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In his paper (3), R.C. Gunning has given a new characterization of Jacobi

varieties among all princlpally polarized aballan varieties, by using trise-

cants of the associated Kummer variety. The present paper is motivated by the

llnk between Gunning’s results and the -as yet unanswered- question about the

Novikov Hypothesis. Our main statement is Theorem (3.1), which ia just a more

general versión of the key result of [3], allowing also limit cases of the

original assumptions. Section 3 is devoted to the proof of this statement. In

particular, one obtains similar characterizations of jacobians by means of

flexes instead of trisecants (cf Section 1).

After putting Novikov’s Hypothesis in geometrical terms (cf (2.18)), its

relationship with this versión of Gunning’s result becomes more apparent. The

comparÍ8on suggests some intermedíate questions which might be useful. We

discuss this more closely in Section 2.

In Sections 1 and 2 we assume the groundfield k to be the field (E of

complex numbers; in the rest of the paper k is an algebraically closed field of

arbltrary characteristic different from 2.



O. Notations and definitions

Let X be a principally polarized abelian variety over k. Let 0 be any

symmetrie theta divisor of X, and cali L = 0^(0) the associated line bundle.
The linear system |2 0| is independent from the particular cholee of 0, and we

write M = for the corresponding line bundle. Put g « dim X; the global
o

sections of M span a vector space of dimensión 2, and these correspond classi-

cally with the second order theta functions (with zero characteristics).

We shall assume X to be an irreducible principally polarized abelian

variety, i.e. that the theta divisor 0 is irreducible. In this case, the

induced map

(0.1) * : X ► P(H°M) =JPN, N = 2E-1

is a (2:1) morphism onto its image. As a matter of fact, factors through the

projection of X onto is Kummer variety K(X) = X/í± 1) , embedding the latter
N

variety into IP (cf e.g. [8]). We are interested in trisecants of K(X) and,

more particularly, in the limit case of flexes of K(X), that is, lines in P*
meeting K(X) with multiplicity at least 3 at soné smooth point of K(X). (Note

that the singular points of K(X) are the images of the points of order two of

the abelian variety X, if g^2.)

(0.2) DEFINITION. Let YCX be an artlnian subscheme of length 3 of a princi¬

pally polarized abelian variety. The subscheme Y will be called a "secant"
N —1

subscheme of X if and only if there existe some line ICP with YCp (l).

Equivalently, if and only if the restriction map H°M ► H°(M»0y) fails to be
surjectlve.
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1. Jacobians and flexes

(1.1) Suppose that X is the polarized jacobian of some smooth curve C. Then the

Kummer variety K(X) is known to have lots of 3-secants (cf e.g. (6), p.80): Fix

three distinct points a,b,c€C. Then, for any

K e Já(C-a-b-c) C Pic-1(C),

the points of

♦ (C+a), + (C+b), <»(C+c)

are collinear (here the factor X denotes counterimage by the multiplication by

2 Isogeny). The line which they determine is a trisecant of K(X) and

C + la.b.c) C

By using (0.2), we may rephrase (1.1) as follows: Let r C X be the image

of C In X = JC, embedded by translation with an arbitrary element of Pie *(C).
Then, for any three distinct points o,8,y€ r we obtain a one-dimensional family

of secant subschemes C+Y of X, where

Y = C X and CG %(T -a-6-y) c X.

Moreover, it is known (cf [3]) that, putting:

V*(C€X| C+Y is a secant subscheme of X),

one has

V * -a-B-y)
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and V = 2V ls a copy of the curve C embedded in Its jacobian. (The factor 2

denotes image by the nultipllcation by 2 Isogeny.)

Conversely, start with a prlncipally polarized abelian variety X, and

three dlstinct polnts o,B,y EX. Define Y and V as above; the set V is an algé¬

brale subvariety of X and one clearly has an inclusión

-(a + 8+Y)+Y C 2V.

In this setting, Gunning proves, among other things:

(1.2) THEOREH. (Gunning, [3]). Assume that X is an irreducible prlncipally

polarized abelian variety, and that 2V is positive-dimensional at some point of

Y' = _(o+8+y)+Y = (-<*-0, -a-Y, -B-y) . Then 2V is smooth of dimensión one at all

three points and there is an irreducible curve V C 2V containing them. The

endomorphism

attached to this 1-cycle of X satisfies:

(ov-i)! Y' = constant.

(We recall that <*v is defined by av(x) =5í(0x-0)*V) for general x€X). In par¬

ticular, if there are no non-zero complex multiplications of X mapping$-tj and

into zero, it follows that *= I; henee, by Matsusaka's criterlon, X is

the jacobian of the (smooth) curve V. Since in the case of a jacobian X » JC

one may choche «,8,Y such that the above condition on complex multiplications

is satisfied, this yields a characterization of Jacobi varieties among princi-
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pally polarized abelian varieties (Loe. cit.).

(1.3) We remark another easy consequence of (1.2) (below we shall prove a simi¬

lar fact, and the ideas are the same): The presence of an irreducible curve r

on an irreducible princlpally polarized abelian variety X, satisfying the

property that, for general o,0fYer and K € %{X -a-8-y),

*(C + a), *(C+B)f ♦(C+Y)

are colíinear in P** is a property that characterizes jacoblans. The reader will

notice that one may even assume B and y to be fixed (but otherwise generally

chosen) in thls condition.

