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Abstract.- We consider the trapezoidal problem of four bodies. This
is a special problem where only three degrees of freedom are invol-
ved. The blow up method of McGehee can be used to deal with the qua-
druple collision. Two degenerate cases are studied in this paper:
the rectangular and the collinear problems. They have only two de-
grees of freedom and the analysis of total collapse can be done in
a way similar to the one used for the collinear and isosceles pro-
blems of three bodies. We fully analyze the flow on the total colli-
sion manifold, reducing the problem of finding heteroclinic connec-
tions to the study of a single ordinary differential equation. For
the collinear case from which arises a one parameter family of equa-
tions the analysis for extreme values of the parameter is done and
numerical computations fill up the gap for the intermediate values.
Dynamical consequences for possible motions near total collision

as well as for regularization are obtained.

§1. Introduction. The trapezoidal problem of four bodies consists
in the description of the motion of four particles of mases Moam, =

=m ,m with initial coordinates (a,b), (-a,b), (c,d) and

3'Ma""3
(-c,d), respectively and velocities such that the symmetry of coordi
nates is keeped for all time. We can suppose that the center of
masses remains at the origin, i.e., mlb + m3d = 0. New variables
x=2a, y=2c, z=b-d can be introduced (see fig. 1). The motions near

quadruple collision for that problem have been partially described
' fig. 1 here
in  [5]. In order to give a complete picture of the flow on the to-

tal collision manifold we restrict ourselves to two degenerate ca-

ses: the rectangular and the collinear. In the first the four masses
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are equal and a=c, b=d. In the second one has b=d=0 but we gtill
have one parameter: the mass ratio a = mz/ml. Then the total colli--
sion manifold is two dimensional (see [6] and (1]) and the invariant
manifolds associated to the critical points are one dimensional.
The study can be done on the same lines as the one found in [6] and
[7] for the collinear three body problem, or in {1],[8] and
[2] for the isosceles problem. However the analysis of the behavior
of the invariant manifolds is done using a single ordinary differen-

tial equation. A similar method was formulated in [4] and [3].

§2. The rectangular case. First we set the masses equal to one for

the bodies. We write down the Lagrangian

2 .2 2 2 2

L=%((x"+y7)-=-2%_
x y (x2+y2)z

and the corresponding Hamiltonian

2 2 2
Wk ) - 2o 8- 2oy
(x“+y°)
where the coordinates are described in fig. 2

fig. 2 here

The resulting Hamilton equations are

. . 2 2x
x=px' px=_;2—?3 ’
. o 3 2,
y=p, py~-y2—z§.

9,
where L = (x2+y2)4 .

Let us introduce the change of variables (see [6]):

a1 -1 Y % d 3/24
X = = , = . = Ve == —
xt -, Y =yt Px pxc Pv pyc y et AT
2,2 . -1
Then we have X“+Y" = 1 and = (xpx+ypy). Introducing V=X%(+

+YPY we get the blown up equations:
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2

X‘=PX—XV ‘P)E=_iz—2x+'/zVPx,
2
[ - . =, )
Y' = PY Yv EY ¥2 2Y + % VEY ,

On =0 (total collisién manifold C) the equations are still
regular and we shall use the description of the flow on C to get
information about passage near total collision. As we know the chan-
ge of variables is a diffeomorphism for £>0. The change has blown
up the point x=y=o to the manifold C. This has no physical meaning
nor the fact that the new time v on C is obtained by and infinite
slowing down of the physical time. However, the regularity of the
equatibns on C gives informations for small positive values of

t and this has a clear physical importance.

On C the equations of the egergy is X(P§+P$)—U = 0 where
U= 2 + 2 +2 and w t V' =U y
=3ty nd we ge =U-3.

The equilibrium points are U =1U = (X=Y=1//2) = 2+4/2
and Vc = +/8/3:4.

We introduce a new change of coordinates: X = cos 8, Y=sin 6

and therefore

gx-xv
X' = -sin 8.8' , 8' = - S
sin 0

2 2 2 >
But P° = Px + PY =20 and Arg P = y allow us to write Pcos(y-8)=

= V. Therefore

Px =P cos y=Vcosg 0 —~¢ PZ—V2 sin 6.

