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Abstract We consider a multi-sided assignment game with the following char-
acteristics: (a) the agents are organized in m sectors that are connected by a
graph that induces a weighted m-partite graph on the set of agents, (b) a
basic coalition is formed by agents from different connected sectors, and (c)
the worth of a basic coalition is the addition of the weights of all its pairs that
belong to connected sectors. We provide a sufficient condition on the weights
to guarantee balancedness of the related multi-sided assignment game. More-
over, when the graph on the sectors is cycle-free, we prove the game is strongly
balanced and the core is fully described by means of the cores of the under-
lying two-sided assignment games associated with the edges of this graph. As
a consequence, the complexity of the computation of an optimal matching is
reduced and existence of optimal core allocations for each sector of the market
is guaranteed.
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Mathematics Subject Classification (2010) 91A12 · 91A43

1 Introduction

Two-sided assignment games (Shapley and Shubik, 1972) have been general-
ized to the multi-sided case. In this case, agents are distributed in m disjoint
sectors. Usually it is assumed that these agents are linked by a hypergraph
defined by the (basic) coalitions formed by exactly one agent from each sector

A. Atay(B)
Institute of Economics, Hungarian Academy of Sciences.
E-mail: ata.atay@krtk.mta.hu

M. Núñez
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(see for instance Kaneko and Wooders, 1982; Quint, 1991). A matching for a
coalition S is a partition of the set of agents of S in basic coalitions and, since
each basic coalition has a value attached, the worth of an arbitrary coalition of
agents is obtained by maximizing, over all possible matchings, the addition of
values of basic coalitions in a matching. When there are at least three sectors,
the problem of finding an optimal matching in this multi-sided assignment
market is known to be NP-hard. See for instance Burkhard et al (2009) for a
survey on some special cases, together with its applications, algorithms, and
asymptotic behavior.

If we do not require that each basic coalition has exactly one agent of each
side but allow for coalitions of smaller size, as long as they do not contain two
agents from the same sector, we obtain a larger class of games, see Atay et al
(2016) for the three-sided case. But in both cases, the classical multi-sided
assignment market and this enlarged model, the core of the corresponding
coalitional game may be empty, and this is the main difference with the two-
sided assignment game of Shapley and Shubik (1972), where the core is always
non-empty.

A two-sided assignment game can also be looked at in another way. There is
an underlying bi-partite (weighted) graph, where the set of nodes corresponds
to the set of agents and the weight of an edge is the value of the basic coalition
formed by its adjacent nodes. From this point of view, the generalization to a
market with m > 2 sectors can be defined by a weighted m-partite graph G. In
an m-partite graph the set of nodes N is partitioned in m sets N1, N2, . . . , Nm
in such a way that two nodes in a same set of the partition are never connected
by an edge. Each node in G corresponds to an agent of our market and each
set Ni, for i ∈ {1, 2, . . . ,m}, to a different sector. We do not assume that the
graph is complete but we do assume that the subgraph determined by any two
sectors Ni and Nj , with i 6= j, is either empty or complete. Because of that,
the graph G determines a quotient graph G, the nodes of which are the sectors
and two sectors are connected in G whenever their corresponding subgraph in
G is non-empty.

For each pair of sectors Nr and Ns, r 6= s, that are connected in G, we have
a bilateral assignment market with valuation matrix A{r,s}. For each i ∈ Nr
and j ∈ Ns, entry a

{r,s}
ij is the weight in G of the edge {i, j}, and represents

the value created by the cooperation of i and j.

Given the m-partite graph G, a coalition of agents in N is basic if it does
not contain two agents from the same sector and its members are connected
in G. Then, the worth of a basic coalition is the addition of the weights of
the edges in G that are determined by nodes in the coalition. An optimal
matching in this market is a partition of N in basic coalitions such that the
sum of values is maximum among all possible such partitions.

We show that if there exists an optimal matching for the multi-sided m-
partite market that induces an optimal matching in each bilateral market
determined by the connected sectors, then the core of the multi-sided market
is non-empty. Moreover, some core elements can be obtained by merging of
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one core element from each of the underlying bilateral markets associated with
the connected sectors.

Secondly, if the quotient graph G is cycle-free, then the above sufficient
condition for a non-empty core always holds and, moreover, the core of the
multi-sided assignment game is fully described by “merging” or “composition”
of the cores of the underlying bilateral games. A first consequence is that
when G is cycle-free, an optimal matching can be found in polynomial time.
Secondly, for each sector there exists a core allocation where all agents in
the sector simultaneously get their maximum core payoff. This means that,
although agents in a same sector compete for the best partners in the other
sectors, there is still some coincidence of interests among them.

This model of multi-sided assignment market on an m-partite graph G
where the quotient graph G is cycle-free can be related to the locally-additive
multi-sided assignment games of Stuart (1997), where the sectors are organized
on a chain and the worth of a basic coalition is also the addition of the worths
of pairs of consecutive sectors. However, in Stuart’s model all coalitions of
size smaller than m have null worth. It can also be related with a model in
Quint (1991) in which a value is attached to each pair of agents of different
sectors and then the worth of an m-tuple is the addition of the values of its
pairs. Again, the difference with our model is that in Quint (1991) the worth
of smaller coalitions is zero. In particular, the worth of a two-player coalition
is taken to be zero instead of the value of this pair. Notice that in these models
the cooperation of one agent from each side is needed to generate some profit.
Compared to that, in our model, any set of connected agents from different
sectors yields some worth that can be shared.

The assumption that one agent from each sector is needed to make any
profit makes sense for instance in a supply chain network where some agents
supply basic inputs for the industry, other agents purchase the final outputs
and the rest are intermediaries who get their inputs from some agents in the
industry, convert them into outputs at a cost and sell the outputs to some
other agents (Ostrovsky, 2008). In this setting, agents in excess in the large
sectors of the market may not be able to find partners to complete a connected
coalition between the suppliers of basic inputs and the final consumers, and
hence get no reward in this market (see an example in Section 6). But there
are other network situations in which the activity an agent carries out with
one neighbour is independent of the activity this agent implements with other
neighbours. Take as an example the network of European countries for road
merchandise transport. A transport company can make a profit by its own by
carrying goods to a neighbour country, but if it makes an agreement with a
similar company in this second country, they both can reduce costs and hence
make a larger profit, even if they are not part of a larger coalition that covers
all the continent.

For arbitrary coalitional games, cooperation restricted by communication
graphs was introduced by Myerson (1977) and some examples of more recent
studies are Granot and Granot (1992), van Velzen et al (2008), Grabisch and
Skoda (2012), Grabisch (2013), and Khmelnitskaya and Talman (2014). The
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difference with our work is that in the multi-sided assignment game on an
m-partite graph there exist well-structured subgames, the two-sided markets
between connected sectors, that provide valuable information about the multi-
sided market. This fact allows to find simple conditions for non-emptiness of
the core, compared to other games defined on graphs (see for instance Deng
et al, 1999).

Section 2 introduces the model. In Section 3, for an arbitrary m-partite
graph, we provide a sufficient condition for the non-emptiness of the core.
Section 4 focuses on the case in which the quotient graph is cycle-free. In that
case, we completely characterize the non-empty core in terms of the cores of
the two-sided markets between connected sectors. From that fact, additional
consequences on some particular core elements are derived in Section 5. Finally,
Section 6 concludes with some remarks.

