
1

A new approach to multivariate standard addition based on multivariate curve 

resolution by alternating least squares: Application to voltammetric data.

María Tapia1, Clara Pérez-Ràfols1, Cristina Ariño1,2, Núria Serrano1,2, José Manuel 

Díaz-Cruz1,2*

1: Departament d’Enginyeria Química i Química Analítica. Facultat de Química. Universitat de 

Barcelona. Martí i Franquès, 1-11, 08028 Barcelona (Spain).

2: Institut de Recerca de l’Aigua (IdRA). Universitat de Barcelona. Martí i Franquès, 1-11, 

08028 Barcelona (Spain).

*Corresponding author. e-mail: josemanuel.diaz@ub.edu, Phone: (+34) 93 402 1796. 

ABSTRACT

A multivariate version of the classical univariate standard addition method is proposed for the 

analysis of samples generating overlapping signals in the presence of notorious matrix effects. 

Unlike previous versions based on multivariate calibration by partial least squares (PLS), the 

proposed strategy takes advantage of a self-modelling methodology: multivariate curve 

resolution by alternating least squares (MCR-ALS) enhanced with signal shape constraints 

based on parametric functions. In this way, there is no need for the full multivariate response 

of a blank solution and, in multianalyte determinations, the standard additions can be made 

with a solution containing all the analytes, which constitutes a clear advance as compared to 

PLS approach. The proposed method has been successfully tested in the voltammetric 

determination of hydroquinone and catechol in solutions of increasing complexity and appears 

to be a promising tool in the field of electroanalysis.

Keywords: multivariate standard addition; multivariate curve resolution by alternating least 

squares (MCR-ALS); shape constraint; voltammetry; matrix effects.
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INTRODUCTION

The typical calibration strategy in univariate instrumental analysis is the external standard 

method, which builds a calibration model (a straight line) with standard solutions to predict by 

interpolation the concentration of the analyte in unknown samples from their instrumental 

responses 1,2. Nevertheless, this strategy fails in the presence of matrix effects, i.e. in samples 

with many components affecting the relationship between concentration and response. A 

solution for this may be to include the main components of the samples in the standard 

solutions (matrix matching), but this is not always possible. Then, an alternative approach is 

the standard addition method. It is based on the construction of a calibration model (again a 

straight line) with the responses of the sample before and after successive additions of a 

standard solution of the analyte. Then, the concentration of the analyte in the sample is 

predicted by extrapolation to a zero response value1,2. 

The standard addition method is particularly recommended for voltammetric measurements, 

which are especially sensitive to matrix effects3. Although voltammetric data are intrinsically 

multivariate, the heights or the areas of the peaks are usually taken instead of the full 

voltammograms to carry out univariate standard addition3. Moreover, if different analytes are 

present in the sample producing well-resolved signals, additions of a solution containing all 

analytes can be made and separated standard addition plots can be obtained for every 

analyte.

Unfortunately, voltammetric signals are frequently overlapping each other, which makes 

necessary to analyse the full voltammogram to guess the contribution of each analyte to the 

overall response. This can be done by means of different chemometric methods4–7. Among 

these, partial least squares (PLS) calibration is especially efficient and versatile. However, it is 

based on the methodology of external standard calibration, since standard solutions are 

prepared with different proportions of the analytes according to a convenient experimental 

design and are measured to build a calibration model that is further applied to the prediction 

of concentrations from the voltammograms of unknown samples. Nevertheless, PLS models 

only work properly if the relationship between concentration and response is linear and if all 

interfering substances integrating the matrix of the samples are equally present in the 

standard solutions. Small deviations from linearity can be compensated by a higher number of 

latent variables but severe non-linearity demands more sophisticated chemometric 

methods5,7. In the case of matrix effects, matrix matching is a good alternative, but it is not 

easy to synthetically reproduce the contents of interfering substances in the standards. 

Therefore, it would be very helpful that a multivariate version of the classical standard 
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addition method was available for these situations where the only way to ensure a 

reproducible matrix is by carrying out all measurements in the original sample with controlled 

additions of the standards.

