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In his paper {3}, R.C. Gunning has given a new characterization of Jacobi
varieties among all principally polarized abelian varieties, by using trise-
cants of the associated Kummer variety. The present paper is motivated by the
1ink between Gunning's results and the -as yet unanswered- question about the
Novikov Hypothesis. Our main statement is Theorem (3.1}, which is just a more
general version of the key result of [3], allowing also limit cases of the
original assumptions. Section 3 is devoted to the proof of this statement. In
particular, one obtains similar characterizations of jacobians by means of
flexes instead of trisecants (ecf Section 1).

After putting Novikov's Hypothesis in geometrical terms (cf (2.18)), its
relationship with this version of Gunning's result becomes more apparent. The
comparison suggests some {ntermediate questions which might be useful. We
discuss this more closely in Section 2.

In Sections 1 and 2 we assume the groundfield k to be the field € of
complex numbers; in the rest of the paper k is an algebraically closed field of

arbitrary characteristic different from 2.
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0. Notations and definitions

Let X be a principally polarized abelian variety over k. Let & be any
symmetric theta divisor of X, and call L = Ox(e) the associated line bundle.
The linear system |28} is independent from the particular choice of 8, and we
write M = l.u2 for the corresponding line bundle. Put g = dim X; the global
sectiona of M span a vector space of dimension Zg, and these correspond c¢lassi-
cally with the second order theta functions (with zero characteristics).

We shall assume X to be an irreducible principally polarized abelian
variety, i.e. that the theta divisor & s {irreducible. In this case, the
induced map

(0.1) v:x — PO =PV, N = 28

is a (2:1) morphism onto its image. As a matter of fact, ¢ factors through the
projection of X onto is Kummer variety K(X) = X/{#1}, embedding the latter
variety into r" (cf e.g. [8]). We are interested in trisecants of K(X) and,
more particularly, in the limit case of flexes of K(X), that is, lines in P"
meeting K(X) with multiplicity at least 3 at some smooth point of K(X). (Note
that the singular points of K(X) are the images of the points of order two of

the abelian variety X, if g>2.)

{0.2) DEFINITION. Let YCX be an artinian subscheme of length 3 of a princi-

pally polarized abelian variety. The subscheme Y will be called a "secant”

1

subscheme of X if and only 1f there exists some line !.CP" with YC¢ (1),

Equivalently, if and only if the restriction map oM —— H°(u IOY) fails to be

surjective.»
'\‘ \ i,‘ifé
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1. Jacobians and flexes

(1.1) Suppose that X is the polarized jacobian of some smooth curve C. Then the
Kummer variety K(X) is known to have lots of 3-secants (cf e.g. [6), p.80): Fix

three distinct points a,b,c€C. Then, for any
& € %(C-a-b-c) c Pic 1(c),

the points of IPN:
¥ (taa), V(Ts+b), ¢ (T +c)

are collinear (here the factor )% denotes counterimage by the multiplication by

2 isogeny). The line t which they determine is a trisecant of K(X) and

t+la,b,cl C o'l(t).

By using (0.2), we may rephrase (1.1) as follows: Let I C X be the image

of C in X = JC, embedded by translation with an arbitrary element of Picﬂl(c).

Then, for any three distinct points a,8,YET we obtain a one-dimensional family

of secant subschemes g+Y of X, where
Y = {a,8,y}C X and te}(l'-a-8-y) C X.
Moreover, it is known {cf [3]) that, putting:

V= (ceXx| t+Y is a secant subscheme of X},

one has

; = %(T~a-B-v)



and V = 2\7 is a copy of the curve C embedded in its jacobian. (The factor 2

denotes image by the multiplication by 2 isogeny.)

Conversely, start with a principally polarized abelian variety X, and
three distinct points o,8,y €X. Define Y and v as above; the set ¥ is an alge-

braic subvariety of X and one clearly has an inclusion
—(aBsy)4Y C av.

In this setting, Gunning proves, among other things:

(1.2) THEOREM. ({(Gunning, [3]). Assume that X is an irreducible principally
polarized abelian variety, and that oV is positive-dimensional at some point of
Y' = ~(2484v)+Y = {-0-B, —a-y, -B-y). Then 2V is smooth of dimension one at all
three points and there is an irreducible curve V c2v containing them. The

endomorphism
o —_—
v X X

attached to this l-cycle of X satisfies:
(ov-l)lY' = constant.

{We recall that sy is defined by uv(x) =S((ex-e)-v) for general x€X). In par-
ticular, i{f there are no non-zero complex multiplications of X mapping g-o and
Yy-a into zero, it follows that uv = I; hence, by Matsusaka's criterion, X is
the facobian of the (smooth) curve V. Since in the case of a jacobian X = JC
one may chocse @,8,Y such that the above condition on complex multiplications

is satisfied, this yields a characterization of Jacobi varieties among princi-



pally polarized abelian varieties {Loc. cit.).

(1.3) We remark another easy consequence of (1.2) (below we shall prove a simi-
lar fact, and the ideas are the same}: The presence of an irreducible curve T
on’' an irreducible principally polarized abelian variety X, satisfying the

property that, for general a,8 vyel and 7€ %(r-a-8-y),
Vv(t4o0), V(¢ 48}, Y(C+y)

are collinear in PN is a property that characterizes jacobians. The reader will
notice that one may even assume 8 and y to be fixed (but otherwise generally

chosen) in this condition.

