CATXA 31.4



UNIVERSITAT DE BARCELONA FACULTAT DE MATEMÀTIQUES

ON THE DISTRIBUTION OF A DOUBLE STOCHASTIC INTEGRAL by David Nualart



PRE-PRINT N.º 4 març 1982



## On the distribution of a double stochastic integral

by

David Nualart

<u>Abstract</u>.- Let  $\{W(z), z \in [0,1]^2\}$  be a Wiener process with a two-dimensional parameter. We evaluate the characteristic function of the stochastic integral  $\int_{[0,1]^2} WdW$  and obtain some properties of its moments. Also, a martingale array having this non-symmetric limit distribution is exhibited.



## 0. Introduction

The law of the stochastic integral  $\int_0^1 W_t dW_t$ , where  $W_t$  is an ordinary Brownian motion can be obtained in an obvious way from Itô's formula:  $\int_0^1 W_t dW_t = \frac{1}{2}(W_1^2-1)$ . For a two-parameter Wiener process  $\{W(s,t), (s,t) \in T\}$ , Itô's differentiation formula (see Wong and Zakai [11]) claims that  $\frac{1}{2}(W_{11}^2-1) = \int_T WdW + \int_T \int_T 1_D dWdW$ , being  $D = \{(z,z') \in T \times T: z = (x,y), z' = (x',y'), x \leq x' \text{ and } y \geq y'\}$ . In this case we cannot attain from this expression the distribution of the random variables  $\int_T WdW$  and  $\int_T \int_T 1_D dWdW$ . This paper is devoted to discuss the law of these variables. As we shall see they have the same law.

It is known that the law of a double Wiener stochastic integral can be computed in terms of a weighted sum of independent chi-squared random variables. See, for instance, the papers of Varberg [10] and Rosiński- Szulga [9]. In section 1, using a result of this kind for a two-parameter Wiener process, we deduce the characteristic function of  $\int_{T}\int_{T} 1_{p}dWdW$ .

The distribution of the two-parameter Wiener process  $W_{st}$  in the space of continuous functions C(T) is the weak limit of the law of the sequence of processes  $n^{-1/2} \sum_{i=1}^{n} X_s^i Y_t^i$ , where  $\{X^n(t), t \in [0,1], n \ge i\}$  and  $\{Y^n(t), t \in [0,1], n \ge i\}$  are two independent sequences of infinite dimensional Brownian motions. This result has been proved in [7]. In section 2 we will use this fact to express the indefinite integrals  $J_{st} = \int_{R_{st}} l_D dW dW$  and  $K_{st} = \int_{R_{st}} W dW$ , where  $R_{st} = [0,s] \times [0,t]$ , as the weak limit of a sequence of two-parameter continuous processes. This provides a method to compute the moments of the random variable  $J_{11}$ .

The sequence of random variables converging to  $J_{11}$  can be arranged in order to exhibit an example of a martingale array  $\{X_{ni}, n \ge 1, i=1,...,k_n\}$ , with respect to a family of  $\sigma$ -fields  $F_{ni}$ , satisfying the conditional Lindeberg condition

$$\sum_{i=1}^{k} E(X_{ni}^2 | \{|X_{ni}| \geq \varepsilon\} / F_{n,i-1}) \xrightarrow{P} 0, \text{ for all } \varepsilon > 0.$$
 (0.1)

The asymptotic behavior of this martingale array is similar to that of the class of degenerate U-statistics discussed by Alvo, Cabilio and Feigin in [1]. Indeed, it is proved that the sequence of conditional variances converges in distribution, as long as  $\sum_{i=1}^{k} X_{ni}$  converges in law to the non-symmetric random variable J<sub>11</sub>.

1. Let  $W = \{W(s,t), (s,t) \in T, T=\{0,1\}^2\}$  be a two-parameter Wiener process in a probability space  $(\Omega, F, P)$ . For any function  $f \in L^2(T \times T)$  the double Itô-Wiener integral I(f) with respect to W can be defined as in Itô [6]. This stochastic integral takes into account just the values of f into the set  $\{(z,z')\in T\times T: z\neq z'\}$ , and it verifies  $I(f)=I(\tilde{f})$ , where  $\tilde{f}(z,z')=\frac{1}{2}(f(z,z')+f(z',z))$ . We are going to recall some known facts about the distribution of I(f).

Consider an orthonormal basis  $\{\psi_k\}_{k=1}^{\infty}$  of  $L^2(T)$  and form the development  $\tilde{f}(z,z') = \Sigma_{j,k=1}^{\infty} a_{jk}\psi_j(z)\psi_k(z')$  of the symmetric function  $\tilde{f}$ . Then,  $X_k = \int_T \psi_k dW$  is a sequence of independent standard Gaussian random variables, and we have <u>Proposition 1.1</u>.- The sequence  $\Sigma_{j,k=1}^n a_{jk}X_jX_k - \Sigma_{j=1}^n a_{jj}$  converges in quadratic mean to I(f).

Proof: It follows easily from the equalities  $I(\psi_i \psi_k) = (\int_T \psi_i dW) (\int_T \psi_k dW) - \delta_{ik} \cdot \mathbf{Q}$ 

Now consider the Hilbert-Schmidt operator K on  $L^2(T)$  given by the symmetric kernel  $\tilde{f}(z,z')$ . Denote by  $\{\mu_k\}_{k=1}^N$  (N< $\infty$  or N= $\infty$ ) the sequence of non zero eigenvalues of K (including multiplicities), and let  $\{\phi_k\}_{k=1}^N$  be a sequence of orthonormal eigenfunctions of K.

<u>Proposition 1.2</u>.- I(f) has the law of the sum  $\Sigma_{k=1}^{N} \mu_{k}(\xi_{k}^{2}-1)$  where  $\{\xi_{k}\}_{k=1}^{N}$  is a sequence of independent standard Gaussian random variables. In particular, the characteristic function of I(f) can be expressed in terms of a modified Fredholm determinant (see Varberg [10]):

$$E(e^{itI(f)}) = (\delta(2it,\tilde{f}))^{-1/2} = \prod_{k=1}^{N} (1-2it\mu_k)^{-1/2} e^{-it\mu_k} .$$
(1.1)

Proof: Apply proposition 1.1 to the development  $\tilde{f}(z,z') = \sum_{k=1}^{N} \mu_k \phi_k(z) \phi_k(z')$ . D

In the sequel we will use these results to find the distribution of  $I(1_D) = \int_T \int_T 1_D dWdW$ , being D the set of points ((x,y), (x',y')) in T×T such that  $x \leq x'$  and  $y \geq y'$ . For any integers j and k set  $\alpha_{jk} = (\pi^2(2j-1)(2k-1))^{-1}$ .

