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ABSTRACT '

We study four subclasses of topological pseudo-Boolean algebras
representing increasingly strong intuitionistic counterparts of mona-
dic Boolean algebras. The fourteen equivalent classical conditions
are shown to split into six non-equivalent sets of equivalent condi-
tions, whose inter-connections are all determined. We also deal with
several algebraic-logic properties of our classes, such as regular,den
se, Peircean elements, and others. We conclude that a closure operator
derived from an interior one is not meaningless in this context of

intuitionistic modal logic.
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0. Introduction

It is generally accepted that in intuitionistic modal logic the
two modal operators cannot be completely dual in the sense of the
two classical laws: L+ M7 and M+ L. Most authors have chosen
to work considering both operators as primitive and independent,
linking them with other weaker relations; this is the case of Prior,
Bull, Ono, Fischer-Servi, Sotirov, and others. In some cases, such
as in part of ([Bul] and {0], they avoid having M. In this paper we
begin an algebraic study of the application of Gédel's proposal
(that is, to have a primitive L and define M« L) to an intuitio-
nistic base. It is worth noting that the remaining alternative,
having M primitive and defining L« M), is not viable, as example
5.10 shows,

The work has been done and written in the algebraic side of the
subject, and in order to avoid repetitions we will not refer,
outside of this section, to the equivalent logical formulations of
several results; some of them will be dealt with in another paper.
Here we start from a system of (propositional) intuitionistic modal
logic analogous to S4, whose algebraic models are topological pseu-
do-Boolean algebras (tpBa); these are defined as in [O] using only
the interior operator 1, in the Godelian style. A deductive and
implicational study of tpBa and of the logical system, whithout a

mention to M, has been published in | Fo].

In section 1 we introduce the operator 6§ =111 corresponding to
M and we study some properties related to it. It is of special

interest the analysis of several conditions (axioms or inference



rules) which can be added to the 5S4 system to obtain S5, that is,
conditions which turn a topological Boolean algebra into a monadic
one. In such structures these conditions are all equivalent but it
is not so in topological pseudo-Boolean algebras, due to the pecu-
liar features of intuitionistic negation; hence the interest of its
study. H. Ono has done some work concerning several conditions

without the possitibility operator.

We examine fourteen diffe ‘ent conditions involving L and/or M.
Some of them come from classical modal logic, such as the laws of
reduction of modalities, Becker's rule and axioms, or the M" axiom
of von Wright. Some others originate in mainly algebraic works, as
are those of Halmos, Davis, Monteiro, Bull, Beth and Nieland mentio-
ned here. We determine all the equivalences and implications that
hold between these conditions, and we define with some of them four
subclasses of tpBa and study some of their algebraic properties. We
specially deal with several concepts and results formally analogous
to other classical concepts of modal or intuitionistic logic. All
this is contained in sections 2,3 and 4. In section 5 we have

gathered all the counterexamples we use throughout the paper.

The four logical systems that would correspond to the subclas-
ses of tpBa here defined are all of type S5 in the sense of [ Bu2},
although the last one is not intuitionistically plausible. We have
made no attempt to single out one of them as a "true" analogue of
§5, but we rather study the properties that establish differences
between them, thus finding they have an increasing "degree of monadi-~
city”. On the other hand, H. Ono has proven in [0] that there is an
infinite number of systems of intuitionistic modal logics analogous
to 85, and G. Fischer-Servi has worked on this subject with remarka-

ble deepness in [Fil] R [FiZ] and [Fi3] , among other papers.

