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On the distribution of a double stochastic _integral

by

David Nualart

Abstract.- Let {W(z), zel 0,1]2} be a Wiener process with

a two-dimensional parameter. We evaluate the characteris-

tic function of the stochastic integral [ 2 WdW and
' lo,1]

obtain some properties of its moments. Also, a martingale

array having this non-symmetric limit distribution is

exhibited.
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0. Introduction

The law of the stochastic integral fé Ntdwt, where Ut is an ordinary
Brownian motion can be obtained in an obvious way from 1t8's formula: fé Wtdwt=
%(Wﬁ—l). For a two-parameter Wiener process {W(s,t), (s,t)& T}, It8's diffe-
rentiation formula (see Wong and Zakai [ 11]) claims that %(W?l—l)= IT Wdw +
ITIT IDdeW, being D = {(z,z')e TxT: z=(x,y), z'=(x',y"), x< x' and y=> y'}.
In this case we cannot attain from this expression the distribution of the ran-
dom variables ITWdW and ITIT 1,dWdW. This paper is devoted to discuss the

law of these variables. As we shall see they have the same law.

It is known that the law of a double Wiener stochastic integral canm be
computed in terms of a weighted sum of independent chi-squared random variables.
See, for instance, the papers of Varberg [ 10] and Rosifiski- Szulga [9]. In
section 1, using a result of this kind for a two-parameter Wiener process, we

deduce the characteristic function of ITIT lDdew.

The distribution of the two-parameter Wiener process wst in the space of

continuous functions C(T) is the weak limit of the law of the sequence of pro-

-1/2 o

cesses n 52 xt vl where (x™(t), t€ (0,11, n 21} and {(Y"(t), t€ (0,1},

i=l s 't

n> 1} are two independent sequences of infinite dimensional Brownian motions.
This result has been proved in [7}. In section 2 we will use this fact to express

WdW, where R _ =

the indefinite integrals Js st

1 dwdW and K_ = fo
t st

{0,s]%[0,t], as the weak limit of a sequence of two-parameter continuous pro-

o,

cesses. This provides a method to compute the moments of the random variable Jll'

The sequence of random variables converging to J can be arranged in

|81
order to exhibit an example of a martingale array {Xni, =1, i=1,...,kn} s
with respect to a family of o-fields Fni’ satisfying the conditional Lindeberg -

condition



k
Pk

2 P
=1 E(Xni l{lx l) — 0, for all ¢>0. 0.1)

/F_ .
nil>€ } n,1=

The asymptotic behavior of this martingale array is similar to that of the
class of degenerate U-statistics discussed by Alvo, Cabilio and Feigin in [1].
Indeed, it is proved that the sequence of conditional variaﬁces converges in
distribution, as long as Zi:l xni converges in law to the non-symmetric

random variable Jll'

1. Let W= {W(s,t), (s,t)ET , T=[O,l]2} be a two-parameter Wiener process

in a probability space (Q,F,P). For any function fGLz(TxT) the double ItP-Wiener
integral I(f) with respect to W can be defined as in 1th [ 6] . This stochastic
integral takes into account just the values of f into the set {(z,z')€rxT: z#z'},
and it verifies I(f)=I(E), where f(z,z')= %(f(z,z')+f(z',z)). We are going to

recall some known facts about the distribution of I(f).

Consider an orthonormal basis {wk):=l of LZ(T) and form the development
> ' _ ' . . i =
f(z,z ') = z?,k=l ajkwj(z)wk(z ) of the symmetric function f. Then, X !T Py W

is a sequence of independent standard Gaussian random variables, and we have

Proposition 1.1.- The sequence z?,k=l ajkxjxk - E?=l ajj converges in quadra-

tic mean to I(f).
Proof: 1t follows easily from the equalities I(ijk)=(fT ¢de)(fT ¢kd§)— 6jk' Is)

Now consider the Hilbert-Schmidt operator K on LZ(T) given by the sym-
metric kernel f(z,z'). De note by {pk}:=1 (N<w or N=w) the sequence of non
zero eigenvalues of K (including multiplicities), and let {¢k}z=l be a se~

quence of orthonormal eigenfunctions of K.



