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The 6-hydroxydopamine (6-OHDA) rodent model of Parkinson’s disease (PD) has been used to evaluate the
nigrostriatal pathway. The aim of this work was to explore the relationship between the degree of 6-OHDA-
induced dopaminergic degeneration and [123I]FP-CIT binding using single photon emission computed tomography
(SPECT). Fourteen rats received a 6-OHDA injection (4 or 8μg) into the left medial forebrain bundle. After 3weeks,
magnetic resonance imaging and scans with a small-animal SPECT system were performed. Finally, the nigrostriatal
lesion was assessed by immunohistochemical analysis. Immunohistochemical analysis confirmed two levels of dopa-
minergic degeneration. Lesions induced by 6-OHDA diminished the ipsilateral [123I]FP-CIT binding by 61 and 76%,
respectively. The decrease in tracer uptake between control and lesioned animals was statistically significant, as
was the difference between the two 6-OHDA lesioned groups. Results concluded that [123I]FP-CIT SPECT is a useful
technique to discriminate the degree of dopaminergic degeneration in a rat model of PD. Copyright © 2014 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Single photon emission computed tomography (SPECT) has
become a useful neuroimaging technique for in vivo evaluation
of neurotransmission systems in both clinical diagnosis (1) and
basic research (2). Specifically, SPECT allows the evaluation of
presynaptic dopaminergic terminals of the nigrostriatal neuro-
transmission system.
Presynaptic dopamine function is associated with the dopamine

transporter (DAT). The DAT is responsible for reuptake of dopa-
mine from the synaptic cleft and has proved to be a sensitive indi-
cator of the nigrostriatal dopaminergic function. Parkinson’s
Disease (PD) is related to a degeneration of the nigrostriatal dopa-
minergic system and SPECT with [123I]-N-omega-fluoropropyl-2β-
carbomethoxy-3β-(4-iodophenyl)nortropane ([123I]FP-CIT, DaTSCAN;
GE Healthcare), a radiotracer that binds DAT, has been shown to
be useful for PD diagnosis (1,3).
The fact that the same tracer can be employed in animal models

and in humans allows translational research. By studyingmodels of
PD using [123I]FP-CIT SPECT, an increasing number of compounds
with neuroprotective properties (4) could be examined along with
other therapeutic approaches (5) in PD treatment.
A good correlation between [123I]FP-CIT SPECT and histopathol-

ogy in relation to dopaminergic degeneration has been found
using the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
in monkeys (6) and mice (7). PD rodent models using the
neurotoxin 6-hydroxydopamine (6-OHDA) have also been
reported (8–12). This model of PD has been widely used in studies
exploring the effect of different treatments by histochemical
evaluation of nigral tyrosine hydroxylase (TH) and/or striatal DAT

(13–17). Molecular imaging techniques have also been applied
to this model of dopaminergic degeneration. Although several
studies have used positron emission tomography to evaluate
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6-OHDA-induced lesions in rats (18–25), very few studies examin-
ing DAT binding have been carried out with this animal model
using SPECT (26–31).

Along these lines, a very recently published work has con-
firmed a correlation between histopathological lesion and DAT
SPECT measurements using the radiotracer [123I]β-CIT in rats
subjected to different intrastriatal administrations of 6-OHDA
(29). In parallel to this study, we have evaluated a 6-OHDA rat
model using immunohistochemistry, magnetic resonance imag-
ing (MRI) and [123I]FP-CIT SPECT. Whereas previous studies
performed in similar rat models of PD used [123I]β-CIT, we chose
the radiotracer [123I]FP-CIT, as it presents a faster kinetics and is
currently the radiotracer of choice in human studies for the eval-
uation of PD and other neurological disorders of basal ganglia
(2,3,32). Thus, while preclinical SPECT studies can also be
performed using other radiotracers binding DAT, the extensive
clinical use of [123I]FP-CIT makes it a very interesting tool for
translational research in this area. The ability to explore, detect
and discriminate different degrees of nigrostriatal degeneration
in rats subjected to 6-OHDA injection in the medial forebrain
bundle (MFB) is a positive asset.

The aim of this work was to confirm the relationship between
the degree of dopaminergic degeneration (evidenced by the be-
havior and histology) and neuroimaging [123I]FP-CIT SPECT on an
experimental rat model of PD. To this end, two levels of dopami-
nergic degeneration were induced by administering 6-OHDA at
increasing doses into the left MFB (10,33). This approach induces
a reproducible unilateral degeneration of dopaminergic termi-
nals in the striatum without the mechanical injury that inevitably
occurs when 6-OHDA is injected directly into the basal ganglia.