As early as 1979, Kowalski and coworkers had already proposed a multivariate extension of the 

univariate standard addition method8–10. It was called generalised standard addition method 

(GSAM) and was successfully applied to data obtained by UV-vis spectrophotometry11, 

inductively coupled plasma spectroscopy12,13 and anodic stripping voltammetry14. GSAM 

method applies classical least-squares calibration (CLS) to a ‘signal increase’ matrix obtained by 

subtracting the spectra of the sample from the matrix containing all the spectra measured 

after successive additions of standards. Some years later, a PLS version of GSAM was also 

developed15. Although GSAM methodology was frequently used in the 1980’s, its popularity 

decayed along the 1990’s and the focus of multivariate standard addition moved to the study 

of second order data, mostly in spectroscopic measurements16–19.

In 2012 Melucci and Locatelli20 proposed an alternative strategy which, unlike GSAM, applies 

PLS to the original voltammograms obtained along the successive additions of standards, 

without subtraction of the voltammogram of the sample. Then, a calibration model is built to 

predict the relationship between voltammograms and added concentrations. Finally, the 

model is applied to a blank voltammogram (i.e., measured in a solution containing the same 

matrix as before, but without analyte) to predict by extrapolation the concentration of the 

analyte in the sample. This PLS extrapolation approach was successfully tested in solutions 

containing Pb(II)-ions as the only electroactive species. Recently, our group extended this 

approach to multicomponent analysis21. However, such extended method still requires the 

extrapolation to the voltammogram of a blank, which can be easily acquired when working 

with spiked samples (the blank is just the non-spiked sample) but can be very difficult to obtain 

in real situations. In the case of stripping voltammetry, the blank can be reasonably estimated 

by carrying out the stripping scan without previous accumulation22. Another drawback of PLS 

methodology is that the additions of the different analytes have to be done separately to 

prevent that PLS confuses them in a single latent variable (if all analytes are added inside the 

same solution they act as a single analyte generating several overlapping peaks). This is not a 

great inconvenience but complicates the analysis since it involves many standard solutions and 

requires a longer time to carry out all the individual additions.

The goal of the present work is to overcome such problems by designing a new strategy of 

multivariate standard addition, which does not need neither blank signals nor alternate 
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additions of individual standards. For this purpose, PLS will be replaced by multivariate curve 

resolution by alternating least squares (MCR-ALS), a method developed by Tauler et al. for 

spectroscopic data23–26 but with great potential in electroanalysis7,27–29. On the one hand, MCR-

ALS allows one to obtain the concentration profiles of all the analytes, which transforms the 

multivariate problem (a full voltammogram for every addition) into a set of univariate 

problems (the concentration of every analyte after each addition) that can be easily solved 

using the classical univariate standard addition method. On the other hand, the shape 

constraint of MCR-ALS takes advantage of the well-defined shape of the analytes (usually a 

peak) to distinguish them even when added with the same solution. For comparison purposes, 

we have used in this work the same analytes, hydroquinone and catechol, previously 

considered by our group in calibration studies by PLS21,30.

THEORY

Figure 1 summarizes the scheme of MCR-ALS adapted to standard addition. Matrix R contains 

the voltammograms measured in the sample before (first row) and after successive additions 

of a solution containing known concentrations of all analytes (second and successive rows). 

MCR-ALS consists on the decomposition of R into a product of two matrices: C, which contains 

the concentration of the analytes (in columns), and ST (i.e., transposed S matrix) that includes 

the pure responses of all analytes (in rows): 

R = C · ST (1)

If the only contributions to the overall response were these of the analytes, a classical least 

squares calibration (CLS) could be done. Then, a matrix containing a prediction of the 

concentration, Cpred, could be obtained in a single operation by dividing R by a ST matrix 

constructed with experimental measurements of every analyte alone:

Cpred = R · (ST)+ (2)

where ‘+’ indicates pseudoinverse matrix. Then, for every analyte, the plot of Cpred as a 

function of the added concentration would generate a linear plot that could be extrapolated in 

the same way as in classical standard addition method to determine the original concentration 

of the analyte in the sample.