Proposition 1.2.- 1I(f) has the law of the sum EE=1 uk

is a sequence of independent standard Gaussian random variables. In particular,

2 N
(Ek—l) where {Ek}k=l

the characteristic function of I(f) can be expressed in terms of a modified
Fredholm determinant (see Varberg [ 10} ):

i N N X
eIy o i, "2 - (1—21tuk)'1/2 e 1tHE (1.1)

k=1

Proof: Apply proposition 1.1 to the development F(z,z')= EE=1 uk¢k(z)¢k(z'). [}

In the sequel we will use these results to find the distribution of
I(lD) = ITIT lDdeW, being D the set of points {((x,y),(x’,y')) in TXT such that

x <x' and y >y'. For any integers j and k set ajk=(n2(2j~l)(2k~l))-l.

Proposition 1.3.- There exists a sequence {xjk’ j, kK€ Z} of independent stan-
dard Gaussian random variables such that

1) = %, ,,, 0, X +8(Z, UL ) L (.2)

D j,keZ “jkjk =1,K8Z2 Tjkjk 4

Proof: Consider the orthonormal basis of L2(T) formed by the family of trigo-
nometric functions v2 sin((2j-D)nx+(2k-Duy), 2 cos((2j-1)mx+(2k-1)ny), j,k
integers such that j >l. Set G = {(z,z')€ TxT: (z,z')€ D or (z',2)€ D}.
Then I(lD) = % I(lc), and the symmetric function l-1 has the following de-

2 G

velopment
%-IG((X,Y),(X'.Y')) =8 [zﬁ>l.kez % VZ cos ((25-1)mx+(2k-1)ny)]

[ zﬁ;d,kei ajk V2 cos(2j-1)nx"+(2k-1)ny")] +

2324 &z ajklz cos ((2j-1)mx+(2k-1)wy) cos((2j-1)nx'+(2k-1)ny') +

2 sin((2j-1)mx+ 2k~ 1y) sin((2j-Dnx'+(2k-1)ny")] . (1.3)

Formula (1.3) can be checked by taking the orthonormal basis (el(Zk—l)ﬂx, k€ z}

in L2([0,1]) and computing the coefficients of the Fourier expansion
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L, _s A —inf (23-1)x+H(2k-1)y+(23 -1 x"+(2k"-1)y"]
2 6 “3,k,i',k'€2 “ikj'k' €

The values of these coefficients are

A = 4 (25-1) (2k=1) (2§ -1 (2K'=1))"1 if §4§'#1 of ktk'4l,

jkjlk'
and

boyo 32 2-1, 2. -1
Mo iegaioe = 400 @IDT@ED DT 7251 (e T

Define
- . - . €
xjk IT /2 cos ((23-1)nx+(2k-1)ny) dwxy for j =21, k €, and
Xjk= IT Y2 sin((2j-1)nx+(2k-1)my) dwxy for j <0, k €z,
Then, (1.2) is a consequence of (1.3), using proposition L.l and noting that

2 1
To, ke 8%+ 0

Proposition 1.4.- The characteristic function of the random variable I(lD)

has the following expression

B (AU,
. o - 12
-it/4 it _ © 1 it
e LI o @yl [~ %% e @D " @e (1.4)

Proof: From proposition 1.3 we obtain the decomposition I(ID)aJ +J,, where

172
J.=X o X2 -1 and J.= % o X2 + 8(X o, X )2 are
1" 40,k %Kik b 77 %t ke YKtk 21, kez %Kk
independent random variables. Then
Bty = 14 g (1-2im.k)‘”2=
<0 keZ 3
. -1/2
-it/4
e tk§1 cos (Zk—l)n] . (1.5)

