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Abstract

This thesis aims to be a first approach to Thurston’s geometrisation conjecture,
which states that each 3-manifold decomposes canonically into pieces admitting
geometric structures. Starting from the definition of a model geometry, we will
see first that the only three model geometries in dimension 2 are the Euclidean,
the elliptic and the hyperbolic. Then we will show how Thurston’s theorem as-
serts that there are a total of eight model geometries in dimension 3, and we will
classify six of them as Seifert spaces. We will finish by explaining the geometri-
sation conjecture through a historical perspective, from the first results on sphere
and torus decompositions to Perelman’s proof. We will also sketch a proof of the
Poincaré conjecture as an immediate corollary.
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Introduction

In 1904, Henri Poincaré asked himself the following question:

“Consider a compact 3-dimensional manifold V without boundary. It is pos-
sible that the fundamental group of V could be trivial, even though V is not
homeomorphic to the 3-dimensional sphere?”

Nowadays this question is known as the Poincaré conjecture, which in its modern
formulation says that every simply connected, compact 3-manifold is homeomor-
phic to the 3-sphere. It was well known by 19th-century mathematicians that
the analogous statement held true for the 2-dimensional sphere. However, the
Poincaré conjecture could not be proved throughout the 20th century, despite the
number of influential mathematicians who tried it, such as J.H.C. Whitehead or E.
Moise. The conjecture was gaining reputation as more flawed proofs were pub-
lished, and in the year 2000 it was classified by the Clay Mathematics Institute as
one of the seven Millennium Prize Problems. However, as John Milnor said, the
study of the Poincaré conjecture has led not only to many false proofs, but also to
a deepening in the understanding of the topology of manifolds. A large number
of mathematicians worked on 3-dimensional manifolds in the second half of the
20th century, and the amount of literature on this topic grew exponentially.

One of the most ambitious goals for contemporary topologists was to develop an
exhaustive classification of three-dimensional geometries on manifolds, as there
was for two-dimensional ones. Indeed, they knew that any compact Riemannian
surface could be endowed with a geometric structure modelled only on the Eu-
clidean plane E2, the sphere S2 or the hyperbolic plane H2, as a consequence of the
uniformization theorem proved by Poincaré in 1907. The 3-dimensional analogues
of such geometries, namely Euclidean, elliptic and hyperbolic, also played an im-
portant role in the understanding of the geometric structures on 3-manifolds, since
they have constant curvature and therefore a large number of isometries. How-
ever, in three dimensions, more complex and non-symmetric geometries emerged.
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William Thurston proved that there are a total of 8 geometries where we can model
a compact 3-dimensional manifold: The three mentioned above E3, S3 and H3; the
two product manifolds S2×R and H2×R; the universal covering space of the spe-
cial linear group SL2R; and two Lie groups called Nil and Sol. Unfortunately, he
realised that each compact 3-manifold did not admit a geometric structure, unlike
the two dimensional case. In view of this, he conjectured in 1982 that every com-
pact 3-manifold can be decomposed canonically into smaller manifolds admitting
geometric structures.

Thurston’s conjecture was known as the geometrisation conjecture of 3-manifolds,
and it has been one of the hardest challenges for topology in recent decades.
Thurston himself tried to prove it, obtaining some positive partial results. On the
other hand, Richard Hamilton proposed a method to prove it, but he was unable to
do so. Finally, the mathematician Grigori Perelman, based on Hamilton’s method,
published in 2003 several articles which included a sketch of the proof. Perelman’s
work was verified in 2006, leading to his being offered the Fields Medal, which
he declined. The Poincaré conjecture was thus automatically proven, since any
simply connected, compact 3-manifold can be modelled on S3. Due to this fact,
Perelman was awarded the Millennium Prize in 2010, but he turned down the
prize saying that his contribution was no greater than Hamilton’s.

Nowadays, the geometrisation conjecture together with Thurston’s classification
of three-dimensional geometries is called the Thurston-Hamilton-Perelman ge-
ometrisation theorem, which states that each compact 3-manifold can be decom-
posed into smaller manifolds which admit geometric structures modelled on one,
and only one, of the 8 Thurston geometries. This theorem, together with all the
mathematical tools developed in its study, will be fundamental for the progress of
the topology of manifolds in the 21st century.
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Chapter 1

Geometric Structures on
Manifolds

The aim of this chapter is to recall the basic definitions and properties of differ-
ential geometry in order to describe geometric structures on manifolds. First of
all, we will explain how to endow a manifold with a Riemannian metric. Then we
will see triangulations and we will define the Euler characteristic, which will be
useful to classify the 2- and 3-dimensional geometries in the next chapters. Also,
we will show the existence of the universal covering space of a manifold, where
we will model the geometries, and we will study Lie groups and their actions on
manifolds. Finally we will define a model geometry.

1.1. Riemannian Manifolds

A manifold is a topological space that locally resembles the Euclidean space near
each point. To give a more formal definition, we need to specify what such local
maps mean. A coordinate n-chart on a topological space X is a pair (U, φ), where
U is open in X and φ : U → Rn is a homeomorphism onto its image. A collection
of coordinate n-charts A = {(Ui, φi)}i∈I on a topological space X whose domains
cover X,

⋃
i∈I Ui = X, is called an n-atlas for X.

Definition 1.1. (Manifold) An n-dimensional manifold M is a second countable Haus-
dorff topological space with an n-atlas on it.

For some purposes, it is useful to define a more general notion, by replacing Rn in
the above definitions by the upper half space Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}.
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4 Geometric Structures on Manifolds

Definition 1.2. (Manifold with boundary) An n-dimensional manifold with boundary
M is a second countable Hausdorff topological space in which every point has a neighbour-
hood homeomorphic to an open subset of Hn.

We define the interior of a manifold with boundary M as the subspace Int(M)

consisting of points which have some neighbourhood homeomorphic to Rn, and
the boundary of M as ∂M = M \ Int(M). The interior and the boundary of M
are manifolds (without boundary) of dimension n and n− 1, respectively. Since
any open ball in Rn is homeomorphic to an open subset of Hn, any manifold is a
manifold with (empty) boundary. However, the converse is not true. A manifold
with boundary is a manifold if and only if ∂M = ∅. Unless otherwise specified,
we will refer to a manifold as a manifold without boundary.

We are interested in adding additional structures on manifolds, such as a differ-
entiable structure. A Cr-differentiable atlas for a n-dimensional manifold M is an
n-atlas A = {(Ui, φi)}i∈I such that whenever two charts (Ui, φi) ,

(
Uj, φj

)
have a

nonempty intersection, Ui ∩Uj 6= ∅, the transition map

ψij := φi ◦ φ−1
j : φj

(
Ui ∩Uj

)
→ φi

(
Ui ∩Uj

)
is a Cr-diffeomorphism, for all i, j ∈ I.

One must keep in mind that there is not a unique atlas associated with a given
manifold. Two Cr-differentiable n-atlases A1,A2 are said to be compatible if their
union A1 ∪A2 is a Cr-differentiable n-atlas. It can be shown that compatibility is
an equivalence relation. The equivalence class of a differentiable atlas [A] is called
a differentiable structure on M.

Definition 1.3. (Differentiable manifold) An n-dimensional manifold M is said to be
Cr-differentiable, or a Cr-manifold, if it has a differentiable structure. C∞-manifolds are
also called smooth manifolds.

Another property that we want to define in a manifold is the orientation. We will
say that a Cr-differentiable n-atlas A = {(Ui, φi)}i∈I is an n-oriented atlas if, for all
transition maps ψij := φi ◦ φ−1

j , the Jacobian matrix Dψij has positive determinant.

Definition 1.4. (Orientable manifold) A n-dimensional Cr-manifold M is orientable if
it admits an n-oriented atlas.

Let M and N be two n-dimensional Cr-manifolds. A map f : M → N is a differen-
tiable map at p ∈ M if there exist coordinate n-charts (U, φ) in M and (V, ϕ) in N,
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with p ∈ U and f (p) ∈ V, such that ϕ ◦ f ◦ φ−1 : Rn → Rn is of class Cr at φ(p). A
map f : M→ N is a differentiable map if it is differentiable at each point p ∈ M. We
will say that M and N are diffeomorphic if there exists a differentiable bijective Cr-
map f : M→ N such that the inverse f−1 : N → M is also of class Cr. M. Kervaire
and J. Milnor proved in [Ker63] that, if M and N are homeomorphic 3-manifolds,
then they are diffeomorphic.

If M is a n-dimensional smooth manifold, we will denote by C∞(M) the set of all
the C∞-differentiable maps (also called smooth maps) M → R, where we are con-
sidering R as a 1-dimensional manifold with the canonical differentiable structure.
The set C∞(M) is a vector space over R, with the sum of smooth maps and multi-
plication by scalars.

We want to define an analogous notion of the derivative on manifolds. We define
a derivation Dp in M at p ∈ M to be a linear map Dp : C∞(M) → C∞(M) such
that, for every f , g ∈ C∞(M), Dp( f g) = Dp f · g(p) + f (p) · Dpg. With that, we can
define the tangent space of a manifold M at a point p ∈ M in a similar way as we
do in differential geometry:

Definition 1.5. (Tangent space) Let M be a n-dimensional smooth manifold. The tan-
gent space Tp M of M at p is the set of all derivations of M at p,

Tp M =
{

Dp : C∞(M)→ C∞(M)
}

.

Note that the tangent space Tp M is also a n-dimensional vector space, with the
sum and multiplication by scalars defined as (λDp,1 + µDp,2) f = λDp,1 f + µDp,2 f ,
for λ, µ ∈ R and for each pair of derivations Dp,1, Dp,2 in M at p. The disjoint
union of all the tangent spaces of M,

⊔
p∈M Tp M, is called the tangent bundle of M.

Formally,

Definition 1.6. (Tangent bundle) Let (M, [A]) be a n-dimensional smooth manifold.
Let TM be the set

TM =
{
(p, q) : p ∈ M, q ∈ Tp M

}
,

and let π : TM → M be the projection map satisfying π(p, q) = p. The triple
(TM, M, π) is called the tangent bundle of M.

Note that π−1({p}) = Tp M, for each p ∈ M. It can be proved that, if M is a n-
dimensional smooth manifold, then the tangent bundle TM comes equipped with
a natural topology and is a 2n-dimensional smooth manifold. The main idea is that
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we can define maps ϑi : π−1(Ui) → Rn ×Rn for every local chart (Ui, φi) of M,
such that the base of the natural topology on TM are the sets ϑ−1

i (B), for each
i ∈ I and such each open subset B ⊂ Rn ×Rn and that a smooth atlas for TM
is
{(

π−1(Ui), ϑi
)}

i∈I .

With the definition of a derivation Dp in a smooth manifold, we can define the
differential of a smooth map between smooth manifolds:

Definition 1.7. (Differential) The differential dϕp of a smooth map ϕ : M→ N between
smooth manifolds M and N at a point p ∈ M is a linear map dϕp : Tp M → Tϕ(p)N sat-
isfying

(
dϕp

(
Dp
))

( f ) = Dp( f ◦ ϕ), for each smooth map f ∈ C∞(N). The differential
dϕ of ϕ is a map dϕ : TM→ TN such that dϕ(p, q) = dϕp(q), for each (p, q) ∈ TM.

Vector fields in the Euclidean space are well known. They can also be defined
on manifolds: A smooth vector field X on a smooth manifold M is a smooth map
X : M → TM such that π ◦ X is the identity map on M, where (TM, M, π) is
the tangent bundle of M. That is, for each p ∈ M, Xp := X(p) ∈ Tp M, so
Xp is a derivation in M at p. The set of all the smooth vector fields on M is
usually denoted as C∞(M, TM). It can be shown that it is an R-vector space. If
f ∈ C∞(M) is a smooth map and X ∈ C∞(M, TM) is a smooth vector field, we can
define actions f · X and X · f by setting ( f · X)p = f (p)Xp and (X · f )(p) = Xp( f ),
respectively, for each p ∈ M. That motivates the following definition:

Definition 1.8. (Affine connection) An affine connection ∇ on a smooth manifold M
is a bilinear map

∇ : C∞(M, TM)× C∞(M, TM) → C∞(M, TM)

(X, Y) 7→ ∇XY

satisfying:

(i) ∇ f ·XY = f · ∇XY,

(ii) ∇X( f ·Y) = (X · f ) ·Y + f · ∇XY,

for each pair of smooth vector fields X, Y and for each smooth map f : M→ R.

Since the tangent space TpX of a smooth manifold at p ∈ M is a vector space, we
can define a (positive-definite) inner product gp : Tp M × Tp M → R on Tp M. An
inner product gp on Tp M is said to be smoothly chosen if for every two vector fields
X, Y : M → TM, the maps p 7→ gp(Xp, Yp) are smooth. With all that, we can
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endow a smooth manifold M with an structure, called a Riemannian metric, which
will allow us to define several geometric notions on manifolds.

