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Seagrass meadows, key ecosystems supporting fisheries, carbon sequestration and coastal

protection, are globally threatened. In Europe, loss and recovery of seagrasses are reported,

but the changes in extent and density at the continental scale remain unclear. Here we collate

assessments of changes from 1869 to 2016 and show that 1/3 of European seagrass area was

lost due to disease, deteriorated water quality, and coastal development, with losses peaking

in the 1970s and 1980s. Since then, loss rates slowed down for most of the species and fast-

growing species recovered in some locations, making the net rate of change in seagrass area

experience a reversal in the 2000s, while density metrics improved or remained stable in

most sites. Our results demonstrate that decline is not the generalised state among sea-

grasses nowadays in Europe, in contrast with global assessments, and that deceleration and

reversal of declining trends is possible, expectingly bringing back the services they provide.
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Seagrasses, marine flowering plants forming underwater
meadows, play a key global role in supporting fisheries
production1, climate change mitigation2, and coastal pro-

tection3. However, they rank among the most threatened eco-
systems on Earth, with global loss rates accelerating from
0.9% yr−1 in the 1940s to 7% yr−1 toward the end of the 20th
century4. Rapid global losses are largely attributable to anthro-
pogenic impacts, mainly loss of water quality and coastal devel-
opment5 and, more recently, to extreme events, such as storms6

and marine heat waves7,8. The loss and deterioration of seagrass
meadows are compromising the important services they provide,
so the call for their global conservation is gathering momentum
in order to secure their future9,10. Yet, seagrass conservation
implies many challenges11, especially because seagrasses lack the
charisma of other coastal ecosystems12. One of the challenges in
seagrass conservation is informing on their status and condi-
tion11, since spatial and temporal data on seagrass extent and
density are normally scattered or scarce in most regions, as well as
disparate in terms of the metrics of change assessed.

In Europe, either loss13–17 and recovery or stability18–21 are
reported for seagrass meadows, with an overall trend toward
decline reported for the Mediterranean endemic species Posidonia
oceanica, which has lost between 13% and 50% of its areal extent
since 196016,17. Along with P. oceanica, three other native sea-
grass species occur along European coasts: Zostera marina, Z.
noltei, and Cymodocea nodosa. However, a comprehensive eva-
luation of seagrass status across Europe is still lacking, and thus
the magnitude and direction of changes in seagrass extent and
density at the continental scale remains unclear, in particular for
species other than P. oceanica. The identification of the causes of
seagrass loss and recovery is equally important to implement
effective management actions to halt current losses and boost
their recovery. Europe is a distinctive geographical region for
having adopted in 2000 the seagrasses as sensitive quality ele-
ments providing a diagnostic of ecosystem health under the
European Union (EU) Water Framework Directive (WFD)22–26,
which aims at maintaining good ecological status in European
waters. The focus on seagrasses as indicators of ecosystem health
of coastal waters has led to increasing monitoring efforts across
the European continent in the past two decades16,24. This mon-
itoring effort, along with older data on seagrass extent in locations
with a long history in seagrass monitoring and mapping, provides
the basis to examine seagrass trajectories at the continental scale.

Here we assess the continental-scale trends of the extent and
density of European seagrasses and identify the causes of change,
both for loss and recovery. We rely on a compilation of assess-
ments of change in 737 seagrass sites along the coasts of 25
European countries, from 1869 to 2016, including occurrence,
area extent, depth limits, cover, shoot density, and biomass. We
assess the pattern of the trajectories of increase, decline, and no
change for the entire time period and find a prevalence of
declines, with about one third of the seagrass area lost. We
additionally investigate the trends of the rates of change and the
evolution of the trajectories from the 1950s to the 2000s, and we
find a slowdown in the losses and an improvement of the tra-
jectories in the 1990s and 2000s, resulting in a reversal of the
declining trends. We conclude that decline is not the generalized
state among seagrasses nowadays in Europe.