In order to compute the characteristic function of J2, we put

J= 50 . (k2 ) +8EY . (X.-X, )=
27 %5,k=1 %k 5K,k o=l %5k %K,k



o S 2
Lj,k=1 Moy 8 (}:j,k=l Nod
where Mik and Njk are independent random variables with distribution N(0,2)
and N(O,Za?k), respectively. Thus,
itdy . 2 2N 2.
E(e 72) lim Noveo E lexp(81t(2 k=1 Jk) tzzj,kxlek)] =
) N 1 N dx.k
Yim f N exp(81t( k=1 Jk) J el Jk(u +7a )) ! — -
R i, k=1vV4na"
jk
o it ,-1/2 5 1 it -1/2
(ot @eny ¢ e s T Gene (1.6)
Finally, (1.4) follows from (1.5) and (1.6). DO
[ . .
Note that if we write g(t) = ( 0Tl cos ?Ei§TYE)—2’ then E(eltl(lD))=
k=1

e-ltlh(g(t)-Zig'(t))_l/z. Unfortunately, as far as we know, there is not a

simpler or more reduced expression for the function g.

Although we have already obtained an infinite product expansion for the
characteristic function of I(ID), it may be interesting to exhibit the eigenva-
lues and the eigenfunctions of the integral operator K on LZ(T) with kernel

n lG. Observe that they are given by the partial differential equation

A 5% = —p(x,y),  $(0,00=(1,1)=0, P(0,y)+p(1,y)=p(x,0)+p(x,1)=1.

If a function wag(T) has the Fourier development
y( x,y) = Zggq,ket(xjk/f cos ((2j-1)mx+(2k-)my) +
% 7 sin((2i-D k(-1 1))

then, using the expansion (1.3), we see that the equation Ky = AY is equivalent

to the system of equations



8 o Tot kez Gt = AT ey )%y

TR R R
for all > 1, k€ Z.

From these equations we can deduce the next results, which could also

have been derived in a direct form from (1.4) and (1.1).

a) For any integer h put Ah= {G,e Z2: ajk=(ﬂ2(2h—l))-l} and denote
by ™ the cardinal of Ah. Then, the numbers (n2(2h—1))-1, hE Z, are eigenvalues
of K, each one with multiplicity mh-l. The invariant subspace agsociated to

2 -1, 20, o . .
A=(n"(2h-1)) is {Y&€ L°(T): xjk-O for all (J,k)th, and E(j,k)eﬁh,ﬁ>l xjk 0&.

b) The rest of eigenvalues have multiplicity one and are the solutions

of the equation which equivalent to

L 2
3 7 Ziot ke Y] O

«s
5 1 1 1

k=1 (2k-D7 2 0@k ~ 4 ° L7

There is exactly one solution of this equation in every one of the open inter-

b, 2@, o Zaenh,

vals (n'z,m) and (n'2(2k+1)'1, n—2(2k—1)_
k =1,2,... Unlike the first ones, these eigenvalues are not symmetrically
placed about the origin, and can only be evaluated aproximately. For ins-

. . A . _ 1 1
tance, using the development of the function £ = Ek=l (Zk=177 tan Dk-D)7

in the interval (n_z,w), we can find the aproximate value 0.276203 for the

maximum eigenvalue.



2. Counsider the two-parameter continuous processes defined by K = IR WdW
S
st
and J_ = szthstlndwdw, (s,t) €T, where R  ~[0,s]x[0,t]}. It is known that

2
W= 2K + + . - i
et ot 2Jst st. The processes Jst and KSt are two-parameter martingales

with respect to the natural filtration of W, and Kst is a strong martingale
(cf. [3]).

Let {x"(t), te[0,1], n >} and {¥Y°(t), te{0,1], n 21} be two inde-
pendent infinite dimensional Brownian motions. We know (cf. [7}) that

n-l/22?=1X;Yt converges weakly to W.

Lemma 2.1.- The sequences of two-parameter continuous processes

n _ -1 S ol uineft olavd
Sge =0 Z‘;,j=1(foxdx)(f0YdY), and (2.1
n _ -1 8 i iy (t yigyl
T, =™ z’.l"j=l(]0 xtax)y (fg vlar®) (2.2)

converge weakly to the processes Kst and Jst’ respectively.