2 The multi-sided assignment problem on an m-partite graph and
its related coalitional game

Let N be the finite set of agents in a market situation. The set N is par-
titioned in m sets N1, N2, . . . , Nm, each sector maybe representing a set of
agents with a specific role in the market. There is a graph G with set of
nodes {N1, N2, . . . , Nm}, that we simply denote {1, 2, . . . ,m} when no confu-
sion arises, and we will identify the graph with its set of edges.1 The graph G
induces another graph G on the set of agents N such that {i, j} ∈ G if and
only if there exist r, s ∈ {1, 2, . . . ,m} such that r 6= s, i ∈ Nr, j ∈ Ns and
{r, s} ∈ G. Notice that the graph G is an m-partite graph, that meaning that
two agents on the same sector are not connected in G. We say that graph G
is the quotient graph of G.2

For any pair of connected sectors {r, s} ∈ G, there is a non-negative valua-

tion matrix A{r,s} and for all i ∈ Nr and j ∈ Ns, v({i, j}) = a
{r,s}
ij represents

the value obtained by the cooperation of agents i and j. Notice that these
valuation matrices, A = {A{r,s}}{r,s}∈G, determine a system of weights on the

graph G, and for each pair of connected sectors {r, s} ∈ G, (Nr, Ns, A
{r,s})

defines a bilateral assignment market. Sometimes, to simplify notation, we will
write Ars, with r < s, instead of A{r,s}.

Then, γ = (N1, N2, . . . , Nm;G; {A{r,s}}{r,s}∈G) is a multi-sided assignment

market on an m-partite graph. When necessary, we will write GA to denote
the weighted graph with the nodes and edges of G and the weights defined
by the matrices {A{r,s}}{r,s}∈G. Given any such market γ, a coalition S ⊆ N

1 A graph consists of a (finite) set of nodes and a set of edges, where an edge is a subset
formed by two different nodes. If {r, s} is an edge of a given graph, we say that the nodes r
and s belong to this edge or are adjacent to this edge.

2 Equivalently, we could introduce the model by first imposing a (weighted) m-partite
graph on N = N1 ∪ N2 ∪ . . . ∪ Nm with the condition that its restriction to Nr ∪ Ns, for
all r, s ∈ {1, . . . ,m} and different, is either empty or a bi-partite complete graph. Then, the
quotient graph G is easily defined.
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defines a submarket γ|S = (S ∩ N1, . . . , S ∩ Nm;G|S ;A|S) where G|S is the
subgraph of G defined by the nodes in S and A|S consists of the values of A
that correspond to edges {i, j} in the subgraph G|S .

We now introduce a coalitional game related to the above market situation.
To this end, we first define the worth of some coalitions that we name basic
coalitions and then the worth of arbitrary coalitions will be obtained by just
imposing superadditivity. A basic coalition E is a subset of agents belonging
to sectors that are connected in the quotient graph G and with no two agents
of the same sector. That is, E = {i1, i2, . . . , ik} ⊆ N is a basic coalition if
(i1, i2, . . . , ik) ∈ Nl1 × Nl2 × · · · × Nlk and the sectors {l1, l2, . . . , lk} are all
different and connected in G. Sometimes we will identify the basic coalition
E = {i1, i2, . . . , ik} with the k-tuple (i1, i2, . . . , ik). To simplify notation, we
denote by BN the set of basic coalitions of market γ, though we should write
BN1,...,Nm , since which coalitions are basic depends heavily on the partition in
sectors of the set of agents. Notice that all edges of G belong to BN . Moreover,
if S ⊆ N , we denote by BS the set of basic coalitions that have all their agents
in S: BS = {E ∈ BN | E ⊆ S}.

The valuation function, until now defined on the edges of G, is extended
to all basic coalitions by additivity: the value of a basic coalition E ∈ BN is
the addition of the weights of all edges in G with adjacent nodes in E. For all
E ∈ BN ,

v(E) =
∑

{i,j}∈G|E

v({i, j}) =
∑

i∈E∩Nr,j∈E∩Ns
{r,s}∈G

a
{r,s}
ij . (1)

A matching µ for the market γ is a partition of N = N1 ∪N2 ∪ · · · ∪Nm
in basic coalitions in BN . We denote by M(N1, N2, . . . , Nm) the set of all
matchings. Similarly, a matching for a submarket γ|S with S ⊆ N is a partition
of S in basic coalitions in BS .

A matching µ ∈M(N1, N2, . . . , Nm) is an optimal matching for the market
γ = (N1, N2, . . . , Nm;G; {A{r,s}}{r,s}∈G) if it holds

∑
T∈µ v(T ) ≥

∑
T∈µ′ v(T )

for all other matching µ′ ∈M(N1, N2, . . . , Nm). We denote byMγ(N1, N2, . . . , Nm)
the set of optimal matchings for market γ.

Then, the multi-sided assignment game associated with the market γ is the
pair (N,wγ), where the worth of an arbitrary coalition S ⊆ N is the addition
of the values of the basic coalitions in an optimal matching for this coalition
S:

wγ(S) = max
µ∈M(S∩N1,...,S∩Nm)

∑
T∈µ

v(T ), (2)

with wγ(∅) = 0. Notice that if S ⊆ N is a basic coalition, wγ(S) = v(S),
since no partition of S in smaller basic coalitions can yield a higher value,
because of its definition (1) and the non-negativity of weights. 3 Trivially, the

3 If we allow for negative weights, then the valuation fuction might not be superadditive.
Consider for instance G = {(N1, N2), (N2, N3)}; take S = {1, 2′, 2′′}, T = {1, 2′} and
assume the weights are a12′ = 6 and a2′2′′ = −2. Then, according to our definition, S is a
basic coalition and v(S) = 6−2 = 4. But S = T ∪{2′′} and v(S) = 4 < v(T ) + v({2′′}) = 6.
Moreover, in this case, v(S) 6= wγ(S). In this case, we should keep T and {2′′} as basic
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game (N,wγ) is superadditive since it is a special type of partitioning game
as introduced by Kaneko and Wooders (1982).

Multi-sided assignment games on m-partite graphs combine the idea of co-
operation structures based on graphs (Myerson, 1977) and also the notion of
(multi-sided) matching that only allows for at most one agent of each sector
in a basic coalition. It is clear that for m = 2, multi-sided assignment games
on bi-partite graphs coincide with the classical Shapley and Shubik (1972) as-
signment games. Notice also that for m = 3, multi-sided assignment games on
3-partite graphs are a particular case of the generalized three-sided assignment
games in Atay et al (2016), with the constraint that the value of a three-person
coalition is the addition of the values of all its pairs.

As for the related quotient graphs, for m = 2 the quotient graph G consists
of only one edge while, for m = 3, G can be either a complete graph4 or a
chain. Figure 1 illustrates both the graph G and its quotient graph G for the
cases m = 2 and m = 3.

G

G

N1 N2

N1

N2 N3

N1 N2 N3A12 A12 A13

A23

A12 A23

Fig. 1 2-partite and 3-partite graphs, and their quotient representation

As in any coalitional game, the aim is to allocate the worth of the grand
coalition in such a way that it preserves the cooperation among the agents.
Given a multi-sided assignment market on anm-partite graph γ = (N1, N2, . . . , Nm;G; {A{r,s}}{r,s}∈G),

a vector x ∈ RN , where N = N1 ∪ N2 ∪ · · · ∪ Nm, is a payoff vector. An im-
putation is a payoff vector x ∈ RN that is efficient,

∑
i∈N xi = wγ(N), and

individually rational, xi ≥ wγ({i}) = 0 for all i ∈ N . Then, the core C(wγ) is
the set of imputations that no coalition can object to, that is

∑
i∈S xi ≥ wγ(S)

coalitions, and obtain wγ(S) by superadditivity. But then, which are the basic coalitions
would depend on the weights, not only on the network.