Definition 1.9. (Riemannian manifold) A Riemannian metric g on a smooth manifold
M is a family of smoothly chosen inner products gp : Tp M × Tp M → R at each point
p ∈ M. A Riemannian manifold is a pair (M, g), where M is a smooth manifold and g is
a Riemannian metric on M.

We can think globally in a Riemannian metric g on a smooth manifold M as a
positive-definite, symmetric bilinear map g : C∞(M, TM)×C∞(M, TM)→ C∞(M),
satisfying g( f · X, Y) = g(X, f ·Y), for each f ∈ C∞(M). If (M, g) is a Riemannian
manifold, then there exists an unique affine connection ∇, called the Levi-Civita
connection, such that is symmetric and preserves the metric g.

Definition 1.10. (Levi-Civita connection) The Levi-Civita connection is an affine con-
nection ∇ on a smooth manifold M satisfying that, for every X, Y, Z ∈ C∞(M, TM), the
following properties hold:

(i) X · g(Y, Z) = g(∇XY, Z) + g(Y,∇XZ),

(ii) ∇XY−∇YX = [X, Y],

where [X, Y] is the Lie bracket defined as [X, Y]( f ) = X · (Y · f )− Y · (X · f ), for each
f ∈ C∞(M).

The Levi-Civita connection is related to the parallel displacement of a vector along
a curve. A parametrized curve on a n-dimensional smooth manifold M is a smooth
map γ : I → M, where I ⊂ R is an interval. We will say that a map V : I → TM
is a vector field along a curve γ : I → M if it is smooth and V(t) ∈ Tγ(t)M, for every
t ∈ I. An important vector field along a curve γ is the velocity vector γ̇(t) ∈ Tγ(t)M,
whose components are the derivatives of γi : I → R with respect to t ∈ I.

A geodesic is a parametrized curve whose tangent vectors remain parallel if they
are transported along it. Using the Levi-Civita connection, this is equivalent to:

Definition 1.11. (Geodesic) Let (M, g) be a Riemannian manifold and let ∇ be the
Levi-Civita connection of (M, g). A geodesic is a parametrized curve γ : I → M such
that ∇γ̇γ̇ = 0.
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Geodesics allows us to have an intuition about geometric structures on manifolds,
since we can define the length of a smooth parametrized curve γ : [a, b]→ M as

L(γ) =
∫ b

a

√
gγ(t) (γ̇(t), γ̇(t)) dt.

We will study this more deeply in Section 1.5.

Affine connections are also useful to describe the notion of curvature. Given an
affine connection ∇ on a smooth manifold M, we define the curvature of ∇ to be a
trilinear map R∇ : C∞(M, TM)× C∞(M, TM)× C∞(M, TM)→ C∞(M, TM) given
by

R∇ ((X, Y) , Z) =
(
∇X∇Y −∇Y∇X −∇[X,Y]

)
Z.

When M is a Riemannian manifold, we can give a geometric interpretation of the
local curvature of M.

Definition 1.12. (Sectional curvature) Let (M, g) be a n-dimensional Riemannian
manifold and ∇ the Levi-Civita connection of M. If p is a point in M, Π is any 2-
dimensional subspace of Tp M and (X1, X2) is any basis of Π, we define the sectional
curvature Kp(M) of M at p associated with Π to be

Kp(M) = gp (R∇ ((X1, X2) , X2) , X1) .

The sectional curvature does not depend on the chosen basis of Π. Some of the
most interesting Riemannian manifolds are those which have constant sectional
curvature. That is, the manifolds M such that Kp(M) has the same value at every
point p and for every 2-dimensional vectorial plane Π ⊂ Tp M. We will classify
such manifolds in Chapter 2 and Chapter 3.

1.2. Triangulations

A basic building block for topological spaces is the simplex. A 0-simplex is a point,
a 1-simplex is a closed interval, a 2-simplex is a filled-in triangle and a 3-simplex
is a solid tetrahedron. To generalize this to higher dimensions, we will considerer
that we are in an affine space An.

Definition 1.13. (Euclidean simplex) An n-dimensional Euclidean simplex σ is the
convex hull of n + 1 affinely independent points v0, . . . , vn ∈ An.
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Such a Euclidean simplex is denoted by σ = 〈v0, . . . , vn〉. Note that the dimension
of the affine space must be at least n, but it could be higher. If {ei} are the points
ei = (0, . . . , 1, . . . , 0) of An+1, for i ∈ {1, . . . , n + 1}, we define the standard n-
simplex as 4n = 〈e1, . . . , en+1〉 ⊂ An+1. However, Euclidean simplices are not
general enough for many important applications. We will define simplices in a
more abstract way.

Definition 1.14. (Abstract simplicial complex) An abstract simplicial complex Σ is a
pair (V, S), where V is a set whose elements are called vertices, and S is a collection of
finite nonempty subsets of V satisfying:

(i) For each v ∈ V, {v} ∈ S.

(ii) If σ ∈ S and τ ⊂ σ is nonempty, then τ ∈ S.

An element σ ∈ S consisting of n + 1 vertices is called an abstract n-dimensional simplex.

Henceforth, we will write σ ∈ Σ instead of σ ∈ S, and we will assume that a
simplex is an abstract simplex. If σ = {v0, . . . , vn} is a n-dimensional simplex, we
will continue to denote it as σ = 〈v0, . . . , vn〉. Any nonempty subset of σ ∈ Σ is
called a face of σ. A 0-dimensional face is called a vertex, and a 1-dimensional face
is an edge. A face of dimension n− 1 is said to be a facet. We will say that Σ is a
finite complex if it has finitely many simplices. The dimension of a finite complex Σ
is the maximum dimension of any simplex in Σ.

The standard simplex 4n inherits a topology from An+1. If σ is a k-simplex in a
complex Σ, we can take a copy |σ| of 4k. Note that |σ| is a topological space with
the topology coinduced by f : 4k → |σ|.

Definition 1.15. (Geometric realization) Let Σ be a n-simplicial complex. For each
k-simplex σ ∈ Σ, we choose pair of facets such that each facet appears in exactly one
of the pairs, and identify the facets of each pair. The geometric realization |Σ| of Σ is
a topological space, obtained as the quotient space of the disjoint union äσ∈Σ |σ| by the
equivalence relation generated by these identification maps.

Definition 1.16. (Triangulation) Any topological space X homeomorphic to |Σ| is called
a polyhedron. Such a homeomorphism h : |Σ| → X is called a triangulation of X. Any
space that admits a triangulation is said to be triangulable.

We want to answer whether every smooth manifold admits a triangulation. A
manifold is called a piecewise linear manifold, or PL-manifold, if the transition maps
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ψij = φi ◦ φ−1
j are piecewise linear. PL-manifolds are easy to triangulate, since

they admit a triangulation in which the manifold structure is evident, called a
combinatorial triangulation.

Definition 1.17. (Combinatorial triangulation) If Σ is a simplicial complex, the link
of a simplex σ ∈ Σ is the union of the simplices τi ∈ Σ such that σ ∩ τi = ∅ and σ, τi

are both faces of a simplex in Σ. A triangulation is called combinatorial if the link of every
simplex is homeomorphic to a sphere.

In 1940, J.H.C. Whitehead proved that every smooth manifold admits an essen-
tially unique compatible PL-structure [Whi40], so any smooth manifold is thus
triangulable. Low dimensional manifolds (≤ 3) admit a combinatorial triangula-
tion, since each of these manifolds admits a smooth structure, unique up to iso-
morphism; this was proved for surfaces by Tibor Radó in the 1920s [Rad25] and
for three-manifolds by Edwin Moise in the 1950s [Moi52]. In dimension greater or
equal than 4, however, there are some manifolds that do not admit a triangulation.

Since we are interested in triangulating smooth, orientable manifolds, we want
to relate the properties of compactness and orientability of polyhedra with some
equivalent properties of simplicial complexes. An edge path in a simplicial complex
Σ is a sequence of vertices such that any two consecutive vertices span an edge.
We say that Σ is edge path-connected if any two vertices can be joined by a finite
edge path.

Proposition 1.18. Let Σ be a simplicial complex. Then, |Σ| is connected if and only if Σ
is edge path-connected.

Proof. See [Lee00, Prop.5.9]

Furthermore, we are interested in defining an orientation of a simplicial complex.

Definition 1.19. (Oriented simplex) Let σ = 〈v0, . . . , vn〉 be a n-simplex. Given any
two orderings (vi0 , . . . , vin) and (vj0 , . . . , vjn) of the vertices of σ, there is a permutation s
such that s(ik) = jk, for k ∈ {0, . . . , n}. Define an equivalence relation ∼ on the set of all
orderings by saying that two orderings are equivalent if they differ by an even permutation.
A choice of an equivalence class of vertex orderings is called an orientation of σ. An
oriented simplex σ = [v0, . . . , vn] is a simplex together with a choice of orientation.

If σ = [v0, . . . , vn] is an oriented n-simplex, the orientation of σ determines an
orientation on each of its facets.
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Definition 1.20. (Induced orientation) Let τi = 〈v0, . . . , v̂i, . . . , vn〉 be a facet of an
oriented n-simplex σ = [v0, . . . , vn], where v̂i denotes that vi is omitted. The induced
orientation on τi is defined to be τi = (−1)i[v0, . . . , v̂i, . . . , vn].

If σ and σ′ are two n-simplices such that their intersection is a facet τ, we say
that the orientations of σ and σ′ are consistent if they induce opposite orientations
on τ. It can be shown that if M is a triangulated n-manifold with a triangulation
|Σ| → M, then Σ is a simplicial complex in which every (n− 1)-simplex is a facet
of no more than two n-simplices. This fact motivates the following definition:

Definition 1.21. (Orientable simplicial complex) Let Σ be an n-dimensional simpli-
cial complex. An orientation of Σ is a choice of orientation of each n-simplex in such a
way that any two simplices that intersect in a facet are consistently oriented. If Σ admits
an orientation, it is said to be orientable.

Triangulating a manifold is interesting for several reasons. One of the most im-
portant is that we can define a topological invariant: The Euler characteristic. It
is a well-known result in surface theory that, if P ⊂ R3 is a compact polyhedral
surface that is the boundary of a convex open set; and F, E, V is the number of
faces, edges and vertices of P, respectively, then V − E + F = 2. If we define the
Euler characteristic as χ = V − E + F, then χ = 2 for all P ⊂ R3 as previously
defined. We can generalize this for finite simplicial complexes:

Definition 1.22. (Euler characteristic) Given a finite simplicial complex Σ of dimension
n, letting nk the number of k-simplices in Σ, we define the Euler characteristic χ(Σ) of Σ
as

χ(Σ) =
n

∑
k=0

(−1)knk.

We would like to prove that, if |Σ| → X and |Σ′| → X are two different triangula-
tions of the space X, then χ(Σ) = χ(Σ′). Let’s first define a way to subdivide the
simplices of a complex into smaller ones.

Definition 1.23. (Subdivision of a complex) A subdivision of a simplicial complex Σ
is any complex Σ′ having the same polyhedron as Σ, and such that every simplex in Σ′ is
contained in some simplex in Σ.

Definition 1.24. (Elementary subdivision) Let Σ′ be a subdivision of a simplicial com-
plex Σ. We say that is an elementary subdivision if Σ′ contains precisely one more vertex
than Σ.
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An elementary subdivision can be obtained as follows: If Σ is a n-dimensional
simplicial complex and σ = 〈v0 . . . vm〉 ∈ Σ is a m-simplex, with m ≤ n, choose a
point u ∈ Intσ, and replace each simplex 〈v0, . . . , vm, w1, . . . , wk〉 that has σ as a face
(including σ itself) by the set of all simplices of the form 〈u, vi1 , . . . , vij , w1, . . . , wk〉,
as {vi1 , · · · , vij} ranges over proper subsets of {v0, . . . , vm}. We can do iterated
elementary subdivisions to obtain any finite subdivision.

Definition 1.25. (Combinatorial equivalence) Let Σ = (V, S) and Σ′ = (V ′, S′) be
two finite simplicial complexes. A map f : Σ→ Σ′ is called an isomorphism if there exists
a bijection f0 : V → V ′ such that σ = {v0, · · · , vn} is a simplex of Σ if and only if
σ′ = { f0(v0), · · · , f0(vn)} is a simplex of Σ′. We say that Σ and Σ′ are combinatorially
equivalent if they are isomorphic after finitely many elementary subdivisions.

Proposition 1.26. If Σ1 and Σ2 are combinatorially equivalent finite simplicial complexes,
then χ(Σ1) = χ(Σ2).

Proof. It is enough to prove that if Σ is a finite simplicial complex of dimension
n and Σ′ is an elementary subdivision of Σ obtained by adding a vertex u in the
m-simplex σ = 〈v0, . . . , vm〉, then χ(Σ′)− χ(Σ) = 0.

