Methods and Fig. 4b—c). Our results
strongly suggest that DNA adapts to protein shape
following a dual mechanism. On one hand, global
deformations happen along preferred deformation
modes and bring the naked DNA structure close to
that of the bioactive (protein-bound) conformation
(around 3—4 A in RMSD), independently of the original
RMSD;, (Fig. 4d). On the other, small movements at
the base-pair step level are required for the fine grain
adjustments to reach for the perfect complementarity
between the protein and the DNA.

We found that in general, physiological B-DNA is
flexible enough to easily sample its bioactive confor-
mation without the presence of the protein, supporting
the prevalence of the conformational selection over the
induced fit mechanism, at least for protein—-DNA
complexes where the protein does not break the
Watson—Crick base pairing. In those cases where
reaching the bioactive conformation implies mild
distortions, they typically involve local re-
arrangements in the base-pair step geometry and
small backbone changes. However, when the required
distortion is large, DNA reaches the bioactive state by
first moving along the low-energy ED modes, and
finally by way of local rearrangements fine tuning DNA
conformation sub-states.

What is the driving force for large protein-
induced structural deformations?

As discussed above, many of the complexes studied
here require structural distortions in the DNA that are
easy to achieve from the naked ensemble, in
agreement with the conformational selection model.
There are, however, a few complexes for which
conformational changes come at a high deformation
cost (see Fig. 4a), and we were intrigued on the driving
force of these distortions. A detailed analysis of these
cases shows that the structural deformation induced
by the protein results in changes in the electrostatic
field of the DNA, which obey the need of DNA to
accommodate to the protein interacting residues.
Thus, upon binding, regions of the DNA facing apolar
residues become less cation-philic, while negative
potential is reinforced in those regions facing Arg/Lys-
rich areas [see selected molecular interaction potential
(MIP) maps in Fig. 5]. Interestingly, in several cases,
the negative MIP regions detected by the probe and
generated by the distortion of the DNA geometry
coincide with sites occupied by positively charged
protein residues, LYS/ARG, at the interaction inter-
face. Changes in structure seem to create anchoring
points for cationic residues in protein tails that would
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Fig. 4. Correlation between the RMSD;,,, calculated between the average conformation along the MD simulation of the
unbound DNA and experimental protein-bound structure of the DNA for the complexes studied (Table S1), and (a)
deformation energy cost (kcal/mol bp) to move from the unbound to the experimental bound (bioactive) conformation in the
helical space; (b) overlap squared between the essential dynamics of the unbound DNA and vector that connects the
unbound and bound conformations; (c) distance covered when moving the unbound structure along the essential modes
(those describing 90% of naked simulation variance) toward the bound (bioactive) structure; (d) RMSD with bound
(bioactive) conformation after moving the naked structure along the essential modes in the direction of the bound
(bioactive) conformation (RMSDy,). The bound DNA structures detected with probable uncertainties in the experimental
structure are highlighted in red, the protein DNA-complexes with DNA distorted by the protein in yellow and the remaining
systems in blue dots. We marked with PDB ID names the structure with deformation energy higher than 5 kcal/mol bp.

otherwise be disordered. The analysis of the electro-
static surface of these three cases with different
degrees of distortions suggests a subtle protein—
DNA structural interplay where the ordered part of
the protein distorts the DNA toward the bioactive state,
leading to changes in the DNA electrostatic potential,
which in return generates additional anchoring points
for the disordered protein tails.

What is the relative prevalence of conforma-
tional selection and induced fit binding modes?

For each 1 of 174 complexes in the curated data set
representative of the entire DNA—protein interactome,
the mesoscopic deformation energy associated with
binding was computed (see Materials and Methods
and Supplementary Methods). Very interestingly, a
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Fig. 5. MIP using Na* as probe for three cases, the unbound (left column, upper image) and bound (left column bottom
image and right column) DNA structures. The isosurfaces (in red) have been calculated for the DNA sequences in the
complexes that showed the mostly distorted structures (right column) in our data set: sa) 1J46 (isovalue =

—6.4 kcal mol™"), (b) 3F27 (isovalue = —7.4 kcal mol™"), (c) 1CDW (isovalue = —7.4 kcal mol~

). In the right column,

details of the protein residues with positive charges (lysines and arginines in licorice) pointing in the direction of the

detected potential surface are represented.

vast majority of the cases follow a pure conformational
selection binding mode (71%, blue area in Fig. 6), 18%
of the cases fall in the twilight zone and induced fit
explains around 11% of the complexes (see Fig. 6),
where extremely bent or even kinked DNA is obtained
by direct protein—nucleotide contacts.

Considering that the structures selected are the
17% over the entire data set of the no-redundant

PDB protein—DNA structures, this 71% corresponds
to a 24% in the entire repository.

Even potential bias derived from PDB composition
cannot be ruled out, our results strongly support, for
complexes where the B-DNA structures are not
strongly altered by the protein (mismatch/broken/
unpairing, Supplementary Fig. S1), the prevalence of
the conformational selection model over the induced fit
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Fig. 6. Frequency of the deformation energy cost (kcal/
mol bp) required moving from the unbound to the bound
conformation in the helical space for all the DNA—protein
interactome. In red images of structures that require high
deformation energy: bent and very distorted structures at
the backbone and base-pair step level (high roll value),
1YA6, 2ADW and 5H1C PDB ID respectively, from lower
to higher energy. In this distribution, the number of
structures that fall within the area with energy <2.5 kcal/
mol bp (blue area) and energy between 2.5 and 5 kcal/mol
bp (red area) are represented. Percentage for the whole
selected interactome is shown in the right top corner.

one, as anticipated by atomistic simulations on the 50
selected complexes. Interestingly, these two groups
are also characterized by different binding specificity.
We found out that in the group defined by low energy
and identified by conformational selection mechanism,
a majority of the contacts are with arginine and the
DNA phosphate (71%), while only 24% of the protein
interacts with the bases. This protein-DNA binding is
mainly driven by the electrostatics and the shape of the
DNA. In the induced fit group, 34% of the interactions
involve the bases, while only 51% involves the
phosphates; suggesting that the protein changes the
free DNA conformation to increase the interaction
between the protein and the bases. This is confirmed
by the increase of amidic residues present at the
interface (GLN and ASN), which are very well suited to
form direct bonds with the DNA bases (Supplementary
Fig. S10 and scheme of recognition modes in
Supplementary Fig. S11).

Furthermore, our atomistic and mesoscopic analy-
ses suggest that in our cases DNA-interacting proteins
could have evolved to recognize the native shape of
the DNA duplex, avoiding the need to invest large
amounts of energy in deforming the native physiolog-
ical B-DNA, which would make the effector protein less
efficient when competing with histones, RNAs and
many other proteins.

To evaluate the generality of our conclusions, we
hand-curate several (17) complexes that were exclud-
ed from the initial analysis as the PDB data set
contained unpaired or modified bases (see Supple-
mentary Methods). Supplementary Figure S12 shows
that also for these complexes the energy values fall
within the range expected by the conformational
selection paradigm (green bars).

What is the role of base or shape readout in
protein binding to cognate DNA sequences?

To answer this fundamental question, we compared
the distribution of deformation energies of one million
randomly generated sequences with that of the DNA
sequences of our set of 50 representative complexes.
Results in Fig. 7a show that the energetic cost for
reaching the bioactive state for DNA sequences found
in PDB is lower than for random sequences. So, it
appears for these cases that the sequences in the x-
ray crystal complex can reach the bioactive (bound)
state much more easily than random sequences. As
DNA sequences used to solve structures deposited in
PDB structures tend to be consensus sequences, we
can guess that, in general, the shape readout model
plays a major role in selecting cognate sequences. To
further validate this hypothesis, we repeated the study
considering a further 20 sequences fulfilling the
consensus sequence requirements taken from in
vitro footprinting/SELEX experiments (http:/floresta.
eead.csic.es/footprintdb/) [50]. Results show again the
positioning of the sequences with consensus pattern;
those sequences are positioned at lower-energies with
respect to the random ones (gray) and are largely
favored (green lines in Fig. 7b) energetically (gray in
Fig. 7b) to achieve the bound conformation. This
confirms that in vitro high-affinity sequences are
typically those showing less resistance to be distorted
by the protein, as expected by the shape readout
binding mechanism. In summary, theoretical results
strongly favor the shape reading mechanism as a
major contributor to the selection of DNA binding
sequences and that nucleotide sequence alone does
not fully explain the widely observed mechanism of
DNA shape readout.

Materials and Methods

DNA-protein complex selection

The data set representing the DNA-protein
complexes was obtained after applying a set of
filters to the whole collection of protein complexes
deposited in the PDB (www.rcsb.org) [51]. The
initial data set was acquired from Nucleic Acid
Database [52], selecting PDB entries having
protein molecules attached to double-stranded B-
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Fig.7. (a) Relative position of the deformation energy value of the essayed PDB sequences in the frequency distribution
of energies for a million random sequences (see Supplementary Methods). Highlighted with corresponding letters (A-F)
are some examples, with the respective distributions on the right, identified with PDB code: in gray, the energy distribution
for the random sequences and in yellow the sequence found in the experimental complex. (b) Comparison between the
distribution of the deformation energies for random sequences (gray) and the deformation energy sequences with
experimental high-affinity pattern (green) as found in Footprint Database.

DNA, thus avoiding single-stranded nucleic acid
structures, RNA, and non-canonical B-DNA con-
formations. From this initial set, we removed protein
redundancy and selected the 1038 unique protein—
B-DNA entries found [51]. We then filtered this set
excluding DNAs with modified nucleic bases,
unpairing or mismatches, broken strands or non-

Watson-Crick pairing (details about PDB filtering in
Supplementary Material, Supplementary Methods
and Supplementary Fig. S1), obtaining a data set of
174 protein—-DNA complexes that in this work
defines the protein-DNA interactome. The interac-
tions involved in the structures of this data set have
been further studied using the R package
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VeriNA3D [53] in Supplementary Fig. S11. From
this set, we selected a sample of 50 diverse cases
from the PDB (see Fig. 1 and Supplementary Table
S1 for details [7]) covering different types of protein
folds and function, DNA recognition modes (minor/
major grooves), sequence binding motifs and
structural selection. We extracted the DNA se-
quences from the selected 50 protein—-DNA com-
plexes, and those sequences were subjected to
atomistic MD simulations in in silico physiological
conditions.

Atomistic simulations

Starting models for all the protein-free DNAs
were created using Arnott-B DNA canonical values
[54]. In addition, as a way to control convergence,
for a few systems trajectories were also started
from the DNA conformation in the protein-DNA
complex. Each system was solvated using TIP3P
waters [55] in a truncated octahedron box with
periodic boundary conditions, and adding Na* ions
until neutralization and extra salt, up to 0.15 M in
NaCl, using Smith and Dang ion parameters [56].
The DNA interactions were represented using
parmbsc1 force field [39-41]. All simulations were
performed using Amber 14 suite of programs
(AMBER 2014 San Francisco University of Califor-
nia). The systems were then energy minimized,
thermalized and pre-equilibrated using our stan-
dard multi-step protocol [41,57] followed by 50 ns
of equilibration before 0.5 ps of unbiased MD
simulations using standard simulation conditions
in the NPT ensemble (see Supplementary
Methods). Trajectories and associated analysis
are deposited in the MuG-BigNASIim database
[58] (http://mmb.irbbarcelona.org/BigNASim/) and
are freely accessible.

Analysis of trajectories

Collected trajectories (500,000 structures per
system) were post-processed and analyzed using
the CPPTRAJ module of the Ambertools package
[59], the NAFlex server [60], VMD 1.9, Bio3D R
library [61], PCAsuite [62] and Curves+ package
[63], as well as “in house” software. The interaction
potential (electrostatics and van der Waals) of Na*
and Na*(H,0)s probes with DNA duplexes was
determined using a linear approximation to the
Poisson—Boltzmann equation and dielectric con-
stant for the DNA epna = 8 [64], as implemented in
the CMIP program [65].

Statistical analysis of base pairs parameters
Hotelling's multivariate statistical test [66] was

used to analyse whether or not the distribution of a
given helical parameter in the DNA-protein com-

plex fits the expected distribution in the naked-DNA
conformational ensemble. Accordingly, multivari-
ate F statistic was defined [66] as:

F =" %)'s ™ (u) (1)

where p is the vector containing the m experimental
values for each base-pair step along the sequence
taken from the complex structure. From the matrix
(n x m) containing the values for each base-pair
step parameter (m) obtained from the ntime frames
of the MD simulations, the average values along
the time (x) and the inverse of the variance matrix
(S7") have been calculated. Following Hotelling
statistical test, the bound conformation is consid-
ered not sampled by the naked DNA trajectory
when the computed F falls outside the confidence
region F> F_g.mn-m) at 1 — a = 95% confidence
level, where F(1_g.m n-m) is the quantile 1 — a from
an F distribution with m, n— m degrees of freedom.

Essential dynamics analysis

Essential dynamics (ED) [67,68] analysis has been
performed to determine the essential movements
explaining, the DNA global dynamics [67,68]. Eigen-
vectors (J; in q. 2) and eigenvalues were determined
by diagonalization of the covariance matrix following
the R package Bio3D [61]. The reduced set of
eigenvectors that explain 90% of the variance (nin q.
2), have been selected in each case as descriptive of
the essential dynamics of the duplexes. The ability of
the essential dynamics of DNA to trace the
conformational transition from the unbound to the
bound state (given by vector R in Eq. 2) was
measured by the cumulative sum of the squared
overlap (y) between the transition vector and the
eigenvectors describing the essential dynamics of
the naked duplex [69,70]:

v=> (5) @)
i=1

An additional measure of the ability of the ED
space of DNA to reproduce a transition is given by
the percentage of the transition (distance covered
measured using the RMSD) that can be achieved by
moving along the -n- ED modes. In other words, how
close to the bioactive conformation can the DNA
arrive when moving across the easiest deformation
modes (Eq. 3):

RMSD;,~RMSDygo, ,
RMSD;, % ()

where RMSD;, is calculated between the naked
DNA and the protein-bound conformations. RMSDy;,,
is the minimum RMSD between the bound structure
and the naked DNA after the displacement along the

Distance covered =
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ED modes that describe 90% of the naked DNA
motion.

Deformation energy analysis

The deformation energy associated with the DNA
transition from naked to bound is approximated in
the harmonic regime [71]:

Def. Energy
_ELE oS
ST With Ej = - ZZM AXLAX] (4)

S1t1

where j stands for each of the m base-pair steps of
the DNA. In turn, E; is determined from a stiffness
mesoscopic model [71 -73], where AX. and A X} are
the deviation from equilibrium values in the six base-
pair step helical parameters (roll, twist, tilt, slide, rise
or shift) and k% stands for the elements of the
stiffness matrix obtained by inversion of the MD
covariance matrix in the helical space, as deter-
mined by Olson-Lanka$ model [72-74]. The equi-
librium values and stiffness constants for each
individual base-pair step [39,72,74] were taken
from an MD simulations stored in the BigNASIim
[58] that cover all the unique base-pair steps in all the
possible tetranucleotide environments from
microsecond-long parmbsc1 simulations. Estimates
of deformation energy associated with the change
from the naked to the bound conformation where
compared with the thermal energy fluctuation of
naked B-DNA in solution. The thermal energy
fluctuation of naked B-DNA is the deformation
energy sampled by the DNA at room temperature.
For each snapshot of each free DNA trajectory, we
computed the deformation respect to the corre-
sponding average structure. The thermal energy
fluctuation is then defined taking the average plus
one standard deviation from the distribution built
from the collection of these energy values. The
thermal energy fluctuation determined in this study
from all the simulated systems amounts to 2.5 +
0.1 kcal/mol bp.
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Chapter 4 . Determinants of nucleosome
architecture in yeast

In the previous chapter we described how the protein-DNA binding is highly
dependent on the physical properties and intrinsic flexibility of the DNA. In the
following we will focus on a very important protein-DNA complex, the
nucleosome, that is present genome-wide and crucial for the regulation of gene
expression in the cell. We study the role of DNA physical properties to define clear
regions of nucleosome depletion as well as other determinants of nucleosome

positioning in Saccharomyces cerevisiae.

As previously reported ([1], [2]), the correlation between gene expression and
nucleosome architecture at promoters is high. Typically, there is a clear nucleosome
free region (NFR) around the transcription start site (TSS) of actively transcribed
genes, having a strongly positioned +1 nucleosome and becoming fuzzier as
nucleosomes are further downstream the TSS [3]-[6]. On the other side, at the
transcription termination sites (TTS) the existence of these nucleosome depletion
signals is controversial. Our group and others supported the existence of NFRs
around TTS [5], [7], linked to the unusual physical properties at these loci, while
others claimed that NFRs at TTS are an artefact of the small distance between the
TSS of neighboring genes[8]. Here, we evaluated the nucleosome organization at
the 3’ end of genes from MNase-seq data, but centering at the -last nucleosome (last

nucleosome within the gene body, upstream from the TTS) instead of the TTS (see
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Figure 4.1), finding that an NFR downstream of the -last nucleosome is present both
when there is a nearby TSS (tandem oriented genes) or TTS (convergent
orientation). Then we conclude that there is an area depleted of nucleosomes at the

3’ end of the genes.
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Figure 4.1. Nucleosome coverage, averaged among all genes, centered around the -last nucleosome
(left panel) or the transcription termination site (TTS). Separate curves are shown according to the
orientation of the downstream gene: tandem (black line, =—) or convergent (red line, —<«).

Next, we explored the possibility to predict nucleosome architecture along the gene
body by statistical positioning, leading to the maximum occupancy of nucleosomes
in between two well-positioned nucleosomes in the vicinities of the TSS (the +1
nucleosome) and the TTS (the -last nucleosome). Particularly, we tested the ability
of a simple signal transduction model with two emitters (at the +1 and -last
positions) and a periodic distance-decay signal. We demonstrated that this simple
model, with a periodicity of 165 bp (for yeast), can predict with high accuracy the
nucleosome coverage at gene bodies (see an example for one gene in Figure 4.2).
The high predictive power of this simple model supports the idea that once the
strong signals (intrinsic or protein-mediated) are responsible for positioning the +1
and -last nucleosomes, simple statistical positioning explains the nucleosome

distribution along the gene body.
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From the experimental and predicted intra-genic nucleosome coverages, we
observed two classes of genes according to their nucleosome coverage profile: a set
of genes where the two signals from the +1 and -last nucleosomes overlap
significantly and the nucleosomes tend to be well-positioned (phased genes), and a
second set of genes where the two signals are not in phase and the nucleosomes

along the gene body are fuzzier (unphased genes).
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Figure 4.2. Example of prediction of nucleosome coverage for a gene body. Experimental normalized
nucleosome coverage (black dotted line) for YOR0O39W gene between the +1 and the -last
nucleosomes. The predicted coverage (black continuous line) is computed by combining the signal
emitted from the +1 nucleosome (blue line) and from the -last nucleosome (red line).

We experimentally explored the effect of phasing on the gene body by adding an
81-nucleotide (81-nt) sequence to eight selected genes: four phased genes and four
control not phased genes. The experiment revealed that the nucleosome
organization changed as consequence of the sequence addition, obtaining fuzzier
and less periodic nucleosomes in the originally phased group, but negligible

changes in the control genes.

We found that genes with well-located nucleosomes in the gene body tend to have
a larger expression level than those with fuzzy nucleosomes, which would suggest
a causal relationship: ordered nucleosomes in the gene body leads to higher
expression. To check this hypothesis, we analyzed the impact of the addition of the

81-nt sequence, finding little effect on transcription levels of the eight genes,
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including those originally phased. The lack of effect of periodicity on gene
expression led us to examine the opposite relation: is nucleosome periodicity
affected by transcription? For this, we performed MNase-seq experiments in cells
treated by 1,10-phenantroline, a metal chelator that stalls the polymerase at the
promoters and stops transcription [9]-[11]. We observed that addition of 1,10-
phenantroline leads to larger NFRs (mostly from -1 nucleosome displacement, see
Figure 4.3), an increase in the proportion of fuzzy nucleosomes and a decrease in
the proportion of phased genes. This strongly suggests that it is the presence of

RNA polymerase that affects nucleosome architecture and not the reverse.
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Figure 4.3. Effect of transcription inhibition on nucleosome coverage. Nucleosome coverage,
normalized to reads per million, in a strain treated by 1,10 phenanthroline (red curve) and in the
control strain (black line). The average coverage among all genes, centered at +1 nucleosome is

shown.

Finally, since we observed that the two NFRs at the 5" and 3" ends of the genes are

important to define the nucleosome architecture, we investigated the determinants
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of the observed nucleosome depletion at those loci. We hypothesized that
nucleosome architecture is a combination of intrinsic (sequence-dependent) and
extrinsic (DNA-binding proteins, transcriptional or replication machinery,
nucleosome remodelers) factors in the nucleus. We used the deformation energy of
the DNA to form a nucleosome derived from physical descriptors to model intrinsic
effects, and the predicted transcription factor binding site (TFBS) affinity to model
extrinsic effects (see Chapter 2 for their definition). With these two variables, we
built a machine learning classifier for NFR prediction along the yeast genome. We
trained an ExtraTrees [12] predictor using all the TSS-NFRs and TTS-NFRs defined
by well-positioned nucleosomes, except those regions in chrl, which were used for
testing the performance of the classifier, obtaining an Area Under the Curve (AUC)
of 0.77 in the test set, which include an entire chromosome. Hence, the position of
many NFRs in the yeast genome can be explained by the high stiffness of the DNA

sequence and the presence of binding proteins that compete with nucleosomes.

Publication:

Diana Buitrago*, Mireia Labrador’, Pau De Jorge, Federica Battistini, Isabelle Brun
Heath and Modesto Orozco. The interplay between periodicity, DNA physical
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Supplementary material for this article can be found in the Annex III.

¥ Equally contributing authors



98

Understanding the link between chromatin structure, chromosome conformation and gene regulation




Chapter 4. Determinants of nucleosome architecture in yeast 99

THE INTERPLAY BETWEEN PERIODICITY, DNA PHYSICAL
PROPERTIES AND EFFECTOR BINDING DEFINE
NUCLEOSOME ARCHITECTURE IN YEAST
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We explored the role of periodicity, DNA physical properties and the binding of effector
proteins in the positioning of nucleosomes in Saccharomyces Cerevisiae. We found that the
positions of the first and the last nucleosomes in a gene are the result of a combination of
physical properties and binding of effector proteins that define clear eviction signals at the
extremes of the genes. On the contrary, nucleosomes in the gene body are placed by distance-
decaying periodic signals emitted by the +1 and -last nucleosomes in the gene. Wide
nucleosome free regions and periodic nucleosome strings are characteristic of active genes,
proving a correlation between nucleosome architecture and gene structure. A variety of
experiments demonstrate transcriptional activity is more a reason for than a consequence of
nucleosome architecture.
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INTRODUCTION

Nucleosome (the basic unit of eukaryotic chromatin) is formed by 147bp of DNA wrapped
around an octamer of histones (Richmond and Davey 2003), followed by a linker where, in
complex eukaryotic organisms, an additional histone (H1) is bound (Izzo et al. 2008).
Nucleosomes are not randomly placed in the genome, but maintain well defined and
conserved positioning (Yuan et al. 2005; Mavrich et al. 2008b; Shivaswamy et al. 2008;
Valouev et al. 2011), marked by the presence of nucleosome free regions (NFRs) which
determine the boundaries of strings of nucleosomes (Mavrich et al. 2008a; Vaillant et al.
2010). Most significant NFRs (are associated with the promoters of genes (upstream the
Transcription Start Sites; TSSs), the replication origins (ORIs) and the Transcription
Termination Sites; TTSs; see Deniz et al., 2011, 2016). General consensus is that at promoters,
NFRs are regions preferentially recognized by effector proteins involved in the regulation of
gene activity and, accordingly, wide and well defined NFRs are typically associated to active
chromatin (Weiner et al. 2010).

Over the last two decades, many efforts have been made to discover the main determinants of
nucleosome positioning (reviewed in (Jiang and Pugh 2009; Clark 2010; Struhl and Segal
2013; Lieleg et al. 2015; Chereji and Clark 2018). Some authors have suggested that DNA
physical properties are the most important factor to define nucleosome positioning, with
NFRs being located at regions where the mechanical cost of wrapping DNA around
nucleosomes is very high (Suter et al. 2000; Kaplan et al. 2009; Deniz et al. 2011). On the
contrary, others have suggested that nucleosome positioning is dictated by cellular machinery
involving a complex interplay of chromatin remodelers, transcription factors and RNA
Polymerase activity (Hughes et al. 2012; Lorch et al. 2014; Kubik et al. 2019). Accurate
chromatin reconstitution experiments (Zhang and Pugh 2011; Krietenstein et al. 2016)
demonstrated that NFRs are well reproduced in in vitro reconstitution experiments
performed in the absence of any cellular machinery, but the exact boundaries of the NFRs
could only be achieved if a cell-free extract is added. These findings suggest that while
physical principles can signal NFRs, cellular machinery is required for the correct definition of
the NFR boundaries (Zhang and Pugh 2011; Struhl and Segal 2013; Kubik et al. 2019). The
same conclusions on the dual role of extrinsic and intrinsic factors in nucleosome positioning
can be reached by analyzing perturbation in nucleosome architectures associated to stress,
changes in cell cycle, the source of nutrients, or the cell metabolic cycle (Shivaswamy et al.
2008; Kaplan et al. 2009; Deniz et al. 2016; Nocetti and Whitehouse 2016).

We introduce here an additional element in the debate between intrinsic and extrinsic
determinants for nucleosome positioning: the role of periodicity. We demonstrate that by
using signal transmitter theory with two emitters centered at the first (+1) and the last (-last)
nucleosomes, located adjacent to the NFRs at the beginning and the end of the genes, the
nucleosome architecture can be very well reproduced. We also found that positions of NFRs
can be captured by machine learning (ML) methods using sequence-dependent descriptors of
DNA physical properties and TRANSFAC (Wingender et al. 1996) annotations of transcription
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factor binding sites (TFBS). We found a clear correlation between nucleosome architecture
and gene activity with wide NFRs and periodic nucleosome arrays signaling active genes.
However, synthetic experiments demonstrate that changes in phasing of nucleosomes leading
to alterations in the periodicity of nucleosomes in the gene body do not affect gene activity.
We also prove that in conditions of inhibition of RNA polymerase progression NFRs at TSS
become wider and phasing of nucleosomes in the gene body is decreased. The causality in the
correlation between nucleosome architecture and gene expression is then deciphered: gene
activity influences more nucleosome architecture than in the reverse.

METHODS

Yeast strains and growth conditions. Saccharomyces cerevisiae PPY1 strain (MATa his3A0
leu2A0 met15A0 ura3A0 bar1::leu2) was transformed with the appropriate DNA fragments to
generate all the mutant strains used in this work. PPY1 strain was obtained from Oscar
Aparicio’s lab at the University of Southern California, USA. For the selection of the mutant
strains, we used YPD with or without 5-FOA (5-Fluoroorotic acid) and SD (Synthetic Defined)
with the required amino acids.

Mutant strains generation. We generated 4 mutant strains, with the 81-nt DNA sequence
(5'-GCGTGTTGTGTTTTCTCCGAGGAGAAACATTCAAATCTTGTGCTATGGCTTTGCCTACCGTCTG
CGCCATCCATCTTTCGC-3") inserted in the coding sequence of 2 selected genes/strain (see
Suppl. Table S1). Target genes were selected as they are not essential and show phased
nucleosomes (UBX5, CKB2, PPT1, TRP4; see definition below) and four control genes which
were not-phased (BSP1, DGK1, SLM3, PANS5) (see Suppl. Methods). The insert was placed in
linkers to avoid direct interference to specific nucleosome (Suppl. Table S1). The 81-nt
sequence was selected, as it did not match any existing yeast sequence, and did not favor nor
disfavor nucleosome formation (see Suppl. Figure S1), or affect reading frame. The strains
were produced using the Delitto perfetto strategy described in (Storici and Resnick 2006).

RNA extraction and RT-qPCR. Exponential cultures were arrested at late G1 by alpha-factor.
RNA was obtained from 20ml yeast cultures (ODsoo 0.8) using the hot-phenol method (see
Suppl. Methods). cDNA synthesis was done with the First Strand cDNA Synthesis Kit (Roche)
using oligo dT and following the provider instructions. Gene expression levels were
determined by quantitative PCR using the LightCycler 480 sybr green | master (Roche). The
oligonucleotides used for the qPCR are listed in Suppl. Table S2.

Transcription inhibition. In order to determine the correct incubation time to inhibit
transcription without killing the cells, we selected 2 genes with low RNA stability (RPA135
and NMD3) and 2 genes with high RNA stability (ACT1 and DGK1) to serve as controls (Grigull
et al. 2004). We then measured their mRNA level by qPCR after incubation with 10-
phenanthroline at 100 pg/ml at 302C during 0, 5, 15, 30 and 45 minutes. Using this approach,
we observed that the amount of RPA135 and NMD3 mRNA started to decrease after 30 min.
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This incubation time was selected to perform MNase-seq experiment on cells with inhibited
transcription.

MNase digestion. The Micrococcal nuclease (MNase) digestion was performed on semi-intact
yeast cells prepared as described (Schlenstedt et al. 1993). We optimised the MNase digestion
conditions for each sample to obtain about 80% of mononucleosomes (Suppl. Methods). The
integrity and size distribution of digested fragments were determined using the microfluidics-
based platform Bioanalyzer (Agilent) prior to sample preparations and sequencing. The
sample preparation was done using the Illumina TruSeq DNA sample preparation kit for
whole genome sequencing, following Illumina standard protocol. The libraries were
sequenced paired-end on a HiSeq2000, v4, 2x75bp, with approximately 10 M PE
reads/sample.

Nucleosome calling. MNase-seq paired-end reads were mapped to customized versions of
yeast genome (SacCer3, UCSC), containing the inserted sequences in the modified genes, using
Bowtie (Langmead et al. 2009) aligner, allowing up to two mismatches. Output files were
imported in R, reads were trimmed to 50bp maintaining the original center and transformed
to reads per million. Peak calling was performed, after noise filtering, with nucleR package
implemented in the Nucleosome Dynamics platform (Flores and Orozco 2011; Buitrago et al.,
2019) using the parameters: peak width of 147 bp, peak detection threshold of 35%,
maximum overlap of 80 bp. Nucleosome calls were considered well-positioned when nucleR
peak width score and height score were higher than 0.6 and 0.4, respectively, and fuzzy
otherwise.

Nucleosome periodicity and phasing. Periodicity in the nucleosome positioning was
determined for each gene by computing the autocorrelation coefficient, as proposed in (Wan
etal. 2009); see eq. 1:

X

R(T) =f 1) - 1(x = T)dx )

1

where X; and X, stand for the limits of a sampling window (e.g. the position of TSS and TTS),
is the function representing nucleosome coverage for all genes and T is a putative periodicity.
Autocorrelation coefficients for different periods were normalized as shown in eq. 2:

R(T)

R =%

(2)

Nucleosome period is defined as the value of T that optimizes R(T). Periodic genes are those
showing large autocorrelation coefficient values (eq. 1). Phased genes are defined as those
where the +1 to -last distance (L) is a multiple of the period (T). Unphased genes are those
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where the distance from integer (DFI) score (eq. 3), defined as the modulus of the ratio
length/periodicity, is close to T /2. Not-phased genes refer to intermediate values.

