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On the distribution of a double stochastic integral 

by 

David Nualart 

Abstract.- Let {W(z), z~[0,1) 2} be a Wiener process with 

a two-dimensional parameter. We evaluate the characteris­

tic function of the stochastic integral J 2 WdW and 
[ O, l) 

obtain sorne properties of its moments. Also, a martingale 

array having this non-symmetric limit distribution is 

exhibited. 
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O. Introduction 

1 . Ío1 The aw of the stochastic integral WtdWt, where Wt is an ordinary 

Brownian motion can be obtained in an obvious way from It8's formula: f¿ WtdWt= 

½<~-1). For a two-parameter Wiener process {W(s,t), (s,t)E T}, It8's diffe-

1 2 f rentiation formula (see Wong and Zakai [ 11)) claims that 2 (w
11

-l)= T WdW + 

fTfT 1
0

dWdW, heing D = { (z,z' )4:'. TxT: z=(x,y), z'=(x' ,y'), x,;;; x' and y;;> y'}. 

In this case we cannot attain from this expression the distribution of the ran­

dom variables fTWdW and fTfT 10dWdW. This paper is devoted to discuss the 

law of these variables. As we shall see they have the same law. 

lt is known that the law of a double Wiener stochastic integral can be 

computed in terms of a weighted sum of independent chi-squared random variables. 

See, for instance, the papers of Varberg [ 10) and Rosiñski- Szulga [ 9). In 

section 1, using a result of this kind for a two-parameter Wiener process, we 

deduce the characteristic function of fTfT 1
0

dWdW. 

The distribution of the two-parameter Wiener process Wst in the space of 

continuous functions C(T) is the weak limit of the law of the sequence of pro-

cesses {Xº(t), tE { O, l], n ;;,,l} and {Yn(t), tE { O, 1), 

n;;,, l} are two independent sequences of infinite dimensional Brownian motions. 

This result has been proved in (7). In section 2 we will use this fact to express 

and K = JR WdW, where 
st st 

R = st 

(O,s)~(O,t), as the weak limít of a sequence of two-parameter continuous pro­

cesses. Thís provídes a method to compute the moments of the random variable J 11 • 

The sequence of random variables converging to J 11 can be arranged in 

order to exhibit an example of a martingale array {Xni' n;;> l, i=l, ••• ,kn} , 

with respect to a family of cr-fields Fni' satisfying the conditional Lindeberg 

condition 
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kn 2 P 
]; i = l E (X . l { J X J } / F . l) - O• n1 ni >E: n,1-

for all t>O. (O. l) 

The asymptotic behavior of this martingale array is similar to that of the 

class of degenerate U-statistics discussed by Alvo, Cabilio and 'Feigin in [ 1). 

Indeed, it is proved that the sequeuce of conditional variances converges in 
k 

dístríbution, as long as ~i:l Xni converges in law to the non-symmetric 

random variable J 11 . 

l. Let W = {W(s,t), (s,t)E T, T=(0,1) 2} be a two-parameter Wiener procesa 

in a probability space (íl,F,P). For any function fEt, 2 (TxT) the double It~-Wiener 

integral I (f) with respect to W can be defined as in It~ [ 6). This stochastic 

integral takes into account just the values off into the set {(z,z')Erxt: zlz'}, 

and it verifies I(f)=I(f), where f(z,z')ª ½<f(z,z')+f(z',z)), We are going to 

recall sorne known facts about the distribution of I(f). 

Consideran orthonormal basis {wk};=l of L2 (T) and form the development 

f(z,z ') = ~,k=l ªjkwj(z)wk(z') of the symmetric function f. Then, Xk= JT wkdW 

is a sequence of independent standard Gaussian random variables, and we have 

Proposition 1.1.­

tic mean to I(f). 