For every simplex τ = 〈v0, . . . , vm, w1, . . . , wk〉 of Σ that has σ as a face, Σ′ has one
less (m + k)-simplex. In its place, for each j-element proper subset {vi1 , . . . , vij}
of {v0, . . . , vm} , Σ′ has a new (j + k)-simplex 〈u, vi1 , · · · , vij , w1, . . . , wk〉. There are
(m+1

j ) such subsets, for j ∈ {0, . . . , m}, so

χ(Σ′)− χ(Σ) = − (−1)m+k +
m

∑
j=0

(
m + 1

j

)
(−1)j+k =

=
m+1

∑
j=0

(
m + 1

j

)
(−1)j+k = (−1)k(x + 1)m+1∣∣

x=−1 = 0.

This does not prove yet that the Euler characteristic is a topological invariant,
since two triangulations of the same space are not necessarily combinatorially
equivalent. However, it is shown for triangulated compact manifolds of dimension
2 and 3, that if their complexes have homeomorphic polyhedra, then they are
combinatorially equivalent.
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1.3. Covering Spaces

Given a topological space X, we are interested in finding topological spaces which
cover X nicely. Roughly speaking, we say that C is a covering space of X if C maps
onto X in a locally homeomorphic way. Formally,

Definition 1.27. (Covering space) Let X be a topological space. A covering space of X
is a topological space C together with a continuous surjective map p : C → X such that
for every x ∈ X, there exists an open neighbourhood U of x, such that p−1(U) is a union
of disjoint open sets in C, each of which is mapped homeomorphically onto U by p. We say
that the open neighbourhoods U are evenly covered by p. The map p is called the covering
map.

A topological space X trivially covers itself. Some authors require both spaces C
and X to be path-connected and locally path-connected, because many theorems
hold only if the spaces have these properties. When the covering space is simply
connected, it yields some extremely useful results.

Definition 1.28. (Universal cover) A covering space X̃ of X is a universal covering
space if it is simply connected.

The universal cover owes its name to the following property: If p : X̃ → X is a
covering map, with X̃ simply connected, and q : C → X is any covering, with C
connected, then there exists a covering map p̃ : X̃ → C such that q ◦ p̃ = p. In
simple words, the universal cover of X covers any connected cover of X. It can be
proved that every connected and locally simply connected topological space has
a universal covering space (see [Lee00, Th.12.8]). Any manifold is locally simply
connected, because it has a basis of Euclidean balls, so every connected manifold
M has a universal covering space M̃. If p : C → X is a covering map, we are
interested in the group of automorphisms of C relative to p.

Definition 1.29. (Deck group) Given a covering map p : C → X, the deck group,
denoted C(C, p, X), is the group of automorphisms ϕ : C → C such that the following
diagram commutes:

C

p   

ϕ // C
p
��

X.
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It is easy to prove that C(C, p, X) is a group with the composition operation.

If X, Y are topological spaces and h : X → Y is a map with h(x0) = y0, for some
x0 ∈ X, y0 ∈ Y, let us define the induced morphism h∗ : π1(X, x0) → π1(Y, y0)

by h∗([γ]) = [h ◦ γ], where [γ] ∈ π1(X, x0) is the equivalence class of the loop γ

in the space X centered at x0. Note that H0 := h∗ (π1(X, x0)) is a subgroup of
π1(Y, y0), H0 ≤ π1(Y, y0). Let p : C → X be a covering map with p(c0) = x0,
for some c0 ∈ C and x0 ∈ X. We say that p is a regular covering map if the group
H0 = p∗ (π1(C, c0)) ≤ π1(X, x0) is a normal subgroup, H0 E π1(X, x0).

Proposition 1.30. Let C and X be topological spaces. If p : C → X is a regular covering
map and C = C(C, p, X) is its deck group, then X is homeomorphic to C

/
C.

Proof. See [Mun00, Th.81.6].

If X̃ is the universal covering space of X and p : X̃ → X the covering map,
the group H0 = p∗

(
(π1(X̃, x0)

)
must be trivial, and thus a normal subgroup of

π1(X, x0), making p a regular covering map. Hence, any topological space X is
homeomorphic to the quotient X̃

/
C.

1.4. Lie Groups and Actions

A topological group is a group with a topology on it such that the group multi-
plication and the inversion map are continuous. We are especially interested in
manifolds carrying a group structure compatible with their differentiable struc-
ture. Such manifolds are called Lie groups.

Definition 1.31. (Lie group) A Lie group is a smooth manifold G with a group structure
(G, · ), such that the multiplication map m : G × G → G given by m(g, h) = gh, and
the inversion map i : G → G given by i(g) = g−1, are both smooth.

The importance of Lie groups stems primarily from their actions on manifolds.
Analogously to the defition of an action of a group on a set, we define a left action
of a Lie group G on a smooth manifold M as a map θ : G ×M → M, satisfying
θ(g1, θ(g2, p)) = θ(g1g2, p) and θ(e, p) = p, where e is the identity element of G.
A right action can be defined in a similar way, but we will focus our attention on
left actions. Furthermore, we will only consider smooth actions, that is, when θ is
smooth as a map from G×M into M. In this case, the map θ(g, · ) : M → M is a
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diffeomorphism, for each g ∈ G, with inverse θ(g−1, · ).

On the other hand, for any point p ∈ M we can define the orbit as the set of all
images of p under elements of G, and the isotropy group as the set of elements of
G that fix p.

Definition 1.32. (Orbit and isotropy group) Let p be a fixed point of M. The orbit of
p under the action of G is the set O(p) = {θ(g, p) : g ∈ G}, and the isotropy group of
p is the set Gp = {g ∈ G : θ(g, p) = p}.

The relation p ∼ q if q ∈ O(p) is an equivalence relation. We denote the set of
equivalence classes under the group action G by M

/
G. With the quotient topology,

it is called the orbit space of the action.

Definition 1.33. (Transitive action) Let θ : G×M→ M be a left action of a Lie group
G on a smooth manifold M. We say that an action θ : G × M → M is transitive (or
that the group G acts transitively) if, for every pair of elements x, y ∈ M, there is a group
element g ∈ G such that gx = y.

If G is a Lie group acting transitively on a smooth manifold M, there is a isomor-
phism M ∼= G

/
Gp, for each p ∈ M, and such a manifold is said to be homogeneus.

We are interested in studying under what conditions the orbit space is a smooth
manifold. Before that, we need to define some properties regarding Lie group
actions.

Definition 1.34. (Properly discontinuous action) Let θ : G × M → M be a left
action of a Lie group G on a smooth manifold M. We say that the group G acts properly
discontinuously on M (or that the action θ is a properly discontinuous action) if, for every
compact subset K ⊂ M, K ∩ θ(g, K) = ∅ for all but finitely many g ∈ G.

Note that if G acts properly discontinuously on M, then the isotropy group Gp

must be finite, for every p ∈ M. Indeed, suppose that Gp is not finite and let K be
a compact subset of M containing p. Then, there are infinitely many g ∈ G such
that θ(g, p) = p, and p ∈ θ(g, K). Hence K ∩ θ(g, K) is not empty for infinitely
many g ∈ G, and G thus do not act properly discontinuously on M.

Definition 1.35. (Free action) We say that an action θ : G ×M → M is free (or that
the group G acts freely) if the isotropy group Gp is trivial, for all p ∈ M.
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We already have enough conditions to determine when the orbit space is a smooth
manifold:

Theorem 1.36. (Quotient manifold theorem) Suppose that G is a Lie group acting
smoothly, freely and properly discontinuously on a smooth manifold M. Then the orbit
space M

/
G is a manifold of dimension dim M− dim G, and has a unique smooth struc-

ture with the property that the quotient map π : M→ M
/

G is a smooth submersion.

Proof. See [Lee13, Th.7.10].

Let M be a smooth manifold and consider its group of diffeomorphisms Diff(M).
This group is a Lie group with the compact-open topology, that is, the topology gen-
erated by subsets of the form B(K, U) = {ϕ ∈ Diff(M) : ϕ(K) ⊂ U}, where K is
compact and U is open in M. Note that the sets B(K, U) does not form a basis
of this topology since they are not closed under intersection. Instead, they form
a subbasis, which means that the open sets are arbitrary unions or finite intersec-
tions of B(K, U).

A topological group is said to be discrete if it is equipped with the discrete topol-
ogy. If Γ is a subgroup of Diff(M) acting smoothly and properly discontinuously
on M, and we denote the action of Γ on M as θ : Γ × M → M, then the set
{γ ∈ Γ : K ∩ θ(γ, K) 6= ∅} is finite for every compact subset K ⊂ M. Hence, Γ
is a discrete subgroup of Diff(M) with the compact-open topology.

1.5. Model Geometries

In this section we are going to study how to endow a manifold with a geometric
structure. A first approach to geometric structures comes from the notion of dis-
tance. Any Riemannian metric g on a Riemannian manifold M induces a distance
dg on M, since we can define dg(a, b) = infγ{L(γ)}, where γ : [a, b] → M denotes
a parametrized curve on M and L(γ) its length. Thus, each connected Riemannian
manifold (M, g) is a metric space (M, dg).

It is well-known that two metric spaces are isometric if there is a bijection between
them that preserves distances. In the context of Riemannian manifolds, isometries
also preserve the metric in some way. If X is a smooth vector field on M and
ϕ : M → M′ is a diffeomorphism, we define a smooth vector field dϕX on M′ to
be (dϕX)ϕ(p) = dϕ(Xp), for each p ∈ M.
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Definition 1.37. (Isometry) Let (M, g), (M′, g′) be Riemannian manifolds. A diffeo-
morphism ϕ : M → M′ is said to be an isometry if g(X, Y) = g′(dϕX, dϕY). We say
that M and M′ are isometric, and we write M ' M′, if there exist such an isometry
between them.

When the diffeomorphism ϕ is a local diffeomorphism, we say that ϕ is a local
isometry. The set of all isometries ϕ : M → M of a Riemannian manifold (M, g)
onto itself is a group, written as Isom(M), with the composition operation of
isometries. In fact, Isom(M) is a Lie group (see [Mye39, Sec.8]). Its manifold
topology is the compact-open topology defined in the previous section.

In order to define a geometric structure on a manifold, the existence of a (Rieman-
nian) metric is insufficient. We need to add additional properties to the metric,
such as homogeneity and completeness:

Definition 1.38. (Complete metric) Let (M, g) be a Riemannian manifold. The Rie-
mannian metric g is said to be complete if each geodesic is isometric to the real line.

The Hopf-Rinow theorem asserts that a Riemannian manifold (M, g) is complete
if, and only if, the induced metric space (M, dg) is complete, that is, if every
Cauchy sequence in (M, dg) converges. On the other hand, we say that a Rieman-
nian metric g is homogeneous if given any points x, y ∈ M, there exist an isometry
of M sending x to y. However, it is sufficient for our interests to define a weaker
property, the local homogeneity:

Definition 1.39. (Locally homogeneous metric) A Riemannian metric g on a Rie-
mannian manifold M is locally homogeneous if for all points x, y ∈ M there exists neigh-
bourhoods U ⊂ M of x and V ⊂ M of y and an isometry ϕ : U → V.

Now we have all the elements to define a geometric structure on a manifold:

Definition 1.40. (Geometric structure) A Riemannian manifold (M, g) admits a geo-
metric structure if g is a complete, locally homogeneous Riemannian metric.

If (M, g) is a Riemannian manifold which admits a geometric structure and M̃ is
the universal covering space of M, then there exists a covering map p : M̃ → M
that is a local isometry, so M̃ inherits a natural metric g̃, called the pull-back metric,
given by g̃(X, Y) = g(dpX, dpY), for each X, Y ∈ C∞(M̃, TM̃). Hence, g̃ is also
complete and locally homogeneous, and M̃ admits a geometric structure. We
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define a group action θ : Isom(M̃)× M̃ → M̃ of the isometry group Isom(M̃) on
M̃ by θ(ϕ, x) = ϕ(x). I.M. Singer proved in [Sin60] that a locally homogeneous
Riemannian metric on a simply-connected Riemannian manifold is homogeneous.
As M̃ is simply-connected, g̃ must be homogeneous, so there exist an isometry
ϕ ∈ Isom(M̃) such that ϕ(x) = y, for any points x and y on M̃. Then, the group
action of ϕ on M̃ is transitive, and M̃ is homogeneous. Any element of the deck
group φ ∈ C = C(M̃, p, M) is a diffeomorphism φ : M̃ → M̃ such that p ◦ φ = p.
Since p : M̃ → M is a local isometry, φ is a local isometry, and therefore is an
isometry since φ is a diffeomorphism. As any element of C is an isometry of M̃,
then C is a subgroup of Isom(M̃), and by Proposition 1.30 we have that M ∼= M̃

/
C.