<u>Proposition 1.3</u>.- There exists a sequence  $\{X_{jk}, j, k \in Z\}$  of independent standard Gaussian random variables such that

$$I(1_{D}) = \Sigma_{j,k \in \mathbb{Z}} \alpha_{jk} x_{jk}^{2} + 8(\Sigma_{j \ge 1,k \in \mathbb{Z}} \alpha_{jk} x_{jk})^{2} - \frac{1}{4}.$$
 (1.2)

Proof: Consider the orthonormal basis of  $L^2(T)$  formed by the family of trigonometric functions  $\sqrt{2} \sin((2j-1)\pi x+(2k-1)\pi y)$ ,  $\sqrt{2} \cos((2j-1)\pi x+(2k-1)\pi y)$ , j,k integers such that  $j \ge 1$ . Set  $G = \{(z,z') \in T \times T: (z,z') \in D \text{ or } (z',z) \in D\}$ . Then  $I(1_D) = \frac{1}{2} I(1_G)$ , and the symmetric function  $\frac{1}{2} 1_G$  has the following development

$$\frac{1}{2} l_{G}((x,y),(x',y')) = 8 [\Sigma_{j \ge 1}, k \in \mathbb{Z} \alpha_{jk} \sqrt{2} \cos((2j-1)\pi x + (2k-1)\pi y)]$$

$$[\Sigma_{j \ge 1}, k \in \mathbb{Z} \alpha_{jk} \sqrt{2} \cos((2j-1)\pi x' + (2k-1)\pi y')] +$$

$$\Sigma_{j \ge 1}, k \in \mathbb{Z} \alpha_{jk} [2 \cos((2j-1)\pi x + (2k-1)\pi y) \cos((2j-1)\pi x' + (2k-1)\pi y')] +$$

$$2 \sin((2j-1)\pi x + (2k-1)\pi y) \sin((2j-1)\pi x' + (2k-1)\pi y')] . \qquad (1.3)$$

Formula (1.3) can be checked by taking the orthonormal basis  $\{e^{i(2k-1)\pi x}, k \in Z\}$ in  $L^2([0,1])$  and computing the coefficients of the Fourier expansion

$$\frac{1}{2} I_{G} = \sum_{j,k,j',k' \in \mathbb{Z}} \lambda_{jkj'k'} e^{-i\pi [(2j-1)x+(2k-1)y+(2j'-1)x'+(2k'-1)y']}$$

The values of these coefficients are

$$\lambda_{jkj'k'} = 4(\pi^4(2j-1)(2k-1)(2j'-1)(2k'-1))^{-1}$$
 if  $j+j'\neq 1$  or  $k+k'\neq 1$ ,

and

$$\lambda_{j,k,1-j,1-k} = 4(\pi^4(2j-1)^2(2k-1)^2)^{-1} + (\pi^2(2j-1)(2k-1))^{-1}.$$

Define

$$X_{jk} = \int_{\mathbf{T}} \sqrt{2} \cos((2j-1)\pi x + (2k-1)\pi y) \, dW_{xy} \quad \text{for} \quad j \ge 1, \ k \in \mathbb{Z}, \text{ and}$$
$$X_{jk} = \int_{\mathbf{T}} \sqrt{2} \sin((2j-1)\pi x + (2k-1)\pi y) \, dW_{xy} \quad \text{for} \quad j \le 0, \ k \in \mathbb{Z}.$$

Then, (1.2) is a consequence of (1.3), using proposition 1.1 and noting that  $\Sigma_{j \ge 1, k \in \mathbb{Z}} \otimes \alpha_{jk}^2 = \frac{1}{4} \cdot \mathbb{Q}$ 

<u>Proposition 1.4</u>.- The characteristic function of the random variable  $I(1_D)$  has the following expression

$$E (e^{itI(l_D)}) = e^{-it/4} \left[ \prod_{k=1}^{\infty} \cos \frac{it}{(2k-1)\pi} \right]^{-1} \left[ 1 - 4\Sigma \prod_{k=1}^{\infty} \frac{1}{(2k-1)\pi} \tan \frac{it}{(2k-1)\pi} \right]^{-1/2}.$$
 (1.4)

Proof: From proposition 1.3 we obtain the decomposition  $I(l_D)=J_1+J_2$ , where  $J_1=\Sigma_{j\leq D,k\in \mathbb{Z}} \alpha_{jk} X_{jk}^2 - \frac{1}{4}$  and  $J_2=\Sigma_{j\geq l,k\in \mathbb{Z}} \alpha_{jk} X_{jk}^2 + 8(\Sigma_{j\geq l,k\in \mathbb{Z}} \alpha_{jk} X_{jk})^2$  are independent random variables. Then

$$E(e^{itJ}1) = e^{-it/4} \prod_{\substack{j \leq 0 \ k \in \mathbb{Z}}} (1-2it\alpha_{jk})^{-1/2} = e^{-it/4} \left[ \prod_{\substack{k=1 \ k = 1}}^{m} \cos \frac{it}{(2k-1)\pi} \right]^{-1/2}.$$
(1.5)

In order to compute the characteristic function of  $J_2$ , we put

$$J_{2}^{=} \Sigma_{j,k=1}^{\infty} \alpha_{jk} (x_{jk}^{2} - x_{j,-k}^{2}) + 8(\Sigma_{j,k=1}^{\infty} \alpha_{jk} (x_{jk}^{-} - x_{j,-k}))^{2} =$$

$$\Sigma_{j,k=1}^{\infty} M_{jk}N_{jk} + 8 (\Sigma_{j,k=1}^{\infty} N_{jk})^{2}$$

where  $M_{jk}$  and  $N_{jk}$  are independent random variables with distribution N(0,2) and N(0,2 $\alpha_{ik}^2$ ), respectively. Thus,

$$E(e^{itJ}2) = \lim_{N \to \infty} E \exp(8it(\Sigma_{j,k=1}^{N}N_{jk})^{2} - t^{2}\Sigma_{j,k=1}^{N}N_{jk}^{2})] = \lim_{N \to \infty} \int_{\mathbb{R}^{2N}} \exp(8it(\Sigma_{j,k=1}^{N}x_{jk})^{2} - \frac{1}{2}\Sigma_{j,k=1}^{N}x_{jk}^{2}(2t^{2} + \frac{1}{2}\alpha_{jk}^{-2})) \prod_{j,k=1}^{N} \frac{dx_{jk}}{\sqrt{4\pi\alpha_{jk}^{2}}} = (\prod_{k=1}^{\infty} \cos \frac{it}{(2k-1)\pi})^{-1/2} (1 - 4\Sigma_{k=1}^{\infty} \frac{1}{(2k-1)\pi} \tan \frac{it}{(2k-1)\pi})^{-1/2}.$$
 (1.6)

Finally, (1.4) follows from (1.5) and (1.6).