Results
Overall changes of European seagrasses from 1869 to 2016.
Across the observational record (1869–2016), and integrating all
the metrics of change, there was a prevalence of sites reporting
decline (49%) compared to those reporting increase (22%) or
showing no change (29%), when accounting for all the species

(Fig. 1). The highest proportion of declines, integrating extent
and density metrics, was reported for Z. marina and C. nodosa,
whereas the lowest was for P. oceanica (Fig. 1). The extent metrics
(presence, area extent, depth limits; Supplementary Fig. 1)
declined in 68% of seagrass sites, whereas density metrics (cover,
shoot density, biomass; Supplementary Fig. 1) declined only in
31% of sites. Declines were reported mainly for seagrass area and
depth limits (Fig. 2a), and in all cases, the mean specific rate of
change of declining sites was higher than of increasing sites
(Fig. 2b).

The area losses and gains of European seagrasses added up to
40,411 and 4,727 ha, respectively, resulting in a net loss of 35,684
ha between 1869 and 2016 (Table 1), which represents 29% of the
maximum area documented in our compilation (122,582 ha). The
species experiencing the largest area declines were Z. marina and
C. nodosa, with net losses representing 57% and 46% of their
maximum area assessed, respectively (Table 1). Area gains were
higher for Z. noltei and C. nodosa, representing 8.1% and 15.6%
of their total assessed area, respectively. In contrast, P. oceanica
and Z. marina gains represented a small percentage of the
maximum area compiled (0.5% and 2.1%, respectively).

Seagrass meadows in the Baltic Sea experienced the largest
percentage of losses of area (67%), followed by the Atlantic (36%)
and Mediterranean (21%) coasts (Table 1). Among the 212 seagrass
sites reporting changes in area, 16 sites accounted for 75% of the
losses, whereas 5 sites accounted for the same percentage of gains.
The largest net losses in seagrass areas for single locations were
registered for Z. marina (7190 ha in the Wadden Sea, 3296 ha in
Puck Bay, 2490 ha in Odense Fjord, 2422 ha in Golfe du Morbihan,
1358 ha in Lake Grevelingen) and P. oceanica (4364 ha, Cape Circeo
and Sperlonga, Italy), whereas the largest net gains were
documented for Z. noltei (2434 ha in the Northfrisian Wadden
Sea and 378 ha in Bourgneuf Bay), C. nodosa (304 ha, Alfacs Bay),
and Z. marina (210 ha in Rance-Fresnaye, 180 ha in Baie de
Morlaix, and 128 ha in Les Abers Large, France; 199 ha in Mariager
Fjord, Denmark). The magnitude of the losses in seagrass area
(median= 46 ha, mean ± s.e.m.= 297 ± 72 ha, n= 136) was signifi-
cantly larger than for area gains (median= 12 ha, mean ± s.e.m.=
84 ± 44 ha, n= 56; two-sample Kolmogorov–Smirnov test, D=
0.29, p= 0.0018, Supplementary Fig. 2).