After substitution we have

2
= \4 2 2
= * ' [ — =y 5
' = +/2V v'=U(e) 5 U(e) Sose * sime t 2
thaf}we integrate from 0 = %x/4, V = — /8/2 + 4 on to obtain the

unstable manifold wf of the lower equilibrium point A (see fig. 3).

Now we have several possibilities for studying the equations of the

manifold. We can obtain d8/dV (see §3) or we can use the arc para

u

meter o along wl as independent variable. The new equations are



av _ R d _ ' %
i (1 + 2/V") ’ & (1 + V'/2) ’

avoiding all the singularities. The change of sign in g% is produ-

ced when 6=0 or x/2.

fig. 3 here .

53. Numerical computations and analytical estimations for the rec-

tangular case. The last equations have been integrated starting .at
A up to arrividg to V=0 (point B). The values oﬁtained are 6(B)=
= 0.5877, o(B) = 4.459, It is clear, using the symmetry with res-
pect to 8 = n/4 and V=0, that to have a connection between lower,
A, and upper, D, equilibrium points requires o (B) be a multiple
of w/4. The value 0.5877 is quite different from O and x/4. However
for people who deslikes results obtained through numerical integra-
tion we offer a proof of the fact that W; 3 w: that involves only
inequalities and a few evaluations of trigonometric and hyperbolic

functions.

Dividing 6' by V' we have

2

I%% = 27V =\/1/sece+cosece+1_vT

we intend to show that starting at B, and going backwards we reach

1
the curve V= /2({s) to the right of the point A and starting at

B2 we reach @=»/4 above the point A (see fig. 4)

fig. 4 here

To prove the first part we show that this is true for a vectorfield
F such that de

—! ¢ F and for the second, that it is true for a
. de
G such that EV' > G.

av

Let gkiezigin (iic 8+ cosec 8). In this range of 8 we take

8.
oy d vi 1 v
9 + .
F =1/ k1+1—z . If we set - F one has A6 = vi av dki+l—4

Letting V = 2/1?11_1 sin o we obtain A8 = 2Aa. Now we gplit the
range of & in the following set of intervals (in degrees) [0°,5°] ,
{5°,15°},[15°,30°],{30°,60°},(60°,75°],{ 75°,85°],(85°,95°] ,[95°,105°
(105°,120°},[120°, 135°]. For angles greater then 90° we take the
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symmetrical with respect to 90°. The points separing intervals are

0°=0°, 8,=5°, ..., 8,=120°, io=135°. At each one of such points

1 9
we shall compute Vi' Note that for each V1 we have two values
of a, %y 1 %opt depending on the value of k1 used, the one re-

lated to the left or right interval. Using symmetry and convexity
- o - - -' - - =
ko = sec 5° + cosec 5° = kG’ k1 =2/6 = k5 = k7, k, = 2+2//3 =

=k, = kg k3=2/2_=kg.

2

We set up te recurrence a, . =a, + (0141-01)/2, »
/E1+1 sin 021+1 = /ki+1+1 sin 02i+2' i = 0 ¢+ B, starting with uo=0.
A few computations of trigonometric functions give the values
a, = /72, o, = (0.153246335, ag = 0.313807297, a, = 0.589183175,
ag = 0.693534686, .= 0.653534211, a3 = 0.501227454, %g = .900181094
o, = 1.335010689 and then we obtain sin %a > 1 showing that un-
der F we reach the value V=V_  to the right of point A.

c

de
av = G starting at

V =0, o= x/A. Consider the interval [a,b] C [0,%/4]. Suppose that

Now we proceed to study the solutions of

V(a) < V(b). Then we take as 1/G e function V[% + sec(a)+1—!%912
where d = b/sin b. We have &V = 1/G(e) do. Let ¢{(m,0)= BIme o+
+ 4 argtanh \/E?HO if m>0 and’® Jowme? + 7;—“.‘. arctg \/;-E——g if
m gﬁo. Define g:sec(a)+1—!1%lz. Then AV = /§(¢(§,b)-¢(%,3)). When o

goes from ®/4 to /2 and again to ®/4 and V decreases, the
variation AV §s equal to the variation obtained going from =»/4 to
0 and again to w/4. Using the partition [«/6,=/41, (x/12, %/6],[x/36,
n/12), [0,%/36] twice (the same partition used for F) we have

— By &y
AV = 2 /di (1’(d—i ' °1+1) - v(ai—. °1”'

where in 8; the value V is takenh as . The values 01 are

J;%quired inverse trigono-

n/4; n/6, %/12, etc. The evaluation of the
metric and hyperbolic functions gives AaV=3.856090805 </4+8/2 = |Vc|
proving that under G we reach @ =%/4 on a point above A, as desi

red. As a conclusion we have proved the following result.
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Theorem 2.1. The right part of the invariant unstable manifold of

the lower equilibrjium point

8 € (0, n/4).