Note that if we write  $g(t) = \left( \prod_{k=1}^{\infty} \cos \frac{it}{(2k-1)\pi} \right)^{-2}$ , then  $E(e^{itI(l_D)}) = e^{-it/4}(g(t)-2ig'(t))^{-1/2}$ . Unfortunately, as far as we know, there is not a simpler or more reduced expression for the function g.

Although we have already obtained an infinite product expansion for the characteristic function of  $I(l_D)$ , it may be interesting to exhibit the eigenvalues and the eigenfunctions of the integral operator K on  $L^2(T)$  with kernel  $\frac{1}{2} l_G$ . Observe that they are given by the partial differential equation

$$\begin{split} \lambda & \frac{\partial^2 \psi}{\partial x \partial y} = -\psi(x,y), \quad \psi(0,0) = \psi(1,1) = 0, \quad \psi(0,y) + \psi(1,y) = \psi(x,0) + \psi(x,1) = 1. \end{split}$$
  
If a function  $\psi \in L^2(T)$  has the Fourier development  
 $\psi(x,y) = \sum_{j \ge 1, k \in \mathbb{Z}} [x_{jk} \sqrt{2} \cos((2j-1)\pi x + (2k-1)\pi y) + x_{-j,k} \sqrt{2} \sin((2j-1)\pi x + (2k-1)\pi y)], \end{split}$ 

then, using the expansion (1.3), we see that the equation  $K\psi \approx \lambda \psi$  is equivalent  $\cdot$  to the system of equations

$$\begin{cases} 8 \alpha_{jk} (\Sigma_{j \ge 1, k \in \mathbb{Z}} \alpha_{jk} x_{jk}) = (\lambda - \alpha_{jk}) x_{jk} \\ \alpha_{jk} x_{-j,k} = \lambda x_{-j,k} \end{cases}$$

for all  $j \ge 1$ ,  $k \in \mathbb{Z}$ .

From these equations we can deduce the next results, which could also have been derived in a direct form from (1.4) and (1.1).

a) For any integer h put  $A_h = \{(j,k) \in \mathbb{Z}^2 : \alpha_{jk} = (\pi^2(2h-1))^{-1}\}$  and denote by  $m_h$  the cardinal of  $A_h$ . Then, the numbers  $(\pi^2(2h-1))^{-1}$ ,  $h \in \mathbb{Z}$ , are eigenvalues of K, each one with multiplicity  $m_h^{-1}$ . The invariant subspace associated to  $\lambda = (\pi^2(2h-1))^{-1}$  is  $\{\psi \in L^2(T) : x_{jk}^{=0} \text{ for all } (j,k) \notin A_h, \text{ and } \Sigma_{(j,k)} \in A_h, j \ge 1 \ x_{jk}^{=0}$ .

b) The rest of eigenvalues have multiplicity one and are the solutions of the equation  $\frac{1}{8} = \sum_{j \ge 1, k \in \mathbb{Z}} \frac{\alpha_{jk}^2}{(\lambda - \alpha_{jk})}$ , which equivalent to

$$\Sigma_{k=1}^{\infty} \quad \frac{1}{(2k-1)\pi} \tan \frac{1}{2\lambda(2k-1)\pi} = \frac{1}{4} \quad . \tag{1.7}$$

There is exactly one solution of this equation in every one of the open intervals  $(\pi^{-2},\infty)$  and  $(\pi^{-2}(2k+1)^{-1}, \pi^{-2}(2k-1)^{-1}), (-\pi^{-2}(2k-1)^{-1}, -\pi^{-2}(2k+1)^{-1}),$ k =1,2,... Unlike the first ones, these eigenvalues are not symmetrically placed about the origin, and can only be evaluated aproximately. For instance, using the development of the function  $f(\lambda) = \sum_{k=1}^{\infty} \frac{1}{(2k-1)\pi} \tan \frac{1}{2\lambda(2k-1)\pi}$ in the interval  $(\pi^{-2},\infty)$ , we can find the aproximate value 0.276203 for the maximum eigenvalue. 2. Consider the two-parameter continuous processes defined by  $K_{st} = \int_{R_{st}} WdW$ and  $J_{st} = \int_{R_{st}} \int_{R_{st}} I_{p} dWdW$ ,  $(s,t) \in T$ , where  $R_{st} = [0,s] \times [0,t]$ . It is known that  $W_{st}^2 = 2K_{st} + 2J_{st} + st$ . The processes  $J_{st}$  and  $K_{st}$  are two-parameter martingales with respect to the natural filtration of W, and  $K_{st}$  is a strong martingale (cf. [3]).

Let  $\{X^{n}(t), t \in [0,1], n \ge 1\}$  and  $\{Y^{n}(t), t \in [0,1], n \ge 1\}$  be two independent infinite dimensional Brownian motions. We know (cf. [7]) that  $n^{-1/2} \sum_{i=1}^{n} X_{s}^{i} Y_{t}^{i}$  converges weakly to W.

Lemma 2.1.- The sequences of two-parameter continuous processes

$$s_{st}^{n} = n^{-1} \Sigma_{i,j=1}^{n} (\int_{0}^{s} X^{i} dX^{j}) (\int_{0}^{t} Y^{i} dY^{j}), \text{ and } (2.1)$$

$$T_{st}^{n} = n^{-1} \Sigma_{i,j=1}^{n} (\int_{0}^{s} x^{i} dx^{j}) (\int_{0}^{t} y^{j} dy^{i})$$
(2.2)

converge weakly to the processes  $K_{st}$  and  $J_{st}$ , respectively.