2. MATERIALS AND METHODS

2.1. 6-OHDA Lesions

Male Sprague–Dawley rats weighing 220–240 g were housed on
a 12 h light/dark cycle with free access to food and water. Under
sodium pentobarbital anesthesia (50mg/kg, i.p.), the animals
were placed in a stereotaxic frame with the incisor bar posi-
tioned 4.5mm below the interaural line. Two degrees of unilat-
eral nigrostriatal degeneration (total or partial) were induced.
Each animal received a 6-OHDA injection (8 or 4μg in 4μl of
saline with 0.02% ascorbate over 8min for total n= 7 or partial
lesion n= 4, respectively) (34–36) into the MFB by means of a
Harvard infusion pump. Control animals received the same vol-
ume of vehicle in the left MFB (n=4). Stereotaxic injections were
placed 4.0mm anterior to the interaural line, 1.3mm lateral to
the midline and 8.4mm ventral to the surface of the skull,
according to the atlas of Paxinos and Watson (37). All animal
experiments were carried out in accordance with the National
Institute of Health guide for care and use of laboratory animals
and were approved by local governmental authorities.

2.2. Rotational Screening

For the measurement of rotational behavior, animals were
placed in circular cages and tethered to an automated
rotometer. The number of complete (360°) turns made during
each 5-minute period was automatically recorded by a comput-
erized system. Animals were allowed to become habituated to
the rotometer for 15min before apomorphine (0.05mg/kg,
subcutaneous, s.c.) administration. Following a 3week recovery

period, animals exhibiting rotational response (>100 total turns
for a total and <70 total turns for a partially lesioned animal)
over a 45min test session were selected for further study (38).

2.3. Magnetic Resonance Imaging

Three weeks after the induction of the lesion, T1-weighted MRIs
were obtained for all animals to provide anatomic landmarks
for region of interest (ROI) definition and for its positioning on
SPECT images (35). Additionally, T2-weighted images and appar-
ent diffusion coefficient (ADC) maps were obtained in order to
evaluate the occurrence of edema, hemorrhage or other major
alterations in the striatum and injection area.
MRI experiments were conducted using a 7.0 T BioSpec 70⁄30

horizontal animal scanner (Bruker BioSpin, Ettlingen, Germany),
equipped with a 12 cm inner diameter actively shielded gradient
system (400 mT⁄m). The receiver coil was a phased array surface
coil for the animal brain. Animals were placed in supine position
in a Plexiglas holder with a nose cone for anesthesia administra-
tion (2% isoflurane in a mixture of oxygen and N2O at a 30:70
ratio) and fixed by a tooth bar, ear bars and adhesive tape.
Tripilot scans were carried out for accurate positioning of the
animal’s head in the isocenter of the magnet.

2.4. Apparent Diffusion Soefficient Maps

ADC scans were acquired using a pulsed gradient spin echo
sequence with the following acquisition parameters: echo time (TE) =
55.07ms, repetition time (TR) =50000ms, with a total acquisition
timeof 2min 20 s, six b-values from100 to 1000 s/mm2, a field of view
(FOV)=40×40×30mm3, with a matrix size of 128×128×20pixels
and a spatial resolution of 0.312×0.312×1.5mm/pixel.

2.5. T2 Maps

T2 scans were acquired with a multi-slice multi-echo sequence by
applying 16 different TEs, from 11 to 176ms, TR=4764ms, slice
thickness = 1.5mm, number of slices = 20, FOV= 40 × 40mm
and matrix size = 256× 256 pixels, resulting in a spatial resolution
of 0.156 × 0.156mm in 1.5mm slice thickness.

2.6. T1 Weighted

High-resolution anatomical scans were obtained with a
T1-weighted high resolution 3D MRI with a modified driven equi-
librium Fourier transform sequence with TE= 3.5ms, with eight
segments, TR segment = 4000ms, two averages, a total acquisi-
tion time of 1 h 4min, slice thickness 0.5mm, number of slices
60, FOV= 40 × 40mm, and matrix size 256 × 256 pixels, resulting
in a spatial resolution of 0.156 × 0.156 × 0.5mm/pixel.

