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Abstract.- We consider the trapezoidal problem of four bodies. This 

is a special problem where only three degrees of freedom are invol

ved. The blow up method of McGehee can be used to deal with the qua

druple collision. Two degenerate cases are studied in this paper, 

the rectangular and the collinear problems. They have only two de

grees of freedom and the analysis of total collapse can be done in 

a way similar to the one used for the collinear and isosceles pro

blema of three bodies. We fully analyze the flow on the total colli

sion manifold, reducing the problem of finding heteroclinic connec

tions to the study of a single ordinary differential equation. For 

the collinear case from which arises a one parameter family of equa

tions the analysis for extreme values of the parameter is done and 

numerical computations fill up the gap for the intermediate values. 

Dynamical consequences for possible motions near total collision 

as well as for regularization are obtained. 

§1. Introduction. The trapezoidal problem of four bodies consists 

in the description of the motion of four particles of mases m1 ,m2 
= m1 ,m3 ,m4=m3 with initial coordinates (a,b), (-a,b), (c,d) and 

• (-c,d), respectively and velocities such that the symmetry of coordi 

na tes is keeped for all time. We can suppose that the center of 

masses remains at the origin, i.e., m1b + m3d = O. New variables 

K=2a, y=2c, z=b-d can be introduced (see fig. 1). The motions near 

quadruple collision for that problem have been partially described 

fig. 1 here 

in (5). In order to give a complete picture of the flow on the to

tal collision manifold we restrict ourselves to two degenerate ca

ses: the rectangular and the collinear. In the first the four maeses 
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are equal and a=c, b=d. In the second one has b=d=O but we ~ti 11 

have one parameter: the mass ratio a= m2/m
1

. Then the total colli-

sion manifold is two dimensional (see (6) and (1)) and the invariant 

manifolds associated to the cri ti cal points are one dimensional. 

The study can be done on the s&ne lines as the one found in (6) and 

(7) for the collinear three body prob!em, or in (1), [ 8 ) and 

(2) for the isosceles problem. However the analysis of the behavior 

of the invariant manifolds is done using a single ordinary differen

tial equation. A similar method was formulated in (4) and (3). 

§2. The rectangular case. First we set the masses equal to one for 

the bodies. We write down the Lagrangian 

L 

and the corresponding Hamiltonian 

H 
_g 
X 

2 
y 

where the coordinates are described in fig. 2 

fig. 2 here 

The resulting Hamilton equations are 

x Px 
2 2x 

Px - ;¡:2 - ¡-3 

y= Py Py 
3 -~ - y2 

' 
where 2 2 ½ ' = (x +y ) • 

Let us introduce the change of variables (see 

-1 
y= Y' p 

y 

Y, 
p ''. y 

(6)): 

, d 3/2 d 
= dT = ' dt 

Then we have x2+v2 = l and t = ,-1(xp +yp ). Introducing V=XPX+ 
X y 

+YP y we get the blown up equations: 
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x• 

Y' 

P - XV 
X 

Py - YV 

P' 
X 

P' y 

2 X 2 - 2X + ½ VPX 

2 
y2 - 2Y + ½ VPY 

0n t=O (total collision manifold C) the equations are still 

regular and we shall use the descriptiol'I of the flow on C to get 

information about passage near totRl collision. As we know the chan-

ge of variables is a diffeomorphism for t~O. The change has blown 

up the point x=y=o to the manifold C. This has no physical meaning 

nor the fact that the new time ton C is obtained by and infinite 

slowing down of the physical time. However, the regulari ty of the 

equations on C gives informations for small positive values of 

t and this has a clear physical importance. 

u 
the equations of the e2ergy is 

V and we get V' U - 2 . 

The equilibrium points are u 
e 

and V ±18/2"+4. 
e 

o where 

2+4✓2 

We introduce a new change of coordinates: X 

and therefore 

cos 8, Y =sin 8 

X' = -sin e.e• 

But p2 = p2 + p2 2U and Arg 
X y 

= v. Therefore 

P X = P cos y 

After substitution we have 

8' = ±/2V' 

P -XV 
8. _x_ 

sin 8 

+ 
allow us to write Pcos(y-8)= p = y 

V cos e - ¡---¡;2:v2 sin e • 

V'=U(e)-~2 ' U(e) = c;se + sJ!e + 2 

that\,we integrate from 

unstable manifold W~ 

8 = w/4, V IB✓'l + 4 on to obtain the 

of the lower equilibrium point A (see fig. 3). 