Decadal changes of European seagrasses from 1950s to 2000s.
The decadal rate of area loss of European seagrasses revealed an
acceleration over the second half of the 20th century to peak at
–33.6% decade−1 in the 1970s (Fig. 3). Losses subsequently slo-
wed down to lower rates in the 1980s (–27.0% decade−1), in the
1990s (–16.1% decade−1) and in the 2000s (–8.3% decade−1),
while the decadal rate of area gains increased during the 1990s
and 2000s. Consequently, for the first time since the 1950s, a large
net gain in area was attained in the 2000s at a specific rate of 20%
decade−1. The large increase in area observed during the 2000s
was mainly attributed to Z. noltei gains in the Atlantic coasts
(79% of total gains, 15 sites) and in the Mediterranean Sea (7.2%,
1 site), and, secondarily, to Z. marina in the Atlantic coast (9%,
11 sites) and in the Baltic Sea (2.1%, 3 sites) (Supplementary
Fig. 3). The species-specific decadal rate of change in area
revealed that the trend reversal detected in the 2000s was due to
the slowdown of losses of all the species (except for C. nodosa,
losses of which overpassed gains in the 2000s), along with the fast
recovery of the Zostera spp. in the 2000s (Supplementary Fig. 3).
The mean specific rates of change of area, density metrics (bio-
mass, cover, and shoot density), and depth limits (upper and
lower) were not significantly different from 0 in the 2000s
(Wilcoxon signed-rank test, V= 1745, p= 0.64; V= 1887, p=
0.25; and V= 37, p= 0.12, respectively; Fig. 4a–c). From 1950s to
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Fig. 1 Distribution of compiled seagrass sites in Europe and their trajectories. Seagrass sites in Europe showing no change (yellow circles, n= 213), increase
(green circles, n= 160), and decline (magenta circles, n= 364) trajectories based on the available time series reports between 1869 and 2016, thus
corresponding to different time windows. Pie charts show the overall and species-specific frequencies of trajectories. Number of sites showing decline,
increase, and no change trajectories are, respectively: 128, 72, and 158 for Posidonia oceanica; 146, 37, and 35 for Zostera marina; 39, 12, and 3 for Cymodocea
nodosa; and 51, 39, and 17 for Zostera noltei
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Fig. 2 Overall changes of European seagrasses per metric of change. a Percentage of seagrass sites showing decline, increase, and no change for each
metric, and b specific rates of change of declining and increasing sites for each metric (% yr−1, in absolute value). Number of sites showing decline,
increase, and no change trajectories are given between brackets. In the boxplots, the plus (+) represents the mean, the solid line the median, the lower and
upper hinges are the first and third quartile, whiskers extends to the largest and smallest values no further than 1.5×inter-quartile range, and data beyond
the end of the whiskers are plotted as points. Source data are provided as a Source Data file

Table 1 Gains and losses in area of European seagrasses per species and regions

Category Maximum compiled area, ha (N) % Area lost (N) % Area gained (N) Total net change, ha (N)

Species
Posidonia oceanica 38,420 (57) 19 (37) 0.5 (6) – 6990 (43)
Zostera marina 40,770 (60) 57 (53) 2.1 (13) – 22,206 (66)
Cymodocea nodosa 2,320 (23) 46 (17) 15.6 (4) – 710 (21)
Zostera noltei 41,072 (72) 22 (29) 8.1 (33) – 5779 (62)

Regions
Mediterranean Sea 46,854 (78) 21 (52) 1.2 (11) – 9388 (63)
Atlantic Ocean 65,471 (120) 36 (75) 6.0 (40) – 19,696 (115)
Baltic Sea 10,256 (14) 67 (9) 2.5 (5) – 6600 (14)

Total 122,582 (212) 33 (136) 3.9 (56) −35,684 (192)

N number of seagrass sites based on the available time series between 1869 and 2016
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1990s, the number of sites, within each decade, experiencing an
improvement in the area trajectory was always lower than those
worsening, but this pattern changed in 2000s, when the number
of sites improving surpassed the number of those worsening
(Fig. 4d). In terms of density metrics and depth limits, there was
an increase of sites improving and in steady state (not improve-
ment, not worsening) from the 1980s to the 2000s, even though
there was also an increase of sites getting worst (Fig. 4e, f).