(1.4) We want to infinitesimalize the data in (1.2). To this end, we go back

first to (1.1) and let the points a,b,c of C collapse to a single point x€C

or, rather, to the divisor 3x of C. By continuity, we obtain from (1.1): For any

c 6 j£(C-3x) C Pic-1(c),

the subscheme

5 + Spec(0c,x/mC,^ C X

is a secant subscheme of X. Putting it in other words, writing

(1.5) Yx = -x + SpecíO^/h!^x> c x,

we have a one-dimensional family of secant subschemes of X:
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<C + Yx | C G )$(C-x)) .

We aim to reverse things to some extent. In this connection, the

following will be proved in Sectlon 3 (cf Theorem (3.1)):

(1.6) VARIATION (of (1.2)). Let X be an irreducible principally polarized abe-

lian variety, and let YCX be a subscheme with Y=Spec k[e]/e^ supported, say,

at the origin OGX. Define the algébrale subvariety of X:

(1.7) V * U €X | c+V is a secant subscheme of X).

(Notice that 0e2V.) Assume that the dimensión of 2V at the origin is positive.

Then 2V is smooth one-dimensional at 0. Cali V the irreducible component of 2V

at 0; then YCV and the endomorphism a^: X—► X attached to this 1-cycle of X
satisfies <»v I Y = t.

In analogy with (1.3), we deduce now from (1.6):

(1.8) COROLLARY. Let X be an irreducible principally polarized abelian variety.

Then X is a polarized Jacobian if and only if there exists an irreducible curve

rcX such that, for general xe r and c^^(r-x), C+Y^ is a secant subscheme of
X. Moreover, in this case r is smooth and X » jr.

PROOF. This condition is necessary, by (1.4). Conversely, the assumption

implies that for general xGT one has: J$(T-x)C V^, where is the variety
defined by (1.7) with Y = Y^. Therefore, by (1.6) applied to V =r-x, we infer

°r x *YX = * ^or 8enera* xeí* • Since **£■ * ap x ^or x» we maY write finally
d(ar-I)(x) * 0 for general xGT. Therefore (ar-I)|r is a constant map and, by
translating T if necessary, we may assume that 0€r, henee
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<*r = I on r.

Let AcX be the abelian subvariety of X generated by r. Restricting the polari-

zation of X to A we get an ampie divisor class (D) on A.We consider the

endomorphism of A attached to r and D, defined by

at-(a) - 5((D -D)*T)
i a

for general aGA. Clearly, | A = I, since T generates A. Therefore, by

the Criterion of Matsusaka ([4)), T is smooth and we have an isomorphism of

polarized abelian varieties (A,[D])£(JT,e ). By the semisimplicity property of

the category of principally polarized abelian varieties and the irreducibility

of X we conclude that X is the polarized jacobian of r♦ as claimed.

2. Infinitesimalization

We denote again by X an irreducible principally polarized abelian variety

of dimensión g. Let Y ^X be an artinian subscheme of length 3. We want to

sharpen an earlier definition where we considered the reduced subvariety

(2.1) Vy = ÍC€ X | C+Y is a secant subscheme of X)

(cf (0.2)), and introduce a natural scheme structure on V^.
Taking for each x€X the subscheme x+Y C— X, one obtains a family

y c—* x«x

X
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(p *(x) being embedded as (x,x+Y)). Restrictlon of sections of M to the subsche-

mes x+Y defines a morphism of locally free sheaves on X:

(2.2) (H°M)«kOx Rp(Oy »pr|M).

The set Vy consists of the points xeX at which the pointwise fiber of this
morphism is of rank £ 2. We define a scheme structure on by taking the sóbe¬

me of zeros of the morphism

3

(2.3) A3(H°M)«kOx A3R°(0^«pr»H).

tfriting L for the invertible sheaf at the right hand side of (2.3), one has, by

definition now, an exact sequence:

(2.4) A3(H0M)*k¿r -0X -05 -o.

Throughout this section, we shall assume that k = ® , and also that

Y^Spec k [cj/e3, supported at 0€X (See Remark (2.25)).

Locally, the subscheme of X can be descrlbed formally by means of

theta functions. Let B be a period matrix for X, and identify as usual

X *= C®/(I | B). Writing 6°, ...» N=2®-1, a basis of the vector space of

second order theta functions for B, the mapping it of (0.1) is given by

(2.5) X ) *(8°(x): ... : «"(x))

(In the right hand side member, the symbol x is to be understood as a represen-

o

tative in C® for x£X. Here and below, this abuse of language will cause no

harm, and simplifies the notations). We introduce for convenience the vector
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notation: e= (e° 0**).
To give a subscheme Y *X as above amounts to give a pair of constant

(= translatlon invariant) differential operators A^¿ 0 and on X satisfying,
together wlth A^ = Identity:

(2.6) for all functions a,b: 6 (ab) ¡s A (a)ó (b).
1

k+l*i k 1

The embedding 5pec(k {c]/c^)c—► X then corresponds to the ring homomorphism:

- 2 .

Ox>0 *■ k[e]/t , f I ► £ íjIfKOle1.f i—o

The operators A^, A^ are given equivalently by a pair of constant vector fields
0 and on Xf by the formulae:

(2.7) &l = Di’ &2 = W>2 * V

It is easily seen that a couple (D^.D^) defines the same subscheme as (D^D^)
if and only if there are constants a^O,b such that

(2.8) Dj = aDj, = a2D,, + bD1.