Now we have several possibilities for studying the equations of the 

manifold. We can obtain d8/dV (see 13) or we can use the are par~ 

meter o along W~ as independent variable. The new equations are 
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dV = (1 + 2/V')-½ 
da 

±(1 + V'/2)-½, 

avoiding all the singularities. The change of sign in d8 is produ
da 

ced when 8=0 or w/2. 

fig. 3 here 

§3. Numerical computations and analytical estimations far the rec

tangular case. The last equations have been integrated starting .at 

A up to arrivirlg to V=O (point B). The values obtained are 8(B)= 

0.5877, a(B) = 4,459. It is clear, using the symmetry with res-

pect to 8 = w/4 and V=O, that to have a connection between lower, 

A, and upper, D, equilibrium points requires 8 (B) be a multiple 

of w/4. The value 0.5877 is quite different from O and w/4. However 

for people who deslikes results obtained through numerical integra

tion we offer a proof of the fact that Ws t Wu that involves only 
D A 

inequali ties and a few evaluations of trigonometric and hyperbolic 

functions. 

Dividing 8' by V' we have 

lddvªI -- = J v2 .2,v• = l/sec8+cosece+1-4 

we intend to show that starting at B
1 

and going backwards we reach 

the curve V= /2üITT"" to the right of the point A and starting at 

B2 we reach 8 =w/4 above the point A (see fig. 4) 

fig. 4 here 

0

To prove the first part we show that this is true for a vectorfield 

F such that 1 :~ 1 , F and for the second, that i t is true for a 

G such that l!!I > G. 

Let '.k1 = [min (sÍc 8+ cosec e). In this range of e we take 
-. eE e e 

i • i+l ti 1 ¡Ji v
2 

1/ Jk1+1-f. 
de 

F = lf we set dV = F one has 68 = + dV k +1-- • 
Vi i 4 

Letting V= 2~ sin a we obtain 68 = 26a. Now we split the 

range of 8 in the following set of intervals (in degrees) [0°,5°] 

{5º,15º],(15º,30º),(30º,60º],(6o 0 ,75º],[75º,85°J,(85º,95°],(95º,105º) 

( 105°, 120°], [ 120°, 135°) • For angles greater then 90° we tak_e the 
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symmetrical with respect to 90°. The points separing intervals are 

e 
O 

=0º, e1 =5º, ••• , e9=120º, \o=135°. At each one of such points 

we shall compute Vi. Note that for each Vi we have two values 

of o, 0 21 _1 , 0 21 , depending on the value of k1 used, the one re

lated to the left or right interval. Using symmetry and convexi ty 

k
0 

sec 5° + cosec 5° = k6 , k1 = 2 ✓6 =
0

k5 = k7 , k2 = 2+2//3 

= k4 k8 , k3 = 2h = k9 • 

We set up te recurrence o2l+l = 0 21 + (e1+1-e1 )/2, 

~ sin o2i+l = lki+l+l sin 0 21 +2 ' i = O t 8, starting with o
0

=0. 

A few computations of trigonometric functions give the values 

a 1 ff/72, a 3 = o.153246335, a 5 = o.313807297, a 7 = o.589183175, 

ºg 0.693534686, º11 = 0.653534211, º13 = 0.501227454, º15 = .900181094 

0 17 = l.335010689 and then we obtain sin 0 18 > 1 showing that un-

der F we reach the value V=Vc to the right of polnt A. 