Causes of change in European seagrasses. The causes for decline
or increase of European seagrass meadows were reported for 31%
and 7% of the compiled seagrass sites, respectively. Most of the
declines were attributed to water quality degradation (26%) and
wasting disease (25%), followed by coastal modification (16%),
mechanical damage (14%), and multiple causes (12%, Fig. 5a).
Whereas the wasting disease caused by Labyrinthula sp. was the
dominant driver for losses of Z. marina, losses of other seagrass
species were dominated by water quality degradation (P. oceanica
and Z. noltei) and coastal modification (C. nodosa) (Fig. 5a).
Seagrass recovery was mostly (68%) attributed to management
actions (Fig. 5a), which included improvement of water quality,
reduction of industrial sewage, and anchoring and trawl-
ing regulation. The rest of cases were attributed to natural colo-
nization that could not be directly associated with any human
intervention (Fig. 5a), which included the recovery from wasting
disease in the 1950s, recovery after drastic losses in coastal
lagoons caused by floods. Water quality degradation was the
major loss factor in the 1970s, whereas losses due to extreme
events became the most important cause of decline during the
2000s (Fig. 5b, c). Management intervention along with natural
colonization emerged as drivers of recovery in the 1990s and
2000s (Fig. 5d).

Discussion
From 1869 to 2016, about one third of the area of European
seagrasses was lost in relation to the maximum compiled area,
due to several causes including wasting disease, water quality
degradation, coastal development, mechanical disturbance, and
the combination of them. However, and contrary to other global
reports on seagrass losses4,5, this work reveals for the first time
since the 1950s a trend reversal for declining European seagrass
meadows at the end of the 20th century that continued through
the 2000s. Whereas losses occurred in all regional seas and spe-
cies, seagrass gains were concentrated in fewer locations and were
mostly due to the recovery of Zostera species.

The predominant seagrass trajectory of our compilation was
decline, revealed mostly by area and depth limit changes rather
than density metrics. This does not mean that those are the best
indicators of seagrass loss but rather the consequence of the fact
that area and depth limits have been reported more often, since
the beginning of seagrass studies in Europe. Density metrics were
mainly introduced in the past decades after the highest seagrass
losses of the 1970s had occurred, mostly in 2000s because of the
broad geographical monitoring imposed by the WFD. Loss of
seagrass area was mostly attributed to the species Z. marina and
C. nodosa. The wasting disease outbreak during the 1930s deci-
mated large pristine Z. marina areas along the Atlantic coast27–29.
Other causes behind the seagrass losses in Europe included water
quality degradation, coastal modification, and mechanical
impacts, in accordance to those previously identified at the global
scale4,5. Seagrass declines in Europe during the 20th century were
reported elsewhere for P. oceanica16,17, with an estimated area
loss of 13–50%, and for Z. marina in Nordic countries30. For Z.
noltei and C. nodosa, this is the first assessment revealing both
losses and gains at the continental scale.

Loss rates of European seagrasses peaked in the 1970s and
1980s and started to slowdown in magnitude toward the end of
century, when it reached the loss rate of the 1950s (Fig. 3).
Decadal rates before the 1950s were not possible to assess due to
the data deficiency. The combination of this deceleration with the
area gains observed during the 1990s and 2000s, mainly due to
large expansions of Z. noltei and Z. marina along the Atlantic
coasts (79% and 9% of total gains, respectively), led to the recent
reversal of the negative decadal rate of net change during the
2000s. The improvement of the seagrass trajectory in Europe was
also evident in density metrics, which become stable or improved
during the 1990s and 2000s. Most of the sites reporting gains in
seagrass area during the 2000s did not include the causes for
those gains. The available information indicates that the largest
increase in seagrass area during the 2000s, of Z. noltei in the
Northern Wadden Sea (9017 ha), was due to the reduction of
nutrient loads19,31. The second biggest contribution was the
recovery of 913 ha of Z. noltei at the Vaccarès lagoon, France, due
to the natural restoration of water clarity and salinity, which had
been drastically reduced by two consecutive river floods32.
Another contribution to area gains, the recovery of Z. marina in
Puck Bay, Poland, was ascribed to an improvement in water
quality following management actions to reduce water pollu-
tion33. Thus a combination of natural recovery of seagrasses after
environmental improvement related or not to management
actions may explain the recent positive trajectory of European
seagrasses.