2.7. SPECT Imaging

Three weeks after the induction of the lesion, all scans were
performed with a dedicated small-animal SPECT system (39)
(2mm intrinsic resolution) equipped with a low-energy high-
resolution parallel-hole collimator. SPECT scanning started
30min after intravenous injection of 90 ± 5MBq of [123I]FP-CIT
into the tail vein, which is the pseudoequilibrium time, in
accordance with previous published data (40). For dose injec-
tion and SPECT acquisition, animals were maintained under
anesthesia with isoflurane at 1.5% in oxygen. Data were
acquired for 60min in a step-and-shoot mode over a circular
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orbit in angular steps of 6° (60 projections, 60 s/projection) and
a rotation radius of 30mm. A 15% energy window was centered
on the 159 keV energy photons, the main emission line of 123I
(97% yield).

2.8. Tissue Collection

Animals were sacrificed by overdose of pentobarbital anesthesia
5 days after SPECT scan. Brains were quickly removed from the
skull and then frozen on dry ice and kept at �80 °C until they
were cut on a cryostat. Coronal 14μm thick sections from the
striatal region were obtained with a cryomicrothome and col-
lected onto APTS (3-amino-propyltriethoxysilane) coated slides.
The obtained sections were kept at �40 °C until used.

2.9. DAT and TH Immunohistochemistry

Sections were thawed, dried at room temperature and fixed with
acetone for 10min at 4 ºC. After that, they were rinsed twice in
phosphate-buffered saline (PBS; 1×, pH 7.4) for 5min, and im-
mersed in a PBS solution of 0.3% hydrogen peroxide for 10min
to block the endogenous peroxidases. Sections were then rinsed
in PBS 1× and incubated for 20min in a blocking solution
containing horse serum (1:10) and 0.1% Triton X-100. Sections were
incubated overnight at 4 ºC with mouse anti-DAT or anti-TH anti-
bodies (Santa Cruz Biotechnology Inc, CA, USA) at dilutions of
1:500 and 1:5000 in PBS, respectively. Finally, the immunohisto-
chemistry was developed using ImmunoPure Ultra-Sensitive ABC
Peroxidase staining kit (Vector, UK), dehydrated and mounted in
Distrene Plasticiser Xylene (DPX) for microscopic evaluation.

2.10. SPECT Image Quantification

Projections were filtered with a 2D-Butterworth filter (3.13/cm,
order 5). Then, reconstruction was performed using filtered back
projection algorithm with a ramp filter. A 128 × 128 × 100 matrix
size and 0.32 × 0.32 × 0.32mm3 voxel size were used (41).
MRI was automatically realigned using Statistical Parametric

Mapping (SPM, The Wellcome Department of Imaging Neurosci-
ence, London, UK; www.fil.ion.ucl.ac.uk/spm) to the reference
MRI, which was coregistered to the Rubins rat brain atlas (42).
Afterwards, each SPECT image was manually coregistered to its
MRI to confirm the anatomical location of the striatal uptake.
ROIs were drawn on the reference MRI with the backing of

anatomical information from both the Rubins rat brain atlas

and the MR image and applied to the coregistered SPECT image.
A reference ROI was defined on the global brain excluding the
striatum in order to obtain nonspecific uptake. We decided on
this reference ROI rather than using the cerebellum, which has
been used in a number of studies, because of the low specific
binding of [123I]FP-CIT in sites other than DAT in striatum. The
use of such an extended region of no specific uptake helped
diminish variability owing to noise in specific uptake ratio (SUR)
calculation and yielded highly comparable results. This is
important in experiments with a reduced number of animals,
as reported in the present work.

Striatal binding was evaluated by the SUR, which was calcu-
lated as SUR= (S� B)/B, where S is the concentration activity
(counts/ml) in the striatum and B that of the background refer-
ence region.

2.11. Statistical Analysis

Obtained SUR values and their ratios were analyzed using one-
way ANOVA and Bonferroni post-hoc test. Results from partial
and total lesions were also analyzed using a Student’s t-test. In
all cases p< 0.05 was considered statistically significant.

3. RESULTS

3.1. Rotational Screening

Animals that received 6-OHDA were classified into two groups
according to the results of rotational screening. Those exhibiting
fewer than 70 contralateral rotations were classified as partially
lesioned animals (n= 4) and those showing more than 100
contralateral rotations formed the totally lesioned group (n= 7).

3.2. Magnetic Resonance Imaging

Images obtained from all the animals were equivalent and no
differences were observed between MR images from the three
groups under study. No changes in image intensity were ob-
served at the level of ispsilateral striatum or MFB in any acquired
sequence. In all cases, the lesion produced by the needle used
for injection can be seen in the T1-weighted image. No other
structural alterations suggestive of secondary hemorrhage, infec-
tion, cytotoxic or vascular edema were found (Fig. 1).