We recall some of the definitions and notational conventions

introduced in [Fo) and that will be used here. A topological pseudo-

Boolean algebra (tpBa) < A,I,7,A,V,+> is a pseudo-Boolean algebra




<A, 1,A,V,+> where 1 denotes the maximum and O the minimum, with an
interior operator I on A. The open elements are those of B =
= {a€A: Ta=al, and the deductive systems of A are the sets ing =
={DcA: 1€D, if a,a*beD then Ia,beD}. If for each DEP we

define o by az,

D » ED is a lattice isomorphism between & and the congruence lattice

of A. We denote by D the consequence operator associated with 9 and

b iff a» bED and b+ a€D then the correspondence

L = <A,D > is the associated abstract logic. This abstract logic has
the following properties: The Adjunction Principle p (a,b) =

= D(aAb), the Strong Disjunction Principle p (X,a)n p (X,b) =

= Q(X,a\?b) where a\'/b = IaVIb, the Deduction Principle bep(X,a)
iff a*bep(X) and the Pseudo-Reductio ad Absurdum Principle

_l“aeg(x) iff Q(X,a) = A, where Tl»a = a»0, and » is any of the
following implication operations: We weak implication a# b = Ia+ b,
the intuitionist implication a=b = I(Ia+ Ib), and the strange impli-
cation a b = Ia+Ib. Hence the logic L has an intuitionistic
character when we take into account the preceding connectives, and
this is reinforced by the following construction: with each DED we
agsociate the relation “p defined as amub iff Q(D,a) = Q(D,b)
iff a*b€D and b#a€D. Then ~p is a logical congruence of L in
the sense of [B-S] and the quotient A/ “b is a pseudo-Boolean

algebra with respect to the operations there induced by 7',/\,\'/ and =,

The purely intuitionistic character of these structures is
shown in results as the following: for all DEA, DG,D iff 1€D and D
is closed by Modus Ponens with respect to * (that is, if a, asb€D
then b&D). We can extend the analogy with intuitionistic structures
by introducing two kinds of elements related to implication and
negation as in pseudo-Boolean algebras: the *-dense elements D, =
={acA: 'a =0} and the s-Peircean elements P, = {a€A: a =
= ({bx c)* b)s b for some b,cE€A}. We have the usual characteriza-
tion of the (maximal) radical of A: R(A) = p(P,) and the following
relations: P,SP SP_-= R(A) = DgQDM = D*_ R and DP"\BEP= =
= I(P,) = B ,NB = R(A)NB. Moreover for each a€A we have that

aep, iff a = ((a=0)=>a)=a. In the present paper these results



will be strengthened for some of the subclasses of tpBa studied and
more properties of these special elements and of other related

concepts will be obtained.

1. Negation and possibility in tpBas.

In all pseudo-Boolean algebras we have the closure operator
x +="T1Ix whose properties are well-known; see for instance [ M=T } or
[rR-s]. 1In tpBas there is another closure operator which is defined

as follows:

1.1 Definition. In every tpBa A the closure operator associated with
the interior operator I is 8a =111 a for all a€A. The closed

elements of A are those of T = (a€A: a = 8a}l.

1.2. Proposition. In all tpBa A the following hold:
(1) Ia€ a <1 la<éa for all a€A,
(2) 60=0, a<éa =42 a for all a€A, and if a<b then sa<sb for
all a,b€ A, and
(3) T is A-closed, contains O and 1, and for all a€A, éa = =
min {teT: a<t}.
Proofs: All trivial.®

We observe that (2) states that § is an order closure satis-
fying 80=0 and, from (3}, §(8aAésb) = §aAéb for all a,b€A. While I
is a lattice-interior operator, 6 is not a lattice-closure operator
because it does not necessarily satisfy 6(aVvb) = 8aVvéb nor even
§(8aVéb) = 5avéb, as example 5.7 shows. We now give some relations
and properties satisfied by I,6 and ! which we shall use from now on

without mentioning them.