This argument proves the following proposition:

Proposition 1.41. If M is a Riemannian manifold which admits a geometric structure
and M̃ is its universal covering space, then there exist a subgroup Γ of Isom(M̃) such
that M is isometric to M̃

/
Γ. �

This motivates us to define geometries on simply connected Riemannian mani-
folds, and to model the geometric structure of any Riemannian manifold on its
universal cover. As we have seen in the previous section, any subgroup Γ of the
group Diff(M) of a smooth manifold M acting smoothly and properly discontinu-
ously is a discrete subgroup. The converse is false, in general, but is true when M
is a complete Riemannian manifold and Γ is a subgroup of Isom(M). For conve-
nience, we will say that the action of Γ ≤ Isom(M) on M is discrete (or that Γ acts
discretely) if the action is smooth and properly discontinuous.

Definition 1.42. (Model geometry) A model geometry is a pair (X, Isom(X)), where
X is a complete, homogeneous, connected, simply connected Riemannian manifold and
Isom(X) is its isometry group. We will say that a Riemannian manifold M has a geometric
structure modelled on X if there exist a subgroup Γ ≤ Isom(X) acting freely and discretely
on X, such that M is isometric to X

/
Γ.

Our goal in describing a geometry is to identify the model space X, its isometry
group Isom(X), and all the discrete subgroups of Isom(X) acting freely on X. In
the next two chapters we will classify all the 2-dimensional and 3-dimensional
geometries.



Chapter 2

Two-Dimensional Geometries

In this chapter we will study the 3 two-dimensional geometries, since they will
be necessary to understand the three-dimensional ones. First we will describe the
geometries E2, S2 and H2, and then we will prove the uniformization theorem,
which says that these are the only 2-dimensional geometries.

2.1. The 3 Model Geometries

There are only 3 geometries where we can modelled a compact surface. From
Definition 1.5, we only need to describe the model space X and its isometry group.
We will also describe the geodesics and the metric of each of the 3 model spaces.
For a complete understanding of the surfaces with a geometric structure modelled
on these spaces, one should describe the discrete subgroups of the isometry group.
However, this is very laborious and can be found in Section §1 of [Sco83].

2.1.1. E2

The Euclidean plane E2 is fairly well-known. It can be equipped with the usual
Euclidean metric

ds2 = dx2 + dy2,

and the geodesics are the straight lines in E2. We are interested in describing the
isometry group Isom(E2), sometimes called the Galilean group. It is easy to show
that the isometries of E2 are translations, rotations, reflections and arbitrary finite
combinations of them. Any isometry α can be written as α(x) = Ax + b, where A
is a 2× 2 real orthogonal matrix, A ∈ O(2), and b is a vector in E2.

19
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2.1.2. S2

The 2-sphere S2 can be embedded in E3, and inherits the usual metric from this
space,

ds2 = dx2 + dy2 + dz2.

The geodesics are the great circles on S2 and play a similar role for S2 as straight
lines do for E2. However, there are important differences, since any two great
circles must meet, and two diametrically opposite points lie on infinitely many
great circles. Note that any isometry of E3 fixing the origin restricts to an isometry
of S2, and that every isometry of S2 extends in a natural way to an isometry of E3

which fixes the origin. The group of distance-preserving transformations of E3 is
O(3), so we have Isom(S2) ∼= O(3). In particular, any element of SO(3) ≤ O(3)
is a rotation of E3 around some line through the origin. The restriction to the
embedded S2 is a rotation of S2 and fix exactly two points, those which intersect
with the line.

2.1.3. H2

The hyperbolic plane H2 is the most interesting, since the class of surfaces mod-
elled on it is the largest. It can be thought as the upper half plane R2

+ or, equiva-
lently, as the upper half complex plane C+ = {x + iy : y > 0}, with the metric

ds2 =
1
y2

(
dx2 + dy2) .

The geodesics of the hyperbolic plane are vertical semi-straight lines and semi-
circles with center on the x-axis. Clearly, for any two points p, q ∈ H2, there is a
unique geodesic which passes through both of them.

As any isometry α ∈ Isom(H2) must take a geodesic to a geodesic, we are look-
ing for isometries which take the set of vertical lines and circles to itself. It is a
standard result of complex analysis that the transformations which do that are
the Möbius transformations f (z) = (az + b)(cz + d)−1, for a, b, c, d ∈ C satisfying
ad− bc 6= 0. A Möbius transformation can be obtained as follows: First perform
the stereographic projection from the plane to the unit 2-sphere, rotate and move
the sphere to a new location and orientation, and then perform the stereographic
projection from the sphere to the plane. The set of all these transformations forms
a group called the Möbius group, where the operation corresponds to composition.
We are only considering the upper half plane, so Isom(H2) is a subgroup of the
Möbius group. It can be proved that if a, b, c, d are real numbers and ad− bc < 0,
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the corresponding Möbius transformation interchanges the upper half plane and
the lower half plane. Hence, the orientation-preserving isometries of H2 are{

z 7→ az + b
cz + d

: a, b, c, d ∈ R, ad− bc < 0
}

,

and they form a subgroup of the Möbius group. This group can be identified with
the group PSL2R, which is the quotient SL2R

/
{±Id2}, where Id2 denotes the 2× 2

identity matrix. The orientation-reversing isometries are the composition with the
conjugation operation, and we have described all the isometries of H2.

2.2. Uniformization Theorem

Let S, T, P, K denote the sphere S2, the torus S1× S1, the real projective plane RP2

and the Klein bottle, respectively. The orientable surfaces are S, T and the non-
orientable ones are P, K.

Recall that the connected sum of two surfaces M1 and M2 is a surface M = M1]M2

formed by deleting an open disk inside each manifold and gluing together the
resulting boundaries. If m, n are positive integers, we define nT as the connected
sum of n tori and mP as the connected sum of m real projective planes. We can
enunciate the classification theorem for compact surfaces in this way:

Theorem 2.1. (Classification theorem for compact surfaces) Every orientable com-
pact surface is homeomorphic either to S or nT. Every non-orientable compact surface is
homeomorphic to mP.

Proof. See [Gal13, Chapter 6].

The Klein bottle does not appear because K ∼= 2P. Adding some spheres S does
not produce any change, since S is the identity element for the connected sum.
Furthermore, the sum of some projective plane and some tori is a non-orientable
surface, nT]mP ∼= (2n + m)P.

If M1, M2 are two compact surfaces, the Euler Characteristic of its disjoint union is
χ(M1 tM2) = χ(M1) + χ(M2). It is easy to show that the Euler Characteristic of
M1]M2 is χ(M1]M2) = χ(M1) + χ(M2)− 2, since χ(S) = 2. Using this equality
and that χ(T) = 0, χ(P) = 1 , we have that χ(nT) = 2− 2n and χ(mP) = 2−m.
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Theorem 2.2. (Uniformization theorem) Every compact, connected surface admits a
geometric structure modelled on one and only one of E2, S2 or H2.

Proof. We have to prove that every compact and connected surface is homeomor-
phic to the quotient of one of these three spaces by a subgroup of their respective
isometry groups. If M is a compact connected surface, it has a well-defined Euler
characteristic χ(M) ∈ Z, so we can break our argument into three cases, accord-
ingly with the sign of χ(M). Note that χ(M) = 0 if M ∼= T or M ∼= 2P ∼= K;
χ(M) > 0 if M ∼= S or M ∼= P; and χ(M) < 0 if M ∼= nT or M ∼= mP, for n ≥ 2
and m ≥ 3.

If χ(M) > 0, then M admits a geometric structure modelled on S2. Indeed, if
M ∼= S it is clear. Otherwise, M ∼= P. As the real projective plane is the quotient
of the sphere S with the relation that identifies antipodal points and the antipodal
map is an isometry of the sphere, then P admits a geometric structure on S2.

If χ(M) = 0, then M admits a geometric structure modelled on E2. This is because
M is either homeomorphic to a torus or a Klein bottle, and these both spaces can
be described as the square [0, 1]× [0, 1] ⊂ E2 with sides identified by the relations
(0, y) ∼ (1, y) ; (x, 0) ∼ (x, 1) (for the torus) and (0, y) ∼ (1, y) ; (x, 0) ∼ (1− x, 1)
(for the Klein bottle). As these identifications are isometries of the euclidean plane,
T and K admit a geometric structure modelled on E2.

If χ(M) < 0, then M admits a geometric structure modelled on H2. A proof of
this result is complicated, and can be found in [Bon96, pp. 4–8]. The main idea
is that, if χ(M) < 0, then M ∼= nT or M ∼= mP, and these surfaces can be cut
along a curve to obtain “pants”. Formally, we can find a 1-dimensional compact
submanifold γ of M such that each component of M \ γ is either a pair of pants
(namely an open annulus minus a closed disk) or a pair of Möbius pants (namely
an open Möbius strip minus a closed disk). These pair of pants P are surfaces
with boundary, and can be endowed with an Hyperbolic metric such that ∂P are
geodesics of H2.

A two-dimensional geometry is called Euclidean, elliptic or hyperbolic if the model
space is E2, S2 or H2, respectively. It can be shown that these 3 geometries have
constant sectional curvature. The curvature of S2 is +1, the curvature of H2 is −1
and the curvature of E2 is 0. We will see in the next chapter that this fact can be
generalized to higher dimensions.



Chapter 3

Three-Dimensional Geometries

In this chapter we will first describe the 8 three-dimensional geometries, namely
E3, S3, H3, S2 ×R, H2 ×R, S̃L2R, Nil and Sol. Then we will see the Thurston’s
classification theorem, which asserts that, under certain conditions, these are the
only three-dimensional geometries. Finally we will introduce the Seifert fibre
spaces and we will show that 6 of the 8 geometries above are Seifert.

3.1. The 8 Model Geometries

In the previous chapter we have seen that the only 3 two-dimensional geome-
tries are E2, S2 and H2. It is logical to think that their three-dimensional gen-
eralizations, E3, S3 and H3, are also three-dimensional geometries. As for the
2-dimensional case, these manifolds have constant sectional curvature, and it can
be shown that they are the only simply connected 3-manifolds with this property.
Furthermore, any Riemannian 3-manifold which admits a geometric structure and
has constant sectional curvature can be modelled in one of these 3 spaces, depend-
ing on the sign of the curvature. However, unlike the 2-dimensional case, not every
simply-connected space where we can model a geometry has this property. For
example, the product spaces S2 ×R and H2 ×R are simply-connected, but they
have much less symmetry. There are 3 more simply-connected manifolds where
we can model a geometry, the Lie groups S̃L2R, Nil and Sol, that we will describe
below.

As in the previous chapter, we are going to describe all the pairs (X, Isom(X))

satisfying the conditions of Definition 1.42. We will also describe the metric when
possible, and we will avoid describing explicity the geodesics since it is very com-
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plicated. Again, for a complete understanding of the 3-manifolds with a geometric
structure modelled on X, one should describe the discrete subgroups of Isom(X).
This can be found in Section §4 of [Sco83].

Before explaining the geometries, we are going to define some concepts of group
theory in order to understand how to construct some isometry groups. A sequence
of groups and group homomorphisms

G0
h1−−−→ G1

h2−−−→ G2
h3−−−→ · · · hn−−−→ Gn

is said to be an exact sequence if Im(hk) = Ker(hk+1), for each k = 1, . . . , n− 1. In
particular, we will say that an exact sequence is a short exact sequence if it has the
form

1 −−→ H α−−→ G
β−−→ K −−→ 1.

Note that although the homomorphisms 1 −→ H and K −→ 1 are not mentioned
because they are unique, they make α a monomorphism and β an epimorphism.
Since α is a monomorphism, it restricts to an isomorphism H −→ α(H), so we
have H ∼= α(H) = Ker(β). On the other hand, as β is an epimorphism, the first
isomorphism theorem implies that Im(β) = K ∼= G

/
ker(β). When H C G is a

normal subgroup and K ∼= G
/

H, we say that G is an extension of K by H. Group
extensions are helpful when the groups K and H are known and the properties of
G are to be determined. In this case, G is an extension of G

/
Ker (β) by Ker(β).

Furthermore, if there exist a homomorphism γ : K → G such that the composition
β ◦ γ is the identity map id : C → C, the short exact sequence defined above
is called a split, and the group G is isomorphic to the direct sum of H and K,
G ∼= H ⊕ K (see [Con08, Th.3.2]).

3.1.1. E3

The euclidean space E3 is very similar to the euclidean plane. We can equip E3

with the Euclidean metric

ds2 = dx2 + dy2 + dz2.