The effects of management actions to improve water quality on
seagrass recovery are well documented at the national and sub-
national scales: nutrient input reduction to fjords in Denmark
resulted in an increase of the depth limit of eelgrass34, decreased
nitrogen inputs in a Portuguese estuary in 1998 reversed the
declining trajectory of Z. noltei after severe eutrophication events
during the 1980s and early 1990s35, and the increase of wastewater
treatment plants from 2003 to 2010 along the Catalonia coasts in
Spain resulted in significant improvements of water quality and of
the biochemical indicators of P. oceanica36. These cases add up to
success stories reported outside of Europe, such as the recovery of
seagrasses in Chesapeake Bay37, Tampa Bay38, and in Mumford
Cove39, following water quality improvement.

Even though the structure of the data compiled here do not
allow us to relate European seagrass recovery to specific manage-
ment actions, seagrass meadows in Europe may have benefited
from policies and management initiatives adopted in the 1990s to
reduce nutrient loading from urban waters40 and from agricultural
sources41. The subsequent identification of seagrasses as key
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indicators of ecosystem health22–26 within the EU WFD42 in the
2000s brought seagrass onto the attention of managers and made it
mandatory that seagrass meadows in moderate or poor ecological
status were restored to reach good ecological status before 2015,
with steep monetary penalties in case of default. The designation of
marine protected areas in European countries, either by national
policies or under the umbrella of the EU Habitat Directive adopted
in 199243, may have also contributed to the reported slowdown of
the seagrass losses in the past decades. The Habitats Directive,
which ensures the conservation of rare, threatened, or endemic
species and characteristic habitat types, including Z. marina and P.
oceanica, led to the creation of a network of conservation sites, the
Natura 200044. This network greatly increased the number of
seagrass protected sites across Europe, which included 322 sites
with P. oceanica meadows in the Mediterranean in 2006, encom-
passing a total of 2700 km[245. The Habitats Directive and the

WFD may have been relevant, complementary tools for seagrass
conservation in Europe, combining direct habitat protection with
water quality restoration, respectively. The Habitats Directive
particularly benefits P. oceanica, a species resistant to disturbances
but with an extremely low recovery capacity46, whereas the WFD
particularly benefits the other species with a high recovery capacity
once water quality is improved.

In conclusion, the results presented here show serious declin-
ing trajectories of European seagrasses since 1869 but revealed a
recent trend reversal in seagrass extent and density. This
improvement is likely related to actions to conserve and restore
seagrass meadows in Europe by reducing nutrient loading,
improving water quality, or by direct habitat protection. The
recovery of seagrass meadows in Europe, especially those with a
fast growth capacity, brings the expectation of the return of ser-
vices and benefits they provide.
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Methods
Data compilation. We compiled the available assessments of the seagrass species
C. nodosa, P. oceanica, Z. marina, and Z. noltei along European shores. The Les-
sepsian migrant species Halophila stipulacea, present across the Eastern and
Central Mediterranean47, was excluded owing to the scarce number of time series
available. Published sources were gathered using the search browser GoogleScholar
in April 2013 and then again in December 2017, by combining keywords related to
seagrasses (seagrass, Posidonia, Cymodocea, Zostera, or eelgrass), with changes
(loss, gain, decline, increase, stability, recovery, change, long-term, evolution,
dynamic, impact, and diachronic), and names of European countries or regional
seas. These searches, together with the authors’ personal data collections, yielded
520 potential time-series sources, from which 241 were kept. The reasons for
exclusion were: (1) inaccessible source, (2) source including a site already compiled
or updated in another more recent source, (3) source being a review or compilation
(in those cases, the source was consulted to find potential studies to assess), and (4)
sources in which data criteria were not met (e.g., type of metrics). Sources were
sorted in 166 journal articles, 33 technical reports, 12 book chapters, 13 conference
proceedings, and 6 PhD or MSc theses. In addition, 11 verified databases were
facilitated by participants of the COST Action ES0906 (Seagrass productivity: from
genes to ecosystem management) in 2013. The thirty-four European sites included
in the previous global review of seagrass trends4 (16% in their database) were added
to our database, accounting for 4% of our compilation, and 13 of them were
updated based on new studies reporting recent observations. Several data ver-
ification steps were conducted, including independent checks by authors of the
sources they provided, proof-reading the data twice, and identifying and verifying
outliers against original sources. When not directly available from the source, data
values were inferred from graphical representations using GraphicClick (©2008