1.3, Proposition. In every tpBa A and for all a€A:
(1) 8a =8 Vla = Tsa,
(2) if a€T then a=!la,
(3) if Ta = O then §a = i,



(4) 61 la = 18a,

(5) Tla<lsa<la< §la <la, and

(6) la€T.
Proofs: All reduce to easy computations dealing only with the defini-
tions of § and T and with elementary properties of negation in pseu-

do-Boolean algebras.®

Now we ask whether the negation induces any relation between
open and closed elements. As it is well-known, in topological Boo-
lean algebras, as in ordinary topological spaces, there is a perfect
duality between them, and there are four valid implications: (1) if
a is open then Tla is closed; (2) if Ta is closed then a is open;
(3) if a is closed then Tla is open; and (4) if Tla is open then a

is closed. In our case the results are more limited:

1.4. Proposition: If a is an open element of a tpBa then Ta is
closed.

Proof: From a< 77a we deduce a = Iailj"‘a and then §la = 1 _"Wai

< Ma = Ta, so § la = la.B

We have proven that implication (1) is always true. The remai-
ning three are not true in general, as we see in example 5.3, al-
though (2) and (3) can hold in some cases, as in 5.2. This is not
the case of (4), which turns out to be characteristic for topologi-
cal Boolean algebras:

1.5, Proposition. A tpBa A is a topological Boolean algebra iff for
all a€A, if 7la is open then a is closed.

Proof: If A is Boolean there is nothing to prove. If it is not, then

there is an a€A, a#1, such that Ja = 0. This implies that Ma is

open and that a is not closed since by 1.3(3), ¢a = 1#a. @

The most direct relations between open and closed elements,
namely BET and TSB, will be shown to be equivalent to the defini-

tions of some subclases of tpBa in sections 3 and 4. Another kind of



relations between B and T are given by the so-called "connecting

conditions" of [Fi3]; here we have one of them:

1.6. Proposition: In every tpBa A the following hold:

(1) 6(a+b)<Ia+ b for all a,b€A, and

(2) B> TGT.
Proof: We have a»b<'b+la = (b+0)+ (a+0) and therefore b+0<
< (a+b)+(a+0) =a+((a+b)+0) and a<(b+0)» ({a+b)+ 0), that
is, a< b+ MNa+b); now Ia< I{ b+ Na-+b))<I b1 Wa+b)<
< M Na+b)+ 1171b = &(a+b)+6b which is equivalent to (1). Now

(2) is a trivial consequence of (1). B

The remaining condition 6a+1Ib <I(a+b), which is equivalent to

T+ B< B, will be dealt with at the end of section 3.

The rest of this section is devoted to the introduction of the
concept of regularity in tpBas. The concept of regular element comes
from topology and was introduced in [M-T] by using the negation of
pseudo-Boolean algebras. With respect to the pseudo-Boolean algebra
underlying a tpBa A, we denote by RegH(A) = {a€A: a =17a} the set
of H-regular elements, that is, the set of regular elements of the
pseudo-Boolean algebra (or Heyting algebra). Now 1.3(2) is read
TQRegH(A); it is not possible to strengthen this relation: in 5.7
the inclusion is proper, and even in monadic Boolean algebras it can

be so.

In topological pseudo-Boolean algebras there are there opera-
tions '® which have the behaviour of logical negations of the
intuitionistic type; but we have a topological interior operator and
an associated closure operator, and so it can have some interest
trying to write down the original topological ideas. We think that
finding some coincidences between the two formulations is not merely

casual.

1.7 Proposition. In every tpBa A and for all a€A the following

conditions are equivalent:



(1) a = §1a,

(2) a = 1+ T4+ a, and

(3Y a = T Tlas a,
Proof: From the definition of 7+ and 1» we see that T+ea =
=7 a = Tla and then W g = M, o 17715 = sTa.m

1.8. Proposition. In every tpBa A and for all a A the following
conditions are equivalent:
(1) a = I8a, and
(2) a = I=2"1=a.
Proof: From the definition of 1= we see that 7i=a = I Vla and
then 1=7T=a = I 11 Vla = I8§Ia, but a = Isa implies a is open and
so a = I8la =l="1»a. Conversely a = 1= 1= a = I§la also implies a is

open and therefore a = 16a.B

In this situation we are nearly forced to give the two follo-

wing definitions.