Proof: We shall only prove the convergence of  $T_{st}^n$  to  $J_{st}^n$ , and the other statement has a similar demonstration. Put  $t_k^n = k2^{-n}$  for  $k = 0, 1, ..., 2^n$  and  $n \ge 1$ . Define

$$J_{st}^{n} = \Sigma_{h,k=0}^{2^{n}-1} [W(t_{h+1}^{n} \land s, t_{k}^{n} \land t) - W(t_{h}^{n} \land s, t_{k}^{n} \land t)] \cdot [W(t_{h}^{n} \land s, t_{k+1}^{n} \land t) - W(t_{h}^{n} \land s, t_{k}^{n} \land t)] , \text{ and}$$

$$T_{st}^{nm} = n^{-1} \Sigma_{i,j=1}^{n} \Sigma_{h,k=0}^{2^{m}-1} X^{i}(t_{h}^{m} \land s)[X^{j}(t_{h+1}^{m} \land s) - X^{j}(t_{h}^{m} \land s)] Y^{j}(t_{k}^{m} \land t) \cdot [Y^{j}(t_{k+1}^{m} \land t) - Y^{j}(t_{k}^{m} \land t)] .$$

For any  $m \ge 1$ , the sequence  $T^{nm}$  converges weakly to  $J^n$  as n tends to infinity. Also, the following convergence holds

$$\sup_{n} \mathbb{E}(|\mathbf{T}_{st}^{nm} - \mathbf{T}_{st}^{n}|^{2}) \xrightarrow[m \to \infty]{} 0, \qquad (2.3)$$

for all (s,t) & T. In fact,

$$\begin{split} & \mathsf{E}(|\mathsf{T}_{\mathtt{st}}^{\mathtt{nm}} - \mathsf{T}_{\mathtt{st}}^{\mathtt{n}}|^{2}) = \mathsf{n}^{-2} \sum_{i,\,j=1}^{\mathtt{n}} \mathsf{E}(|\Sigma_{h,\,k=0}^{2^{\mathtt{m}}-1} \, \mathsf{X}^{i}(\mathsf{t}_{h}^{\mathtt{m}} \wedge \mathsf{s})| \, \mathsf{X}^{j}(\mathsf{t}_{h+1}^{\mathtt{m}} \wedge \mathsf{s}) - \mathsf{X}^{j}(\mathsf{t}_{h}^{\mathtt{m}} \wedge \mathsf{s})| \\ & \mathsf{Y}^{j}(\mathsf{t}_{k}^{\mathtt{m}} \wedge \mathsf{t})| \, \mathsf{Y}^{i}(\mathsf{t}_{k+1}^{\mathtt{m}} \wedge \mathsf{s}) - \mathsf{Y}^{i}(\mathsf{t}_{k}^{\mathtt{m}} \wedge \mathsf{t})| - (\int_{0}^{\mathtt{s}} \, \mathsf{X}^{i} \mathsf{d} \mathsf{X}^{j}) (\int_{0}^{\mathtt{t}} \, \mathsf{Y}^{j} \mathsf{d} \mathsf{Y}^{i})|^{2}) \\ & 2\mathsf{n}^{-2} \sum_{i,\,j=1}^{\mathtt{n}} [\mathsf{E}((\Sigma_{h=0}^{2^{\mathtt{m}}-1} \, \mathsf{X}^{i}(\mathsf{t}_{h}^{\mathtt{m}} \wedge \mathsf{s})[ \, \mathsf{X}^{j}(\mathsf{t}_{h+1}^{\mathtt{m}} \wedge \mathsf{s}) - \mathsf{X}^{j}(\mathsf{t}_{h}^{\mathtt{m}} \wedge \mathsf{s})] - \int_{0}^{\mathtt{s}} \, \mathsf{X}^{i} \mathsf{d} \mathsf{X}^{j})^{2} \\ & (\Sigma_{k=0}^{2^{\mathtt{m}}-1} \, \mathsf{Y}^{j}(\mathsf{t}_{k}^{\mathtt{m}} \wedge \mathsf{t})] \, \mathsf{Y}^{i}(\mathsf{t}_{k+1}^{\mathtt{m}} \wedge \mathsf{t}) - \mathsf{Y}^{i}(\mathsf{t}_{k}^{\mathtt{m}} \wedge \mathsf{t})] \,)^{2} + \mathsf{E}((\Sigma_{k=0}^{2^{\mathtt{m}}-1} \, \mathsf{Y}^{j}(\mathsf{t}_{k}^{\mathtt{m}} \wedge \mathsf{t}) \cdot \\ & [ \, \mathsf{Y}^{i}(\mathsf{t}_{k+1}^{\mathtt{m}} \wedge \mathsf{t}) - \mathsf{Y}^{i}(\mathsf{t}_{k}^{\mathtt{m}} \wedge \mathsf{t})] - \int_{0}^{\mathtt{t}} \, \mathsf{Y}^{j} \mathsf{d} \mathsf{Y}^{i})^{2} (\int_{0}^{\mathtt{s}} \, \mathsf{X}^{i} \mathsf{d} \mathsf{X}^{j})^{2} )] \leq \\ & 2\mathsf{K}\mathsf{n}^{-2} \, [(\mathsf{n}^{2}-\mathsf{n}) \, (\mathsf{E}[ \, |\Sigma_{k=0}^{2^{\mathtt{m}}-1} \, \mathsf{B}^{1}(\mathsf{t}_{h}^{\mathtt{m}})] \, \mathsf{B}^{2}(\mathsf{t}_{h+1}^{\mathtt{m}}) - \mathsf{B}^{2}(\mathsf{t}_{h}^{\mathtt{m}})] - \int_{0}^{\mathtt{1}} \, \mathsf{B}^{1} \mathsf{d} \mathsf{B}^{1}|^{4}] \,)^{1/2} + \\ & \mathsf{n}(\mathsf{E}[ \, |\Sigma_{h=0}^{2^{\mathtt{m}}-1} \, \mathsf{B}^{1}(\mathsf{t}_{h}^{\mathtt{m}})] \, \mathsf{B}^{1}(\mathsf{t}_{h+1}^{\mathtt{m}}) - \mathsf{B}^{1}(\mathsf{t}_{h}^{\mathtt{m}})] - \mathsf{B}^{1}(\mathsf{b}^{\mathtt{m}})] - \mathsf{J}_{0}^{\mathtt{1}} \, \mathsf{B}^{1} \mathsf{d}^{1}|^{4} \,)^{1/2} ] \quad , \end{split}$$

where

$$\begin{split} \kappa^{2} &= \sup_{m \geq 1} \{ E(|\Sigma_{h=0}^{2^{m}-1} B^{1}(t_{h}^{m})[B^{2}(t_{h+1}^{m}) - B^{2}(t_{h}^{m})] |^{4} \}, \\ E(|\Sigma_{h=0}^{2^{m}-1} B^{1}(t_{h}^{m})[B^{1}(t_{h+1}^{m}) - B^{1}(t_{h}^{m})] |^{4} \}, E(|\int_{0}^{1} B^{1}dB^{2}|^{4}), E(|\int_{0}^{1} B^{1}dB^{1}|^{4}) \}, \end{split}$$

and  $B^1$ ,  $B^2$  are two independent standard Brownian motions. Therefore, (2.3) is proved. In addition, we have

$$E(|J_{st}^{n} - J_{st}|^{2}) \xrightarrow[n \to \infty]{} 0, \qquad (2.4)$$

for all  $(s,t) \in T$ .