In these terms, a point xGX belongs to the set V if and only if

(2.9) rk ( 8 (x), (D^K*), ( (JíD^+D2) S ) (X)) <_ 2 -

As for the scheme structure introduced on by (2.4), the ideal of 0^ x defi-
ning(5n is generated by the functions f. , Oj<Í< j<k£N:

Vv X ljK
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(2.10) fiJk = det

91(x) (D1e1)(x) (Oíd^d^Hx)
eJ(x) (D16'*)(x) (OáD^+D2)0J)(x)
ek(x) (D1ek)(x) (0{Dj+D2)ek)(x)

In the rest of the present sectlon, we discuss some elementary facts

about the scheme Vy. In the first place, observe that

(2.11) Vy = %(2Vy)

(the meaning of the factors 2 and % being the same as in Sectlon 1). Thls Is

due to the fact that the group X acts both on X and on 12 01 (by translations)

and that the mapping i> of (0.1) Is equivariant for this action. We define

(2.12) Vy = 2Vy.

The study of Vy is equlvalent to that of Vy and, as it seems, the latter scheme
is a more natural object to deal with.

We notice that OGV^; this follows by using (dlO(O) = 0. We are interes-
ted in the study of VY at 0. To his end, we introduce a notation: for all h>_l,
put

(2.13) (VY)h = Spec(Ov 0/«Y+10) X.
I.

Then one has:

(2.14) PROPOSITION. There is an identity of subschemes of X: (V ) = Y.

PROOF. Assume Yc—*X to be given by vector fields D^, as in (2.7). In the
first place, Tv (0) =<Dj> holds. (We identify, as usual, T^(0) with H°TX). To
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see thls, if DsH°T then DeT (o) If and only if (Df )(0) = O for all f. ...
A V íJK ijk

T
l

Using (2.10), and taking into account that odd derivatives of the functions 0

vanish at the origin, this is written finally as:

(2.15) rk(»(0), (DDjS)(0), (D^e)(0))<2.

On the other side, it Is well known that the irreducibility of X implies that,

lf is a basis of H°T , one has
1 g X

(2.16) rk(í (0), ((*1í e)(0))i< ) = % g(g+l) + 1

(cf Remark (2.25)). In view of this, (2.15) is equivalent with DG<D^>, as
claimed.

To end the proof, it suffices to show that Y^V^. This in turn is equiva-
lent with )£Y * V^, and it will be enough to check this for the component of !£Y
passing through the origin. This component is given by the couple of vector

fields (Í£D^, J^D^) or, equivalently (cf (2.8)) by . Henee one is finally
led to checking that, for all f. as in (2.10):i jk

(DifiJk)(°) - o, ((*£2D2>r1Jk>(0) =o.

The first of these conditions has been checked already, and the second one

follows in the same way, Q.E.D.

(2.17) So, either is a smooth curve at the origin, or an infinitesimal piece

of such: = (Vy)h S Spec klej/c*1** for some h^2. Cali this h = h(Y) for a
moment, and put h(Y) = oo if the dimensión of at 0 ió positive-

In Theorem (1.6) one assumes that h(Y) =00. mis should be compared with
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the following

(2.18) FACT. The conditlon h(Y) >^3, for some Y c *X as before, ls the

assumption of the Novikov Hypothesis.

PROOF. Pursulng the forroalism used In (2.6),(2.7), an embeddlng

Spec k (c)/c^ c *X

supported at the origin is given equivalently by constant vector fields D^¿0,
D^, Dg, by formulae (2.7) together wlth

(2.19) A3 " D1 + Di°2 + D3*

Suppose that Y^— X ls given by (D^D^). In view of Propositlon (2.14), the
assumption h(Y)^3 means that there exista a such that the subseheme Z<—► X

defined by (D^.D^Dg) *s con*'a^ne^ *n Vy* ^e^ore» this is equivalent with
Z'c *Vy, where Z* is the component through the origin, of J£2. Now, Z* is defi¬
ned by or» equivalently, by (D^, 2D^, 4Dg). Thus the assumption
h(Y)> 3 is the existence of a D« such that, for all f in (2.10):

“ ’ ÍJK

(2.20) <(£ 0* ♦ 20^ + 4D3)fijk)(0) „ 0.

Writing this out, this is equivalent to

(2.21) rk(#(0), (D*e)(0), ((0^+1202-120^)9X0) )< 2.

In view of (2.16), this reduces finally to the existence of constante c and c,
o 1

such that
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(2.22) ((D?+12D?-12D,D_+c,D,2+c ) ®)(Oí = O,l ¿ 13 11o

which is the assumption of the Novikov Hypothesis, according to Dubrovin ([2],

p. 70). To brlng it ln a more familiar setting, consider the functions (Loe.

cit., p. 59)

$[n](z) = ®[n,0)(z | 2B)

where n runs through the set 0$Z/Z )®. The 2® functions

en(z) = S [n J (2z)

are a basis of the vector space of second order theta functions we are

considering here ([2), p. 16). Taking e as made up by this basis and writing

furthermore

D„ = 2D_,2 2* °3 30, lClDl d =
1

16 V

the equation (2.22) can be rewritten in the standard form ((2], p. 62)

(2.23) ((D* - DjD3 + + a)e)(O) = o,

Q.E.D.

Thus, ln thl3 language, the Novikov Hypothesis claims that, if X is an

irreducible principally polarized abelian variety containing a subscheme Y<— X

as before with h(Y):>3, then X is a Jacobian.

A rough but quite natural way of weakening this question consists in buil-

ding into it a one-dimensional piece somewhere. Following Dubrovin ((l)tp.472),

- 13 -



one may consicier for instance the assumption that there exists a one-dimen-

sional family of subschemes X as before, with h(Y)^3. Let us mention, in

this connection, that if h(Y) ^3 then there is exactly one more Y' with

h(Y’)>,3 and having the same tangent direction as Y, namely the image Y' = -Y

of Y under the symmetry of X. This follows, as in (2.14), (2.18), by using

(2.16).