Nevertheless, when the complexity of the samples demands the standard addition method, 

there are far more contributions to the response than these of the analytes and this greatly 
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decreases the accuracy of CLS4–6. In contrast, MCR-ALS does not work only with known species, 

but with components that also take into account the contribution of unknown species and 

electrochemical processes. In this case, C and ST matrices are obtained from Eqn. (1) through 

an iterative process, called alternating least squares (ALS):

C = R · (ST)+ (3a)

ST = (C)+· R (3b)

Starting from a rough estimation of the pure spectra ST, the cycle of Eqns. 3a and 3b is 

repeated several times until the reproduced matrix (the product C·ST) gets as close as possible 

to the experimental matrix R. The similarity between the reproduced matrix and R matrix is 

evaluated by means of the percentage of lack of fit (lof):

 x 100 (4)𝑙𝑜𝑓 =  
∑

𝑖𝑗(𝑥𝑖𝑗 ― 𝑥𝑖𝑗)2

∑
𝑖𝑗(𝑥𝑖𝑗)2

where  and  are the elements of the experimental and reproduced matrix, respectively. At 𝑥𝑖𝑗 𝑥𝑖𝑗

this point, MCR is not too different from principal component analysis (PCA), which 

decomposes the R matrix as a product of a scores matrix T and a loadings matrix PT based on a 

certain number of principal components. However, in PCA both scores and loadings are just 

mathematical entities without physical meaning, whereas in MCR-ALS different constraints 

(e.g., non-negativity, selectivity, closure ...) are applied during the iterative process to confer 

physical meaning to C and ST matrices as the concentration profiles and the pure signals, 

respectively28. 

Among such restrictions, the shape constraint is especially useful for the standard addition 

method. It consists on fitting the individual signals of the components (usually peak-shaped) to 

parametric functions such as the simple and symmetric Gaussian peak and the more complex 

and asymmetric double-Gaussian peak, asymmetric logistic peak, log power peak and 

exponentially modified Gaussian peak7,31–33. The Gaussian peak can also be used to provide 

estimations of the pure signals (ST) to start MCR-ALS iterations by means of the home-made 

program peakmaker32. These initial estimations and the application of the signal shape 

constraint along the iterative process ensure that MCR-ALS can distinguish the different 

analytes that are simultaneously added in the same proportion from a single standard 

solution.

When MCR-ALS is applied with the shape constraint, it generates a pair of optimal C and ST 

matrices. For quantitative purposes, the most important is C matrix, which contains the 
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concentration profiles of every analyte (i.e., the evolution of its concentration along the whole 

addition process). Then, the linear plot of every column of C as a function of the added 

concentration of the corresponding analyte can be submitted to the same extrapolation 

process as in the classical standard addition method. Thus, MCR-ALS transforms the 

multivariate problem into a set of univariate problems easily manageable with the classical 

method.

Finally, it must be pointed out that the fitting of parametric peaks requires a flat background 

close to zero, which can be achieved by blank subtraction or, if the blank is not available, with 

an effective method of baseline correction. Alternatively, an intricate background can be 

included as an additional component in MCR-ALS modelled with an appropriate parametric 

function (e.g. an exponential increase) or free from any shape restriction.

EXPERIMENTAL

Reagents

Hydroquinone (HQ), catechol (CC), NaH2PO4 and NaH2PO4 were provided by Sigma-Aldrich (St. 

Louis, MO, USA). In all cases, analytical grade reagents were used and solutions were prepared 

with ultrapure water (Milli-Q plus 185 system, MilliporeSigma, Burlington, MA, USA).

Solutions of dihydroxybenzene isomers were prepared daily and stored in the dark at 4° C to 

prevent oxidation.