Again, the isometries of E3 are of the form α(x) = Ax + b, where A is a 3× 3
real orthogonal matrix, A ∈ O(3), and b is a vector in E3. The homomorphism
ϕ : Isom(E3) → O(3) sending Ax + b 7→ A is surjective, and Ker ϕ is the set of
all translations of the plane which is isomorphic to R3. Hence, we have the short
exact sequence

0 −→ R3 −→ Isom(E3) −→ O(3) −→ 1.
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However, the geometric description of isometries of E3 is slightly different from
that in E2. In the space we have screw motions, which consist of the composite of a
translation with a rotation around a line left invariant by the translation.

3.1.2. S3

The 3-sphere S3 can be understood as the unit sphere in R4, and it inherits the
euclidean metric

ds2 = dx2 + dy2 + dz2 + dt2.

The group of isometries of E4 which fix the origin is O(4), so Isom(S3) ∼= O(4).
Nevertheless, it is more interesting to consider in some situations S3 as the unit
sphere in C2, consisting of pairs z1 = a1 + b1i and z2 = a2 + b2i of complex num-
bers such that |z1|2 + |z2|2 = 1.

3.1.3. H3

The hyperbolic space H3 can be constructed in a similar way as we have done
with the hyperbolic plane. We can think in the hyperbolic space as the upper half
space R3

+ = {(x, y, z) ∈ R3 : z > 0} endowed with the Riemannian metric

ds2 =
1
z2 (dx2 + dy2 + dz2).

The isometry group Isom(H3) is generated by reflections across half-planes which
are perpendicular to the xy-plane, and inversions in a hemisphere with center on
the xy-plane. An isometry of H3 continuosly extends to its closure in R3 ∪ {∞}.
The boundary of H3 in R3 ∪ {∞} can be identified with the Riemann Sphere,
∂H3 ∼= Ĉ = C∪ {∞}, where we identify the xy-plane with C. Hence, any isometry
of H3 is determined by its restriction to Ĉ. The orientation-preserving isometries
are the Möbius transformations defined in Section 2.1.3, with the domain extended
to Ĉ. That is, the transformations z 7→ (az + b)(cz + d)−1 if z ∈ C and ∞ 7→ a/c,
where a, b, c, d ∈ C and ad − bc 6= 0. These isometries form a group that can
be identified with the projective linear group PSL2C. The orientation-reversing
isometries are the composition of the Möbius transformation with the conjugation
z 7→ z. William P. Thurston did an extensive study of the isometries of H3. It can
be found in Section 2.5 Hyperbolic Isometries of [Thu97].
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3.1.4. S2 ×R

The product space S2 ×R is perhaps the simplest of the 8 geometries, since there
are only seven manifolds with geometric structure modelled on it. To equip S2×R

with a metric, we need to study how to multiply two Riemannian manifolds. The
product of two smooth manifolds (M1, [A1]) and (M2, [A2]) is a smooth manifold
(M1 ×M2, [A]) of dimension dim(M1×M2) = dimM1 +dimM2, where the space
M1 ×M2 is a topological space with the product topology, and the atlas [A] can
be constructed with the charts of [A1] and [A2]. If (M1, g1) and (M2, g2) are
Riemannian manifolds, we can define a metric on M1 ×M2:

Definition 3.1. (Product Riemannian metric) Let (M1, g1), (M2, g2) be Riemannian
manifolds. Using the natural isomorphism T(p1,p2)(M1 × M2) ∼= Tp1 M1 ⊕ Tp2 M2 for
each (p1, p2) ∈ (M1 ×M2), we define a metric g on T(p1,p2)(M1 ×M2) as

g(p1,p2) : T(p1,p2)(M1 ×M2)× T(p1,p2)(M1 ×M2) → R

((x1, x2), (y1, y2)) 7→ g1
p1
(x1, y1) + g2

p2
(x2, y2).

With this definition, (M1 ×M2, g) is a Riemannian manifold, and we denote g as
g1 ⊕ g2. In our case, S2 ×R is a Riemannian manifold endowed with the product
Riemannian metric g1 ⊕ g2, where g1 is the metric of S2 defined in Section 2.1.2,
and g2 is the Euclidean metric of R.

Since Isom(S2 ×R) ∼= Isom(S2)× Isom(R), the isometries of S2 ×R are pairs of
isometries of S2 and R. We have shown in Section 2.1.2 that Isom(S2) ∼= O(3).
Any isometry α ∈ Isom(R) can be written as α(x) = εx + b, where ε = ±1 (that
is, ε ∈ O(1)) and b ∈ R, so they are translations and reflections on the line. The
group can be made explicit as Isom(R) = {(u, v) ∈ R2 : v = ±1} and a multipli-
cation on the pairs defined by (u, v)(u′, v′) = (u + vu′ , vv′).

We said that there are only 7 manifolds with geometric structure modelled on
S2 ×R. They are: S2 ×R, RP2 × S1, RP3]RP3, the two line-bundles over RP2 and
the two S2-bundles over S1. A proof of that can be found in [Sco83, pp. 457–459].

3.1.5. H2 ×R

The product space H2×R is similar to S2×R, although there are infinitely many
3-manifolds with geometric structure modelled on H2 × R. It is a Riemannian
manifold whose metric is the product Riemannian metric g = g1 ⊕ g2, where g1 is
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the Hyperbolic metric defined in Section 2.1.3, and g2 is again the Euclidean metric
of R. We have the natural isomorphism Isom(H2 ×R) ∼= Isom(H2)× Isom(R),
and these isometry groups are well explained in Sections 2.1.3 and 3.1.4, respec-
tively.

3.1.6. S̃L2R

It is well-known that the special linear group SL2R is the group of all 2 × 2 real
matrices with determinant equal to 1. In fact, it is a 3-dimensional Lie group. The
space S̃L2R denotes its universal covering space, and it is also a Lie group. We are
going to show that a metric on S̃L2R can be derived from the metric of H2.

First, we are going to define some concepts. If (M, g) is a n-dimensional Rieman-
nian manifold, then the unit tangent bundle of (M, g) is the set

UTM =
{
(p, q) : p ∈ M, q ∈ Tp M, gp(q, q) = 1

}
,

together with the projection π1 : UTM → M defined by π1(p, q) = p. Clearly,
the unit tangent bundle (UTM, M, π1) is a submanifold of the tangent bundle
(TM, M, π) as in Definition 1.6. Note that, since π−1

1 ({p}) ⊂ π−1({p}) = Tp M,
then π−1

1 ({p}) is a (n− 1)-sphere Sn−1 on Tp M. It can be proved that the tangent
bundle (TM, g) is a 2n-dimensional Riemannian manifold, where g is the natural
Riemannian metric on TM (see [Aba05, Def.2.3]). Then, the metric on TM induces
a metric on UTM.

If the Riemannian manifold is H2, with the metric defined in Section 2.1.3, it
induces a metric on its unit tangent bundle UTH2. If ϕ : H2 →H2 is an isometry
of H2, then the differential dϕ : TH2 → TH2 is an isometry of TH2. In particular,
if ϕ̃ is an orientation-preserving isometry of H2, then dϕ̃ is an isometry of the unit
tangent bundle UTH2. Hence, there is a natural identification PSL2R ∼= UTH2,
and PSL2(R) inherits the metric of H2. We can lift this metric to S̃L2R, since PSL2R

is covered by SL2R which itself is covered by its universal cover S̃L2R. Summing
up, we have translated the metric of H2 to S̃L2R as we can see in the following
diagram:

S̃L2R

↓
H2 −→ TH2 SL2R

∪ ↓
UTH2 ←→ PSL2R.
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The isometries of S̃L2R can be also derived from the isometries of H2. As PSL2R

is the group of the orientation-preserving isometries of the hyperbolic plane, S̃L2R

admits no orientation-reversing isometry. It can be proved that

Isom
(

S̃L2R
)
∼=
(

S̃L2R× Õ(2)
) /

Z,

since O(2) ⊂ PSL2R is the isotropy group of a point and Z ∼= π1(SO(2)).

3.1.7. Nil

The group Nil is a 3-dimensional Lie group, also called the Heisenberg group, con-
sisting of all the 3× 3 real matrices of the form1 x z

0 1 y
0 0 1


under multiplication. The name Nil comes from the fact that it is a nilpotent group.
Remember that a group G is said to be nilpotent if the upper central sequence
1 = Z0 ≤ Z1 ≤ · · · ≤ Zn, terminates with Zn = G, for some n, where the sequence
is constructed in the following way: Z1 is the center of G and, for k > 1, Zk is the
unique subgroup of G such that Zk

/
Zk−1 is the center of G

/
Zk−1. In particular, if

we consider the group
(
R2,+

)
and the homomorphism ϕ : Nil→ R2 given by1 x z
0 1 y
0 0 1

 7→ (x, y),

then the kernel of ϕ is the group consisting of matrices of the form1 0 z
0 1 0
0 0 1


·

This group is isomorphic to R, and one obtains the short exact sequence

0 −→ R −→ Nil −→ R2 −→ 0.

In order to describe the metric on Nil, we can identify Nil with R3 sending each
3× 3 matrix of Nil to (x, y, z) ∈ R3. Then, R3 is a group with the multiplication

(x, y, z) · (x′, y′, z′) = (x + x′, y + y′, z + z′ + xy′).
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Hence, Nil admits a metric invariant under left multiplication on itself. We can
define a metric on R3 by choosing a formula for ds2 at some point and determining
the corresponding formula at all other points by the group action. If we choose
the metric ds2 = dx2 + dy2 + dz2 at the origin, the corresponding invariant metric
on R3 is given by

ds2 = dx2 + dy2 + (dz− xdy)2.

All isometries of Nil preserve orientation. There exist a natural homomorphism
ψ : Isom(Nil) → Isom(E2) which sends any isometry β(x, y, z) = (x′, y′, z′) of
Nil to an isometry α(x, y) = (x′, y′) of E2, whose kernel Ker ψ can be identified
with R. Hence, we have the short exact sequence

0 −→ R −→ Isom (Nil) −→ Isom
(
E2) −→ 1.

3.1.8. Sol

The geometry Sol is the one with least symmetry. The group Sol is a Lie group
defined as a split extension of R by R2, so we have the short exact sequence

0 −→ R2 −→ Sol −→ R −→ 0,

where R acts on R2 by (t, (x, y)) 7→ (etx, e−ty). It owes its name to the fact of being
a solvable group. Remember that a group G is called solvable if there are subgroups
1 = G0 ≤ G1 ≤ · · · ≤ Gn = G such that Gk−1 is normal in Gk, and Gk

/
Gk−1 is an

abelian group, for k = 1, . . . , n.

We can identify Sol with R3 so that the xy-plane corresponds to the normal sub-
group R2 and the multiplication is given by

(x, y, z) · (x′, y′, z′) = (x + e−zx′, y + ezy′, z + z′),

The origin is clearly the identity element of the product. If we choose the metric
ds2 = dx2 + dy2 + dz2 at the origin, the corresponding invariant metric on R2 is
given by the formula

ds2 = e2zdx2 + e−2zdy2 + dz2.

Note that here is nothing special in the election of e as the base of the exponen-
tiation, since it can be replaced by any number greater than 1 by rescaling in the
z-direction.
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The group Isom(Sol) is generated by all horizontal translations, the reflections
across the xz- and yz-planes, the vertical shifts (x, y, z) 7→ (e−λx, eλy, z + λ), λ ∈ R,
and the flip (x, y, z) 7→ (y, x,−z). Hence, any isometry of Sol could be

(x, y, z) 7→
(

εe−λx + a, ε′eλy + b, z + x
)

or
(x, y, z) 7→

(
εe−λy + a, ε′eλx + b, −z + x

)
,

where a, b, λ ∈ R and ε, ε′ = ±1.

3.2. Thurston’s Classification Theorem

William P. Thurston proved that the 8 model spaces explained in the previous sec-
tion are the only ones where we can model a geometry. He worked in the context
of (X, G)-structures, which are a slight generalization of differential structures on
manifolds. Let X be a connected manifold and let G be a Lie group of diffeomor-
phisms acting transitively on X. If M is a manifold of the same dimension as X,
we say that a (X, G)-atlas on M is a pair A = {U , Φ}, where U = {Uα}α∈Λ is an
open covering of M and Φ = {φα : Uα → X}α∈Λ is a collection of maps, called
coordinate charts, such that for each pair (Uα, Uβ) ∈ U × U , the transition map
ψαβ := φα ◦ φ−1

β : φβ

(
Uα ∩Uβ

)
→ φα

(
Uα ∩Uβ

)
is the restriction of a diffeomor-

phism in G. Two (X, G)-atlases A1 and A2 are said to be compatible if A1 ∪ A2

is a (X, G)-atlas. As compatibility is an equivalence relation, one can define the
equivalence class of a (X, G)-atlas [A], and call a (X, G)-atlas Â ∈ [A] maximal if
it is the union of all the (X, G)-atlas of [A]. With this notation:

Definition 3.2. ((X, G)-manifold) A (X, G)-structure on M is a maximal (X, G)-atlas
Â on M. A (X, G)-manifold is a manifold M together with a (X, G)-structure on it.