The sequenoe a .• 
JJ 

converges in quadra-

Proof: It follows easily from the equalities I(wjwk)=(fT $jdW)(JT wkdW)- ójk' Q 

Now consider the Hilbert-Schmidt operator K on L2 (T) given by the sym­

metric kernel f(z,z'). De note by {~}:=l (N<oo or N=oo) the sequence of non 

N zero eigenvalues of K (including multíplicities), and let {ik}k=l be a se-

quence of orthonormal eigenfunctíons of K. 
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Proposition 1.2.- I(f) has where 

is a sequence of independent standard Gaussian randorn variables. In particular, 

the characteristic function of I(f) can be expressed in terrns of a rnodified 

Fredholrn deterrninant (see Varberg I lOJ ) : 

Proof: 

E(eitl(f)) = (6(2it,f))-l/2 = ~ (l-2itµ )-l/Z e-itµk 
k=l k 

( l. 1) 

Apply proposition 1.1 to the developrnent f(z,z')= l:N µk~k(z)~k(z'). O k=l 

In the sequel we will use these results to find the distribution of 

1(10) = fTfT 10dWdW, being D the set of points ((x,y),(x' ,y')) in TxT such that 

x ~' and y ~' . For any 

Proposition 1.3.- There exists a sequence {Xjk' j,k.E Z} of independent stan­

dard Gaussian random variables such that 

(1.2) 

Proof: Consider the orthonorrnal basis of L2(T) formed by the farnily of trigo­

nornetric functions lí sin((2j-l)Tix+(2k-l)ny), /í cos((2j-l)nx+(2k-l)ny), j,k 

integers such that j ;;,,1. Set G = { (z,z')E TxT: (z,z')E D or (z' ,z)E D}. 

Then l 1 
I (10 ) = 2 I (lG), and the symmetric function 2 lG has the following de-

veloprnent 

½ lG((x,y), (x' ,y')) = 8 [l:j;;,,l,kEz ªjk /f cos((2j-l)nx+(2k-l)ny)) 

[ l:j;;,,l,kEz ajk /í cos((2j-l)nx'+(2k-l)ny')) + 

l:j;;,,l ,kEz ªjk( 2 cos((2j-l)nx+(2k-l)ny) cos((2j-l)nx'+(2k-l)ny') + 

2 sin((2j-l)mc+(2k-l)ny) sin((2j-l)nx'+(2k-l)ny' )) • (1.3) 

Formula (1.3) can be checked by taking the orthonorrnal basis {ei(Zk-l)nx, kE z} 

and computing the coefficients of the Fourier expansion 
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l l = l:. k ., k'EZ). e-in( (2j-l)x+(2k-l)y+(2j'-l)x'+(2k'-l)y') 
2 G J, ,J , jkj'k' 

The values of these coefficients are 

).jkj'k' = 4(n 4(2j-1)(2k-1)(2j'-1)(2k'-l))-l if j+j'/1 or k+k'/1, 

and 

Define 

Xjk= Ír lí cos ( (2j-1)1rx+(2k-l)ny) dW for j ;;.1, k Ez, and xy 

Xjk= Ír /í sin((2j-l)nx+(2k-l)ny) dW for j <o, k Ez. xy 

Then, (1.2) is a consequence of (1.3), using proposition 1.1 and noting that 

2 1 2\;;,,1, k Ez 8 ªjk = 4 ' C 

Proposition 1.4.- The characteristic function of the random variable 1(1
0

) 

has the following expression 

E (itI(lD)) = 

e-it/4 [ íl cos 
k=l 

it -l l it -l/2 

(2k-l)n] [ l - 4
:<.:: :=l (2k-l)n tan (2k-1)11) (1.4) 

Proof: From proposition 

2 1 
Jl= rj.;¡},kE'l (ljkxjk- 4 

1.3 we obtain the decomposition 1(1
0

)=J 1+J 2, where 

2 2 
and J2= l:f;;•l,kEZ ªjkXjk+ 8(l:j>l,kEZ ujkXjk) are 

independent random variables. Then 

E(eitJl) = e-it/4 íl íl (1 . )-1/2 -21.tUJ.k 
j.;¡) kEZ 

-it/4 [ w e II cos 
k=l 

. t -1/2 
(2~-1)11) 

In order to compute the characteristic function of J
2

, we put 

(1.5) 
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where M.k and N.k are independent random variables with distribution N(0,2) 
J J 

and N(0,2u1k), respectively. T!Jus, 

E( eitJ2) = lim N E fexp(8it(k~ k 1N.k/- t'2:~ k 1N7k)) = 
•,00 J' = J J' = J 

< n cos 
k=l 

it )-1/2(1 _ 4 k
00 1 

(2k-l)n k=l (2k-l)n tan 

Finally, (1.4) follows from (1.5) and (1.6). • 

it -1/2 
(2k-l)n) 

N dxjk 
. l[ -2 
J ,k=l/4najk 

(1.6) 

Note that if we write g(t) = ( ll cos (zt~l)rr)-
2 , then E(eitl(JD))= 

k=l 
-it/4 -1/2 e (g(t)-2ig'(t)) • Unfortunately, as far as we know, there is nota 

simpler or more reduced expression for the function g. 