4 A graph is complete if any two of its nodes are connected by an edge. Hence, an m-
partite graph with more than one node in some of the sectors is never complete in this sense.
A complete m-partite graph is an m-partite graph such that any two nodes from different
sectors are connected by an edge.
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for all S ⊆ N . Because of the definition of the characteristic function wγ in
(2), given any optimal matching µ ∈ Mγ(N1, . . . , Nm), the core is described
by

C(wγ) =

{
x ∈ RN

∣∣∣∣∣∑
i∈E

xi = v(E) for all E ∈ µ,
∑
i∈E

xi ≥ v(E), for all E ∈ BN
}
.

A multi-sided assignment game on an m-partite graph is balanced if it has a
non-empty core. Moreover, and following Le Breton et al (1992), we will say an
m-partite graph (N1, N2, . . . , Nm;G) is strongly balanced if for any set of non-
negative weights {A{r,s}}{r,s}∈G the resulting multi-sided assignment game is

balanced. Recall from Shapley and Shubik (1972) that bi-partite graphs are
strongly balanced. Our aim is to study whether this property extends to m-
partite graphs or whether balancedness depends on properties of the weights
or the structure of the graph.

3 Balancedness conditions

The first question above is easily answered. For m ≥ 3, m-partite graphs
are not strongly balanced. Take for instance a market with three agents on
each sector. Sectors are connected by a complete graph: N1 = {1, 2, 3}, N2 =
{1′, 2′, 3′}, N3 = {1′′, 2′′, 3′′}, and G = {(N1, N2), (N1, N3), (N2, N3)}. From
Le Breton et al (1992) we know that a graph is strongly balanced if any
balanced collection5 formed by basic coalitions contains a partition. In our
example, the collection

C = {{1, 1′}, {1, 2′′}, {2′, 1′′}, {2, 3′}, {3, 2′′}, {3′, 1′′}, {3, 3′′}, {2, 1′}, {2′, 3′′}}

is balanced (notice each agent belongs to exactly two coalitions in C) but we
cannot extract any partition. To better understand what causes the core to be
empty we complete the above 3-partite graph with a system of weights and
analyse some core constraints.

Example 1 Let us consider the following valuations on the complete 3-partite
graph with three agents in each sector:

A12 =


1′ 2′ 3′

1 1 0 0
2 9 0 4
3 0 0 0

 A13 =


1′′ 2′′ 3′′

1 0 5 0
2 0 0 0
3 0 2 4

 A23 =


1′′ 2′′ 3′′

1′ 0 0 0
2′ 4 0 6
3′ 2 0 0

.
In boldface we show the optimal matching for each two-sided assignment mar-
ket. Now, applying (1), the reader can obtain the worth of all three-player basic
coalitions and check that the optimal matching of the three-sided market is

µ = {(2, 1′, 1′′), (1, 3′, 2′′), (3, 2′, 3′′)}.
5 Given a player set N , a collection of coalitions C = {S1, S2, . . . , Sk} with Sl ⊆ N for all

l ∈ {1, 2, . . . , k}, is balanced if there exist positive numbers δSl
> 0 such that, for all i ∈ N ,

it holds
∑
i∈Sl⊆C δSl

= 1.
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Notice that v({2, 1′, 1′′}) = 9 + 0 + 0 = 9, v({1, 3′, 2′′}) = 0 + 5 + 0 = 5 and
v({3, 2′, 3′′}) = 0 + 4 + 6 = 10.

Take x = (u, v, w) ∈ RN1 ×RN2 ×RN3 . If x = (u, v, w) ∈ C(wγ), from core
constraints u2 + v1 + w1 = 9 and u2 + v1 ≥ 9 we obtain w1 = 0. Then, from
v3 + w1 ≥ 2 we deduce v3 ≥ 2. Hence, u1 + v3 + w2 = 5 implies u1 + w2 ≤ 3,
which contradicts the core constraint u1 + w2 ≥ 5. Therefore, C(wγ) = ∅.

We observe that the optimal matching µ in the above example induces
a matching µ23 = {(1′, 1′′), (3′, 2′′), (2′, 3′′)} for the market (N2, N3, A

{2,3})
which is not optimal. Let us relate more formally the matchings in a multi-
sided assignment market on an m-partite graph with the matchings of the
two-sided markets associated with the edges of the quotient graph.

Definition 1 Given γ = (N1, N2, . . . , Nm;G; {A{r,s}}{r,s}∈G), for each match-

ing µ ∈M(N1, . . . , Nm) and each pair adjacent sector {r, s} ∈ G, we define a
matching µ{r,s} ∈M(Nr, Ns) by

{i, j} ∈ µ{r,s} if and only if there exists E ∈ µ such that {i, j} ⊆ E. (3)

We then say that µ is the composition of µ{r,s} for {r, s} ∈ G and write

µ =
⊕
{r,s}∈G

µ{r,s}.

Conversely, given a set of matchings, one for each underlying two-sided
market, there may not exist a matching µ of the multi-sided assignment mar-
ket that is the composition of that given set of matchings. Take for instance
matchings µ{1,2} = {(2, 1′), (1, 3′), (3, 2′)}, µ{1,3} = {(1, 2′′), (2, 1′′), (3, 3′′)}
and µ{2,3} = {(1′, 2′′), (2′, 3′′), (3′, 1′′)} in Example 1. Since (1′, 2′′) ∈ µ{2,3},
(2, 1′) ∈ µ{1,2} and (1, 2′′) ∈ µ{1,3}, there is no matching µ = µ{1,2}⊕ µ{1,3}⊕
µ{2,3} since both 1 and 2 should be in the same coalition of partition µ.

Next proposition states that whenever the composition of optimal match-
ings of the underlying two-sided markets results in a matching of the multi-
sided market on an m-partite graph, then that matching is optimal and the
core of the multi-sided assignment market is non-empty. To show this second
part we need to combine payoff vectors of each underlying two-sided market
(Nr, Ns, A

{r,s}), with {r, s} ∈ G, to produce a payoff vector x ∈ RN for the
multi-sided market γ. We write C(wA{r,s}) to denote the core of these two-
sided assignment games.

Definition 2 Given γ = (N1, N2, . . . , Nm;G; {A{r,s}}{r,s}∈G), let x{r,s} ∈
RNr × RNs for all {r, s} ∈ G. Then,

x =
⊕
{r,s}∈G

x{r,s} ∈ RN is defined by

xi =
∑
{r,s}∈G

x
{r,s}
i , for all i ∈ Nr, r ∈ {1, 2, . . . ,m}.
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We then say that the payoff vector x =
⊕
{r,s}∈G x

{r,s} ∈ RN is the composi-

tion of the payoff vectors x{r,s} ∈ RNr × RNs . Similarly, we denote the set of
payoff vectors in RN that result from the composition of core elements of the
underlying two-sided assignment markets by

⊕
{r,s}∈G C(wA{r,s}).

Proposition 1 Let γ = (N1, N2, . . . , Nm;G; {A{r,s}}{r,s}∈G) be a multi-sided

assignment market on an m-partite graph. If there exists µ ∈M(N1, . . . , Nm)
such that µ{r,s} is an optimal matching of (Nr, Ns, A

{r,s}) for all {r, s} ∈ G,
then

1. µ is optimal for γ and
2. γ is balanced and moreover

⊕
{r,s}∈G C(wA{r,s}) ⊆ C(wγ).