For convenience, Thurston used an alternative (but equivalent) definition of model
geometry to the one we used in Definition 1.42.

Definition 3.3. (Thurston model geometry) A model geometry (X, G) is a connected
and simply-connected manifold X together with a Lie group G of diffeomorphisms acting
transitively on X such that all the isotropy groups Gx are compact, for all x ∈ X.

Here the compacity of the isotropy groups means that Gx is compact as a subspace
of G equipped with the compact-open topology, for all x ∈ X. We identify two
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model geometries (X, G) and (X′, G′) if there is a diffeomorphism from X to X′,
which sends the action of G to the action of G′. In this context, we will say that
a manifold M admits a geometric structure modelled on (X, G) if M is a (X, G)-
manifold.

Now we want to prove that Definitions 1.42 and 3.3 we have given of model ge-
ometry are, in some way, equivalent. In 1872, Klein defined a geometry as follows:

Definition 3.4. (Klein geometry) A Klein geometry is a pair (G, H), where G is a Lie
group and H is a closed Lie subgroup of G such that the space G

/
H is connected. The

group G is called the principal group of the geometry and the space G
/

H is called the
space of the geometry.

Our objective is to show that both definitions of model geometries are geometries
in the sense of Klein. As a consequence of the quotient manifold Theorem 1.36,
we have the following proposition:

Proposition 3.5. If G is a Lie group and H is a closed Lie subgroup of G, the right action
of H on G is smooth, free and properly discontinuous. Therefore, the space G

/
H is a

smooth manifold, and the quotient map π : G → G
/

H is a smooth submersion.

Proof. See [Lee13, Th.7.15].

With the quotient manifold theorem and the proposition above, we deduce that
the space X = G

/
H of a Klein geometry is a smooth manifold of dimension

dim G − dim H, and there is a natural left action of G on X = G
/

H given by
g · (g′H) = (gg′)H, for every g, g′ ∈ G. Taking g′ = 1, we see that X possesses
only a single group orbit, so G acts transitively on X. This proves that a pair
(X, Isom(X)) as defined in Definition 1.42 is a Klein geometry (G, H) identifying
the group of diffeomorphisms G with Isom(X) and X with G

/
H.

On the other hand, since G acts transitively on X, then X is homogeneous, and
for each isotropy group Gx, with x ∈ X, we have X = G

/
H ∼= G

/
Gx, making

the isotropy groups compact as subgroups of G with the compact-open topology.
Therefore, given a connected manifold and a smooth transitive action by a Lie
group G on X, we can construct an associated Klein geometry (G, H) by fixing a
basepoint x0 ∈ X and letting H be the isotropy group Gx0 of x0 in G. This proves
that a model geometry (X, G), in the sense of Thurston, is a geometry in the sense
of Klein if we associate X to G

/
H.
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However, Definition 3.3 is still imprecise for our objectives, since there are in-
finitely many three-dimensional model geometries (X, G). Note, for example, that
if a geometry (X, G) can be enlarged to a more symmetric geometry (X, G′) with
G ⊂ G′, then every (X, G)-structure naturally defines an (X, G′)-structure. Hence,
it makes sense to restrict our attention to geometries (X, G) where G is not con-
tained in any larger group of diffeomorphisms of X. Such geometries are called
maximal. Furthermore, as we are interested in classify compact 3-dimensional
manifolds, we will only consider model geometries (X, G) such that there exists
at least one compact manifold M modelled on (X, G). This condition eliminates a
whole continuous family of 3-dimensional geometries that do not serve as models
for any compact manifolds. With these two conditions, Thurston asserts that there
are only 8 three-dimensional model geometries, and classify them according to the
dimension of the compact isotropy groups Gx.

Theorem 3.6. (Thurston’s classification theorem) There are eight three-dimensional
maximal model geometries (X, G) for which there is at least one compact manifold modelled
on (X, G), as follows:

(i) If the isotropy groups are three-dimensional, X is E3, S3 or H3.

(ii) If the isotropy groups are one-dimensional, X is S2 ×R, H2 ×R, S̃L2R or Nil.

(iii) The only geometry with zero-dimensional isotropy groups is Sol.

Proof. See [Thu97, Th.3.8.4].

One might think that this theorem is the analogous version of the uniformiza-
tion theorem for the three-dimensional case. However, the uniformization theo-
rem classifies all the compact surfaces and the Thurston’s classification theorem
classifies only the compact 3-manifolds which admit geometric structures. The
difference stems mainly in the fact that the classification theorem for compact sur-
faces asserts that every compact surface is homeomorphic to some surfaces which
can be endowed with a well-known metric. The compact 3-dimensional manifolds
have much more freedom, and not each of them admits a geometric structure.
Thurston conjectured that even though not all of them can be modelled in one of
the 8 model geometries, they can be divided into smaller pieces which do it. This
was known as the Thurston’s geometrisation conjecture, which will be explained in
the next chapter.
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3.3. Seifert Fibre Spaces

Geometric structures on manifolds are intimately connected to the fibrations of
topological spaces. Formally, fibred spaces have the structure of a fibre bundle:

Definition 3.7. (Fibre bundle) Let E, B, F be topological spaces and π : E → B a
continuous surjective map satisfying: For every x ∈ E, there is an open neighbourhood
U ⊂ B of π(x) such that there is an homeomorphism ϕ : π−1(U) → U × F in such a
way that π agrees with the projection projU : U × F → U onto the first factor. That is,
the following diagram should commute:

π−1(U)

π

��

ϕ // U × F.

projUyy
U

Then we say that (E, B, π, F) is a fibre bundle. The space B is called the base space of the
bundle, E the total space and F the fibre. The map π is called the bundle projection.

Roughly speaking, a fibre bundle is a space E that is locally a product space B× F,
but globally may have a different structure. When E is globally homeomorphic to
B× F we say that E is a trivial bundle over B.

As we have seen in Section 3.1.2, the sphere S3 can be thought of as the points
(z1, z2) ∈ C2 that verify |z1|2 + |z2|2 = 1. We can think of S3 locally as S2 × S1.
In other words, there exists a map h : S3 → S2, called the Hopf map, such that
(S3, S2, h, S1) is a fibre bundle.

Definition 3.8. (Hopf map) Identifying S2 with the complex projective line CP1, then
S2 can be described by pairs of complex numbers (z1, z2) ∈ C2 \ {(0, 0)} under the
equivalence relation [z1 : z2] ∼ [λz1 : λz2], for λ ∈ C \ {0}. The Hopf map h : S3 → S2

is defined by h(z1, z2) = [z1 : z2].

Proposition 3.9. The set (S3, S2, h, S1) is a fibre bundle.

Proof. Clearly the Hopf map h defined as above is continuous. On the other hand,
for all [z1 : z2] ∈ S2 ∼= CP1, taking λ =

(
|z1|2 + |z2|2

)−1/2 we deduce that (λz1, λz2)

lies in S3 and h(λz1, λz2) = [λz1 : λz2] = [z1 : z2] is a surjection.
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For every x ∈ S3, let x̃ ∈ S3 be a point such that h(x̃) is the antipodal point of
h(x) in S2. Then, U = S2 \ {h(x̃)} is an open neighbourhood of h(x) in S2. Taking
µ = z2/z1, the map

ϕ : h−1(U) → U × S1

(z1, z2) 7→
(
[1 : µ],

µ

|µ|

)
is well-defined and

(
projU ◦ ϕ

)
(z1, z2) = [1 : µ] = [z1 : z2] = h|h−1(U)(z1, z2).

Note that identifying S2 ∼= C∗ = C ∪ {∞} (the Riemann Sphere), then U = C and
h(x̃) = ∞.

If I ⊆ R is an interval, we say that a fibre bundle is an I-bundle if the fibre is I.
I-bundles are useful to describe some topological spaces. For example, if D2 is
the solid disk, the solid cylinder can be fibred as D2 × [0, 1], with fibres p× [0, 1]
for each p ∈ D2. With that, we can define a trivial fibred solid torus T as the space
obtained from the solid fibred cylinder by rotating it as follows: We rotate the
top D2 × {1} while holding the bottom D2 × {0} fixed, and then identify the base
D2 × {0} with D2 × {1}. The fibres of a trivial fibred solid torus are circles. The
fibre corresponding to (0, 0)× [0, 1] is called the middle fibre of the torus. We use the
adjective trivial because there are other ways to fibre a solid torus. A (non-trivial)
fibred solid torus T(p, q) can be easily constructed from a trivial fibred solid torus
by rotating the disk D2 by an angle 2πq/p, where p > 0, q are coprime integers.

Figure 3.1: Construction of a fibred solid torus T(p, q) (right) from a fibred cylinder (left).
Adapted from [Por08].

Note that the middle fibre, colored red in the figure above, is a fibre whose neigh-
bourhood is not a trivial torus. We will call a fibre regular if it has a neighbourhood
isomorphic to a trivial fibred solid torus and critical otherwise. Any fibred solid
torus T(p, q) has at most one critical fibre: the middle fibre. Hence, a fibred solid
torus can be finitely covered by a trivial fibred solid torus.
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Analogously, we define a fibred solid Klein bottle K(p, q) to be a solid Klein bottle
which is finitely covered by a trivial fibred solid torus. K(p, q) can be constructed
in a similar way as T(p, q): First by fibrating the solid cylinder and rotating the
disk D2 by an angle 2πq/p, and then glueing the two disks back together by a
reflection. Unlike the fibred solid torus, the fibred Klein bottle has a family of
critical fibres whose union forms an annulus. With all these definitions, we can
define a Seifert fibre space:

Definition 3.10. (Seifert fibre space) A Seifert fibre space is a 3-manifold which admits
a decomposition into disjoint circles such that every fibre has a neighbourhood isomorphic
to a fibred solid torus or a fibred solid Klein bottle.

Seifert fiber spaces are also known as Seifert manifolds. The Seifert’s original def-
inition did not include the Klein bottle. However, nowadays many authors prefer
to include it because the statement “a compact 3-manifold is a Seifert fiber space
if, and only if, it is foliated by circles” is only true if we consider the Klein bottle
(see [Eps72]).

Seifert manifolds are one of the most important tools for classifying geometries on
three-dimensional manifolds, because every Seifert manifold admits a geometric
structure. The three-sphere, S3, is a Seifert manifold with the fiber bundle defined
in Proposition 3.9. It can be foliated by circles in the following way: Consider
the embedding S3 ↪→ C2. Each one-dimensional subespace of C2 (complex line)
intersects S3 in a great circle, called a Hopf circle, which can be represented as
z1/z2 = λ, for (z1, z2) ∈ S3 ⊂ C2 and λ ∈ C \ {0}. Since exactly one Hopf circle
passes through each point of S3, the family of such circles fills up S3. For a formal
proof of this result, see [Sei80] in Section Fiberings of S3. Furthermore, S3 ⊂ C2 can
be described as the unit quaternion group H×,

S3 ∼= H× :=
{

z1 + z2 j : z1, z2 ∈ C, |z1|2 + |z2|2 = 1, i2 = j2 = −1, ij = −ji
}

,

by taking the isomorphism (z1, z2) 7→ z1 + z2 j. The product in H× is defined as
(z1 + z2 j)(w1 +w2 j) = (z1w1− z2w2) + (z1w2 + z2w1)j. Hence, S3 is in fact a three-
dimensional Lie group, and we can consider a right action of S3 on itself by right
multiplication of unit quaternions. This action preserve the Hopf fibration of S3.
Indeed, if we consider (z1, z2) ∈ S3 and w1 + w2 j ∈ H×, there is a right group
action θ : S3 ×H× → S3 defined by

((z1, z2) , (w1 + w2 j)) 7→ (z1w1 − z2w2 , z2w1 + z1w2)

which transforms the Hopf circle z1/z2 = λ to the Hopf circle z1/z2 =
λw1 − w2

w1 + λw2
.
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In addition to S3, six of the eight spaces where we can model a geometry, namely
all except H3 and Sol, are Seifert manifolds:

Theorem 3.11. (Classification of Seifert geometric manifolds) Let M be a smooth
compact 3-manifold. If M is a Seifert manifold, then M possesses a geometric structure
modelled on one of E3, S3, S2 ×R, H2 ×R, S̃L2R or Nil.

Proof. See [Sco83, Th.5.3].

This theorem gives a nice division of Seifert manifolds into six classes according
to which geometric structure they admit. We have seen in Chapter 2 that the
surfaces can be classified by the sign of the Euler characteristic. In order to classify
the six classes of Seifert manifolds, we need to generalize the notion of manifold
considering a topological space which is locally homeomorphic to the quotient
space of Rn by a finite group action. This space is called an orbifold.