Finally, a certain strengthening of the latter assumption is obtained by

infinitesimalizing the hypotheses in Corollary (1.8). It consists in supposing

that X confcains a smooth curve C such that, for all xGC, (V^ )^ =
4 x

=;-x+Spec(Oc x/mc ) holds (cf (1.5) and (2.13) for notations). In analytical
terms, this is essentially equivalent to the existence of a nonconstant

holomorphic mapping

I* . ¿ ► C®

(A=the unit disk) and a holomorphic function c(t) on 6 such that, putting

x-dri a
D(t) « r(t) - I^ ^

one has, for all te A:

(2.24) <(D(t)4 + 3D(t)2 - 2D(t)D(t) + c(t))e!(0) = 0.

(2.25) REMARK. For the time being there seems to be little reason to consider

the matters of this section in positive characteristics. However, for later

purposes we recall that the most essential fact which has been used here,

namely (2.16), is valid in any characteristic ¿ 2: Let X be a principally
a— 1

polarized abelian variety, and write 1P for the projectivized tangent space
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at Oe X. Let H°(M-0) = H°(M-2*0) be the hypersubspace of H°(M) of those sections

vanishing at the origin (henee vanishing doubly there). There is a natural

linear mapping

H°(M-0) —►

giving equations of the projectivized tangent cones at the origin of the

divisors of |20| defined by these sections. Then (2.16) says that this map is

surjective. As a matter of fact, this map is surjective if and only if X is

irreducible. The "only if" part is quite obvious, and the "if" part follows by

considering divisors of (29{ of the type ®x+® x* with x€0.

3. An extensión of Gunning*s results (l3l)

The present section is devoted to a proof of the following generalization

of Í3), Theorem 2, p. 386:

(3.1) THEOREM. Let X be an irreducible principally polarized abelian variety,

and let 0€Y ^ X be an artlnian subscheme of length 3. Assume that there exists

a (irreducible, complete) curve —*X such that, for all C € , C +Y c—*X is a

secant subscheme (cf (0.2)). Let V = 2V^C * X, image of by the multipli-
cation by 2 isogeny of X, and cali X—*X the endomorphism attached to the

1-cycle V in the PPAV X. Write Z for the 0-cycle of X defined by Y, and

s=5(Z)€ X the abelian sum of its componente. Then one has:

(i) If (~s+Y)OV =0, then | Y = 0

(i i) If (-s+Y)nV^0, then (-s+Y)c~*V, and V is smooth along this
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Jn particular, if there are no complex multiplications a* X—► X, <*¿0, such

that «Iy = O, then V is smooth and (JV,6y) — (X, e^).

The last part is clear by Matsusaka's criterion (cf(4)). To begin with

the proof of (3.1), let N be the normalizatlon of the curve V. Then Oy is the
following composition:

(3.2) X ~=— X ► Pic°N ° » JN ► X

a(—(e _9)(—(9 -9) | N | 5((9 -9)| N),
a a a

the isomorphism Pic°N * JN being the Abel-Jacobi map, and JN **X being the

Albanese morphism for the map N—*X. We keep the notations L,M, etc., intro-

duced in Section 0. Write

(3.3) *: X*X ‘X, (x,y) | ► -x+y

and let pr^: X * X ► X, i=l,2, be the projections. The isomorphism X^^-X =
= Pic°(X) is given by the line bundle $*L«pr*L on Xx X. (By this we mean, of

course, that this morphism attaches to a€X the restriction of this line bundle

to (a)*X). Consequently, the map X—► Plc°N in (3.2) is given by the res¬

triction of * pr* L to XxN.

We shall denote by

(3.4) 6n: Y xN —* X

the restriction of 6 to Y x N. Then the composition

(3.5) Yc— X ► Pic°N
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is given by the bundle

(3.6) i'L«av In)

on Y * N. For the sake of syrometry, it will be convenient to introduce aJso the

composi te map

(3.7) Y* Y >X ► Pic°N,

where the first arrow is the difference map, restriction to YxY of XxX—*■ X,

(x,y)Í "x-y. Notice that the data (3.5) and (3.7) are mutually equivalent.

Denoting by p^: Y»Y><N ► Y*N, i-1,2 the projection maps, the composition(3.7)is given by the line bundle

(3-8) pJ(«£L) * (p2(<JL))~'

(3.9) Next we construct a natural projective line bundle on N. Introduce first

= )£V. (The curve is an irreducible component of V.) We define Ñ by the

left hand side pullback square in:

V c > x

í í2
v c x

The curve Ñ is smooth and complete. The finite group ^X acts freely on R, and
N = Ñ/2X.

The natural map V—► Grass(P1'JPfl) GpN=|M| ), attaching to a general point

C€V the unique line (ClP** such that c +YC-* *(l^), induces a well-defined
morphism
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(3.10) Ñ ► GrassOP1 ,B^*), c

Equivalently, this is a IP*-bundle

(3.11) 5 t P ► Ñ, ñ —1 ( C) = l •

The map ♦ of (0.1) belng equlvarlant for the ^X-action on both sides, we deduce
an actlon of ^X on P, compatible with the action of on Ñ. Taking quotients,
we get the claimed 3P*-bundle

(3.12) n : P ► N.

(3.13) One defines a section a of the bundle P by putting, for a general point

of Ñ (identified with its image ln V):

5(C) = ♦<* ) G l .