{1.4) We want to infinitesimalize the data in (1.2). To this end, we go back

first to (1.1) and let the points a,b,c of C collapse to a single point x&¢C

or, rather, to the divisor 3x of C. By continuity, we obtain from (1.1): For any
¢ € %(C-3x) ¢ Pic1(C),

the subscheme

3
T+ Spec(Oc'x/m ycx

C,x
is a secant subscheme of X. Putting it in other words, writing

3
(1.5) Y o= -x+ Spec(oc'xl"lc'x) c X,

we have a one-dimensional family of secant subschemes of X:



{z + Y, fz e %(c-x)}.

We aim to reverse things to some extent. In this connection, the

following will be proved in Section 3 (cf Theorem (3.1)):

(1.6) VARIATION (of (1.2)). Let X be an irreducible principally polarized abe-
lian variety, and let YCX be a subscheme with Y= Spec k[c]/:3 supported, say,

at the origin O0€X. Define the algebraic subvariety of X:
(1.7) V = {t€X | t+Y is a secant subscheme of X}.

(Notice that O0€2V.) Assume that the dimension of 2V at the origin is positive.
Then 2V-is smooth one-dimensional at 0. Call V the irreducible component of 2V

at 0; then YCV and the endomorphism a X —+ X attached to this 1l-cycle of X

v:

satisfies a Y =1.

v!
In analogy with (1.3), we deduce now from (1.6):

(1.8) COROLLARY. Let X be an irreducible principally polarized abelian variety.
Then X is a polarized jacobian if and only if there exists an irreducible curve
rcX such that, for general x€Tr and ¢ € %(r-x), c+Yx is a secant subscheme of

X. Moreover, in this case ' is smooth and X = JT,

PROOF. This condition is necessary, by (1.4). Conversely, the assumption
implies that for general x€Tl one has: %(I'-x)c Vx' where Vx is the variety
defined by (1.7) with Y = Yx' Therefore, by (1.6) applied to V =T -x, we infer
ur_x ‘Yx = I for general x€[r . Since o, = % x for all x, we may write finally
d(ur—I)(x) = O for general x€T. Therefore (ur—I)lr is a constant map and, by

translating T if necessary, we may assume that O€T, hence



Let ACX be the abelian subvariety of X generated by I . Restricting the polari-
zation of X to A we get an ample divisor class [D) on A.We consider the

endomorphism of A attached to I and D, defined by

oj(a) = S((D,-D)-T)

for general a€ A. Clearly, u". = url A = I, since T generates A. Therefore, by
the Criterion of Matsusaka ((4]). I is smooth and we have an isomorphism of
polarized abelian varieties (A.[D]);(Jr,er). By the semisimplicity property of
the category of principally polarized abelian varieties and the irreducibility

of X we conclude that X is the polarized jacobian of T, as claimed.

2. Infinitesimalization

We denote again by X an irreducible principally polarized abelian variety
of dimension g. Let YC+X be an artinian subscheme of length 3. We want to

sharpen an earlier definition where we considered the reduced subvariety

(2.1) ;'Y = {zeX | t+Y 18 a secant subscheme of X}

{cf (0.2)), and introduce a natural scheme structure on GY'

Taking for each x€ X the subscheme x+Y (—~X, one obtains a family

Yo _.xxx

v T,



(p_l(x) being embedded as (x,x+Y)). Restriction of sections of M to the subsche-

mes x+Y defines a morphism of locally free sheaves on X:

o o
(2.2) {H u)-kox Rp(Oy lprEM).

The set GY consists of the points x&X at which the pointwise fiber of this
morphism is of rank < 2. We define a scheme structure on {;Y by taking the sche-

me of zeros of the morphism

Asﬂ’

3,.0 3.0 »
(2.3) AT (H M)IkOX A Rp(Oy-prZM).
writing [ for the invertible sheaf at the right hand side of (2.3), one has, by

definition now, an exact sequence:
3,.,0 ~
(2.4) A (H M)a, L —0, —0p -—O0.
K X VY

Throughout this section, we shall assume that k =€, and also that
Y& Spec k (c]/c3. supported at 0€ X (See Remark (2.25)).

Locally, the subscheme GY of X can be described formally by means of
theta functions. Let B be a period matrix for X, and identify as usual

'4 o N 4
X =C5/(1 | B). Writing 6 , ..., 8, N=2®-1, a basis of the vector space of

second order theta functions for B, the mapping ¢ of (0.1) is given by
o N
(2.5) x bF——(8 (x): ... : & (x))
(In the right hand side member, the symbol x is to be understood as a represen-

tative in €% for xeX. Here and below, this abuse of language will cause no

harm, and simplifies the notations). We introduce for convenience the vector



notation: § = (eo,...,eN).

To give a subscheme Y (~X as above amounts to give a pair of constant

(= translation invariant) differential operators Al;! 0 and A, on X satisfying,

2
together with Ao = Identity:

(2.6) for all functions a,b: & (ab) = 2. 4 (a)a (b}.
. kelet © 1

The embedding Spec(k [:]/53)(—* X then corresponds to the ring homomorphism:

3 2 i
ox’0 —k[e]/e”, £ |—41§) 8,(£)(0)e”.

A A
The operators 1 8

on X, by the formulae:

are given equivalently by a pair of constant vector fields
D,# 0 and D,

(2.7) A, =D

It is easily seen that a couple (D'l,D'z) defines the same subscheme as (DI’DZ)

if and only if there are constants a# 0,b such that
(2.8) D! = ab

In these terms, a point x€ X belongs to the set VY if and only if
(2.9) rk(3(x), (0 )(x), (OF+0,)8)(x)) < 2.