Definition 3.12. (Orbifold) A smooth n-dimensional orbifold is a Haussdorf, compact
topological space O endowed with a collection

{(
Ui, Ũi, φi, Γi

)}
i∈I , where for each i ∈ I,

Ui is an open subset of O, Ũi is an open subset of Rn, φi : Ũi → Ui is a continuous
map and Γi is a finite group of diffeomorphisms of Ũi acting smoothly on Ũi; satisfying the
following properties:

(i) O is covered by the open subsets {Ui}i∈I , O =
⋃

i∈I Ui.

(ii) Each φi factors through a homeomorphism φi between Ũi
/

Γi and Ui. That is, if
πi : Ũi → Ũi

/
Γi is the natural projection, then there is a homeomorphism φ such

that φi = φi ◦ πi.

(iii) For each pair i, j ∈ I and for every x ∈ Ũi and y ∈ Ũj with φi(x) = φj(y),
there exists a diffeomorphism ψ : V → W between a neighbourhood V of x and a
neighbourhood W of y such that φj(ψ(z)) = φi(z), for all z ∈ V.

This definition extends the classical definition of a manifold in the sense that O is
a manifold if all the groups Γi are trivial. Since a Seifert manifold M is foliated
by circles, every circle can be shrunk to a point and doing so we usually obtain a
surface. In general, the resulting space of this quotient, called the base space of M,
is a 2-dimensional orbifold.

Definition 3.13. (Seifert bundle) Let M be a Seifert manifold. The base space X of M
is the quotient space of M obtained by identifying each circle to a point. We call the base
space X together the projection map M→ X a Seifert bundle η.
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In Section 1.2 we have defined triangulations of manifolds and its Euler char-
acteristic. We can generalise this to orbifolds: A triangulation of an orbifold
O = {Ui, Ũi, φi, Γi}i is a decomposition of the underlying topological space into
subsets of O, called orbifold simplices, such that each point x of this underlying
space has a neighbourhood U which is a union of orbifold simplices, which is
contained in the image of some map φi : Ũi → Ui, and such that the decompo-
sition of U into orbifold simplices lifts to a triangulation of φ−1

i (U) ⊂ Ũi ⊂ Rn

which is invariant under the action of Γi. The collection of such orbifold sim-
plices is called an orbifold simplicial complex. The proof that every smooth manifold
admits a triangulation immediately extends to show that every smooth orbifold
admits a triangulation. It can be proved that, if σ is an orbifold simplex, the group
Γi is constant on Int(σ). With all that, we can define the orbifold Euler characteristic:

Definition 3.14. (Orbifold Euler characteristic) Let O = {Ui, Ũi, φi, Γi}i be an
smooth orbifold triangulated by a finite orbifold simplicial complex. For each orbifold sim-
plex σ, let Γi(σ) be the corresponding group on σ. Then, the orbifold Euler characteristic
of O is

χ(O) := ∑
σ

(−1)dim(σ) 1
|Γi(σ)|

.

Note that the orbifold Euler characteristic is, in general, a rational number. Again,
the proof that the Euler characteristic of a manifold is independent of the triangu-
lation trivially extends to orbifolds.

If M is a seifert manifold with base orbifold X, we have a short exact sequence

1 −→ K −→ π1(M) −→ π1(X) −→ 1,

where K is a cyclic group generated by a regular fibre. Furthermore, K is only
finite when X ∼= S2.

Let M be a a Seifert manifold whose base space X is a compact orientable surface
not homeomorphic to S2, and let K = 〈k〉 be the infinite cyclic group defined in
the short exact sequence above. It is well-known that the fundamental group of a
compact surface X admits a presentation

π1(X) =

〈
a1b1, · · · , agbg

∣∣∣∣ g

∏
i=1

[a1, b1]

〉
,
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where g := 1
2 (2 − χ(X)) is the genus of X and [a, b] := a−1b−1ab denotes the

commutator of the elements a and b. Let ϕ : π1(M) → π1(X) be the epimorphism
sending the elements ai, bi ∈ π1(M) to the elements ai, bi ∈ π1(X), for every
i = 1, · · · , g. The element ∏

g
i=1[a1, b1] lies on Ker(ϕ), and thus in K. Since K is

cyclic, there must exist a (minimal) positive integer r such that

g

∏
i=1

[a1, b1] = kr.

Definition 3.15. (Euler number) If η is a Seifert bundle with base space a compact
orientable surface not homeomorphic to the sphere, then the integer e(η) = −r is called
the Euler number of η.

We have only defined the Euler number for some Seifert bundles. However, it can
be defined for any Seifert bundle with base space a 2-dimensional smooth orb-
ifold X. The Euler number is a topological invariant of the Seifert bundle. For a
detailed description of this, see [Sco83] in Section §3.

The orbifold Euler characteristic and the Euler number are two topological in-
variants which allow us to classify the six classes of Seifert manifolds claimed in
Theorem 3.11. If η is the Seifert bundle of a Seifert manifold M with base space X
and we denote χ = χ(X) the orbifold Euler characteristic and e = e(η) the Euler
number, then the geometry of M is determined as shown in the following table:

χ > 1 χ = 0 χ < 0

e = 0 S2 ×R E3 H2 ×R

e 6= 0 S3 Nil S̃L2R

The two non-Seifert geometries are Sol and H3. However, a torus bundle over
S1 can be modelled on Sol. In particular, we say that an Anosov diffeomorphism is
a diffeomorphism of the 2-torus T2 whose action on SL2Z has two distinct real
eigenvalues. If ϕ : T2 → T2 is an Anosov diffeomorphism and Mϕ is the torus
bundle over S1 with bundle projection ϕ, then Mϕ is modelled in Sol. On the
other hand, the vast range of manifolds modelled on H3 makes them the most
mysterious, rich and difficult to classify. Thurston’s research focused mainly on
the study of hyperbolic manifolds.



Chapter 4

The Geometrisation Conjecture of
3-Manifolds

This final chapter will be devoted to introduce the Thurston’s geometrisation con-
jecture of 3-manifolds. Firstly, we will describe how to decompose a manifold into
canonical pieces, in order to understand the statement of the conjecture, and then
we will introduce it through a historical perspective. Finally we will show its main
applications and corollaries, such as the Poincaré conjecture.

4.1. Canonical Decomposition

In this section we will see that any compact 3-manifold can be split in a reasonably
canonical way into smaller pieces. First we are going to cut M along spheres,
which is equivalent to decompose M into connected summands.

Definition 4.1. (Connected sum) Let M1, M2 be two n-dimensional manifolds. The
connected sum M1]M2 of M1 and M2 is formed by deleting the interiors of n-dimensional
balls B1 ⊆ M1 and B2 ⊆ M2, and attaching the resulting manifolds M1 \ B̊1 and M2 \ B̊2

to each other by a homeomorphism h : ∂B1 → ∂B2. We write

M1]M2 =
(

M1 \ B̊1
)
∪h
(

M2 \ B̊2
)

.

The choice of the identification h only matters up to isotopy. Note however that if
M1 and M2 are oriented manifolds, then there is a unique isotopy class of identi-
fications such that M1]M2 admits an orientation compatible with those of M1 and
M2.

39
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Henceforth, we will suppose M a connected, oriented manifold unless otherwise
specified. It is clear that Sn is an identity element for the connected sum, meaning
that if M is a n-dimensional manifold, then M = M]Sn. Therefore, if M1 and M2

are two n-dimensional manifolds, we will say that the connected sum M1]M2 is
trivial if either M1 or M2 is the n-sphere. This motivates the following definition:

Definition 4.2. (Prime manifold) A prime manifold P is a n-dimensional manifold that
cannot be expressed as a non trivial connected sum of two n-manifolds.

That is, P is a prime manifold if P = M1]M2 implies that either M1 or M2 is Sn.
On the other hand, we will say that a manifold is irreducible if every embedded
sphere bounds an embedded ball. Formally,

Definition 4.3. (Irreducible manifold) An irreducible n-dimensional manifold N is
a manifold in which for every submanifold S ⊂ N homeomorphic to the (n − 1)-sphere
Sn−1, there exist a subset D ⊂ N homeomorphic to the n-ball Bn such that ∂D = S.

In general, it is not clear that these two definitions have anything in common.
However, they are in fact very nearly equivalent, especially for 3-manifolds. We
want to prove that irreducibility is stronger than primeness:

Proposition 4.4. Every irreducible 3-manifold N is prime.

Proof. If N is an irreducible manifold and we express N = N1]N2, then N is
obtained by removing a 3-ball each from N1 and N2 and gluing the resulting 2-
spheres together. Let Bk ⊂ Nk be the ball that was removed from Nk, for k ∈ {1, 2},
and ∂Bk the corresponding spheres. These united spheres form a 2-sphere in N,
and the fact that N is irreducible means that this sphere must bound a ball B ⊂ N.
Then, B is equal to one of the two pieces obtained from N by cutting along a
sphere, and those two pieces are N1 \ B1 and N2 \ B2. It follows that for either
k = 1 or k = 2, the manifold Nk is reconstructed by gluing B and Bk. That
gluing identifies ∂B and ∂Bk. But any manifold that is obtained by gluing two
3-balls, identifying their 2-sphere boundaries, is homeomorphic to S3, and N is
thus prime.

We have seen that if M is a 3-manifold in which any embedded 2-sphere bounds
and embedded 3-ball, then M is prime. In particular this is true for any separating
sphere, that is, an sphere S2 such that M \ S2 is not connected. The converse result
is also true: If M is a prime manifold, any embedded separating sphere bounds a
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ball. Indeed, if S2 separates M into two components M1 and M2 such that neither
M1 nor M2 is a ball, then M would not be prime.

The three sphere S3 is an irreducible manifold, and hence prime, as a consequence
of Alexander’s theorem:

Theorem 4.5. (Alexander’s theorem) Every embedded 2-sphere in R3 bounds an em-
bedded 3-ball.

Proof. See [Hat80, Th.1.1].

We know that irreducible 3-manifolds are prime, but we would like to know
which prime 3-manifolds are irreducible. Surprisingly, all the prime orientable
3-manifolds are irreducible, except one: S1 × S2.

Lemma 4.6. S1 × S2 is prime.

Proof. Let S ⊂ S1 × S2 be a separating 2-sphere, so
(
S1 × S2) \ S consists of two

compact 3-manifolds M and M′, each with boundary a 2-sphere. By the Seifert-
van Kampen theorem, we have Z = π1(S1 × S2) ∼= π1(M) ∗ π1(M′), so either M
or M′ must be simply-connected, say M is simply-connected. This is because, if
G is a subgroup of Z, then either G ∼= Z or G ∼= ∗. The universal cover X̃ of
S1 × S2 can be identified with R3 \ {0}. Indeed, the maps ν : R → S1, ν(t) = eit

and id : S2 → S2 are covering maps of S1 and S2, respectively. As R and S2 are
simply connected, they are the respective universal covers of S1 and S2. Consider
the map f : R3 \ {0} → S2 ×R+ \ {0} defined by f (x) =

(
x‖x‖−1, ‖x‖

)
. Since

f is a diffeomorphism and R+ \ {0} is diffeomorphic to R, the universal cover
of S1 × S2 is diffeomorphic to R3 \ {0}. If p : R3 \ {0} → S1 × S2 is the cover
map, M ⊂ S1 × S2 lifts to a diffeomorphic copy M̃ of itself in R3 \ {0}. As ∂M is
a 2-sphere, then ∂M̃ must bound a ball in R3 \ {0} by Alexander’s theorem. We
conclude that M̃ is a ball, hence also M. Thus every separating sphere in S1 × S2

bounds a ball, so S1 × S2 is prime.

Proposition 4.7. The only orientable prime 3-manifolds which are not irreducible are
those isomorphic to S1 × S2.

Proof. By Lemma 4.6, S1 × S2 is prime. If M is a prime 3-manifold, every embed-
ded 2-sphere in M which separates M into two components bounds a ball. So if M
is prime but not irreducible there must exists a non-separating sphere S in M. We



42 The Geometrisation Conjecture of 3-Manifolds

can embed the product S2× [0, 1] in M, h : S× [0, 1]→ M with h
(
S2 × {1/2}

)
= S,

call h
(
S2 × [0, 1]

)
= S× I. In M \ (S× I), let α be an arc joining S×{0} to S×{1},

and let N(α) be a tubular neighbourhood of α. In an orientable manifold M, the
union M′ = (S× I) ∪ N(α) is a manifold diffeomorphic to S1 × S2 minus a ball.
As the boundary ∂M′ of M′ separates M, it has S1 × S2 as a connected summand.
Assuming M is prime, then M = S1 × S2.

With all this, we can already face the main theorem of this chapter, and one of the
most important theorems of the 3-manifold topology:

Theorem 4.8. (Kneser’s-Milnor theorem) Every oriented compact 3-manifold M is a
finite connected sum of manifolds

M ∼= P1]P2] · · · ]Pn

where each Pi is prime. Such a decomposition is unique up to ordering of the factors and
homeomorphism of the factors.