The action of X leaves this section invariant, henee o drops to a section o of

the bundle P.

More generally, o is the restriction to (O) x Ñ of a well-defined mor-

phism of Ñ-schemes:

(3.14) p: Y « Ñ ► P,

which above a general point CSÑ is the composition Y —üc *Y —* l,^. The map p
being gX-equivariant, one defines on this way a morphism of N-schemes

(3.15) p: Y* N ► P
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which restricta to the section o on {0} * N.

Theorem (3.1) will be a corollary of the two propositions below.

(3.16) PROPOSITION. With the notations above, we have on VK Yx N:

PJ(«JL) >(p*{«¡L)rsp*(p*CJ,(o))« <P]<P*Op<o))f.

(Notice that the sheaf on the right hand side remains unchanged, if we replace

C^(a) byOp(t?)«F, FePic(N) being arbitrary. )

(3.17) PROPOSITION. i) Asenme (s+Y)OV =0. Then

PjíP^Opfo)) « (pJ(P*Op(o))) y x N-

ii) If (-s+Y)nv 4 0 , then (-s+Y)^-* V( and V is smooth along this

subscheme. Putting r^YxN, T = graph of the morphism Yc ~S » N, and r'^p^ír),
one has:

pg(p*0p(°)) • (pj(p#0p(o)))v = Oy ^ y K f,( r'-r”).

For the way in which (3.1) is deduced from these two propositions, we remark

that, in Case (11), the morphism Y * Y »• Plc°N of (3.7) is defined by

Qy y^ N(r'-r"); therefore, by the definition of the Abel-Jacobi isomorphism
Pic°N ———» JN, the compo8Ítion of (3.7) with this isomorphism equals

Y x Y • N « N ► JN

(x.y)| x-y •

Composing this with JN ► X we flnd that av | Y = I, as claimed. In Case (i),
the morphism (3.7) is zero, henee | Y = 0.
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The rest of this section is devoted to the proofs of (3.16) and (3.17).

PROOF OF (3.16). Pulling the two bundles back to Yx Yx Ñ we get line bundles

with a ^X-llnearization. To prove the proposition, it suffices to exhibit an

isomorphism between these llnearized bundles. The ínverse image of 0p(a) in P
is 0“(CT). the linearization being defined by keeplng fixed an equation for the

divisor

On the other side, the inverse image of p|(6*jL) «(p*(6*L)) in Yx Yx Ñ
yields Pjí^^M) * (p*{<$ ~M)) . Here we have written p^: YxYxR ► Y * Ñ, i = l,2
for the projections and Yx N —♦ X for the restriction of 6 to Yx W. The

linearization is defined as follows: for e€ X, c*loose a relative isomorphism

X: M •‘M over the translation with e, T^: X *-X. Then pJÍS^x) ® (p|(fiJx *))
gives the action of e on the bundle * These facts are

easily deduced from the following ones:

On XxXxXt write s^: XxXxX ► Xx X, 1*1,2» s^(x,y,z) = (xfz)t
S2^x,y,z^ " (y»zí¡ Pu^ also r^: XxXxX .X, 1*1,2, the first two projec¬
tions. Finally, let q: XxXxX ► XxXxX be the isogeny q(x,y,z) = (x,y,2z).

Then, by using the symmetry property of L, the Theorem of the Square and the

See-Saw Principie, it is easily seen that

q*((s*«*L) « (s*««L)W) = ((s*fi#M) es (s*«*M)V) ■ ((r*!.)"* (r*L))

(cf e.g. [7], p.320, for a similar reasonning). Moreover, this is an isomor¬

phism of 2X-ünearized bundles, if one takes the obvious linearization on the
left-hand side, and, on the right-hand side, the linearization of (s*6*M) a

■ as described above, times the identity on the factor (r*L)''« (r^L).
Next, we produce an isomorphism of line bundles

(3.18) p*(«ÍM) ■ Cp* <«**«»'' = * ÍP^P^ÍÍ)))".
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The vehlfication of its compatibility with the above described linearizations

is rather boring and straightforward, so we shall omit this, leaving it to the

reader. The datum of (3.18) is equivalent with an isomorphism

(3.19) * p*0-(o)) = « p*0p(o)).

Since p*p*n*F ^ p* p#íf*F for all FGPic(Ñ), it will suffice to exhibit. an iso¬

morphism

(3.20) pJ(«gM"p*0p(l>) S p*(«jH ■ p*0-(l))

(hereOs(l) denotes the pullback of0 „(1) by the obvious map P—*F^).P 1PN
Write

p Yx ff ► X

the restriction to Y* N of the addition map p : X*X ►X. Clearly

P* OgU)

Thus (3.20) is equivalent with

(3.21) pJ(«jM»(.gM) S p*(«^M«P*M).

On the other side, if

♦ : X xX ► X » X

denotes the isogeny sending (x.y) to (-x+y,x*y), one has (cf 17], p.320):
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♦ *(prJH« pr*H) 5 pr^2 s pr^H*2,

for any symmetric line bundle H on X. Thus, applying this to H«M we obtain

(3.22) «£M« wj¡jM S pr*(M*2 I Y) ■ pr£(M*2 | Ñ).

Since Y ls a sum of local schemes, Pic(Y) = 0. Thus M*2 I Y=0^ and, by (3.22),
both members of (3.21) become identified with the stheaf0^* *(M*2|N), Q.E.D.