As for the scheme structure introduced on {;Y by (2.4), the ideal of 6X 4 defi-
’

nlng@- is generated by the functions f , 0<i<f <k<N:
VY x 13k’ - -




') (0eh)x)  ((g02n, )0ty (x)
(2.10) =9t | ol opehe el elyoo

o) (0 e x) (e 16¥) (x)

2
In the rest of the present section, we discuss some elementary facts

about the scheme VY' In the first place, observe that

(2.11) VY = %(ZVY)

(the meaning of the factors 2 and % being the same as in Section 1). This is
due to the fact that the group 2X acts both on X and on |28| (by translations)

and that the mapping ¢ of (0.1) is equivariant for this action. We define

(2.12) VY = ZVY.

The study of \7 is equivalent to that of V_ and, as it seems, the latter scheme

Y Y

is a more natural object to deal with.

We notice that O0€V_; this follows by using (d¥)(0) = O. We are interes-

Y;
ted in the study of VY at 0. To his end, we introduce a notation: for all h>1,
put
h+l
- Com
(2.13) (VY)h Spec(OvY O/MVY 0) e
’ 1]

Then one has:

{2.14) PROPOSITION. There is an identity of subschemes of X: (\i\‘,)2 =Y.

PROOF. Assume YC—X to be given by vector fields D D, as in (2.7). In the

1’ "2

> holds. (We identify, as usual, Tx(O) with Ho‘l'x). To

first place, Tvy(O) =<D1
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)(0) = O for all £ _ .

o,
u .
see this, if D€ Tx then DeTvY(O) if and only if (Dka 15k

Using (2.10), and taking into account that odd derivatives of the functions 6i

vanish at the origin, this is written finally as:
(2.15) rk(8(0), (0D 8)(0), (078)(0)) < 2.

On the other sjide, it is well known that the irreducibility of X implies that,

if 2 ..ag is a basis of H°'r , one has

1 X

(2.16) rk(3(0), ((a,2.8)(0)), ) =% glg+1) + 1

J 3

(cf Remark (2.25)}). In view of this, (2.15) is equivalent with DE€<D >, as

1

claimed.

To end the proof, it suffices to show that YC—*VY. This in turn is equiva-

lent with %Y ¢~ V_, and it will be enough to check this for the component of %Y

¥
passing through the origin. This component is given by the couple of vector
fields (ZDI. 'ADZ) or, equivalently {cf (2.8)) by (01.2[)2). Hence one is finally
led to checking that, for all fijk as in (2.10):

( )0) = 0, (0Zs20,)r,  )(O) = 0.

leijk 2 13k
-'l'he first of these conditions has been checked already, and the second one

follows in the same way, Q.E.D.

(2.17) So, either VY is a smooth curve at the origin, or an infinitesimal piece
of such: VY = (VY)h = Spec k[¢]/chu for some h>2. Call this h = h(Y) for a
moment, and put h(Y) = if the dimension of VY at 0 13 positive.

In Theorem (1.6) one assumes that h(Y) = o, This should be compared with
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the following

(2.18) FACT. The condition h(Y)_{3, for some Y ~— X as before, is the

assumption of the Novikov Hypothesis.

PROOF. Pursuing the formalism used in (2.6),(2.7), an embedding
3
Spec k [e)/es ——X

supported at the origin is given equivalently by constant vector fields Dl;‘O.

Dz, D3' by formulae (2.7) together with

1.3
(2.19) A, = 3 D1

3 4DID +D

2 3

Suppose that Y&~ X is given by (DI'DZ)' In view of Proposition (2.14), the

assumption h(Y)> 3 means that there exists a D, such that the subscheme Z(+ X

3

defined by (Dl.Dz,Da) is contesined in Vy. As before, this is equivalent with

Z'C-—-Gy, where 2' is the component through the origin, of %Z. Now, Z' is defi-

o 403). Thus the assumption

h(Y) > 3 is the existence of a D3 such that, for all rle in (2.10):

ned by (!401. ZDZ. ‘4D3) or, equivalently, by (Dl' 2D

(2.20) ((3—1' Di + 20D, + 4D )£, )(o) = o.

1 3" i3k

Writing this out, this is equivalent to
- 2+ 4 2 »
(2.21) rk(8(0), (Djs8)(0), ((Dl+1202—1201D3)o)(0)) L 2.

In view of (2.16), this reduces finally to the existence of constants c, and <y

such that
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(2.22) ((0%4120%-120_D_+c.D%+c ) 8)(0) = O
1*120,-120,Dy1c, D)+ '

which is the assumption of the Novikov Hypothesis, according to Dubrovin ({2},
p. 70). To bring it in a more familiar setting, consider the functions (Loc.

cit., p. 59)
8[n)(z) = 8[n,0}(z | 2B)

where n runs through the set {(%Z/Z )&, The 2% functions
0"(z) = 8[n) (22)

are a basis of the vector space of second order theta functions we are
considering here ([2]}, p. 16). Taking % as made up by this basis and writing

furthermore

the equation {2.22) can be rewritten in the standard form ([2], p. 62)

4 = 3-2 2
(2.23) (o, - 0D, + 20, + dle)(0) = o,

Q.E.D.

Thus, in this language, the Novikov Hypothesis claims that, if X is an
irreducible principally polarized abelian variety containing a subscheme Y+ X
as before with h(Y) >3, then X is a jacobian.

A rough but quite natural way of weakening this question consists in buil-

ding into it a one-dimensional piece somewhere. Following Dubrovin ({1],p.472),
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one may consider for instance the assumption that there exists a one-dimen-
sional family of subschemes YC— X as before, with h(Y)> 3. Let us mention, in
this connection, that {f h(Y) >3 then there is exactly one more Y' with
h(Y') >3 and having the same tangent direction as Y, namely the image Y' = -Y
of Y under the symmetry of X. This follows, as in (2.14), (2.18), by using
(2.16).