Proof To see that µ =
⊕
{r,s}∈G µ

{r,s} is optimal for γ, take any other match-

ing µ̃ ∈ M(N1, . . . , Nm) and let µ̃{r,s} ∈ M(Nr, Ns), for {r, s} ∈ G, be
the matching µ̃ induces in each underlying two-sided market. Then, µ̃ =⊕
{r,s}∈G µ̃

{r,s}. Now, applying (1),∑
E∈µ

v(E) =
∑
E∈µ

∑
i∈Nr∩E
j∈Ns∩E
{r,s}∈G

v({i, j}) =
∑
{r,s}∈G

∑
{i,j}∈µ{r,s}

v({i, j})

≥
∑
{r,s}∈G

∑
{i,j}∈µ̃{r,s}

v({i, j}) =
∑
E∈µ̃

v(E),

where the inequality follows from the assumption on the optimality of µ{r,s}

in each market (Nr, Ns, A
{r,s}), for {r, s} ∈ G. Hence, µ is optimal for the

multi-sided market γ.
Take now, for each {r, s} ∈ G, x{r,s} ∈ C(wA{r,s}). Define the payoff

vector x ∈ RN as in Definition 2, xi =
∑
{r,s}∈G x

{r,s}
i , for all i ∈ Nr, r ∈

{1, 2, . . . ,m}. We will see that x ∈ C(wγ). Given any basic coalition E ∈ BN ,

∑
i∈E

xi =

m∑
r=1

∑
i∈E∩Nr

xi =

m∑
r=1

∑
i∈E∩Nr

∑
{r,s}∈G

x
{r,s}
i

≥
m∑
r=1

∑
i∈E∩Nr

∑
{r,s}∈G
E∩Ns 6=∅

x
{r,s}
i =

∑
{r,s}∈G
E∩Nr 6=∅
E∩Ns 6=∅

∑
i∈E∩Nr
j∈E∩Ns

(
x
{r,s}
i + x

{r,s}
j

)

≥
∑
{r,s}∈G
i∈E∩Nr
j∈E∩Ns

v({i, j}) = v(E),

where both inequalities follow from x{r,s} ∈ C(wA{r,s}) for all {r, s} ∈ G.
Notice also that if E ∈ µ the above inequalities cannot be strict and hence∑
i∈E xi = v(E). Indeed, if i ∈ E ∩ Nr, {r, s} ∈ G and E ∩ Ns = ∅, then i

is unmatched by µ{r,s} and, because of the optimality of µ{r,s}, x
{r,s}
i = 0.
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Similarly, if i ∈ E ∩ Nr and j ∈ E ∩ Ns, then {i, j} ∈ µ{r,s} and hence

x
{r,s}
i + x

{r,s}
j = v({i, j}). ut

The above proposition gives a sufficient condition for optimality of a matching
and for balancedness of a multi-sided assignment game on an m-partite graph.
However, this condition is not necessary. The matching µ in Example 1 is
optimal while µ{2,3} is not. The core of the market in Example 1 is empty, but
one can find similar examples with non-empty core (see Example 5).

Finally, even under the assumption of the proposition, that is, when the
composition of optimal matchings of the two-sided markets leads to a matching
of the multi-sided market, the core may contain more elements than those
produced by the composition of the cores of (Nr, Ns, A

{r,s}), for {r, s} ∈ G
(see Atay et al (2016) for an example in the three-sided case).

In the following section we see that the inclusion
⊕
{r,s}∈G C(wA{r,s}) ⊆

C(wγ) becomes an equality for some particular graphs.

4 When G is cycle-free: strong balancedness

In this section we assume that the quotient graph G of the m-partite graph
G does not contain cycles. We will assume without loss of generality that it is
connected, since the results in that case are easily extended to the case of a
finite union of disjoint cycle-free graphs.

We select a node of G as a source, that is, we select a spanning tree of G.
Define the distance d = d(1, r) of any other node r as the number of edges in
the unique path that connects this node to the source. Then, without loss of
generality, we rename the nodes of G in such a way that the source has label 1
and, given two other nodes r and s, if d(1, r) < d(1, s) then r < s. Notice that
the labels of nodes at the same distance to the source are assigned arbitrarily.

A partial order is defined on the set of nodes of a tree in the following way:
given two nodes r and s, we say that s follows r, and write s � r, if given the
unique path in the tree that connects s to the source, {s1 = 1, s2, . . . , sq = s},
it holds r = sp for some p ∈ {1, . . . , q − 1}. If r = sq−1 we say that s is

an immediate follower of r. We denote by SGr the set of followers of r ∈
{1, 2, . . . ,m}, we write ŜGr = {r} ∪ SGr when we need to include sector r, and

we denote by IGr the set of immediate followers of r ∈ {1, 2, . . . ,m}.
Our main result states that an m-partite graph G where the quotient graph

G is a tree is strongly balanced.

Theorem 1 Let γ = (N1, N2, . . . , Nm;G; {A{r,s}}{r,s}∈G) be a multi-sided as-

signment market on an m-partite graph. If G is cycle-free, then (N,wγ) is
balanced and

C(wγ) =
⊕
{r,s}∈G

C(wA{r,s}).
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Proof Notice first that whenG is a tree, there is a matching µ ∈M(N1, . . . , Nm)
that is the composition of optimal matchings µ{r,s} of each underlying two-
sided market (Nr, Ns, A

{r,s}), for {r, s} ∈ G. To see that, we define a bi-
nary relation on the set of agents N = N1 ∪ N2 ∪ · · · ∪ Nm. Two agents
i ∈ Nr and j ∈ Ns, with r ≤ s, are related if either i = j or there ex-
ist sectors {r = s1, s2, . . . , st = s} ⊆ {1, 2, . . . ,m} and agents ik ∈ Nsk for
k ∈ {1, 2, . . . , t} such that {sk, sk+1} ∈ G and {ik, ik+1} ∈ µ{sk,sk+1}, for all
k ∈ {1, 2, . . . , t−1}. This is an equivalence relation and, because G is a tree, in
each equivalence class there are no two agents of the same sector. Hence, the
set µ of all equivalence classes is a matching and by its definition it is the com-
position of the matchings µ{r,s} of the two-sided markets: µ =

⊕
{r,s}∈G µ

{r,s}.
Now, by Proposition 1, µ is an optimal matching for the multi-sided market
γ and

⊕
{r,s}∈G C(wA{r,s}) ⊆ C(wγ), which guarantees balancedness. Since

all two-sided assignment games have a non-empty core (Shapley and Shubik,
1972), the above inclusion guarantees balancedness of the multi-sided assign-
ment market γ.

We will now prove that the converse inclusion also holds.