L
DFI =L —T -round (F) (3)

Signal transmission theory for nucleosome positions. We propose a simple signal decay
model, where the coverage at a given position is given by the addition of two positioning
signals, one starting from the +1 and another from the -last nucleosome (see eq. 4-5 below):

Cov*i(X) = (1 + a +sin (g+ 2 ;X)) g(l)T(_l) (4)
Cov™'H(X") = (1 + sin (g +2- ;X')) o'(m) (5)

where X is the distance from +1 nucleosome and X' is the distance from -last nucleosome,
X’=L-X. The shifting factor « corrects for the higher density of reads at the +1 nucleosome and
the decay factor ¢ accounts for the reduced coverage as we move away from the NFR. We
evaluated different values and selected those that maximized the correlation between the
observed experimental coverage and the predicted (o was set to 0.2 and ¢ was set to 0.7). The
total coverage is then normalized to guarantee an effective decay of the signal:

Cov*1(X)+ Covlast(x")
Covt1(0)+ Cov—last(g)

Cov(X) = (6)

where, Cov*'(0), Cov~'25t(0) are the values of the two emitting signals at the +1 nucleosome
dyad, which are used as denominator to normalize the Cov(X) to 1 at this position.

Deformation energy, elastic energy associated to the DNA deformation from the naked to
the nucleosomal DNA was calculated in the harmonic regime using (eq. 7):

Fi47 p. 16 6 o
Def.Energy = 2= with E; = —Z kl.ax!ax] (7)
147 2 Ly Ly

where j stands for each of the 147 base pair steps of the DNA stretches. E; is the elastic energy

required at each base pair step determined using the stiffness matrix (K), and AXg and Ath
are the differences between the nucleosome and equilibrium values for the 6 base pair step
helical parameters (roll, twist, tilt, slide, rise or shift). The equilibrium values and stiffness
constants for each individual base pair step were taken from MD simulations that cover all the
unique base pair steps in all the possible tetranucleotide environments from microsecond-
long parmbsc1 simulations (Dans et al. In press; Walther et al. In press).
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NFR prediction with randomized decision trees. We trained Random Forest (Breiman
2001) and Extremely randomized trees (Extra-Trees, (Geurts et al. 2006) classifiers to predict
NFRs using as predictive features the deformation energy and TFBS density profiles around a
given position. Data on nucleosome distributions were obtained from MNase_seq experiments
of Yeast synchronized at the G1 phase and processed with nucleR (Flores and Orozco 2011) as
implemented in Nucleosome Dynamics (Buitrago et al. 2019). Data on Chromosomes II-XVI
were used for training, while chromosome I was used to test the final model. The training set
was divided into two portions: the learning subset (75% of data) and the validation subset
(25%), which was used to choose the best ML algorithm after training (data for chromosome
IV was not considered for model selection). NFRs used for learning where those located by
nucleR in between two well-positioned nucleosomes and placed close to TSS or TTS. Non-NFR
regions were those occupied by nucleosomes, as non-NFR are longer than NFR, we randomly
removed points from non-NFR regions to obtain a balanced data set of ones (points in an
NFR) and zeros (points in a non-NFR region). The descriptive features are the values of the
deformation energy and TFBS density 268 bps around each point (the mean width of NFRs is
268 in our data).

Exhaustive analysis reveals the Extra-Trees classifier as the optimum predictor (converged
values were obtained at around 500 trees; see Suppl. Figure S2) for which AUC (area under
the ROC curve) around 0.93 was obtained in the validation subset. The final model was
revalidated using Chromosome IV data that were not considered at any point of the
development of the ML algorithm. ML models were built using the Python library scikit-learn
(v 0.20.3) (Pedregosa et al. 2011).

RESULTS AND DISCUSSION

Nucleosome positioning at the gene body is determined by periodicity. We computed the
autocorrelation coefficient from the nucleosome coverage in our MNase-seq experiments for
different periods (T; see eq. 1-2), finding a clear peak at 165 bp (the average nucleosome
repeat length in yeast, (Ocampo et al. 2016); see Suppl. Figure S3), which marks the distance
(DFI, see Methods) between the +1 and the -last nucleosomes, but not the distance between
the TSS and TTS where no phasing bias is detected (see Figure 1) due probably to the
different distances between the TSS and the +1 nucleosome and/or between the TTS and the -
last. Taking the positions of +1 and -last nucleosomes as emitting sites of a distance decaying
signal (see Methods, eq. 4-6) we can reproduce extremely well the nucleosome architecture
within the gene (Figure 2). Notably, we can also distinguish between phased genes, where the
+1 and -last signals add up to define clear and periodic nucleosome patterns, and unphased
genes, where signals can partially cancel out in the middle of the gene, leading to diffuse
nucleosome patterns (see examples marked with arrows in Figure 2A, and profiles in Figure
2B).
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To confirm that periodicity guides the positioning of the nucleosomes in the +1 to -last
segment we selected 4 phased and 4 control, not-phased, genes (see Methods, Suppl. Table
S$1) and inserted an innocuous 81-nt oligo (see Methods) which should destroy phasing of the
first group, affecting little already not-phased genes. As expected from our model, change in
phasing in the first group of genes leads to an important loss of periodicity and to fuzzier
nucleosome arrangements, while small changes are found in the control genes (Table S3,
Figure 3, Suppl. Figures 5S4 and S5). Interestingly, the placements of the +1 and -last
nucleosomes are not altered by adding the 81-nt fragment (Figure 3) and no change in
nucleosome structure is found in neighboring genes, in perfect agreement with our model. In
summary, our synthetic biology experiments fully confirm that nucleosomes arrange in a local
and periodic way from strong eviction signals at the NFR located at the TSS and TTS and
simple periodicity considerations in the intragenic region.

NFRs are characterized by unique physical properties and by the high density of
protein-recognition sequences. Analysis of the entire yeast genome illustrates NFRs at the
TSS and TTS of the gene (TSS-NFR, TTS-NFR). The latter is present in both tandem and
convergent genes, showing that the TTS-NFR is not a duplication of a neighboring TSS (see
Suppl. Figure S6). Interestingly, both NFRs correspond to regions where the elastic energy
associated to wrap the DNA around the histone core is unusually large and where there is a
large density of potential TFBS (see Methods and Figure 4A and 4B). These two signals can be
used to train a ML classifier (see above), which shows a large ability to detect NFRs, as shown
in the area under the ROC curve above 0.94 in the validation subset (see Figure 4C and
Methods for details). Predictions on TSS-NFRs and TTS-NFRs for chr I show sensitivity and
precision of 0.66 and 0.57, respectively. These values are improved taking into account also
other NFRs that the classifier correctly predicts (sensitivity 0.76 and precision 0.58, AUC 0.77)
but that are not associated to TSS or TTS, indicating that the method has predictive power out
of the specific characteristics of the training set. Moreover, the predictor also has good
accuracy on fragile nucleosomes (Suppl. Figure S7) as defined in (Kubik et al. 2015). In
summary, DNA sequence guides the location of regions with a tendency to be depleted in
nucleosomes by a double mechanism: i) by creating regions where effector proteins compete
with nucleosomes for binding the DNA and ii) by defining stiff regions, where it is difficult to
wrap the DNA around the histone octamer. It is tempting to believe that both factors are
coupled, as probably evolution guided the placement of TFBS in regions, which were
nucleosome free. In any case, once the NFR is broadly defined, the placement of the +1 and -
last nucleosome and accordingly the architecture of the entire nucleosome fiber (see Figure 2)
is likely to be defined based on the need to preserve the periodicity to place the maximum
number of nucleosomes in the +1 to -last segment.

Nucleosome architecture and gene expression are coupled in a complex way. As
described before (Weiner et al. 2010)(Chereji and Morozov 2015), (Deniz et al,, 2011, 2016)
genes with wide TSS-NFRs tend to be transcriptionally active (Figure 5A). This finding has
been explained (Shivaswamy et al. 2008; Huebert et al. 2012; Deniz et al. 2016) considering
that wide NFRs should favor the recruitment of effector proteins and RNA polymerase,
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suggesting a causal relationship: widening of the NFR =2 increase in transcription activity. The
same genome-wide analysis shows that, transcriptionally active genes have more periodic
nucleosome distributions in the gene body than the inactive ones (Figure 5B). This finding
suggests another causal relationship: more periodic nucleosomes = greater transcriptional
activity, which agree with previous suggestions that more compact nucleosomal arrays
implies higher transcription rate (Vaillant et al, 2010, Deniz et al., 2016)

We investigated the causal relationships suggested above (Figure 5): wide NFR 2more active
genes and phased nucleosomes =2 more active genes by different approaches. Firstly, we
repeated nucleosome positioning experiments, but treating previously the cells with 1,10-
Phenanthroline, a metal chelator that avoids polymerase progression (McClure et al. 1978)
without affecting binding to the core promoter (Grigull et al. 2004; Kim et al. 2010). Results
summarized in Figure 5C show that inhibition of transcription by 1,10-Phenanthroline leads
to wider TSS-NFRs (around 45% of the genes show increases above 10 bps), due in general to
the displacement upstream of the -1 nucleosome (see Figure 5D). Notice that these changes
are not due to differences in MNase digestion, as shown by the comparable length of the
sequenced fragments (Suppl. Figure S8). This suggests that when RNA polymerase binds to
the core promoter sliding of the -1 nucleosome happens and the associated NFR becomes
wider. In untreated cells, once polymerase displaces along the gene body, the density of RNA
polymerase at core promoter decreases and the -1 nucleosome partially recovers its normal
placement, narrowing the NFR. In the presence of 1,10-Phenanthroline the core promoter is
saturated by RNA polymerase and accordingly NFR widens. This implies that TSS-NFRs are
more plastic than expected and can adapt its width to the presence of effector proteins,
specifically RNA polymerase. This plasticity is observed for example when cells are subjected
to stress and the osmo-responsive genes experience a widening of their TSS due to a shift of
the +1 nucleosome in presence of HOG1 (Nadal-Ribelles et al. 2012). In other words, the
causal relationship between NFR width and gene activity seems to go in the direction that
makes RNA polymerase binding responsible for NFR widening in active genes, ie. gene
activity 2 wide NFRs, not the reverse causal relationship.

The addition of 1,10-Phenanthroline produces significant changes in nucleosome architecture
also in the gene body, leading to fuzzier and less periodic nucleosome positions (Figures 5E-
F). As the effect of the drug is to avoid polymerase migration from the TSS, we can conclude
that the lack of RNA-polymerase in the gene body leads to a loss of periodicity and to fuzzier
nucleosomes. This agrees with a causal relationship: gene activity = periodic nucleosomes, and
is contrary to the idea that periodic nucleosomes triggers gene activity. This causal
relationship is also confirmed by the negligible changes in the level of expression found in
phased genes when an inert 81-not long oligo is inserted (Suppl. Figure S9), which contrast
with the significant increase in nucleosome fuzziness. Thus, our results strongly suggest that
RNA polymerase activity generates temporary eviction signals that help to organize the
nucleosome fiber in a more periodic manner, but having a well-ordered or a fuzzy nucleosome
string in the gene body do not significantly alter gene activity.
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CONCLUSIONS

Nucleosome positioning in the gene body can be predicted with good accuracy by assuming
that two well-positioned nucleosomes emit a periodic signal whose intensity is decaying with
sequence. Phased genes (i.e. those whose +1€->last distance is multiple of 165) have
periodic nucleosome signals, while unphased genes (and at a lower extend non-phased genes)
tend to have fuzzy nucleosomes in the middle of the gene body. Change in the +1€<—>last
distance leads to changes in nucleosome periodicity fully predictable by the theory. Very
interestingly, the placement of the +1 and -last nucleosomes are defined by the vicinity of
NFRs, i.e, segments of DNA depleted of nucleosomes. Such NFRs are characterized by DNA
physical properties that disfavor nucleosome formation and by high density of TFBS. The
combined signal is strong enough to allow training of ML methods, which predict NFRs with
good accuracy.

Wide TSS NFRs and periodic nucleosome architectures in the gene body signal
transcriptionally active genes. However, our results strongly suggest that NFR width might be
a consequence of the binding of RNA polymerase rather than the cause of it. Furthermore,
experiments with inhibition of RNA pol progression and synthetic experiments where phasing
was artificially altered did not reveal any significant change in transcriptional activity, related
to the level or order in the nucleosome array in the gene body suggesting that a periodic
nucleosome string might be a consequence and not a cause of RNA polymerase activity. This
observation is consistent with recent results (Vasseur et al. 2016) showing that the genes that
exhibit comparatively rapid phasing of nucleosomes over gene bodies after replication are
relatively highly transcribed. In summary our results suggest a causal relationship in the
correlation between gene activity and nucleosome architecture, as the influence of gene
activity in the placement of nucleosomes seems to be larger than the influence of nucleosome
architecture in the activity of the gene.
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Figure 1. Distance from integer (DFI, see Methods) score computed on (A) the gene length
(distance between TSS and TTS) and (B) the nucleosome length (distance between +1 and -
last nucleosome). DFI is normalized (between 0 and 1) dividing by T/2 and taking the
absolute value.
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Figure 2. Signal decay model of nucleosome positioning. (A) Experimental (left panel) and
predicted (right panel) nucleosome coverage for each gene, with respect to +1 nucleosome.
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to normalized nucleosome coverage, from 1 (red) to 0 (yellow). (B) Nucleosome coverage,
experimental (black) and predicted (purple, see Methods eq. 6) from +1 nucleosome,
averaged across all genes. Genes are split into phased (left) or unphased (right) based on
DFI<10 and DFI>40, respectively. (C) Signals from +1 (red) and —last nucleosomes (blue) to
predict the experimental coverage of phased (left) and unphased (right) genes (see Methods
eq. 4-5).
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Figure 3. Nucleosome coverage for the selected genes in the unmodified strain (top panel)
and the strain with the 81-nt insertion (bottom panel). (A) Average of the four genes phased
in the unmodified strain (UBX5, CKB2, PPT1 and TRP4) and (B) the four genes not-phased in
the unmodified strain (BSP1, DGK1, SLM3 and PAN5).
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for the prediction of NFRs from deformation energy and TFBS density in the validation subset
and for the entire chromosome I.

15



114 Understanding the link between chromatin structure, chromosome conformation and gene regulation

A B C
— High expre 0.76 I
o g4 Low expre. . Mean Deviation
) .: i i i NFR width (be) (be)
2 '.% 0.72
8-@8 i 2 Transcription (1) | 242.5 +-3.9
@& E
2a 1 -
= 3 Transcription
2 o Som i Inhibition (2) 211 412
3 g < I {
3 { Difference (2-1) 8.6 +/-4.6
g 0.64
L . 1 2 3 4
1000 a 1000 strain

Expression -+ high e low

o
L
m

200
1
Proportion
5
Proportion

=}
1Y)

0.6 e anan F os e B e
'
'
'
'
'

04
. H 03
' ; 02
. I 4
: : 0.1
.
3 7 [ — — 0o v
== Fuzzy Wel-positioned Phased Nol-phased Unphased
T T T -

-1 +1 both

NFR increase
100
1

Transcription . Teanscr. Inhibition . Transcription . Transcr. Inhibition
Nucleosome displaced .
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increase for genes displacing -1, +1 or both nucleosomes upon transcription inhibition. (E)
Change in the proportion of Fuzzy and Well-positioned nucleosomes upon transcription
inhibition, with bars indicating relative standard error. (F) Change in the proportion of
phased, not-phased and unphased genes upon transcription inhibition, with bars indicating
relative standard error.

16



Chapter 4. Determinants of nucleosome architecture in yeast 115

Bibliography for Chapter 4

(1]

(2]
[3]

[4]

[5]

[6]

[7]

8]

[9]

W. K. M. Lai and B. F. Pugh, “Understanding nucleosome dynamics and their links to
gene expression and DNA replication,” Nat. Rev. Mol. Cell Biol., vol. 18, no. 9, pp. 548-
562, May 2017.

C. Jiang and B. F. Pugh, “Nucleosome positioning and gene regulation: advances
through genomics,” Nat. Rev. Genet., vol. 10, no. 3, pp. 161-172, Mar. 2009.

A. Weiner, A. Hughes, M. Yassour, O. J. Rando, and N. Friedman, “High-resolution
nucleosome mapping reveals transcription-dependent promoter packaging,” Genome
Res., vol. 20, no. 1, pp. 90-100, Jan. 2010.

R. V. Chereji and A. V. Morozov, “Functional roles of nucleosome stability and
dynamics,” Brief. Funct. Genomics, vol. 14, no. 1, pp. 50-60, Jan. 2015.

O. Deniz, O. Flores, F. Battistini, A. Pérez, M. Soler-Lépez, and M. Orozco, “Physical
properties of naked DNA influence nucleosome positioning and correlate with
transcription start and termination sites in yeast,” BMC Genomics, vol. 12, no. 1, Dec.
2011.

O. Deniz, O. Flores, M. Aldea, M. Soler-Lépez, and M. Orozco, “Nucleosome
architecture throughout the cell cycle,” Sci. Rep., vol. 6, p. 19729, Jan. 2016.

A. Arneodo, C. Vaillant, B. Audit, F. Argoul, Y. d’Aubenton-Carafa, and C. Thermes,
“Multi-scale coding of genomic information: From DNA sequence to genome structure
and function,” Phys. Rep., vol. 498, no. 2-3, pp. 45-188, Feb. 2011.

R. V. Chereji, S. Ramachandran, T. D. Bryson, and S. Henikoff, “Precise genome-wide
mapping of single nucleosomes and linkers in vivo,” Genome Biol.,, vol. 19, no. 1, Dec.
2018.

J. Grigull, S. Mnaimneh, J. Pootoolal, M. D. Robinson, and T. R. Hughes, “Genome-Wide
Analysis of mRNA Stability Using Transcription Inhibitors and Microarrays Reveals
Posttranscriptional Control of Ribosome Biogenesis Factors,” Mol Cell. Biol, vol. 24, no.
12, pp. 5534-5547, Jun. 2004.

[10] T.S. Kim ef al, “RNA polymerase mapping during stress responses reveals widespread

nonproductive transcription in yeast,” Genome Biol, vol. 11, no. 7, p. R75, 2010.

[11] W. R. McClure, C. L. Cech, and D. E. Johnston, “A steady state assay for the RNA

polymerase initiation reaction,” J. Biol. Chem., vol. 253, no. 24, pp. 8941-8948, Dec. 1978.

[12] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach. Learn., vol.

63, no. 1, pp. 342, Apr. 2006.






Chapter 5 . Nucleosome Dynamics: a new
tool for the dynamic analysis of nucleosome
positioning

Nucleosomes are the main unit of eukaryotic chromatin, modulating the
accessibility of DNA to effector proteins. The nucleosome architecture is then
related to gene regulation, DNA replication and other cellular processes [1], [2].
Accordingly, determination of the arrangement of nucleosomes in the cell is crucial
to gain a function view on the chromatin structure. Our group previously
developed an algorithm, nucleR [3], for nucleosome positioning from experimental
MNase-seq data (see details in Chapter 2) that is one of the most widely used tools
to define average nucleosome configuration in living cells. Unfortunately, despite
its power nucleR presents a series of shortcomings that lead us to develop a more
universal and flexible tool. First, due to the noisy nature of experimental data such
as MNase-seq, it is not easy to compare the results obtained between two
experimental conditions to study the dynamics of nucleosome organization when
changing cellular conditions. Second, analyses are not automatized, nor
standardized or FAIR-certified. Third, it is not easy to directly integrate the results
from nucleR with other features obtained from several techniques (ChIP-seq, RNA-
seq, etc.). Finally, other experimental protocols (different to MNase-seq) for
nucleosome mapping have emerged in recent years and it is not clear whether

nucleR can be applied to this type of data. Therefore, in this chapter, I present the
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theoretical and methodological developments we performed to cope with the

above-mentioned user demands.

First, we developed an algorithm for the differential analysis of two MNase-seq
experiments, NucDyn. It uses directly the mapped reads, allowing the detection of
changes that occur even in a small percentage of the cells in the population. The
method, very robust and fast, vastly outperforms other available software, such as
Danpos [4] or Dimnp [5]. NucDyn employs a dynamic programing algorithm and
statistical metrics detecting, even in noisy experiments, changes in nucleosome

architecture (see Figure 5.1).

*YPRIZUC
Sample 1 . A J
Sample 2 | ool
Evictions .
Shifts -~

Figure 5.1. Comparison of two nucleosome profiles obtained from MNase-seq (Sample 1 and Sample
2) using NucDyn (evictions and shifts identified).

To gain a more quantitative description of changes in nucleosome arrangements,
we developed a series of methods and metrics (see Figure 5.2Error! Reference

source not found.):

i.  Periodicity: the aufocorrelation and phasing scores (see Chapter 4) to study
the periodicity of nucleosomes along the gene body can be computed from
the nucleR results. Also, nucleosome occupancy profiles can be predicted
based on signal propagation theory using two opposing emitting signals

from the +1 and the -last nucleosomes.

ii. ~ TSS-classification: each gene can be characterized by the nucleosome free

region (NFR) around its promoter (open (o), closed (c) or missing -1 or +1
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nucleosome) and the degree of localization of the +1 (downstream the TSS)

and -1 (upstream the TSS) nucleosomes (fuzzy or well-positioned).

ili. = Nucleosome stiffness: sliding propensity of a nucleosome can be estimated
from the variability in nucleosome position among the cell population. A
Gaussian curve is fitted to the dyad distribution for each nucleosome and
the estimated standard deviation is used to derive the apparent stiffness by

an elastic approximation.

iv. NEFR detection: from the nucleR results we can detect NFRs, excluding low
mappability regions. These loci are typically related to regulatory elements

such as transcription factor binding sites or replication origins.

;PR120C
~ Dadad
nucleR— —__ T — L —
NFR
¥
Phasing o
TSS class v
Stiffness

Figure 5.2. Example of results of nucleR and other nucleosome-related analyses using MNase-seq
data (coverage in grey).

We have integrated these tools, written in R and available in our GitHub repository

(https:/ /github.com /nucleosome-dynamics), into a package called Nucleosome
Dynamics (available under the Apache 2.0 License). Besides directly running the R
source code, it can be executed under several distribution models: as a software

container (Docker and Singularity containers are available) that includes all the


https://github.com/nucleosome-dynamics
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dependencies required, or as a web tool in the MuGVRE workspace [6] or in a
Galaxy server [7]. In the web implementations, the user can either upload files
containing the mapped reads (typically BAM files) or upload the sequencing files
(FASTQ) and use one of the aligners available to map the reads to the reference
genome. Then, the user can execute all (or some) of the tools available in
Nucleosome Dynamics and monitor the status of the calculations from the web. The
documentation, tutorials and access to the different distribution options are

summarized in the web http://mmb.irbbarcelona.org/NucleosomeDynamics/.
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Figure 5.3. Example of visualization of Nucleosome Dynamics results in the MuGVRE.

The MuGVRE allows the representation of the results from nucleR, NucDyn and all
nucleosome related analyses in an integrated genome browser (see Figure 5.3),
where additional genomic data can be contrasted and jointly analyzed with the
nucleosome information. Furthermore, summary statistics from every one of our
tools are automatically generated for every gene as well as some results at the

genome-wide level.
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Finally, we explored the performance of our algorithms to analyze data obtained
with recent chemical cleavage methods for nucleosome positioning, that have been
proposed aiming to remove the sequence bias and the effect of digestion level of
MNase [8], [9]. However, these methods have another limitation for their broad use,
since this technique requires genetic engineering replacing the endogenous histone
H4 or H3 by a mutated version. Nonetheless, we have demonstrated with some
published data from [9] that Nucleosome Dynamics can also be applied to analyze

nucleosome profiles from chemical cleavage data.

We have shown the usefulness of Nucleosome Dynamics in several experimental
settings (changes throughout the cell cycle, along the yeast metabolic cycle and in
response to different carbon sources) where it allowed to correlate changes in
nucleosome organization with differential gene activity. The package is presented
in the publication Nucleosome Dynamics: A new tool for the dynamic analysis of

nucleosome positioning attached in the following pages.

Publication:

Diana Buitrago®, Laia Cod¢’, Ricard Illa, Pau de Jorge, Federica Battistini, Oscar
Flores, Genis Bayarri, Romina Royo, Marc Del Pino, Simon Heath, Adam Hospital,
Josep LLuis Gelpi, Isabelle Brun Heath and Modesto Orozco. (2019). Nucleosome
Dynamics: a new tool for the dynamic analysis of nucleosome positioning. Nucleic
Acids Research, gkz759. https://doi.org/10.1093 /nar / gkz759.

Supplementary material for this article can be found in the Annex IV.

¥ Equally contributing authors
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ABSTRACT

We present Nucleosome Dynamics, a suite of pro-
grams integrated into a virtual research environment
and created to define nucleosome architecture and
dynamics from noisy experimental data. The pack-
age allows both the definition of nucleosome archi-
tectures and the detection of changes in nucleoso-
mal organization due to changes in cellular condi-
tions. Results are displayed in the context of ge-
nomic information thanks to different visualizers and
browsers, allowing the user a holistic, multidimen-
sional view of the genome/transcriptome. The pack-
age shows good performance for both locating equi-
librium nucleosome architecture and nucleosome dy-
namics and provides abundant useful information in
several test cases, where experimental data on nu-
cleosome position (and for some cases expression
level) have been collected for cells under different ex-
ternal conditions (cell cycle phase, yeast metabolic
cycle progression, changes in nutrients or difference
in MNase digestion level). Nucleosome Dynamics is
a free software and is provided under several distri-
bution models.

INTRODUCTION

Eukaryotic chromatin is organized in a hierarchical man-
ner, where the basic structural units are repetitive elements
named nucleosomes. Each of them is defined by around
147 base pairs of DNA wrapped around a protein octamer,
the histones. The position of the nucleosomes in the cell is

not random and recurrent patterns have been detected in
cell populations (1-3), indicating a maintenance of the nu-
cleosome architecture which seems to be crucial for a cor-
rect regulation of genome activity (4). The protein octamer
serves as an anchoring point for proteins recognizing his-
tone epigenetic signals, while unwrapped DNA is targeted
by transcription factors and enhancers (5,6). Thus, nucleo-
somes shifting due to alterations in the sequence (7), DNA
methylation (8) or the action of chromatin remodelers (5,9—
13) can result in dramatic changes in gene expression. Char-
acterizing such changes is crucial for the understanding of
the connection between chromatin structure and genome
functionality (6).

Experimental determination of nucleosome positioning
is typically performed by treating a group of cells (in
the range 10°-10%) with enzymes acting on nucleosome-
free DNA. ATAC-seq (14) uses a hyperactive transposase
for tagging nucleosome-free DNA segments for sequenc-
ing (the linkers). MNase-seq, the most widely used tech-
nique for nucleosome localization, uses Micrococcal nucle-
ase to degrade linker DNA preserving the DNA segments
wrapped in the nucleosomes, which are then sequenced.
Both MNase-seq and ATAC-seq, after filtering nucleoso-
mal reads by size (14), provide at the end the same type of
information: DNA reads that need to be grouped into in-
dividual nucleosomes using a variety of computational ap-
proaches (15-18), which in all cases suffer from the intrinsic
dispersion in read coverage. The resulting nucleosome maps
show well defined depleted regions (the nucleosome free re-
gions, NFR), well-positioned (W) nucleosomes, and a large
number of ‘fuzzy’ (F) nucleosomes giving partial protection
signals longer than 147 bps (19). Fuzzy positioning signals
are the result of nucleosomes not being in exactly the same
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genomic position in the cell population, and are intrinsically
difficult to annotate by any nucleosome calling algorithms
(15,17). While it is known (20,21) that this technique can be
affected by MNase concentration and sequence-preference
biases that affect the detection of the so called ‘fragile’ nu-
cleosomes, it is still the most widely used to detect nucleo-
some positioning for its versatility and accuracy. In 2012,
Brogaard et al. developed a chemical cleavage method that
provides a very accurate positioning of nucleosomes (22).
However, this technique requires to do genetic engineering
replacing the endogenous histone H4 (or H3 (23)) by a mu-
tated version, therefore restricting its use (24-27). More-
over, it has been shown that the MNase sequence bias can
be corrected using digested naked DNA as baseline (20,21),
obtaining more pronounced nucleosome coverage peaks.
The noisy nature of experimental data such as MNase-
seq, makes very difficult to compare nucleosome architec-
ture in two samples, as the signal is masked by the intrin-
sic fuzziness of the maps. Methods available such as DAN-
POS and Dimnp (15,28) can detect only a limited number of
changes affecting large percentage of the cells, as they work
at the level of the fragment coverage, missing the opportu-
nity to work with the raw data: the fragments themselves.
We present here Nucleosome Dynamics, a complete vir-
tual framework to characterize the structure and dynamics
of nucleosome architectures. The package consists of two
main blocks: an improved version of our nucleR algorithm
for nucleosome location (17), and NucDyn, an algorithm
specifically created to detect changes (shifts, evictions and
insertions) in nucleosome architectures based on the direct
processing of raw data (the sequencing reads) obtained from
pairs of experiments. The Nucleosome Dynamics package
(available under the Apache 2.0 License) can be installed
from the source code, obtained from BioConductor (29), or
run as a web tool hosted by the MuGVRE workspace (30)
as well as in a Galaxy server (31), where additional analysis
algorithms, browsers and visualization tools are included.

MATERIALS AND METHODS
Package overview

The input data for Nucleosome Dynamics is one or sev-
eral files containing sequence reads aligned to the reference
genome and stored in BAM format. The user can select (see
Figure 1) between: (i) processing a single file to define the
consensus nucleosome architecture using an extended ver-
sion of nucleR (17) or (ii) detecting changes in nucleosome
distribution between two experiments, by comparing pairs
of mapped sequence files using the newly developed Nuc-
Dyn module. For a complete description of the parameters
of the available functionalities, see Supplementary Table S1.
In the MuGVRE implementation (see Table 1), the user has
access to a wide range of analysis and visualization tools to
characterize the nucleosome patterns, their changes across
different conditions, and to put all the data in the context
of other information mapped to the genome (genome struc-
ture, expression, epigenetic signals, etc). We have evaluated
the performance of nucleR and NucDyn generating syn-
thetic nucleosome maps and have tested their descriptive
power using publicly available nucleosome positioning ex-
perimental data.

Single experiment analysis

Nucleosome positioning and coverage. BAM files from a
single MNase-seq experiment are processed to define nu-
cleosome coverage, which can be directly visualized using a
genome browser (Figure 2A) or processed to obtain nucle-
osome positions. Accordingly, following signal theory the
read coverage is described as a combination of periodic
waves, which are then subjected to Fast Fourier Transfor-
mation (FFT) to remove the high frequency components re-
sponsible for the noise (see Supplementary Figure S1). The
parameters for FFT filtering can be adjusted taking into ac-
count the nucleosome repeat length and noise level of each
organism and cell type (see Supplementary Table S1). Clean
profiles are processed to annotate the nucleosome dyads (lo-
cated at the local maxima of the distributions). Putative nu-
cleosomes are then scored based on the shape of the asso-
ciated peaks (see Supplementary Figure S1). Those leading
to sharp signals are labelled as well-positioned (W) nucleo-
somes (high localization score), while flat peaks are labelled
as ‘fuzzy’ (F) nucleosomes (low localization score). Once all
nucleosomes are localized, the software analyses the nucleo-
some architecture (see Supplementary Figure S2A) around
the transcription start sites (TSS) and classifies the nucle-
osome architecture for each gene based on (19): the exten-
sion of the nucleosome free region (NFR) around the core
promoter (open (0), closed (c) or missing —1 or +1 nucleo-
some) and the degree of localization of the +1 (downstream
the TSS) and —1 (upstream the TSS) nucleosomes (see Sup-
plementary Figure S2A). Data are presented at the individ-
ual gene level as well as summarized at global level (Fig-
ure 2). Nucleosome Dynamics performs a global detection
of all NFRs, as these regions usually are the main recog-
nition sites for effector proteins, and well-defined and ex-
tended NFRs typically signal active regions in the genome.