1.9. Definitions. In a tpBa A the elements a€ A such that a = é§Ia
will be called regular, and those satisfying a = I§a will be
called I-regular. We denote by Reg(A) and RegI(A) the sets of

regular and I-regular elements, respectively.
The most immediate properties of regular elements are the following:

1.10. Proposition. In every tpBa A we have:
(1) (0,1)§Reg(A)gT§RegH(A),
(2) {0, cTNB = Reg(A)ﬁBQRegI(A)g B, and
(3) Reg(A)NR(A) = Reg(A)ND_ = {1}.
Proof. (1) and (2) are direct consequences of the definitions. For

(3), we have Reg(A)ND_ < Reg(A)N R(A) and if a€Reg(A)NR(A) then,

-taking into account that R(A) = D, , we have a ="l Tpa-=
= (at0)+0 = (a=0) »0=0+0=1.0

Examples 5.2 and 5.3 show us that the inclusions of 1.10 are

not equalities in general. Later we will complete the analysis of



the concept(s) of regularity and some of this properti es will be

partially improved.

2. Weakly monadic tpBas

The concept of monadic Boolean algebras was invented by P.R.
Halmos to set out an algebraic description of the monadic predicate
calculus. He defined them in [H] with the specific axiom 8(aAésb) =
= §aAsb, and showed that this was equivalent to the addition of the
condition 616§ = 18§ to a topnlogical Boolean algebra. Independently
and at nearly the same time C. Davis defined in [D] the class of
" 85 operators" on a Boolean algebra with the condition "if aAb =
= 0 then 8aAdb = 0", and showed that it was also equivalent to
8716 =18, The motivation fecr Davis' work was modal logic, and in
fact this last condition corresponds to the specific axiom of von
Wright's system M" presented in [vW]; as it is well-known, B. Sobo-
cifiski showed the equivalence between M" and S5. Now we see the
equivalence of these conditions. on a topological pseudo-Boolean

algebra. -

2.1. Theorem. In every tpBa A the following conditions are equiva-
lent:
(1) 6 %8a = 16a for all a€A (that is, T is closed by nega-
tion),
(2) if anéb = O then 8a ASb = O for all a,b€A, and
(3) 8(andb) = saAdb for all a,b€EA.

Proof: (1)=(2): ansb = 0 is equivalent to a<¥b and from this and
(1) we have 8a <8 186b ="18b, which is equivalent to §aAsb = O.
(2) = (1) because we always have “16a < &§'6a, and since
WaAéa = 0, by (2) we have 8 '6aAsa = 0, thus establishing 6§ 16a<
_<_‘—‘6a.
(2)=(3): a<déa and so aA6b<8aASbET as T is A-closed.
By 1.2(3), to show (3) it suffices to show that for any te€T, if
aAdb <t then 8aAdb<t. But aAdb<t is equivalent to §b<ast<



< 1t+Tla which in turn is equivalent to gbA71t <la and hence to
SbATTEtAa = 0. Now §bATItET and so we have 6(6b_/\*1t)/\a = 0, and
applying (2) we obtain 6bA Tt ASa = 8§(8bATIt)Aga = O from where we
can infer Ga/\ﬁbijjt =t by 1.3(2). Thus we have proved that
s (aA8b) = saAésb.

(3)=(2) is trivial. WM

The preceding result justifies the following

2.2 Definition. A tpBa is called weakly monadic iff it satisfies any

of the conditions in Theorem 2.1.

We give a list of several useful rules for weakly monadic tpBas

and some elementary properties.
. wea_k,.}unonadic .