A

reaches the value V=0 for

The conclusions about the remaining part of Vg can be obtai

ned by symmetry. After a sequence of binary collisions (of course,

couples of simultaneous double collisions) of types 1 and 2 (see

fig. 5) slightly below or above the quadruple collision point A,

the bodies escape as shown in fig. 5. A similar behavior is obtained

for left hand side collisions.

§4. The collinear case.

fig. 5 here

four bodies and

x, -x, y//a, -y//a

172

We write down again the Lagrangian

2

Px

H=—4+

Introducing ¢

we get again

P
Xt = =
2
P,
-
2

where V = XP
¢=0.

+

fig. 6 here

Let m,=m_,=1, m_=m =a be the masses of the

3 74
the coordinates (see fig. 6).

y-x/a y+x/a ¥y

1,
(2x2+2y2)4 and the same change of coordinates of §2

2a 2a

1
XV , P! = - —5 - + + BVpP,,
X (e (n)? X
5/2 1/2 1/2
f__@ 2a _ 2o
Yv , PY = - T (lL_x)z (~!+x)2 + BV Py,
/a /o
YPY as before. We have again V' = U - % V2 on
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sin® , the equation ' =

N

cos® , Y =

1
Introducing X = Fa

= +/ov! is obtained.

The equilibrium points are obtained in the following way: let

z = y//a. From = = E and letting z=pux we have

x
3,2 2 2 2 '
_or (pT-1)"-8p"(p"41)
e = 4 _2 :
17 y -2p +1

when a ranges from O to » the parameter 'u does between v,
and =, where "y is the zero of u(u2-1)2 = 8(p2+1) (approximate-
ly u°=2.396812289). The minimum value of 8 is given by oo=arctg/;
and the critical one by 8, = arctg (p/a).

In order to study the connection of the invariant manifolds

starting at points (oc, t/2U(Bc)) we introduce a new change of coor

dinates (only useful for this purpose). Let a = '/2509 , b= "/2260
and 0 = b+a sin y. Then we get

dv a ]

av _ + 2 ’ 2

dy = V cos y
and

V'cosz - ¢ 05/2 . (Zu)s/zcos 8o _ V ) 0052 R

Y = Y7 sine sin(e+9°) 2 Y
1/V2 coszy (20)3/2cos Oocoszv

+ sin(a(1l-sin v)) * sin (a(lssin ¥))

2

cos y
. sin(a(l-sin y)) .
+ gimilar way) has an avoidable singularity. If y = 5t e for instan

The term {(and the one with the + sign in a

ce, we merely write

coszv _ 4 0052 /2
sin (a(l-siny)) = sin(2av) '
v
4

where ¢ = sin2 e/2 and compute 212%2221 as 2a-§a302+35-a504 -
- 5%3 a7v6 + ... The computation must be started with vy = Yo =

0c-b " ] dv
- O¢-0 . .. = - /20(8 ). av¥
= arcsin ( 3 ) € ( 5 2) , Vc 2U(ec) In Iy the + sign

is used for the unstable manifold (right branch) and the - sign (with
vy decreasing) for the left branch.
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§ 5. Numerical computations for the collinear case. Using: the equa-

tion numerically regularized as described in $4 we have computed
the point Y+(v-) where the right (left) branch of the unstable mani

fold of the lower equilibrium point reaches the value V=0.