Periodicity at coding regions. The software evaluates the
periodicity in the nucleosome pattern inside the genes, fol-
lowing signal propagation theory from two ‘emitting sites’
located at well-positioned nucleosomes. The first signal
comes from the 5’ end of the gene (the +1 nucleosome lo-
cated just downstream the TSS) and the second from the
3" end of the gene (the —last nucleosome located just up-
stream the transcription termination site; TTS). We assume
that both signals proceed in opposite directions (from +1
to —last nucleosome) following an exponential decay peri-
odic function (32). We found out that when the +1 and —last
originated waves are in phase the signals sum up and nu-
cleosomes are well located inside the gene body, while when
they are in antiphase the signals cancel out and the gene typ-
ically shows fuzzy nucleosomes. The periodicity (T) of the
signal is obtained by maximizing the autocorrelation func-
tion (Equation 1: see an example in Supplementary Figure
S2):

R(T)= [y I(x) % I(x — T)dx )

where X and X; are the intervals of the window, /( x) stands
for the coverage. This value will be dependent on the nucle-
osome repeat length of each species and cell type (see Sup-
plementary Table S2 for suggested T in different cell types).
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Figure 1. Analysis pipeline for Nucleosome Dynamics. A single MNase-seq experiment can be analysed, obtaining: nucleosome calls with nucleR, their
fuzzy/well-positioned classification and stiffness estimation, Nucleosome Free Regions location, classification of TSS according to — I and + 1 nucleosomes,
and nucleosome phasing along the gene body. Comparing two MNase-seq experiments, NucDyn identifies hotspots of changes (SHIFT +, SHIFT -,
INCLUSION and EVICTION), and reports a significance score of the difference in the coverage profiles at base-pair level. Summary statistics per gene

as well as genome-wide are also reported for each calculation.

Table 1. Implementation models for Nucleosome Dynamics

Code distribution
Standalone installation Nucleosome Dynamics CLI
nucleR R package
NucDyn R package
Containerized installation Docker
Singularity
Platforms in use

MuG Virtual Research Environment
Galaxy Platform

https://github.com/nucleosome-dynamics/nucleosome_dynamics
https://github.com/nucleosome-dynamics/nucleR Bioconductor:
http://bioconductor.org/packages/nucleR/
https:/github.com/nucleosome-dynamics/NucDyn Bioconductor:
(in review)

https://github.com/nucleosome-dynamics/docker Docker-hub:
mmbirb/nucleosome-dynamics
https://github.com/nucleosome-dynamics/
nucleosome_dynamics_singularity Singularity-hub:
https://singularity-hub.org/collections/2579

https://vre.multiscalegenomics.eu/workspace/?from=nucldynwf
https://dev.usegalaxy.es (in development) Galaxy ToolShed:
https:/toolshed.g2.bx.psu.edu/repository?repository_id=
822e9¢879¢f92fd0

A ‘phased’ gene is defined when the distance between +1
and -last nucleosome is close to a multiple of T (Supplemen-
tary Figure S2B). An ‘antiphased’ gene is defined when the
modulus of the ratio between the distance of the +1 and —
last nucleosomes and T is close to T/2 (Supplementary Fig-
ure S2C). The package provides a theoretical nucleosome
map based on signal propagation theory with +1 and —last
nucleosomes as emitting sites. Comparison of the predicted
and the real nucleosome maps helps to detect anomalies in

the gene nucleosome distribution emerging from interacting
proteins or from the effect of the remodelling machinery.

Nucleosome stiffness. Nucleosome Dynamics also analy-
ses the sliding propensities of nucleosomes by computing its
apparent resistance to be displaced along the sequence. For
this purpose, we map the original reads around located nu-
cleosomes and estimate the normalized Gaussian that bet-
ter fits the distribution of reads (see Supplementary Figure
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Figure 2. Visualization of Nucleosome Dynamics results in MuGVRE. (A) Nucleosome positioning along ACE2 (YLR131C) gene from S. cerevisiae
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apparent stiffness value: darker blue nucleosomes are more stiff and lighter are less stiff; (j) significance of the differences in nucleosome coverage between
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et al., 2010), (n) H3K4me3 histone mark enrichment (Liu ez al., 2005) and (o) gene expression changes during cell cycle (Deniz et al., 2016). (B) Detailed
view around a hotspot identified by NucDyn in chrXII. (C) Genome wide statistics of NFR width around TSS, in G2 phase. (D) Genome wide frequency

of changes detected by NucDyn between G2 and M.

S2) from which stiffness is derived by the elastic approxima-
tion as shown in Equation (2):

kgT

0 =2
sd?

(2)

where kT is the thermal energy at room temperature and
sd is the standard deviation of the Gaussian fitted to reads
associated to the nucleosome.

Defining changes in nucleosome distribution

Pairs of BAM files are processed to determine changes in
the nucleosome architecture between two experiments. For
this purpose (see Supplementary Figure S3) the program
pairs the reads obtained from one experiment to the other
to discard those that are unchanged. It also removes reads
that share the same starting or ending point or those that
can be fitted in longer read in the paired experiment, as
they are likely to be generated by spurious differences in
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nuclease degradation activity. The remaining reads are then
paired between the two experiments using a dynamic pro-
gramming algorithm designed to maximize: (i) the number
of matches, (ii) the proximity in the middle points of the
paired reads, (iii) the assignment of the paired reads to the
same nucleosome. To achieve these objectives the dynamic
programming highly penalizes gaps and scores read pairsin-
versely proportional to their distance, with a —infinite score
when the distance between the middle point of the reads is
longer than half the length of the nucleosome. The final out-
put of the procedure is a set of read pairs shifted in one
experiment with respect to the other. These shifts are ac-
cumulated to define hotspots that are further analysed to
determine their statistical significance as markers of shifts
in the nucleosome architecture.

A second type of changes detected by the program is re-
lated to differences in occupancy (insertions and evictions)
between the two experiments, that are determined directly
from the coverage. To reduce the impact of experimental
noise we analyse the coverage data by computing a Z-score
for every position x across the genome, normalizing it in 10
000 bp windows, which allows us to find locally normalized
differences in coverage (Equation 3).

7 m— E(nlz)
(V(m))>2

where m is the number of reads covering position x in ex-
periment 1, E (m) = nf (with f being the fraction of total
reads in the window (N) that corresponds to experiment 1
(M) and n is the number of reads covering position x in both
experiments) and F{(m) is the expected variance of a hyper-
geometric distribution, .e. V (m)= nf(l — f)H. Posi-
tive Z-score peaks mean that at that point the read cover-
age found at experiment [ is higher than the coverage at ex-
periment 2 and an eviction hotspot is annotated. Similarly,
negative Z- peaks signal inclusions.

The statistical significance of the detected hotspots
(shifts, inclusions and evictions) is scored using the P-values
derived from Fisher’s test from a contingency table between
the reads in each experiment (columns) and the reads at a
given position compared to reads within the window (rows):

(3)

Exp 1. Exp. 2 Total
Covering x M—m N-M-n+m N-n
Not covering n n—m n
X
Total M N-M N

Software availability and implementation

The Nucleosome Dynamics package is available in dif-
ferent deployment models to fulfil the needs of different
users. Moreover, it is also offered as a service in two dif-
ferent research platforms. All available distributions are
explained at Nucleosome Dynamics landing page: http:
/immb.irbbarcelona.org/NucleosomeDynamics/, and sum-
marized in Table 1.
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Code distributions.

¢ Nucleosome Dynamics is written in R and composed of
two packages (nucleR and NucDyn), and a series of R
wrappers providing a unified interface to such core func-
tionalities and other additional analyses (TSS classifica-
tion, NFR, Phasing, Stilfness, etc., see above). Source
code and documentation are available for standalone in-
stallation (see Table 1). Both nucleR and NucDyn pack-
ages are also distributed via BioConductor. Although
the native R interface is recommended for experienced R
users, other deployments built on top of the R software
are also provided for further accessibility and portability.
Nucleosome Dynamics package depends on a series of
other R packages and helper applications. To minimize
the possibilities of collision with existing installations,
and to avoid installation issues to the non-experts, the
packages are offered as software containers in both, the
well-known Docker implementation and the Singularity
format, the latter intended for multi-user systems where
running Docker containers natively is not trivial — i.e.
HPC systems. A single container allows the user to obtain
all functions of the package directly from the command-
line, and additionally, the launcher is able to accept a list
of Nucleosome Dynamics analysis commands in bash to
orchestrate a custom workflow. Furthermore, the use of
the containers allows seamless software update. The im-
ages are registered at the corresponding hubs (see Table

1).

Use in research platforms.

e MuG Virtual Research Environment (MuGVRE) is an
integrated workspace designed o put together a series
of applications related to the study of 3D /4D genomics
(30). The MuGVRE workspace allows to combine data,
either uploaded to the workspace or obtained from pub-
lic repositories such as ArrayExpress (33). MuGVRE in-
cludes applications covering a wide range of levels in the
study of chromatin, from atomistic simulation or protein-
nucleic acids docking to coarse-grained simulation of
large nucleic acids molecules or chromatin fibers, as well
as the analysis of Hi-C data. All those applications share
a common data space where interoperability is assured
through a common data model, and a specific protocol to
incorporate new tools. MuGVRE is a cloud-based appli-
cation that simplifies the deployment and provides user
access to visualization tools, additional data in external
repositories, and to a variety of other programs for the
analysis of chromatin at different levels of resolution.

The server provides a graphical interface based on an
embedded sequence browser, Jbrowse (34), that allows
visualization of nucleosome architectures in the context
of other omics data (see Figure 2A). For this purpose,
the outputs of all calculations are generated in GFF3 or
bigWig format. Nucleosomes are represented as boxes
coloured with different tones of blue according to their
positioning score, with regions where nucleosome are too
fuzzy displayed in a lighter colour. Similarly, nucleosome-
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free regions are highlighted by yellow boxes in a different
row (see Figure 2A). In both cases, numerical information
(scores, characteristics of the nucleosome or NFR) can be
obtained by clicking on the corresponding boxes. The nu-
cleosome architecture around TSS is classified based on
the length of the NFR and the location score of the +1
and — 1 nucleosome (see above). The results are shown as
boxes between the —1 and +1 nucleosome dyads, color-
coded by the corresponding architecture class. The analy-
sis of nucleosome phasing generates a bigWig file with the
theoretical prediction of the nucleosome positions inside
the gene body, based on periodicity considerations and
the +1 and —last nucleosomes (see above), and a GFF3 file
which is displayed as a coloured box indicating whether
the gene shows ‘phased’, ‘antiphased’ or intermediate nu-
cleosome phasing (see Figure 2A). Similarly, the stiffness
associated to the nucleosomes is represented (through a
GFF3 file) as a box mapping to the nucleosome, coloured
according to the estimated stiffness (see Figure 2A). Nu-
cleosome Dynamics data can be put into genomic con-
text by a series of additional tracks (Supplementary Ta-
ble S3) providing gene annotations and relevant litera-
ture data. Further analyses can be obtained from the web
server, such as detailed plots of nucleosome coverage and
changes in nucleosome distribution between the two ex-
periments (Figure 2B), genome-wide statistics of nucleo-
some architecture around TSS (Figure 2C), and overall
frequency of inclusions, evictions and shifts between the
two experiments (Figure 2D). Finally, Nucleosome Dy-
namics also generates a table listing the number of nucle-
osomes, their status (fuzzy/well-positioned), the identi-
fied nucleosome changes (inclusions, evictions, shifts), the
classification of the promoter and the width of the NFR
at the TSS for every single gene in the genome (Supple-
mentary Table S4). These analyses are useful to test the
effect of a treatment/growth conditions on nucleosome
positioning both globally, or at gene level.

Running Nucleosome Dynamics on the galaxy platform:
Galaxy is a web-based scientific analysis platform widely
used by scientists to analyse biomedical datasets such
as genomics, proteomics, metabolomics or imaging (31).
Nucleosome Dynamics docker has been wrapped in a
series of Galaxy tools, one for each analysis. Users
can launch them individually, or as part of a Galaxy
workflow, building a custom pipeline that may inte-
grate other Galaxy applications. The tools are published
in the Galaxy ToolShed (see Table 1) and adopted by
the ELIXIR_ES Galaxy server (currently in develop-
ment phase), together with a complete ready-to-use Nu-
cleosome Dynamics workflow. The output calculations,
mainly GFF3 and bigWig files, are treated in the plat-
form as any other sequence annotation file. Plain files like
GFFs are locally displayed using a column-based visual-
ization, while the genomic-context analysis is based on
the UCSC genome browser (35). Galaxy transparently
loads the data to the central UCSC browser service, and
there, the sequences are loaded as custom tracks and vi-
sualized together with the other UCSC annotations.

Benchmarking data sets

The ability of the package to determine the location and
nature of nucleosomes and nucleosome architectures was
evaluated using synthetic maps from single cell nucleosome
architectures that are combined to create in silico MNase
digestion maps approaching closely to those found in real
yeast MNase-seq experiments. For this purpose, we created
multiple single cell nucleosome architectures by first placing
NFRs at specific positions separated by ~2000 bp (the typ-
ical range of NFR-NFR distances in yeast) in a 10 kb DNA
fragment. As the NFR are highly conserved, their positions
are located with small noise in the different cells. Once the
NFRs for a single cell have been placed, we defined windows
for nucleosome positioning using the known average nucle-
osome periodicity (165 bp for yeast in the experiments sim-
ulated here). Each window was associated to either a W or
F nucleosome following probability functions reproducing
their expected populations at different distances from NFR.
Windows that (in a given cell) appeared to be associated to
W nucleosomes have a high probability to be occupied by
a nucleosome, which is placed within a narrow range from
the centre of the window (see Supplementary Figure S4).
On the contrary, windows associated to F nucleosomes have
a higher probability to be empty in a given cell, and once
the nucleosome is assigned, its position is variable within
the window. Once obtained, the population of in silico cells
was processed by in silico MNase digestion repeating this
process many times, introducing ‘digestion noise” to repro-
duce the distributions of read lengths observed in typical
yeast experiments. The integration of the reads for the entire
population provides an in silico MNase-seq map where we
know exactly the real population and fuzziness of all nucle-
osomes at all positions in the pool of cells. This constitutes
an unambiguous benchmark to validate the performance
of nucleosome annotation software. The probability func-
tions used to generate the different cell nucleosome archi-
tectures were adjusted to qualitatively reproduce reads ob-
tained in real M Nase-seq experiments (Supplementary Fig-
ure S4). Synthetic data simulating ATAC-seq experiments
can be derived in a very similar manner.

The synthetic data obtained as explained above were the
starting point to generate pairs of in silico experiments sim-
ulating changes in nucleosome architectures. To this end, a
percentage of the reads was either shifted or removed for a
given nucleosome. Shifts from 1 to 5 turns of DNA (1 DNA
turn = 10 bp) were introduced generating 100 replicates in
each case to evaluate the sensitivity of the method to detect
shifts of different lengths and affecting different percentage
of the total population.

RESULTS
Performance using in silico datasets

NucleR.  We explored the ability of the software to posi-
tion nucleosomes using as reference our highly controlled
synthetic data (see Methods). As a control, we repeated
the exercise using another widely used program for nucle-
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osome annotation, DANPOS (15). Both packages show a
good ability to represent the nucleosome architecture us-
ing MNase-seq data. In terms of occupancy DANPOS per-
forms slightly better than the nucleR module implemented
in our Nucleosome Dynamics package (R> =0.97 for DAN-
POS versus R? = 0.93 for nucleR), while nucleR can detect
better the nucleosome fuzziness (R? = 0.94 for nucleR ver-
sus R? = (.87 for DANPOS; see Supplementary Methods.
for description of the metrics). The location of W nucleo-
somes is nearly identical in both methods, but for F nucleo-
somes the results are quite different, as DANPOS annotates
a wide region of sequence reads as a single nucleosome po-
sitioned with a large uncertainty, while nucleR can assign
several nucleosomes to the wide signal, even when in some
cases the two nucleosomes can partially overlap (see Fig-
ure 3A). As a result, DANPOS provides, probably, the best
‘average’ distribution of nucleosomes, but nucleR provides
a more realistic picture of the cellular variability, capturing
the presence of alternative nucleosome architectures in the
cellular population. As it can be seen in Figure 3A, where
selected examples of DANPOS and nucleR nucleosome dis-
tributions are compared with the real nucleosome architec-
ture existing in our synthetic data; in Figure 3B, where we
compare the ability of DANPOS and nucleR to detect the
presence of a percentage of cells showing a different nucle-
osome architecture and in Figure 3C, where we report the
average distance between the real position of the dyads of
the synthetic nucleosomes and those located by DANPOS
or nucleR.

NucDyn. We tested the ability of our method to detect re-
arrangements in the nucleosome architecture using again
our controlled in-silico MNase-seq data, simulating dis-
placement (shift), insertion or eviction of one nucleosome,
occurring in a different percentage of the cells. Sizeable
changes such as nucleosome insertion or eviction are de-
tected with good sensitivity by our method, even when they
affect a relatively small percentage of cells (Figure 3D),
while DANPOS or Dimnp only detect such changes when
affecting a very large proportion of cells. Small nucleosome
shifts (implying less than one turn of DNA) are not de-
tectable by our algorithm unless they occur in a large per-
centage of the cells; while shifts implying a displacement of
at least two turns of DNA (20 base pairs) are detectable with
good sensitivity, even when affecting less than half of the
cellular population (see Figure 3E). In this case, the com-
parison with other programs is difficult, as only DANPOS
(15) allows an indirect way to detect nucleosome shifts by
looking at distances between nucleosome peaks in both ex-
periments. Unfortunately, with our synthetic data, DAN-
POS achieved poor sensitivity (less than 0.20 for 5 turns of
DNA shift in 70% of cells and <0.1 for 3 turns shifts affect-
ing also 70% of cells; see Supplementary Figure S5).

In summary, analysis of well-controlled in silico data
shows that the Nucleosome Dynamics package (including
NucDyn and nucleR) is not only a very powerful tool to de-
fine nucleosome families from MNase-seq experiments per-
formed with a population of cells, but also a powerful ap-
proach to detect subtle changes in nucleosome architecture
affecting a percentage of the cells in the studied sample.

Nucleic Acids Research, 2019 7

Test cases

In order to illustrate the information derived from Nucle-
osome Dynamics, we applied our method in different real
cases where experimental MNase-seq data were available.
It is important to mention that the biological relevance of
this type of comparison depends on the quality of the data
and especially on the similar level of MNase digestion of the
samples being compared. Indeed, several groups, including
ours, have demonstrated the impact of the level of MNase
digestion on the final nucleosome maps in several organ-
isms, essentially at the level of the so-called ‘fragile’ nucle-
osomes (19,36-38). To illustrate this observation, we took
advantage of the extensive study made by (36) and used Nu-
cleosome Dynamics to compare nucleosome positioning in
the input of two H2B and two H4 MNase-ChIP-seq sam-
ples, one under-digested and one over-digested (50U and
400 U of MNase respectively for H2B; 25 U and 300 U
MNase respectively for H4). First, we focused on the H2B-
input samples and confirmed that the number of nucleo-
some detected by nucleR decreases as the amount of MNase
increases (from 80 160 down to 72 775, Supplementary Ta-
ble S5) which is corroborated by the detection by Nuc-
Dyn of 3559 evictions genome wide (Supplementary Ta-
ble S6). At the promoter level, the proportion of W-open-
W TSS increases from 123 to 2026 while the W-close-W
TSS decreases from 2656 down to 346 (Supplementary Fig-
ure S6A). Regarding the phasing analysis, the percentage of
phased genes does not change significantly due to the level
of MNase digestion (Supplementary Figure S6B). Similar
numbers were obtained for the H4-input samples. Hence, it
is important to control MNase digestion level before using
Nucleosome Dynamics package. Another technique that is
not influenced by the level of MNase digestion is chemical
cleavage mapping. NucleR can be applied to map nucleo-
some positions using the coverage obtained from these ex-
periments (Supplementary Figure S7),

Cell cycle.  The first example comes from the analysis of
the changes in nucleosome organization occurring along
the cell cycle in yeast, using our own previously published
data (39). As shown in Figure 4A, the nucleR module of the
Nucleosome Dynamics package suggests that nucleosomes
tend to be fuzzier (F) in S and M phases compared to G1
and G2 phases. The increase in fuzziness in S and M phases
impacts on the promoter classification as the number of W-
open-W and W-closed-W promoters decreases compared to
G1 and G2 (Figure 4B), but overall the ratio of closed/open
NFRs (nucleosome free regions) is not dramatically altered
along cell cycle (Supplementary Figure S8). Very interest-
ingly, the changes in nucleosome architecture detected by
NucDyn are not randomly distributed along the genome,
butappear to be localized in specific families of genes, which
are related to cell cycle progression, as shown by Gene On-
tology (GO) Enrichment Analysis (40) in Figure 4C. Exam-
ples of the detailed information provided by Nucleosome
Dynamics for some specific genes are shown in Figure 4D,
where we report nucleosome maps of PRY?2 (a gene related
to lipid transport), whose expression peaks in G1 phase,
YHPI (involved in negative regulation of transcription of
certain cell cycle genes), and GIC! (a GTPase-interaction
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component involved in mitosis regulation) expressed in S
phase (39). In the three cases, expression changes correlate
with significant variation in nucleosome architecture at the
promoler region between two stages of cell cycle. Typically,
eviction or shifts reducing the presence of nucleosome in the
core promoter region are related to active states of the genes
(4,19,28.41,42),

Yeast metabolic cycle. A second example of use of our tool
was the comparison of nucleosome architecture amongst
cells at different stages of the yeast metabolic cycle (YMC).
We took advantage here of high resolution experiments (43)
in which the authors analysed simultaneously gene expres-

90%).

sion and MNase-seq maps at regularly spaced periods of
time after adding fresh culture media. At two of these time
points (T9 and T12 in Nocetti and Whitehouse 2016) dra-
maltic changes of expression in genes related to reductive
charging (poorly transcribed at T9 and highly transcribed
at T12) and oxidative phase (highly transcribed at T9 and
poorly transcribed at T12) have been detected. Analysis
of global nucleosome architecture shows moderate changes
between T9 and T12 (Figure 5A), but differences are more
noticeable when the analysis is focused on Ox-genes (in-
volved in amino acid synthesis, sulphur metabolism, ribo-
some and RNA metabolism (44), which are expressed in
T9 and repressed in T12) and R/C genes (involved in non-
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respiratory metabolism, protein degradation, autophagy
and vacuole (44), which are expressed in T12 and repressed
in T9). Nucleosome Dynamics allows the detection and
quantification of the alterations in nucleosome architecture
coupled to such changes in expression. Thus, for Ox-genes
(Figure 5B), the fuzziness at the —1 nucleosome decreases
when moving from T9 to T12, in agreement with the general
rule that reduced NFR upstream the well positioned +1 nu-
cleosome correlates with inactive genes. On the contrary, for
R/C genes (Figure 5C) the NFR upstream well positioned
+1 nucleosome enlarges, since the —1 nucleosomes become
fuzzier, again in perfect agreement with the changes of ex-
pression. To discard any biases resulting from the MNase
digestion conditions, we confirmed that the length of the se-
quenced fragments was comparable in both samples (Sup-

plementary Figure S9). Examples of the detailed informa-
tion provided by Nucleosome Dynamics for three Ox-genes
(NSRRI, RRP4 and SNUI3, all of them related to riboso-
mal biogenesis and RNA metabolism) are shown in Figure
5D, where upon T9—T12 transition, shifts and even inser-
tions are shown leading to a reduction in the width of the
NFR upstream the TSS: a fingerprint of gene deactivation.
Similarly, Figure 5E provides the same type of informa-
tion for three R/C genes (CTAI, SUEI and SAFI), which
are associated respectively with peroxisome, cytochrome C
degradation and proteasome (see above). In the three cases,
T9—TI2 transition is coupled with massive nucleosome
eviction upstream the TSS, leading to open configurations
of NFR, typical of highly expressed genes.
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Figure 5. Nucleosome Dynamics in two points of the YMC. Promoter classification in the two time points (T9 and T12) for (A) all genes, (B) genes from
the Ox cluster and (C) genes from the R /C cluster. (D and E) Example of three genes from Ox and 3 from R /C clusters that present differential nucleosome
architectures between T9 and T12. In grey, the normalized coverage from the BAM files of the two time points, 500 bp upstream and 1000 bp downstream
the TSS. Below each BAM file, the nucleosome calls obtained with nucleR are represented (dark blue for well-positioned nucleosomes, light blue for fuzzy
nucleosomes). The fifth track contains shifts (yellow for positive, blue for negative), inclusions (green) and evictions (red) identified by NucDyn.

Changes in nutrients. As a last test, we applied Nucleo-
some Dynamics to explore the modifications in nucleosome
architecture in yeast, linked to the change in the media from
glucose-rich to either galactose-rich or ethanol-rich (45).
Changes in the TSS nucleosome architecture classification
occur among the three conditions (Figure 6A). There are
not complete expression data in Kaplan ez al. 2009, but we
expected that replacement of glucose by galactose in the
media would imply changes in expression in genes related
to carbohydrate metabolism and transport which encour-
agingly, are those where sizeable changes in nucleosome ar-
chitecture are detected by Nucleosome Dynamics (Figure
6B). Similarly, replacement of glucose by ethanol was ex-
pected to have an impact on the cell through: (i) expres-
sion of stress response genes, (ii) changing completely hex-
ose metabolism in the absence of hexoses and (iii) eliminat-
ing ethanol through oxidation generating changes in the re-
dox state of the cell which need to be corrected (46). Very
encouragingly again, genes involved in stress response, hex-

ose metabolism and redox activities are those for which the
largest changes in nucleosome architecture have been de-
tected (Figure 6C).

We analysed in detail some genes which are ex-
pected to change dramatically their expression upon
glucose— galactose substitution, as they are crucial to inte-
grate galactose in normal hexose metabolism: GALI, cod-
ing for a Galactokinase, GALI0, coding for the UDP-
glucose-4-epimerase, and GAL7, coding for the galactose-
1-phosphate uridyl transferase (Figure 6D). In the three
cases evictions and shifts (in some cases noticeably) generate
wider NFRs upstream the gene, changes that in some cases
extend to the coding regions and that signal a pronounced
increase in expression of these galactose-related genes.

A similar detailed analysis was made for three genes
which are expected to be overexpressed when ethanol sub-
stitutes glucose as energy source: two stress response genes
HSP26 and HSPI12, and HXKI, a hexokinase activated
when cells are shifted to a non-fermentable carbon source
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Figure 6. Nucleosome Dynamics under different nutrient conditions. (A) Promoter classification in glucose, galactose and ethanol rich media. (B and C)
GO terms enriched in genes with nucleosome changes detected by NucDyn, changing the medium from glucose to galactose or ethanol, respectively. (D
and E) Example of three genes involved in galactose and ethanol metabolism, respectively, that present differential nucleosome architectures depending
on the carbon source. In gray, the normalized coverage from the BAM files of the two cell cycle stages, 500 bp upstream and 1000 bp downstream the
TSS. Below each BAM file, the nucleosome calls obtained with nucleR are represented (dark blue for well-positioned nucleosomes, light blue for fuzzy
nucleosomes). The fifth track contains shifts (yellow for positive, blue for negative), inclusions (green) and evictions (red) identified by NucDyn.



Chapter 5. Nucleosome Dynamics

133

12 Nucleic Acids Research, 2019

such as ethanol (47). Results in Figure 6E illustrate the mag-
nitude of the changes (mainly evictions) detected by Nucle-
osome Dynamics, which affect the NFR, and even in some
cases the coding regions.

DISCUSSION

Different studies demonstrated that nucleosome architec-
ture is coupled to gene function (4,43,48) and that transcrip-
tional activity and nucleosome architecture are tightly cou-
pled. Unfortunately, detecting changes in nucleosome archi-
tecture is complex as nucleosomes are dynamic and even
a population of ‘identical’ well synchronized and grown
under identical conditions cells might have nucleosomes
placed at different positions. This, combined with the in-
trinsic uncertainties of MNase- or ATAC-seq experiments,
generate noisy data which are difficult to process for pre-
cisely locating nucleosomes and even more difficult to de-
tect significant changes in nucleosome arrangements due to
internal or external stimuli. The suite of programs incorpo-
rated in Nucleosome Dynamics allows not only a robust lo-
cation of nucleosomes, even in cases of heterogeneous pools
of cells, but also the detection of changes in nucleosome ar-
rangements, even those affecting a moderate population of
cells. To increase its utility, Nucleosome Dynamics is inte-
grated into a powerful virtual research environment, where
it is combined with different tools for analysis of data and
visualization in the context of genomic metadata, which
help the user not only to analyse nucleosome architecture
and dynamics, but also to put them in the context of known
genomic information (Figure 2).

We validated the methodology using synthetic data that
mimic typical MNase-seq maps, in which the positions of
the nucleosome in the different cells are unambiguously
known. The two main modules of Nucleosome Dynamics
(nucleR and NucDyn) perform very well capturing cellu-
lar diversity and detecting shifts, evictions and inclusions
that affect a moderate percentage of the cellular population.
Furthermore, we tested the power of the methodology by
exploring nucleosome rearrangements occurring along cell
cycle, yeast metabolic cycle, and those linked to the change
in the source of energy from glucose to galactose or ethanol.
In the tested cases, Nucleosome Dynamics provides accu-
rate global and local descriptions of nucleosome structure
and dynamics and deciphers the nature of the connection
between nucleosome organization and gene expression.
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Chapter 6 . Impact of DNA methylation on 3D
genome structure

DNA methylation is a well-known epigenetic mark implicated in development and
disease [1]. It has been shown that CpG methylation affects the physical properties
of DNA, increasing its stiffness, which in turns affects nucleosome binding [2,3]. Here
we present a comprehensive study about the effect of DNA methylation on
chromatin structure, both at the nucleosome level and at the whole genome 3D
configuration in the nucleus. Although many studies have explored the correlation
between nucleosome positioning and DNA methylation, it is still unclear whether
the two factors are correlated or anti correlated [2]-[4] Moreover, although typically
DNA methylation was considered a hallmark of repression at promoters [5],

nowadays we know that the relationship is more complex [1,6].

The contradictory results found to this day on the relationship methylation €<=
nucleosome arrangement €< ->gene expression might be due to the presence of other
methylation readers present in higher eukaryotes controlling directly or indirectly
nucleosome positioning and epigenetic-dependent gene expression. For this reason,
we employed a natively unmethylated genome and induced the expression of four
murine DNA methyltransferases (DNMTs) to methylate the DNA. This allows to
directly study the intrinsic effect of DNA methylation on the chromatin structure of

this system in the absence of methylated DNA recognition proteins.

The induced methylation in yeast follows a similar pattern as in mammalian cells,

lower at the TSS and increasing towards the TTS. Here, we found that in our system
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all the four DNMTs are active and removing each of them, one at the time, produced
a significant decrease in the level of methylation reached. In general, similar patterns
of DNA methylation are observed in all cases, although we detected some specific
DNA sequence preferences for DNMT3a and DNMT3b. Combining all of them we
managed to obtain a very high level of DNA methylation in yeast genome. We found
that nucleosome positioning strongly guides the position of the CpG methylation,
since well-positioned (W) nucleosomes are depleted of methylation around the dyad
accumulating towards the linkers, while fuzzy (F) nucleosomes can be methylated at
equal rates at any position. On the other hand, nucleosome changes are also
produced by the DNA methylation: the proportion of F nucleosomes increased,
especially towards the 3" end of the genes, and at highly methylated promoters we
detected differential nucleosome positioning with our Nucleosome Dynamics

package (see Chapter 5 for a description of the algorithm).

Among the highly methylated promoters, we also found differential expression,
which was not present in low-methylated. Some genes are repressed upon
methylation, which can be explained considering the steric hindrance that a
displaced nucleosome generates, but surprisingly several over-expressed genes are
detected and quite interestingly are related to meiosis. We investigated the
corresponding promoters finding a common motif that is CpG rich, URS], target site
for UMES6 protein, known to be a repressor for meiosis-related genes. Since the level
of methylation in this motif is proportional to the increase in transcription, the over
expression could be explained by the unbinding of UMES6 repressor. It is interesting
to notice that this effect is direct, not protein-mediated and by might be related to

intrinsic changes in DNA-URS] binding related to cytosine methylation.