Instrumentation

Differential pulse voltammetric (DPV) measurements were carried out in a VA Stand 663 

(Metrohm, Herisau, Switzerland) connected to a computer-controlled potentiostat – µAutolab 

Type III) with GPES version 4.9 data acquisition software (EcoChemie, Utrecht, The 

Netherlands). 

Pt wire and Ag/AgCl/KCl (3 mol L-1) were purchased from Metrohm and used as counter and 

reference electrodes respectively. Graphene modified screen-printed electrodes (SPGPHE) 

with a disk diameter of 4 mm (ref. 110GPH, DS SPCE) were acquired from Metrohm Dropsens 

(Oviedo, Spain) and used as working electrodes, coupled to the Autolab System by means of a 

flexible cable (ref. CAC, DropSens).

All voltammetric measurements were carried out under a purified nitrogen atmosphere (Linde 

N50) in a glass cell at room temperature (20 °C).
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pH measurements were performed using a Crison micro pH 2000 (Hach Lange Spain, 

L’Hospitalet de Llobregat, Spain). 

Voltammetric measurements

Differential pulse voltammograms (DPV) were recorded in 0.1 mol L-1 phosphate buffer at pH 7 

from −0.2 V to 0.9 V applying a step potential of 5 mV, a pulse amplitude of 50 mV and a pulse 

time of 50 ms. 

For multivariate standard addition curves either 0.1 mol L-1 phosphate buffer at pH 7 (synthetic 

samples) or tap water (natural samples) were spiked by appropriate concentrations of HQ and 

CC. Then, the sample was deaerated with pure nitrogen for 10 min prior to voltammetric 

measurement. Finally, five simultaneous additions of HQ and CC were carried out and the 

respective curves were recorded.

Voltammetric measurements

Data treatment was done inside Matlab® environment34 by means of a modified version of the 

‘official’ MCR-ALS program35. Baseline corrections were carried out according to automatic 

weighted least squares (AWLS), available in the package PLS_Toolbox by Eigenvector36. 

RESULTS AND DISCUSSION

Preliminary studies with simulated data

Initial studies to test the validity of the proposed multivariate standard addition method 

assisted by MCR-ALS were performed according to the scheme shown in Figure 1 with 

simulated data, in which two analytes with different overlapping degrees and concentration 

ratios were considered. Taking into account that the shape constraint is particularly important 

in this method, simulated data were analysed by MCR-ALS to select the most effective 

parametric function to be used in the shape constraint. As Figure 2a shows, asymmetric 

functions produced very good fittings but evidenced a clear trend to underestimate the 

contribution of small peaks overlapped to big ones (a significant part of the lower peak is 

understood as a ‘queue’ increasing the asymmetry of the higher peak) resulting in biased 

predicted concentrations. In contrast, the fitting of the fully symmetric Gaussian peak is not so 
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perfect, but it is much more robust in the presence of small peaks, which are better preserved 

from being ‘absorbed’ by bigger overlapping peaks (Figure 2b). This is why Gaussian peaks 

where selected for the shape constrains applied in the present work. The equation for such 

peaks is:

I = a exp [- b (E – c)2 ] (5)

where I is the current, E is the potential and a, b, c are adjustable parameters related to the 

height, width and position of the peak, respectively. 

The application of this symmetric Gaussian peak constraint in simulated data provides good 

adjustments, with a lack of fit between the original and reproduced data lower than 0.05 % in 

all considered cases, and with predicted concentrations identical to the expected ones. 

Simultaneous determination of hydroquinone and catechol in synthetic samples

The applicability of the proposed multivariate standard addition method assisted by MCR-ALS 

was tested for the simultaneous voltammetric determination of HQ and CC, which are two 

isomers of dihydroxybenzene that usually coexist in the environment. The voltammetric 

determination of these two isomers is often problematic due to their close oxidation potential, 

which results in complete merged peaks when glassy carbon electrodes (GCE) are used. As it is 

reported in the literature30,37, the use of carbon nanomaterial modified electrodes can partially 

overcome this situation, providing some discrimination between the oxidation potential of 

both peaks and resulting in partially overlapped peaks that allow the satisfactory 

determination of both analytes by the application of chemometric methods. 