Finally, a certain strengthening of the latter assumption is obtained by
infinitesimalizing the hypotheses in Corollary (1.8). It consists in supposing
that X contains a smooth curve C such that, for all x€C, (VY )3

=—xoSpec(OC'x/m:'x) holds (cf (1.5) and (2.13) for notations). In anal;(tical

terms, this 1is essentially equivalent to the existence of a nonconstant

holomorphic mapping
r: 4 — 8

(a=the unit disk) and a holomorphic function c(t) on A& such that, putting

ar
. 13
D(t) = F(8) =2 =,
one has, for all teEj:
(2.24) (eer? + 30062 - 20(LID(E) + <(£))3)(0) = O.

(2.25) REMARK. For the time being there seems to be little reason to consider
the matters of this section in positive characteristics. However, for later
purposes we recall that the most essential fact which has been used here,
namely (2.16), is valid in any characteristic # 2: Let X be a principally

polarized a_f)é}'ian variety, and write ng_l for the projectivized tangent space
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at 0eX. Let HO(M-0) = H®(M-2-0) be the hypersubspace of H°(M) of those sections
vanishing at the origin (hence vanishing doubly there). There is a natural

linear mapping
#mM-0) — 8O _ (2)
pe!
giving equations of the projectivized tangent cones at the origin of the
divisors of |26] defined by these sections. Then (2.16) says that this map is
surjective, As a matter of fact, this map is surjective if and only if X is

irreducible. The "only if" part is quite obvious, and the "if" part follows by

considering divisors of {28{ of the type 8 +0_, with x€6.

3. An extension of Gunning's results ({31)

The present section is devoted to a proof of the following generalization

of [3), Theorem 2, p. 386:

(3.1) THEOREM. Let X be an irreducible principally polarized abelian variety,
and let 0€Y & X be an artinian subscheme of length 3. Assume that there exists

a (irreducible, complete) curve vlﬁ—~x such that, for all L€V , £+Y C X is a

1
secant subscheme {(cf (0.2)). Let V = 2V1C——‘ X, image of V1 by the multipli-

cation by 2 isogeny of X, and call uvz X —* X the endomorphism attached to the

l-cycle V in the PPAV X. Write Z for the O-cycle of X defined by Y, and
8=3{2)€ X the abelian sum of its components. Then one has:

(1) If (-84Y)NV =B, then uv|v=o

(11) If (-8+Y)NV#D, then (-s+¥)<V, and V is smooth along this

subscheme, and @ 1Y = I (identity).

v
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In particular, if there are no complex multiplications a: X— X, a#£0, such

that alY = 0, then V is smooth and (Jv,0.) =(X,0,).

The last part is clear by Matsusaka's criterion (cf{4]). To begin with
s
the proof of (3.1), let N be the normalization of the curve V. Then o, is the

following composition:

I

~

(3.2) X =X Pic®™N ——— JN X

ab—=(o_-8)k—(o_-0) [N = S((0 -0} | M),

the isomorphism PicoN—i—‘JN being the Abel-Jacobi map, and JN—=X being the
Albanese morphism for the map N—* X. We keep the notations L,M, etc., intro-

duced in Section 0. Write
(3.3) §: XxX —*X, (x,y) F— —xsy

and let pr XxX — X, i=1,2, be the projections. The isomorphism xi.f( =

g
= Pic?(X) 1is given by the line bundle §*Lm prva on Xx X. (By this we mean, of
course, that this morphism attaches to a€ X the restriction of this line bundle
to {alx X). Consequently, the map X-—s Pic®N 1n (3.2) s given by the res-
triction of G'Lllpr‘éLv to X xN.

We shall denote by
(3.4) § ¢ YxN — X
the restriction of 8§ to Y x N. Then the composition

(3.5) ¥ Xx—s PicON
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is given by the bundle
(3.6) SoL @ (L” | N)

on Y *xN. For the sake of symmetry, it will be convenient to introduce also the

composite map
(3.7) YxY —sx — Pic°N,

where the first arrow is the difference map, restriction to YxY of Xx X—s X,
(x,y)}—"x-y. Notice that the data (3.5) and (3.7) are mutually equivalent.
Denoting by Pyt YxYxN —+ ¥xN, i=1,2 the projection maps, the composition

(3.7) is given by the line bundle
» * * * ~
(3.8) pl(BNL) L (pZ(GNL)) .

(3.9) Next we construct a natural projective line bundle on N. Introduce first

¥ = %v. (The curve V1 is an irreducible component of V.) We define N by the

left hand side pullback square in:

F

T

€ — €22

f

T

The curve N is smooth and complete. The finite group 2)( acts freely on R, and
N = N/zx. )

The natural map V—s Grass(]Pl,]PN) (]PN=|MIV). attaching to a general point
LEV the unique line !,(CJPN such that (+YC—»v—I(lc). induces a well-defined

morphism

-17 -



(3.10) N ——— Grass(]Pl,l'PN), g —— 1,(.
. 1
Equivalently, this is a P -bundle
- - -1
(3.11) R: P — N, n(g) = !,t.

The map ¢ of (0.1) being equivariant for the 2X-acticn on both sides, we deduce

an action of X on B, compatible with the action of

we get the claimed ]Pl-bundle

2)( on N. Taking quotients,

(3.12) R: P — N

(3.13) One defines a section ¢ of the bundle E by putting, for a general point

of N (identified with its image in V):

g(z) = v(g) € l(.