Figure 1. Representative MR images obtained from a rat subjected to total lesion. T1- and T2-weighted images, T2 map, diffusion-weighted image and
apparent diffusion coefficient (ADC) map are shown. Images in the upper and lower rows were obtained at striatum level and at the level of injection
area, respectively. The white arrow indicates the lesion produced during 6-OHDA administration.

[123I]FP-CIT SPECT IN A PARKINSON’S DISEASE RAT MODEL
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3.3. DAT and TH Immunohistochemistry: Characterization
of the Unilateral 6-OHDA Lesion

As expected for a total 6-OHDA lesion of the nigrostriatal path-
way, nigral TH and striatal DAT-immunoreactivities in the ipsilat-
eral hemisphere were absent in this group of animals. A partial
loss of nigral TH and striatal DAT immunoreactivities was ob-
served in the partially lesioned animals (Fig. 2).

3.4. SPECT Image Quantification: Uptake of [123I]FP-CIT

On visual inspection, high [123I]FP-CIT uptake was observed at
the regions corresponding to Harder’s glands, thyroid gland

and striatum. Figure 3 shows representative SPECT images over-
laid with the MRI for a control, a partially lesioned and a totally
lesioned animal. A symmetrical striatal [123I]FP-CIT distribution
was observed in the control. In contrast, in both lesioned
animals, [123I]FP-CIT uptake was lower in the ipsilateral striatum.
This asymmetry was more pronounced in the totally lesioned
animal.
Image quantification showed contralateral average SUR values

of 0.60 ± 0.14, 0.66 ± 0.09 and 0.69 ± 0.27 for control, partially
lesioned and totally lesioned animals, respectively. In contrast,
corresponding ipsilateral SUR values decreased to 0.23 ± 0.06 in
partially lesioned and to 0.14 ± 0.08 in totally lesioned rats
(Fig. 4a). In the same way, mean values of the ipsilateral to

Figure 2. Images of striatal dopamine transporter (DAT; top) and nigral tyrosine hydroxylase (TH; bottom) immunohistochemistry from 14μm coronal
section for control (a, d), partially lesioned (b, e) and totally lesioned (c, f) animals. Each pair of images represents contra- (right) and ipsilateral (left)
hemispheres. Magnification (in d–f) = 20 × .

Figure 3. Axial (top) and coronal (below) views of [123I]FP-CIT SPECT image overlaid with MRI showing [123I]FP-CIT uptake in a control (a), partially le-
sioned (b) and totally lesioned rat (c).
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contralateral SUR ratios for control, partially lesioned and totally
lesioned animals were 1.03 ± 0.14, 0.36 ± 0.09 and 0.20 ± 0.08,
respectively (Fig. 4b).
Statistical analysis showed that uptake of [123I]FP-CIT com-

puted as SUR was equivalent in the contralateral striatum of
the three groups. In contrast, SUR values in ipsilateral striatum
were significantly reduced in both partially and totally lesioned
animals (one-way ANOVA, p< 0.001; Bonferroni post-hoc test vs
control, p< 0.001; Fig. 4a). The ipsilateral to contralateral SUR ra-
tios were also significantly reduced in both groups of lesioned
animals when compared to controls (one-way ANOVA, p< 0.001;
Bonferroni post-hoc test vs control, p< 0.001). Moreover, the an-
imals affected by total lesions presented a significantly lower
SUR ratio than partially lesioned animals (Student’s t-test partial
vs total, p= 0.0173), and this was consistent with immunostain-
ing results (Fig. 4b).

4. DISCUSSION

The 6-OHDA lesion model of PD is widely used in studies
designed to assess the effect of different treatments by histo-
chemical evaluation of nigrostriatal tract and/or neuroimaging
techniques. In these studies, rats subjected to intrastriatal

administration of 6-OHDA were evaluated with SPECT and the ra-
diotracer [123I]β-CIT. To our knowledge, however, until now the
degree of dopaminergic degeneration in this animal model has
not been evaluated using the radiotracer [123I]FP-CIT. Its faster
kinetics facilitate clinical studies and it is currently the most
widely used SPECT radiotracer for PD diagnosis. Although results
obtained with [123I]FP-CIT are likely to be similar to those of
[123I]β-CIT, validation of its ability to detect different degrees of
dopaminergic degeneration is required before further use in pre-
clinical PD research. Interestingly, one recently published work
has analyzed the effect of long-term treatment with levodopa
or the dopamine agonist pramipexole using [123I]FP-CIT SPECT
combined with histochemistry on 6-OHDA lesioned mice (34).
Although SPECT can be used to evaluate mice, resolution issues
make a rat model more suitable than mouse for longitudinal
in vivo evaluation by molecular imaging. In addition, their larger
size can also be an advantage when testing a variety of
therapeutic interventions, such as electrode placement, surgical
intervention to the brain or intraventricular administration of
compounds.

