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1Centre de Visió per Computador, Campus Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
2Service d’Astrophysique, CEA Saclay, Bât. 709, L’Orme des Merisiers, 91191 Gif-sur-Yvette Cedex, France
3Departament d’Astronomia i Meteorologia, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain
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ABSTRACT

In this paper we present a multiresolution-based method for period determination that is able
to deal with unevenly sampled data. This method allows us to detect superimposed periodic
signals with lower signal-to-noise ratios than in classical methods. This multiresolution-based
method is a generalization of the wavelet-based method for period detection that is unable to
deal with unevenly sampled data, presented by the authors in an earlier paper. This new method
is a useful tool for the analysis of real data and, in particular, for the analysis of astronomical
data.
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1 I N T RO D U C T I O N

The detection of periodic signals in astronomical data has usually
been addressed by classical Fourier-based or epoch folding methods.
These methods have different problems when dealing with non-
sinusoidal periodic signals or with very low signal-to-noise ratios.
When the analysed data set contains several periodic signals, the
behaviour of classical period-determination methods depends on
intrinsic signal characteristics (see, for example, Lafler & Kinman
1965; Jurkevich 1971; Lomb 1976; Stellingwerf 1978; Scargle 1982,
1989; Roberts, Lehár & Dreher 1987; Press & Rybicky 1989). The
reader is referred to the introduction of Otazu et al. (2002) (hereafter
Paper I) for a general discussion. To avoid this problem, we presented
there, as a preliminary step, a wavelet-based approach that only
works with evenly time-sampled data.

In astronomy, however, this is not the usual situation, since data
are mostly acquired on irregular intervals of time. In such a case
there are two possibilities: resample the data into a new evenly
sampled data set, or use a method able to deal with the original
unevenly sampled data set. In the first case we are forced to modify
the original data, which necessarily implies a loss of information.
Moreover, this is not always possible if the temporal gaps are larger
than some of the periods present in the data. In order to avoid these
problems, a technique capable of dealing with unevenly sampled
data is needed.
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jmparedes@ub.edu (JMP); marta.peracaula@udg.es (MP); jorge@am.ub.es
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The present paper is a natural extension of Paper I that allows us
to work on unevenly time-sampled data. We show how the method-
ology of multiresolution decomposition (similar to the wavelet de-
composition philosophy) is very well suited to this problem, since it
is completely oriented towards decomposing functions into several
frequential characteristics.

As in Paper I, the main objective is to isolate every signal present
in our data and to analyse them separately, avoiding their mutual in-
fluences. In Section 2 we outline some concepts in multiresolution
analysis and their similarities with wavelet theory that are relevant
to the stated problem. In Section 3 we propose an algorithm to de-
tect each of the periodic signals present in a data set by combining
multiresolution analysis decomposition with classical period deter-
mination methods. In Sections 4 and 5 we present some examples
of synthetic data we used to test the algorithm and the results we
obtained. We summarize our conclusions in Section 6.

2 M U LT I R E S O L U T I O N A NA LY S I S

Multiresolution decomposition introduces the concept of the pres-
ence of details between successive levels of resolution. Many
wavelet decomposition algorithms are based on multiresolution
analysis schemes (Chui 1992; Daubechies 1992; Meyer 1993;
Kaiser 1994; Vetterli & Kovacevic 1995; Mallat 1999; Starck
& Murtagh 2002), and some astronomical applications using
wavelets for timing analysis have been reported (Szatmáry, Vinkó
& Gál 1994; Foster 1996; Ribó et al. 2001; Polygiannakis, Preka-
Papadema & Moussas 2003). In fact, all these methods use the
same philosophy and the obtained results can be interpreted in the
same way. However, wavelet theory presents some constraints on
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mathematical functions. These constraints are not respected in all
multiresolution decomposition schemes. Therefore, when we are
using a certain multiresolution decomposition algorithm that fulfils
the wavelet constraints, we are obtaining a wavelet decomposition.
In contrast, when a given multiresolution decomposition algorithm
violates these wavelet constraints, we are obtaining a result similar
to, but which is not, a wavelet decomposition.