Although we have already obtained an infinite product expansion for the 

characteristic function of I (10), it may be interesting to exhibit the eigenva­

lues and the eigenfunctions of the integral operator K on L2(T) with kernel 

1 
2 IG. Observe that they are given by the partial differential equation 

ft_ -). axay - ljJ(x,y), ljJ(O,O)=ljJ{l,l)=O, lj.,(0,y)+lj.,(1,y)=~•(x,O)+l)J(x,l)=l. 

If a function ljJC. L 2(T) has the Fourier development 

lj.,( x,y) = kj;;i,¡,k~(xjk~ cos((2j-l)nx+(2k-l)ny) + 

x . k/f sin((2j-l)nx+(2k-l)ny)) , 
-J, 

then, using the expansion (1.3), we see that the equation K11 

to the system of equations 

AljJ is equivalent · 
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for all j;;;, 1, k.E Z. 

From these equations we can deduce the next results, which could also 

have been derived in a direct form from (1.4) and (1.1). 

a) For any 

by~ the cardinal 

integer h put '\= {(j,k)E z2: ºjk~(7í 2(2h-1))-1} and denote 

2 -1 of Ah. Then, the numbers (11 (2h-1)) , hE Z, are eígenvalues 

of K, each one wíth multiplícity ~
1
-1. The ínvaríant subspace assocíated to 

b) The rest of eigenvalues have multiplicity one and are the solutions 

of the equation which equivalent to 

..,, 
2:k=l 

1 1 1 
(2k-1)11 tan 2A(2k-l)n = 4 (l. 7) 

There is exactly one solution of this equation in every one of the open ínter­

vals (11-2 ,00 ) and (n- 2(2k+l)-l, 11-2 (2k-1)-l), (-11- 2(2k-1)-l, -11-2 (2k+l)-l), 

k =1,2, ..• Unlike the fírst ones, these eigenvalues are not symmetrically 

placed about the origin, and can only be evaluated aproximately. For ins-

<>ll 
tance, using tne devel~pment of the function í(A) = ik=l 

1 1 
(2k-l)n tan 2A(2k-l)n 

in the interval (n- 2 ,00), we can find the aproxímate value 0.276203 for the 

maximum eigenvalue. 
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2. Consider the two-parameter continuous processes defjned by K = JR WdW 
st st 

and J t= JR JR 1
0

dWdW, (s,t)e:T, where R =(O,s)1<(0,t). It is known that 
s st st st 

2 
W

8
t= 2K

8
t+ 2J

8
t+ st. The processes J

8
t and Kst are two-parameter martingales 

with respect to the natural filtration of W, and K
8

t is a strong martingale 

(cf. (3)). 

Let {Xn(t), t6[0,l), n;;,.1} and {Yn(t), tE(O,l], n;;,,l} be two inde­

pendent infinite dimensional Brownian motions. We know (cf. [7)) that 

n- 112'ff. XiYi converges weakly to W. 
i=l s t 

Lemma 2.1.- The sequen ces of two-parameter continuous processes 

sn -1 'íf. ¡8 i j J t YidYj), and (2. 1) n i,j=l( O X dX )( O st 

Tn -1 t'. fª i j ¡t YjdYi) (2.2) 
st n 1,j=l( O X dX )( O 

converge weakly to the processes K
9

t and Jst' respectively. 