Arizona Software) or ImageJ (US National Institutes of Health). Dataset and
references are available from Supplementary Data 1.

The final compilation included 1042 assessments of change for 737 seagrass
sites: 56% of sites were in the Mediterranean Sea (including the Black Sea), 38% in
the European North Atlantic Ocean, and 6% in the Baltic Sea, across 25 countries
(EU-countries: Bulgaria, Croatia, Cyprus, Denmark, Finland, France, Germany,
Greece, Ireland, Italy, Lithuania, Malta, Poland, Portugal, Romania, Slovenia,
Spain, Sweden, The Netherlands, United Kingdom, and non-EU countries:
Albania, Monaco, Norway, Turkey-in-Europe, Ukraine). The overall dataset
covered 147 years, from 1869 to 2016, with the observation effort increasing
exponentially over time. The duration of the time windows were highly variable
among sites, from 1 to 121 years with a median of 9 years. We retrieved
information for 358 sites of P. oceanica (49%), 218 of Z. marina (30%), 107 of Z.
noltei (15%), and 54 of C. nodosa (7%).

Each site was classified by the seagrass species for monospecific meadows or by
the dominant species for mixed meadows. When a site included separate
assessments for depth (i.e., shallow meadow and deep meadow) or for co-occurring
species, those observations were considered as independent sites. Some sites (239)
lacked information on the reference year (e.g., disappearance, colonization, drastic
reduction in area or density, loss of area due to bottom trawling) or only included
presence data, so they were only considered for the overall analysis of number of
sites by trajectory (Fig. 1, Supplementary Fig. 1). When different studies covering
the same site overlapped in time, the longest assessment was selected. If two
different sources covered the same site and/or time-window but used different
metrics, both of them were included in the dataset. The metrics compiled were
classified as seagrass extent metrics [presence/absence, area (ha), and depth limits
(m)], seagrass density metrics [cover (%), shoot density (shoots m−2), and total or
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above-ground biomass density (g dry weight m−2)]. Of the 737 seagrass sites
compiled, 48% included extent assessments, 43% density assessments, and 9%
included both.

Overall and decadal analyses. The trajectories of seagrass extent and density were
investigated irrespective of the time window of the observation (overall analysis).
Trajectories were classified as increasing, declining, or no change based on the
percentage of change between the final and initial values of metrics and the pre-
sence/absence data. When both depth limits were available or when more than one
density metric was reported, the average percentage of change was used. The
criteria to consider that there was a relevant change was set at 10% for extent
metrics (which is typically within the error of area and depth limit assessment
techniques4) and 25% for density metrics (which is the average coefficient of
variation of density metrics of the dataset). For example, if a final density obser-
vation was within the 75–125% of the initial observation, the trajectory was defined
as no change; otherwise, if the final value was <75% of the initial, it was defined as
declining, and if it was >125%, it was defined as increasing. When a combination of
extent and density metrics was available for the same site, there were three possible
outcomes for the final trajectory: (1) the metrics indicated the same trajectory, (2)
some metrics showed no change and others showed an increasing or declining
trajectory, and (3) metrics showed opposite trajectories. In the first case, the final
trajectory was given by the unique trajectory; in the second case, it was given by the
trajectory showing an increase or decline (e.g., area showed no change and density
increased, the trajectory attributed to the site was increasing); in the third case, the
decision was based on the following hierarchy: area > depth limits > density (e.g.,
area declined and density increased, final trajectory was declining). For each sea-
grass site, the specific rate of change (% yr−1) of metrics was calculated as 100 × (ln
(Vf/Vi)/t), where Vi and Vf are the initial and final observations, respectively, and t
is the observational time interval (yr).