Using Cairoli-Doob's maximal inequalities for two-parameter martingales, the convergences (2.3) and (2.4) can be transformed into

$$\sup_{n} \mathbb{E}(\sup_{s,t} |T_{st}^{nm} - T_{st}^{n}|^{2}) \xrightarrow{m \to \infty} 0, \qquad (2.5)$$

and

$$E(\sup_{s,t} |J_{st}^{n} - J_{st}|^{2}) \xrightarrow[n\to\infty]{} 0.$$
 (2.6)

Let d be a metric on the set of all probabilities on C(T) which induces the weak convergence, and such that  $d(L(X), L(Y) \le E(\sup_{s,t} |X_{st} - Y_{st}|))$  for any C(T)-valued random variables X and Y. Here L(X) stands for the distribution of  $\dot{x}$ . Then

$$d(\mathcal{L}(\mathbf{T}^{n}),\mathcal{L}(\mathbf{J})) \leq \sup_{\mathbf{n}} \mathbb{E}(\sup_{\mathbf{s},\mathbf{t}} |\mathbf{T}_{\mathbf{s}\mathbf{t}}^{n} - \mathbf{T}_{\mathbf{s}\mathbf{t}}^{nm}|) + d(\mathcal{L}(\mathbf{T}^{nm}),\mathcal{L}(\mathbf{J}^{m})) + \\ + \mathbb{E}(\sup_{\mathbf{s},\mathbf{t}} |\mathbf{J}_{\mathbf{s}\mathbf{t}}^{n} - \mathbf{J}_{\mathbf{s}\mathbf{t}}|)$$

converges to zero as  $n^{+\infty}$ , and the lemma is proved.  $\Box$ 

Lemma 2.2. For all (s,t) in T, the random variables  $K_{st}$ , st $K_{11}$ ,  $J_{st}$  and st $J_{11}$  are identically distributed.

Proof: An invariance property for the Wiener process states that for any a> 0 and b>0, { $\sqrt{ab} W(s/a,t/b)$ ,  $(s,t) \in T$ } has the law of a two-parameter Wiener process. Therefore, it suffices to show that  $K_{11}$  and  $J_{11}$  have the same distribution. To do this, set  $\Delta_{ij} = (i2^{-n}, (i+1)2^{-n}] \times (j2^{-n}, (j+1)2^{-n}]$  for  $0 \le i, j \le 2^{n}-1$ ,  $n \ge 1$ , and  $W(\Delta_{ij}) = W((i+1)2^{-n}, (j+1)2^{-n}) - W(i2^{-n}, (j+1)2^{-n}) - W((i+1)2^{-n}, j2^{-n}) + W(i2^{-n}, j2^{-n})$ . Then, we have in the  $L^2$  sense  $K_{11} = \lim_{n} \sum_{i' < i} W(\Delta_{ij}) W(\Delta_{i'j'})$ and  $J_{11} = \lim_{n} \sum_{i' < i} W(\Delta_{ij}) W(\Delta_{i'j'})$ , which implies the assertion of the lemma. C

Next we will use lemma 2.1 to obtain some information about the moments  

$$m_{p} = E(K_{11}^{p}) = E(J_{11}^{p}), p \ge 1. \text{ For } i, j=1, \dots, p \text{ define}$$

$$\xi_{ij} = (\int_{0}^{1} x^{i} dx^{j}) (\int_{0}^{1} y^{i} dy^{j}) + (\int_{0}^{1} x^{j} dx^{i}) (\int_{0}^{1} y^{j} dy^{i}), \qquad (2.7)$$

and

$$\mu_{p} = \mathbb{E}(\xi_{12}\xi_{23} \dots \xi_{p-1,p} \xi_{p,1}).$$
(2.8)



Proposition 2.1.- For all pyl, we have

$$m_{p} = \Sigma_{k=1}^{p} \frac{(p-1)!}{2(p-k)!} \mu_{k} m_{p-k} .$$
 (2.9)

Proof: Set

$$E((S_{11}^{n})^{p}) = n^{-p} \Sigma_{(i,j)\in\{1,\ldots,n\}^{p} \times \{1,\ldots,n\}^{p}} \left[ E(\prod_{k=1}^{p} \int_{0}^{1} x^{k} dx^{j_{k}}) \right]^{2}. \quad (2.10)$$

In this sum all terms vanish except those corresponding to multi-indexes (i,j) such that for any  $m \in \{1, ..., n\}$  there is an even number of indexes equal to m. Denote by  $v_{ij}$  the number of different integers appearing in the multiindex (i,j). Then, for all k=1,...,p, the sum of the terms with multi-indexes verifying  $v_{ij} = k$  is of order  $n^k$ . Therefore, if  $G_p$  denotes the set of permutations of the numbers 1,1,2,2,...,p,p, we obtain

$$\lim_{n} E((S_{11}^{n})^{p}) = \frac{1}{p!} \Sigma_{(i,j) \in G_{p}} \left[ E(\prod_{k=1}^{p} \int_{0}^{1} x^{k} dx^{j} k) \right]^{2}, \qquad (2.11)$$

where (i,j) represents the permutation  $(i_1, j_1, i_2, j_2, ..., i_p, j_p)$ . In view of lemma 2.1, (2.11) is the value of  $m_p$ . Two permutations (i,j) and (i',j') of  $G_p$  such that  $i_k = j_h \iff i'_k = j'_h$  for any k,h=1,...,p, will be called equivalent and they give rise to identical terms in the sum (2.11). If  $Q_p$  stands for the quotient set, we have

$$m_{p} = \Sigma_{(i,j) \in Q_{p}} \left[ E\left( \prod_{k=1}^{p} \int_{0}^{1} x^{i_{k}} dx^{j_{k}} \right) \right]^{2}.$$
 (2.12)

Observe that the cardinal of  $Q_p$  is  $(2p)!/p!2^p$ . A permutation of  $G_p$  will be called irreductible if it cannot be a product of cycles. All permutations equivalent to an irreductible one are also irreductibles. Denote by  $I_p \subset Q_p$  the set of equivalence classes of irreductible permutations and define

$$n_{p} = \Sigma_{(i,j) \in I_{p}} \left[ E\left(\prod_{k=1}^{p} \int_{0}^{1} x^{i_{k}} dx^{j_{k}}\right) \right]^{2}.$$
 (2.13)

Then,

$$n_{p} = \Sigma_{k=1}^{p} {p-1 \choose k-1} n_{k} m_{p-k}, \text{ for all } p \ge 1, \qquad (2.14)$$

with the convention  $n_0 = m_0 = 1$ .