Let u = (u1, u2, . . . , um) ∈ C(wγ). We will define, for each {r, s} ∈ G, a
payoff vector (x{r,s}, y{r,s}) ∈ RNr × RNs . Take the optimal matching µ =⊕
{r,s}∈G µ

{r,s} and E ∈ µ. Let us denote by E = G|E the subtree in G
determined by the sectors containing agents in E and take as the source
of E its sector s1 with the lowest label. Take any leaf6 sr of E and let
{s1, s2 . . . , sq, sq+1, . . . , sr−1, sr} be the unique path in E connecting sr to
the source s1. Let sq be the sector in this path with the highest label among
those that have more than one immediate follower in E (let us assume for sim-
plicity that sq has two immediate followers, sq+1 and sq′+1). Figure 2 depicts
such a subtree E.

sq

sq−1

sq+1

sq+3

sq+2

sr−1
srsq′+1

sq′+2

sq′+3

sr′−1
sr′

s1

Fig. 2 A subtree E for E ∈ µ

6 Given a tree, a leaf is a node with no followers.
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For each sector st with t ∈ {1, 2, . . . , r} we denote by it the unique agent
in E that belongs to this sector. Then, we define

y
{sr−1,sr}
ir

= usrir , (4)

x
{sr−1,sr}
ir−1

= a
{sr−1,sr}
ir−1ir

− y{sr−1sr}
ir

, and (5)

y
{sr−2,sr−1}
ir−1

= u
sr−1

ir−1
− x{sr−1,sr}

ir−1
. (6)

Iteratively, for all t ∈ {q + 1, . . . , r − 2}, we define

x
{st,st+1}
it

= a
{st,st+1}
itit+1

− y{st,st+1}
it+1

, and (7)

y
{st−1,st}
it

= ustit − x
{st,st+1}
it

, (8)

while for sector sq we define x
{sq,sq+1}
iq

= a
{sq,sq+1}
iqiq+1

− y{sq,sq+1}
iq+1

, and, assuming

x
{sq,sq′+1}
iq

has been defined analogously from the branch {sq′+1, sq′+2, . . . , sr′−1, sr′},

we also define y
{sq−1,sq}
iq

= u
sq
iq
−
(
x
{sq,sq+1}
iq

+ x
{sq,sq′+1}
iq

)
. More generally, if

sq has several immediate followers in E, then

y
{sq−1,sq}
iq

= u
sq
iq
−

∑
{sq,sl}∈E

sq<sl

x
{sq,sl}
iq

. (9)

We proceed backwards until we reach x
{s1,sl}
i1

for all {s1, sl} ∈ E with s1 < sl.

In addition, if i ∈ Nr and for some {r, s} ∈ G, r < s, i is unmatched by

µ{r,s}, define x
{r,s}
i = 0. Similarly, if i ∈ Nr and for all {s, r} ∈ G, s < r, i is

unmatched by µ{s,r}, define y
{s,r}
i = 0.

We will first check that the payoff vectors (x{r,s}, y{r,s}) we have defined
are non-negative for all {r, s} ∈ G. From (4) to (9) above, it follows that, for all
maximal path in E starting at s1, {s1, s2, . . . , sr}, and all t ∈ {1, 2, . . . , r− 1},
we can express x

{st,st+1}
it

in terms of the payoffs in u to agents in following

sectors in E:

x
{st,st+1}
it

= a
{st,st+1}
itit+1

− y{st,st+1}
it+1

= a
{st,st+1}
itit+1

− (u
st+1

it+1
−

∑
{st+1,l}∈E

l>st+1

x
{st+1,l}
it+1

)

= · · · = a
{st,st+1}
itit+1

+
∑

i∈Nr∩E
j∈Ns∩E

{r,s}∈E,r,s∈ŜEst+1

a
{r,s}
ij −

∑
k∈Nr∩E
r∈ŜEst+1

urk,

(10)
where the first equality follows from (7) and the second from (9).

Hence, if T = {it} ∪ {i ∈ E | i ∈ Nr, r ∈ ŜEst+1
}, we have

x
{st,st+1}
it

= v(T )− u(T \ {it}). (11)
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Notice that for t = 1, because of efficiency of u ∈ C(wγ), we obtain∑
{s1,l}∈E

x
{s1,l}
i1

= v(E)−
∑

k∈E∩Nr
k 6=i1

r∈{1,...,m}

urk = us1i1 . (12)

Equation (10), together with (9) gives, for all t ∈ {2, . . . , r},

y
{st−1,st}
it

= ustit −
∑

{st,sl}∈E
st<sl

x
{st,sl}
it

= ustit −
∑

{st,sl}∈E
st<sl

a{st,sl}itil
+

∑
i∈Nr∩E
j∈Ns∩E

{r,s}∈E,r,s∈ŜEsl

a
{r,s}
ij −

∑
k∈Nr∩E
r∈ŜEsl

urk

 ≥ 0,

where the inequality follows from the core constraint satisfied by u ∈ C(wγ)

for coalition T = {it} ∪ {i ∈ E | i ∈ Nr, r ∈ SEst}, that is,

y
{st−1,st}
it

= u(T )− v(T ) ≥ 0. (13)

Now, again making use of (4) to (12), we express x
{st,st+1}
it

in terms of the

payoffs in u to agents in sectors that do not follow st in E:

x
{st,st+1}
it

= ustit − y
{st−1,st}
it

−
∑

{st,l}∈E
l>st,l 6=st+1

x
{st,l}
it

= ustit − a
{st−1,st}
it−1it

+ x
{st−1,st}
it−1

−
∑

{st,l}∈E
l>st,l 6=st+1

x
{st,l}
it

= · · ·

= ustit − a
{st−1,st}
it−1it

+ x
{st−1,st}
it−1

−
∑

{st,l}∈E
st<l 6=st+1

(v(Tl)− u(Tl \ {it})),

where the first equality follows from (9), the second from the definition of

x
{st,st+1}
it−1

, the last equality from (11), and Tl = {it} ∪ {i ∈ E | i ∈ Nr, r ∈
ŜEl }. Recursively applying the same argument (in first place to x

{st−1,st}
it−1

), we
eventually obtain

x
{st,st+1}
it

= u((T ′ \ T ) ∪ {it})− v((T ′ \ T ) ∪ {it}) ≥ 0, (14)

with T ′ = {i1} ∪ {i ∈ E | i ∈ Nr, r ∈ SEs1}, T as defined above, and where the
inequality also follows from u ∈ C(wγ).

Once proved that for all {r, s} ∈ G, (x{r,s}, y{r,s}) is a non-negative payoff
vector, let us check it is in C(wA{r,s}). If {i, j} ∈ µ{r,s} for some {r, s} ∈ G,
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then i and j belong to the same basic coalition E of µ and x
{r,s}
i +y

{r,s}
j = a

{r,s}
ij

follows by definition from equations (5) and (7).

Since by construction of (x{r,s}, y{r,s}), see (5), this vector satisfies x
{r,s}
i +

y
{r,s}
j = a

{r,s}
ij for all i ∈ Ns, j ∈ Ns and {r, s} ∈ G, it only remains to prove

that if i ∈ Nr, j ∈ Ns, with {r, s} ∈ G, r < s, and {i, j} 6∈ µ{r,s}, then x
{r,s}
i +

y
{r,s}
j ≥ a{r,s}ij . Since i and j are not matched in (Nr, Ns, A

{r,s}), they belong to
different basic coalitions in µ. Let E and E′ be the basic coalitions containing
i and j respectively. Let us consider a maximal path {s1, s2, . . . , st, . . . , sp} in
E with origin in the node in E with the lowest label (that we will name the
source of the subtree E) and such that there exists t ∈ {1, . . . , q} with r = st.
We write i1 ∈ E ∩ Ns1 . Similarly, let {s′1, s′2, . . . , s′l, . . . , s′p} be the maximal

path in E′ with origin in the node in E′ with the lowest label (the source) and
such that there exists l ∈ {1, . . . , p} with s = s′l.