Therefore, in this work, SPGPHE was used for the simultaneous voltammetric determination of 

HQ and CC in 0.1 mol L-1 phosphate buffer at pH 7. Three different samples containing 

different HQ:CC ratios (1:1, 2:1 and 1:2) were considered as representative situations for the 

application of the presented multivariate standard addition method. As it can be seen in Figure 

3a-c, the voltammetric signal obtained for each sample (thick black line) shows different 

prevalence of each peak depending on the considered HQ:CC ratio. Further simultaneous 

additions of HQ and CC were performed in each sample and voltammetric signals were 

recorded, observing a linear increase of the signals without changes in the overlapping degree 

between both peaks. For each sample, MCR-ALS was applied to the obtained signals 

considering both non-negativity and symmetric Gaussian peak shape constraints in order to 

obtain the predicted pure signals and associated concentrations of each isomer. Figure 3a-c 
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shows, for 1:1, 2:1 and 1:2 HQ:CC concentration ratios respectively, the good fitting achieved 

in all cases between the experimental data (black signals) and the reproduced data (blue 

signals) calculated from the pure signals and predicted concentrations. These good fittings can 

be also demonstrated by the low lack of fit provided by the three independent adjustments: 

4.35, 3.76 and 3.87 % for 1:1, 2:1 and 1:2 HQ:CC concentration ratios respectively. The plotting 

of the predicted concentrations vs. the added concentrations (insets in Figure 3) followed by 

their extrapolation to zero allows the determination of HQ and CC concentrations in each 

sample. The obtained results for the three considered situations, which are summarized in 

Table 1, show a good accuracy of the predicted concentrations, as inferred by the low relative 

standard errors, demonstrating the suitability of the presented MCR-ALS strategy for the 

multivariate standard addition of HQ and CC. In comparison to previous multivariate standard 

addition method assisted by PLS21, lower relative errors were achieved, with the additional 

advantage of a faster analysis provided by the simultaneous additions of analytes instead of 

the alternate additions required for PLS strategies. 

Application to the analysis of tap water samples

At the view of the above results, the applicability of the proposed MCR-ALS multivariate 

standard addition method in samples with more complex matrices was assessed through the 

simultaneous voltammetric determination of HQ and CC in a spiked tap water sample using a 

SPGPHE. It must be pointed out that no pretreatment was applied to the sample, thus it 

contained notorious concentrations of ions like calcium, magnesium, carbonate and chloride 

(derived from the hardness of water and the processes in the water treatment plant) as well as 

traces of organic matter that can interact with the analytes considered. Although the 

complexity of the sample is not too high, noticeable matrix effects are expected taking into 

account for instance the differences observed in the behaviour of the river water samples 

studied in ref. 21.  Voltammetric measurements under the above-mentioned conditions were 

performed including both the spiked tap water sample and five successive and simultaneous 

additions of HQ and CC. A triplicate of this experiment was carried out and representative 

experimental voltammograms obtained are shown in Figure 4 (black signals). As it can be 

observed, HQ and CC also present partially overlapped peaks that difficult their determination 

through the most common univariate standard addition method. The modelling by means of 

MCR-ALS provided reproduced signals (in blue) that successfully match the experimental ones, 

with a mean lack of fit of 5.72 % for the three considered replicates of the tap water sample. 
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The predicted concentrations for both HQ and CC are reported in Table 2 and, as it can be 

observed, good precisions and accuracies inferred by the low relative standard deviations (RSD 

%) and relative errors (%) respectively were achieved. 

These good results confirm the applicability of the proposed multivariate standard addition 

method assisted by MCR-ALS, not only for samples with simple matrices but also for more 

complicated samples with matrix effect. Furthermore, this presented method can overcome 

the major limitations of other multivariate standard addition methods based on the use of PLS.