Finally, if we set  $\int_0^1 X^i dX^{i+1} = \xi_i^+$  and  $\int_0^1 X^{i+1} dX^i = \xi_i^-$ , for i=1,...,p, with the assumption p+l=1, it can be shown that

$$n_{p} = \frac{1}{2} (p-1)! \Sigma_{\varepsilon \in \{+,-\}} p \left[ E(\xi_{1}^{\varepsilon_{1}} \dots \xi_{p}^{\varepsilon_{p}}) \right]^{2} = \frac{1}{2} (p-1)! \mu_{p}, \qquad (2.15)$$

which completes the proof of the proposition. D

## Remarks:

1. Suppose that for any  $\varepsilon \in \{+,-\}^p$  we define the set  $A_{\varepsilon}$  of points x in  $\{0,1\}^p$  such that  $x_i \varepsilon_i x_{i+1}$  for all i=1,...,p (with the convention p+1=1), where the symbols + and - mean  $\leq$  and  $\geq$ , respectively. Then, using the formal rules  $E(X_u^i X_v^i) = u \wedge v$ ,  $E(X_u^i d X_v^i) = 1_{\{u \geq v\}} dv$  and  $E(dX_u^i d X_v^i) = 1_{\{u=v\}} du$ , it can be seen that  $\mu_p = \sum_{\varepsilon} |A_{\varepsilon}|^2$ , where  $|A_{\varepsilon}|$  is the Lebesgue measure of  $A_{\varepsilon}$ .

2. The expectations  $E(\xi_1^{\epsilon_1} \dots \xi_p^{\epsilon_p})$  can be cumputed recursively by means of Itô's formula. Indeed, if we define  $J_{\epsilon} = \{i: \epsilon_i = + \text{ and } \epsilon_{i+1} = -\}$ , then

$$\mathbb{E}(\xi_1^{\varepsilon_1} \dots \xi_p^{\varepsilon_p}) = \\ \frac{1}{p} \sum_{i \in J_{\varepsilon}} \left[ \mathbb{E}(\xi_1^{\varepsilon_1} \dots \xi_{i-1}^{\varepsilon_{i-1}} \xi_i^+ \xi_{i+2}^{\varepsilon_{i+2}} \dots \xi_p^{\varepsilon_p}) + \mathbb{E}(\xi_1^{\varepsilon_1} \dots \xi_{i-1}^{\varepsilon_{i-1}} \xi_i^- \xi_{i+2}^{\varepsilon_{i+2}} \dots \xi_p^{\varepsilon_p}) \right].$$

Using this algorithm it is nor hard to evaluate the first moments of  $J_{11}$ . For instance,  $\mu_1 = m_1 = 0$ ;  $\mu_2 = \frac{1}{2}$ ,  $m_2 = \frac{1}{4}$ ;  $\mu_3 = \frac{1}{6}$ ,  $m_3 = \frac{1}{6}$ ;  $\mu_4 = \frac{7}{96}$ ,  $m_4 = \frac{23}{48}$ ;  $\mu_5 = \frac{37}{720}$ ,  $m_5 = \frac{31}{30}$ .

3. The following expression for the characteristic function of  $J_{11}$  can be deduced from proposition 2.1,

$$E(e^{itJ_{11}}) = exp(\Sigma_{k=1}^{\infty} \frac{\mu_k i^{k} t^{k}}{2k})$$

Set  $\phi = \frac{1}{2}(\xi^2 - 1)$ , where  $\xi$  is a random variable with law N(0,1). An argument similar to that used in the proof of proposition 2.1 shows that  $E(\phi^p) = \sum_{(i,j) \in Q_p} E(\prod_{k=1}^p \int_0^1 x^{i_k} dx^{j_k})$ . Then, the following inequalities hold  $E((\phi/2)^p) \leq n_p \leq E(\phi^p)$ . (2.16)

In fact, to verify the second inequality observe that the terms in the sum (2.12) are less or equal than one. For the first inequality note that  $J_{11}+K_{11}$  has the same law as  $\phi$ . As a consequence of (2.16),  $J_{11}$  has finite exponential moments  $E(e^{tJ}_{11})$  for t<1. The next corollary shows that really  $E(e^{tJ}_{11})<\infty$  for t< $\sqrt{2}$ .

<u>Corollary 2.1</u>.-  $\mu_p \leq 2^{-p/2}$  if p is even, and  $\mu_p \leq C2^{-p/2}$  if p is odd, being  $C = \frac{2}{3}\sqrt{11}$ . Moreover,

$$E(e^{tJ}_{11}) \leq 2^{1/4} (\sqrt{2}+t)^{(C-1)/4} (\sqrt{2}-t)^{-(C+1)/4}$$
 (2.17)

Proof: If p is even, the first statement is an immediate consequence of Schwarz inequality,

$$\mu_{p} = E[(\xi_{12}\xi_{34} \dots)(\xi_{23}\xi_{45} \dots)] \leq \\ \leq [E[(\xi_{12}\xi_{34} \dots)^{2}]E[(\xi_{23}\xi_{45} \dots)^{2}]]^{1/2} = 2^{-p/2}$$