Proof: We shall only prove the convergence of r:t to Jst' and the other state­

ment has a similar demonstration. Put tn=k2-n for k=O,l, •.• ,2n 
k 

Jn 
st 

~n-1 n n n n 
"n,k=O(W(th+lAs,tkAt) - W(thAs,tkA t))• 

and o;;,. l. Define 

nm -1 ..,n ~m-1 i m j m j m j m 
T

8
t n ki,j=l "n,k=O X (th As)[ X (th+lA s)-X (th/\.s)]Y (tk J\t)• 

j m j m ) (Y (tk+l/1. t)-Y (tkAt) • 

For any ~ l, the sequence Tnm converges weakly to Jn as n tends to in­

finity. Also, the following convergence holds 

(2.3) 

for all ( s,t)~ T. In fact, 



where 

- 8 -

nm n 2 -2 n I 2m - 1 i m j m j m ] 
E( 1 Tst - Tstl > = n ri,j=lE( rh,k=O x (th A.s)[ x (th+l .... s)-X (th l\s) 

-2 ,n 2m-l i m j m j m ) ¡s' i j 2 
2n ri,j=l[E(( rh=O X (thl\.s)[X (th+l/\s)-X (thA.s) - O X dX) • 

( r~:~
1 

yj (t:" t)[ Yi(t:+l .... t)-Yi(t:A. t)) >2 + E(( r~:~ 1 
yj (t: .... t)• 

(Yi(t:+1/\t)-Yi(t:A.t))-f~ YjdYi/(f~ XidXj/)).,;; 

2Kn-
2 

[(n
2
-n)(Et ¡r~=~l B

1
(t~)[ B

2
(t;+1)-B

2
(t~)J-J~ B

1
dB

1
1
4

J /
12 

+ 

n(Et 12::~=~l B
1

(t~)[ B
1

(t~+1)-B
1

(t~)J-J~ B
1
ds

1
1
4J )112

) 

2 2m-l I m 2 m 2 m 4 
K = sup {E( 12::h=O B (th)[ B (th+l)-B (th)) 1 ) , 

ffi;ol 

E(lr~:~
1 

B
1
(t:)[B

1
(t:+l)-B

1
(t:)) 1

4
),E(lf~ B

1
ds

2
1
4
), E(IJ~ B

1
ds

1
1
4

)} • 

and B1, B2 are two independent standard Brownian motions. Therefore, (2.3) 

is proved. In addition, we have 

(2.4) 

for all ( s,t)é T. 

Using Cairoli-Doob's maximal inequalities for two-parameter martingales, 

the convergences (2.3) and (2.4) can be transformed into 

(2.5) 

and 

E(sup t IJ
11

t - J t ¡2) -=-" O. s, s s n-P',,OJ 
(2.6) 

Let d be a metric on the set of all probabilities on C(T) whích induces 

the weak convergence, and such that d(L(X),L(Y).;;; E(sup t lx - Y ti) s, st s 
for 



- 9 -

any C(T)-valued random variables X and Y. Here l(X) stands for the distribu­

tion of li.. Then 

d(l(T0 ),l(J)).;; sup
0 

E(sup Ir" - r"ml) + d(l(T"m),l(Jm)) + s,t st st 

+ E( sup tlJ"t- J ti) s, s s 

converges to zero as rr->oo, and the lemma is proved. a 

Lemma 2.2.- For all (s,t) in T, the random variables Kst' stK11 , Jst and 

stJ 11 are identically distributed, 

Proof: An invariance property for the Wiener process states that for any a> O 

and b>O, {lab W(s/a,t/b), (s,t)€ T) has the law of a two-parameter Wiener 

process. Therefore, it suffices to show that K
11 

and J
11 

have the same distri­

butíon. To do this, set 6,,= (i2-n, (í+l)2-n)x(j2-n,(j+1)2-n) for ~.jQn-l, 
l.J . 

n;;;. 1, and W(A .. ) = W((i+l)2-",(j+l)2-n)-W(i2-n,(j+1)2-n)-W((i+l)2-n,j2- 11)+ 
1J 

W(i2-11 ,j2-n) • Then, we have in the L2 sense K11= lím
0 

l:i'<i W(6ij)W(61 ,j') 

j'<j 

and J 11= lim
0 

l:i'<i W(6ij)W(61,j 1 ), which implies the assertion of the lemma. O 

j 1 <j 

Next we will use lemma 2.1 to obtain sorne information about the moments 

mp= E(K~ 1) = E(Jf
1
), ¡;;>1. For i,j=l, •.. ,p define 

tij= (Í~ XidXj)<f¿ YidYj) + (Í¿ XjdXi)(f~ YjdYi), 

and 

µ = E(t12E23 ..• t l t 1>· p p- ,p p, 

(2. 7) 