2.3. Proposition. In every’ tpBa A the following hold:

(1) 6I Ya = §a = _‘lIsa for all a€A,

(2) 111Ia = éla for all a€aA,

(3) 171a = 6Ia for all a €A,

(4) if a€B then 6a = 1 la, and

(5) if a€T then la = 'Ia and a = 11a.
Proofs: They all are straightforward computations making use of

2.1(1); for (5) recall that TSRegH(A).I

2.4. Proposition. In every tpBa the following conditions are equiva-

lent:

(1) A is weakly monadic,

(2) 1 11a€eT for all a€A, and

(3) a = 11Ia for all a€T.
Proof. In 2.3(3) we have seen that (1) implies (2}, and in 2.3(5) we
show that (1) implies (3). If we agsume (2) and apply it to Tla we
have 18a = 11I 1a€T and we see that T is closed by negation,
which is equivalent to (1). Similarly if we assume (3) and apply it
to sa we find ga = 1VIga = 11111 7a = V1L 11 1IVa = g Tga
and by negation T1§a = 11§ lga = § lsa because TQRegH(A). Therefo-

re we have (1) again. @

UNlV!RSITA’I'n
BARCELONA

BRAI

-9 -



2.5, Proposition. In every weakly monadic tpBa A and for every a€A
we have:
(1) 7%= a=0 iff '+ a=0, that is, I 'Ia = O iff 'Ia = 0, and
(2) if a€T and Ia = O then a = O. '
Proof. For (1) there is nothing to prove in one direction; and if
I 'la = 0 then using 2.3(5) for 1Ia€T we obtain Mla = "\7I Tla =

= 170 = 0. (2) is also a direct consequence of 2.3(4). 8B

2.6. Corollary. In every weakly monadic tpBa A,R(A) = D, =D, =1,
and if we put RH(A) ={a€A: Ta=0} (the maximal radical of
pseudo-Boolean algebra under A) then R(A)& RH(A).I

It is worth noting that, according to 2.6, in weakly monadic
tpBas there is only one kind of dense elements, D, = {a€A: a = 0}
because of the coincidence of D, D,, and D,, (example 5.1 shows
that this is not general). Therefore, there is a unified characteri-
zation of the radical in terms of dense elements: R(A) = D,. This
characterization can be 1logically interpreted as follows: if we
think of dense elements as representing "almost true" sentences in
the sense that their logical negaeion is false, and if we think of
the elements in the radical as representing "almost true" sentences
in the sense that they belong to every complete consistent theory,
then the equality R(A) = D, can be read as stating the equivalence

of these two kinds of "almost true' sentences.

There is no coincidence among the three types of Peircean ele-
ments, as exemple 5.3, where the inclusions P” < PMQ P” are pro-
per, shows. In the same example we see that it is not possible to
improve, for weakly monadic toBas, the results obtained in section 1
concerning the relations between open and closed elements via nega-
tion. Concerning 2.5(1), we announce that it is not true in every
weakly monadic tpBa A that =4 = "a -4 for all a€A: in 3.5
we will show that this fact characterizes an effective subclass of

those algebras.

- 10 -



It is well known that the set of H-regular elements in a
pseudo-Boolean algebra A is a Boolean algebra with respect to "l,/\.QL/
and +, where the join is a¥Ub = 1 Havb), and alsc that it is
isomorphic to the ordinary quotient of A by its radical. In tpBas we
have two kinds of regular elements and a radical linked with the
dense elements. We shall obtain for these concepts, in weakly
monadic tpBas, several results partially similar to the classical

ones.

2.7. Proposition. In every weakly monadic tpBa A, we have that T =

= Reg(A) and this is a Boolean algebra with respect to 1,/\,\+/,+.
Proof: According to 1.10(1) we always have Reg(A) € T; and if a€T
then using 2.3(1) twice we obtain 8Ia = §I8a = §I I la = "1§I a =
=178a =177a = a, and so a€Reg(A). On the other hand TS RegH(A) and
we know that RegH(A) is a Boolean algebra with respect to the
desired operations; hence we only need to prove that T is closed
with respect to them. T is always closed by (\, and if A is weakly
monadic then T is closed by 71. Moreover we have aVp = M (aVb) =
= Y aAlb), therefore T is closed by \+/, and since in RegH(A)
a*b = laVb then T is also closed by + . As a result T = Reg(A) is
a Boolean algebra with 7,/\.\47 and* M