The action of 2)( leaves this section invariant, hence ¢ drops to a section o of
the bundle P.
More generally, 3 is the restriction to {0} x N of a well-defined mor-

phism of R-schemes:

(3.14) p: Yx —— P,

which sbove a general point tef is the composition Yﬁ»c ;Y-—v—-» 1‘. The map p

being _X-equivariant, one defines on this way a morphism of N-schemes

2

(3.15) p: YxN — P
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which restricts to the section o on {0} x N,
Theorem (3.1) will be a corollary of the two propositions below.

(3.16) PROPOSITION. With the notations above, we have on Y Y x N:

py(sEL) = (pé(&;l-))vgp’z(p'Op(o)) . (p;(p-oP(a)))“.

(Notice that the sheaf on the right hand side remains unchanged, if we replace

OP(") by Op(o)ul". FEPic(N) being arbitrary.)
(3.17) PROPOSITION. i) Assume (s+Y)NV =@, Then

~

» * ~
P3P0y (0)) @ (py(p*Op(e))) =0, '\
i11) If (-s+¥)NV £ @, then (-s+¥Y) V, and V is smooth along this
subscheme. Putting F<~YxN, T = graph of the morphism Y¢—>-+ N, and r'=pII(r).
r"=p;(r), one has:
LYeR ¥ (¥ Yo v
p3 (PO, (o)) & (p} (p*0,(0))) =0, . . (r-1").
For the way in which (3.1) is deduced from these two propositions, we remark
that, in Case (ii), the morphism YxY —— PicN of (3.7) is defined by
0y va”"r")‘ therefore, by the definition of the Abel-Jacobi isomorphism
x

~

PLcN —= JN, the composition of (3.7) with this isomorphism equals

(-8,-8)

YxY Nx N JN

(x,y) }——— x-y .

Composing this with JN —— X we find that a_|Y = I, as claimed. In Case (i),

v!
the morphism (3.7) is zero, hence avl Y = 0.
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The rest of this section is devoted to the proofs of (3.16) and (3.17).

PROOF _OF (3.16). Pulling the two bundles back to Yx Yx N we get line bundles
with a 2)(—}.inearization. To prove the proposition, it suffices to exhibit an
isomorphism hetween these linearized bundles. The inverse image of OP(u) in B
is 0!;(5). the linearization being defined by keeping fixed an equation for the
divisor o,

On the other side, the inverse image of p'i(arvL) u(p’é(G;lL))v in YxYx R
yields p;(GﬁM)B(EE(GﬁM))V. Here we have written 51: YeYx B —4 v, N, 1=1,2
for the projections and Gﬁ: ¥x N —— X for the restriction of § to Yx N. The
linearization is defined as follows: for eEZX, choose a relative isomorphism
A: M‘_%"M over the translation with ¢, T_: X —X. Then ﬁ‘i(sﬁx)l(ﬁg(&ﬁx—l))v
gives the action of ¢ on the bundle i;(sén) L] (B‘é(a:—iM))v. These facts are
easily deduced from the following ones:

On XxXxX, write T
sz(x,y.z) = (y,z); put also r

X xXxX ——s Xx X, 1=1,2, sl(x.y,z) = (x,2z),
1: Xx Xx X ————X, 1=1,2, the first two projec-
tions. Finally, let g: XxXxX—— Xx Xx X be the isogeny q(x,y,z) = (x,y,2z).
Then, by using the symmetry property of L, the Theorem of the Square and the

See-Saw Principle, it is easily seen that

a*((s36°L) @ (5567°L) ) = ((s46*M) @ (s36"M) ) w ((r3L) m (riL))
(cf e.g. [7], p.320, for a similar reasonning). Moreover, this is an isomor-
phism of 2X—].inear*ized bundles, if one takes the obvious linearization on the
left-hand side, and, on the right-hand side, the linearization of (sis“M)u

. (sEG'M)" as described above, times the identity on the factor (r‘iL)"u (r'ZL).

Next, we produce an isomorphism of line bundles
(3.18) BLOIM) & (BL6EM)) = B(5°04(5)) @ (B (5°056G 1))
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The verification of its compatibility with the above described linearizations
' is rather boring and straightforward, so we shall omit this, leaving it to the
reader. The datum of (3.18) is equivalent with an isomorphism

(3.19) Ei(sﬁu ® 5*03(3)) = ACHI #%04(3)).

-~

Since p{f}"i‘F = p% P*f*F for all FePic(N), it will suffice to exhibit =n iso-

,‘\)

morphism
(3.20) Py (SEMEET05(1)) = po(8gM = p°0;(1))

(here 05(1) denotes the pullback of O N“) by the obvious map 5—‘1’“).
wr
write

I i: ¥x§ —— X
the restriction to Yx N of the addition map n: X x X ——— X. Clearly
o =y,
p 05(1) = "NM
Thus (3.20) is equivalent with
o ¥ * ] ~ N * *
(3.21) pl(GanuﬂM) = pz(BNHluNM).
On the other side, {f

#: XxX — XxX

denotes the isogeny sending (x.,y) to (-x+y,x+y), one has (cf [7], p.320):
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2 w2
L 2 » » -~
#*(prifmpran) = prif mpriiT,

for any symmetric line bundle H on X. Thus, applying this to H=M we obtain

(3.22) shum M = prl ("2 | ) mpra(u™ | ).

Since Y is a sum of local schemes, Pic(Y) = O. Thus M'Z | Y'-“—-OY and, by (3.22),

both members of (3.21) become identified with the stheaf ny Y I(M.2|N), Q.E.D.