The independent parameter has beemn the parameter p . Table
1 shows some results. Figure 7 offers a rough representation of
Y+ as a function of ub including the region of small values of
a. The computations have been done using a RK . routine of fourth
order with step equal to 0.02. Some errors can be introduced for

this value of the step for large values of a.

fig. 7 here

In order to study the possible motions on the total collision

manifold as a function of a we need the connections between the

equilibrium points. For Y, = &2—1- n,kEMN or -y = 2‘2“11' , one
of the branches of WT coincides with one of the branches of Wz. For

Yo = 2k %, k € N, both branches meet due to the symmetry. Table
2 offers some values of a for which such connections are establi--

shed.

6. Analytical study of the limiting cases. We study the behavior

of Yo L and, incidentally, Yoo Vc for at0, ate,

/4

For a=0 we have 8 =8 =0, V =—21 , a=b=n/4, Yc=—n/2. The

differential equation is %% = % /Z sec8-V“ , and scaling V=21/4V
we get V2+(g¥)%ﬁc secé with ¥ = -1 for 8=0.

. o2 dv.2 -
Lemma. The solution of V= + 4(33) = sec® such that V(0) = -1

reacltes V=0 for 6= #/2.

Proof: It is enough to check that the solution is given by ¥{8) =

= =/Ccos .

Corollary. For @=0 we have S w/2, —Y_=3l/2-

P . O
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u a e Ve Y, Y_ u a Yo Ve Y, Y_
2.39682  .000008 -1.4718 -1.1892 1.5712 -4.7120 3.3 1.24254 2775 -5.0787 7.4640 -6.5645
2.39685 .000036 -1.4244 -1.1894 1.5729 -4.7119 3.4 1.43195 .3126 -5.5993 8.1957 -6.8339
2.3969 .000086 -1.3886 -1.1896 1.5752 -4.7118 3.5 1.63314 .3442 -6.1455 8.7929 -7.1057
2.397 .000183 -1.3501 -1.1900 1.5789 -4.7116 3.6 1.84650 .3729 -6.7191 9.2465 -7.3841
2.398 .001155  -1.2179 -1.1940 1.6041 -4.7107 | 3.7 2.0723¢ .3992  -7.3219 9.6424 -7.6717
2,400 .003103 = -1.1153 -1.2019 1.6416 -4.7093 | 3.8 2.31119 .4233  -7.9556 10.016 -7.9690
2.402 .005065 -1.0534 -1.2099 1.6733 -4.7082 3.9 2.56326 .4457 -8.6220 10.385 -8.2741
2.406 .008966 - .9692 -1.2259 1.7297 -4.7064 | 4.0 2.82898 .4666  -9.3229 10.761 -8.5845
2.412 .014856 -~ .8833 -1.2498 1.8054 -4.7044 | 4.5 4.37492 .5531  -13.410 12.715 -10.578
2.420 .022762 - .8011 -1.2815 1.8977 -4.7026 | 5.0 6.31619 .6195  -18.648 15.986 -13.400
2.430 .032692 - .7237 -1.3212 2.0056 -4.7013 5.5 8.69752 .6730 -25.294 18.383 -15.688
2.438 .040698 - .6736 -1.3523 2.0882 -4.7011 | 6.0 11.5634 .7176 ~ -33.628 22.057 -19.281
2.45 .052802 - .6106 -1.4002 2.2087 -4.7018 6.5 14,9582 . 7556 -43.946 24.966 -22.134
2.46 .062974 - .5660 ~-1.4396 2.3070 -4.7034 7.0 18.9261 .7887 ~-56.564 28.993 -26.150
2.47 .073226 - .5266 -1.4789 2.4043 -4.7057 | 7.5 23.5114 .8178  -71.813 32.716 -30.459
2.48 .083565 - .4913 -1.5182 2.5008 -4.7089 8.0 28.7583 .8438 -90.042 37.139 -34.200
2.49 .093965 - .4592 -1.5575 2.5969 -4.7128 | 8.5 34.7109 .8672  -111.616 41.624 -38.698
2.5 .104456 - .4297 -1.5967 2.6930 -4.7174 | 9.0 41.4134 .8883  -136.917 46.709  -43.730
2.6 .213869 -~ .2215 -1.9896 3.6463 -4.8028 9.5 48.9100 .9077 -166.343 50.925 -47.973
2.7 .331810 - .0904 -2.3877 4.5299 -4.9%64 10.0 57.2446 .9254 -200.308 56.344 -53.323
2.8 .458723 .0051 -2.7955 5.1956 -5.1746 11,99 99.5948 .9838 -389.219 78.643 -75.591
2.9 .595040 .0800 -3.2163 5.6878 -5.4415 12.00 99.8476 .9841  -390.416, 78.726 -75.671
3.0 .741177 .1414 -3.6528 6.1072 -5.7289 | 12.01  100.1008 .9843  -391.616 78.808 -75.755
3.1 .897541 1933 -4.1074 6.5080 -6.0150 | 20.0  467.9 1.1196 -2610.1 191.0  -187.9
3.2 1.08453 .2381 -4.5821 6.9345 -6.2932 | 30.0  1584.4 1.2034 -11917.9 366.9  -363.8