As discussed in Paper I, we note that there are wavelet approaches
that are based on approximations of a continuous wavelet transform
and on the subsequent study of wavelet space coefficients (see, e.g.
Szatmáry et al. 1994), which are able to deal with unevenly sampled
data sets. However, these algorithms present a non-direct inverse
wavelet transform, in the sense that the search for periodicities is
based on the fit between the wavelet base function profile and the
signal profile, and therefore on the values of the wavelet transform
coefficients, which depend on the wavelet base used. Moreover, the
period analysis has to be performed on wavelet coefficient space but,
since it is usually decimated, accurate period detection is a difficult
task. The multiresolution decomposition scheme we use in this work
performs the decomposition on temporal space, which allows us to
find accurate values for periodicities.

2.1 A multiresolution analysis algorithm

In order to obtain a multiresolution decomposition for signals, an
algorithm to decompose the signal into frequency planes can be
defined as follows. Given a signal p we construct the sequence of
approximations:

p1 = F1(p), p2 = F2(p1), p3 = F3(p2), . . . , (1)

performing successive convolutions with Gaussian filters Fi.
It is important to note the difference between this sequence of

convolutions and that used in Paper I. In the latter we were dealing
with a discrete convolution mask, and hence forced to work with
evenly spaced data. In contrast, the continuous nature of the con-
volution functions used in the present paper allows us to work with
unevenly sampled data.

Similarly to the wavelet planes, the multiresolution frequency
planes are computed as the differences between two consecutive
approximations p i−1 and pi. Letting wi = p i−1 − pi (i = 1, . . ., n),
in which p0 = p, we can write the reconstruction formula:

p =

n∑

i=1

wi + pr . (2)

In this representation, the signals pi (i = 0, . . ., n) are versions of the
original signal p at increasing scales (decreasing resolution levels),
wi (i = 1, . . ., n) are the multiresolution frequency planes and pr

is a residual signal (in fact n = r , but we explicitly replace n by
r to express clearly the concept of residual). In our case, we are
using a dyadic decomposition scheme. This means that the standard
deviation of the Gaussian function associated with the Fi filter is
σ i = 2σ i−1. Thus, similarly to the wavelet approach, the original
signal p0 has double resolution compared to p1, and so on. All these
pi (i = 0, . . ., n) signals have the same number of data points as the
original signal p.

Since σ i+1 depends on σ i , a value for σ 0 has to be carefully
chosen for every data set. It has to be fixed considering a likely
minimum value for the time duration of the features and the charac-
teristic time sampling of the data set, in order to include a significant
number of points on which to perform the convolutions. Too small
values do not accurately describe feature profiles, and suffer from

poor or noisy data. In contrast, too large values reduce the noise
effect by integrating a lot of data points, but may ignore interesting
high-frequency features. Hence, a first analysis of data has to be
performed in order to obtain a useful initial σ 0 value.

We have used the same notation as in the wavelet decomposition
described in Paper I because, as explained above, the idea of these
multiresolution planes is similar to the wavelet planes.

We note that this particular decomposition scheme that uses a
Gaussian kernel can also be interpreted as a scale-space filtering
(Baubaud et al. 1986; Witkin 1994; Sporring et al. 1997) or as a par-
ticular case of more general image diffusion approaches (Lindeberg
1990; Perona & Malik 1990). Smoothed data sets pi can be inter-
preted as diffused scale-space images, and the difference between
them as the details at different scales.

3 P E R I O D - D E T E C T I O N A L G O R I T H M

We propose to apply this multiresolution analysis algorithm to solve
our initially stated problem: to isolate each of the periodic sig-
nals contained in a set of unevenly sampled data and study them
separately.

In order to do so, we proceed as in Paper I, and the period-
detection algorithm we propose is as follows:

(i) choose values for σ 0 and n; decompose the original signal p

into its multiresolution frequency planes wi (i = 0, . . ., n);
(ii) detect periods in each of the n obtained frequency planes wi.