PROOF OF (3.17), (i) Three possible types are allowed for Y:

a) Y S Spec k

(3.23) b) Y 3 Spec k[e]/e3
c) Y = Spec k[e]/e + Spec k.

An easy case-by-case inspection shows that, if c€X, then

♦ : c+Y ►IP**

(cf (0.1)) is an inmersión if and only if K does not belong to j£(-s+Y)* There-

fore the morphism p: Y*N *P of (3.15) is an inmersión above points of N not

mapping into -s+YCX. Consequently, if (-s+Y)f>V * 0, the map p is an immer-

sion. Taking any embedding Y^IP* we get a commutative diagram of N-schemes
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(recal1From this we derive p*0p(o) = (0 x (1) ■ 0H> » 0Yxf) ~ 0y<l) ■ 0N S O y x N

that Pic(Y) » o), and Part (1) follows.

(li) we shall deal with the three cases of (3.23) separatedly.

Case (a). This Is the original one, from Gunning's paper [3]. Put

Y = (x^=0, Xg, x^}, three dlstinct polnts in X. Here s = E x^f and -s + Y =
* (-x^-x^, -X1~X3* ~X2_X3^‘ maP ^ ls described equivalently as
the datum of three sections o=o^, and of It: P—*-N. Two sections o. and

Oj» i ¿j, meet above CGN if and only if C is mapped to -x^-x^ € X by N—*X.
Write, in Pic(P) = Pie N«Zc:

V °3 = °+X3

with Pic(N). Proposition (3.16) together with (3.7), (3.8) implies that

X2’X3ePic°(N) ' Nameiy, restricting the second member of the isomorphism for-
muía in (3.16) to ({x.,x,))xN (i=2,3), we get: <?„(».) = R°0 (o) ■ R°0 (-o) eii Ninoj no
6 Pic°(N).

Thus the intersection numbers (o^-Oj) are independent from i,je (1,2,3).
By assumption, (-s+Y)nv^0. Therefore, by the foregolng, at least two

sections i^j. henee all of them, meet each other, and -s+Y is contained

in V.

Next we use

(3.24) LEMMA. ([3], Lemma 2, p. 382). The curve V is smooth at the points of

-s+YC V, and the sections o , i=l,2,3 meet transversally above these polnts.
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We showPROOF. Consider the point -x^-x^GV, and let t G V with 2í = -x^-x^.
that, equivalently, V = J£V Is smooth at C and that the sections and 5^ meet
transversally at o^(c) - ^(t+x^í = ifc+x^) = Oj(C)« Choose a k-basis of H°M,
®° such that:

6°(C+Xj) ¿ 0, 0°(c+xk) í 0,

fl^ít+x^) = 0, 01(ctxk) /■ 0,

er(C+x1) = er(c+xk) =0 if r >2.

(Note that this is possible because )4 i(t+xk)). The rational functions
on X

u - er/e° , r=0,...,N
r

are regular at c+x^, C+Xj and c+x^* Moreover, since. the symmetry of X acts
trivially on H°M, the functions u , are even.

O N

Consider the subscheme V CX defined as in Section 2, with Y={x »x, ,x_>.
i o 1 2

By hypothesis, we have VCV^. The subscheme is defined at c by the functions
g . , 0£a<b<c£N,feabc

✓ ua(x+xo)
«W(x) = dCt ( ub(x+xo)

x
u (x+x )

c o

U^ÍX+Xj, )
u. (x+x,)O 1

u (x+x,)c 1

u (x+x )
a 2

ub(x+x2>
u (x+x,)c z

Identifying now T^(C) with the vector space of invariant vector flelds on X, we

get, .if D€ TX(C):
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((Du )(t + x )(DUj^Hc+Xj,)
(Du Hctx.)

c i

(note that the functions Du are odd). Since
r

sion at this point, and the foregoing implies

dim T- (C) < 1.
Y

Therefore dim T~(t) = 1, as was to be shown.

Write T~(t) = <D>. By our cholee of the basis 0u,...#6n, we have:

(Du^)(C+x^) 4 0. To prove the transversal!ty of and o at o.(c) = Oj(c) we
have to check that (do^)^D 4 (do^)^D. Now, if denotes the function on P
obtained by lifting the rational function X,/X ofpN, we have

1 o

((d5i)^D)ai = (DUjMc+x^) * -(DUj^Jíc+Xj) = -((dojí^DjUj.

Since these terms are non zero, we are done, Q.E.D.

To end with Case(a), consider Ux^,Xj )) * NC Y x Y * N. If i=j, then clearly
the restriction of p*(p#0p(o)) a (pj(p*0p(oM) to {(x^,x^))xN is isomorphic
with 0^, If i 4 j. iet x^ be the third point in Y. By the remark preceding
(3.17), the restriction of the above sheaf to ((x^tx^))xN is isomorphic with
that of the sheaf pJíp'Opío^)) m (p* (p*0p(ok>)) , i.e. with

(o,)a R°0 (-o.) = 0M((-8tx M-s+x )).Ü o. k ÜOjk N i J

Vt+V Ua(c+Xk) \

u. (c+x.)
b J Ub(t +xkl

uc(^xj) “c^V )
C+Xi^2^» the map ♦ is an immer-
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This finlshes the proof of Case (a).