Recall from (13) that y
{r,s}
j = u(R)− v(R), where R = {j} ∪ {b ∈ E′ | b ∈

Nk, k ∈ SE
′

s′l
}, and from (14) that x

{r,s}
i = u((T ′ \T )∪{i})− v((T ′ \T )∪{i}),

where T = {i}∪{b ∈ E | b ∈ Nk, k ∈ SEst} and T ′ = {i1}∪{b ∈ E | b ∈ Nk, k ∈
SEs1}. Since E ∩ E′ = ∅, (T ′ \ T ) ∪ {i} and R are also disjoint. Then,

x
{r,s}
i + y

{r,s}
j = u((T ′ \ T ) ∪ {i}) + u(R)− v((T ′ \ T ) ∪ {i})− v(R) ≥ a{r,s}ij

since v((T ′ \ T ) ∪ {i} ∪R) = v((T ′ \ T ) ∪ {i}) + v(R) + a
{r,s}
ij and u ∈ C(wγ).

This completes the proof of C(wγ) =
⊕
{r,s}∈G C(wA{r,s}). ut

A first remark on the computation of an optimal matching for multi-sided
assignment markets is appropriate. Although the solution of the two-sided as-
signment problem is solvable in polynomial time, the solution of its multi-sided
extension is NP-hard (see Garey and Johnson, 1979). However, for a multi-
sided assignment market on an m-partite graph where the quotient graph that
connects the sectors is cycle-free, an optimal matching is computed in polyno-
mial time. Indeed, from Theorem 1 it follows that the composition of optimal
matchings of each underlying two-sided market yields an optimal matching of
the multi-sided assignment market. Since in a market with m sectors any tree
connecting the sectors has m − 1 edges, we have m − 1 underlying two-sided
markets and we only need to solve m − 1 bilateral assignment problems to
build an optimal matching for the multi-sided market.

Now, we ask whether the class of m-partite graphs with cycle-free quotient
graph is a maximal domain for strong balancedness.

A multi-sided market on a 3-partite graph with two agents in each sector is
strongly balanced, that is, it has a non-empty core given any possible system of
weights, even if the quotient graph contains a cycle. To prove this we only need
to check that balancedness conditions in Lucas (1995) for 2×2×2 assignment
games are satisfied.

But if an m-partite graph has a cycle in its quotient graph and all sectors
in the cycle contain at least three agents, then we are always able to find a



Multi-sided assignment games on m-partite graphs 15

system of weights such that the corresponding multi-sided assignment game
has an empty core.

Corollary 1 An m-partite graph, with at least three nodes on each sector, is
strongly balanced if and only if the quotient graph has no cycles.

Proof The “if” part follows from Theorem 1. To prove the “only if” part
take an m-partite graph G such that the quotient graph G has a cycle:
(N1, N2, N3, . . . , Np). Define the weights a12ij , a13ik and a23jk, for i, j, k ∈ {1, 2, 3}
as in Example 1, and arspq = 0 elsewhere. It is straightforward to see that if

x ∈ C(wγ), where γ = (N1, . . . , Nm;G; {A{r,s}}(r,s)∈G), then the restriction of
x to the coalition formed by the three first agents of N1, N2 and N3 should
be in the core of the game in Example 1, which is a contradiction since it has
an empty core. ut

The supply chain networks in Ostrovsky (2008) constitute a more general
model that can be inscribed in the theory of matching with contracts, where
utility may not be fully transferable among agents. These networks are some-
how directed (vertical networks): each agent needs to buy some input from
a preceding agent to transform it in some kind of output that serves as an
input for the activity of a following agent, until the final consumer is reached.
Hence, by definition, the network contains no cycles. In a generalized model
in Hatfield and Kominers (2012), the network is determined by the set of fea-
sible bilateral contracts between agents, and cycles are allowed. Nevertheless,
acyclicity is needed to guarantee existence of stable allocations. Compared to
that, in our model the graph that connects the agents is undirected and may
contain cycles. But the main difference is that the set of agents is partitioned
in sectors and it is the abscence of cycles in the quotient graph that connects
the sectors what characterizes the existence of (core) stable allocations.

5 When G is cycle-free: optimal core allocations

In markets where agents are organized in sectors, it has been observed that
agents may present conflict or coincidence of interests depending on whether
they belong to the same sector or to different sectors. The first example is
the two-sided assignment market in Shapley and Shubik (1972). Agents are
partitioned in a set of buyers and a set of sellers and although one could think
that there is a competition between buyers to be matched to the best sellers it
turns out that there is a core allocation where all buyers get their maximum
core payoff, which shows some coincidence of interests among buyers (and
the same can be said for the sellers). Moreover, there is opposition of interests
between the two sectors, since in this buyers-optimal core allocation, all sellers
get their minimum core payoff. In the two-sided market of Shapley and Shubik
(1972), the existence of the two optimal core allocations is a consequence of the
lattice structure of the core. Nevertheless, Roth (1985) points out generalized
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bilateral markets where the same phenomena holds without an underlying
lattice structure.7

The fact that, when G is cycle-free, the core of the multi-sided assignment
game on an m-partite graph is completely described by the cores of all under-
lying two-sided markets allows us to deduce some properties of C(wγ) from the
known properties of C(wA{r,s}), with {r, s} ∈ G. One of these consequences is
that, for each sector r ∈ {1, 2, . . . ,m}, there is a core element u ∈ C(wγ) where
all agents in sector r simultaneously receive their maximum core payoff, which
is their marginal contribution to the grand coalition. This is one property of
two-sided assignment markets that does not extend to arbitrary multi-sided
market, but it is preserved when sectors are connected by a tree and the value
of basic coalitions is defined additively as in (1).

Proposition 2 Let γ = (N1, N2, . . . , Nm;G; {A{r,s}}{r,s}∈G) be a multi-sided

assignment market on an m-partite graph. If G is cycle-free, then for each
sector k ∈ {1, 2, . . . ,m} there exists u ∈ C(wγ) such that

1. ui is the maximum core payoff for all i ∈ Nk and moreover
2. ui = wγ(N)− wγ(N \ {i}) for all i ∈ Nk.

Proof Let us assume without loss of generality that G is a tree. Take any k ∈
{1, 2, . . . ,m}. For all s ∈ {1, 2, . . . ,m} with {k, s} ∈ G,8 take (x{k,s}, y{k,s}) =
(x{k,s}, y{k,s}) the element of C(wA{k,s}) that is optimal for all agents in Nk.

Similarly, for all r ∈ {1, 2, . . . ,m} such that {r, k} ∈ G, take the element
(x{r,k}, y{r,k}) = (x{r,k}, y{r,k}) of C(wA{r,k}) that is optimal for the agents
in Nk. These optimal core elements exist in any bilateral assignment market
(see Shapley and Shubik, 1972). Moreover, by Demange (1982) and Leonard

(1983), it is known that for all i ∈ Nk, x
{k,s}
i = wA{k,s}(Nk∪Ns)−wA{k,s}(Nk∪

Ns \ {i}) and y
{r,k}
i = wA{r,k}(Nr ∪ Nk) − wA{r,k}(Nr ∪ Nk \ {i}). Finally,

for all {r, s} ∈ G with r 6= k and s 6= k, take an arbitrary core element
(x{r,s}, y{r,s}) ∈ C(wA{r,s}).

Now, if we consider the composition of the core elements defined above, we
get, given k ∈ {1, 2, . . . ,m}, uk =

⊕
{r,s}∈G(x{r,s}, y{r,s}).

Then, for all i ∈ Nk, if {r, k} ∈ G with r < k,

uki = y
{r,k}
i +

∑
{k,s}∈G

k<s

x
{k,s}
i ≥ ui

for all other u ∈ C(wγ), as a consequence of Theorem 1.