PROOF OF (3.17). (i) Three possible types are allowed for Y:

3
a) Y= zi:l Spec k

IR

(3.23) b) Y = Spec kle] /s:3

c) Y = Spec k[l:]/t:2 + Spec k.

n

An easy case-by-case inspection shows that, if € X, then

(cf (0.1)) is an immersion if and only if [ does not belong to %{-s+Y). There-
fore the morphism p: YxN~-—=P of (3.15) is an immersion above points of N not
mapping into -s+YCX. Consequently, if (-s+Y)NV =@, the map p is an immer-

sion. Taking any embedding Y(*I’1 we get a commutative diagram of N-schemes
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From this we derive p'OP(c) = (0 1(1)-0N)‘0Yxn >~ ()Y(l)uoN S0y . n (recall
P x

that Pic(Y) = 0), and Part (1) follows.

(ii) we shall deal with the three cases of (3.23) separatedly.

Case (a). This is the original one, from Gunning's paper [3]. Put
Y = (x1=0, xz, x3). three distinct points in X. Here s = txi, and -s+Y =

= (-xl-xz, =X, =X, -x2—x3). The map p of (3.15) is described equivalently as
the datum of three sections o=01, 02 and 03 of M: P— N. Two sections Oi and

5 i1 #j, meet above EEN if and only if £ is mapped to —xi-xJEX by N — X.

Write, in Pic(P) = Pic NeZ 0:

g

with XZ.XaePic(N). Proposition (3.16) together with (3.7), (3.8) implies that

lz,xaePico(N). Namely, restricting the second member of the isomorphism for-

) ()
mula in (3.18) to {(xl,xi))xN (1=2,3), we get.ON(xi) = R“Ov!(a) ] Rnoo(wo)G
€ pic®(n).

Thus the intersection numbers (o ) are independent from i,j€ {1,2,3}.

1%
By assumption, (-s+Y)NV#@. Therefore, by the foregoing, at least two

sections o , 1#3, hence all of them, meet each other, and -s+Y is contained

1'%
in V.

Next we use

(3.24) LEMMA. ({3}, Lemma 2, p. 382). The curve V is smooth at the points of

-8+4YCV, and the sections ol, i=1,2,3 meet transversally above these points.
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PROOF. Consider the point -x,-x, €V, and let 1;6‘7 with 20 = -x,-x_,. We show

i) i3
that, equivalently, V= %V is smooth at T and that the sections al and 'Gj meet
transversally at El(t) = v(c+xi) = v(cﬂ(J) = Ej(z). Choose a k-basis of H'M,
0 .. 8% such that:

90((+x1) £ 0, o°(c+xk) £ 0,
Ol(uxi) =0, el(uxk) # 0,

Gr(uxl) = er(uxk) =0 if r>2.

(Note that this is possible because ‘p(;+xi)¥ bl +xk)). The rational functions

on X

u =8 /9 , r=0,...,N

are regular at z+xi. a;+x‘j and ;+xk. Moreover, since. the symmetry of X acts
trivially on HOM, the functions uo,...,uN are even.
Consider the subscheme VYCX defined as in Section 2, with Y=(x°,x1.x2),

By hypothesis, we have vc GY' The subscheme GY is defined at ¢ by the functions

Bope’ 0fa<b<ciN,

ua(x+x°) ua(x+x1) ua(x+x2)

gabc(x) = det ub(x+x°) ub(x+xl) ub(x*xz)

uc(x+x°) uc()uxl) uc(x+xz) .

Identifying now TX(C) with the vector space of invariant vector fields on X, we

get, if D€ Tx(():
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(Dua)(uxl) ua(uxj) “a(c*xk)\

(Dgabc)(‘) =12 det (Dub)(c+xi) ub(ij) ub((¢xk)

(Duc)(:”(l) uc(uxj) uc(uxk)

(note that the functions Dur are odd). Since c+x162X, the map ¢ is an immer-

sion at this point, and the foregoing implies

dim Tg (%) < 1.
Y

Therefore dim T‘-i(() = 1, as was to be shown.

Write Tv(() = <D> By our choice of the basis 90.....9N, we have:

(Dul)(uxi) # 0. To prove the transversality of 5i and EJ at Ei(c) = Ej(c) we

have to check that (dai){D # (dsj)(D. Now, if Txl denotes the function on P

obtained by lifting the rational function XI/XO of PN. we have
((dﬁi)‘D)ﬂl = (Du, ) (g+x,) = ~(Du ) (g +xj) = -((doj)zD)ul.

Since these terms are non zero, we are done, Q.E.D.

To end with Case(a), consider ((xi,x })xNCYxYxN. If i=j, then clearly

§
the restriction of p'é(p'op(o)) - (p'i(p"op(os)))v to ((xl,xi))xN is isomorphic

with ON' If {4 j, let x be the third point in Y. By the remark preceding

k

(3.17), the restriction of the above sheaf to ((xi,xj))xN is isomorphic with

that of the sheaf pz(p'Op(ok)) a (p‘i(p'OP(uk)))v. i.e. with

n:oo (o) m ":0«,1"%’ = Oy (-4x, )~i-84x ).
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This finishes the proof of Case (a).