Proof: We shall only prove the convergence of T:t to Jst’ and the other state-

ment has a similar demonstration. Put tz=k2—n for k=0,1,...,2n and n=> 1, Define
n LS n n n n
Jst = ziz\,k=0[w(th+l'\ s,tkt\t) - W(thAs,tkA t)]e
n n n n
[w(thl\s,tk_'_l/\t) - W(th/\s,tk/\t)] , and
m . . .
nm _ ~1 -1 i, m j, om _ydgm j, m ,
Tee = 0 E‘il,j=l Zﬁ,lwo XT(g ASIIX (L A S)-XT (8 A YT (1) AL)
I yie™
[y (tkHAt) Y (tk/\t)] .

For any m2 1, the sequence " converges weakly to 3" as n tends to in-
finity, Also, the following convergence holds

an)

om
SUPy E(lTst - Tst

~— 0, (2.3)

moe

for all ( s,t)e T. In fact,



where

and Bl N
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nm n 2 -2 n
EC|Top = T2 |) = n zi’jzlz(p: x (ty s xJ(c A 8- —x (tp As)]

hkO

VAo @, an-vapan) - (8 Kady g varhl? <

-2 «n 2™1 3 j,.m 8 oi 3\2,
" B L LEC >:h=0 x (epa s X (e A 6)-x) (ep A o)) -f§ X dx)

2™

=0 YJ(t Ao Yl

i, m 2, 21 j,.m
(z k+1"t)'Y (t A )l + B Ek=0 ¥ (b A )

(Y e, A R anl-f Yah (S Kadydy) <

m
i CETCH b W Y,

2, m 1 1, 1,4
bep)B (e =, B aB" ")

1/2)
n(qlzho Bl eMst (e, )-8t (eM1-fg 8las'| %) ,

Z—IB(t)[B(L (t)ll),

2
K = sup {E(IE
>l h+l

2™ 1 1 .1, 144
el ot Bt aemrst e, -3t el % e fg Blas? Yy, e[} 8’|,

32 are two independent standard Brownian motions. Therefore, (2.3)

is proved. In addition, we have

n —
E( |Jst - | ) 0, (2.4)

n-»o

for all ( s,t)E€ T.

Using Cairoli-Doob's maximal inequalities for two-parameter martingales,

the convergences (2.3) and (2.4) can be transformed into

and

the weak convergence, and such that d(L(X),L(Y) < E(sup

nm . ¢ )
sup E(supB’t ITst - rst' ) wves 0, (2.5)
n 2
E(sup IJSt - Jstl ) == O (2.6)

Let d be a metric on the set of all probabilities on C(T) which induces

s, t 1% - ¥, D for



any C(T)-valued random variables X and Y. Here L(X) stands for the distribu-
tion of aA. Then

dLEM,LQ)) < sup, E(sups,tlT:t— T22|) +dL@™,La™) +

n
|Jst— Jstl

+ E( sup_ )
’

t

converges to zero as m® , and the lemma is proved. O

Lemma 2.2.- For all (s,t) in T, the random variables Kst’ Stkll' Jst and

stJll are identically distributed.

Proof: An invariance property for the Wiener process states that for any a> 0
and b>0, {Vab W(s/a,t/b), (s,t)€T) has the law of a two-parameter Wiener
process. Therefore, it suffices to show that Kll and Jll have the same distri-
bution. To do this, set 4, .= (27", D272 G2 for 0<i,j27-1,
n> 1, and W) = WOEHD 2T, GHD2TM-wE T, GHD 2T -w (D 27§27+

W(iZ-n,jZ-n) . Then, we have in the L2 sense K, = limn z "(Aij)w(Ai'j')

i'<i
i'<3
- 14 . . . . a
and Jll 11mn Ei'<i H(Aij)w(Ai.j.), which implies the assertion of the lemma

i'<i

Next we will use lemma 2.1 to obtain some information about the moments
- Py - p Lo . .
n E(Kll) E(Jll)’ p2l. For i,i=l,...,p define
_ | S P | 1 ,i,.3 | S I | 1§, 2.7
&g (o xtaxy(fy viardy + (g daxhy ([ Yiavh, (2.7)
and