For p=2q+1,  $q \ge 0$ , we apply Itô's formula and Schwarz inequality,

$$\begin{split} & \mu_{p} = \Sigma_{i=1}^{p} \int_{0}^{1} \vec{e}[\xi_{12}(t) \dots \xi_{i-1,i}(t)\xi_{i+2,i+3}(t) \dots \xi_{p1}(t) (x_{t}^{i}x_{t}^{i+2} \int_{0}^{1} x_{s}^{i}x_{s}^{i+2} ds + \\ & + Y_{t}^{i}Y_{t}^{i+2} \int_{0}^{1} x_{s}^{i}x_{s}^{i+2} ds)] dt = \\ & = \mathbf{E}[\xi_{12} \dots \xi_{i-1,i}\xi_{i+2,i+3} \dots \xi_{p1}(x_{1}^{i}x_{1}^{i+2} \int_{0}^{1}Y_{s}^{i}y_{s}^{i+2} ds + Y_{1}^{i}Y_{1}^{i+2} \int_{0}^{1}x_{s}^{i}x_{s}^{i+2} ds)] \leq \\ & \leq [(\mathbf{E}(\xi_{12}^{2}))^{2q-1} \mathbf{E}[(x_{1}^{i}x_{1}^{i+2} \int_{0}^{1}Y_{s}^{i}y_{s}^{i+2} ds + Y_{1}^{i}Y_{1}^{i+2} \int_{0}^{1}x_{s}^{i}x_{s}^{i+2} ds)^{2}]]^{1/2} = \\ & = 2^{-p/2} \frac{2}{3} \sqrt{11}. \end{split}$$

Finally, (2.17) follows immediately from the preceeding inequalities.

3. Consider the sequence of random variables  $U_n = n^{-1} \sum_{i,j=1}^n \int_0^1 x^i dx^j \int_0^1 y^i dy^j$ . It is clear that  $U_n$  converges in distribution to  $J_{11}$ . Indeed,  $U_n = S_{11}^n - n^{-1} \sum_{i=1}^n \int_0^1 x^i dx^i \int_0^1 y^i dy^i$ . For each  $n \ge 2$  and j=2,...,n define  $x_{nj} = n^{-1} \sum_{i=1}^{j-1} \xi_{ij}$ , (3.1)

and let  $F_{nj}$ , j=1,...,n, be the  $\sigma$ -field generated by the processes  $X_1,...,X_j$ ,  $Y_1,...,Y_j$ . Then  $X_{nj}$  is a martingale array, that means,  $X_{n2},...,X_{nj}$  are  $F_{nj}$ -measurable and  $E(X_{nj}/F_{n,j-1})=0$ , for j=2,...,n. Furthermore  $\sum_{j=2}^{n} X_{nj} = U_n$ . Set  $V_{nj}^2 = \sum_{i=2}^{j} E(X_{ni}^2/F_{n,i-1})$ , and  $V_n^2 = V_{nn}^2$ .

<u>Lemma 3.1</u>.- The martingale array  $X_{nj}$  satisfies the conditional Lindeberg condition (0.1).

Proof: Put 
$$Z_{j} = \sum_{i=1}^{j-1} \xi_{ij}$$
. Then,  
 $E(Z_{j}^{4}) \leq \text{const.} \left[ E \left\{ (\sum_{i=1}^{j-1} (\int_{0}^{1} X^{j} dX^{i})^{2} (\int_{0}^{1} Y^{j} dY^{i})^{2} \right\}^{2} + C_{j}^{4} + C_{j}^{4} \left\{ (\sum_{i=1}^{j-1} (\int_{0}^{1} X^{j} dX^{i})^{2} (\int_{0}^{1} Y^{j} dY^{i})^{2} \right\}^{2} + C_{j}^{4} \left\{ (\sum_{i=1}^{j-1} (\int_{0}^{1} X^{j} dX^{i})^{2} (\int_{0}^{1} Y^{j} dY^{i})^{2} \right\}^{2} + C_{j}^{4} \left\{ (\sum_{i=1}^{j-1} (\int_{0}^{1} X^{j} dX^{i})^{2} (\int_{0}^{1} Y^{j} dY^{i})^{2} \right\}^{2} + C_{j}^{4} \left\{ (\sum_{i=1}^{j-1} (\int_{0}^{1} X^{j} dX^{i})^{2} (\int_{0}^{1} Y^{j} dY^{i})^{2} \right\}^{2} + C_{j}^{4} \left\{ (\sum_{i=1}^{j-1} (\int_{0}^{1} X^{j} dX^{i})^{2} (\int_{0}^{1} Y^{j} dY^{i})^{2} \right\}^{2} + C_{j}^{4} \left\{ (\sum_{i=1}^{j-1} (\int_{0}^{1} X^{j} dX^{i})^{2} (\int_{0}^{1} Y^{j} dY^{i})^{2} \right\}^{2} + C_{j}^{4} \left\{ (\sum_{i=1}^{j-1} (\int_{0}^{1} X^{j} dX^{i})^{2} (\int_{0}^{1} Y^{j} dY^{i})^{2} \right\}^{2} + C_{j}^{4} \left\{ (\sum_{i=1}^{j-1} (\int_{0}^{1} X^{j} dX^{i})^{2} (\int_{0}^{1} Y^{j} dY^{i})^{2} \right\}^{2} + C_{j}^{4} \left\{ (\sum_{i=1}^{j-1} (\int_{0}^{1} Y^{j} dX^{i})^{2} (\int_{0}^{1} Y^{j} dY^{i})^{2} \right\}^{2} + C_{j}^{4} \left\{ (\sum_{i=1}^{j-1} (\int_{0}^{1} Y^{j} dX^{i})^{2} (\int_{0}^{1} Y^{j} dY^{i})^{2} \right\}^{2} + C_{j}^{4} \left\{ (\sum_{i=1}^{j-1} (\int_{0}^{1} Y^{j} dX^{i})^{2} (\int_{0}^{1} Y^{j} dY^{i})^{2} \right\}^{2} + C_{j}^{4} \left\{ (\sum_{i=1}^{j-1} (\int_{0}^{1} Y^{j} dX^{i})^{2} + C_{j}^{4} \left\{ (\sum_{i=1$ 

+ E [ 
$$(\Sigma_{i=1}^{j-1} (\int_0^1 x^i dx^j)^2 (\int_0^1 y^i dy^j)^2)^2$$
] = const.  $j^2$  +  $o(j)$ .

Therefore,

$$n^{-2} \Sigma_{j=2}^{n} \mathbb{E}(\mathbb{Z}_{j}^{2} | \{ |\mathbb{Z}_{j}| > n \varepsilon \}) \leq n^{-4} \varepsilon^{-2} \Sigma_{j=2}^{n} \mathbb{E}(\mathbb{Z}_{j}^{4}) \longrightarrow 0,$$

as  $n \rightarrow \infty$ , for all  $\varepsilon > 0$ .