Case (b). Here s=0 and, as a set, Y = -s+Y consists of the point 0€ X
only. By our assumption, we have O€V. Then, as in (2.14) (cf (2.25)) we see
that Y&~V and that V is smooth at O€EV. We shall identify Y&— V with the

divisor 3.0 of N. The map p: Yx N—P of (3.15) factors through a morphism
(3.25) P YXN —* W,

where WE— P is the effective divisor 30 of P. The map P is an isomorphism
above all points of N other that O€N. Its local description at the origin is

given by the following

(3.26) LEMMA. For a suitable choice of a local parameter t of N at O and a

local equation ¢ for ¢ at p(0,0)€EP we have, writing e€m the image of t in

Y,0

mY,O: The morphism of GN,O -algebras

P*0w,p(0,0) 0y xn,(0,0)
can be identified with

a 3 - 3

ON.O {ol/o —0Oy,0 {el/e,

defined by sending ¢ into tncz.

PROOF. As in the proof of Lemma (3.24), we shall deal with the map p: Yx N— PB.

N

Choose 90.....0 a basis for H'M such that

%) 0, o%0) = ...=0%0)=o0.
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Put ur = or/oo. r=1,...,N. These are even rational functions on X, regular at
the origin. With the notations of Section 2, suppose that YC— X is given by
the couple (D,D') of constant vector fields on X. We may assume that either
D'=0, or that D and D' are linearly independent (see (2,8)). The connected
component at the origin, Z, of Y C X is defined by (%D, %D'). (Note also that

ZC— N.) We have a commutative diagram

z '-—(ﬂ—',__;fw———— Spec k [:]/c3

2 = u

y {007 Spec k[e]/e>.

By (2.25) we may assume that
(op*u )(0) = O, (Dzul)(O) #0, and (ozur)(o) =0 if r>2

(recall that we are assuming char(k) # 2). The composite map

Y« PP 1

is defined in a neighbourhood of (0,0) by sending the functions xilxo of ]PN
into u1+(Dui)z+((XDZQD’)ui)cz. i=1,...,N. It follows in particular that the
image !.oCIPN of the fibre of P above O€N is given by )(2=...=)(N = 0, and that
)(1/)(o is a coordinate function on "o near the origin. On the other hand, since
(Dul)(o) = 0 and (Dzul)(o) # 0, we may take y=Du, as a parameter of N at 0. At
p(0,0)e P we may choose therefore the following coordinates: the function y,
lifted from the base N, and the function z gotten by pulling back Xl/Xo from

l[”N. The map p is described locally at (0,0) by
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Yy, z|— u1+(Du1)c+((%D2+D’)u1)c2.
A local equation for & near P(0,0) is given by n= z-u,, and this is mapped
into (Dul)e¢(('/202+D')u1)c2 by P. We write this as ye+f52, where f = (ZD2+D')u1.

Observe that £{0) = %, (Df)(0) = O. The image of the parameter y in Z is given
3

by

y(0) + %(by)(0)e + ((3D° + 30)y)(0)e? < e

it

Choose now ¢ = n/f as a new local equation for 3 and T = y/f as a new parameter

for N at 0. The image of t in Z is €, and the image of ? by ; is .t",ucz. In view

b4 ~

of the isomorphism ON,O_* Oﬁ,o and OP,p(O,O)ﬁOE,E(O,O)' thig finishes the

poof of the Lemma.

The proof of (3.17)(ii) in the present case (b) will be settled by

showing t.l';at
(3.27) P*Oplo) = Y)(N(-r) u 0,(2:0).

To begin with, we compute R:OV(")' We remark that P =P R:OP(U). hence the

dualizing sheaf for P over N is given by

“p/N = OP(—Za) a ON(e).

where we have put e = cIR:OP(u). Therefore, the relative dualizing sheaf for W

over N is

MUI/N = NP/N - NW/P "-EOW(G) - ON(e)'
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and it follows that Ow(o) = /N L] ON(—e). Taking direct images and using rela-

tive duality gives:

o (e] [ ~ (pCn
R“0w(o) = R“(mw/N n()N(-—e)) = Rn(“wlN) a ON(-e) = (R“Ow) L4 ON(—e)-

We compute ON(e). From Lemma (3.26) we obtain an exact sequence of ON—modules
o, 2
o— RHOZG — (k [e]/e ) !koﬂ '—-——*00—'—"0.

00 standing for the structure sheaf of the reduced one-point scheme 0C— N.

Thus CIR:OZu = -0€Pic(N). On the other side, by using the exact gequence
[} -—-—'OP(—Zo) ——“’OP *’020 — 0,
we derive the following one, by taking direct images and using relative duality:
o
0 ——'ON — Rnozq ——'ON(-e) — 0.
Therefore CIR:OZU = -e€ Pic(N), and hence ON(e) = ON(O). We obtain finally:
o ~ o ~
(3.28) RnOw(u) = (RHOW) L] ON(-O).

The direct image in N of the sheaf p'op(o) is the ROOY' N—module

O, (]
&%, ) (R0, (o))

® o
(85 0,)

(In writing ROOY we drop the subscript referring to the unnamed projection

x N’

map YxN —= N. We recall also that R°0 is considered as a R:Ow—algebra,

¥Yx N
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using the mcrphism §: Yx N — W)}. Introduce the invertible RooY N N—module

o o ~
F=@®,, ) (R0,)".

o
(R“OW)
In view of (3.28), the relation (3.27) is equivalent with the following one,

between R°0, ~-modules:
YxN

~ 0
(3.29) F -ONON(—a-o) =R (vaN(-r)).

The structure map R;;’Ow—-'lf(OOY gives, by transposition (as ON~modules), a

x N
morphism of (R:Ow)—modules

(3.30) (rR%

YxN)

o ~
(RO, -

Since the map YxN-—-‘E—'U is an isomorphism over U = N\{0} C N, we may take

the inverse of (3.30) over U,
o - le) v
(R0 v — (RO, ) Ivu,

angd derive an isomorphism of ROOY ”N—modules:

~

° .
(3.31) Flu —=—— (r Oy, ) lu.