W= By e By b 5,10 (2.8)
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Proposition 2.1.- For all pyl, we have

p (p-1)4

b = Ek=l 2 (pil My mp—k . (2.9)

m

Proof: Set

s® yPy = o~
E(S]PD) = n

P i, ]
P 1 k kyy 2
2, e, ..., Px(1,...,n)P LEC kEIon & O 2,10

In this sum all terms vanish except those corresponding to multi-indexes

(i,j) such that for any me{!l,...,n} there is an even number of indexes equal
to m, Denote by vij the number of different integers appearing in the multi-
index (i,j). Then, for all k=l,...,p, the sum of the terms with multi-indexesg
verifying Vij= k is of order nk. Therefore, if Gp denotes the set of permuta-

tions of the numbers 1,1,2,2,...,p,p, we obtain

. napy _ 1 Py Yy Jg 2
Lim E(($;)7) = o E(i,j)er [ EC kzlfo X X O1°, (2.11)

where (i,j) represents the permutation (il’jl’iz’jZ""’ip’jp)' In view of
lemma 2.1, (2.11) is the value of mp. Two permutations (i,j) and (i',j') of
Gp such that ik=jh -3 ié=j£ for any k,h=1,...,p, will be called equivalent
and they give rise to identical terms in the sum (2.11). If QP stands for the

quotient set, we have

p i, J
n [EC 1 [} x “ax*? . (2.12)
k

=2, .\,
P (1vJ)er =1

Observe that the cardinal of Qp is (2p)!/p!2p. A permutation of Gp will be
called irreductible if it cannot be a product of cycles. All permutations
equivalent to an irreductible one are also irreductibles. Denote by IpC.Qp
the set of equivalence classes of irreductible permutations and define

p i, ]
[EC 1 fox Fax ) 2, (2.13)
k=1

n =X, . .
, 1
p G,je p



- 11 -

Then,

n =2 ¢ o, moy + forall p>1, (2.14)

with the convention n0=m0=l.

Finally, if we set fé dexl+1 = EI and fé X1+1dX1 =, , for

i=l,...,p, with the assumption p+l=1, it can be shown that

! | €1 fpy2 1
nm g GeDE S e lEGE L eI =5 e, 2.15)

P cel+,

which completes the proof of the proposition. 0O

Remarks:

1. Suppose that for any € é{+,—}p we define the set A€ of points x in

[0,1]p such that X€. X for all i=1,...,p (with the convention pt+l=1),

iTi+l
where the symbols + and - mean € and 2 , respectively. Then, using the formal
idi i, 1 i, i .
= uA = =
rules E(Xuxv) uly, E(xudxv) l{u>v}dv and E(dxudxv) l[u=v}du, it
can be seen that up= z IAEIZ’ where IAEI is the Lebesgue measure of Ae .
€

€ €
2. The expectations E(F,l1 cee Epp) can be cumputed recursively by means of

It8's formula. Indeed, if we define J = {i: €.=+ and €, ,=-}, then
€ i i+l
€ €
E" ... Ep ) =
3 € €, € € €. €, €

1 1 i-1.4_7i+2 ] 1 J=1,= . Ti42 P

= £

> zieJE[E(El ce BT BBy e EDBGE g T e 0 L g P
Using this algorithm it is nor hard to evaluate the first moments of Jll‘ For

. 1 1 1 1 7 23 37

instance, py=m=05 Wy 30 M % M3t 6 M7 60 M7 S6T ™7 48 VT 720

m= 3L
5 30 °
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3. The following expression for the characteristic function of J can be

11

deduced from proposition 2.1,

Eh&__~__)
2k *

ieJ 0
1 =
E(e 1) exp (Lk=1
Set ¢ = %(52—1), where £ is a random variable with law N(0,1l). An argu-

ment similar to that used in the proof of proposition 2.1 shows that E(¢p) =

p i
=X, . E( I fl X kdx k). Then, the following inequalities hold
(i,)e Q, =19

E((¢/2)P) < n, < E@P). (2.16)

In fact, to verify the second inequality observe that the terms in the sum
(2.12) are less or equal than one. For the first inequality note that Ju+l(ll

has the same law as ¢ . As a consequence of (2.16), J . has finite exponential

11
moments E(etjll) for t<l. The next corollary shows that really E(etJ11)<oo for

t<vZ.