Note that in weakly monadic tpBa the set T is closed by "7, and
+, However it is not a subalgebra of A, since it does not need to be
closed by v(see 5.7}, and this condition will later on play a role.
The point whether B is or is not closed by ! and * will also play
an important role in the next section, but we can say nothing about
this now. On the other hand, in 2.7 we have turned one of the
inclusions of 1.10 into an equality; we cannot do the same for the
remaining ones, for all weakly monadic tpBas, as the examples 5.3
(for the first inclussion of 1.10(1) and the ones of (2)) and 5.2
(for the rest) show. Therefore T = Reg(A)S RegI(A) and the inclusion
can be proper; thus we still have two different kinds of regular
elements. This is not an impediment to show that one of them has all

the properties cited above. We first need a general resuit:

- 11 -~



2.8. Lemma. In every tpBa A we Fave that an V1 1Ia for all a€A.

R(A)
Proof: On one side we have Ia<I'!'la and from this a + 1 Ia =
= Ia + 1 Ia = 1€R(A). On the other side, from 0<a we deduce
(a+0)+0<(a++0)+ 0<(a+0)+a and so !'latra=111la+a =
= {{(a++ 0)+ O)+ a > ({a+ O} +> a)}+» a€P_ = R(A} and, as R(A) is a
deductive system and hence an order filter, we find that
el > M
Ia * a€R(A). Then a"'R(A) Ia.®

It is easy to show (see [Fo]) that in every tpBa A and for
every Deﬂ, the quotient A/~ D is a semisimple pseudo-Boolean alge-
bra (i.e., a Boolean algebra) if and only if D2R(A); this is the

case of R(A) itself, therefore A/~ is a Boolean algebra with

R(A)
respect to the operations 7,A,v,* induced in the quotient by %,

*
AV, * respectively. Then we have:

2.9. Theorem. In every weakly nonadic tpBa A the Boolean algebras T

and A/™ are isomorphic.

Proof: We de?i(r?e) the following mapping from A to T: h(a) = §Ia for
all a€A. Recall that here 6Ia = '* '™a = "1Ia. This mapping is
onto, because T = Reg(A), and Shell h = h_l((l}) = {a€A: §Ia =
=1} ={a€A: ™ 4 - 1} = {a€A: "™a =0} =D, = R(A).

We first show that for all a,b€A, h{(a++> b)< h(a) +» h(b): using
1.6(1) we have h(a+ b) = 6I(Ia +b) < §(Ia+1Ib)<Ta +» 8Ib, and so
8I(a +*b)A1a <8Ib from where, applying 2.1(3), we obtain
§I(a++b)AI8la<8I(atb)AdIa = 6§(§1(at+b) AJa)<8Ib and therefore
§I(a +b)<I8Ia~+ 8Ib = é§Ia +1Ib, that is, h(a+ b)< h(a)+ h(b) as
we desired.

We can now show that for all a,b€A, h{(a) = h(b) iff aWR(A)b:
if h(a) = h(b) we have 6Ia = §Ib and by 2.8 we have a,\,R(A)GIa and
we have that

§Ib, 80 a ~ Conversely if aa

™ R(a) R(A)® R(A)°
a+ bER(A) = Shell h and b++ a €R(A) = Shell h, and then 1 =
h(a + b)<h(a} ¥ h(b} and 1< h(b)+ h{a); therefore h{a)+> h(b)}
h(b) + h{a) = 1 which implies TIh(a) = Ih(b). But h{a),h{b)ET
Reg(A), so h(a) = 8Ih(a) and h(b) = §Ih(b), and finally h(a)

h(b).