Time series with at least 8 years (43% of total) were used to evaluate the
decadal trends of seagrass metrics. For each site, the specific rate of change
(% yr−1) and trajectory for each metric and decade were calculated using decade’s
boundaries that were, when necessary, interpolated using the specific rate of
change between the two observations closest to the decade boundaries
(Supplementary Data 2). The decadal trajectories were sorted in increasing,
declining, or no change using the same criteria as in the overall analysis. Then the
evolution of the trajectory over two consecutive decades in a specific site was
defined as improving (from no change to increasing, from declining to no change
or increasing, or from increasing to increasing), worsening (from no change or
increasing to declining, or from declining to declining), or steady (when the
trajectory is no change from increasing or no change) to assess the changes in the
trajectory over time (Fig. 4d–f). The decadal rate of change of area (% decade−1),
for all the species (Fig. 3) and each of them (Supplementary Fig. 3), was computed
from the sum of areas of sites with area documented at the start of two consecutive
decades. The decadal descriptors were calculated only from 1950s onwards due to
the limited sample size in previous decades (<20 sites). The 2010s decade was
incomplete and thus excluded.

Causes of change. The causes of decline in seagrass extent and/or density were
identified in the compiled sources and classified as: (1) coastal modification
(including harbor construction, dredging, beach filling, land reclamation, con-
struction of pipeline, dams and breakwaters, river diversion and storm drains,
relocation inlet and other coastal works), (2) water quality degradation (including
input of nutrients and organic matter from fish and shellfish farming and urban
sewage, macroalgae overgrowth due to eutrophication, general water degradation,
industrial pollution, brine sewage, marine sewage, general pollution), (3)
mechanical damage (including bottom trawling, anchoring and mooring, clam
digging and bait collection, seagrass harvesting, culture farm occupation, explo-
sives, and other local human activities), (4) non-native macroalgae effects, (5)
wasting disease, (6) overgrazing (including sea urchins, waterfowl, and others), (7)
extreme events (including heat waves, storms and heavy rainfalls, flood events),
and (8) multiple causes, i.e., a combination of two or more causes of decline
(Supplementary Table 1). Two categories were defined for causes of increase: (1)
natural recovery or colonization, (2) management intervention (positive changes
due to regulation and management, including removal/reduction of direct impacts
such as improvement of water quality, trawling regulation, reduction of industrial
sewage, anchoring regulation, and others). Restoration was not among the causes of
seagrass gain in the compiled sources. A decadal analysis was done to investigate
the evolution of the frequency of the causes of change (decline or increase) from
the 1950s to the 2000s (when a site had multiple causes assigned, that site was
counted for every cause). When a site showed a change in the trajectory over time,
the cause of the change and change in area, if known, were attributed to each
trajectory (e.g., decline of 40 ha during the 1980s due to eutrophication, followed by
an increase of 2 ha during the 1990s due to management actions).

Statistical analysis. The distributions of the increasing and decreasing seagrass
areas per site were compared by a two-sample two-sided Kolmogorov–Smirnov
test. Statistical difference from zero in the specific rates of change of area, depth
limits, and density in the 2000s were assessed by two-sided Wilcoxon signed-rank

test, after checking that data did not meet parametric assumptions. Statistical
significance was set at α= 0.05. Data and statistical analysis were performed using
R Statistical Package48.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The dataset of compiled seagrass sites and time series are available as Supplementary
Data 1 and Data 2, respectively. Source data of tables and figures are provided as a Source
Data file. All other relevant data are available on request.
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