If this Lindeberg condition holds, Hall [5] and Rootžen [8] have shown that  $V_n^2 \xrightarrow{P} \eta$  with  $P\{\eta > 0\} = 1$  implies that  $U_n$  converges in distribution to a mixture of normal distributions with characteristic function  $E(\exp(-\frac{1}{2}t^2\eta))$ . If there is only convergence in distribution of the sequence  $V_n^2$ , this result may fail as it has been proved by a counterexample of Dvoret<sup>S</sup>ky [4] . Also, Alvo, Cabilio and Feigin [1] exhibit a class of martingales, which are degenerate U-statistics, and such that the sequence  $U_n$  of row sums converge in distribution to a weighted sum of chi-squared independent random variables as long as the sequence of conditional variances converges in law. The next result shows that the martingale array (3.1) satisfies these same properties.

<u>Proposition 3.1.</u> The sequence  $v_n^2$  converges in law to the random variable

$$\int_{\{0,1\}^3} \left( W_{stu}^+ \widetilde{W}_{stu} \right)^2 ds dt du, \qquad (3.2)$$

where  $\tilde{W}_{stu} = W_{11u} - W_{1tu} - W_{s1u} + W_{stu}$ , and  $\{W_{stu}, (s,t,u) \in [0,1]^3\}$  is a zero mean continuous Gaussian process with covariance function  $E(W(s_1,t_1,u_1), W(s_2,t_2,u_2)) = (s_1 \wedge s_2)(t_1 \wedge t_2)(u_1 \wedge u_2)$ .

Proof: Compute

$$\begin{split} & E(X_{nj}^{2}/F_{n,j-1}) = \\ & \Sigma_{i=1}^{j-1} (\int_{0}^{1} (X_{1}^{i} - X_{u}^{i})^{2} du) (\int_{0}^{1} (Y_{1}^{i} - Y_{u}^{i})^{2} du + \Sigma_{i=1}^{j-1} (\int_{0}^{1} (X_{u}^{i})^{2} du) (\int_{0}^{1} (Y_{u}^{i})^{2} du) + \\ & 2 \Sigma_{i,i}^{j-1} = (\int_{0}^{1} (X_{1}^{i} - X_{u}^{i}) (X_{1}^{i} - X_{u}^{i}) du) (\int_{0}^{1} (Y_{1}^{i} - Y_{u}^{i}) (Y_{1}^{i} - Y_{u}^{i}) du) + \\ & 2 \Sigma_{i,i}^{j-1} = (\int_{0}^{1} X_{u}^{i} X_{u}^{i} du) (\int_{0}^{1} Y_{u}^{i} Y_{u}^{i} du) + \\ & 2 \Sigma_{i,i}^{j-1} = (\int_{0}^{1} (X_{1}^{i} - X_{u}^{i}) X_{u}^{i} du) (\int_{0}^{1} (Y_{1}^{i} - Y_{u}^{i}) Y_{u}^{i} du = \\ & \int_{0}^{1} \int_{0}^{1} (\Sigma_{i=1}^{j-1} (X_{1}^{i} - X_{s}^{i}) (Y_{1}^{i} - Y_{t}^{i}) + X_{s}^{i} Y_{t}^{i})^{2} dsdt. \end{split}$$

Then,

$$V_{n}^{2} = n^{-2} \int_{0}^{1} \int_{0}^{1} \Sigma_{j=1}^{n-1} (\Sigma_{i=1}^{j} (X_{i}^{i} - X_{s}^{i}) (Y_{i}^{i} - Y_{t}^{i}) + X_{s}^{i} Y_{t}^{i})^{2} dsdt.$$
(3.3)

Denote by  $D_3$  the set of functions from  $[0,1]^3$  to R which are continuous from above, with limits from below, and define the  $D_3$ -valued processes

$$Z_{n}(s,t,u) = n^{-1/2} \sum_{i=1}^{[nu]} X^{i}(s) Y^{i}(t). \qquad (3.4)$$

Using theorem 6 of Bickel and Wichura [2], we obtain the weak convergence of the sequence  $Z_n(s,t,u)$  to W(s,t,u). Further, the mapping  $x(s,t,u) \longrightarrow$  $\int_{[0,1]^3} [x(1,1,u)-x(1,t,u)-x(s,1,u)+x(s,t,u)]^2$  dudsdt from  $D_3$  to R is continuous. Therefore, noting that  $V_n^2 = \int_{[0,1]^3} [Z_n(1,1,u)-Z_n(1,t,u)-Z_n(s,1,u)+$  $2Z_n(s,t,u)]$  dsdtdu, the proof of the proposition is complete.  $\Box$ 



References:

- Alvo, M., Cabilio, P., Feigin, P.D.: "A class of martingales with nonsymmetric limit distributions". Z. Wahrscheinlichkeitstheorie verw. Gebiete, 58, 87-93 (1981).
- [2] Bickel, P.J., Wichura, M.J.: "Convergence criteria for multiparametric stochastic processes and some applications". Ann. Math. Stat., 42, 1656-1670 (1971).
- [3] Cairoli, R., Walsh, J.B.: "Stochastic integrals in the plane". Acta Math., 134, 111-183 (1975).
- [4] Dvoretsky, A.: "Asymptotic normality for sums of dependent random variables". Proc. Sixth Berkeley Sympos. Math. Statist. Prob. 2, 513-535. University of California (1972).
- [5] Hall, P.G.: "Martingale invariance principles". Ann. Probability, 5, 875-887 (1977).
- [6] Ito, K.: "Multiple Wiener integrals". Journ. Math. Soc. Japan, 3, 158-169 (1951).
- [7] Nualart, D.: "Weak convergence to the law of two-parameter continuous processes". Z. Wahrsch einlichkeitstheorie verw. Gebiete, 55, 255-259 (1981).
- [8] Rootźen, H.: "A note on convergence to mixtures of normal distributions".
   Z. Wahrscheinlichkeitstheorie verw. Gebiete, 38, 211-216 (1977).
- [9] Rosinśki, J., Szulga, J.: "Product random measure and double stochastic integral". Preprint.
- [10] Varberg, D.E.: "Convergence of quadratic forms in independent random variables". Ann. Math. Stat., 37, 567-576 (1966).
- [11] Wong, E., Zakai, M.: "Differentiation formulas for stochastic integrals in the plane". Stochastic Processes and their Applications, 6, 339-349 (1978).

## David Nualart

Departament d'Estadística Facultat de Matematiques Universitat de Barcelona Gran Via 585, Barcelona-7 SPAIN





Dipòsit Legal B.: 8.471-1982 BARCELONA-1982

18

e.