) n #
] ] |

"

n
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It follows from what has been done until now that the induced

mapping h maps A/~ onto T and is indeed a bijection between

them. We must only p]:-gtl that h is a morphism, and then it will be
the required isomorphism. It suffices to show it for the negation
and the meet A: R(7a) = i(T a) = h(T Ta) = 61 11a = 1sla = Th(a)
using 2.3(1); if we recall that 8Ia€T for all a€A and that

T = Reg(A) is A-closed, then we have that h(aAb) = h(§ia A §Ib) =
= h(§TaAS8Ib) = §1(6TIaA8Ib) = §IaAslb = h(a)A h(b). B

3. Monadic and strongly monadic algebras

In this section we present two subclasses of the topological
pseudo-Boolean algebras related to five classical conditions belon-
ging to S5, that is, to monadic Boolean algebras. First, the condi-
tion I 11 = 71I, dual to another one studied in the previous sec-
tion, has been used by A. Monteiro in [M], and in its logical form
it appears in the 1933 axiomatics given by M., Wajsberg in [w]. we
must say that A.N. Prior calls it insistently "the Godelian axiom
for S5" (see for instance [P1] page 20 and [P2] page 312) although
the reference given {G] does not seem to provide reasons for this.
Second, the law of reduction of modalities I8 = § already used in its
logical and strict form by C.I. Lewis to define S5 over S1. Third,
the axiom a< I8a which can be used to produce S5 from S4 and
characterizes a system called "Bronwerian" because of a comment of
0. Becker in [B] about the intuitionistic character of a property of
the strict negation or impossibility in some modal systems. Fourth,
the rule "if S8a <b then a <Ib" which has been classically regarded
as equivalent to the last axiom. And finally an interesting axiom
involving the most elementary operators, namely implication and
interior: I(Ia+b) = Ia+*Ib; it was used by E.W. Beth and J.F.F.
Nieland to give an axiomatization of S5 out from S4 in [B-N]. Wwe
begin our study by showing that the first four preceding conditions

are equivalent in our case.

- 13 -



3.1. Theorem. In every tpBa A the following conditions are equiva-
lent:
(1) I 7'1a = 1Ia for all a€A, that is, B is closed by negation,
(2) I8a = 8a for all a€A, that is, T<B,
(3) a<Isa for all a€A, and
(4) if 8a<b then a <Ib for all a,bE€A.
Proof: (1)=(2)=(3) are trivial. If 6a<b then Isa<Ib and by (3)
a <Ib and so we have (4). Finally, as for every a €A we have § Ia =
="11a by 1.3{(6), in particular & 1la < Ia, and if we apply {4) then

we have 'Ia<71 la and we obtain (1).H

3.2. Definition. A tpBa A is called monadic iff it satisfies any of

the conditions in Theorem 3.1.

3.3. Proposition. Every monadic tpBa is weakly monadic.
Proof: From 3.1(1) we have §76a = I V171 1a = 11711 la = 1 Ta =
= 18a. So we obtain 2.1(1). 8

The converse of 3.3 is not true, as example 5.3 shows. Thus we
have a proper subclass of a 1 weakly monadic tpBa. We now give some
properties of the several operations of negation we have at hand; we
begin by improving the relations between open and closed elements

via negation.

3.4. Proposition. In every monadic tpBa if a€A is closed then la
is open.
Proof. a€T implies la€T by 3.3, and TSR by 3.1(2). 1

We already know that the converse does not hold unless A is
Boolean (Prop. 1.5). Only one implication remains (if la is closed
then a is open) and 5.6 shows that it is not true for all monadic

tpBas, although it can be true for particular cases, as in 5.7.

3.5. Proposition. A tpBa is monadic iff the three logical negations

= M and 'Y coincide.
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=g

Proof: It is enough to observe that "™ a = '#a = JIa and

= I 11a and look at 3.1(1).8

3.6. Corollary. In every monadic tpBa A, we have T = Reg(A)
= = N
RegI(A) B RegH(A).

Proof: In weakly monadic tpBas T = Reg(A) and by 3.5 Reg(A)

= RegI(A). On the other hand by 2.3(4) we have BﬂRegH(A)QT and
always TS RegH(A); but if A is monadic we have in addition that T B

and so the last equality is proved.®

Therefore we see that in monadic tpBa there is only one kind of
regular elements, thus emphasizing the result in 2.9. We see in 5.4
and 5.5 that we still have three types of Peircean elements.