CONCLUSIONS

In this work a new multivariate standard addition method assisted by multivariate curve 

resolution by alternating least squares was developed for the simultaneous determination of 

analytes presenting overlapped peaks in complex matrices. This method presents some 

important advantages with respect to previously reported PLS strategies for the multivariate 

standard addition since it does not need neither blank signals, which are not always possible to 

obtain, nor alternate additions of individual standards, which unnecessarily increase the 

experimental time. In this case, both analytes can be added simultaneously thanks to the 

enhancement provided by the application of a peak shape constrain, being the symmetric 

Gaussian peak the parametric function that provides better predicted concentration. The 

application of MCR-ALS gives rise to predicted pure signals and concentration profiles after the 

application of non-negativity and the above mentioned signal shape constraint. The 

extrapolation to zero predicted concentration allows the determination of both considered 

analytes in the test samples. The applicability of this method has been successfully proved at 

three levels: (i) simulated data; (ii) simultaneous voltammetric determination of HQ and CC in 

synthetic samples at three different concentration ratios; and (iii) simultaneous voltammetric 

determination of HQ and CC in a spiked tap water sample. In all cases very good fittings and 

predictions were achieved, inferred by very low lack of fits (lower than 0.05 % and 6 % in 

simulated and experimental data respectively) and good relative errors lower than 9 %. 

Furthermore, this method also presented good precision in the analysis of the spiked tap 

water sample, with RSD lower than 9 % for both HQ and CC. Taking into account the promising 

features of the proposed methodology, further investigations should confirm its suitability for 

samples with matrices more complex than that of tap water, such as wastewaters, food 

products or beverages. Also, the effects of non-linearity should be investigated and, if 
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necessary, non-linear algorithms like these of artificial neural networks (ANN) or support 

vector machine (SVM) should be adapted to the strategy of multivariate standard addition.
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Table 1. Expected and predicted concentrations for the simultaneous determination of 
HQ and CC in 0.1 mol L-1 phosphate buffer pH 7 at different HQ:CC ratios by 
multivariate standard addition calibration method using a SPGPHE.

Expected concentration 
(µmol L-1)

Predicted concentration 
(µmol L-1)

Relative 
error (%)

Sample 1
HQ 4.50 4.59 2.0
CC 4.49 4.36 2.9

Sample 2
HQ 9.14 9.92 8.5
CC 4.57 4.92 7.7

Sample 3
HQ 4.57 4.33 5.3
CC 9.13 9.41 3.0
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Table 2. Expected and predicted concentrations for the simultaneous determination of 
HQ and CC in a spiked tap water sample by multivariate standard addition calibration 
method using a SPGPHE.

Expected concentration 
(µmol L-1)

Predicted concentration 
(µmol L-1)

Relative 
error (%)

RSD (%)

HQ 4.58 4.90 7.1 8.7
CC 9.15 9.10 0.6 8.6
n=3 for RSD(%)
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Figure captions

Figure 1. Schematic representation of the proposed multivariate standard addition 
method based on MCR-ALS.

Figure 2. Comparison of the pure signals (red and blue lines) typically obtained in the 
MCR-ALS analysis of a voltammogram measured for a mixture of two analytes (black 
line) by using whether a) two asymmetric functions or b) two symmetric Gaussian 
functions. Currents are given in arbitrary units.

Figure 3. Experimental (black) and calculated (blue) voltammograms with 
corresponding calibration curves (inset) for the simultaneous determination of HQ and 
CC in 0.1 mol L-1 phosphate buffer at pH 7 using a SPGPHE in a solution containing 
4.5 µmol L-1 HQ and CC (a), 9.1 µmol L-1 HQ and 4.6 µmol L-1 of CC (b) and 4.6 µmol 
L-1 of HQ and 9.1 µmol L-1 of HQ (c). 

Figure 4. Experimental (black) and calculated (blue) voltammograms with 
corresponding calibration curves (inset) for the simultaneous determination of HQ and 
CC in a spiked tap water sample using a SPGPHE.
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