(2.8) 
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Proposition 2.1.- For all p~l, we have 

m = l:p (p--l)! µ m 
p k=l 2 (p-k)! k p-k . (2 .9) 

Proof: Set 

p i j 
-p l: ( E( íl f l X kdX k)) 2 . (2, 10) 

n (i,j)E{l, •.• ,n}Px{l, ••. ,n}p k=l O 

In this sum all terms vanish except those corresponding to multi-indexes 

(i,j) such that for any m ~ {l, ... ,n} there is an even number of indexes equal 

to m. Denote by vij the number of different integers appearing in the multi­

index (i,j). Then, for all k=l, ... ,p, the sum of the terms with multi-índexes 

verifying v .. = k is of order nk Therefore, if G denotes the set of permuta-
~ p 

tions of the numbers l,l,2,2, ... ,p,p, we obtain 

p i j 
lim E((Sn )p) = .!.._ l: ( E( íl f 1 X kdX k)) 2 , 

n 11 p\ (i,j)1:Gp k=l O 
(2 .11} 

where (i,j} represents the permutation (i1,j 1,i2,j 2 , ... ,\,jp}. In view of 

lemma 2.1, (2.11) is the value of mp. Two permutatíons (i,j) and (i',j') of 

Gp such that ik=jh <;:::} ik=jh for any k,h=l, .•. ,p, will be called equívalent 

an<l they give rise to identical terms in the sum (2. l l). If Qp stands for the 

quotient set, we have 

m 
p 

p i j 
'<' (E( n Íol X kdX k)l2 
""(i,j) E Q 

p k=l 
(2.12) 

Observe that the cardinal of Q is (2p)!/pt2P. A permutation of G will be 
p • p 

called irreductible if it cannot be a product of cycles. All permutations 

equivalent toan irreductible one are also irreductibles. Denote by IPC.Qp 

the set of equivalence classes of irreductible permutations and define 

n 
p l:(i,j)G I (E( 

p 
(2.13) 
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Then, 

p p-1 
np = l:k=l (k-l) ~ mp-k , for all p ;;.¡, 

with the convention n
0

=m
0
=l. 

F . 11 .f Íol XidXi+l -- [,+i and Íol Xi+ldXi 1na. y, 1 we set [,~ , for 

i=l, ••. ,p, with the assumption p+l=l, it can be shown that 

1 El 
n = - (p-1)1 }.; p [ E(c 

p 2 • e:e{+,-} ..,í 

which completes the proof of the proposition. • 

Remarks: 

l. Suppose that for any E 1: { +,-}p we define the set A of points x in 
E 

(2.14) 

(2.15) 

[O,l)p such that xiEixi+l for all i=l, ••• ,p (with tite convention p+l=l), 

wltere the symbols + and - mean.,;;;; and;;., respectively. Then, using the fomal 

rules 

can be seen that µ = 
p 

2. The expectations 

and E(dX~dX!) = l(u=v}du, it 

is the Lebesgue measure of AE 

can be cumputed recursively by means of 

It8's fomula. Indeed, if we define JE= {i: Ei=+ and Ei+l=-}, titen 

E E 
E([,/ .•. [,/) 

l El 
p }.;i € J [E<E:1 

E 

E. l E. 2 
E, J.- Cr, i+ 
i-1 i i+Z 

Using this algorithm it is nor hard to evaluate the first moments of J 11 . For 

l 1 1 l 7 23 37 
instance, ,'-\=m1=0; µ2= 2' mz= ¡: µ3= 6' m3= 6; µ4- 96 • m4- 48' µ5- 720' 

31 
ms= 30 . 
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3. The following expression for the characteristic function of J 11 can be 

deduced from proposition 2.1, 

µkiktk 
E(e itJll) = (~,oo ) exp "'k=l _2_k __ • 

Set t = ½<~2-1), where ~isa random variable with law N(0,1). An argu­

ment similar to that·used in the proof of proposition Z.l shows that E(tP) 

p i j 
E( JI f 1 X kdX k). Then, the following inequalities hold 

k=l O 

(2.16) 

In fact, to verify the sccond inequality observe that the terms in the sum 

(2.12) are less ot equal than onc. For the first inequality note that J
11

+K
11 

has the same law as t. As a consequence of (2.16), J 11 has finite exponential 

momcnts E(etJll) for t<l. The next corollary shows that really E(etJ11)<00 for 

t<lf. 