d9 Now we proceed to study the solutlons of dV = G starting at 

V= O, 9= w/4. Consider the interval [a,b) e (0,w/4]. Suppose that 

V(a) < V(b). Then we take as 1/G J.e function /~ + sec(a)+l V~a)2 

where d = b/sin b. We have l.V = 1/G (e) de. Let r¡,(m,e)=le+me2+ 

+ _! argtanh lf9 if m>O an ª /e~me2 + b,arctg/1-m: if 
/iñ +me V( ) 2 -m & +m 

m <o.Define g=sec(a)+l--¡-. Then AV= /ii(r¡,(~ 1b)-'1'(d,a)), When 9 

goes from w/4 to w/2 and again to w/4 and V decreases, the 

variation AV !s equal to the variation obtained going from w/4 to 

O and again to w/4. Using the partition (w/6,w/41, (w/12, w/6],(w/36, 

w/12), (O,w/36) twice (the same partition used for F) we have 

dV t✓di ('I'(:! , 9i+l) - '/1(:!, e1 )), 

where in g1 the value V is taken 

w/4¡. w/6, w/12, etc. The evaluation of 

metrH: and hyperbolic functions gives 

as }:. The values e1 are 

theJrlquired inverse trigono

dV=3.856090805< ✓4+8✓2 IVcl 

proving that under G we reach 9 =w/4 on a point above A, as desi 

red. As a conclusion we have proved the following result. 
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Theorem 2. l. The right part of the invariant unstable ,manifold of 

the lower equilibrium point 

e E (O, 11/4). 

A reaches the value for 

The conclusions about the remainirg part of can be obtai 

ned by symmetry. After a sequence of binary collisions (of course, 

couples of simultaneous double collisioris) of types 1 and 2 (see 

fig. 5) slightly below or above the quadruple collision point A, 

the bodies escape as shown in fig. 5. A similar behavior is obtained 

for left hand side collisions. 

fig. 5 here 

§4. The collinear case. Let m1=m
2
=1, m3=m4=a be the maeses of the 

four bodies and x, -x, y/ ✓a, -y/✓a the coordinates (see fig. 6). 

We write down again the Lagrangian 

L 

and the corresponding 

2 2 

H 
P;c py 

=- + y y 

.2 
X 

.2 1 ª5/2 2a3/2 2a3/2 
+ y - 2x - ~ - y-xra - y+xra 

Hamiltonian, setting, Px=2x, Py=2y, 

5/2 2a3/2 3/2 2 2 
1 a 2a Px py 

- 2x - ~ - y-xro - y+x ro = + - - U(x,y). 
y y 

fig. 6 here 

Introducing t 

we get again 

2 2 ½ (2x +2y) and the same change of coordinates of §2 

PX 
- XV P' 1 2a 2a 

+ ½ V PX' X' 2 ' 2X2 < ;.¡;:+x) 2 
+----

X (L..-X)2 
-lrI 

Py 5/2 2 a 
1/2 2al/2 

Y' - YV P' a 
+ ½ V py' 2 ' y = - 2VT -

( y -X)2 c...!+x,2 
ro ro 

where V XPX + YPY as before. We have again V' = u - ½ v2 on 

t=O. 

-6-



1 Introducing X = i"Z" cose , Y ~ sin e , the equation e• 
±/2.V• is obtained. 

The equilibriurn points are obtained in the following way: let 
x· z 

z y ;ra. From x z and letting Z= 11 x we have 

a 

When a ranges from O to m the parameter II does between 11 
2 2 2 o 

and m, where 11
0 

is the zero of 11(11 -1) = 8(11 +l) (approximate-

ly 11
0

=2.396812289). The minimurn value of e is given by e
0
=arctgra 

and the critica! one by ec = arctg (11,r,;.). 

In order to study the connection of the invariant manifolds 

starting at points (ec, ±✓2u(ec)) we introduce a new change of coo~ 

) w/2-90 w/2+90 dinates (only useful for this purpose . Let a= 2 , b = 2 
and e= b+a sin y. Then we get 

and 

dV 
dy 

a J , 2 ±nVcosy 

' 2 
5/2 

( ~ + V cos y 
✓2· sine 

1/,/2 cos2y 
+ sin(a(l-sin 

(2a) 312cos 80 v2 2 
sin(e+e

0
) 2 ) cos y + 

3/2 2 (2a) cos 90cos y 
y)) + sin (a(l+sin y)) 

The term 
2 

cos J 
sin(a( 1-sin y)) 

(and the one with the + sign in a 

••similar way) has an avoidable singularity. If • y= 2 + E, for instan 

ce, we merely write 

2 cos y 
sin (a( 1-siny)) 

4 cos
2 

E/2 
sin(2a+) 