Table 1



k a, type

1 .09297 -y =3x/2

2 .36153  y =3u/2

3 .90788 7+~Y =4x
4  1.3452 v'=57/2

5 2,2181 -y**Su/z

6 2.6362 Y ~Y =6n
7 2.9986  y'-7¥/2

8 4.4984 -y*-7n/2

9 4.8210 Y -y =8n
10 5.1229 i,gu/z
11 7.0515 —y =9x/2
12 7.3237 Y -y =10%
13 7.5859  y'=11s/2
14 9.8469 _y‘—11n/2
15 10.0878 vy -y_=12%

Table 2

=10~

k ay uftype

16 10.3230 +-13w/2

17 12.8688 -1__13w/2

18 13.0880 y+ Y =14n
19 13,3035 Y, =18x/2

20 16.1072 -1_-151/2

21 16.3105 Y+-v =16n
22 16.5115 Y, =17x/2

23 19.5572 —1_—17w/2

24 19.7484 +-Y =18n
25 19.9379 + =19%/2

26 23.215 —Y_-19n/2

27 23.397 Y+—Y =20n
28 23.578 +-21n/2

29 27.080 _—21n/2

30 27.254 y+—v_-22n
31 27.427 Y+=23n/2



fij. 8 here

Now we study what happens for o > O sufficiently small. First of
all we have, approxig?§e1§/20 = Ja, 8.= u, /a . Therefore U(o ) =

- 2. 0(—£' A + +~———)u+ 0(02) and, V_ = -z -2 (3‘3 +—~—i+

/2 2 By +1

)u + 0(a ). In order to check the behavior observed in $5 we

have to prove two things: Y, > /2, -y_ < 3»/2.

We start at P(V=0, 6=x/2) and follow the differential equa
dv u(e)

tion B N3 -3 backwards.
Writting down V = -21/4 Jcose + w, w(n/2) =0 and retai-

ning first order terms we get:

dw w coso 2u3/2c031/26 (

ds ~ 25/4 sino * 8ing

1 + 1 )
sin(0+60) sin(o—eo) )

_1/25/4

The solution of the homogeneous equation is w = C{sine) and

the method of variation of the constants gives us

dc 202205126 1 .
de —(sine)(l'lfzs/d) sin(e+e ) * sinfe-~ D
5/4
Therefore w(oc) - _(”olx)—l/z

Ac can be estimated in the following way '/2
where z is a small but finite quantity and so

®/2
J = 0(03/2).
z

z D
It remains to compute the main contribution “; . We bound coséo by
1 1 < 2s8in®
sin(e+8 ) ' sin(e-e ) sin(0+e°)sin(9—e°)
the sinus by the angles. We get

Ac, wheref j da The value

1, put and approximate

5 5/4 2
Z 40212 a2 Yo (7 -2nr/2®t
Ac = e <4 2 [
8c 92— u2-1
e o
403/2 “g - --1+1/25/4
= (uolol

(1-1/2%%) )

-11-




4u°

4 ay,
Then w{(® )= - —R——0_— . | Asg
4 a4
; (1-1/2%%) (421 (1-1/2%%) (u2-1)
",
< 21/4 (=2 + 2, —21—) the point Q (fig. 8) is above the equi

4 uo+1 u-1
librium point (ec,9c), showing that Y, /2.

Now let us look for the point R (see fig. 8)}. The first order

terms for y_  give us vy = - % +\/§£Eﬁ:ll ul/d. On the other side
the main term in g% is - /n/4/2 near the left hand side colli

sion. Therefore the value of A4V from the point (BC,VC) to R is
2/n/4/2  (n/2 + Yc) = JB(uo-l)//Z a1/4, showing that -~y_ < 3n/2.We

have proved the following result.