Immunohistochemistry results for DAT and TH in Fig. 2 con-
firm that two levels (partial and total) of dopaminergic degener-
ation occurred in rats. As expected, absence and a partial loss of
nigral TH and striatal DAT-immunoreactivities in the ipsilateral
hemisphere were noticed in the group of totally and partially
lesioned animals, respectively. Moreover, injecting the 6-OHDA
into the MFB instead of striatum could be advantageous to eval-
uate the relationship between induced dopaminergic degenera-
tion and the radiotracer binding. In fact, in previous published
works the neurotoxic drug was injected in the striatum (29). This
inevitably causes a mechanical disturbance in the injected area
that could produce secondary alterations that may in turn affect
radiotracer uptake. Injecting the neurotoxic drug at the level of
MFB causes a reproducible degeneration of nigrostriatal tract,
avoiding other disturbances in the radiotracer binding area. In
addition, MRI evaluation indicated that, at least at the time of
evaluation, the animals did not present cytotoxic or vasogenic
edema, hemorrhage or infection associated with 6-OHDA admin-
istration and the posterior degeneration of dopaminergic termi-
nals in the striatum. These alterations occur in other pathologic
situations like brain infarction and could influence radiotracer ki-
netics in the lesioned area (43). In this way, it can be speculated
that cytotoxic or vasogenic edema could occur during the acute
phase of 6-OHDA administration and this might affect the
binding of radiotracer. However, a longitudinal evaluation of
[123I]FP-CIT binding during the development of nigrostriatal
degeneration is beyond the scope of this paper.

This study demonstrates that SPECT with [123I]FP-CIT can be
used to discriminate different degrees of dopaminergic lesion.
Thus, while a symmetrical striatal [123I]FP-CIT distribution was
seen in control animals, in partially lesioned animals its [123I]
FP-CIT uptake was lower in the ipsilateral striatum. This asymme-
try increased in totally lesioned animals. SUR values obtained by
SPECT image quantification revealed that partial and total
lesions led to a 61 and 76% decrease in [123I]FP-CIT binding,
respectively. An interesting collateral point is the fact that the
level of contralateral binding increases with the degree of lesion
(Fig. 4a). Although this increment is not statistically significant, it
could be caused by a compensatory mechanism of the contralat-
eral striatum in response to the loss of nigrostriatal innervation
of ipsilateral ganglia. Similar compensatory mechanisms have
been described by other authors (44).

Figure 4. Results from image quantification showing the decrease in
the ipsilateral striatum in partially and totally lesioned animals. (a) spe-
cific uptake ratio (SUR) values obtained for ipsilateral and contralateral
striatum in the three groups. One-way ANOVA, p< 0.001. *** Bonferroni
post-hoc test vs control, p< 0.001. (b) Ipsilateral contralateral SUR ratios.
One-way ANOVA, p< 0.001. *** Bonferroni post-hoc test vs control,
p< 0.001. & Student’s t-test partial vs total, p=0.0173.
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Our results are in agreement with those reported in a recent
SPECT study where [123I]β-CIT was used (29). In that study,
6-OHDA was administered to the rat striatum. As opposed to
injection directly into the basal ganglia, MFB injections induce
reproducible unilateral degeneration of dopaminergic terminals
in the striatum while avoiding mechanical injury, making them
more suitable for radiotracer evaluation. The study also reported
that [123I]β-CIT/CT showed a high correlation to immunohisto-
chemical findings, confirming its use to estimate the severity of
the 6-OHDA lesion. Moreover, since [123I]FP-CIT is used more of-
ten in clinical evaluation of movement disorders than [123I]β-CIT,
its characterization in animal models is highly desirable. In fact,
the evaluation of this radiotracer in the 6-OHDA rat model paves
the way for further use of SPECT with [123I]FP-CIT in preclinical
development of therapeutic strategies for PD and other related
pathologies.

In summary, our findings confirm the relationship between
the degree of dopaminergic degeneration (evidenced by behav-
ior and histology) and neuroimaging obtained with [123I]FP-CIT
SPECT, showing that the sensitivity of this approach allows differ-
ent levels of nigrostriatal degeneration to be distinguished in a
6-OHDA PD experimental rat model.

5. CONCLUSIONS

SPECT with [123I]FP-CIT enables the in vivo evaluation of different
degrees of dopaminergic degeneration in rats that have been
lesioned by 6-OHDA administration to the MFB.
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