Next, to explore the intrinsic effect of DNA methylation on global 3D chromatin
structure, we performed Hi-C experiments and developed a restraint-based
chromatin model. We produced an ensemble of structures for each yeast
chromosome based on restraints derived from the Hi-C contact matrices binned at
S5kbp. The 3D models of several chromosomes show lower flexibility in the
methylated chromatin, revealed by the lower RMSD of each structure in the

ensemble and lower RMSF of each bead among the structures in the ensemble.
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Globally, yeast chromatin reorganizes upon DNA methylation induction, loosing
interactions in frans and gaining contacts in cis, especially around the centromeres.
This might be explained by the high density of chromatin in these loci, since yeast

centromeres are attached to the Spindle Pole Body.

Particularly, we found large chromatin changes in chromosome XII, containing the
rDNA repeats. In our unmethylated controls, cells are in stationary phase and the
expression of these genes decreases, relaxing the barrier that this locus represents for
separating the two sides of the chromosome, upstream and downstream from this
region. In the methylated strain however, the contacts between the two parts of the
chromosome are lost, suggesting that the chromatin structure is blocked upon
methylation while the cells are dividing, keeping the rDNA region separated from
the rest of the chromatin, as is known to occur in replicating cells [8], [9], even after

the cells enter the stationary phase.

Overall, our results show the intrinsic effect of DNA methylation on structural
changes in chromatin organization, independent of DNA methylation readers as our
model organism does not contain the complex cellular machinery that recognizes

methylation signatures.
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Abstract

The extreme complexity of epigenetic regulation in higher organisms makes the
determination of a causal function of DNA methylation complicated. We investigated the
role of DNA methylation in a simpler model system, budding yeast (Saccharomyces
cerevisiae), a biological system in which methylation and all the methylation-related
machinery are normally absent thus making it a perfect system to study the intrinsic
role of DNA methylation on DNA structural and functional properties. With this aim, we
expressed the murine DNA Methyl Transferases in S. cerevisiaze and analyzed the
correlation between DNA methylation, nucleosome positioning, gene expression and 3D
genome organization. We showed that DNA methylation in our model system followed a
conserved pattern, the level of DNA methylation being very low at the 5’ end of the gene,
and then increasing gradually toward the 3’ end. We also observed a correlation
between DNA methylation and gene expression: DNA methylation being lower at the
TSS and higher at the TTS in highly expressed genes compared to lowly expressed genes
and an anti-correlation between DNA methylation and nucleosome positioning. Finally,
we showed that DNA methylation tends to increase chromatin condensation, mostly
visible in the peri-centromeric region, and decrease DNA flexibility. It also appears to
maintain the DNA in its heterochromatin conformation. Taken together, these results
provide new insights into the role of DNA methylation and validate our minimal system
as a powerful tool to study DNA methylation.
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Introduction

DNA methylation is one of the most studied epigenetic marks which introduce major
changes in cellular functionality that can have systemic consequences. Thus, the impact
of impaired DNA methylation in health is well established (for a review see (Bird
2002)). For example, mutations in DNA Methyltransferase 3b (DNMT3b) are implicated
in Immunodeficiency, Centromere instability and Facial anomalies (ICF) syndrome
(Heyn et al. 2012), mutations in DNMT3a are found in acute myeloid leukemia (AML)
patients (Holz-Schietinger et al. 2012) while those in DNMT1 cause autosomal
dominant cerebellar ataxia, deafness and narcolepsy (Winkelmann et al. 2012).
Furthermore, DNA methylation plays a key role in development (reviewed in (Smith

and Meissner 2013) and cell differentiation (Orlanski et al. 2016), and a correct

methylation level is crucial for the regulation of parental imprinting and X chromosome

inactivation mechanisms (Miranda and Jones 2007). Finally, changes in DNA

methylation patterns have been associated with many different types of cancer in
humans (Kulis et al. 2012; Mayol et al. 2012; Carmona et al. 2014; Subramaniam et al.
2014) and reviewed in (Heyn and Esteller 2012; Klutstein et al. 2016).

It is commonly stated that DNA methylation in the promoter region of a gene is a
hallmark of repression. However, several studies have shown that DNA methylation in
the gene body could also affect gene expression, and that the increase in methylation in
promoter regions is not always correlated with gene repression, making the effect of
DNA methylation on gene expression far more complicated than a simple on/off signal

(Suzuki and Bird 2008; Kulis et al. 2013). Two possible mechanisms might link DNA

methylation with gene regulation: i) a direct mechanism involving proteins with
methylated DNA binding domains, and ii) an indirect effect related to changes in
chromatin structure. For the latter possibility, several hypotheses have been suggested,
among them that DNA methylation affects nucleosome positioning, which is known to
regulate gene expression by modulating chromatin compaction and DNA accessibility
(liang and Pugh 2009). Accurate in silico and in vitro studies have demonstrated that

DNA methylation makes DNA less flexible and less likely to form nucleosomes (Perez et

al. 2012; Portella et al. 2013), but other studies relying on in vitro nucleosome
reconstitution claim the opposite: i.e. that DNA methylation increases the affinity of

histones for DNA (Collings et al. 2013). Also, DNA methylation has been suggested to
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promote compaction on a pre-assembled nucleosome (Choy et al. 2010). In vive studies
on mammals and plants are also confusing, with some suggesting that methylation

occurs preferentially on nucleosomal DNA (Cokus et al. 2008; Chodavarapu et al. 2010)

and others concluding the opposite (Felle et al. 2011; Huff and Zilberman 2014;
Pedersen et al. 2014; Morselli et al. 2015). This confusion can probably be explained by

the high complexity of mammalian genomes and the myriad of factors that can control
directly or indirectly nucleosome positioning. For instance, NOMe-seq experiments have
shown that DNA methylation and nucleosome occupancy were strongly anti-correlated
surrounding CTCF sites, but at promoters the correlation seemed to be less clear (Kelly

etal. 2012).

To study the direct effect of DNA methylation on Nucleosome positioning, several
groups have used the yeast Saccharomyces cerevisiae, taking advantage that this simple
eukaryote has neither DNA methylases nor methylated DNA binding domains (Hu et al.
2009) and (Bulkowska et al. 2007) have shown that ectopic expression of either
DNMT3a and DNMT3L or DNMT3a and DNMT1, could induce DNA methylation in yeast,

but the level of methylation achieved in both cases were too low to perform genome
wide analysis of the effects of DNA methylation on chromatin structure or gene
expression. More recently, Morselli et al. achieved a higher level of methylation by
expressing DNMT3b at high level and collecting the cells at saturation (Morselli et al.
2015). Using this approach, they showed that DNA methylation was anti-correlated
with nucleosome positioning and that DNMT3b activity correlates positively with
H3K36me3 and negatively with H3K4me3. The impact of methylation on the global
structure of chromatin is however unknown. In this paper we will present a
comprehensive study of the intrinsic impact of DNA methylation in the structure of
chromatin, from the nucleosome to the entire chromatin. The study provides us a
complete picture of the connection between methylation, chromatin structure and
chromatin functional in the absence of specific protein effectors, which allowed us to
isolate the direct effect of methylation in modulating DNA physical properties from
other effects related to the presence of complex cellular machinery created to recognize

specifically methylation signals.
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Results

Description of the system

In order to reach a high level of DNA methylation, we expressed the 4 DNMTs
simultaneously: yeast cells were transformed with a combination of 4 plasmids each of
them expressing one murine DNA Methyl Transferase (DNMT). The de novo DNMTs,
DNMT3a and 3b, and the maintenance DNMT, DNMT1, were expressed under the
control of the tetO promoter while DNMT3L, the regulatory DNMT, was expressed
under the control of the Gall promoter (Gari et al. 1997). The expression and stability of
the DNMTs were assessed by Western blotting and no sign of protein degradation could
be detected, even after 48 hours of induction (Suppl. Figure S1A-D). Expression of the 4
DNMTs slightly affected cell viability and increased the generation time to 7 hours
compared to 4 hours for the cells transformed with the 4 empty plasmids grown in the
same culture media (Suppl. Figure S2A). Flow cytometry analysis performed on non-
synchronized cultures after 24 hours of induction showed a clear increase in the
percentage of cells in G2/M (53.7% and 57.2% of cells in two independent
transformants) compared to the two control populations transformed with the empty
plasmids (40.4% and 41.7%, Suppl. Figure S2ZB). This result suggests that cells
expressing the DNMTs have a slightly longer G2 and/or M phase compared to the
control cells. However, differential gene expression analysis (Suppl. Table S1) showed
that DNMTs ectopic overexpression did not induce expression of genes normally
activated by stress, suggesting that the effects that we observed are not caused by stress

but could be a direct effect of DNA methylation

Overall DNA methylation was assessed by HPLC/MS: up to 4.2% of cytosines were
methylated after 29 hours of induction in cells collected in early stationary phase. We
then determined DNA methylation at single base pair resolution in several independent
transformants, using Illumina whole genome bisulfite sequencing (WGBS). This was
done both for cells in exponential growth phase synchronized in G1, and for cells at
saturation. As illustrated in Table 1, methylated cytosines were almost exclusively
found in CpG context, and the pattern of which CpGs were methylated was very
reproducible from one sample to another (Figure 1A). To confirm these results, we also
performed sequencing using Oxford Nanopore Technology (ONT), which produces

much longer read lengths (>10kbp) permitting investigation of repetitive genomic
4
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regions and also allow the correlation of methylation at multiple CpG sites on the same
DNA molecule to be assayed. Data were generated for samples with and without the
DNMT plasmids for both replicating cells and cells at saturation. Comparisons between
the CpG methylation estimates from nanopore and WGBS data show strong correlation

with essentially the same pattern of methylation across the genome (Figure S3A-C).
Effect on methylation of the different DNMTs

We tested the functionality of each DNMT in our system by comparing the DNA
methylation pattern and levels obtained when only 3 of the 4 DNMTs were expressed
(Figure 1A and 1B). This was performed always with replicating cells, synchronized in
G1 to make data fully comparable. For all combinations of 3 DNMTs the methylation
pattern is broadly the same (Figure 1A) with the same CpGs being methylated. The
overall methylation level, however, was 2 to 3 times lower with 3 DNMTs compared to
when all 4 DNMTs were expressed, demonstrating that each DNMT is functional in our

system (Figure 1B).

While the different DNMT combinations displayed broadly the same pattern of
methylated CpGs, when examined in detail some differences emerged. To check
whether these differences are due to intrinsic sequence specificity of the different
DNMTs, the two bases upstream and downstream of each methylated CpG were
considered and logistic regression was used to assess the effect of local sequence
context on the methylation rate at CpG sites. This analysis was applied to 6 samples (2
samples with all 4 DNMTs to assess the reproducibility of the results, and the 4 samples
each lacking one of the DNMTs). Figure 1C shows that the two replicates with all 4
DNMTs being expressed provide very similar results, and that removing DNMT1 also
does not have a strong effect. Removing DNMT3L shows more of an effect, although the
comparison with the results from all 4 DNMTs still gives a plot with most points
clustered around the diagonal. In contrast, removing either DNMT3a or DNMT3b has a
large effect on the sequence context, and this effect is different for the two enzymes
with the comparison between the sample without DNMT3a and without DNMT3b

showing very little correlation, indicating very different sequence specificities.
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Looking in detail at the sequence contexts (The logos in Figure 1C), we cannot see a
strong sequence bias with either all 4 DNMTs or when DNMT1 was missing. However,
cells lacking DNMT3b show a strong bias for CpGs in the 5' ATCGAG 3' motif (with the
percentage of methylated CpGs in an ATCGAG motif being more than six times lower
when DNMT3b is removed, compared to the samples with one of the other DNMTs
missing or to the sample with all 4 DNMTs induced). Cells lacking DNMT3a also show a
sequence bias, in this case towards sequences that are more C rich. Note that the lack of
methyl DNA binding protein makes these sequence preferences intrinsic of DNMT and
not the result of positioning of the methylases in certain sequences due to auxiliary

proteins.
Pattern of methylation

The pattern of methylation obtained in our model is very similar to that observed in
higher eukaryotes, with DNA methylation being low at the Transcription Start Site (TSS)
increasing toward the end of the genes and reaching a maximum at the Transcription
Termination Site (TTS) (Figure 1D), a pattern anticorrelated with H3K4 methylation
(Figure 1E). However, even with all 4 DNMTs, the level of methylation rarely exceeds
50% even after 48 hours of induction if the cells are kept constantly dividing (Figure 1D,
top panel). We can see that in cells collected at saturation the overall level of
methylation is much higher than that of the replicating cells synchronized in G1, while
the pattern of methylated CpGs remains essentially identical (Figures 1D, 1F, 1G). To
investigate more closely the difference in methylation levels between the replicating
cells and those at saturation we fitted a model where for each CpG the methylation level
for the replicating cells is a fraction k of the level in the cells at saturation, where k is
constant across the genome. The maximum likelihood estimate of k for the two replicate
datasets was 0.37 and 0.35, so the methylation levels for the cells at saturation are
almost 3 times those for the replicating cells. This difference could be explained by the
maintenance machinery not playing properly its role due to the absence of cofactors
such as UHFR1 or G9a/GLP or the absence of H3K9 methylation. However, expressing
UHRF1 and the H3K9 methylase, SuVar39 in our system did not increase the

methylation level in replicating cells (data not shown).
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Distinct populations of methylated and non-methylated DNA

The lower levels of methylation in the replicating cells could be due to either (a) each
CpG independently have a low probability of being methylated, or (b) because there are
distinct methylated and non-methylated populations of DNA. To distinguish between
these two scenarios, we examined the long nanopore derived reads, which allow
assaying the methylation status at a large number of CpG sites on the same DNA
molecule. We can see (Suppl. Figure S3) that the histograms of methylation level for the
2 control samples show an almost identical distribution with a peak at around 0.02,
whereas for the methylated sample from cells at saturation the peak is around 0.33. The
histogram for the methylated sample from replicating cells has a peak close to the non-
methylated controls, but with a long right tail corresponding to a population of reads
with a higher proportion of methylated CpGs. To test for evidence that the methylated
samples contained distinct populations of reads with different proportions of
methylated CpGs, we performed a series of likelihood ratio tests to compare models
with distinct read populations to a simple model with homogenous read populations
(see Methods). The results are given in Suppl. Figure S4, where we can see strong
evidence that the methylated samples contain multiple populations of reads with
different CpG methylation rates. Our analysis indicates that around 20% of the reads
from the exponential sample are highly methylated (roughly 30% of CpGs on the read
being methylated) with the remaining reads having a lower methylation rate of around
8%. For the saturation sample almost 95% of the reads are highly methylated with the

remainder having a lower methylation level.
DNA methylation and Nucleosome positioning.

To investigate a possible effect of DNA methylation on nucleosome position, we
obtained MNase-Seq data of the samples in stationary phase incubated with all 4

DNMTs or with empty plasmids. The software NucleR (Flores and Orozco, 2011) and

Nucleosome Dynamics (Buitrago et al. 2019) were used to analyze the MNase-Seq data
providing estimates of nucleosome positions as well as an assessment of whether each
nucleosome was well positioned or not (fuzzy). As previously reported by (Morselli et

al. 2015), we observed that DNA methylation was anti-correlated with nucleosomes and

tended to be accumulated in the linker regions (Figures 2A and 2B). In addition, we
observed an increase in the number of fuzzy nucleosomes in the methylated samples

7
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with a 3.87% increase in fuzzy nucleosomes and a 4.01% decrease in well positioned
nucleosomes (Suppl. Table S2). In well positioned nucleosomes, DNA methylation was
almost absent at the dyad and increased toward the entry and exit points of the
nucleosome, while fuzzy nucleosomes had higher methylation levels with a constant
level across the nucleosome (compare Figure 2C with Figure 2D). Looking at each
strand independently, we observed an asymmetric pattern, the methylation being
higher at the 5' extremity, both for the Watson than the Crick strand (Figure 2E).
However, we did not observe any periodicity of the methylation signal that was

consistent across replicates.

Analysis by Nucleosome Dynamics (Buitrago et al. 2019) of the crucial region around
the promoter (we recently demonstrated that the position of the +1 nucleosome
determines most of the nucleosome architecture at the gene body) demonstrates that
high level of methylation induces more dynamic and fuzzy nucleosomes (Figure 3A),
and narrower Nucleosome Free Regions (NFRs; Figures 3B and C). It is worth noting,
that these changes in nucleosome architecture at the crucial promoter region, which are
typically considered to be signals of gene inactivation, cannot be explained here by the

coordinated effect of methyl-DNA binding proteins coupled to chromatin remodelers.
DNA methylation vs Gene expression

Despite the lack of any mechanism to direct methylation to specific sites, the
methylation pattern is quite homogenous throughout the gene only in lowly expressed
genes while in the highly expressed ones, DNA methylation is low at the promoter and
increase toward the end of the gene, suggesting a link between DNA methylation and
gene expression (Figure 4A). A differential expression analysis (Figure 4B) shows that
genes which are very lowly methylated do not change their expression level, while high
methylation levels lead to important changes in gene activity: while the overall
deviation is towards lower expression level, there is a wide distribution of changes
across methylated genes. For example, 20 genes are largely down regulated in
methylated samples, while 63 are up regulated (Figure 4C). In particular, we see a very
strong correlation between gene expression and methylation level for a subset of genes
involved in meiosis and that appear to share a common sequence in their regulatory
region (Figure 4C, 4D and Suppl. Table S3). Interestingly, this CpG rich motif

corresponds to the binding site of Ume6p, a subunit of the histone deacetylase complex

8
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Rpd3p known to repress early meiotic gene expression. It is tempting to hypothesize
that methylation of a Ume6p binding site known as URS1, could affect Ume6p binding
directly (through changes in direct interactions) or indirectly (through changes in
chromatin structure), leading to a deregulation of its target genes. Supporting this
hypothesis, we observed that the level of expression of the target genes increases
proportionally with the level of methylation of the Ume6p binding site (compare
expression and methylation levels in G1 vs Stationary in Suppl. Table S3). Also, for most
of these genes, we observe a 5-10bp shift of the -1 or +1 nucleosome (Suppl. Figure S5).
In summary, it seems that two physically driven mechanisms: (i) changes in protein-
DNA interactions due to the presence of a methyl group at the d(CpG) step and (ii)
methylation induced nucleosome rearrangements, coordinate to induce a change in
gene activity which would be typically assigned to the effect of methyl DNA binding

proteins.
DNA methylation and genome 3D structure

We performed Hi-C experiments in control and methylated populations at saturation to
explore the intrinsic effect of DNA methylation in the global chromatin structure. As
shown in Figures 5A and 5B (and Suppl. Figures S6A,B), DNA methylation leads globally
to a statistically significant decrease in trans contacts and increase in cis contacts (52%
and 53% in the two control samples and 58% and 59% in the two methylated samples
(Figure 5C). Looking at the specific regions involved in differential contacts between the
control and methylated samples, we identified the regions that significantly gained or
lost interactions in the two replicas using the R package diffHic. Regions that gained
interactions were preferentially located around the centromeres, increasing the
contacts in cis between the two arms (Figure 5D), while regions that lost interactions
were mostly in trans, with 19% of those involving telomeric regions (Figure 5E).
Considering only pairs of regions showing a significant gain in interactions, we see that
in 25.9% (272 out of 1051) of such pairs at least 1 of the bins contained a rRNA gene. In
contrast, when considering all pairs not showing a significant change in interactions
only 18.9% overlapped with tRNA genes (38677 out of 204435). This enrichment in
tRNA is highly significant (Fisher’s exact test, p = 3.7e-8). Focusing on the regions that
showed a reduction in interactions did not yield a significant association with tRNA

distribution, though this may be due to the much smaller number of such cases.
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To obtain further insights into the effect of DNA methylation on chromatin structure,
we modeled the spatial organization of each chromosome using a restraint-based model
derived from the interaction counts at 5Kb resolution. Computing the radius of gyration
around the centromeres (+/- 100000bp) we confirmed that all chromosomes (except
chrl, that is the shortest) are more condensed upon DNA methylation (Figure 6A). We
also observed a general tendency decrease of chromosome flexibility with the effect

being significant for chromosomes V, IX, XI and XV (Figure 6B and Suppl. Figure S8).

Comparing the significant interactions between the control and methylated samples for
each individual chromosome (Suppl. Figure S7), we observed the strongest effects of
methylation for chrlll (largest increase in intra-contacts, Figures 6C-F) and for chrXII
(largest decrease in intra-chr contacts, Figures 6G-I). The S. cerevisiae genome only
contains few heterochromatin regions : The two silent loci of the mating type system on
chrlll, the rDNA locus on chrXII and the telomeres. Using the nanopore data, we could
confirm that both regions were indeed methylated (Suppl. Figures S9A-D). Looking
closer at chrlll, we noticed a significant decrease of the distance between the left
telomeric region containing the silenced HMLalpha and the more central MATa locus
(Figure 6F).

Concerning chrXIl, the rDNA repeats localize at the nucleolus and physically segregate
the upstream and downstream regions of the chromosome. However, upon methylation,
the separation between these two regions in chrXIl is much sharper suggesting a

structural modification of the rDNA locus.

Discussion

The first striking result of this study is that we could induce, in vivo, a specific pattern of
DNA methylation reproducible and similar to that of mammals in an organism a priori
deprived of any DNA methylation machinery. This implies that the DNMTs are sufficient
to define many aspects of mammalian chromatin structure in a system natively lacking
any machinery capable of recognizing methylation patterns. Methylation leads to some
phenotypic changes in the cells, the most visible one being a longer than normal G2/M
phase. However, such changes are moderate and an organism not prepared to have
methylated DNA appears to tolerate well a non-negligible amount of methylation in its

genome.
10
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The level of DNA methylation that could be obtained in exponentially growing cells did
not go over a certain threshold even if the time of induction is increased. However, this
level is more than 3 times higher when cells are in stationary phase, suggesting that the
overall low level of DNA methylation in dividing cells is due to the poor ability of
DNMT1 to act as a maintenance transferase. This is likely to be related to the absence of
cofactors like Ring-finger domain UHRF1 or even the lack of H3K9 methylation in yeast,
which might reduce specificity of DNMT1 for hemi-methylated DNA.

Our synthetic model system helped us to highlight some previously unknown intrinsic
sequence specificity for the methyl-transferases. For example, little sequence specificity
is found for DNMT1 and DNMT3L, while AAA differences in sequence specificity are
found for DNMT3a and DNMT3b. Thus, cells lacking DNMT3b show a strong bias for
methylation of CpG in 5' ATCGAG 3' motif, while cells lacking DNMT3a seems to have a
bias toward CpG sequences embedded in Crich environments.

Methylation is preferentially located between nucleosomes, and when it occurs in
nucleosome-occupied regions (in the basal non-methylated control), it can be
associated with significant alterations in nucleosome positioning reflected by an
increase in nucleosome fuzziness. The fact that methylated DNA is less frequent at

nucleosomes, confirms our previous in silico and in vitro models (Perez et al. 2012;

Portella et al. 2013), but does not rule out the possibility that methylated-DNA binding
domains might stabilize the presence of methylated CpG in nucleosomes, leading to a
situation of “loading-spring” which might facilitate fast and nucleosome reorganization
upon release of the stabilizing protein. There is, however, no question that methylation
and nucleosome position are intrinsically anti-correlated.

However, when comparing nucleosome occupancy for highly and lowly methylated
promoters, we observed that the width of the NFR region tends to be narrower when
the promoter is more methylated. This could be explained by the fact that wider NFR
are occupied by transcription factors or remodelers that could prevent the methylation

machinery to access the DNA.

In mammalian cells, the relationship between methylation and gene expression is
complex, with high levels of gene expression often associated with low promoter
methylation but elevated gene body methylation, and the causality relationships is not
always clear. We used our system to check whether or not we could find a general
correlation between DNA methylation and gene expression. We observed that despite

11
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the lack of specific methylated DNA binding domains in yeast, highly and lowly
expressed genes have quite different methylation profiles, with much higher levels of
methylation near (850 bp) the TSS of silent genes while highly active genes have much
higher methylation levels at the TTS. In the absence of specific proteins modulating this
profound difference, we can speculate that nucleosome positioning is one of the main
factors responsible for this differential behavior, which suggests that methylation and
nucleosome positioning might act in concert in the regulation of gene function in

mammals, adding an extra layer of control of gene expression.

However, our results showed that methylation can also directly affect the binding of a
transcription factor and we think this is what is happening for the early meiotic genes
whose expression dramatically increases in response to methylation. In that case, we
suspect the methylation to affect the binding of the histone deacetylase complex Rpd3p

that acts as a repressor.

There is yet another level of regulation which relies on the chromatin structure and we
were able to use our system to show that DNA methylation had a general impact on 3D
genome organization. Indeed, even if the genome retains its characteristic Rabl
configuration previously observed in exponential as well as in quiescent cells (Duan et
al. 2010; Rutledge et al. 2015) upon methylation, we observed a significant increase of
intra-chromosomic contacts and a significant decrease of inter-chromosomic contacts,
of which a significant proportion involves regions containing one or several tRNA genes.
This could be explained by the putative role of TFIIIC on the 3D genome organization

suggested by (Noma et al. 2006).

One major observation is the condensation of the centromeric region as illustrated by
the gain of interactions between pericentromeric regions and by the smaller radius of
gyration of this region in methylated cells compared to our control cells. Also, we
observed a tendency for the chromosome to be less flexible, which is in agreement with

the effect of DNA methylation described in vitro (Perez et al. 2012).

As DNA methylation is associated with silencing and with heterochromatin, we focused
on the three heterochromatin regions of the S. cerevisiae genome: the telomeres, the
mating type locus and the rDNA locus. First, we observed a general loss of interactions
of the telomeric regions. This could be explained by a lower flexibility of the

chromosomes as previously mentioned. In the case of the mating type locus, we
12
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observed that the silenced locus HMLa was closer to the Mat locus, a conformation
expected for exponentially growing MATa cells (Belton et al. 2015) but less frequent in
stationary phase (reflected by the increase of interaction between the two telomeres 3L
and 3R in (Rutledge et al. 2015). Finally, the separation between the two regions of
chrXIl divided by the rDNA locus, is much stronger upon DNA methylation suggesting
that methylation of the rDNA increases its rigidity and prevent any interactions

between the two contiguous regions.

Very interestingly, when (Rutledge et al. 2015) compared the 3D genome structure in
exponential and quiescent cells, he reported an increase of interactions between
telomeres and an increase in the long range intra-chromosomal interactions in chrXII in
quiescent cells (it should be noted that in the later case, intra-chromosomal interaction
between the two regions separated by the rDNA locus are only mildly increased
compared to the one within each region). Our results are showing that those
interactions are prevented upon DNA methylation, suggesting that DNA methylation
could freeze the heterochromatin structure in the conformation it had originally (before

the methylation was induced), i.e. in the exponential conformation.

Materials and Methods

Plasmid construction

pYADE4 yeast plasmids encoding full length DNMT1 and DNMT3a with modified
sequences around the translation start sites were kindly provided by Dr Jan Fronck,
pYES3/CT encoding DNMT3b was provided by Dr Shen Li (Bulkowska et al. 2007; Shen
et al. 2010). DNMT3L cloned into pYES3/CT to produce a Nterminal FLAG tagged
DNMT3L was provided by Dr Jia-Lei Hu (Hu et al. 2009).

pCM188 (marker cgURA3) and pCM185 (marker cgHIS or cgLEU), centromeric vectors
which differ for the number of Tet operators (respectively 2 and 7;(Gari et al. 1997))

were kindly provided by Dr Jessie Colin.

Smal restriction fragment (from pYADE4-DNMT1) containing full length DNMT1 cDNA
was inserted at Pmel site of pCM185 (LEU) to give pCM185(LEU)-DNMT1.

13
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BamHI-Mlul restriction fragment (from pYADE4-DNMT3a) containing full length cDNA
from DNMT3a was ligated to pCM185 (HIS) linearized with BamHI and Mlul to give
pCM185(HIS)-DNMT3a.

BamHI-Notl restriction fragment from pYES3/CT-DNMT3b containing full length
DNMT3b was ligated to pCM188 (URA) linearized with BamHI and Notl to obtain
pCM188 (URA)-DNMT3b.

Yeast strains and culture conditions

Strain YPH499 (Mata ura3-52 lys2-801 ade2-101 trpl-A63 his3-4200 leu2-41) was
transformed with 2, 3 or 4 expression plasmids by the standard lithium acetate
procedure. Transformants were selected on plates of appropriate selective medium

with 2% Raffinose and 10pg/ml doxycycline to repress any expression.

Selected transformants (2 to 4 transformants per combination of plasmids) were grown
on selective liquid medium with 2% Raffinose and 10pg/ml doxycycline up to
0D600=0.5. Then, yeast cells were spun 10min at 1000x g, washed twice with sterilized
water, and resuspended into selective media with 1% Raffinose and 2% Galactose
without doxycycline to allow expression of DNMTs. For experiments on synchronized
cells, cells were treated with alpha-factor (3uM final) for 4 hours to synchronise cells in

G1 or with Nocodazole to synchronize cells in G2.

After different times of induction, cells were collected and treated for subsequent
experiments: protein extraction for western blotting, gDNA extraction for whole
genome bisulfite sequencing, RNA extraction for RNA-sequencing or Semi-intact cell

preparation for Mnase digestion and nucleosome mapping)
Flow cytometry analysis

0.5 ml of culture (ODe00=0.6-0.8) were collected and centrifuged for 5 mn at 1000 g at
RT. Pelet were washed twice with 1x ice-cold PBS and resuspended in 50 pl of 1x ice-
cold PBS. 20 pl of cells were fixed with 1 ml of 70 % EtOH overnight at 4 °C. Samples
were washed with 1x Saline Sodium Citrate buffer (SSC; 150 mM NacCl, 15 mM Nacitrate,
pH 7.8 for 20x SSC). The pellet was resuspended in 0.5 ml of 1x SSC, treated with 0.5
mg/ml RNase A (Roche) for 1.5 h and then with 0.5 mg/ml Proteinase K (Roche) for

another 1.5 h at 50 °C. After incubation, cells were briefly sonicated for 10 mn, medium
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potency, by using the Bioruptor system (intervals of 10 s on-20 s off). 250 pl of the cells
were added in 0,5 ml of 1x SSC containing 1 pM Sytox Green (Sigma) and were
incubated 10-20mn in the dark (room temperature) before analyzing the DNA content

using a Beckam Coulter Gallios™ flow cytometer.
HPLC/MS

HPLC/MS/MS analysis was based on the protocol described (Friso et al. 2002). A
Kinetez 2.6 um HILIC 100A column (150 mm x 4.6 mm) (Phenomenex) and a Acquity
UPLC system (Waters Corp., Milford, MA, USA) coupled to a mass spectrometer API
3000™ (AB Sciex, Foster City, CA, USA) triple quadrupole working in MRM(multiple
reaction monitoring) method in positive mode. Two eluents were used: eluent A2
(Acetonitrile) and eluent B1 (0.1 M ammonium formiate adjusted at pH 3.2) with a
isocratic gradient 8 min of total running time at 90 % A and 10 % B for the nucleosides
elution. The separation was performed in a flow of 1400 pl min-1, with 10 pl injection
volume and two replicates each, totaling two biological replicates and two technical
replicates of each sample. The standard nucleosides cytosine and methyl-cytosine
(Sigma) were diluted in HCl 0.01N and stored at —20 °C. The m/z transitions from 112
to 95 (cytosine) and from 126 to 81 (methyl cytosine) were chosen for MRM
experiments. The peak area obtained was analyzed by Analyst 1.4.2 (AB Sciex).
Quantification (%) was performed according to 5mdC concentration divided by 5mdC

concentration plus dC concentration multiplied by 100.
Western Blot

Proteins were extracted by resuspending the pellet of cells from a 20ml cultures at
0D600=1 in 400ul of RIPA buffer (50mM Tris pH7.5, 150mM NaCl, 1% NP40, 0.5%
NaDeoxycholate, 0.1% SDS) containing 1mM PMSF and protease inhibitors (cOmplete
ULTRA Tablets, Mini, EASYpack, Roche). 400pl of glass beads were added and samples
were processed using FastPrep (MP) for 3 times for 20sec pulses @4.5m/s. After
centrifugation 5min at 5000rpm, supernatant were recovered and quantified by
bradford. 20 ug of protein were loaded on 6 or 8 % acrylamide gel and subjected to
PAGE, proteins were then transferred onto an immobilon membrane (millipore) for
subsequent hybridization with anti-DNMT1 (ref ab87654, Abcam), anti-DNMT3a
(ab2850, Abcam), anti-DNMT3b (ab122932, Abcam) or anti-Flag (F7425, Sigma)

antibody overnight followed by secondary antibody anti Rabbit (Goat)-HRP conjugated
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(65-6120, Invitrogen). The signal was revealed using ECL™ prime WB detection reagent
(Amercham, GE Heathlcare).