Proposition 6.1. For a small enough Y, > /2, ~y_ < 3n/2.

n 1 ® 1 _
For usiirge we have 8 =5 - =, 8 =3 - 7:!;;— . Introducing V=
= V/a and retaining the dominant term in the aifferential equa——
3 . - /Doy av _a .z 1
tion we get *V_ = ~-a¥2a |, Y- = 1~ o lcosyl where a5 = -
V2
Then

j° av a .2
= —:'T - >
Y3 V122 2"

where T is the y interval and % is the average value of |cosv].
We get immediately T = 2 na 2. We state the result, showing
good agrement with table 1.

2 2_1/4u1/2

Proposition 6.2. For o sufficiently large A and

hd .
YAV

Corollary 6.3. There are infinite values for which the left hand

" branch of WT coincides with the left hand branch of wz and for
which the right hand one coincides with the right hand one and for
which W)zW> . In the last case the left hand branch of W] coin-
cidgs with the right hand one of W: and viceversa.

The first one values for which those coincidences are obtained were

given in table 2.

-12~



§7. Some dynamical consequences. Let % be the unique valve a >0
such that —Y_(ul) = 3w/2, a, such that 7*(u2) = 3w/2,a3 such that
74(03)11_(a3)= 4 , etc. Figure 9 shows a qualitative picture of the
invariant manifolds of the lower equilibrium point for a initial

range of values of a containing those values (0<u1< a2< u3).

Fig. 9 here

The consequences with respect to orbits passing near quadru-
ple collision are now obtained easily in the same way as they where
obtained for the rectangular case (see orbits type 1,2 in fig. 3).
We recall that other necessary conditions for regularization can
be obtained (for the good values of a , i.e., such that W? z W:)in the way

introduced in (7 ]. Sufficient conditions will be given in a forth-

coming paper [9].

From fig. 9 the way of escaping after approaching a quadruple
collision and the number of collisions taking place between central
bodies or simulateous double collisions between external bodies can

be predicted.

Pictures similar to fig. 9 can be given for the full range
of values of a. (Note that according to table 2 there is o, similar
to Oy o
k> 6).

e similar to o and % similar to % _a for all

8. Acknowledgements. This work was initiated when both authors were

vigiting the Université de Dijon (France). The first author has been
partially supported by an Ajut a 1'Investigacié of the Universitat
de Barcelona. The second author has been partially supported by the
Grant PCCBNAL 790178 of the CONACYT (México). The computations were
done at the Universitat Autdnoma de Barcelona and at the IMPA (Bra-
sil).

13-



References

(1]

f2]
(3]
fa]
(5]

(sl
(7}
i8]

(9]

Devaney, R.: In Ergodic Theory and Dynamical Systems I, Ed.
A. Katok, 211, Birkhauser, Basel 1981.

Devaney, R.: These Proceedings.

Irigoyen,M.: Celestial Mechanics, 9, 491.

Irigoyen, M. and Nahon, F.: Astron. Astrophys. 17, 286,

Lacomba, E.: To appear in Colloque Bifurcations, Théorie Er-

godique et Applications, Dijon 1981.

McGehee, R.: Inventiones Math. 27, 191.

Simé, C.: Celestial Mechanics, 21, 25.

Simé, C.: In Classical Mechanics and Dynamical Systems, Mar-
cel Dekker, New York, 1981.

Simé, C.: Necessary and sufficient conditions for the geome-
trical regularization of blown up singularities, to appear,
1982.

-1k



>
[y
i
e
=
~
<
[
g
o
m.J
s
EJ
&
N 4
> mlw
N <
& =
(.

3°90° @

Y/
«

<
[
9
e
B [ .
o -
S S Y N 1
LY > &
ﬂ ................ W i B
o
) L3
® ~
ki ns
> g i3
£3
K
&
»

Fu) iy

-y

08

-.0f 1

sn/2

bl
3

/2]



FETA







publicacions

plicions
universital
de barcelona

Dipésit Legal B.: 4.223-1982
BARCELONA-—1982