The Phase Dispersion Minimization (PDM) (Stellingwerf 1978)
and CLEAN (Roberts et al. 1987) methods are used to detect periods
in the original data and in every multiresolution frequency plane.
In Paper I we described several undesirable effects of the PDM and
CLEAN methods on data with superimposed signals, as well as the
advantages of using multiresolution-based methods over classical
methods.

Hereafter, and for notational convenience, the multiresolution-
based PDM and CLEAN methods will be called MRPDM and MRCLEAN,
respectively.

4 S I M U L AT E D DATA

In order to check the benefit of applying MRPDM versus PDM, or
MRCLEAN versus CLEAN, we proceeded similarly as in Paper I by
generating and analysing several sets of simulated data contain-
ing two superimposed periodic signals. Each data set is composed
of a high-amplitude primary sinusoidal function and a secondary
low-amplitude Gaussian function. Finally, we added white Gaus-
sian noise to this combination of signals. We increased the value
of the noise standard deviation, σ , up to the value where detec-
tion of periodic signals became statistically insignificant in both the
classical and multiresolution-based methods.

The primary signal is intended to simulate variable sources with a
pure sinusoidal intensity profile (like precession of accretion discs),
and the secondary, burst-like events (like pulses or eclipses) super-
imposed on it. We note that in Paper I we also studied the superposi-
tion of two sinusoidal functions, the so-called sine+sine case. How-
ever, here we have directly focused on the more realistic situation
of the so-called sine+Gaussian case, where the difference between
the classical and the multiresolution-based methods is more critical
(see Paper I).

The characteristics of the signals are as follows.

(i) Each signal is generated as an unevenly spaced data set.
Its time sampling has been taken from observations of the X-ray
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binary LMC X-1 by the All Sky Monitor onboard the RXTE satel-
lite (Levine et al. 1996). We have used an observation period which
has 8270 measurements during 679 d.

(ii) The high-amplitude sinusoidal function has an amplitude
equal to 1 and a period of 108.5 d.

(iii) The amplitudes of the low-amplitude periodic Gaussian
function are 0.1 and 0.5.

(iv) The periods used for the secondary function are 13.13 and
23.11 d.

(v) We have used two values for the full width at half-maximum
(FWHM) of the Gaussian signal, corresponding to 2 and 6 d, re-
spectively.

In the first four columns of Table 1 we present the parameters
used to generate each simulated data set.

5 R E S U LT S

We recall that the simultaneous use of two independent methods,
such as CLEAN and PDM, is usually applied to discriminate false pe-
riod detections from true ones. A similar procedure can be used with
each one of the multiresolution planes in the MRPDM and MRCLEAN

methods. Therefore, when comparing the behaviour of these dif-
ferent methods, we have to compare the usual PDM–CLEAN method
combination for period estimation prior to the new MRPDM–MRCLEAN

combination.
Taking into account the characteristics of the simulated data we

have chosen σ 0 = 1 d. As in Paper I, the primary period (108.5 d)
is always detected by all methods, and does not appear in Table 1.
In this table, the last four columns show the detected low-amplitude
periods for each data set using the PDM, CLEAN, MRPDM and MRCLEAN

methods, respectively. A dash is shown when a period is not detected,
and a question mark when the detection is difficult or doubtful. When
a period is found in the multiresolution-based methods, we also show
in parentheses the mutiresolution planes where it is detected.

We must note that the use of two different FWHM for the Gaus-
sian, combined with two different periods (13.13 and 23.11 d), gives
four different profiles. Hence, the phase duration of the burst-like
event ranges from very low to relatively high values in the following
order: FWHM = 2 and period = 23.11, FWHM = 2 and period =

13.13, FWHM = 6 and period = 23.11, and finally FWHM = 6 and
period = 13.13.

In view of the results displayed in Table 1 we can make the fol-
lowing comments.

(i) In all methods, with high noise-to-signal ratios the detected
periods are slightly different from the simulated periods.

(ii) There is better performance of CLEAN over PDM. We must note
that when the FWHM is only 2 d, PDM never detects the secondary
period. Only with FWHM = 6 d, and a relatively high amplitude
(0.5), can PDM detect the low-amplitude periodic signals.