Corollary 2. l.- if pis even, and if p is odd, 

being C= t /il. Moreover, 

E{etJll) ,¡;; 21/4(/Í+t)(C-1,/4(/f-t)-(C+l)/4 (2 .17} 

Proof: If pis even, the first statement is an immediate consequence of 

Schwarz inequality, 

For p=2q+l, q;;.,o, we apply It3's formula and Schwarz inequality, 
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Finally, (2.17) follows immediately from the preceeding inequalities. O 

3. Consider the sequence of random variables U= -l ~n f
0
1 XidXj f

0
1 YidYj. n n ""i,j=l 

n It is clear that Un converges in distribution to J 11 . lndeed, Un= s
11 

j=2, ..• ,n define 

(3. l) • 

and let Fnj' j=l, •.. ,n, be the o-field generated by the processes x1, ... ,Xj, 

Y1, .•• ,Y .• Then X. is a martingale array, that means, X 2, •.. ,X . are F .-mea-
J nJ n nJ nJ 

surable and E(X ./F . 1)=0, for j=2, •.• ,n. 
nJ n,J-

2 l;/ 2 22 
Vnj= i=2 E(Xni/ Fn,i-1), ª nd Vn= Vnn· 

n 
Furthermore 1: j=Z Xnj= Un. Set 

Lenuna 3.1.­

dition (O.l). 

The martingale array X. satisfies the conditional Lindeberg con­
nJ 

Proof: Put 
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const. / + o(j). 

Therefore, 

-2 l:n 2 .;;; -4 -2 ~n E(Z4.) 
n j=2 E(Zj l{ lzj l>nd) n E ..,j=2 J --+- O, 

as n -+oo, for all 1c>O. 

If this Lindeberg condition holds, Hall [ 5) and Rootzen [ 8) have 

shwon that v2 ~ n 
n 

with P{n> O} =l implies that Un converges in dis-

tribution to a mixture of normal distributions with characteristic function 

E(exp(- ½ t 2n)). If there is only convergence in distribution of the sequence 

v!, this result may fail as ít has been proved by a counterexample of DvoretSky 

[4) . Also, Alvo, Cabilio and Feigin [ l) exhibit a class of martingales, which 

are degenerate U-statistics, and such that the sequence Un of row sums converge 

in distribution to a weighted sum of chi-squared independent random variables 

as long as the sequence of conditional variances converges in law. The next 

result shows that the martingale array (3.1) satisfies these same properties. 

Proposition 3.1.- The sequence v2 converges in law to the random variable 
n 

(3.2) 

mean continuous Gaussian procesa with covariance function E(W(s
1
,t 1,u

1
)• 
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Proof: Compute 

Then, 

2 
E(X ./F . 

1
) 

nJ n,J-

· l l · · · , , , ¡ · . . , . , 
2 ~-., 1<fo(X1l_X1)(X1l -X1 )du)(fo(Y1l_Y1)(Y1l -Y1 )du) + 

1,1 ~ U U U U 

. 1 1 . . 1 1 . . 1 

2 !~-., 1<fo X1X1 du)(fo y1y1 du) + 
1,1 = U U U U 

(3.3) 

Denote by n3 the set of functions from [0,1] 3 to R which are conti­

nuous from above, with limita from below, and define the n3-valued processes 

Z ( ) -1/2! [nu] Xi(s)Yi(t). n s,t,u = n i=l (3.4) 

Using theorem 6 of Bickel and Wichura [2) , we obtain the weak convergence 

of the sequence Zn(s,t,u) to W(s,t,u). Further, the mapping x(s,t,u) ~ 

J 3 lx(l,l,u)-x(l,t,u)-x(s,l,u)+x(s,t,u)] 2 dudsdt 
[ O, l] 

from n3 to R is con-

tinuous. Therefore, noting that v2 = / 3 {Z (l,l,u)-Z (l,t,u)-Z (s,l,u)+ 
n ( O, l] n n n 

2Zn(s,t,u)) dsdtdu, the proof of the proposition is complete. O 
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