Semi-intact Yeast cell preparation

Semi-intact cells were prepared as previously described (Schlenstedt et al. 1993).

Briefly, cells were grown at 30°C in 300 ml YPD to =1 x 107 cells/ml. For each 250 ml of
cells (107cells/ml), semi- intact cells were prepared as follows. Cells were collected by
centrifugation (700 g, 7 min, RT), resuspended in 25 ml 100 mM Pipes, pH 9.4, 10 mM
DTT, incubated with gentle agitation at 30°C for 10 min, and collected by centrifugation
(1,000 g, 5 min, RT). Cells were resuspended in 6 ml YP, 0.2% glucose, 50 mM KPO4, pH
7.5, 0.6 M sorbitol. 10u zymolase was added, and the suspension was incubated with
gentle shaking 30°C for 30 min. Spheroplasting was monitored by light microscopy.
Great care was taken not to overdigest cells to avoid lysis. Spheroplasts were collected
by centrifugation at 1,000 g for 5 min at RT, re- suspended with a plastic pipette in 40
ml YE 1% glucose, 0.7 M sorbitol, and incubated with gentle shaking at 30°C for 20 min.
Spheroplasts were collected by centrifugation (1,000 g, 5 min, RT) and washed twice at
4°C with cold permeabilization buffer (20 mM Pipes-KOH, pH 6.8, 150 mM K-Acetate, 2
mM Mg-Acetate, 0.4 M sorbitol. The final pellet was resuspended in 1ml cold
permeabilization buffer containing 10%(v/v)DMSO. 100pl aliquots were placed in 1.5

ml microfuge tubes and frozen slowly above liquid Nz and stored at -80°C.

ChIP-seq

Yeast strains were grown into the appropriate selective media with 2% galactose and
1% raffinose to stationary phase (ODsoo similar to 8) and diluted to ODsoo =1 in 50 ml of
the media, next cells were crosslinked 20 min with 1% of formaldehyde followed by a
15 min incubation with 125 mM of glycine. After crosslinking, spheroplast were isolated
as described before using the zymolase enzyme and resuspended in 0.3 ml of lysis
buffer (50 mM Hepes-KOH at pH 7.2, 140 mM NaCl, 1 mM EDTA, 0.1% Deoxycholic acid
sodium salt and 1% Triton X-100) containing a cocktail of protease inhibitors (Roche,
04693159001). An equal volume of glass beads (0.5-mm diameter) was added, and the
spheroplast were broken using a bead-beater (FastPrep-24, Biomedicals). Glass beads

were then removed and the lysate was transferred to a Sorenson tubes to digest the
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chromatin into fragments of 300 nucleotides using the Bioruptor Pico (30 cycles,
30”on/30"off). The whole extract was clarified by centrifugation for 10min at
5000 x g at 4 °C and an aliquot was taken as input. In parallel, 50 pl of Dynabeads M-280
Sheep anti Rabbit IgG (Thermo Fisher) per sample were washed twice with
PBS+5mg/ml of BSA and incubated at least for 12 hours at 42C with 2.5 pg of the
primary antibody (HA, H3K4me, H3K4me3 from Abcam). Next, beads were washed
again with PBS+5mg/ml of BSA and resuspended in 30 pl/sample of PBS-BSA 5mg/ml.
Extracts were then incubated 2h at 4°C with the Dynabeads, previously conjugated with
the primary antibody, and then washed two times with lysis buffer, two times with the
lysis buffer supplemented with 360mM NaCl, 2 times with the wash buffer (0.5%
Deoxycholic acid sodium salt, 10mM TRIS pH8, 250 mM LiCl, 0.5% NP-40, 1 mM EDTA)
and one time with TE (10Mm Tris-HCI pH 7.5,1mM EDTA). Then Dynabeads were eluted
with 80 pl of Elution Buffer (50 mM TRIS, 10 mM of EDTA, 1% SDS) followed by an
incubation of 10" at 652C with continuous mixing. Crosslinking was reverted by leaving
the samples at least for 12 hours at 65°2C. Finally proteins were digested with 0.80
mg/ml per sample of proteinase K for 2h at 372C and DNA was purified by phenol-

chloroform and chloroform extractions and ethanol precipitation.
MNase-seq

0.4 x 107 semi-intact cells were digested with micrococcal Nuclease (MNase), 1.5 unit at
372C for 30min with 3mM CaCl2. The reactions were stopped by addition of EDTA to a
final concentration of 0.02 M and subsequently incubated with RNase A (0.1 mg) for 4h
at 37°C and further treated with Proteinase K at 372C o/n. DNA was purified using

phenol-chloroform extraction and concentrated by ethanol precipitation.

The percentage of mononucleosomal DNA fragments was examined by 2% agarose gels.
Furthermore, the integrity and size distribution of digested fragments were determined
using the microfluidics-based platform Bioanalyzer (Agilent) prior to sample

preparations and sequencing following Illumina standard protocol.
Nucleosome calling

MNase-seq paired-end reads were mapped to yeast genome (sacCer3, Apr. 2011) using

Bowtie (Langmead et al. 2009) aligner, allowing a maximum of 2 mismatches and

maximum insert size of 500 bp. Output BAM files were imported in R (Team 2011) and
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quality control was performed with htSeqTools package to remove PCR artifacts (Planet

et al. 2012). Filtered reads were processed with nucleR package (Flores and Orozco

2011) as follows: mapped fragments were trimmed to 50bp maintaining the original
center and transformed to reads per million. Then, noise was filtered through Fast
Fourier Transform, keeping 2% of the principal components, and peak calling was
performed using the parameters: peak width 147 bp, peak detection threshold 35%,
maximum overlap of 80 bp, dyad length 50 bp. Nucleosome calls were considered well-
positioned when nucleR peak width score and height score were higher than 0.6 and

0.4, respectively, and fuzzy otherwise.
Nucleosome Dynamics

NucDyn R package (Buitrago et al. 2019) was used to find changes in nucleosome
organization between control and methylation induced samples. P-values quantifying
the nucleosome change were obtained running NucDyn with the following parameters:
maximum difference of 70, maximum length of 140, minimum number of reads to
report a shift of 3, shifts threshold of 0.1, indels minimum number of reads to report

evictions and inclusions (indels) of 3, indels threshold of 0.05.
Whole-genome bisulfite sequencing (WGBS)

WGBS was performed following the procedure outlined in (Kulis et al. 2012). Briefly,
genomic DNA (1-2pg) was spiked with unmethylated A DNA (5 ng of A DNA per pg of
genomic DNA) (Promega). The DNA was sheared by sonication to 50-500 bp using a
Covaris E220 and fragments of size 150-300 bp were selected using AMPure XP beads
(Agencourt Bioscience Corp.). Genomic DNA libraries were constructed using the
[llumina TruSeq Sample Preparation kit (Illumina Inc.) following the lllumina standard
protocol: end repair was performed on the DNA fragments, an adenine was added to the
3’ extremities of the fragments and Illumina TruSeq adapters were ligated at each
extremity. After adaptor ligation, the DNA was treated with sodium bisulfite using the
EpiTexy Bisulfite kit (Qiagen) following the manufacturer’s instructions for formalin-
fixed and paraffin-embedded (FFPE) tissue samples. Two rounds of bisulfite conversion
were performed to assure a conversion rate of over 99%. Enrichment for adaptor-
ligated DNA was carried out through 7 PCR cycles using the PfuTurboCx Hotstart DNA
polymerase (Stratagene). Library quality was monitored using the Agilent 2100

BioAnalyzer (Agilent), and the concentration of viable sequencing fragments (molecules
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carrying adaptors at both extremities) estimated using quantitative PCR with the library
quantification kit from KAPA Biosystem. Paired-end DNA sequencing (2x100bp) was
then performed using the Illumina Hi-Seq 2000.

Read mapping and estimation of cytosine methylation levels

The WGBS reads were processed using the gemBS pipeline v3.0 (REF) using as
reference S. cerevisiae S288c. Reads with MAPQ scores < 20 and read pairs mapping to
the same start and end points on the genome were filtered out after the alignment step.
The first 5 bases from each read were trimmed before the variant and methylation
calling step to avoid artifacts due to end repair. For each sample, CpG sites were
selected where both bases were called with a Phred score of at least 20, corresponding
to an estimated genotype error level of <=1%. Sites with >500x coverage depth were
excluded to avoid centromeric/telomeric repetitive regions. CpGs were considered
methylated when the number of mapped reads was larger than 10 and the estimated

methylation percentage was above 0.1.
Nanopore sequencing

Suspensions of spheroplasts from methylated and control S. cerevisiae strains were
loaded on Sage Science gel cassettes to perform lysis under electrophoretic conditions.
DNA content in each sample was estimated by the cell count. A number of spheroplasts
equivalent to 10ug of genomic DNA were resuspended in 70 pl of HLS Suspension buffer
(Sage Science, Mammalian white Blood cell suspension kit, #CEL-MWB1) and loaded on
the gel cassettes (Sage Science, SageHLS HMW DNA extraction kit #HEX-0012).

The custom Sage HLS (Sage Science) protocol used (Extraction Collection DC55V
1h15m) was accommodated for the yeast small chromosome sizes. This custom
protocol did not include a DNA fragmentation step. In brief, during the extraction step,
the High Molecular Weight (HMW) yeast gDNA was bound in agarose while the
solubilised and degraded proteins and other contaminants were kept in solution. The
Sage Science Buffer A was used as a lysis buffer for this step. In the last step of the
protocol, the HMW DNA was retrieved from the gel through an automated elution
process that was optimized to elute all the yeast chromosomes in the elution module

number 2 of the cassette.
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Elution modules 1, 2, 3 & 4 were selected for the library preparation of the control and
methylated S. cerevisiae samples. For each condition, the selected elution modules were
pooled, purified with 1-fold excess of Agencourt AMPure XP beads (Beckman Coulter,
A63882) and eluted in water. Two barcoded libraries containing both type of samples
were prepared using the Oxford Nanopore Ligation sequencing kit (ONT, SQK-LSK109)
combined with the Oxford Nanopore Native Barcoding Expansion kit (EXP-NBD103 1D)

following manufacturer’s instructions.

After connecting the flows cells to the MinlON Mk1b device, the MinKNOW interface QC
(Oxford Nanopore Technologies) was run in order to assess the flow cell quality. Once
the priming of the flow cell was finished, from 200ng to 600ng of the final barcoded
library was loaded into R9.4.1 FLO-MIN106 or FLO-MIN106D flow cells and the
sequencing data were collected during 48 hours. The quality parameters of the
sequencing runs were further monitored by the MinKNOW platform in real time. The
MinKNOW versions used was 1.15.4. The basecalling was performed using Guppy 2.3.7.
Reads were mapped using minimap2 2.9-r720, and CpG methylation was called using

nanopolish 0.11.0.
mRNA library preparation and sequencing

The RNASeq libraries were prepared from total RNA (extracted by the standard hot
phenol protocol) using the TruSeq™ RNA Sample Prep Kit v2 (Illumina Inc.,) according
to manufacturer’s specifications. Briefly, after poly-A based mRNA enrichment with
oligo-dT magnetic beads and 0.5pg of total RNA as the input material the mRNA was
fragmented (resulting RNA fragment size was 80-250nt, with the major peak at 130nt).
After first and second strand cDNA synthesis the double stranded cDNA was end-
repaired, 3‘adenylated and the 3’-“T” nucleotide of the adapter was used for the
[llumina barcoded adapters ligation. The ligation product was enriched by 15 cycles of
PCR.

Each library was sequenced using TruSeq SBS Kit v3-HS, in paired-end mode with a
read length of 2x76bp. We generated over 20 million paired-end reads for each sample
in a fraction of a sequencing lane on HiSeq2000 (Illumina, Inc) following the
manufacturer’s protocol. Images analysis, base calling and quality scoring of the run
were processed using the manufacturer’s software Real Time Analysis (RTA 1.13.48)

and followed by generation of FASTQ sequence files by CASAVA.
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Mapping and quantification

Around 95% of the reads were mapped against the reference genome (S.cerevisiae
release 74 + artificial plasmids) with the GEM software (v1.7.0) (Marco-Sola et al. 2012)
allowing for split maps. As expected, most of the reads mapped to exonic regions (92%).
Genes were quantified using Flux-Capacitor (v1.6.1) (Montgomery et al. 2010) and
normalized by the TMM method of the edgeR software (Robinson and Oshlack 2010).

Genes were ranked by their normalized expression values in samples V126-V131 and
we selected those with the 10% lower and 10% upper values as highly and lowly

expressed, respectively.
Genomic annotation

Data was annotated from the UCSC gene track that contains 6692 genes. We discarded
genes that are described as “Putative” or “Dubious” and genes located in the
mitochondrial chromosome. We used gene lengths to normalize methylation
proportions, nucleosome coverages and CpG density partitioning each gene in 137 bins

(each bin has on average 10 bp since the mean length of yeast genes is 1369 bp).
DNMT specificity analysis

We extracted two bases downstream and upstream from each CpG (having at least ten
WGBS reads mapped) and trained a logistic regression model (using R) for the number
of converted and non-converted Cs, using the extracted motifs as predictors for each
WGBS sample (samples removing one of the DNMTs, T859, T860, T861 and T869; and
two samples with the four DNMTs, T862 and T863). We computed for each sample the
effect of each motif and its standard deviation, and used it to determine those with a
significant effect on methylation level (estimated effect above two standard deviations).
We found motifs specific for each sample lacking one of the DNMTs (motifs with
significant effect in the sample removing one DNMT but not significant in the sample

with all DNMTs) and compared their relative frequencies in all samples.
Hi-C data processing and normalization

We  processed Hi-C  data using TADbit (Serra et al. 2017)
(https://github.com/3DGenomes/tadbit) for quality control, mapping and filtering.
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First, quality control was performed with the FastQC protocol implementation in
TADbit. Then, reads were mapped to the reference yeast genome (sacCer3, Apr. 2011)
with a fragment-based strategy. Afterwards, non-informative contacts (self-circle,
dangling-end, error, duplicated and random breaks) identified by TADbit were filtered-
out, obtaining 32-37 million valid interactions per experiment. Off-target contacts
(neither end of the read mapped to one of the capture regions) were also discarded (full
details of the number of excluded reads are given in Suppl. Table S4). Finally, contact
matrices were created from valid reads at 5 kb resolution with the corresponding

TADbit module, and low frequency bins were removed.

Contact matrices were transformed to .hic format for visualization in Juicebox (Durand

et al. 2016) using the pre command, and normalized with the Balanced method (Rao et

al. 2014).

Differential Hi-C analysis was performed using the R/Bioconductor package diffHic

(Lun, 2015). The mapped Hi-C data were filtered and the differential interaction

analysis between the control and methylated samples (using the two replicates for each

treatment) was performed using the procedure recommended in the diffHic manual.
Hi-C-based chromatin 3D structure

High resolution Hi-C data at 5 kb was used to obtain the 3D structure, conformation and
dynamics of entire yeast chromosomes. The Hi-C technique provides interaction
contacts between DNA fragments. The interaction counts or frequencies between two
loci i and j (fij) can be converted to spatial 3D distances between those loci (dij) by an

inverse relationship (equation 1),
di=y/fi* (1)

where y represents the scale of the structure and is usually taken to match experimental
distances between selected genomic regions, and the precise value of @ depends on the
organism under study, the genomic distance, and the resolution of the Hi-C map and

needs to be fitted (Adhikari et al. 2016; Zhang et al. 2013; Varoquaux et al. 2014).

Since Hi-C interaction counts are known to present several biases, such as mappability
of fragments, GC content, and fragment length, they were normalized using iterative

correction and eigenvector decomposition (Imakaev et al. 2012). Finally, the output of
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the conversion procedure was a matrix containing equilibrium distances (ro) for the
different interacting loci. To remove the background noise, a cutoff of two times the
median of all trans contacts (i.e., between different chromosomes) was applied to the Hi-

C contact map to define interacting regions.

The chromosome model was built as a chain of beads, each bead representing a genomic
region that corresponds to a bin from the Hi-C map. Spatial equilibrium distances were
obtained from equation 1 as explained above. The distances between interacting beads
(r) were restrained near their equilibrium length during the simulations by penalizing
with a harmonic potential (equation 2) when approaching at shorter distances or
moving away at longer distances than the equilibrium. A tolerance of one bead radius

was applied, thus resulting in a flat-welled parabola potential.
E=k(r-ro)? (2)

To ensure proper connectivity of the fiber, consecutive beads were also bound by a
harmonic potential but with a force constant five orders of magnitude stronger than
that applied to interacting non-consecutive beads. An excluded volume was defined for
each bead by a standard Lennard-Jones potential with equilibrium distance equal to one
bead radius and a soft energy well. Additional repulsive restraints were added for non
interacting beads, forced to remain at a distance longer than the maximum equilibrium
distance obtained from equation 1. The initial structure of the chromosome fiber was
varied between an extended conformation and a random localization of initially
unbound beads in different replicas. The system was allowed to sample the
conformational space using pmemd simulation engine for GPU from Amber 18 package.
Different conformations of the fibers were determined by attraction and repulsion

forces arising from the distance restraints between beads.

In the end, an ensemble of structures was obtained by minimizing the number of
experimental restraint violations (equilibrium distances input). A method yielding a
population of structures with different conformations was chosen since Hi-C maps are

derived from population of cells with variable chromatin structure.

Data Access
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Raw and processed WGBS, RNA-seq and MNase-seq and Hi-C data have been submitted
to the European Nucleotide Archive (ENA) under accession number XXXX (not yet

available).
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Figure 1. Methylation pattern across several samples and along the gene body. (A) The
pattern of methylation is conserved in all samples as illustrated for this 20kb region of
chromosome III (208135..227458) where the level of methylation at each position is represented
for two samples with the four DNMTs expressed and four samples with each combination of 3
DNMTs. (B) Circular plot comparing DNA methylation for the samples in (A) and a control without
methylation (None). Methylation levels decrease when one DNMT is missing, the strongest effect
being without DNMT1 and the mildest effect when DNMT3b is not present. (C) Correlation
between the sequence effect on methylation status among samples with different combinations of
three DNMTs. Motif effects are estimated from logistic regression (for details see Materials and
Methods) and correlation plots are produced for each pair of samples. Motifs have nearly the same
effect in the two replicates with all DNMTs induced (correlation coefficient is cor=0.999) and
when DNMT1 (cor=0.996) or DNMT3L (cor=0.954) are removed. In contrast, the estimated effect
of some motifs on methylation probability is different in samples lacking DNMT3a (cor=0.793) or
DNMT3b (cor=0.631). The left panels show the sequence logo of the motifs preferentially
methylated in each sample. (D,F,G) Comparison of methylation pattern in samples in exponential
phase and at saturation (D) Average methylation level around TSS and TTS (850 bp upstream and
downstream from each point). (E) Superposition of the pattern of DNA methylation and the
pattern of H3K4 methylation along the average gene body (from 3kb upstream TSS to 3kb
downstream TTS). DNA methylation preferentially occurs where H3K4 is not methylated. (F)
Heatmap showing the correlation between methylation probabilities in samples in G1 and at
saturation. (G) The pattern of methylation is conserved in samples in G1 and samples at saturation
as illustrated for this 20Kb region of chromosome III (208135..227458) where the level of
methylation at each position is represented for 2 replicas of each condition.
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Figure 2. Correlation between DNA methylation and nucleosome coverage genome wide
(A) Nucleosome positioning (in red) in a sample before (dashed lane) and after (plain lane)
induction of methylation and average methylation probabilities (in blue). Plots are built around
TSS and TTS (850 bp upstream and downstream from each point). Average nucleosome
positioning does not change drastically upon methylation. (B) Percentage of CpG with methylation
probability above 0.01 around well positioned nucleosomes. Nucleosome calls were considered
well-positioned (W) or fuzzy (F) when nucleR peak width score and height score were higher than
0.6 and 0.4, respectively. DNA methylation is anti-correlated with nucleosome occupancy in W
nucleosomes. (C,D) Average methylation probability around nucleosome call center (150 bp
upstream and downstream) for (C) Wand (D) F nucleosomes. (E) Average methylation probability
per strand around nucleosome call center (75 bp upstream and downstream) of well-positioned
nucleosomes



Chapter 6. Impact of DNA methylation on 3D genome structure 169

A — Low meth. CpG {0) B 1y
— High meth, CpG (0.08) [
g
=
% 15 1
- 5
g g
z 8 SE
Z = 2a
2 E=
= % 10
g £
! (=] 3
& z
= [ i
i I
A
5 - v, High meth.
" A, Low meth.
S ! I I T r | T T 1
=200 =100 0 100 200 =] =] (=] g g
- o~ o~ -
Distance from CpG ! !
CpGs around TSS Distance from +1 nucleosome
c Highly methylated TSS Medium methylated TSS Lowly methylated TSS
-1_missing [] -1_missing |:| ~1_missing
+1_missing F-glose—F I:l +1_missing
F-close-F ] Fclose-w [ ] F-close—F |
F-close-'W F-open—F |:| F-close-W :I
F-open-F ] E W F-open-F
—gpen- |
F-open-W pe F-open-W :l
W—close-F [_] W-close-F [] W-close—F ]
W-—close-W W-close-W |:| W—close—W
W-open—F [] w-open-F [] W-open—F [|
w-open-w [ 1] w-open-w [ ] W-open-W | ]
2 - & @ < u @ - 8 @ T W o - W & g
i=1 (=] (=] i=1 (=] (=] (=] (=] i=1 (=] (=] (=] (=3 (=] (=] (=3 (=] (=]

Figure 3. Nucleosome dynamics upon methylation at promoters. (A) NucDyn score around
highly methylated and lowly methylated CpGs at promoters. (B) Nucleosome coverage around +1
nucleosome for genes with highly or lowly methylated promoters. (C) Nucleosome architecture
around promoters according to their methylation level.



170 Understanding the link between chromatin structure, chromosome conformation and gene regulation

A B
z ® LowExpression (N=414) [ methLevel
% 158 W HighExpression (N=420) s 15- Emgh
9 14—=
o >
a o4 g low
g I |2§
s F10 g 10-
o 02
; ;
o @ =
0 -8 8 2
© S [}
o S -]
> oo
4 z
-850 0 850 05-
Distance from TTS
C & . Down (n=20):
Not sign. H
- Up (n=63) ! : 00-
2 : : 2 0 2
log2FoldChange
B : :
T oo ; { sPO13 -
2 A : :
L L D
=3 . . - Best
< 2 % of % of
= Motif P-val
= o o i Targets | Background Match
153
o
[ TC c CT A le21 | 44.44% | 055% UMES
I wAM AW AN
w o <
o 4

log2(Fold Change)
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Figure 5. Effect of DNA methylation on 3D genome structure (A,B) Differential contact
frequencies in control and methylation induced samples in replica 1 for (A) whole genome and
(B) focus on four chromosomes. Blue indicates interaction with a higher frequency in the non-
methylated control sample and red indicates interactions with a higher frequency in the
methylated samples. (C) Comparison of contact frequencies between control and methylated Hi-
C samples in cis (+/- 50Kb from the centromere, top panel) and in trans (lower panel). (D,E) Circos
plots displaying the significant (FDR<0.5) differential interactions identified with diffHiC: (D)
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lost interactions (log2FC< -1) preferentially occur between chromosomes.



172 Understanding the link between chromatin structure, chromosome conformation and gene regulation

1 I = S

17
L
—_—
—_—

rog {au)
1
|

msd (au)

[Pep
—
[
-
.
9 W 1 12 13 W 15 18 18 1920
1

il
1

7
I

T B

oW WV WV VI X X XL X XM XV XV Loonom WYV VI VI X X X X XN XV XV
chr number chr number
I D 10g2(4DNMT/Empty) E log2(dist_ratio) - 4DNMT/Empty
1

[ITEN N L

E ~ Empty & B Sl
F ¢ | 4DNMT
3 2 282 883 % 39838
v [
3 21 20 2
28] H
s 7]
s log2(4DNMT/Empty)
8§ '
s] |
© v' i
8= ; &
HML-HMR HML=MAT HMR-MAT D
genomic regions
TERRIRBRE EIB2RIIBI\
OOTITTITITTTT
|-

20 2

Figure 6. Chromosome conformation changes under DNA methylation. Structural changes
measured on the ensemble of structures obtained with our restraint-based 3D model for each
chromosome: (A) Mean radius of gyration computed around the centromeres (+/-100Kb) and (B)
flexibility of each chromosome measured by the RMSD for the control (black) and methylated
(red) samples. (C) Circos diagrams of significant interactions in chromosome III for the control
(left) and methylated (right) samples. (D,E) Heatmaps displaying the log2 ratio
(Methylated/Control) of (D) the contact frequencies and (E) the distances in the ensemble for
chromosome III. Blue indicates interaction with a higher frequency or shorter distance in the non-
methylated control sample and red indicates interactions with a higher frequency or shorter
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distance in the methylated samples. (F) Average distances between matting type loci in the
ensemble of structures for chromosome III. (G) Circos diagrams of significant interactions in
chromosome XII for the control (left) and methylated (right) samples. (H,I) Log2 ratio
(Methylated/Control) of (H) the contact frequencies and (I) the distances in the ensemble for
chromosome XIL

Table 1: Average methylation in CpG and non-CpG context.

All Contexts CpG Contexts Non-CpG Contexts
Hours of] Avg. IAvg. IAvg.
ISample|DNMT expressed [induction|State of the culture |meth  No. Cyt Frac.>0 [meth No.Cyt Frac.>0 |meth No. Cyt Frac.>0

7859 |DNMTL, 3a, 3L [30 hrs |Not synchronized [0.75% 3066478 2.74% [3.14% 525937 15.60% 0.16% 2538540 0.08%
IT860 |DNMTL, 3b, 3L [30 hrs |Not synchronized [0.70% 2584192 2.65% [2.77% 463127 14.36% 0.13% 2118519 0.10%
7861 |DNMT3a, 3b, 3L[30 hrs |Not synchronized [0.49% 2889913 2.03% [1.97% 502806 11.46% 0.11% 2385079 0.04%
IT869 |DNMTL, 3a, 3b [30hrs |Not synchronized [0.56% 3066743 1.86% [2.08% 524612 10.73% 0.18% 2539830 0.03%

1870 |None 30hrs _ [Not synchronized [0.15% 2732598 0.00% [0.13% 464513 0.00% 0.16% 2265439  0.00%
7862 |Allt 27.5 hrs |Not synchronized [2.03% 2810320 6.66% [8.55% 506621 34.88% 0.24% 2301426 0.45%
1863 |AlI2 27.5 hrs Not synchronized [2.13% 2937375 6.90% [9.14% 522749 36.43% 0.26% 2412449 0.51%

1Samples corresponding to replical 2Samples corresponding to replica2
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Chapter 7 . General discussion and conclusions

Understanding the complex mechanisms of gene regulation in the nucleus requires
a detailed knowledge of chromatin structure and this implies the study of DNA at
different levels of resolution, from atomistic details up to whole genome
organization. In this thesis, several studies have been performed in order to analyze
genome organization based on DNA intrinsic factors determined by the nucleotide
sequence as well as extrinsic features such as histones, transcription factors or RNA

polymerase.

7.1 Sequence dependent DNA flexibility and protein

recognition

The development of a new accurate forcefield for Molecular Dynamics (MD)
simulations by our group has allowed the structural analysis of trajectories of many
DNA sequences that provide input for the study of sequence dependent properties
of the DNA. In this thesis, three publications (Chapters 3 and 4) address the role of

this intrinsic features on DNA structure, protein binding and nucleosome formation.

In the first publication, we characterized a tetra-nucleotide sequence that was
previously identified to be unusually flexible and for which it was not possible to
understand its dynamics using available dimer or tetramer models. We analyzed the
structural polymorphisms of this tetramer in different sequence contexts,

considering long range (beyond the tetramer level) sequence effects by means of MD
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simulations, as well as from data mining of experimental structures deposited in
PDB. The flexibility inherent to this tetramer implies that it can be present in the
chromatin in very different states and this might have impact in genome structure
which should be reflected in its prevalence. We observed that this tetramer is rather
infrequently found in the genome of several eukaryotes, despite containing one of
the stop codons, it is enriched in intergenic regions and depleted in coding sequences,
and it has low mutation rate in different cancer types compared to other tetramers.
Our results suggest that its unique conformational properties might be important for

its significant underrepresentation in the genome.

The second publication shows that the sequence dependent structural flexibility is
also important for protein recognition of target binding sites. Consensus sequences
for alarge number of proteins have been identified, but the mechanism of recognition
is not well understood. Here, using the physical properties of DNA and theoretical
studies based on MD simulations we have found prevalence of conformational
selection in many protein-DNA complexes from structures in the PDB. This implies
that most of the motifs can spontaneously sample the conformation required for
protein binding, reducing the prevalence of the induce-fit paradigm to a minority of
cases, where specific backbone rearrangements are required leading to strong

disruptions of the DNA structure.

Finally, in the third publication we have used the physical descriptors obtained from
the MD simulations to study the deformation energy of the DNA in the nucleosome,
that is a key element to understand most of the processes in the nucleus required for
cell functioning. We demonstrated the existence of energetic barriers that define the
positioning of the two nucleosomes at the 5 (+1 nucleosome) and 3’ (-last
nucleosome) gene ends in the yeast genome. Although previous studies obtained low
accuracy predicting nucleosome organization from the sequence dependent features,
our study shows that combined with protein binding affinity scores we could predict
with good accuracy the position of nucleosome free regions (NFR) at the
transcription start site and transcription termination site. These two barriers define
the position of the +1 and -last nucleosome in the gene, for which the nucleosome

organization along the gene body can be predicted by signal theory using two



Chapter 7. General discussion and conclusions 177

periodic signals running in opposite direction from the +1 and -last nucleosomes.
When the two signals are in phase, the nucleosomes are well-positioned along the
gene body. On the contrary, anti-phased signals produce fuzzier configurations. A
series of synthetic biology experiments, followed by computational analysis of the
obtained profiles, showed that altering the periodicity does not lead to differential
expression, but gene regulation is more determinant on nucleosome positioning. We
also demonstrated that ordered nucleosome string in the gene body correlates with
active genes. A series of experiments complemented with bioinformatics analysis
uncover the causal relationship: more polymerase activity —higher nucleosome

ordering.

7.2 Nucleosome Dynamics: a new tool for the dynamic

analysis of nucleosome positioning

Besides theoretical study of nucleosome positioning, along this thesis we have
analyzed several MNase-seq experiments performed under different conditions. In
our group, a software for the mapping of nucleosome positions from this
experimental technique, nucleR, was developed several years ago. Although it
allows to study the nucleosome organization in an experiment very accurately, it
cannot perform direct comparison between two different experimental conditions.
Moreover, since the MNase-seq data come from a population of cells, the noise
sometimes masks the real differences occurring between two experimental
conditions and adding up the coverage for all cells obstructs the detection of changes.
For this reason, we developed a new algorithm, NucDyn, that works at the fragment
level, to capture variability from the different cells in the experiment. Comparing our
results with other software on synthetically produced nucleosome maps, we found
that NucDyn is superior to detect nucleosome rearrangements affecting a part of the

cell population.