(iii) As the noise increases, the detection starts to fail in the lower
multiresolution planes (higher frequencies), and only the higher
ones (lower frequencies) are noise-free enough to allow period de-
tection.

(iv) MRPDM and MRCLEAN perform better than or similar to the PDM

and CLEAN methods (but see the exception below). When CLEAN

marginally detects the secondary period, MRPDM, and most of the
time MRCLEAN, have no problems in detecting it, and they work
properly even with higher noise. In the MRPDM case, the results are
always better than with PDM.

(v) In all cases with FWHM = 2, the MRPDM performance is much
better than MRCLEAN, because the signal is clearly non-sinusoidal. In
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Figure 1. Top: simulated data of a Gaussian with 13.13-d period, a FWHM
of 6.0 d, amplitude = 0.1 and σ noise = 0.6, superimposed on the sinusoid
with 108.5-d period and amplitude=1.0. Bottom: PDM and CLEAN outputs of
this data set.
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Figure 2. MRPDM output for each wavelet plane of the data at the top of
Fig. 1.

the FWHM = 6 cases, MRPDM is only slightly better than MRCLEAN,
since the signals are closer to a sinusoidal profile.

(vi) For a given amplitude of the Gaussian signal, the maximum
noise-to-signal ratio achieved with MRPDM and MRCLEAN increases
with the phase duration of the FWHM.

The only exception to (iv) is for the most extreme of the simulated
cases, i.e. the one with the lower amplitude, lower FWHM value and
longer period. However, we note that the period detected by CLEAN

is slightly different from the simulated period.
All these results are very similar to those shown in table 2 of Paper

I. Nevertheless the maximum noise-to-signal ratios achieved in the
present cases are around 2.5 times higher. This can be explained
because, although the time span of the data sets used here is around
1.5 times smaller, the number of points per unit time is around
12 times higher than in Paper I.

Finally, and for illustrative purposes, we show in Fig. 1 the simu-
lated data set generated with the following: 13.13-d period, FWHM
= 6.0 d and amplitude = 0.1 with σ noise = 0.6. The outputs of PDM

and CLEAN are also shown. None of these methods is able to detect
the 13.13-d period. We show in Fig. 2 the outputs from MRPDM. The
simulated period is detected, with its corresponding subharmonics,
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Table 1. Periods, in days, detected in the data sets. The first four columns are the parameters used for the simulated data. A dash is
shown when a period is not detected, and a question mark when the detection is difficult or doubtful. When a period is indicated in the
multiresolution-based methods, we also show in parentheses the multiresolution planes where it is detected (using σ 0 = 1 d).

FWHM Period Amplitude σ noise PDM CLEAN MRPDM MRCLEAN

2 13.13 0.1 0.0 – 13.13 13.13 (1,2) 13.13 (1,2)
0.1 – 13.13 13.13 (1,2) 13.13 (1,2)
0.15 – 13.13 13.13 (1?,2) 13.13 (1?,2)
0.2 – 13.15? 13.13 (1?,2) 13.13 (2)
0.25 – – 13.14 (1?,2) –
0.3 – – 13.14 (2) –
0.35 – – 13.14 (2?) –
0.4 – – – –

0.5 0.0 – 13.13 13.13 (1,2,3) 13.13 (1,2,3)
0.5 – 13.13 13.13 (1?,2,3) 13.13 (1?,2,3)
1.0 – 13.14? 13.13 (2,3) 13.13 (2,3)
2.0 – – 13.14 (2,3) 13.14 (3?)
2.25 – – 13.14 (2?) –
2.5 – – – –

23.11 0.1 0.0 – 23.13 23.11 (1,2?) –
0.1 – 23.19 23.11 (2?) –
0.15 – – – –

0.5 0.0 – 23.12 23.11 (2?,3,4) 23.11 (3?)
0.5 – 23.11? 23.11 (2?,3,4) –
1.0 – – 23.11 (2?,3,4) –
1.25 – – 23.11 (2?,3,4) –
1.5 – – – –