Corollary 2.1.- up <;2—p/2 if p is even, and up < CZ*p/Z if p is odd,

being C='§ /1. Moreover,

B 1) <24 (/e G187 ym(CHD/4 (2.17)

Proof: If p is even, the first statement is an immediate consequence of

Schwarz inequality,

up = E[(€12£34 )(523545 Ll

S E TG NRNIE I TG AL | L AL

For p=2q+l, ¢ 0, we apply It3's formula and Schwarz inequality,
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-zi, fé BE (085 ) (08 543(0) by (t)(x‘x1+zj Yl l+2

1 1+ZIO 1 1+2d )N de =
- i,i+2 l 1 1+2 i,i4+2,1 i i+2
HEyp - Bion,ifiu2, 003 0 Epn Xy Jo¥g¥g TdsHY Y] X X Tds)]<
< (E({ ))Zq— E [(Xl i+2 3Y1Y1+2d + Y1Y1+2!0 i 1+2d )2111 2

- 27 P2 2

Finally, (2.17) follows immediately from the preceeding inequalities. D

3. Consider the sequence of random variables Un= n-l =

L WO TP O
i.4e1 fo Xax) fo yiav),

It is clear that Un converges in distribution to Jll' Indeed, Un= STI ~-

- ot g2 (3 Waxt [l viar'. For each > 2 and j=2,...,n define

-1 -1 .
gt Bop i (3.1

and let Fnj’ j=l,...,n, be the g-field generated by the processes xl""’xj’

Y,5...,Y.. Then X . is a martingale array, that means, an,...,X . are Fnj—mea-

1 j nj nj
surable and E(X ./F j 1)=O, for j=2,...,n, Furthermore X ?=2 X .,=U_. Set

2 2 .2
Vai® zi E(x i/ Fa, _y)e and V= VO

Lemma 3.1.~ The martingale array an satisfies the conditional Lindeberg con-
dition (0.1).

j-1
Proof: Put Zj= 2%=1 Eij' Then,

4 i1, L odavin2, el ojgoic2\2
E(Z]) < const.| E [(zi_i(jo Waxh 2y viarhH +
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+E| @J;}q(‘) xraxh?(f] vl = conse. 37+ o(i).

Therefore,

-2 ¢n 2 -4 -2 ¢n 4
< —
n 2j=2 E(Zj 1{]Zj'>“€}) n € 2j=2 E(Zj) 0,

as u -+ , for all e>0.

If this Lindeberg condition holds, Hall [5] and RootZen { 8] have

shwon that Vi-—g—* n  with P{n> 0} =1 implies that Un converges in dis-
tribution to a mixture of normal distributions with characteristic function
E(exp(- % tzn)). If there is only convergence in distribution of the sequence
Vi, this result may fail as it has been proved by a counterexample of DvoretSky
[4] . Also, Alvo, Cabilio and Feigin [ 1] exhibit a class of martingales, which
are degenerate U-statistics, and such that the sequence Un of row sums converge
in distribution to a weighted sum of chi~squared independent random variables

as long as the sequence of conditional variances converges in law. The next

result shows that the martingale array (3.l1) satisfies these same properties.