Case (b). Here s=0 and, as a set, Y * -s+Y consists of the point 0€X

only. By our assumption, we have 06V. Then, as in (2.14) (cf (2.25)) we see

that Yc—* V and that V is smooth at 0€V. We shall identify Yc—*V with the

divisor 3*0 of N. The map p: Y* N—^P of (3.15) factors through a morphism

(3.25) p: Y" N ► W,

where Wc—*■ P is the effective divisor 3o of P. The map p is an isomorphism

above all points of N other that 0€N. Its local description at the origin is

given by the following

(3.26) LEMMA. For a suitable cholee of a local parameter t of N at 0 and a

local equation tp for 0 at p(0,0)€P we have, writing e€m the image of t inY ,0

n The morphism of Q.. _ -algebras
Y ,0 N ,0

W,p(0,0) ” ^ Y X N,(0,0)

can be identified with

5k,0W/”3 •ÓN,0[t)/e3'
2

defined by sending <p into te+e .

PROOF. As in the proof of Lemma (3.24), we shall deal with the map p: Yx R—► P.

Choose a basis for H°H such that

•°(0) ¿ O, eX(o) = ... = flN(0) = O.
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Put = er/e°. r=l N. These are even rational functlons on X, regular at

the origin. With the notations of Section 2, suppose that YC—► X is given by

the couple (D,D*) of constant. vector flelds on X. We may assume that either

D'=0, or that D and D* are linearly independent (see (2,8)). The connected

component at the origin, Z, of —*X is deflned by (Í£D, }. (Note also that

Zc—*>N.) We have a commutative diagram

Z

2 =

Y

(»>.%>’)
Spec k (e)/

3
e

(D,D')
Spec k [c] /c"

By (2.25) we may assume that

(DD'u,)(0) = 0, (D2u,)(0) 4 0, and (02u )(0) =0 if r > 211 r —

(recall that we are assumlng char(k) 4 2). The composite map

YmR —P—► p ► FN

|!|
ls defined in a neighbourhood of (0,0) by sending the functions X^/X^ °f **
into u^+(Du^)« + ( 0£D ♦D*)u^)c , Í*1,...,N. It follows in particular that the
image l CP** of the fibre of P above 0€Ñ is given by Xg=...=X^ = 0, and that
X,/X is a coordínate function on l near the origin. On the other hand, sincelo o

2 n

(Du^)(0) * 0 and (D u^)(0) 4 0, we may take y=DUj as a parameter of N at 0. At
p(0,0)€ P we may choose therefore the following coordinates: the function y,

lifted from the base Ñ, and the function z gotten by pulling back X^/X^ froffl,
The map p is described locally at (0,0) by
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y hy, z I— i^ + ÍDu^e + í (JíD2+D' Ju^) C2.

A local equation for o near p(0f0) ls given by n = z-u^f and this ls mapped
into (Du^)g + ( 0£D^+D' )u^)e^ by p. We write this as yc + fc^, where f = (^D^+D')u^.
Observe that f(0) * (Df)(0) = 0. The image of the parameter y in Z is given

i

by

y(0) + Ü(Dy)(0)c + ((gD2 + |D')y)(0)c2 = !*c.

Choose now p = n/f as a new local equation for o and í = y/f as a new parameter
~ ~ ~ ~ 2

for N at 0. The image of t in Z is g, and the image of p by p is tc+c . In view

of the isomorphism 5n>0-5S o and 0 p,p(o,or*<5 P,p(0,0) ’ thls finlshes the
poof of the Lemma.

The proof of (3.17)(ii) in the present case (b) vill be settled by

showing that

(3.27) p*0p(o) 2? 0y xN(- r) ■ 0n(2*O).

To begin with, we compute We remarle that P =PRjOp(o)» henee the
dualizing sheaf for P over N is given by

"p/N = °P(-2o) ‘ 0N{e)’

where we have put e = c^R^Opío). Therefore, the relative dualizing sheaf for W
over N is

fl
W/N ~ “p/N VpS0W(o) »°N(e)-
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and it follows that 0^(o) = ■0^(-e). Taking direct images and using rela-
tive duality givest

= R>w/„ «<V-e>> = "?K„J « OJ-e) a (R°Our • OJ-e).ir w/n n' 7 7 ir w/n' "nv ' ~ ' VV "ir

We compute O^(e). From Lemma (3.26) we obtain an exact sequence of O^-modules

°— ) %0N .o0 .o.

0 standing for the structure sheaf of the reduced one-point scheme 0C—► N.

Thus = On the other side, by using the exact sequence

0 —Op(-2 a) <7p >02a 0,

we derive the following one, by taking direct Images and using relative duality:

9N ‘ Rn°2o ^N(-e) —* °-

Therefore c.R-0,, - -e€Pic(N), and henee 0„(e) *0M(O). We obtain finally:1 B ¿9 N N

(3.28) h£Ow<o> ~ (I$?w) ■ 0N(-O).

The direct image in N of the sheaf p*0_(o) is the R 0*, ..-moduleP Y * “

(RÍW" . <W0,)-
(Rn 0„>

(In writing R
K we drop the subscript referring to the unnamed projection

map Y * N N. We recall also that R 0„ fc, is considered as a R_0w~al6ebra»íkN r w
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using the mcrphísm p: Y * N W). Introduce the invertible R 0y ^-module

F * (RW
<VV

(W

In view of (3.28), the relation (3.27) is equivalent with the following one,

betv/een R°0y y ^-modules:

(3.29) F "o On(-3-0) S R°(0YxN(-D).