6 13.13 0.1 0.0 – 13.13 13.13 (1,2,3) 13.13 (1,2,3)
0.1 – 13.14 13.13 (1,2,3) 13.13 (1,2,3)
0.2 – 13.14 13.13 (1?,2,3) 13.13 (1?,2,3)
0.3 – 13.14 13.13 (2,3) 13.13 (2,3)
0.4 – 13.15? 13.14 (2,3) 13.14 (3)
0.6 – – 13.14 (2,3) 13.14 (3?)
0.8 – – 13.15 (3) 13.15 (3?)
0.9 – – – –

0.5 0.0 13.13 13.13 13.13 (1,2,3) 13.13 (1,2,3)
0.5 13.13 13.12 13.13 (1,2,3) 13.13 (1,2,3)
1.0 13.13 13.14 13.13 (1?,2,3) 13.13 (1?,2,3)
2.0 13.13 13.13 13.13 (2,3) 13.13 (2,3)
3.0 13.13? 13.11? 13.13 (2?,3) 13.13 (3)
4.0 – – – –

23.11 0.1 0.0 – 23.12 23.11 (2,3) 23.11 (2,3)
0.1 – 23.12 23.11 (2,3) 23.11 (2,3)
0.2 – 23.12 23.11 (2?,3) 23.11 (2?,3)
0.3 – 23.12 23.11 (3) 23.11 (3)
0.4 – 23.12? 23.11 (3?) 23.11 (3)
0.5 – – 23.11 (3?) –
0.6 – – – –

0.5 0.0 23.11 23.11 23.11 (2?,3,4,5) 23.11 (3?,4,5)
0.5 23.11 23.11 23.11 (2?,3,4,5) 23.11 (4,5)
1.0 23.11 23.11 23.11 (3,4,5) 23.11 (4,5?)
2.0 23.11? 23.12 23.11 (3?,4,5) 23.11 (4,5?)
2.5 23.11? 23.12 23.11 (4,5?) 23.11 (4,5?)
3.0 – – 23.12 (4) 23.11 (4)
3.5 – – 23.12 (4?) –
4.0 – – – –
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Figure 3. MRCLEAN output for each wavelet plane of the data at the top of
Fig. 1.

in the multiresolution planes w2 and w3. The MRCLEAN outputs,
shown in Fig. 3, reveal a marginal detection of the 13.13-d period in
multiresolution plane w3. We note that we would not consider this
detection as a true one when taken alone. However, since the same
period is clearly detected in two multiresolution planes of MRPDM,
we can establish the existence of this period in the analysed data
set.

6 C O N C L U S I O N S

In this paper we have presented a multiresolution-based method for
period determination able to deal with unevenly sampled data. This
constitutes a significant improvement with respect to the wavelet-
based method presented in Paper I, which is unable to deal with un-
evenly sampled data. The overall performance of the present method
is similar to the wavelet-based one, in the sense that it allows us to
detect superimposed periodic signals with lower signal-to-noise ra-
tios than in classical methods. We stress that one advantage of the
present method over classical methods is the simultaneous detection
of a period in more than one multiresolution plane, allowing us to im-
prove the confidence of a given detection. Moreover, since here we
are not forced to lose or modify the information when averaging or
interpolating the original data, we can reach higher noise-to-signal
ratios than in the wavelet-based method described in Paper I.

We note that the multiresolution decomposition scheme that we
have used can be interpreted as a particular case of scale-space
filtering. In order to improve isolation of periodic features, more
general approaches could be used to perform this decomposition. In
this context, the anisotropic diffusion schemes proposed by Perona
& Malik (1990) could be useful if properly tuned.

AC K N OW L E D G M E N T S

We thank the anonymous referee for useful comments and
suggestions. We acknowledge partial support by DGI of the
Ministerio de Ciencia y Tecnologı́a (Spain) under grant AYA2001-

3092, as well as partial support by the European Regional Devel-
opment Fund (ERDF/FEDER). This research has made use of the
facilities of CESCA and CEPBA, coordinated by C4 (Centre de
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