Nucleosome Dynamics package, comprising NucDyn together with nucleR and
other tools that we developed for the analysis of nucleosome positioning (e.g.

classification of the NFR around the TSS, nucleosome periodicity, nucleosome
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stiffness), has been integrated into a virtual research environment (MuGVRE). This
framework allows not only easy and automatized analyses of nucleosome
experimental data, but also to put the results in the context of genomic information
(ChIP-seq, DNA methylation, etc.) relevant to understand the role of nucleosome
organization in different cellular processes. For instance, analyses performed with
our package for MNase-seq experiments on different stages of the cell cycle, along
the yeast metabolic cycle or in different sources of carbon showed important
nucleosome rearrangements in promoters of genes that are activated or repressed in

response to the different conditions.

7.3 Impact of DNA methylation on 3D genome structure

DNA methylation can influence chromatin organization and DNA. Previous in vitro
and in silico studies found increasing DNA stiffness due to CpG methylation at the
local level. We were interested in understanding how it might affect chromatin
structure at larger scale: at the nucleosome level and whole genome 3D structure. To
perform this analysis, we used an organism that is natively unmethylated,
Saccharomyces cerevisiae, and induced DNA methylation expressing four DNMTs,
allowing us to directly study the effect of this epigenetic factor on chromatin,

removing the effect of methylation readers present in more complex organisms.

Although yeast does not have any of the machinery required to read or write the
DNA methylation fingerprint, the pattern observed along genes is similar in other
organisms that have the DNA methylation machinery. This shows that histone marks
such as H3K4 methylation could be important in writing the DNA methylation at the
correct positions by direct effects which should be related to the different binding
affinities of normal and methylated DNAs. Our results suggest that although DNA
methylation can alter the physical properties of DNA producing more fuzzy
nucleosome profiles, the global pattern of nucleosome occupancy is not largely
altered, which explains cell viability. However, for the promoters with largest levels
of DNA methylation, we identified large changes in nucleosome positioning. Several
genes are repressed upon methylation, which can be explained considering the steric

hindrance that a displaced nucleosome generates, but those which are activated are
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more difficult to understand. We found that these genes share a common motif
(URS], that is a binding site for UME6 protein which represses the expression of
those genes) containing CpG steps that are highly methylated. We hypothesized that
the differential expression could be due to the inability to bind to the target motif due
to the methylation and therefore the genes cannot be repressed. This hypothesis is
supported by the fact that the expression level is highly correlated with the
methylation level at those sites. Again, this relationship can be explained only by the
different protein-binding properties of normal and methylated DNA as no

methylated-recognition protein exist in yeast.

Then, we studied at the large scale the 3D conformation of chromatin changes using
Hi-C data. Upon methylation less inter-chromosome contacts are observed, and
chromosomes become more condensed, especially around the centromere. An
exception is chromosome XII, containing the rDNA region, that forms a barrier
separating the two ends of the chromosome in the methylated sample, but allows the
contacts between the two regions in the control sample in saturation. We built a
restraint-based model from the contact matrices. It confirmed the differential
structure around the centromeric regions, showing decrease in the radius of gyration,
and the segregation of the two regions separated by the rDNA in chromosome XIL
Another chromosome where many significant differential interactions are observed
is chromosome III. Interestingly, it contains the heterochromatic regions of matting
type loci. Moreover, the telomere-telomere contacts are also reduced in the presence
of DNA methylation. These results suggest that the chromatin structure is blocked in
heterochromatic regions upon methylation while the cells are dividing, keeping the

heterochromatic regions segregated after the cells enter the stationary phase.

In summary, our analysis revealed the intrinsic effect of DNA methylation on
chromatin organization, independent of the effect of DNA methylation readers that

recognize methylation signatures, which are absent in our model organism.
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Conclusions

The study of the unusually flexible CTAG tetramer reveals that its unique
conformational properties might have impact in genome structure, reflected in

its significant underrepresentation in the genome.

The conformational selection protein readout mechanism is prevalent in the
recognition of DNA by effector proteins, except in a few specific cases where

base opening or extreme distortions of the fiber are required.

A machine learning algorithm was proposed for the detection of nucleosome
free regions, based on the deformation energy of the DNA and transcription
factor binding affinity. It performs accurately in the yeast genome and allows to
identify barriers from which periodic signals are sent to define the nucleosome

architecture at gene bodies.

NucDyn, an algorithm for the detection of changes in nucleosome architecture
comparing two MNase-seq experiments was developed. It can find differences
occurring even in small percentages of the cells, outperforming other available
methods. This algorithm and other tools for the analysis of nucleosome
positioning have been integrated into a package called Nucleosome Dynamics,
available through different distribution models (R packages, web-servers,
containerized distributions). In particular, the implementation in the MuGVRE
showed to be useful for the analysis of three test cases where the changes were

correlated to response to different cell conditions.

We explored the intrinsic effect of DNA methylation on nucleosome positioning
using an engineered yeast to which we transferred all methylation machinery.
Although it is not a common universal reorganization, increase in fuzziness is
observed and at some specific promoters the high methylation and nucleosome
displacements are related to changes in gene expression. The 3D chromatin
model developed based on restraints from Hi-C experiments allows to obtain a
set of structures that represent a high percentage of the observed experimental

contacts. With this model, we observed that methylation induces the
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reorganization of chromatin at the intra and inter chromosomal levels. Globally,
more contacts are formed around the centromeres while inter-chromosomal
contacts are reduced. Moreover, we found that methylation is important in
maintaining the structure in heterochromatin regions in chromosomes III and

XII and at telomeric regions.






Resumen

Comprender la conexién entre la organizacion del ADN en el ntcleo y el
funcionamiento celular es uno de los problemas més interesantes en biologia.
Aunque se han desarrollado muchos esfuerzos interdisciplinarios para este
objetivo, los mecanismos de plegamiento del ADN son en gran medida
desconocidos. Por lo tanto, la complejidad de la estructura del genoma

requiere diferentes técnicas para abordar varios niveles de resolucion.

En esta tesis, se estudian varias escalas de plegamiento del genoma utilizando
métodos tedricos. Primero, nos centramos en las propiedades dependientes
de la secuencia de ADN que definen la propensién de regiones especificas a
ser reconocidos por las proteinas, descubriendo que la flexibilidad de ciertas

secuencias de ADN podria explicar su prevalencia en el genoma.

Las propiedades dependientes de la secuencia de ADN también son
importantes para definir la primera capa de organizacién de la cromatina: el
nucleosoma. Los descriptores fisicos de la secuencia de ADN combinados con
la propensién a la unién de factores de transcripcion son muy informativos
sobre la posicion de las regiones no afines a la formacién de nucleosomas,
que guian la posicién de los nucleosomas +1 y —ultimo, y el resto de los
nucleosomas en el cuerpo del gen se coloca por posicionamiento estadistico.
Existe una clara correlacion entre la actividad transcripcional y la fase de
nucleosomas en el cuerpo del gen, encontrando que la transcripcién influye

maés sobre la organizacion de los nucleosomas que la relacién opuesta.

En esta tesis también se desarroll6 un paquete para el analisis comparativo

de la organizacién de nucleosomas que permite predecir cuantitativamente
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los cambios en el posicionamiento de los nucleosomas que ocurren cuando se

introducen perturbaciones en la célula.

Finalmente, estudiamos tanto los cambios a nivel de nucleosomas como a
mayor escala producidos por la induccién de la metilacion del ADN en un
genoma que originalmente no tiene metilacién, desarrollando un modelo 3D
basado en Hi-C para estudiar la reorganizacién de la cromatina. Encontramos
cambios muy significativos en la estructura de la cromatina inducidos por la
metilacién, que se reflejan en la expresién génica y el fenotipo celular.
Curiosamente, estos cambios se encuentran en un organismo modelo que no
tiene proteinas preparadas para reconocer la metilacion y, en consecuencia,
pueden deberse a los efectos intrinsecos (no mediados por proteinas) de la

metilacién.
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Introduccion

El ADN es una molécula larga que, en condiciones fisiologicas, forma un
duplex complementario que contiene la informacién genética necesaria para
construir la vida. Aunque la fibra de ADN humano tiene aproximadamente
dos metros de largo, estd compactada para ajustarse dentro del pequefio
espacio definido por el ntcleo celular con un didmetro de aproximadamente
10 micrémetros [1]. La compactacién del ADN es mediada por proteinas que
guian su plegamiento dentro del nticleo de las células eucariotas. El complejo
de ADN y proteinas dentro del ntcleo se conoce como cromatina. Muchas
evidencias experimentales [2]-[4] demuestran que el empaquetamiento del
ADN dentro del nicleo no es aleatorio, ya que se debe preservar la
accesibilidad al ADN a los reguladores del genoma, asegurando la funcién
correcta de procesos como la transcripcion, la replicacion y la reparacion del
ADN. Otras evidencias han demostrado que esta organizacion es dindmica y
sufre diferentes reorganizaciones a lo largo de varios procesos celulares como
la diferenciacion [2], la progresion del ciclo celular [5] o la respuesta al dafio

celular [6].

La unidad fundamental de compactacién del ADN en organismos eucariotas
es el nucleosoma. Un nucleosoma canénico esta formado por ~ 147 pares de
bases (bp) de ADN bicatenario que se enrollan en aproximadamente 1.65
vueltas super helicoidales alrededor de dos copias de cada histona H2A, H2B,
H3 y H4. La curvatura del ADN en el nucleosoma requiere una energia de

flexién significativa [7].

Las posiciones de los nucleosomas in vivo se han determinado utilizando
varios protocolos experimentales, como FAIRE [8], ATAC-seq [9] y MNase-
seq [10]. Esta tltima es la técnica mds utilizada y proporciona informaciéon

detallada sobre la organizaciéon de los nucleosomas. Estos experimentos
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contienen informacion de una poblaciéon de células, por lo tanto, los perfiles
de nucleosomas pueden ser ruidosos [11] y se caracterizan tipicamente por
dos propiedades importantes: ocupacién y posicionamiento. El primero esta
relacionado con el porcentaje de células en un experimento que contiene un
nucleosoma dado, el dltimo denota la variabilidad en su posicién genémica
entre todas las células. Un nucleosoma se llama bien posicionado (W) cuando
estd presente en un gran porcentaje de las células, y los fragmentos de
diferentes células presentan baja variabilidad con respecto a la posicion
gendémica. Cuando un nucleosoma tiene baja cobertura y / o gran

variabilidad de posicionamiento, se llama difuso (F) [11].

La organizacién de los nucleosomas en la secuencia de ADN no es aleatoria
y se ha relacionado con diferentes procesos celulares como la transcripcién y
la replicacién [12]. Ademads, es dindmico en el espacio y el tiempo, y estd
influenciado por varios factores, tales como: (i) el contexto local determinado
por propiedades dependientes de la secuencia (factores cis), (ii) complejos de
proteinas que interactiian con el ADN y pueden competir con nucleosomas
(factores frans), como factores de transcripcién [13], maquinaria de
replicacion [12] o remodeladores dependientes de ATP que pueden deslizar
o expulsar nucleosomas (parcial o totalmente) [14], y (iii) el efecto de los
nucleosomas vecinos que imponen restricciones estéricas para el

posicionamiento de nucleosomas [15].

A escala global los cromosomas se pliegan jerdrquicamente en el espacio
nuclear durante la interfase [16], [17]. A nivel de todo el nticleo, la cromatina
estd segregacion en territorios cromosémicos [18]. A mayor escala, se ha
observado la separacién de los compartimentos A / B, que corresponden a la
eucromatina transcrita activamente y la heterocromatina reprimida,
respectivamente [19], estando esta tiltima unida preferentemente a la lJdmina

nuclear [20].
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A una escala mas fina, los cromosomas se organizan en dominios asociados
topolégicamente (TAD), regiones del genoma con alta auto-interaccion,
aisladas de regiones de dominios vecinos [21]. Los TADs podrian reflejar la
presencia de bucles de genes que imponen la direccionalidad del promotor
[22]o bucles formados para atraer elementos reguladores en proximidad de
los genes sobre los que influyen, que pueden estar separados por una gran
distancia gendémica, [23], [24]. Los bordes de los TADs en células de
mamiferos se colocalizan fuertemente con los sitios de unién de CTCF [25].
Un mecanismo propuesto para la formacién de TAD implica el papel de los
factores de extrusion, como la cohesina, que extruyen el ADN a través de su
estructura en forma de anillo [26], [27]. La formacién del bucle continta hasta
que el factor de extrusién encuentra otro factor limite, por ejemplo, CTCF en

orientacion convergente en los bordes del TAD.



188

Chromatin structure, chromosome conformation and gene regulation

Objetivos

El objetivo principal de esta tesis es estudiar la estructura y organizaciéon de

la fibra de ADN a diferentes niveles de detalle, desde propiedades especificas

de secuencia local hasta la estructura 3D global dentro del nicleo. Para este

proposito, los siguientes objetivos especificos se proponen y agrupan en tres

categorias:

1. Propiedades dependientes de la secuencia de ADN

Caracterizar la distribucion amplia del genoma y la funcion de

secuencias de ADN altamente flexibles.

Evaluar los mecanismos para el reconocimiento de ADN de
proteinas que definen pruebas estadisticas para la deteccién
de diferencias significativas en los descriptores fisicos de ADN
entre la estructura experimental de ADN unida a proteinas y
la estructura desnuda a partir de simulaciones de dinamica

molecular.

Para predecir perfiles de organizacion de nucleosomas
utilizando métodos de aprendizaje automatico basados en la
energia de deformacién del ADN, la afinidad del factor de

transcripcion y la periodicidad de la sefial de nucleosoma.

2. Herramientas para estudiar el posicionamiento de nucleosomas in

vivo

Desarrollar un algoritmo para comparar perfiles de
posicionamiento de nucleosomas entre dos poblaciones

celulares.

Integrar diferentes herramientas para el andlisis de la

organizacion de nucleosomas en una tuberia disponible a
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través de diferentes modelos de distribucion (servidores web,
distribuciones en contenedores) que facilitan el andlisis de

resultados en el contexto de otra informacién genémica.

3. Efecto de la metilacion del ADN en la estructura de la cromatina.

Analizar el efecto de la metilacion del ADN en el
posicionamiento de nucleosomas in vivo, aplicando el
algoritmo propuesto para la comparaciéon de perfiles de

nucleosomas.

Estudiar los cambios de cromatina a nivel de estructura 3D del
genoma completo aplicando métodos estadisticos para la
deteccion de regiones de interaccion diferencial en datos de

Hi-C.

Desarrollar un modelo 3D de grano grueso de la cromatina
basado en restricciones obtenidas de matrices de contacto Hi-
C para un analisis posterior de los cambios estructurales

producidos por la metilacion del ADN.
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Discusion general

La comprensién de los complejos mecanismos de regulacion génica en el
ntcleo requiere un conocimiento detallado de la estructura de la cromatina y
esto implica el estudio del ADN a diferentes niveles de resolucién, desde
detalles atomisticos hasta la organizacion del genoma completo. En esta tesis,
se han realizado varios estudios para analizar la organizaciéon del genoma
teniendo en cuenta tanto factores intrinsecos de ADN determinados por la
secuencia de nucle6tidos, asi como caracteristicas extrinsecas como histonas,

factores de transcripcion o ARN polimerasa.

Flexibilidad del ADN vy reconocimiento de proteinas

asociado a la secuencia

El desarrollo de un nuevo campo de fuerza para simulaciones de Dindmica
Molecular (MD) por parte de nuestro grupo ha permitido el anélisis
estructural de las trayectorias de muchas secuencias de ADN que
proporcionan informacién para el estudio de las propiedades dependientes
de la secuencia del ADN. En esta tesis, tres publicaciones (capitulos 3 y 4)
abordan el papel de estas caracteristicas intrinsecas en la estructura del ADN,

la unién a proteinas y la formaciéon de nucleosomas.

En la primera publicacién, caracterizamos una secuencia de tetra-nucle6tidos
que previamente se identificé como inusualmente flexible y para la cual no
fue posible comprender su dindmica utilizando los modelos de dimero o
tetrdmero disponibles. Analizamos los polimorfismos estructurales de este
tetramero en diferentes contextos de secuencia, considerando los efectos de
secuencia de largo alcance (mads alld del nivel del tetrdmero) por medio de

simulaciones MD, asi como de la mineria de datos de estructuras
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experimentales depositadas en la base de datos Protein Data Bank (PDB). La
flexibilidad inherente a este tetrdmero implica que puede estar presente en la
cromatina en estados muy diferentes y esto podria tener un impacto en la
estructura del genoma que deberia reflejarse en su prevalencia. Observamos
que este tetrdmero es poco frecuente en el genoma de varios organismos
eucariotas, a pesar de contener uno de los codones de parada (TAG), esta
enriquecido en regiones intergénicas y empobrecido en secuencias
codificantes, y tiene una baja tasa de mutacion en diferentes tipos de cdncer
en comparacion con otros tetrameros. Nuestros resultados sugieren que sus
propiedades conformacionales tnicas podrian ser importantes para su

significativamente baja representacién en el genoma.

La segunda publicacién muestra que la flexibilidad estructural dependiente
de la secuencia también es importante para el reconocimiento de proteinas
de los sitios de unioén al ADN. Se han identificado secuencias de consenso
para un gran nimero de proteinas, pero el mecanismo de reconocimiento no
ha sido establecido. En este trabajo, utilizando las propiedades fisicas del
ADN y estudios tedricos basados en simulaciones MD, hemos encontrado la
prevalencia de la seleccién conformacional en muchos complejos de proteina-
ADN de estructuras en el PDB. Esto implica que la mayoria de los motivos
pueden muestrear espontdneamente la conformacion requerida para la union
a proteinas, reduciendo la prevalencia del paradigma de ajuste inducido a
una minoria de casos, donde se requieren reorganizaciones especificas del
esqueleto que conducen a importantes modificaciones de la estructura del

ADN.

Finalmente, en la tercera publicacién, hemos utilizado los descriptores fisicos
obtenidos de las simulaciones de MD para estudiar la energia de deformacién
del ADN en el nucleosoma, que es un elemento clave para comprender la

mayorfa de los procesos en el nticleo necesarios para el funcionamiento
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celular. Demostramos la existencia de barreras energéticas que definen el
posicionamiento de los dos nucleosomas en los extremos 5 '(+1 nucleosoma)
y 3' (-ultimo nucleosoma) de cada gen en el genoma de la levadura
(Saccharomyces cerevisiae). Aunque estudios anteriores obtuvieron
predicciones con poca precisién de la organizaciéon de nucleosomas a partir
de las propiedades fisicas del ADN, nuestro estudio muestra que,
combinados con medidas de afinidad de la unién a proteinas, podemos
predecir con buena precision la posicion de las regiones libres de
nucleosomas en el sitio de inicio de la transcripcion y el sitio de terminacién
de la transcripcion. Estas dos barreras definen la posicion del nucleosoma +1
y -ultimo en el gen, con lo cual es posible predecir la organizaciéon de
nucleosomas a lo largo del cuerpo del gen mediante la teoria de la sefial
utilizando dos sefales periddicas que se envian en direccién opuesta a partir
de los nucleosomas +1 y -dltimo. Cuando las dos sefiales estan en fase, los
nucleosomas estdn bien posicionados a lo largo del cuerpo del gen. Por el
contrario, las sefiales en anti-fase producen configuraciones de nucleosomas
mas difusas. Una serie de experimentos de biologia sintética, seguida de un
analisis computacional de los perfiles obtenidos, mostré que alterar la
periodicidad no conduce a la expresion diferencial, pero la regulacién génica
es mas determinante en el posicionamiento de nucleosomas. También
demostramos que la cadena de nucleosomas ordenada en el cuerpo del gen
se correlaciona con genes activos. Una serie de experimentos
complementados con andlisis bioinformaticos descubren la relaciéon causal:

mas actividad de polimerasa mayor ordenaciéon de nucleosomas.

Nucleosome Dynamics: una nueva herramienta para el

analisis dindmico del posicionamiento de nucleosomas
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Ademas del estudio tedrico del posicionamiento de nucleosomas, a lo largo
de esta tesis se han analizado varios experimentos de MNase-seq realizados
en diferentes condiciones. En nuestro grupo, hace varios afios se desarroll6
un software para el mapeo de las posiciones de nucleosomas a partir de datos
obtenidos mediante esta técnica experimental, nucleR. Aunque permite
estudiar la organizaciéon de nucleosomas en un experimento con mucha
precision, no puede realizar una comparacion directa entre dos condiciones
experimentales diferentes. Ademds, dado que los datos de MNase-seq
provienen de una poblacién de células, el ruido a veces oculta las diferencias
reales que ocurren entre dos condiciones experimentales y sumar la cobertura
para todas las células impide la deteccion de cambios. Por esta razon,
desarrollamos un nuevo algoritmo, NucDyn, que funciona a nivel de los
fragmentos secuenciados, para capturar la variabilidad de las diferentes
células en el experimento. Al comparar nuestros resultados con otros
programas computacionales en mapas de nucleosomas producidos
sintéticamente, encontramos que NucDyn es superior para detectar
reordenamientos de nucleosomas que afectan a una parte de la poblaciéon

celular.

El paquete Nucleosome Dynamics, que comprende NucDyn junto con nucleR
y otras herramientas que desarrollamos para el analisis del posicionamiento
de nucleosomas (por ejemplo, clasificacion de las regiones libres de
nucleosomas alrededor de los inicios de transcripcién, computo de medidas
de periodicidad de nucleosomas, estimacion de la rigidez asociada a los
nucleosomas), se ha integrado en un entorno de investigacién virtual
(MuGVRE). Esta web permite no solo realizar el anélisis de forma automatica
de datos experimentales de nucleosomas, sino también poner los resultados
en el contexto de informacién genémica (ChIP-seq, metilacién de ADN, etc.)
lo cual es relevante para comprender el papel de la organizaciéon de

nucleosomas en diferentes procesos celulares. Por ejemplo, los andlisis
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realizados con Nucleosome Dynamics para experimentos MNase-seq en
diferentes etapas del ciclo celular, a lo largo del ciclo metabdlico de la
levadura o en diferentes fuentes de carbono mostraron importantes
reordenamientos de nucleosomas en promotores de genes que se activan o

reprimen en respuesta a las diferentes condiciones experimentales.

Impacto de la metilaciéon del ADN en la estructura 3D del

genoma

La metilacién del ADN puede influir en la organizacién de la cromatina y el
ADN. Estudios previos in vitro e in silico encontraron un aumento de la
rigidez del ADN debido a la metilaciéon de los pasos CpG a nivel local. Sin
embargo, el efecto de la metilacion en la estructura global de la cromatina no
ha sido establecido. Por esta razén, en esta tesis se busca comprender cémo
afecta la estructura de la cromatina a mayor escala: a nivel de nucleosomas y
la estructura 3D del genoma completo. Para realizar este analisis, se utilizé
un organismo que no contiene los factores necesarios para producir la
metilacion del ADN, Saccharomyces cerevisiae, y se indujo expresando
cuatro metiltransferasas (DNMTs), lo que nos permite estudiar directamente
el efecto de este factor epigenético en la cromatina, eliminando el efecto de
proteinas que reconocen la metilacién, presentes en organismos méds

complejos.

Aunque la levadura no tiene la maquinaria necesaria para leer o escribir la
metilacién del ADN, el patrén observado a lo largo de los genes es similar en
otros organismos que si la tienen. Esto muestra que las marcas de histonas,
como la metilacion de H3K4, podrian ser importantes para escribir la
metilacion del ADN en las posiciones correctas por efectos directos que

deberian estar relacionados con las diferentes afinidades de unién del ADN



Resumen 195

normal y metilado. Nuestros resultados sugieren que, aunque la metilacion
del ADN puede alterar las propiedades fisicas del ADN produciendo perfiles
de nucleosomas més difusos, el patrén global de ocupacioén de nucleosomas
no se altera en gran medida, lo que explica la viabilidad celular. Sin embargo,
para los promotores con mayores niveles de metilacion del ADN,
identificamos grandes cambios en el posicionamiento de nucleosomas. La
metilacion reprime varios genes, lo cual puede explicarse considerando el
obstaculo estérico que genera un nucleosoma desplazado, pero la activaciéon
de genes producida por la metilacion es mas dificil de entender. Analizando
las funciones de estos genes, se encontré que comparten un motivo comun
(URS1, que es un sitio de unién para la proteina UME6 que reprime su
expresion) que contiene pasos de CpG que estan altamente metilados. La
expresion diferencial podria deberse a la incapacidad de la proteina de
reconocer y unirse a la secuencia debido a la metilacién y, por lo tanto, los
genes no pueden ser reprimidos. Esta hipotesis esta respaldada por el hecho
de que el nivel de expresion esta altamente correlacionado con el nivel de
metilacién en esos sitios. Nuevamente, esta relaciéon solo puede explicarse
por las diferentes propiedades de unién a proteinas del ADN normal y
metilado, ya que no existe proteina de reconocimiento metilado en la

levadura.

Luego, estudiamos a gran escala la conformacién 3D de los cambios de
cromatina utilizando datos Hi-C. Tras la metilacién, se observan menos
contactos entre cromosomas y estos se condensan mds, especialmente
alrededor del centrémero. La tnica excepcion es el cromosoma XII, que
contiene las regiones de ADN ribosomal, las cuales forman una barrera que
separa los dos extremos del cromosoma en la muestra metilada, pero permite
la formacién de contactos entre las dos regiones en la muestra de control sin
metilacién en saturacion. Para obtener més informacion sobre el efecto de la

metilacion del ADN en la estructura de la cromatina, construimos por
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primera vez un modelo basado en la restriccion a partir de las matrices de
contacto y los experimentos MNase-seq. Se observd diferencias en la
estructura alrededor de las regiones centroméricas, mostrando una
disminucién en el radio de giro y la segregacion de las dos regiones separadas

por el ADN ribosomal en el cromosoma XII.
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Conclusiones

e El estudio del tetrdmero inusualmente flexible CTAG revela que sus
propiedades conformacionales tinicas podrian tener un impacto en la
estructura del genoma, lo que se refleja en su importante

subrepresentacion en el genoma.

¢ El mecanismo de lectura de las proteinas a través de la seleccién
conformacional prevalece en el reconocimiento del ADN por las
proteinas efectoras, excepto en algunos casos especificos donde se

requiere una apertura de las bases o distorsiones extremas de la fibra.

* Se propuso un algoritmo de aprendizaje automatico para la deteccion
de regiones libres de nucleosomas, basado en la energia de
deformaciéon del ADN y la afinidad de uniéon a factores de
transcripcion. Este algoritmo permite obtener predicciones con alta
precision en el genoma de la levadura e identificar barreras desde las
cuales se envian sefales periddicas para definir la arquitectura de

nucleosomas en el cuerpo de los genes.

* Se desarroll6 un método para la deteccion de cambios en la
arquitectura de nucleosomas, NucDyn, que compara dos
experimentos de MNase-seq. Puede encontrar diferencias que
ocurren incluso en pequefios porcentajes de las células, superando a
otros métodos disponibles. Este algoritmo y otras herramientas para
el andlisis de posicionamiento de nucleosomas se han integrado en un
paquete llamado Nucleosome Dynamics, disponible a través de
diferentes modelos de distribucién (paquetes R, servidores web,
distribuciones en contenedores). En particular, la implementacién en

MuGVRE demostré ser 1til para el andlisis de tres ejemplos de uso
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donde los cambios se correlacionaron con la respuesta a diferentes

condiciones celulares.

Se explor6 el efecto intrinseco de la metilacion del ADN en el
posicionamiento de nucleosomas utilizando una cepa levadura
modificada a la que se transfirié la maquinaria de metilacién. Aunque
no se observa una reorganizacién universal comtn, se evidencia
disminucién en el nimero de nucleosomas bien posicionados. Asi
mismo, en algunos promotores especificos la alta metilacion y los
desplazamientos de nucleosomas estan relacionados con cambios en

la expresion génica.

El modelo tridimensional de la cromatina desarrollado con base en
restricciones obtenidas a partir de los experimentos de Hi-C permite
obtener un conjunto de estructuras que representan un alto porcentaje
de los contactos experimentales observados. Con este observamos que
la metilaciéon produce reorganizaciéon de la cromatina a nivel intra e
inter cromosémico. Alrededor de los centrémeros se forman maés
contactos mientras se pierden los contactos inter cromosémicos.
Adicionalmente observamos que la metilaciéon es importante en el

mantenimiento de la estructura en regiones de heterocromatina.
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SUPPORTING METHODS

The choice of sequences. We built a library of 40 different 16 bp oligomer
sequences with a middle d(CpTpApG)z that cover the entire hexanucleotide space
featuring a XpCpTpApGpX sequence pattern (X stands for any nucleotide) as well as
all possible pyrimidine(Y)/purine(R) combinations at the octanucleotide level in
several (>3) repeats.

System preparation and MD simulations. All the sequences were prepared with
the leap program of AMBERTOOLS 16 (1) and simulated using pmemd.cuda code
(2). Following the ABC protocol (3), canonical duplexes were generated using Arnott
B-DNA fiber parameters (4), and solvated by a truncated octahedral box with a
minimum distance of 10 A between DNA and the closest face of the box.

Simulations were run using parmbsc1 force-field, SPC/E water model (5) and 150
mM concentration of K+*Cl- salt using Smith/Dang parameters (6-8). Systems were
optimized and equilibrated as described in our previous works, and simulated for at
least 500 ns and up to 10 ps in the NPT ensemble, using Particle-Mesh Ewald
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corrections (2, 9) and periodic boundary conditions. SHAKE was used to constrain
bonds involving hydrogen (10), allowing 2 fs integration step. All the trajectories
and the associated analysis are accessible in the BigNAsim portal:
https://mmb.irbbarcelona.org/BIGNASim/.

Analysis of Molecular Dynamics trajectories. All the trajectories were processed
with the cpptraj module of the AMBERTOOLS 16 package (1), and the NAFlex server
(10) for standard analysis. DNA helical parameters and backbone torsion angles
were measured and analysed with the CURVES+ and CANAL programs (11),
following the standard ABC conventions (3). The CANION module from Curves+ (12)
was used to determine the position of cations in curvilinear cylindrical coordinates
for each snapshot of the simulations with respect to the instantaneous helical axis.
We obtained and analysed the ion distribution in one- (R, D, A) and two-dimensional
(RA, DA, DR) curvilinear cylindrical coordinates at the central tetranucleotide
sequence. Duplexes were named following the Watson strand (e.g. CTAG stands for
(CTAG)-(CTAG)). The letters R, Y and X stand for a purine a pyrimidine or any base
respectively, while X-X and XX represent a base pair and base-pair step respectively.
Base pairs flanking the CTAG were denoted using two dots to represent the central
tetrad (e.g. R-+Y).

The Essential Modes of generic TpA in helical space. We performed Principal
Component Analysis (PCA) of the 18 intra- and inter- base-pair parameters that
define all degrees of freedom of the central TpA step in a rigid-base model. Before
calculating the covariance matrix in helical space, its entries had to be made
dimensionally uniform, so all rotational degrees of freedom were scaled by a factor
of 10.6 (13). The covariance was calculated from the joint equilibrated trajectories
of all 40 sequences taken at every 100 ps. The first 3 Principal Components, which
explain ~60% of the total variance, have their largest projections on a subset of 8 of
the original 18 helical parameters. These 3 PCs were used to perform
multidimensional clustering in the essential helical space using the mclust package
of R. The clustering is performed using the optimal model according to Bayesian
Information Criterion (BIC) for an expectation-minimization (EM) algorithm
initialized by hierarchical clustering for parameterized Gaussian mixture models.