41 

where 41 = sin
2 

E/2 and compute sin(2a41) 
41 

as 2 4 3,,2 4 5414 
ª3ª ,. ~ a -

8 7 6 
315 8 41 + · • · 
arcsin ( 9c-b) 

a 
is used for the 

The computation must be started with 

( w w ) r,:;;,,:-. dV 
E - 2 , 2 , Ve ;2U(ec). In dy 

unstable manifold (right branch) and the 

y decreasing) for the left branch. 
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§ 5. Numerical computations for the collinear case. Using: the equa

tion numerically regularized as described in 1 4 we have computed 

the point Y+(Y-) where the right (left) branch of the unstable mani 

fold of the lower equilibrium point reaches the value V=0. 

The independent parameter has been the parameter 1.1 • Table 

1 shows sorne resul ts. Figure 7 offers . a rough representation of 

y± as a function of a including the region of small values of 

a. The computations have been done using a RK routine of fourth 

order with step equal to 0.02. Sorne errors can be introduced for 

this value of the step for large values of a. 

fig. 7 here 

In order to study the possible motions on the total collision 

manifold as a function of a we need the connections between the 
2k-1 2k+l 

equilibrium points. For y+ = - 2-,. , k ElN or -y_= - 2-", one 

of the branches of W~ coincides with one of the branches of w:. For 

y+ - y_ = 2k 11, k E lN, both branches meet due to the symmetry. Table 

2 offers sorne values of a for which such connections are establi-

shed. 

6. Analytical study of the limiting cases. We study the behavior 

of y+, y_ and, inc identally, y e, V e for a+0, atm. 

For a=0 we have 

differential equation is 

we get ii2+(dV) 2.4' sece 
de 

1/4 e =8 =0, V =-2 • a=b=11/4, y =-11/2. The 
0 dvc le 2 c 1/4-

de = 2 J l'l sece-V , and scaling V=2 V 

Lemma. The solution of 

with ii = -1 for 8=0. 

- 2 
ii2 + 4(dV) ~ sece 

de 
such that V(O) 

react'tes 11=0 for e = w/2. 

Proof: It is enough to check that the solution is given by V(e) 

= -leos e. 

Corollary. For a=0 we have y+= ,r/2, -Y_=3,r/2. 
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µ a Ye V y y µ a Ye V y y 
e + - e + -

2.39682 .000008 -1.4718 -1.1892 1.5712 -4. 7120 3.3 1.24254 .2775 -5.0787 7.4640 -6.5645 
2.39685 .000036 -1.4244 -1.1894 1.5729 -4.7119 3.4 1.43195 .3126 -5.5993 8.1957 -6.8339 
2.3969 .000086 -1.3886 .;l.1896 1.5752 -4.7118 3.5 1.63314 .3442 -6.1455 8.7929 -7.1057 
2.397 .000183 -1.3501 -1.1900 1.5789 -4.7116 3.6 1.84650 .3729 -6.7191 9.2465 -7.3841 
2.398 .001155 -1.2179 -1.1940 1.6041 -4.7107 3.7 2.07239 .3992 -7.3219 9.6424 -7.6717 

2.400 .003103 -1.1153 -1.2019 1.6416 -4.7093 3.8 2.31119 .4233 -7.9556 10.016 -7.9690 
2.402 .005055 -1.0534 -1.2099 1.6733 -4.7082 3.9 2.56326 .4457 -8.6220 10.385 -8.2741 
2.406 .008966 - .9692 -1.2259 1.7297 -4.7064 4.0 2.82898 .4666 -9.3229 10.761 -8.5845 
2.412 .014856 - .8833 -1.2498 1.8054 -4.7044 4.5 4.37492 .5531 -13.410 12.715 -10.578 
2.420 .022752 - .8011 -1.2815 1.8977 -4.7026 5.0 6.31619 .6195 -18.648 15.986 -13.400 

2.430 .032692 - .7237 -1.3212 2.0055 -4.7013 5.5 8.69752 .6730 -25.294 18.383 -15.688 
2.438 .040698 - .6736 -1.3529 2.0882 -4.7011 6.0 11.5634 .7176 -33.628 22.057 -19.281 
2.45 .052802 - .6106 -1.4002 2.2087 -4.7018 6.5 14.9582 .7556 -43.946 24.966 -22.134 