Proposition 3.l.- The sequence Vi converges in law to the random variable

W

-~ 2
+ W__ ) “dsdtdu, (3.2)
10’113 stu stu

~ 3, .
where W_ = Ve Yew Ysiot Yerw and {wstu’ (s,t,u)€ {0,117} is a zero

mean continuous Gaussian process with covariance function E(W(sl,tl,ulr

"(Sz’tz’“z) = (8;a sz)(tlt\ tz)(ulf\ u,y).
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Proof: Compute

2 -
E(an/F ) =

n, j-1
w1l i i2 1,gi ,i2 G-1,,1,.4.2 1,.i,2
‘i=1(fo(x1 X)) du)(fO(Yl Y ) du + zi=l(f0(xu) du)(jo(yu) du) +

2 g1

I 0k o ety v a4

j-1 1o id’ boigi!
220 5o g XX, du ([ Yov du) +

1,i'=1

j-1 (DS N L 1i it it
2 Z',i'ex(fo(xx XX, dw (fo(V =¥ )Y du =

i
1,1 j-1 i i ii iji2
fofo (Bioy X=X (¥=¥)) + X Y dsdt.
Then,
2 _ -2 1,1 -1 j i i i_gi i,iy2
v =0 folo 2§=1 ] KX (=YD + X YD) dsde. (3.3)
Denote by D3 the set of functions from [0,1]3 to R which are conti-
nuous from above, with limits from below, and define the D3-va1ued processes
z_(s,t,0 = n 22 L0yl o). (3.4)

Using theorem 6 of Bickel and Wichura [2} , we obtain the weak convergence

of the sequence Zn(s,t,u) to W(s,t,u). Further, the mapping x(s,t,u) —>

3 [x(!,l,u)-x(l,t,u)-x(s,l,u)+x(s,t,u)]2 dudsdt  from D3 to R is con-
(0,1}

tinuous. Therefore, noting that VZ = f {z (1,1,u)-2 (1,t,u)-Z (s,1,u)+
n [0,113 n n n

ZZn(s,t,u)] dsdtdu, the proof of the proposition is complete. 0O




- 16 -

References:

[1] Alvo, M., Cabilio, P., Feigin, P.D.: "A class of martingales with non—
symmetric limit distributions". Z. Wahrscheinlichkeitstheorie verw. Ge-
biete, 58, 87-93 (1981).

[ 2] Bickel, P.J., Wichura, M.J.: "Convergence criteria for multiparametric
stochastic processes and some applications”, Ann. Math. Stat., 42,

1656-1670 (1971).

[ 3] Cairoli, R., Walsh, J.B.: "Stochastic integrals in the plane™. Acta Math.,
134, 111-183 (1975).

{ 4] Dvoretsky, A.: “Asymptotic normality for sums of dependent random varia-
bles". Proc. Sixth Berkeley Sympos. Math. Statist. Prob. 2, 513-535.
University of California (1972).

[ 5] Hall, P.G.: "Martingale invariance principles”. Ann. Probability, 5,
875-887 (1977).

[6] Ito, K.: "Multiple Wiener integrals'". Journ. Math. Soc. Japan, 3, 158-
169 (1951).

[ 7] Nualart, D.: "Weak convergence to the law of two-parameter continuous
processes'. Z. Wahrsch einlichkeitstheorie verw. Gebiete, 55, 255-259
(1981} .

[ 8] RootZen, H.: "A note on convergence to mixtures of normal distributions".

Z. Wahrscheinlichkeitstheorie verw. Gebiete, 38, 211-216 (1977).

[9] Rosindki, J., Szulga, J.: "Product random measure and double stochastic

integral". Preprint,

[ 10]varberg, D.E.: "Convergence of quadratic forms in independent random va-

riables". Ann. Math. Stat., 37, 567-576 (1966).

[11}Wong, E., Zakai, M.: "Differentiation formulas for stochastic integrals
in the plane". Stochastic Processes and their Applications, 6, 339-349
(1978).

David Nualart

Departament d'Estadistica
Facultat de Matematiques

Universitat de Barcelona

Gran Via 585, Barcelona-7
SPAIN












PR L TS
elic ooy
(IO RV B
the barcolonn

Dipdsit Legal B.: 8.471-1882
BARCELONA-—1982