Using lLemma (3.26), a straightforward computation shows that, choosing conve-

~ 3 () Vo 3
niently isomorphisms FO —ON'o[c]/t and (R onN)O —ON‘O[:]/c , the fibre of

(3.31) at the generic point of N is given by

1 1
b= -3
t t
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This shows that the restriction of (3.31) to (Fuo ON(-3-0))|U U extends
N

o
to an 1injection of R on N—modules

o .
F -ONON(—s 0) ‘—— (R va N) '

)-module

whose cokernel is the (ROOY
xN

3 - 52
ON’O[c]/(: ,t-¢) @ R O_.

Using the isomorphism (r°0 )y =18% this implies (3.29) thereby fi-

YxN Yx N’
nishing the proof of Case (b).

Case (c). Write Yre = {0,x} and Spec k[e]/ezz YOC Y. We may assume,

d
without loss of generality, that (Yo)red = {0}, i.e., that the non-reduced part
of Y is supported at O€X. With our notations, s=x here, and (—s+Y)red =
= {0,y}, with y=-x.

The map p: YxN— P of (3.15) factors through a map
(3.32) P: Yx N — W
onto a divisor W = 20+0' of P. The morphism p is an isomorphism above points of
N not mapping to the points 0 or y=-x of X.

We write in Pic(P) = Pic(N)e Zo:

o' =0 + ), A€ Pic(N).

As in the reduced case, one deduces that XEPicO(N) and that the intersection
numbers 02, g*g' and 0'2 are all equal to each other.

The map p of (3.32) induces a map
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(3.33) P Y x N — 20,

which is an isomorphism above points of N not mapping to O0€ X. This leads to an

exact sequence of ON—modules

o o
0 — nno% — R OYoxN ——D — 0,

the support of D being contained in the set of points of N mapping to O€X.

get:

o
(3.34) cl(RIIOZo) = -¢ (D).
On the other hand, putting, as in the preceding case,

o
e = clﬁhop(o).

we deduce as before that

o
(3.35) cl(RIIOZo) = -e.

Taking into account the exact sequence

0 0, OP(U) 0(o) 9,
)

which gives

o o
0 — 0 — R0, (0) RY0, (o) o,

we get also

- 32 -

We



o
(3.36) e = canoa(U).
Putting (3.34)-(3.36) together, we obtain finally:

o
(3.37) Cl( D)= clRHOG(G).
Recall that, by hypothesis, (-s+¥)NV# @ . This implies that (-s+Yj _odcv.
In fact: y€V if and only if ¢-0'> 0, which is equivalent to 02> 0, which is

equivalent to 0€V, by (3.37).

(3.38) LEMMA. The curve V is smooth at the points 0,y, and -s+YC+ V. Moreover,
the sections ¢ and o' meet transversally at one point (above y€eN). The map
(3.33) is described above OEN as follows: Choosing conveniently a local parame-
ter t of N at 0 and a local equation ¢ of ¢ at p(0,0), the morphism o(‘(jN O-al—

gebras

B

’ 62°.p(0.0)“—' bvo x N, (0,0)

can be identiffed with

-~ 2 -~ 2
ON.Olvllw ON.o[‘]/° )
defined by @b—te,
Furthermore, for a suitable local parameter t of N at y, if cemv 0 is
o'
its image by the embedding Yoc——'i'N, o cuts cut on ¥ _x N the divisor given

by the ideal (ts+e€) of 0N y[€]/=2-

PROOF. This is a local computation, similar as in the proofs of (3.24) and

(3.26), and will be omitted.
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Finally, we show that

(3.39) p’op(o) =0, (-r)-oN(0+y).

x N

and this will finish the proof in Case (c¢)}.

Restricting the first member of (3.39) to (x)x NC—+ Yx N, we obtain
ON(y). The second member restricts to ON(—r(x)+0+y). Being r{x) = O, both res-
trictions are isomorphic.

It remains to investigate the restrictions of these sheaves to Yox N. By

Lemma (3.38), it follows that cl(D )= ON(O) € Pic(N). Thus, by (3.37)
RYO (o) = 0, (0).
L) = YN
On the other hand, R: Oo( a') EON(y), thus, having written o'=o¢+A, we derive
~ g0 , [
Oy*) = R O (0') ® RO (-0) = ((y-0),
and hence
(3.40) OP(U) 'EOP(O')I ON(O-y).

Replacing Op(c) in (3.39) by its value in (3.40), we finally must prove, on

Yo* N, the following isomorphism:

(3.41) " (oD Y xNZ=0, | (-T) @O l2y).

o

Now, with the notations of Lemma (3.38), the divisor o' cuts out on Yox N a

divisor which is defined by the ideal (t+¢) of ON y[c]/cz, and T is given by
. r
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the 1deal (t-e) there. Thus the sum of these divisors is given by the ideal
(t2) = (t+e){t-e), which also defines the divisor 2(Yox(y)) of Yo"N' This
proves (3.41), hence Proposition (3.17) in this case, and therefore finishes

the proof of Theorem (3.1), Q.E.D.
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Abstract

We extend the results of R.C. Gunning's paper "Some curves in abelian varie-
ties", Inv. Math. 66 (1982), 377-389, including also degenerate cases of the
original hypotheses. Gunning's characterization of Jacobi varjieties in terms of
trisecants of the Kummer variety leads to similar characterizations in terms of

flexes of the Kummer variety.
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