CAIXA 31.7

UNIVERSITAT DE BARCELONA FACULTAT DE MATEMÀTIQUES

A SHARPED BOUND FOR THE NUMBER OF GENERATORS OF IDEALS DEFINING SPACE CURVE SINGULARITIES by Joan Elias

PRE-PRINT N.º 7 març 1982

A SHARPED BOUND FOR THE NUMBER OF GENERATORS OF IDEALS DEFINING SPACE CURVE SINGULARITIES

Joan Elias

Abstract: In this paper we stablish a bound for the number of generators of geometric determinantal ideals of codimension two. Afterwards we show that this bound is sharp for curve singularities.

<u>1.Definitions</u>. Throughout this article I shall use θ to denote the local ring of formal power series $k[[X_1, \ldots, X_N]]$, or the local ring at the origin of $k[X_1, \ldots, X_n]_{(X_1, \ldots, X_N)}$, where k is an algebraically closed field of characteristic zero.

An ideal of Θ will be called determinantal if there is a num matrix M with entries in Θ , such that I is generated by the run subdeterminants of M and the height of I is maximum, i.e. (n-r+1)(m-r+1).

A germ (X,0) will be called determinantal if it can be defined by a determinantal ideal of θ . In the case of codimension two we have a nx(n+1) matrix M, and I is generated by the nxn subdeterminants of M. We can also assume that any minimal basis of I is obtained taking the maximal subdeterminants of a matrix M with entries in the maximal ideal of the ring θ (see [Bu]).

It is known that in codimension two, to be determinantal is equivalent to be perfect (see [Ho-E], [Bu]).

We denote by r(I) the number of elements of a minimal basis of I, h the height of I and e the multiplicity of the local ring $\frac{\theta}{r}$.

2. The bound. Let I be a perfect ideal of θ with height two, then

Proof: We shall proceed by induction on the dimension of Θ . From lemma5 of [Z-S] pag.287 there exists a superficial element of degreel. Now since for an element to be superficial depends only on the initial form, we can assume that there exists a cosset \bar{X} such that is a superficial element of degree 1. Set $\bar{X} = \bar{X}_N$.

It is easy to prove that a superficial element is a non-zero divisor, therefore it is suficient to consider the quotient

$$\frac{\Theta}{1 + X_N \Theta}$$

which is isomorphic to

$$\frac{\theta x_{N}\theta}{1 + x_{N}\theta x_{N}\theta}$$

and this ring is Cohen-Macaulay.

By induction on $\frac{\theta}{X_N \theta}$ we have a regular sequence $\bar{X}_3, \dots, \bar{X}_N$ in the ring $\frac{\theta}{I}$, and from theorem 16.B of [Mat]it follows that the above sequence form a system of parameters of $\frac{\theta}{\tau}$.

2.2 Theorem.Let I be a perfect ideal of θ of height two then

Proof: From corollary two to theorem five of [Bu] we know that $I \subset m^{\gamma-1}$

where m is the maximal ideal of θ . By the above lemma we may assume that $\bar{x}_3, \ldots, \bar{x}_N$ are a system of parameters of $\frac{\theta}{I}$. Therefore

$$\dim_{k}\left(\frac{\Theta}{I + (X_{3}, \dots, X_{N})}\right) = e$$

Moreover the cossets $\tilde{x}_1^a \ \tilde{x}_2^b$ with $a+b \leq F-2$ form a k-independent set, because if we had a linear relation

$$\sum \lambda_{a,b} \, \bar{x}_1^a \, \bar{x}_2^b = \bar{0}$$

with $\lambda_{a,b} \in k$, then

$$\sum \lambda_{a,b} x_1^a x_2^b = f + g , f \in I, g \in (x_1, \dots, x_N) \Theta$$

and hence we would get in the ring $\frac{\Theta}{m^{1/2}-1}$ that

$$\sum_{\lambda_{a,b}} \widetilde{x}_{1}^{a} \widetilde{x}_{2}^{b} = \widetilde{g} \in (\widetilde{x}_{3}, \dots, \widetilde{x}_{N}) \left(\frac{\Theta}{m^{i-1}} \right)$$

which yields $\lambda_{a,b} = 0$. The number of cossets $X_1^a X_2^b$ with $a+b \leq r-2$ is $\frac{r(r-1)}{2}$, and consequentely $2 e \geq r(r-1)$.

3. The examples of Macaulay and Moh. It is a classical problem to find prime ideals of θ which need at least n generators, for each $n \ge 1$.

Macaulay constructed prime ideals that requires exactly n generators([Mac] pp. 36-37). Abhyankar found that this construction was " rather mysterious today and ... in need of proof" ([Ab]). However Abhyankar substitutes the original claim of " exactly n generators" by " at least n generators". Now I will show how theorem 2.2 allows us to

recover Macaulay's claim.

3.1 Theorem. Let M be Macaulay's prime ideals for the ring

$$k \begin{bmatrix} x_1, x_2, x_3 \end{bmatrix}_{(X_1, X_2, X_3)} \text{ then } r(H_n) = n.$$

Proof: It is known that the multiplicity e of the ideal M_n is $\frac{1}{2}n(n-1)$. From the paper of Abhyankar we get $r \ge n$, therefore by theorem 2.2

$$e = \frac{n(n-1)}{2} \leq \frac{r(r-1)}{2} \leq e$$

hence n = r.

More recently T.T.Moh showed ([Mo]) that in the case of the ring $\theta = k [[X_1, X_2, X_3]]$ there exist prime ideals $P_n \in \text{Spec}(\theta)$ which have n+1 as their minimal number of generators. Like the case above we have

$$V(P_{n})(V(P_{n})-1) = 2e.$$

Thus we see that our bound is sharp for germs of algebraic and algebroid space curves.

Notice that the examples of Macaulay and Moh have minimal multiplicity for V fixed, or maximal V for a fixed multiplicity.

4. Other bounds. G. Valla in his paper ([Va]) gives a general bound that in our hypothesis is

$$r(I) \leq \frac{e+3}{2}$$

Now it is easy to show that the bound of theorem 2.2 is

$$r(\mathbf{I}) \leq \frac{1 + \sqrt{1 + 8e}}{2}$$

which for any $e \ge 3$ is better than Valla's.

<u>Remark.</u> I refer to Valla's paper for a comparison of this bound with previously obtained bounds by Becker, Sally, Boratynski-Eisembud-Rees.

REFERENCES

- [Ab] ABHYANKAR "On Macaulay's examples" Lecture Notes in Math. n°311.
- [Bu] BURCH "On ideals of finite homological dimension in local rings" Proc. Cambridge Philo.Soc. Vol.64 (1968).
- [Ho-E] HOCHSTER-EAGON "Cohen-Macaulay rings, invariant theory..." Amer. Journal of Math. 93 (1971).
- [Mac] MACAULAY "The algebraic theory of modular systems" Cambridge Tracts in Math. and Math. Physics (1916).
- [Mat] MATSUMURA "Commutative algebra" second edition. Benjamin.
- [Mo] MOH "On generators of ideals" Proc. of the AMS. Vol. 77 n°3 December 1979.
- [Va] VALLA "Generators of ideals and multiplicities" Communicationes in Algebra 9(15), 1541-1549(1981).
- [Z-S] ZARISKI-SAMUEL "Commutative Algebra" Vol II. Springer-Verlag.

DEPARTAMENT DE GEOMETRIA I TOPOLOGIA. FACULTAT DE MATFMATIQUES. UNIVERSITAT DE BARCELONA.

+3

Dipòsit Legal B.: 12.128-1982 BARCELONA-1982