Figure 4.1: Kneser-Milnor decomposition. Taken from [Est06].

This theorem owes its name to both Kneser, who proved the existence in 1929
[Kne29], and John Milnor, who proved the uniqueness in 1962 [Mil62]. Even
though the proof exceeds the level of this thesis, we can take an heuristic ap-
proach to understand it: If P is not itself prime, then it admits a decomposition
P ' P1]P2, with P1 and P2 not S3, and we can repeat this process on P1 and P2 if
they are non-prime. On the other hand, if P has a non-separating S2, there exists a
decomposition P = N]

(
S1 × S2). This process must end after finitely many steps

because each S1 × S2 summand gives a summand of Z for π1(M).
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In fact, Proposition 4.7 gives a stronger version of the Kneser-Milnor Theorem:
Every oriented compact 3-manifold M is a finite connected sum of manifolds

M ∼= N1]N2] · · · ]Ns]S1 × S2] · · · ]S1 × S2

where each Ni is irreducible. Again, this decomposition is unique up to ordering
and homeomorphism of the factors.

Beyond the prime decomposition, there is a further decomposition of irreducible
compact orientable 3-manifolds, splitting along tori rather than spheres.

Firstly, we need to define some properties of embedded surfaces on 3-manifolds.
Let M be a 3-manifold and let S ↪→ M be an embedded connected surface. An
embedded disk D ↪→ M with D ∩ S = ∂D is called a compressing disk for S .

Definition 4.9. (Incompressible surface) A connected surface S ⊂ M other than the
2-sphere S2 or the 2-disk D2 is called incompressible if for each compressing disk D ⊂ M
for S there is a disk D′ ⊂ S such that ∂D = ∂D′.

In other words, an incompressible surface on a 3-manifold is a surface such that,
for each disk whose boundary lies on the surface, it bounds a disk on it. A simpler
but less intuitive way to define it is as follows: A surface S is said to be incom-
pressible if the map ι : π1(S) ↪→ π1(M) is injective. We will not prove that these
two definitions are equivalent; but it comes from the fact that if D ⊂ M is a com-
pressing disk, then ∂D is nullhomotopic (i.e. homotopic to a constant map) in M,
hence also in S if the map ι is injective. It remains to show that a nullhomotopic
embedded circle in a surface must bound a disk.

Incompressible surfaces are interesting because, if they are removed from an irre-
ducible manifold, it remains irreducible:

Proposition 4.10. If S ⊂ N is a finite collection of disjoint incompressible surfaces and
N is irreducible, then N \S is irreducible.

Proof. If N is an irreducible manifold, then every 2-sphere must bound a ball in
N. In particular, there exist a 2-sphere S2 ⊂ N \S such that it bounds a ball B3

in N. Since R3 is simply connected, π1(R
3) ' ∗, and it is immediate from the

previous definition that there are not incompressible surfaces in it. Indeed, the
only connected surfaces S that make the map ι : π1(S) → ∗ injective are those
homeomorphic to the 2-sphere, and they are not incompressible by Definition 4.9.
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Hence, there are not incompressible surfaces in B3 ∼= R3, and B3 ∩S = ∅. So the
sphere S2 bounds a ball in N \S, and N \S is thus irreducible.

The incompressible surfaces we are interested in are incompressible tori. A com-
pact 3-manifold N is said to be atoroidal if we cannot embed any incompressible
tori in it. The following theorem, known as the JSJ splitting theorem, was discovered
in the 1970s by W. Jaco and P. Shalen from one side, and K. Johannson indepen-
dently [Jac76].

Theorem 4.11. (JSJ splitting theorem) Let N be an irreducible, compact and orientable
3-manifold. There exists a finite collection T = {T1, · · · , Tk} of disjoint incompressible
tori such that each component of N \ T is either atoroidal or a Seifert manifold, and a
minimal such collection T is unique up to isomorphism.

Figure 4.2: Jaco-Shalen, Johannson splitting. Taken from [Est06].

Here minimal means that, if T ′ is another collection, then T ⊆ T ′. Hence, T = ∅
if N is either atoroidal or a Seifert manifold. Note that each component of N \ T
is a manifold Ni with boundary ∂Ni = Ti, for some Ti ∈ T .

Summing up, the canonical decomposition of a compact, orientable 3-manifold M
can be obtained as follows: First, we decompose the manifold in its prime com-
ponents, M = P1] · · · ]Pn, known as the Kneser-Milnor decomposition. As every
prime component Pi is either S1 × S2 or an irreducible manifold Ni, we can write
M = N1]N2] · · · ]Ns]S1 × S2] · · · ]S1 × S2. Note that S1 × S2 is a Seifert manifold.
On the other hand, the irreducible components Ni can be split along tori, by a JSJ
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Splitting, so that each subcomponent (which is a manifold with boundary) is ei-
ther atoroidal or a Seifert manifold (or both). The interior of such subcomponents
is a manifold. In this way, we have obtained the canonical pieces into which a 3-
manifold decomposes, that can be Seifert manifolds or atoroidal manifolds. These
pieces will be necessary to understand the geometrisation conjecture that we will
study in the next section.

4.2. The Geometrisation Conjecture

As we have seen in Section 3.2, William P. Thurston proved that each manifold
which admits a geometric structure can be modelled on one and only one of
eight model geometries. However, unlike the 2-dimensional case, not every 3-
dimensional manifolds admits a geometric structure. For example, if we take two
hyperbolic manifolds with toral boundary and we glue them along their boundary
tori, the resulting space is a manifold (without boundary) that does not admit a
geometric structure. In 1982, Thurston gave a first version of the Geometrisation
conjecture:

Conjecture 4.12. (Thurston’s Geometrisation Conjecture) Every compact, orientable
3-manifold decomposes canonically into pieces whose interior is either Seifert fibred or
hyperbolic.

The canonical decomposition he refers is the explained in the previous section.
However, this statement does not mention geometric structures. Nowadays, the
geometrisation conjecture is enunciated as follows:

Conjecture 4.13. (Geometrisation Conjecture) The interior of any compact, orientable
3-manifold M can be split along a finite collection of disjoint embedded spheres and incom-
pressible tori into a canonical collection of 3-submanifolds M1, . . . , Mn such that, for each
i, the manifold obtained from Mi by capping off all sphere components by balls admits a
geometric structure.

The equivalence between these both formulations of the Geometrisation conjec-
ture comes from the fact that a 3-manifold admits a locally homogeneous metric
if, and only if, it is either hyperbolic, Seifert fibred or a torus bundle over S1.

The geometrisation conjecture was motivated because some partial results were
known before its formulation. Waldhausen noticed that some manifolds, called
graph manifolds, decomposes into geometric pieces.
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Definition 4.14. (Graph manifold) A 3-dimensional compact, orientable manifold is
called a graph manifold if it is a union of Seifert manifolds along toral boundaries.

More specifically, he proved in 1967 that any any graph manifold is the connected
sum of manifolds whose JSJ split contains only Seifert manifolds. Note that even
though this result seems trivial, it is not since the toral boundaries do not have to
be incompressible tori after the union. On the other hand, Thurston proved also a
partial result for Haken manifolds.

Definition 4.15. (Haken manifold) A compact, orientable, irreducible 3-dimensional
manifold is called a Haken manifold (or a sufficiently large manifold) if it contains an
irreducible surface.

In particular, he proved in 1981 that any Haken manifold is hyperbolic if, and only
if, it is atoroidal. Clearly, any graph manifold and any Haken manifold satisfies
the geometrisation conjecture.

The JSJ splitting Theorem 4.11 asserts that the interior of the pieces obtained in the
canonical decomposition are either Seifert manifolds or atoroidal. In Section 3.3
we have seen that any Seifert manifold admits a geometric structure, so in order to
prove the geometrisation conjecture one only needs to prove that atoroidal mani-
folds also admit geometric structures. It was conjectured that atoroidal manifolds
have either an elliptic or hyperbolic geometry, according to whether the funda-
mental group is finite or not. Hence, the geometrisation conjecture splits into two
simpler conjectures:

Conjecture 4.16. (Elliptization Conjecture) A closed, orientable 3-dimensional mani-
fold is elliptic if and only if its fundamental group is finite.

Conjecture 4.17. (Hyperbolization Conjecture) A compact, orientable 3-dimensional
manifold is hyperbolic if and only if it is atoroidal and has infinite fundamental group.

Recall that a 3-manifold is called elliptic or hyperbolic if it admits a geometric
structure modelled on S3 or H3, respectively. Hence, the geometrisation conjec-
ture is true if both elliptization and hyperbolization conjectures are true.

In 1982, Richard Hamilton introduced a method to evolve a Riemannian metric
in any Riemannian manifold, called the Ricci flow. He tried to show that mani-
folds endowed with complicated metrics also admit more symmetric metrics (for
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example, with constant sectional curvature or homogeneous). The Ricci flow is
a one-parametric family of Riemannian metrics {gt}t∈I on a smooth manifold M
satisfying the differential equation

∂gt

∂t
= −2Ricgt .

The term Ricgt denotes the Ricci curvature of the metric gt, which is defined to be

Ricgt(X, Y) := Trace (Z 7→ R∇t(X, Z)Y)

for every smooth vector fields X, Y, Z ∈ C∞(M, TM), where R∇t is the curvature
of the Levi-Civita connection of gt defined in Section 1.1. Hamilton proved that for
any metric g0 on M, there exist ε > 0 such that the differential equation above has
a unique solution defined on the interval [0, ε) with initial condition g = g0. He
believed that the Ricci flow could be a powerful tool to prove the geometrisation
conjecture.

And Hamilton was right. Finally, the mathematician Grigori Perelman published
in 2003 a proof of the geometrisation conjecture, based on the notes of Hamil-
ton about the Ricci flow. More specifically, Perelman showed that any compact
orientable manifold M decomposes as

M ∼= M1] · · · ]Mr]E1] · · · ]Ek]S1 × S2] · · · ]S1 × S2

where Ei are elliptic manifolds and each Mi admits a torus decomposition as
Hi t Gi, with Hi an hyperbolic manifold and Gi a graph manifold.

Perelman’s proof was written in several publications that far exceed the level of
this thesis. However, the reader can consult [Est06] and [Por08] for a sketch of
the proof, or [Bes10] for a more exhaustive explanation. In 2006, the proof was
verified, so the geometrisation conjecture should be called today the Thurston-
Hamilton-Perelman geometrisation theorem of 3-manifolds.

4.3. Applications and Consequences

The geometrisation theorem, together with the Thurston’s classification theorem,
gives a complete understanding of the geometric structures on compact, orientable
3-dimensional manifolds, such as the uniformization theorem for 2-dimensional
ones. We can say that such a manifold can be decomposed into canonical pieces
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whose interior can be modelled in one and only one of the 8 Thurston’s geome-
tries. One might note that the canonical decomposition described is sufficient but
not necessary, since Sol geometry does not appear. This is because the canonical
pieces are Seifert manifolds or atoroidal, and as a consequence of the hyperboliza-
tion conjecture, atoroidal manifolds are elliptic or hyperbolic. But any manifold
modelled on Sol is neither Seifert nor hyperbolic. If ϕ is an Anosov diffeomor-
phism and Mϕ is a torus bundle over S1 modelled on Sol, it admits a geometric
structure although its JSJ splitting is not trivial.

Note that the Poincaré conjecture is a particular case of the elliptization conjecture.
It is easy to prove it as a corollary of the geometrisation theorem:

Theorem 4.18. (Poincaré Conjecture) Every simply connected, compact 3-manifold is
homeomorphic to S3.

Proof. Let Σ be a compact, simply connected manifold. As the fundamental group
of Σ is trivial, it has no incompressible tori since the fundamental group of the
torus is Z⊕Z. Hence, the canonical decomposition of Σ must be trivial, and thus
by the geometrisation theorem Σ admits a geometric structure. Again, since Σ is
simply connected, it is its own universal cover and the model space of Σ is Σ. Then
Σ must be one of the 8 model geometries, but S3 is the only compact one.

Another consequence of the geometrisation theorem is the spherical space form con-
jecture, which asserts that a finite group acting on S3 is conjugate to a group of
isometries of S3. However, the applications do not depend only on the geometri-
sation theorem, but on the tools developed to prove it. In the last decade, many
works have been published applying the Ricci flow with cosmological motivations.

The generalized Poincaré conjecture for n-dimensional manifolds is already proven.
Surprisingly, the case n = 3 was proved the last. Higher dimensional manifolds
are often easier than lower, because there is more space to carry out geometric con-
structions. However, 4-dimensional spaces are a jungle, because of the difficulty
of classifying all finitely presented groups. Whether it is possible to generalise the
geometrisation theorem to higher dimensions or not is a question that topology
will answer in this century or in the coming ones.
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