1 2.46 .062974 - .5660 -1.4396 2.3070 -4.7034 7.0 18.9261 .7887 -56.564 28.993 -26.150 ~ 
1 2.47 .073226 - .5266 -1.4789 2.4043 -4.7057 7.5 23.5114 .8178 -71.813 32.716 -30.459 

2.48 .083555 - .4913 -1.5182 2.5008 -4.7089 B.O 28.7583 .8438 -90.042 37.139 -34.200 
2.49 .093965 - .4592 -1.5575 2.5969 -4.7128 8.5 34.7109 .8672 -111.616 41.624 -38.698 
2.5 .104456 - .4297 -1.5967 2.6930 -4.7174 9.0 41.4134 .8883 -136.917 46.709 -43.730 
2.6 .213869 - .2215 -1.9896 3.6463 -4.8028 9.5 48.9100 .9077 -166.343 50.925 -47.973 
2.7 .331810 - .0904 -2.3877 4.5299 -4.9564 10.0 57.2446 .9254 -200.308 56.344 -53.323 

2.8 .458723 .0051 -2.7955 5.1956 -5.1746 11.99 99.5948 .9838 -389.219 78.643 -75.591 
2.9 .595040 .0800 -3.2163 5.6878 -5.4415 12.00 99.8476 .9841 -390,416. 78.726 -75.671 
3.0 .741177 .1414 -3.6528 6.1072 -5.7289 12.01 100.1008 .9843 -391.616 78.808 -75.755 
3.1 .897541 .1933 -4.1074 6.5080 -6.0150 20.0 467.9 1.1196 -2610.1 191.0 -187.9 
3.2 1.06453 .2381 -4.5821 6.9345 -6.2932 30.0 1584.4 1.2034 -11917.9 366.9 -363.8 

Table 1 



k ºk type k ºk .. '.type 

1 .09297 -y =311/2 16 10.3230 y =1311/2 
2 .36153 y-=3•/2 17 12.8688 -Y+=1311/2 
3 .90788 y+-Y =411 18 13.0880 y--y =1411 
4 1.3452 Y+=5•/2 19 13.3035 Y+=15-./2 
5 2.2181 -y+ c=5w/2 20 16.1072 -y~=15w/2 

6 2.6362 y -Y =6w 21 16.3105 y -y =16• 
7 2.9986 y+.:7~/2 22 16.5115 Y+=17-./2 
8 4.4984 -Y+=7•/2 23 19.5572 -y+=17w/2 
9 4.8210 y--Y =811 24 19.7484 y--y =18w 

10 5.1229 Y+=9w/2 25 19.9379 ,,+ =19•/2 
+ + 

11 7.0515 -Y =9•/2 26 23.215 -Y =19w/2 
12 7.3237 y--Y =1011 27 23.397 y--y =20w 

13 7.5859 y+=llw/2 28 23.578 Y+=21w/2 
14 9.8469 -Y+=ll11/2 29 27.080 -y+=21"/2 
15 10.0878 y--Y =12,r 30 27.254 y--y =22• 

+ - + -

31 27.427 y =2311/2 
+ 

Table 2 
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flu. 8 here 

Now we study what happens for a> O sufficiently small. First of 

all we have, approxim~telY¡2e = ✓a. 8 = µ ✓;;_. Therefore 
1 1 µ2 2:;jt 2 2c1 o 2 e o • 

= .,... + a( - ll2 + --
1

+----:-
1

)a+ O(a ) and V = -12 _;,¿-
re. re. µ + µ - • e 

2 2 o o 
µ _1 )a + O(a ). In order to check the behavlor observed in 

hgve to prove two things: y+> w/2, -y_< 3w/2. 

U(e) 
.. 2c 2 

(Jlll -+ 
4 µ +1 

o 
15 we 

We start at P(V=O, 8=w/2) and follow the differential equ! 
dV ¡u<el v2 tion de= - 2- - 4 backwards. 