Distributions of helical parameters that guide specific sequence dependence.
The helical parameters that showed the highest variability across trajectories of
different sequences were identified using Principal Component Analysis (PCA) of
the 18 intra- and inter base pair parameters that define all degrees of freedom of the
central TpA step in a rigid-base model. The first 3 Principal Components, which
explain ~60% of the total variance have their largest projections on a subset of 8 of
the original 18 helical parameters. The Bayesian Information Criterion (BIC) (14,
15) was used, limiting the analysis to either two or three components to determine
the number of normal functions needed to meaningfully represent the appearance
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of possible substates in the shift, slide, roll and twist 1D distributions of the joint
trajectory of all sequences. The normal distributions obtained from the BIC
decomposition were compared to the distributions of the same parameters obtained
after the multivariate clustering (into 3 clusters) of the first 3 PCs.

From the eight parameters identified from the PCA as accounting for the most
variance, six are non-collinear in the essential helical space, namely the shift, slide
and twist of TpA bps, the buckle and propeller twist of dT and the buckle of dA. The
distributions of the subset of these 6 parameters were used to evaluate the
similarity between central TpA steps in different oligonucleotide sequences using
the Kullback-Leibler (KL) divergence theorem. For each pair of oligomers we
calculated the symmetrized values of the KL divergence and then applied
hierarchical cluster analysis using Ward's clustering criterion (16), where the
dissimilarities are squared before cluster updating (17) in order to identify specific
sequence effects on TpA helical space flexibility.

The 4-state model of TpA dynamics. The 3D and 2D distributions of these three
parameters and their paired combinations, respectively, in the meta-trajectory have
also been calculated and they show a clear preference of the TpA to occupy one of
four states in the Shift-Slide-Twist space. In fact, the states of the 3 helical
parameters that display polymorphisms are highly inter-dependent, as shown in the
2- and 3- dimensional distribution plots. The 3 most populated states in the twist-
slide-shift space, when considering the entire meta-trajectory of all
oligonucleotides, are: High Twist/Positive Slide/Negative Shift (HPN), High
Twist/Positive Slide/Positive Shift (HPP), and Low Twist/Negative Slide/Zero Shift
(LNZ). In order to capture and better understand these effects, we filtered the meta-
trajectory into 3 sub-trajectories corresponding to the 3 states, removing all frames
that did not belong to any of these. We compared the distribution of helical
parameters beyond the next-to-nearest neighbours (octanucleotide level) in both
directions (“-” sign for moving towards the 5’ direction on the Watson strand and
“+” sign for the 3’ direction) between the 3 substate-trajectories and found
significant effects in the neighbouring shift, slide and twist. We also compared up to
the octanucleotide level, backbone torsions, sugar puckering, and glycosidic
torsions.

Breaking down the twist, slide and shift contributions to the distal sequence effects,
we calculate the Pearson’s correlations of these parameters at TpA to the helical
parameters at one and two levels away from TpA in each direction and the point
biserial correlations to the backbone torsion (zeta - categorized in trans and
gauche-), sugar pucker (categorized into South and North) and glycosidic torsion
(categorized into Anti and High Anti).
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Equilibrium distributions of inter base pair helical parameters at the TpA step
vary beyond next-to-nearest neighbours. BIC (Bayesian Information Criterion)
was used to distinguish between the normal (one Gaussian) or multi-normal (a
mixture of two or more Gaussians) nature of the distributions of TpA helical
parameters (14, 15).

Since for each individual trajectory, the BIC decomposition assign the same number
of Gaussians (1, 2 and 3) in the respective helical parameters (roll, twist/slide and
shift, respectively) and the peaks of the distributions are consistent thought the set
of oligomers, we compare the propensities of each Gaussian of the individual
trajectories with the total average propensity per peak, assigning them to one of
three ranges: mean - sd, mean + sd and within this interval, in order to identify large
deviations in population imposed by sequence.

Correlation between twist and zeta states. As previously analysed in depth for
the CpG case, we found strong correlations between the twist state and the BI/BII
backbone state at the 3’ side of the TpA step on both Watson and Crick strands. The
backbone state was defined by discretizing the zeta torsion sub-states into trans
(180 + 40 degrees — associated with a backbone in BIl), gauche positive (60 + 40
degrees - extremely infrequent) and gauche negative (300 + 40 degrees - associated
with a backbone in BI). Just like in the CpG case, a low twist state was found to
usually be coupled with BII transitions at both 3’ junctions.

Correlation between twist and C-H~03’ hydrogen bond. Relying on strong
evidence from previous studies (18, 19) of almost perfect correlation between
backbone state and the formation of base to backbone hydrogen bonds, we looked
at the correlation between twist state at the TpA step and hydrogen bond formation
beyond the next-to-nearest neighbours. We found, as expected, a dependency of 3’
side adjacent bond formation to twist state that perfectly mirrors that of the
backbone state. But we also discovered an insightful sequential anti-correlation of
bond formation from one step to the next that is also highly dependent on sequence,
which favours the formation of one or the other.

Stacking and Base-pairing strength. In order to estimate the strength of stacking
at the TpA step we calculated a Stacking Factor based on the distance between the
centres of mass of DT and DA, and the angle between the two planes of the bases,
defined as (20):

™

$= St

S(a)=e" "+ e-la-m?* 4  1e—(a—-05m)*
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where ruis the distance between the two centres of mass and a the angle between
the base planes. We calculated the Stacking Factors separately for the major 3 of the
4 states in twist/slide/shift space defined above to determine the stabilizing factors
of the highly preferred states.

Database Analysis of structural features. We retrieved high resolution (< 3A)
structures of double stranded DNA containing the CTAG tetrad and distinguished
between the protein-bound and free DNA structures. We compared helical
parameter distributions and components of BIC analysis between the database
structures and out results. We paid special attention to the sequence context bias
found in the database and performed the comparison to the meta-trajectory from
simulations containing the same hexanucleotide environments centred at TpA.

Database Analysis of genomic properties. Prevalence of CTAG in the genomes of
H. sapiens (hg19), E. coli (NC_000913.3) and S. cerevisiae (sacCer3) was computed,
finding low occurrence compared to other tetranucleotides (less than 0.5% in the
three species). Occurrences of this tetranucleotide were then mapped, using Homer
software (21), to the annotated regions of each organism obtained from UCSC and
compared to the overall frequency of each annotation type. CTAG is enriched at
intergenic regions in H. sapiens and E. coli, but not in S. cerevisiae probably due to
the low number of intergenic regions in this organism (less than 2.5% compared to
more than 20% in the other two). To evaluate resilience to mutation, the frequency
of mutations for each tetranucleotide (normalised by tetranucleotide frequency)
along the genome in 30 different cancer types (22) was computed. SNPs in human
genome were retrieved from Ensembl Variation database (23) and were mapped to
each tetranucleotide to compute normalized SNP frequency per tetranucleotide.
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SUPPORTING TABLES

Table S$1. Sequence library used to study CTAG polymorphisms, number of replicas
and simulation time.

Num Sequence SIml.“atmn Num. Sequence Slml.]latmn
time time
1 CGTCGGCTAGCCGAGC 500 ns 21 CGGAGACTAGACTCGC 500ns
2 CGTCTCCTAGGAGAGC  500ns 22 CGGAGACTAGCCTCGC 500ns
3 CGAAAACTAGAAAAGC 500ns 23 CGGAGACTAGGCTCGC 6 us
4 CGAAAACTAGTTTTGC 500 ns 24 CGGAGACTAGTCTCGC 6 s
5 CGATATCTAGATATGC 500ns 25 CGGAGCCTAGACTCGC 500ns
6 CGTATACTAGTATAGC 2x500ns 26 CGGAGCCTAGCCTCGC 2x500 ns
7 CGGGGGCTAGGGGGGC 500 ns 27 CGGAGCCTAGGCTCGC 500 ns
8 CGGGGGCTAGCCCCGC  500ns 28 CGGAGGCTAGACTCGC 500 ns
9 CGGCGCCTAGGCGCGC 500 ns 29 CGGAGGCTAGCCTCGC 6 s
10 CGCGCGCTAGCGCGGC 500 ns 30 CGGAGTCTAGACTCGC 2x500ns
11 CGTCTACTAGAGAGGC 500 ns 31 CGCTAGCTAGCTAGGC 4 x 500 ns
12 CGTCTACTAGCGAGGC 2x500ns 32 CGATATCTAGAAATGC 2 s
13 CGTCTACTAGGGAGGC 6 s 33 CGGAGCCTAGAATCGC 2 s
14 CGTCTACTAGTGAGGC 2x500ns 34 CGGCGCCTAGGGGCGC PAE
15 CGTCTCCTAGAGAGGC 2x500ns 35 CGGAGGCTAGCATCGC 2ps
16 CGTCTCCTAGCGAGGC 500 ns 36 CGAAAACTAGTATAGC 2pus
17 CGTCTCCTAGGGAGGC 500 ns 37 CGCTAGCTAGCGAGGC 2 s
18 CGTCTGCTAGAGAGGC 6 us 38 CGTCTGCTAGACAGGC 2 us
19 CGTCTGCTAGCGAGGC 9 us 39 CGAATCCTAGATAAGC 2us
20 CGTCTTCTAGAGAGGC 500 ns 40 CGGACACTAGCGTCGC 2 s
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Table S2. Pearson correlation coefficients of Shift, Slide and Twist at TpA with
flanking bps parameters and selected backbone torsions up to next-to-nearest

neighbours.

Shift Slide Twist Shift Slide Twist

atTA atTA atTA atTA atTA atTA

Shift 0.06 0.002 0.025 zetaW -0.067 -0.063 -0.123

Slide 0.157 0.149 0.206 zetaC -0.471 -0.286 -0.421

Rise -0.052 -0.022 -0.086 phaseW -0.130 -0.023 -0.073

-2 Tilt 0.086 0.031 0.051 phaseC -0.061 -0.079 -0.110
Roll 0.001 0.043 0.038 chiWw 0.018 0.002 0.025

Twist 0.089 0.051 0.021 chiC -0.074 -0.042 -0.057

Shift -0.607 -0.149 -0.257 zetaW -0.454 -0.098 -0.217

Slide -0.298 0.089 -0.094 zetaC 0.753 0.295 0.536

Rise 0.028 -0.089 -0.109 phaseW -0.425  0.006 -0.105

-1 Tilt -0.12  0.057 -0.11 phaseC 0.111 0.102 0.090
Roll 0.002 0.178 0.157 chiWw -0.140 -0.027 -0.058

Twist -0.223 -0.263 -0.453 chiC 0.107 0.173 0.153

Central TpA step

Shift -0.607 0.192 0.306 zetaW -0.736 0.340 0.589

Slide 0.201 0.098 -0.078 zetaC 0.456 -0.166 -0.260

Rise 0.017 -0.08 -0.114 phaseW -0.157 0.130 0.103

+1 Tilt -0.104 -0.047 0.12 phaseC 0431 -0.045 -0.144
Roll -0.045 0.176 0.173 chiW -0.206 0.186 0.170

Twist 0.232 -0.25 -0.455 chiC 0.166 -0.022 -0.053

Shift 0.185 -0.084 -0.148 zetaW 0.547 -0.332 -0.487

Slide -0.251  0.195 0.271 zetaC 0.023 -0.023 -0.061

Rise 0.09 -0.04 -0.103 phaseW 0.020 -0.072 -0.076

+2 Tilt 0.156 -0.091 -0.125 PhaseC 0.085 -0.004 -0.054
Roll 0012 0.044 0.039 chiWw 0.019 -0.012 -0.018

twist -0.095 0.079 0.067 chiC -0.067 0.006 0.024
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Table S$3. Number and frequency of unique occurrences of hexanucleotides
containing central CTAG in the PDB database.

Type Hexanucleotide No. structures Frequency
Context

G--C 15 0.54

AT 5 0.18

Naked DNA T--A 3 0.11
structures C-G 2 0.07
T--T 2 0.07

T--C 1 0.04

A-G 30 0.31

G--A 30 0.31

T--A 11 0.11

AT 8 0.08

Protein-DNA GG 7 0.07
complexes C-G 5 0.05
A-A 2 0.02

G--C 2 0.02

A--C 1 0.01

T--G 1 0.01
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SUPPORTING FIGS.
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Fig. S1. Normalized frequencies of the shift, slide, roll and twist helical parameters
for 3 selected sequences, whose trajectories were extended to 6 ps to check for
convergence. Four distributions were computed for each helical parameter using
segments of 1,000 or 2,000 ns.
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Fig. S4. 2D counts in the shift-twist plane from MD simulations at the central TpA
step. In the 2D density plots experimental structures from the PDB (see Supp.
Methods) were added as black crosses (Protein-DNA complexes), or blue crosses
(isolated DNA). We divided the plane between high twist (> 37°), and low twist (<
37°) and analysed the shift distribution for these two cases.
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Fig. S7. Relative ion populations of cluster representatives in the minor and major
groove at the CTAG tetranucleotide. Comparison to the global average ion
populations per region.
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Supplementary Method

PDB Protein-DNA dataset filtering. The dataset representing the DNA-protein
interactome used in the study was obtained after applying a set of filters to the
whole repository of protein complexes deposited in the Protein Data Bank. The
initial dataset was acquired from Nucleic Acid Database (NDB)[1] [accessed on
Feb-2018], selecting PDB entries having protein molecules attached to double-
stranded B-DNA, thus avoiding single-stranded nucleic acid structures, RNA, and
non-canonical B-DNA conformations. From this dataset of 3,465 different entries,
single protein-DNA complexes were extracted in the cases where more than one
existed in the PDB file (e.g. 1PP8). From the resulting list, complexes with DNA
molecules having one of the following issues were removed:

1) Modified nucleotides or non-standard bases. Information taken from PDBe
REST APl  [http://www.ebiac.uk/pdbe/pdbe-rest-api]. (defined as
Modified/Broken)

2) Duplex strands broken, base pair mismatch or a malformed Watson-Crick
base pairing (evaluated from the hydrogen bonds formed between the two
bases) (defined as Mismatch in this work).

3) Unpaired strands having over-hanging bases with no associated pair

(defined as Unpaired in this work).
4) Highly distorted-unnatural double-stranded B-DNA (having negative values
for Twist and/or Rise helical parameters) (Unnatural DNA).

The final dataset is composed of 174 no redundant protein-DNA complexes.
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Simulation conditions. All simulations were performed in the isothermal-isobaric
ensemble (NPT, P=1 atm and T=298 K) applying the Berendsen algorithm|[2] to
control the temperature and the pressure, with a coupling constant of 5 ps and
removing center of mass motion every 10 ps. Long-range electrostatic interactions
were accounted for by using the Particle Mesh Ewald method[3] with standard
defaults and a real-space cutoff of 10 A. All bonds involving hydrogen were kept
constrained at equilibrium values using SHAKE[4], which allowed us to use a 2 fs
step for the integration of Newton’s equations of motion. The DNA interactions
were represented using the new Parmbscl force-field[5-7] All simulations were
performed using Amber 14 suite of programs (AMBER 2014 San Francisco
University of California).

Relative Position: Relative position of the Deformation energy calculated for the
DNA sequence extracted from the Xray crystal structure (def.Energy xray) respect

to energy distribution built using the randomly generate sequence.

Def. Energy(xray) — Def. Energy (min)

. o 0ry —
Relative position (%) Def. Energy(max) — Def. Energy(min)

Where Def.Energy(max) and Def.Energy(min) are the maximum and minimum
energy values respectively extracted from the energy distribution built using
randomly generated DNA sequences of the same length as the sequence in the Xray
crystal structure.

Supplementary Data

Supplementary Table S1 Summary of the PDB ID code and characteristics of the
DNA-protein complexes selected.

PDB

code

Biological function of | Protein-DNA Representation3
the protein, | Binding Recognitin site2
classification  Uniprot-
GO and Experimental
method!
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1A0A | Phosphate system
positive regulatory
protein PHO4,
TF activity
Xray 2.8A

1A36 | DNA topoisomerase 1

Xray 2.84

1A66 | Nuclear factor of activated
T-cells, cytoplasmic 1, TF
activity

NMR (18)

1AZP | DNA-binding protein 7d

Xray 1.6A

1BC7 | ETS domain-containing
protein Elk-4, TF activity
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Xray 2.0

1EFA | Lactose operon repressor
TF repressor activity

Xray 2.6A

1EOO | Type-2 restriction enzyme
EcoRV

Xray 2.16A

1G9Y | DNA endonuclease I-Crel

Xray 2.05A
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1HLV | Major centromere
autoantigen B

Xray 2.5

1IV6 | Telomeric repeat-binding
factor 1, TF activity

NMR (20)

1J5N | Non-histone
chromosomal protein 64,
TF activity

NMR (20)
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1JNM

IMDY

1MO

1N6)J

Transcription factor AP-1

Xray 2.2

Myoblast  determination
protein 1, TF activity

Xray 2.84

DNA endonuclease I-Crel

Xray 1.84

Myocyte-specific
enhancer factor 2B, TF
activity

Xray 2.2A
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1R41 | Androgen receptor, TF
activity

Xray 3.1A

1T91 | DNA endonuclease I-Crel

Xray 1.6A

1TRR | Trp operon repressor, TF
activity

Xray 2.4A
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1UBD | Transcriptional repressor
protein YY1, TF activity

Xray 2.5A

1YFI | Type-2 restriction enzyme
Ms

Xray 2.7A

1Y05 |SAM pointed domain-

containing Ets
transcription factor, TF
activity

Xray 2 A

1YTF | TATA-box-binding protein
1, TF activity

Xray 2.5A
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1VRR | BstYI

Xray 2.7A

1ZGW | Bifunctional Gk |
transcriptional
activator/DNA repair

NMR

2ACO | Cellular tumor antigen
p53, TF activity

Xray 1.84
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2GZK | Sex-determining region Y
protein, TF activity
NMR (1)
2KDZ | MYB24
NMR (10)
2QHB | Telomere binding protein

TBP1

Xray 2.4A
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2STW | Protein C-ets-1
TF activity

NMR (1)

3JRA | DNA-binding protein Fis,
TF activity

Xray 3.11A

4D60 | Homing endonuclease I-
Dmol

Xray 2.2A

4HQE | Quinone-sensing and
response repressor QsrR,
Uncharacterized protein

Xray 2.29A
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4LEY | Cyclic GMP-AMP synthase

Xray 2.5

1JE8 Nitrate/nitrite response
regulator protein, TF
activity

Xray 2.12A

1C7U | Myocyte-specific
enhancer factor 2A, TF

activity
NMR (1)

2LEF | Lymphoid enhancer-
binding factor 1, TF
activity

NMR (12)
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3F27 | Transcription factor SOX-
17

Xray 2.75A

1H9T | Fatty acid metabolism, TF
activity

Xray 2.25A

1K60 | ETS domain-containing
protein Elk-4, TF activity

Xray 3.19 A

1VTN | Hepatocyte nuclear factor
3-gamma, TF activity

Xray 2.5A
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4017 | Advanced glycosylation
end product-specific

Xray 3.1A

2HDC | Forkhead box protein D3,
TF activity e

NMR (20)

2L1G | THAP domain-containing
protein 1, TF activity

NMR (17)

2LT7 | Transcriptional regulator
Kaiso

NMR (20)
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1CDW | TATA-box-binding protein
TF activity

Xray 1.9A

1]46 Sex-determining region Y
protein, TF activity

NMR (1)

3U2B | Transcription factor SOX-
4

Xray 2.4A

5B7] | Switch-activating protein
1

NMR (20)
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5DAC | ATPase activity
Uncharacterized protein
Xray 2.5 "%1. gy,

5X07 | Hepatocyte nuclear factor
3-beta, TF activity

Xray 2.79A

1The biological function of the protein as classified in Uniprot-GO (36% of the
selected complexes no related to TF activity) and experimental method used to
determine the structure retrieved from the PDB.

23 Details on the protein-DNA binding recognition site. Localization of the DNA-
protein interactions in each structure retrieved from the database DNAproDB
(http://dnaprodb.usc.edu/search.html)[8]. Contacts in the major groove and
minor groove are shown by polar contact map (column 3) and cartoon
representation of the complex (column 4). The protein-DNA contact areas are
coloured according to the protein secondary structure (helix in red, strand in green
and loop in blue respectively).
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Supplementary Fig. S1. Population of the protein-DNA complexes stored in the
Protein Data Bank (PDB), division of the different complexes using our selection
depending on DNA structure. After filtering (see Supplementary Methods), 54% of
the structures final subset have function related with transcription.
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TG GA AA AC CA \T Tc CA AC cc cc

AA A
Base pair step
Supplementary Fig. S2. Comparison of base pair step parameters, translational
slide and rotational roll, values averaged along the MD simulation for the PDB ids
11V6 and 1J5N (A and B respectively), starting from the B-ideal DNA (average
profile in red with standard deviation contour in pink) and from the experimental
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protein-bound DNA structure (average profile in black with standard deviation
contour in grey).
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Supplemetary Fig. S3. Base pair parameter confidence region profile. For each protein-
bound DNA structure identified by their PDB ID, the axis represents the difference
between the observed test statistic and the 95% critical value from the F distribution
(F — Fa—a:mn-m))- The value for base pair parameter, translation shift and slide and
rotational tilt and twist, can be inside (<0, limit defined by red line) or outside the naked
DNA conformational space (>0). See Methods and Supp. Methods for discussion.
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Supplementary Fig. S4. Backbone and base pair parameter analysis for the
complex PDB ID 1C7U. On the left the analysis of the backbone angles
(o0,B,%,8,7,I1, €) is shown. Backbone angles variation has been analyzed using the
difference between the experimental and the average MD value plus the standard
deviation, divided by the standard deviation along the MD trajectory (A(bound-
MD_naked)). On the right the comparison between the experimental (blue) and MD
values (red with standard deviation contour in pink) for each base pair step
parameter along some of the sequences found as outlier in Figure 2. Along the full
length of the DNA we noticed very extreme values of roll and rise in the protein-
bound structure, correlated for some steps with unusual phase angle in the
backbone. Some of these distorted base pair steps (TA-AT) are in contact with coil
residues (GLY1, GLY101, ARG2, ARG102); while the other steps are only mildy
interacting with alpha helices not justifying the high rise distances.
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Supplementary Fig. S5. Backbone and base pair parameter analysis for the
complex PDB ID 1ZGW. On the left the analysis of the backbone angles
(a,B,%.&,7.I1, §) is shown. Backbone angles variation (A(bound-MD_naked)) has
been analyzed using the difference between the experimental and the average MD
value plus the standard deviation, divided by the standard deviation along the MD
trajectory. On the right the comparison between the experimental (blue) and MD
values (red with standard deviation contour in pink) for each base pair step
parameter along some of the sequences found as outlier in Figure 2. For this
complex we noticed that DNA distortions at the base pair level (at the steps AA,
AT, AA respectively) with high absolute values of roll and rise, are correlated with
unusual backbone angles mainly in the a,) and £ angles. These distortions are in
areas where the protein coils (residues THR33-34, ILE36 and ARG45) and alpha
helix (PHE114, ARG118, LYS121, PRO128) contact the DNA, even if the mild

Fise (Apgetroms)

protein-DNA interactions cannot explain the high base pair deformation.
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Supplementary Fig. S6. Backbone and base pair parameter analysis for the
complex PDB ID 2STW. On the left the analysis of the backbone angles
(a,B,1.67.1I1, £) is shown. Backbone angles variation (A(bound-MD_naked)) has
been analyzed using the difference between the experimental and the average MD
value plus the standard deviation, divided by the standard deviation along the MD
trajectory. On the right the comparison between the experimental (blue) and MD
values (red with standard deviation contour in pink) for each base pair step
parameter along some of the sequences found as outlier in Figure 2. The central
part of the DNA, in contact with protein helices, is bent and with high value of rise
(base pair TT), with correlated distortion in backbone angle .
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Supplementary Fig. S7. Backbone and base pair parameter analysis for the
complex PDB ID 1CDW. On the left the analysis of the backbone angles
(a,B,%,&,7.I1, €) is shown. Backbone angles variation (A(bound-MD_naked)) has
been analyzed using the difference between the experimental and the average MD
value plus the standard deviation, divided by the standard deviation along the MD
trajectory. On the right the comparison between the experimental (blue) and MD
values (red with standard deviation contour in pink) for each base pair step
parameter along some of the sequences found as outlier in Figure 2. The distortion
given by the contact of the protein B—Bappei residues (PHE283, LEU299, THR309,
VAL255, ASN253, VAL165, PHE210 and LEU208) at the base level, high roll and
rise values at steps TA, AA, AG respectively, is correlated with deformation of the
phase angle in the backbone.
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Supplementary Fig. $8. Backbone and base pair parameter analysis for the
complexes that showed main/critical distortions compared to the unbound DNA
structures PDB ID 3F27. On the left the analysis of the backbone angles (a.,B,%,¢,y.I1
and () is shown. Backbone angles variation (A(bound-MD_naked)) has been
analyzed using the difference between the experimental and the average MD value
plus the standard deviation, divided by the standard deviation along the MD
trajectory. On the right the comparison between the experimental (blue) and MD
values (red with standard deviation contour in pink) for each base pair step
parameter along some of the sequences found as outlier in Figure 2. For this
complex we noticed that where the protein helices (residues PHE75, MET76,
SER99, ASN95, ARG83) contact the DNA, central base pairs AATA, the DNA is
highly distorted with high values of roll and rise, that are correlated with a
distortion in the backbone angles, in particular in the y angle where the DNA is
bent/kinked.
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Supplementary Fig. $9. Backbone and base pair parameter analysis for the
complexes that showed main/critical distortions compared to the unbound DNA
structures PDB ID 3U2B. On the left the analysis of the backbone angles
(o,B,x.8,v.IT and () is shown. Backbone angles variation (A(bound-MD_naked)) has
been analyzed using the difference between the experimental and the average MD
value plus the standard deviation, divided by the standard deviation along the MD
trajectory. On the right the comparison between the experimental (blue) and MD
values (red with standard deviation contour in pink) for each base pair step
parameter along some of the sequences found as outlier in Figure 2. For this
complex we noticed that where the protein helices (residues PHE10, MET11,
SER34, ALA31) contact the DNA, central step TT, the DNA is highly distorted with
high values of roll and rise, that are correlated with a distortion in the backbone in
the phase angle.
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Supplementary Fig. $10. Top panel: Percentage of amino acid interacting with the
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Supplementary Fig. S12. Frequency of the deformation energy cost (kcal/mol-bp)
required moving from the unbound to the bound conformation in the helical space for
all the DNA-protein interactome. In black bars represent the deformation energy for the
structure in the selected dataset, the green bars the values for the structure hand-curated
to remove modified bases and unpaired bases. In this distribution also the hand-curated
structure fall predominantly within the area with energy < 2.5 kcal/mol-bp (blue area).
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Supplementary Materials and Methods

Mutant strains generation

Delitto perfetto (Storici and Resnick 2006) : Briefly, the first step consisted on inserting
the URA3 gene in the gene of interest. This involved amplifying the URA3 gene from the
YDp-U vector. This cassette was then integrated by homologous recombination into the
target gene and recombinants were selected on selective medium without uracil. The
second step consisted on the insertion of the seq81 DNA sequence into the gene of
interest in replacement of the URA3 gene. It required the cloning the seq81 DNA
sequence into the pCR™-Blunt II-TOPO™ Vector, the amplification of this fragment with
the specific oligonucleotides so that the URA cassette is lost when the seq81 is
integrated. Transformed colonies were selected on YPD medium supplemented with 5-
FOA and the insertion were verified by PCR and by standard DNA sequencing.
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RNA extraction and RT-qPCR. Exponential cultures were arrested at late G1 by alpha-
factor. RNA was obtained from 20ml yeast cultures (ODesoo 0.8) using the hot-phenol
method.: cells were centrifuged, and pellets were resuspended in 400 pl of AE buffer (50
mM NaOAc and 10 mM EDTA) with 1% SDS. In the same tube, approximately 0.5 ml of
glass beads and 410 pl (1 vol) of acid phenol were added. Cells were then vortexed and
incubated for 10" at 652C followed by 5’ in ice. Cells were then centrifuged to collect the
supernatant that was treated with one volume of phenol/chloroform followed by
ethanol precipitation. The obtained RNAs were resuspended in 40 pl of RNase-free
MilliQ water and finally quantified using the Nanodrop and treated by DNAse I (1u/ug
of RNA).

Nucleosome mapping

Semi-intact yeast cells. For nucleosome preparation, semi-intact yeast cells were
prepared as described in (Schlenstedt et al. 1993) : a culture of 50 ml of yeast cells was
grown at 30°C until ODsoo 0.8-0.9 and arrested at late G1 with alpha-factor. When
applicable, transcription was inhibited by adding 10-phenanthroline (100 pg/ml) for 30
minutes at 302C with shaking. Cells were then harvested at 700g for 7'. Supernatants
were discarded and the pellets were resuspended in 5 ml of 100 mM PIPES pH 9.4
containing 10 mM DTT and incubated for 10’ at 30°C with continuous shaking. Cells
were then centrifuged at 1000g for 10’, resuspended in 1.2 ml of YEP 0.2% glucose
buffer (1% bacto-yeast extract, 1% bacto peptone, 0.5% NaCl (w/V), 50 mM KH:2POs,
0.2% glucose (w/V), 0.6 M sorbitol) and 30 U/ml zymolase (G-Biosciences, 786-036)
was added. After 30’ of incubation at 30 °C with continuous shaking, 80% of the cells
were spheroplasts. The spheroplast were then centrifuged at 1000 g for 5’ resuspended
in 8 ml of YEP 1% glucose buffer (1% bacto-yeast extract, 1% bacto peptone, 0.5% NaCl
(w/V), 1% glucose (w/V), 0.7 M sorbitol) and incubated for 20’ at 30°C. Samples were
then spun down at 1000 g for 5" and washed twice with 1 ml of permeabilization buffer
(20 mM PIPES-KOH pH 6.8, 150 mM KAc, 2 mM MgAc, 0.4 M sorbitol) plus 10% of
DMSO. Finally samples were resupended in 0.25 ml of permeabilization buffer, frozen in
liquid nitrogen and stored at -80°C.

MNase digestion: To determine the MNase digestion conditions that produce >80%
monucleosomal DNA fragments, we performed a digestion optimization using different
MNase digestion times with a small amount of semi-intact cells from every batch
preparation. 50 pl of semi-intact cells were thawed on ice with 503 pl of EcoRI buffer
(50 mM Tris-HCI (pH 7.5), 10 mM MgClz, 100 mM NaCl, 0.02% Triton X-100 10%, 0.1
mg/mL BSA), 3 mM CaClz and 0.5 mM of MNase (Sigma, N-3755). The digestion
reactions were incubated at 37°C and stopped at different time points (0’, 5°,10°,15’, 20,
30 and 40’) by taking out 80 pl of the mix and adding 70 pl of stop solution (100 mM
EDTA). DNA was then treated with 50pug/ml RNase 4, incubated 4 hours at 372C and
digested with 0.22 mg/ml of proteinase K plus 1.5% SDS for at least 12 hours at 652C.
DNA samples were purified twice by phenol/chloroform/isoamylic extraction and
ethanol precipitation. Finally, samples were resuspended in 10 pl of water and
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examined in 2% agarose gels. Once the samples were ready, the percentage of
mononucleosomal DNA fragments were examined by 2% agarose gels.

TFBS density

Global transcription factor binding site (TFBS) affinity was estimated from TRANSFAC
position weight matrices (PWMs). Binding site predictions from every PWM were
computed for yeast genome, using R/Bioconductor Biostrings library with default
parameters. A global TFBS density was computed pooling all the predicted sites and
computing their coverage.

Schlenstedt G, Hurt E, Doye V, Silver PA. 1993. Reconstitution of nuclear protein
transport with semi-intact yeast cells. J Cell Biol 123: 785-798.