The structure map —* r°^y * N glves* fc**ansposition (as C?N~modules) t a
morphism of (R^O^)-modules

(3.30) (R°0y xN)V >(RhVV-

Since the map Y*N—®is an isomorphism over U « N\(0) C N, we may take

the inverse of (3.30) over U,

<W“,U — <R0YxNrlü>

and derive an isomorphism of R 0V .-modules:
I xff

(3.31) f|U (ROoYKNnu-

Using Lemma (3.26), a straightforward computation shows that, choosing conve-

niently isornorphisms S 0^ Q («J/e3 and (R°0y^ N)Q = (?N 0(c]/e3, the fibre of
(3.31) at the generic point of N is given by

e
_L
^3

e ,
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This shows that the restrictlon of (3.31) to (f * 0„(-3-O)) |U c—►TlU extends
°N N

to an injection of R 0^* ^-modules

F -0 0N(-3-0) >(" <W ■

whose cokernel is the (R 0„ M)-moduleY xN

<Vo[c]/(c3,t-t) - R°0r'

Ueing the isomorphism (R°0 M) 9£ R°0V M, thls implles (3.29) thereby fi-
T x N jx N

nishlng the proof of Case (b).

2
Case (c)« Write Y . = (0,x) and Spec k Fel/e S Y C Y. We may assume,

-■■■ -■■■ red o

without loas of generality, that (Y ) . = (0), i.e., that the non-reduced part
o red

of Y is supported at 0€ X. With our notations, s=x here, and ^~s+^^re(j =
= (0,y), with y=-x.

The map p: Y * N —-*• P of (3.15) factors through a map

(3.32) p: Y* N ► W

onto a divisor W = 2o+c' of P. The morphism p is an isomorphism above points of

N not mapping to the points 0 or y=-x of X.

We write in Pic(P) = Pic(N)*Zo:

o* * o + X, Xe Pic(N).

As in the reduced case, one deduces that XGPÍc°(N) and that the intersection

2 2
numbers o , a*of and o* are all equal to each other.

The map p of (3.32) induces a map
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(3.33) 2a,p: Y x Nr
o

which Í6 an isomorphism above points of N not mapping to OeX, This ieads to an

exact sequence of O^-modules

0 — "fea — R°°V X N ^ — °-
O

the support of D being contained in the set of points of N mapping to 0€X. We

get:

(3.34) cl(RnC2o) * ~VD h

On the other hand, putting, as in the preceding case,

* - ci*H°p(a)’

we deduce as before that

(3.35) cl(F¡0Zo) = -e.

Taklng into account the exact sequence

0 -0_ ►0D(ar) ► 0(a) > 0,P P o

which gives

0_ . fata) x R°0o(o) 0,

we get also
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(3.36) e = clRnOo(0).

Putting (3.34)-(3.36) together, we obtain finally:

(3.37) Cj( D )= ClR°Oo(o).

Recall that, by hypothesis, (-s+Y) V ¿ 0 . This implies that (-s+Yj ,CV.
■ ed

2
In fact: y€V if and only if > 0, which is equivalent to o >0» which is

equivalent to OGV, by (3.37).

(3.38) LEHMA. The curve V is smooth at the points 0,y, and -s+Y^V. Moreover,

the sections o and o' meet transversally at one poJnt (above y€N). The map

(3.33) is described above OG N as follows: Choosing conveniently a local parame¬

ter t of N at 0 and a local equation f of o at p(0,0), the morphism ofO^ ^-al-
gebras

P* ! °2o,p(0,0) ’°Y *N,(0,0)
O

can be identified with

Vo^2 'ÓN,0tel/e2’

defined by ?}■—*te.

Furthermore» for a suitable local parameter t of N at y, if e€fl*y is
o*

its Image by the embeddlng Y^c——— »N, o* cuts cut on Yq* N the divisor given
by the ideal (t+e) of ÜM (e)/e^.N,y

PRQOF. This is a local computation, similar as in the proofs of (3.24) and

(3.26), and will be omitted.
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Finally, we show that

(3.39) p*0p(o> =? N(-r)«oN(o+y).

and this will finish the proof In Case (c).

Restricting the first member of (3.39) to {x}x N C—-+ Yx N, we obtain

0M(y). The second member restricts to 0M(-r(x)+O+y). Being r(x) = 0, both rea¬
ro N

trictions are isomorphic.

It remains to investígate the restrictions of these sheaves to Y x N. By
o

Lemma (3.38), it follows that c, (P )- 0> <0) € Pic(N). Thus, by (3.37)1 N

<Va) - °N<°>■

On the other hand, R°0(o') 3 0 (y), thus, having written o' = o+X, we deriven 0 n

VX,“ Rn°o(o’> ’ ^0o(-a) -^(y-0),

and henee

(3.40) 0p(o) = 0p( o’) ■ 0N(0-y).

Replacing 0^(o) in (3.39) by its valué in (3.40), we finally must prove, on
Yo*N, the following isomorphism:

(3.41) (p*0p(o'))| Yq«N «0N(2y).
o

Now, with the notations of Lemma (3.38), the divisor <*' cuts out on Y «Na
o

divisor which is defined by the ideal (t+e) of 0^ and r is given by

- 34 -



the ideal (t-e) there. Thus the sum of these divisors is given by the ideal

(t^) = (t+e)(t~e), which also defines the divisor 2(Y^ * (yj ) of YqXN, This
proves (3.41), henee Proposition (3.17) in this case, and therefore finishes

the proof of Theorem (3.1), Q.E.D.
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Abstract

We extend the results of R.C. Gunning's paper "Same curves in abelian varie-

ties", Inv. Math. 66 (1982), 377-389, lncluding also degenerate caaes of the

original hypotheses. Gunning's characterization of Jacobi varieties in terms of

trisecants of the Kummer variety leads to similar characterizations in terms of

flexes of the Kummer variety.
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