Writting down V= -2114 /cose+ w , w(w/2) 

ning first order terma we get: 

O and retal-

dw cose 2 3/2 1/2 1 1 w a coa e ). 
de = 25/4 -- + (sin(8+8 ) + sin(e-e ) sine sin8 o o 

The solution of the homogeneous equation is w 
/ 5/4 

= C(sine)-l 2 and 

the method of variation of the constan ta gives us 

de 2 312 112e 1 1 = a coa (----,-------,- + ____ ) • 
de (sine)(l-l/25/4) sin(e+e

0
) sin(e-e

0
) 

- -1/25/4 f:/2 de 
Therefore w(ec) = -(p0✓a) 6c, where ~/2= ec rz· Tfh:,;alue 
6c can be estimated in the following way Je = + , 

where z is a small but finite quantity and so 80 z 

f•/2 3/2 J
2 

= O(a ). 

lt remains to compute the mainzcontribution f: . We bound cos½e by 
1 1 2sin8 J«c 

1 ; put -s-in_(_8_+_8_)_ + sin(8-8 ) < sin(8+8
0

)sin(8-8
0

) 

the sinus by thg angles. We iet 

6c ~·r:c _4_a_3/_2_8_1_1_2_s_/_4 < 4a3/2 -:_!_ f z 

J& &2-a po-1)ec 

5/4 
( P ¡;;_¡-l+l/2 

o 

-11-
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Then w(ec) 
4 aµ 0 As 

4µ0 
< 

(l-l/2514
)(µ

2-l) (l-l/2514
)(µ

2-l) 

11; 2 2 
o o 

< 21/4 (-+--+--) the point Q (fig. 8) is abóve the equ.!_ 
4 µ0+1 µ -1 

librium point (ec,IJc)' showing that y+ > tr/2. 

Now let us look for the point R (see fig. 8). The first order 

terms for Ye give us Ye 
.! + ✓8( µ0 -1) ª1/4. 0n the other side 

dV 2 11 
the main term in dy is /11/4/'Z near the left hand side colli 

sion. Therefore the value of t;V from the point (ec,Vc) to R is 

2/11/4/'Z (11/2 + y)= /8(µ -1)/l'Z 
1/4 

, showing that a -y e o -
have proved the following resul t .. 

Proposition 6.1. For a small enough y+> 11/2, -y_< 3w/2. 

F 1 h 8 11 - __! 8 ora arge we ave 
O 2 la, e 

= V/a514 and retaining the 

tion we get · Ve = -aV2a 

Then 

dV 

✓1-v212 
a 

✓2 
T _g 

11 

< 3tr/2.We 

where T is the y interval and ~ is the average value of lcosyl. 

We get immediately T = 2 -l/4 w2a112 . We state the result, showing 

good agrement with table l. 

Proposition 6.2. 

y +y + "· 
+ -

For a sufficiently large y ~ 

+ 
and 

Corollary 6.3. There are infinite values for which the left hand 

branch of Wu coincides with the left hand branch of Ws and for 
1 u 

which the right hand one coincides with the right hand one and for 
. u s u 

which w1 = Wu . In the last case the left hand branch of w1 coin-

cides with the right hand one of Ws and viceversa. u 

The first one values for which those coincidences are obtained were 

given in table 2. 
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§7. Sorne dynamical consequences. Let a1 be the unique value o> O 

such that -y_(o1 ) = 3w/2, a2 such that y+(o2 ) = 3w/2,o3 such that 

y+(o3 )~y_(o3 )= 4 , etc. Figure 9 shows a qualitative picture of the 

invariant manifolds of the lower equilibrium point for a initial 

range of values of o containing those values (O<o1 < a2< o
3
). 

Fig. 9 here 

The consequences with respect to orbits passing near quadru

ple collision are now obtained easily in the same way as they where 

obtained for the rectangular case (see orbits type 1,2 in fig. 3). 

We recall that other necessary condi tions for regularization can 
U 6 be obtained (for the good values of o , Le., such that w1 _ Wu)in theway 

introduced in (7 J. Sufficient conditions will be given in a forth

coming paper (9). 

From fig. 9 the way of escaping after approaching a quadruple 

collision and the number of collisions taking place between central 

bodies or simulateous double collisions between externa! bodies can 

be predicted. 

Pictures similar to fig. 9 can be given for the full range 

of values of o. (Note that according to table 2 there is a
4 

similar 

for all to º2' 

k~ 6). 

a
5 

similar to and similar to "k-J 
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