Storici F, Resnick MA. 2006. The delitto perfetto approach to in vivo site-directed
mutagenesis and chromosome rearrangements with synthetic oligonucleotides
in yeast. Methods in enzymology 409: 329-345.
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Supplementary Figures
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Suppl. Figure S1: Deformation energy for the 8 selected genes without (top panels), or
with (lower panels) the 81-nt insert (represented as a box colored in cyan).
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Supplementary Tables

Suppl. Table S1. Genes modified with the 81-nt sequence in each strain

Gene |Strain|Strand |Start End Chromosome |Insert position |Phasing

UBX5 1|+ 1127872| 1129374 |chrlV 1128586 |Phased

CKB2 2|+ 405768| 406544 |chrXV 406248|Phased

PPT1 3|- 736662 738203|chrVII 737615|Phased

TRP4 4|+ 1184747| 1185889|chrlV 1185196 |Phased

BSP1 1)+ 883828| 885558|chrXVI 884578 |Control (not-phased)
DGK1 2|- 899056| 899928|chrXV 899667|Control (not-phased)
SLM3 3|- 392659| 393912|chrlV 393462|Control (not-phased)
PANS 4|- 224030| 225169 chrVIII 224581|Control (not-phased)

Suppl. Table S2. Sequences of primers used in the gene expression analysis by qPCR,
and the amplicon size (in base pairs) obtained using each forward (F) and reverse (R)
pair of oligonucleotides.

Name Primer sequence (5'-3") Amplicon size (bp)
UBX5_F GACGACGACGAATATGAG 163
UBX5_R CGAGTTTGGACATGATTG

CKB2_F GAGAATATGACACATGCC 130
CKB2_R CCGCCTCTTTGTACTTAG

PPT1_F CAATGATCCGGCTGCTAC 171
PPT1_R GGACCTTCATAATTGGCT

TRP4_F GTAGGTACTGGTGGTGAC 117
TRP4_R GGATGTAGAAGCTTTACC

BSP1_F GGAAGAGCCGATATACCC 147
BSP1_R CGGACTTTCTGTAACTTC

DGK1_F CCATTGCCCTTCCAAATA 182
DGK1_R GCCGAACCATTCATGAGA

SLM3_F GATTGGAGAGATGTGAAC 123
SLM3_R CGACCCTTCACTGTAGCC

PANS_F GGGTACCGTTTTGGCAGT 178
PANS_R GCATTCGCATTTCTCCAC

PMA1_F TTTGCCAGCTGTCGTTACCA 240
PMA1 R TTCTTCTTTCTGGAAGCAGC

ACT1_F GGTTGCTGCTTTGGTTATTGATAAC 271
ACT1_R CAATTCGTTGTAGAAGGTATGATGCC

RPA135_F GAACAATGGCGAGGAGAAC 141
RPA135 R CCACCTATTTCATCGGATTC

NMD3_F GGGTTGGATTTCTTCTATGC 164
NMD3_R GGAACAATCTCGACAGAATATG

10
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Suppl. Table S3. Phase score (DFI) and autocorrelation (R) in the unmodified strain
and in the strain with the 81-nt insertion in the selected genes. Genes UBX5, CKB2, PPT1
and TRP4 are phased, and genes BSP1, DGK1, SLM3 and PANS5 are not-phased in the
unmodified strain.

Unmodified strain | Strain with the 81-nt insert
Gene DFI R DFI R
UBXx5 7 079424 79 0.76687
CKB2 1 0.81862 79 0.68771
PPT1 13 0.88553 71 0.82500
TRP4 6 0.80702 80 0.73771
BSP1 77 0.73841 7 0.77164
DGK1 46 0.69007 31 0.81921
SLM3 37 0.61947 42 0.60019
PANS 44  0.73341 46 0.81708

11
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Occupancy and fuzziness measurements

In the simulated data, nucleosome occupancy was defined as the number of cells that
contain a read corresponding to the each nucleosome, whereas fuzziness is described by
the standard deviation of the centers from all reads overlapping the synthetic nucleosome
position.

We executed nucleR and DANPOS on the generated in silico nucleosome maps to compare
scores of occupancy and fuzziness of the nucleosome positioning algorithms. From nucleR,
score_height (logit scale) determines the occupancy and score_width the fuzziness. From
DANPOS we use smt_value (occupancy) and fuzziness_score.

We compared the true values of occupancy and fuzziness to the values obtained from
nucleR and DANPOS and computed for each measurement the R? of the linear relation
between them.
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Data resources

MNase-seq datasets reported as pilot cases in this stud were obtained from the ENA-SRA
website (http://www.ebi.ac.uk/ena) and the GEO repository under accession numbers:
PRJEB6970 for the cell cycle data, GSE77631 for the yeast metabolic cycle and GSE13622
for the nucleosome maps from yeast cultivated in glucose, galactose and ethanol media.
Raw data were mapped using Bowtie aligner (Langmead et al. 2009) to the SacCer3
reference genome (downloaded from http://hgdownload-
test.cse.ucsc.edu/goldenPath/sacCer3/bigZips).

Yeast transcription start sites (TSS) were compiled from Pelechano et al. (2013), Miura et
al. (2006), Yassour et al. (2009) and Nagalakshmi et al. (2008).

GO enrichment analysis

The genes with mapped nucleosome architecture changes (inclusions, evictions and shifts)
around their promoter (-350 base pairs upstream and +50 base pairs downstream from
the TSS) were summarized in terms of the biological functions the relate to. We performed
Gene Ontology (GO) enrichment analysis using GOstats R package (Falcon and Gentleman
2007), which employs a Hypergeometric test to find over-represented GO terms in the list
of genes, adjusting for multiple testing with Benjamini-Hochberg correction.

Falcon S, Gentleman R (2007). “Using GOstats to test gene lists for GO term association.”
Bioinformatics, 23(2), 257-8.

Langmead, B, Trapnell, C, Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

Miura, F. et al. A large-scale full-length ¢cDNA analysis to explore the budding yeast
transcriptome. Proc. Natl. Acad. Sci. U.S.A. 103, 17846-17851 (2006).

Nagalakshmi, U. et al. The Transcriptional Landscape of the Yeast Genome Defined by RNA
Sequencing. Science 320, 1344-1349 (2008).

Pelechano, V., Wei, W. & Steinmetz, L. M. Extensive transcriptional heterogeneity revealed
by isoform profiling. Nature 497, 127-131 (2013).

Yassour, M. et al. Ab initio construction of a eukaryotic transcriptome by massively parallel
mRNA sequencing. Proceedings of the National Academy of Sciences 106, 3264-3269
(2009).
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Supplementary Figures

Figure S$1. NucleR pipeline to call nucleosomes from MNase-seq experimental data. (4)
Reads mapped to reference genome. (B) Coverage of nucleosomal reads per base pair. (C)
Coverage of reads trimmed around their centre. (D) Signal smoothing with Fast Fourier
Transform. (E) Peak calling and nucleosome scoring.
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Figure S2. Further analyses for nucleosome calls in an MNase-seq experiment: (A4)
Promoter classification according to surrounding nucleosomes. Fuzzy nucleosomes (F) are
characterized by low and broad peaks, while well-positioned nucleosomes (W)
correspond to high and narrow peaks. (B) A phased-gene and (€) a non-phased gene:
nucleosome coverage in G1-synchronized cells is shown in grey and nucleosomes detected
by nucleR in blue. In the second panel (black curves), a normal distribution is fitted read
coverage of each nucleosome, and the estimated standard deviation is used to compute
nucleosome stiffness (shown on top of each nucleosome normal curve). The third panel
(black coverage) shows reconstituted nucleosome coverage from two signals in opposing
directions: downstream from +1 nucleosome and upstream from -last nucleosome.
“Phased” genes coloured in green, “antiphased” genes in red.
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start or end, or are contained within a fragment from the other experiment are discarded.
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Figure 54. Synthetic nucleosome maps are generated based on periodic signals from the
NFRs (yellow). Dark grey coverage is obtained from experimental MNase data (G1
synchronized cells) and the corresponding nucleosome calls obtained with nucleR are
shown below. Light grey coverage shows the periodic signals used to position synthetic
nucleosomes (the height of each peak is the probability of a nucleosome to be presentin a
family). Below them, dark blue boxes represent synthetic nucleosome fragments for W
nucleosomes, and light blue correspond to F nucleosomes in a single family. In case of
overlap between generated nucleosomes in a single family, one of the two reads is
randomly removed. The final synthetic nucleosome positions from a single family are
shown in green.
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Figure 56: Comparison of genome wide nucleosome positioning at promoters between
the different levels of MNase digestion. MNase-seq data obtained from Chereji et al. 2017.
(A) TSS classification for H2B-inputs (top panel, 50U and 400U) and H4-inputs (lower
panel, 25U and 300U) under different MNase concentrations. (B) Percentage of phased
genes under different MNase levels.
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Figure S7: Comparison in two regions of the yeast genome of the chemical cleavage (blue
coverage tracks) nucleosome positioning data for three replicas from Chereji et al. (2018)
and MNase-seq (grey coverage tracks) in cell-cycle synchronized cells in G1 (top) and S
(bottom track) phase from Deniz et al. (2016). Nucleosome positions obtained with nucleR
are shown as blue boxes coloured by their positioning (W: dark, F: light).
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Supplementary Tables

Table S1. List of analyses available in Nucleosome Dynamics and description of their
parameters.

nucleR

Parameter Description
input: Input BAM file (RData format)

Nucleosome calls in GFF format. Annotations: Score_weight (0-1), Score_height (0-1), class

(W, F, uncertain)

type Type of sequence data: single|paired

Minimum number of overlapping base pairs in two nucleosome calls for them to be

merged into one (bp). Optional, default 80.

width: Width given to nucleosome calls previous to merging (bp). Optional. Default 147.

Number of bases around the dyad of the nucleosome calls to be used for nucleosome

scoring (bp). Optional, default 50.

Height threshold (between 0 and 1) to classify (in combination with width threshold) a

nucleosome as either fuzzy or well-positioned according to the number of reads in the

dyad of the nucleosome call. Nucleosomes below this value (that is, nucleosomes with low

coverage) will be defined as fuzzy. Optional, default 0.4,

Width threshold (between 0 and 1) to classify (in combination with height threshold) a

nucleosome as either fuzzy or well-positioned according to the disperion of the reads

around the dyad. Nucleosomes below this value (that is, nucleosome calls not sharp

enough) will be defined as fuzzy. Optional, default 0.6

Parameter used in the coverage smoothing when Fourier transformation is applied.

Number of components to select with respect to the total size of the sample. Allowed

values are numeric (in range 0:1) for manual setting, or 'auto’ for automatic detection.

Optional, default 0.02.

Threshold to filter over-amplified reads, as defined in filterDuplReads function of

htSetqTools R package. Optional, default 0.05.

Number of negative binomials that will be used to filter duplicated reads, as defined in

filterDuplReads function of htSetqTools R package. Optional, default 1.

fragmentLen Maximum fragment length allowed (bp). Optional, default 170.

Number of bases around the center of each fragment (bp) to use for peak calling. Optional,

default 50.

Defines what threshold should be used to filter out non-significant nucleosome calls. If set

threshold to TRUE, the percentage value is considered (--thresholdPercentage). If set to FALSE, the
absolute value (--thresholdValue) is used. Optional, default TRUE.

Absolute value to filter out nucleosome calls. It is the minimum number of reads
thresholdValue (coverage) in a nucleosome call expressed as reads per million of mapped reads. Optional,

default 10.

Percentile of coverage in the experiment used as threshold to filter out nucleosome calls
thresholdPercentage: (i.e., '25%' would mean that only peaks with coverage in the 1st quantile would be
considered). Optional, default 35(%)

Chromosome to consider for the analysis in the given input file. By default, all the genomic
range is considered. Optional, default NULL.

Start genomic position to consider for the analysis in the given input file. By default, all the
genomic range is considered. Optional, default NULL.

End genomic position to consider for the analysis in the given input file, By default, all the
genomic range is considered. Optional, default NULL.

output:

minoverlap:

dyad_length:

hthresh:

wthresh:

pcKeepComp

fdrOverAmp

components

trim

chr

start

end

NucDyn
Parameter Description
inputl, input2 Input BAM from MNase-seq in RData format (from readBAM)
calls1, calls2 Nucleosome calls in GFF format as obtained from nucleR
outputGff Output of NucDyn in GFF format: position of evictions, inclusions, shifts.
outputBigWig {bw} O‘Utput of NucDyn in BigWig format: -log10 of the p-value of the significance of the
differences found.
genome
{chrom.sizes} Chromosome sizes from reference genome

12
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range
(All|chr|chr:start-
end)

Genomic range to be analyzed. All: all genome; chr: a whole chromosome; chr:start-end: a
specific region given the coordinates. Optional, default All.

plotRData {RData}

Save all the detected changes at the fragment level in RData format for posterior plotting.
Optional, default NULL (no RData is saved).

Maximum distance between the centers of two fragments for them to be paired as shifts.

Diff
maxbi (bp) Optional, default 70.
This value is used in a preliminar filtering. Fragments longer than this will be filtered out,
maxLen since they are likely the result of MNase under-digestion and represent two or more

nucleosomes (bp). Optional, default 140.

shift_min_nreads

Minimum number of shifted reads for a shift hostspot to be reported {int}. Optional, default
3

shift_threshold

Threshold applied to the shift hostpots. Only hotspots with a score better than the value
will be reported. Notice the score has to be lower than the threshold, since these numbers
represent p-values {float}. Optional, default 0.1.

indel_min_nreads

Minimum number of removed/included reads for an insertion or eviction hostspot to be
reported {int}. Optional, default 3.

indel_threshold

Threshold applied to the inclusion and eviction hostpots. Only hotspots with a score better
than the value will be reported. Notice the score has to be lower than the threshold, since
these numbers represent p-values {float}. Optional, default 0.05.

cores Number of computer threads. Optional, default 1.
equal_size Trim all fragments to the same size. Optional, default FALSE.
readSize Length to which all reads will be set in case ‘equalSize" is "TRUE'. It is ignored when
“equalSize’ is set to "FALSE'. Optional, default 140.
NFR
Parameter Description
input Nucleosome calls in GFF format as obtained from nucleR.
output {gff} Nucleosome Free Regions in GFF format.
minwidth Minimum length (bp). Optional, default 110bp.
threshold Maximum length (bp). Optional, default 400bp.

Parameter

TSS classificaiton

Description

calls Nucleosome calls as obtained form nucleR. GFF format

genome Gene positions in the reference genome. GFF Format

output Classification of TSS according to nucleosome -1 and +1. GFF format.

window Number of nucleotides on each side of the TSS where -1 and +1 nucleosomes are searched

for. Optional, default 300.

open_thresh

Distance between nucleosomes -1 and +1 to discriminate between 'open' and 'close’
classes. Optional, default 215.

cores

Number of computer threads. Optional, default 1.

pl.max.downstream

Parameter

Maximum distance upstream from the TSS to look for +1 nucleosome. Optional, default 20.
Periodicity

Description

calls Nucleosome calls in GFF format as obtained from nucleR.
reads Sequence Reads in RData format as obtained from readBAM.
type Type of reads (single|paired)

gffOutput Periodicity output in GFF format.

bwOutput Periodicity output in BigWig format.

genes Position of genes in reference genome. GFF format

chrom_sizes

Chromosome sizes file in the reference genome.

periodicity

Average distance between two consecutive nucleosomes, It is used as the period of the
nucleosome coverage signal. It should be defined according to the nucleosome repeat
length in the corresponding cell type. Optional, default 165.

cores

Parameter

Number of computer threads. Optional, default 1.

ffness
escription

calls Nucleosome calls in GFF format as obtained from nucleR.
reads Sequence data in RData format as obtained from readBAM.
output Qutput stiffness for each nucleosome call in GFF format.
Genomic range to consider. Format: [str, All|chr|chr:start-end] whre "All' is all genome,
range ‘chr' is a single chomosome, and 'chr:start-end’ is the range indicated by the coordinates.
Optional, default "All'.
t Temperature (K). Optional, default 310.15.
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Table S2. Suggested nucleosome repeat length in different species and cell types.

Cell type/species Nucleosome Repeat | Source
Length

Drosophila melanogaster 175 bp 2)
Human CD4+ T cells 180 bp 3
Caenorhabditis elegans 175 bp 4)
Schizosaccharomyces 154 bp (5)
pombe

Mouse ESCs 186 bp 6)
Mouse NPCs 193 bp (6)
Mouse MEFs 191 bp (6)

1. Chereji,R.V,, Ramachandran,S., Bryson,T.D. and Henikoff,S. (2018) Precise genome-wide
mapping of single nucleosomes and linkers in vivo. Genome Biology, 19.

2. Mavrich,T.N,, Jiang,C., loshikhes,I.P., Li,X., Venters,B.]., Zanton,S.]., Tomsho,L.P., Qi,].,
Glaser,R.L., Schuster,S.C,, et al. (2008) Nucleosome organization in the Drosophila
genome. Nature, 453, 358-362.

3. Schones,D.E., Cui,K., Cuddapah,S., Roh,T.-Y., Barski,A., Wang,Z., Wei,G. and Zhao K. (2008)
Dynamic Regulation of Nucleosome Positioning in the Human Genome. Cell, 132,
887-898.

4. Valouev,A,, Ichikawa,]., Tonthat,T., Stuart,]., Ranade,S., Peckham,H., Zeng,K., Malek,].A,,
Costa,G., McKernan,K,, et al. (2008) A high-resolution, nucleosome position map of
C. elegans reveals a lack of universal sequence-dictated positioning. Genome
Research, 18, 1051-1063.

5. Lantermann,A.B., Straub,T,, Strilfors,A., Yuan,G.-C., Ekwall,K. and Korber,P. (2010)
Schizosaccharomyces pombe genome-wide nucleosome mapping reveals
positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nature
Structural & Molecular Biology, 17, 251-257.

6. Teif,V.B., Vainshtein,Y., Caudron-Herger,M., Mallm,].-P., Marth,C., Héfer,T. and Rippe,K.

(2012) Genome-wide nucleosome positioning during embryonic stem cell
development. Nature Structural & Molecular Biology, 19, 1185-1192.
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Table S3. Public data available at MuGVRE.

Data ] Source

Saccharomyces cerevisiae
Gene and Gene predictions Saccharomyces Genome Database!
Gene structure / UTRs / transcribed Yassour et al, 2009 2
regions
Gene Models / introns / 5’ 3' UTR’s / Nagalakshimi et al. 20083
unannotated transcripts
Transcription Start sites Zhang, Z and Dietrich FS. 20054
Chromatin modifications Kirmizis A. et al. 20075
Nucleosome positions Mavrich et al. 2008¢
Digital genomic footprinting Hesselberth et al. 20097
H2A.Z nucleosome positions Albertetal. 20078
H2A/H2B, H2AZ/H2A.Z, H2A.Z/H2B log2 Guillemette et al. 2005°

ChIP chip ratio
H3K4ac_setlD on WT, set1D H3K4ac on_H3, Guillemette et al. 201110
WT_H3K4ac_on H3, WT_H3K4me3_ on_H3

anti-Ac, HZAK7aci, HZBK16ac, H3K14ac, Liu et al. 20051
H3K18ac, H3K4me1l, H3K4me2, H3K4me3,
H3K9ac, H4K12ac, H4K16ac, H4K5ac, H4K8ac,
mock, RNA Polll ChIP_chip

predicted average nucleosome occupancy, Field et al. 200812
predicted nucleosome potential score,
nucleosome sequence read count

nucleosome positions, nucleoatac signal, Schep etal. 201513
nucleosome calling occurrences

ORC, Mcm2p binding, ARS sequences Xu etal. 20061*

ORC, ARS, Nucleosome positioning Eaton et al. 201015
TATA_elements Rhee and Pugh 201216
Burl, Cetl (Capping enzyme), Ctkl Mayer et al. 201017

EIf1, Kin28 (TFIIH), Paf1, Pcf11, Ser2P (RNA
Pol IT), Ser5P (RNA Pol IT), Ser7P (RNA Pol I1),
Rpb3 (RNA Pol II), Spn1 (lws1), Sptl6, Spt4,
Spt5, Spt6, SptédeltaC, Tfgl (TFIIF), TFIIB

Gal4, Phd1, Rap1, Rebl Rhee and Pugh 201118

Nucleosome architecture through cell cycle Deniz et al. 201617
Dyad distribution and Normalized nucleosome | Chereji et al. 201820
occupancy profiles from chemical cleavage
nucleosome mapping

Drosophila melanogaster

Genes, Transcripts

Chromatin types through protein binding sites | Filion etal. 201021
Nucleosome organization Mavrich et al 200822
Homo sapiens

Refseq Genes
Gencode Genes

1. Saccharomyces Genome Database. Available: http://www.yeastgenome.org2.

2. Yassour M1, Kaplan T, Fraser HB, Levin ]Z, Pfiffner ], Adiconis X, Schroth G, Luo S, Khrebtukoval,
Gnirke A, Nusbaum C, Thompson DA, Friedman N, Regev A. Ab initio construction of aeukaryotic
transcriptome by massively parallel mRNA sequencing. Proc Natl Acad Sci U S A.2009.
106(9):3264-9.3.
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5. Kirmizis A, Santos-Rosa H, Penkett CJ, Singer MA, Vermeulen M, Mann M, Bihler |, Green
RD,Kouzarides T. Arginine methylation at histone H3R2 controls deposition of
H3K4trimethylation. Nature. 2007; 449(7164):928-932.6.

6. Mavrich TN, loshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi |, Schuster SC, Albert I, Pugh BF
Abarrier nucleosome model for statistical positioning of nucleosomes throughout the
yeastgenome. Genome Res. 2008 18(7):1073-1083.7.

7. Hesselberth JR, Chen X, Zhang Z, Sabo P], Sandstrom R, Reynolds AP, Thurman RE, Neph S,Kuehn
MS, Noble WS, Fields S, Stamatoyannopoulos JA. Global mapping of protein-DNAinteractions in
vivo by digital genomic footprinting. Nat Methods. 2009. 6(4):283-289.8.
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Table S4. Sample statistics per gene computed for nucleR and NucDyn on S. cerevisiae cell
cycle data from Deniz et al. 2016.

YKL173W (SNU114 GIN1O)
YKL174€ (TPOS)
YKL175W (ZRT3)

YKL178C (STE3 DAF2)
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YKLI87C

YKLIGOW (CNB1 CRV1 YCN2)
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YKL183C (SDS22 EGP1)
YKL196C (YKTE)

YKL197C (PEX1 PAS1)

2

10 12

W-open-W

W-open-W
W-open-W
W-close-W
W-open-F

F-open-W

Weclose-W
W-apen-W
W-open-W
F-close-W

W-apen-W

‘W-close-W

17

268
268
249
168
248
229
161
326
265
204
288
201

0 0 1 0

0

1

0

1

1

P

1



278 Understanding the link between chromatin structure, chromosome conformation and gene regulation

Table S5. Number of nucleosomes detected by nucleR under different MNase levels.

H4-input Nucleosomes||H2B-input Nucleosomes
25U 80160 50U 82543
50U 80666 100U 82102
100U 79366 200U 80188
200U 73689 300U 78614
300U 72775 400U 74275

Table S6. Number of hotspots detected by NucDyn.

Region Evictions Inclusions | Shifts
H2B-input Genome-wide 3559 278 110

Promoters 2604 46 30
H4-input Genome-wide 4072 334 55

Promoters 3041 39 17

18
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V. Impact of DNA methylation on 3D genome structure

Supplementary Figures
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Figure S1. Expression and stability of the 4 DNMTs. (A-D) The lysate from 7
transformants expressing different combinations of the 4 DNMTS, and one control (T-)
were loaded in (A) 6% (B,C) 8% and (D) 10% acrylamide gel, transferred onto PVDF
membrane and revealed with (A) anti DNMT1 antibody, (B) anti-DNMT3a (C) anti
DNMT3b and (D) anti-Flag antibody.
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Figure S2. (A) Viability test of one yeast culture transformed with empty vectors (T-1,
T-2) and one yeast culture expressing the 4 DNMTs (B) Flow cytometry analysis of two
independent yeast cultures transformed with empty vectors (T-1, T-2) and two
independent yeast cultures expressing DNMTs (Tr2-1, Tr2-2). Percentage of cells in G2
is larger in methylated samples than in the control samples suggesting a slightly longer
G2 phase in the methylated sample.
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Figure S3. Heatmap showing the pairwise CpG methylation correlation in (A) two
nanopore replicates and (B) in one nanopore vs one WGBS replicate. (C) Methylation
pattern at the rDNA locus in WGBS (top 2 tracks) and nanopore (bottom tracks) samples
for 2 replicas of each condition.
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Figure S4. Density estimates of the % of CpG sites methylated per read estimated from
Nanopore sequence data for four datasets: methylated cells in stationary phase, control
cells in stationary phase, methylated cells in exponential phase and control cells in
exponential phase.
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Figure S5. Nucleosome position changes upon DNA methylation for 10 upregulated
genes. The position of UME6 DNA binding sequence is indicated as a yellow box, and the
methylation levels at individual CpG as a blue histogram for two replicas (Methl,
Meth2). The blue boxes represent the nucleosomes as called by nucleR for the two
control and two methylated samples.
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Figure S6. Effect of DNA methylation on 3D genome structure in replica 2. Differential
contact frequencies in control and methylation induced samples for (A) whole genome
and (B) focus on four chromosomes. Blue indicates interaction with a higher frequency
in the non-methylated control sample and red indicates interactions with a higher
frequency in the methylated samples.
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Figure S7. Comparison of interactions in the control and the methylated strains. Panels
(A-N) represent each chromosome (chrl, II, IV-XI and XIII-XIV, respectively). (a) Circos
diagrams depict each chromosome as a circle. Each arc represents a significant
interaction in the control (top) and the methylated sample (bottom) for the two replicas
(Cl1, Cl12). The chromosomal position of the centromeres is indicated in red and the
telomeres in green. (b) Log2 ratio of the interaction frequencies in the control over the
methylated for replica 1. Blue indicates interaction with a higher frequency in the
control sample and red indicates interactions with a higher frequency in the methylated
sample. (c) Log2 ratio of the distance in the 3D model for the control over the methylated
for replica 1. Blue indicates shorter distance in the control sample and red indicates
closer in the methylated sample.
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Figure S8. Root mean square fluctuations (RMSF) by bead in each chromosome for the
control (black) and methylated (red). The blue line indicates the position of the
centromere.
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Figure S9. Methylation pattern in WGBS (top 2 tracks) and nanopore (bottom tracks)
samples for 2 replicas of each condition at (A) the HML locus, (B) the HMR locus.
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Figure S9 (Cont.). Methylation pattern in WGBS (top 2 tracks) and nanopore (bottom
tracks) samples for 2 replicas of each condition at (C) the MAT locus and (D) a telomeric
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Suppl. Table S2. Percentage of Fuzzy, Well positioned or not determined nucleosome
calls from nucleR on 2 control and 2 methylated replicas in saturation.

Sample Fuzzy Well positioned | Not determined | total
Ctrl Rep1 34759 (47.36%) 38320 (52.22%) 307(0.42) | 73386
Ctrl Rep2 36322(49.64%) 36544 (49.95%) 298 (0.41%) | 73164
Met Rep1l 39400 (53.12%) 34362 (46.33%) 403 (0.54%) | 74165
Met Rep2 38222 (51.61%) 35425 (47.83%) 416 (0.56%) | 74063

Suppl. Table S3. Expression changes and URS1 methylation levels of a subset of early

meiotic genes

Samples in G1 Samples at saturation
Name Differential Methylation [Differential Methylation
Gene ID  [expression [p-adj level at URS1 [expression [p-adj level at URS1
pene LOG2FC site LOG2FC site
SAE3  |YHRO079C [6.20 3.38E-21 |0.14-0.145 7.43 7.21E-04 |0.404-0.37
MEIS5 YPL212C |3.84 1.07E-04 |0.354-0.318 [6.98 1.44E-03 |0.509-0.447
GMC2 |YLR445W |3.69 5.41E-02 |0.176-0.193 [6.94 5.98E-03 |0.414-0.494
HOP2  |YGLO33W |2.42 4.26E-03 |0.074-0.074 [6.83 1.17E-03 |0.315-0.392
YDRO14W-
HED1 |A 2.98 3.09E-17 |0.203-0.139 [4.97 7.21E-04 |0.418-0.339
SPO13 |[YHR014W [4.06 8.93E-07 [0.27-0.205 4.95 2.24E-03 |0.536-0.554
0.211-0.181 0.386-0.406
MEK1 |YOR351C |3.23 1.42E-02 |0.354-0.297 [4.89 5.47E-03 |0.517-0.476
REC114 |YMR133W|3.05 2,32E-2  |0.372-0.35 4.84 4.00E-03 |0.798-0.811
MER1 [YNL210W (2.65 3.06E-01 [0.368-0.401 [4.75 5.65E-02 |0.716-0.749
SPO11 |YHL022C |3.12 1.44E-11 |0.196-0.222 |[3.76 3.19E-03 |0.727-0.69
DMC1 |YER179W |3.08 9.06E-13 |0.312-0.212 [2.97 1.84E-03 |0.469-0443
YER044C-
MEI4 |A 2.19 4.61E-03 |0.165-0.13 2.74 1.52E-02 |0.414-0.465
HOP1 |YILO72W |1.70 1.34E-03 |0.088-0.034 [2.55 3.19E-03 |0.301-0.262
ZIP1 YDR285W [1.28 1.01E-01 |0.125-0.104 |2.46 5.21E-03 |0.348-0.321
REC102 |[YLR329W |1.69 2.44E-02 |0.311-0.197 (2.29 3.66E-08 |0.533-0.419
IME2  |YJL106W |-0.06 2.60E-01 |0.011-0.011 (2.27 6.04E-03 |0.07-0.08
SPO16 |YHR153C [0.65 6.16E-01 |0.02-0.043 2.04 1.36E-02 |0.224-0.155
REC104 [YHR157W [-0.54 4.09E-01 |0.039-0.033 |1.15 2.50E-02 |0.114-0.05
RED1 YLR263W |-0.79 1.87E-02 |ND 0.18 5.88E-01 |ND
RIM4  |YHL024W |2.87 4.84E-17 (0.012-0 -0.12 8.22E-01 |0.082-0.048
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Suppl. Figure S4. Number of reads filtered out in the Hi-C processing with TADDbit.

Empty-Cl1 Empty-CI2 4DNTM-CI1 4DNMT-CI2
i O e
Total reads 77 290 108 84 096 809 63 980 708 60 623 554
Mapped both 67 901 532 100.00%67 901 533 100.00%|55 086 767 100.00%|53 623 524 100.00%
1- self-circle 1748 467 2.58% [2190336 2.96% 1623463 2.95% 1291620 2.41%
2- dangling-end 9 508 945 14.00% (9601236 12.98% (9 017 932 16.37% 6208357 11.58%
3- error 539 769 0.79% [544375 0.74% |492 032 0.89% 552491 1.03%
4- extra dangling-end |17 466 889 25.72% (19224967 25.99% (14 483116 26.29% (15732626 29.34%
5- too close from RES (8 959 962 13.20% (9812011 13.26% |7 056 667 12.81% (7737173 14.43%
6- too short 1021588 1.50% |1120886 1.52% [833 844 1.51% 918430 1.71%
7- too large 8551118 12.59% (9156511 12.38% |7 686 856 13.95% [6982601 13.02%
8- over-represented |5 154 043 7.59% (5511705 7.45% |4 950 744 8.99% [4553967 8.49%
9- duplicated 31496 318 46.39% 41497816 56.09% (20 691 442 37.56% (20287110 37.83%
10- random breaks 4162523 6.13% (4363097 5.90% |4 007872 7.28% 3326301 6.20%
Filtered reads 28515650  (42.00% (25653808 [37.78% (25871440 (46.96% (27 031064  |50.41%
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