7 Stuart (2001) remarks that the idea that the core models competition dates back to
Edgeworth (1881) and is also explained by Shubik (1959). For a given player, the minimum
core payoff can be interpreted as the amount of value guaranteed to this player due to
competition and the difference between the minimum and maximum core payoff can be
interpreted as a residual bargaining problem.

8 Recall that, because of the labeling of the nodes at the beginning of Section 4, {k, s} ∈ G
implies k < s.
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Moreover, if k ∈ {1, 2, . . . ,m} is such that there exists r ∈ {1, 2, . . . ,m}
with {r, k} ∈ G and r < k, and there exists s ∈ {1, 2, . . . ,m} with {k, s} ∈ G
and k < s, then

wγ(N)− wγ(N \ {i}) = [wA{r,k}(Nr ∪Nk)− wA{r,k}(Nr ∪Nk \ {i})]

+
∑
{k,s}∈G

k<s

[wA{k,s}(Nk ∪Ns)− wA{k,s}(Nk ∪Ns \ {i})]

= uki ,

for all i ∈ Nk.
Similarly, if k is a leaf of G, then

wγ(N)− wγ(N \ {i}) = wA{r,k}(Nr ∪Nk)− wA{r,k}(Nr ∪Nk \ {i}) = uki

for the only r ∈ {1, 2, . . . ,m} such that {r, k} ∈ G and for all i ∈ Nk. Also, if
k is the source of the tree G, then

wγ(N)−wγ(N\{i}) =
∑
{k,s}∈G

k<s

[wA{k,s}(Nk ∪Ns)− wA{k,s}(Nk ∪Ns \ {i})] = uki ,

for all i ∈ Nk.
Then, for all k ∈ {1, 2, . . . ,m} we have uki = wγ(N) − wγ(N \ i) for all

i ∈ Nk. ut

In multi-sided assignment games on an m-partite graph with G cycle-free,
unlike the case of Shapley and Shubik (1972) two-sided markets, optimal core
allocations for a sector k may not be unique. Indeed, from the proof of Propo-
sition 2, the reader will realize there is a lot of freedom of choice of core
allocations for those bilateral markets in which sector k is not involved.

Notice that, for each sector k ∈ {1, 2, . . . ,m} there is also a core alloca-
tion where all agents in this sector get their minimum core payoff. The proof
is analogous to the one in Proposition 2: we only need to choose, for each
two-sided market in which sector k takes part, the k-minimum core allocation,
and for each two-sided market not involving sector k, an arbitrary core allo-
cation. Their composition produces a minimum core allocation for sector k in
the multi-sided market on an m-partite graph, as long as the quotient graph
is cycle-free. When G contains cycles, optimal core allocations for all sectors
may not exist (see Example 5 in the Appendix).

Once proved the existence of sector-optimal core allocations for an assign-
ment market on an m-partite graph with a cycle-free quotient graph G, the
question arises whether some other extreme core points or some single-valued
solutions of the coalitional game can be obtained in the same way by composi-
tion of the corresponding solutions in the underlying two-sided markets. Next
proposition shows that indeed all extreme core allocations of the multi-sided
assignment game are obtained as the composition of extreme core allocations
of the underlying two-sided markets.
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Proposition 3 Let γ = (N1, N2, . . . , Nm;G; {A{r,s}}{r,s}∈G) be a multi-sided

assignment market on an m-partite graph. If G is cycle-free, then any ex-
treme core allocation x ∈ Ext(C(wγ)) is the composition of extreme core
allocations of the underlying two-sided markets, x =

⊕
{r,s}∈G x

{r,s}, where

x{r,s} ∈ Ext(C(wA{r,s})) for all {r, s} ∈ G.

Proof From Theorem 1, it is straightforward to see that x ∈ Ext(C(wγ)) sat-
isfies x =

⊕
{r,s}∈G x

{r,s} for some x{r,s} ∈ C(wA{r,s}). Assume now that

x{r
′,s′} 6∈ Ext(C(wA{r′,s′})) for some {r′, s′} ∈ G. Then, there exist two

different elements, y{r
′,s′} and z{r

′,s′}, in C(wA{r′,s′}) such that x{r
′,s′} =

1
2y
{r′,s′} + 1

2z
{r′,s′}.

We now consider two different elements in C(wγ) by composing
⊕

{r,s}∈G
{r,s}6={r′,s′}

x{r,s}

either with y{r
′,s′} or z{r

′,s′},

xy =

 ⊕
{r,s}∈G

{r,s}6={r′,s′}

x{r,s}

⊕ y{r′,s′} and xz =

 ⊕
{r,s}∈G

{r,s}6={r′,s′}

x{r,s}

⊕ z{r′,s′}.
It is then straightforward to check that x = 1

2x
y + 1

2x
z, which contradicts

the assumption x ∈ Ext(C(wγ)). ut

However, the converse implication does not hold, that is, the composition
of extreme core allocations of the underlying two-sided markets provides an
element in C(wγ) which may not be an extreme point (see Example 4 in the
Appendix).

We now consider single-valued core selections that are not extreme points
but usually interior core points. As a consequence of Theorem 1, the compo-
sition η⊕(wγ) = ⊕{r,s}∈Gη(wA{r,s}) of the nucleolus9 of the two-sided mar-

kets between connected sectors belongs to C(wγ). Moreover, well-known al-
gorithms to compute the nucleolus of a two-sided assignment game (Solymosi
and Raghavan, 1994; Mart́ınez de Albéniz et al, 2014) can be used to obtain
η⊕(wγ). However, this composition does not coincide with the nucleolus of the
initial m-sided market γ = (N1, N2, . . . , Nm;G; {A{r,s}}{r,s}∈G), as Example
3 in the Appendix shows.

If we select the τ -value or fair-division point10 as the cooperative solution
concept to distribute the profits in each bilateral market, we can propose the

9 The nucleolus of a coalitional game (N, v) is the payoff vector η(v) ∈ RN that lexico-
graphically minimizes the vector of decreasingly ordered excesses of coalitions among all
possible imputations (Schmeidler, 1969). An imputation for the game (N, v) is a payoff vec-
tor x ∈ RN that satisfies

∑
i∈N xi = v(N) and xi ≥ v({i}) for all i ∈ N . The excess of

coalition S ⊆ N at x ∈ RN is v(S)−
∑
i∈S xi.

10 The fair-division point of a two-sided assignment market is the midpoint of the buyers-
optimal and the sellers-optimal core allocations Thompson (1981). The τ -value is a single-
valued solution for coalitional games introduced in Tijs (1981). It is known that for two-sided
assignment games the τ -value and the fair-division point coincide (Núñez and Rafels, 2002).
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composition of the τ -values of all connected two-sided markets, τ⊕(wγ) =
⊕{r,s}∈Gτ(wA{r,s}) as an allocation of the profit of the multi-sided assignment
market with a tree quotient graph. Because of Theorem 1, this composition be-
longs to C(wγ) and can be considered as a fair division solution for the m-sided
market. However, different to the two-sided case, it may not coincide with the
τ -value of the initial m-sided market γ = (N1, N2, . . . , Nm;G; {A{r,s}}{r,s}∈G).
In fact, the τ -value of a multi-sided assignment market on an m-partite graph
may lie outside the core (see Example 2 in the Appendix), even when the
quotient graph G is cycle-free.

6 Concluding remarks

We have considered multi-sided markets where agents are on an m-partite
graph that induces a cycle-free network among the sectors. Basic coalitions do
not need to have agents from all sectors, it is enough not to have two agents
from the same sector. Moreover, the worth of a basic coalition is the addition
of the worths of all its pairs that are an edge of the m-partite graph.

A similar situation is considered in Stuart (1997), although restricted to the
case in which the network that connects the sectors is a chain. There, the worth
of a basic coalition is also defined additively, but, as in the classical multi-sided
assignment games in Kaneko and Wooders (1982) and Quint (1991), the set
of basic coalitions is smaller since it is required that a basic coalition contains
exactly one agent of each side. Although the core of Stuart’s multi-sided game
is also non-empty, it does not contain the composition of all core elements of
the underlying two sided markets.

Indeed, take N1 = {1, 2, 3}, N2 = {1′, 2′, 3′} and N3 = {1′′, 2′′}, and

consider the chain G = {{N1, N2}, {N2, N3}}. Assume also that a
{r,s}
ij = 1

for all (i, j) ∈ Nr × Ns such that {Nr, Ns} ∈ G, but, unlike the model we
present in this paper, only triplets may have a positive value. It is easy to
see that (0.5, 0.5, 0.5; 0.5, 0.5, 0.5) ∈ C(wA{1,2}) and (0, 0, 0; 1, 1) ∈ C(wA{2,3}).
However,

z = x⊕ y = (0.5, 0.5, 0.5; 0.5, 0.5, 0.5; 1, 1) /∈ C(wγ),

since an optimal matching consists of two triplets and hence the unassigned
agents in sectors N1 and N2 can only receive zero payoff in the core.

Our paper answers the question about what conditions suffice so that multi-
sided markets inherit the properties of two-sided markets. The answer is a
cycle-free network structure with non-negative weights.
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A Appendix

We first consign to this appendix two examples that show that for a multi-sided assignment
game on a cycle-free quotient graph, the composition of the τ -values (or the nucleolus) of
each underlying two-sided market may not coincide with the τ -value or the nucleolus of
the initial multi-sided market. Similarly, the third example shows that by composition of
arbitrary extreme core allocations of each two-sided market we may not obtain an extreme
core allocation of the multi-sided market.

Example 2 Let us consider an assignment market γ on a 3-partite graph such that the
quotient graph is G = {{1, 2}, {2, 3}} which is cycle-free. The sectors are N1 = {1, 2},
N2 = {1′, 2′}, and N3 = {1′′, 2′′}. The valuation matrices of the two underlying two-sided
markets are

1′ 2′

1
2

(
2 0
5 4

) 1′′ 2′′

1′

2′

(
3 4
0 3

)
,

and the value of triplets is given by the following three-dimensional matrix

1′ 2′

1
2

(
5 0
8 4

)
1′′

1′ 2′

1
2

(
6 3
9 7

)
2′′

.

The τ -value of this multi-sided market game is τ(γ) = ( 5
9
, 24

9
; 29

9
, 15

9
; 15

9
, 20

9
) which is

not in the core since τ2 + τ1′ + τ2′′ = 24
9

+ 29
9

+ 20
9

= 73
9
< 9 = v({2, 1′, 2′′}). Hence, τ(γ)

cannot coincide with τ(wA{1,2} )⊕ τ(wA{2,3} ).

Example 3 Let us consider an assignment market γ on the following 4-partite graph related
to the the quotient graph G = {{1, 2}, {2, 3}, {2, 4}} which is cycle free. The sectors are
N1 = {1, 2}, N2 = {1′, 2′}, N3 = {1′′, 2′′}, N4 = {1′′′, 2′′′}, and the valuation matrices of
the two-sided markets are

A{1,2} =

( 1′ 2′

1 2 3
2 0.5 2

)
A{2,3} =

( 1′′ 2′′

1′ 3 0.8
2′ 4 2

)
A{2,4} =

( 1′′′ 2′′′

1′ 2 0.6
2′ 2.4 2

)
.

The nucleolus of the three underlying two-sided markets are

η{1,2} = (1.625, 0.375; 0.375, 1.625), η{2,3} = (0.45, 1.55; 2.55, 0.45)

and η{2,4} = (0.55, 1.45; 1.45, 0.55)

and their composition is

η⊕ = (1.625, 0.375; 1.375, 4.625; 2.55, 0.45; 1.45, 0.55),

while the nucleolus of the six-player game (N,wγ) can be computed and is

η = (1.65, 0.4; 1.6, 4.75; 2.55, 0.45; 1.2, 0.4).

Example 4 Let us consider an assignment market γ on a 4-partite graph related to the
quotient graph G = {{1, 2}, {2, 3}, {2, 4}} which is cycle-free. The sectors are N1 = {1, 2},
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N2 = {1′, 2′}, N3 = {1′′, 2′′}, and N4 = {1′′′, 2′′′}. The valuation matrices of the three
underlying two-sided markets are

A{1,2} =

( 1′ 2′

1 2 0
2 1 2

)
A{2,3} =

( 1′′ 2′′

1′ 2 1
2′ 0 2

)
A{2,4} =

( 1′′′ 2′′′

1′ 1 0
2′ 0 1

)
.

Take respective extreme core allocations of the three underlying two-sided markets
A{1,2},A{2,3}, andA{2,4}: (2, 1; 0, 1), (2, 0; 0, 2), and (1, 0; 0, 1). Then, by composition we get
a core allocation for the multi-sided assignment market, x⊕ = (2, 1; 3, 1; 0, 2; 0, 1) ∈ C(wγ).
But, there exist two core elements

y = (1.8, 0.8; 3.2, 1.2; 0, 2; 0, 1) ∈ C(wγ)

and
z = (2.2, 1.2; 2.8, 0.8; 0, 2; 0, 1) ∈ C(wγ)

such that x⊕ = 1
2
y + 1

2
z. Hence, x⊕ /∈ Ext(C(wγ)).

The last example shows that assumptions of Proposition 1 are not necessary for the
non-emptiness of the core. In this example, the core of the multi-sided assignment game is
non-empty and the matching induced on one two-sided market is not optimal. The same
example shows that when G is not cycle-free, optimal core allocations for each sector may
not exist.

Example 5 Let us consider an assignment market γ on a complete 3-partite graph G where
M1 = {1, 2}, M2 = {1′, 2′} and M3 = {1′′, 2′′}. The valuation matrices of the three under-
lying two-sided markets are

1′ 2′

1
2

(
4 4©
5© 0

) 1′′ 2′′

1
2

(
2© 0
1 5©

) 1′′ 2′′

1′

2′

(
4© 3
0 9©

)
,

and the value of triplets is given by the following three-dimensional matrix

1′ 2′

1
2

(
10 6
10 1

)
1′′

1′ 2′

1
2

(
7 13
13 14

)
2′′

.

Notice first that this market does not satisfy the sufficient condition in Proposition 1. Indeed
the optimal matching is µ = {(1, 1′, 1′′), (2, 2′, 2′′)} but µ{1,2} = {(1, 1′), (2, 2′)} is not
optimal for A{1,2}. Nevertheless, the core is non-empty. For instance, x = (4, 5; 0, 0; 6, 9)
and y = (4, 4; 1, 0; 5, 10) belong to C(wγ). Moreover x1′′ = 6 and y2′′ = 10 are respectively
the marginal contributions of agents 1′′ and 2′′ and hence these are their maximum core
payoffs. However, there is no core element where agents 1′′ and 2′′ simultaneously receive 6
and 10. Indeed, if (x, y, 4−x, 4−y, 6, 10) were a core allocation, then core constraints would
imply x + (4 − y) ≥ 4 and y + (4 − x) ≥ 5, which lead to the contradiction y ≤ x ≤ y − 1.
As a consequence, in this market there is no optimal core allocation for the third sector.
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