3.7. Proposition. In every monadic tpBa A, if a€A is open then
aV la and "17la + a are dense.

Proof: If a is open so will be "la and a vV la, and then T+ (avla)=

= 'I(aVv Ja) = (avla) =la A Vla = 0, that is, aV 'a is dense.

In every pseudo-Boolean algebra jaVbi a+b for all a,beA, so

Tava = 17 layva < V' Ja+a, and then 1 la.a is dense as R(A) is

an order filter.®

The logical interpretation of this result is as follows: If we
read dense as '"almost true" and open as '"necessary" then 3.7
describes a partially classical behaviour of necessary sentences in
the sense that two strictly classical laws concerning negation are
almost true when referred to necessary sentences. This classical
character of the set of open elements will be total in the semisim-
ple tpBas. But before let us say something about an intermediate

class of tpBa given by the condition of Beth and Nieland.

3.8, Definition: A tpBa A will be called strongly monadic iff it
satisfies I(Ia+b) = Ia+ Ib for all a,bEA.
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3.9. Proposition. In every tpBa the following conditions are equiva-
lent:
(1) A is strongly monadic,
(2) 1(Ia+1Ib) = la+Ib for all a,be€A, that is, B is closed by

*

(3) B is a subalgebra of A, and
(4) a=b = a™* b for all a,beA.
Proof: (2) and (4) say exactly the same thing, and they are equiva-

lent to (3) because B is always closed by A,V and OEB; to be a

subalgebra of A it only needs to be closed by ! and +, but Tla
= a+0, so we see that (2) and (3) are equivalent. Putting Ib for b
in the definition we see that (1) implies (2), and if we assume (2)
then Ia+Ib = I(Ia+ Ib)<I(la+b < Ia+Ib, so we have (1).8

3.10. Corollary. Every strongly monadic tpBa is mcnadic.@

Example 5.4 shows that the converse is not true. Now we shall
see two kinds of topological pseudo-Boolean algebras which are al-
ways strongly monadic. One of them is any tpBa defined on a linearly

ordered set:

3.11, Proposition. If A is a tpBa whose underlying ordering relation

is linear, then A is strongly monadic.
Proof: In a linearly ordered set there is only one binary operation
+ which can give it the structure of a Hilbert algebra (and hence of
a pseudo-Boolean algebra), namely a+b = 1 iff a<b and a+b =©>b
otherwise. It is then trivial that any interior operator on this set

will produce an open set B closed by + .B

Another kind of strongly monadic tpBa are functional algebras
as defined in [H] for the Boolean case. We call functional every
tpBa of the form A = Hx where H is a complete (or at least sup-com-
plete) pseudo-Boolean algebra and X#@ is any set, with the point-
wise defined pseudo~Boolean structure and the interior operator is

(If)(y) = sup {f(x): x€X)} for all fEA, y€X. We then have:
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3.12. Proposition. Every functional tpBn is strongly monadic.

Proof: From the definition it follows that the open elements of a
functional tpBa are the constant functions, and these have the

structure of H, thus forming a subalgebra of A. @R

In the following result we see that 3.9(4) is the only general
coincidence among the implication operations that can hold in any

kind of (non trivial) tpBa.

3.13 Proposition. In every tpBa A the following conditions are equi-
valent:
(1) a=b = a++ b for all a,be€A,
(2) a~+ b = a4+ b for all a,beA, and
(3) Ia = a for all a€A,
Proof: (3) trivially implies (1) and (2); and putting a=1 in (1) or
in (2) we obtain (3).8

A trivial although worth mentionning consequence of 3.9(4) is:

3.14 Proposition. In every strongly monadic tpBa, P, = P’\». "

However, this set of Peircean elements must not be equal to F‘” ,
as example 5.6 shows.We also observe that examples 5.6 and 5.7 are
strongly monadic algebras and so we cannot improve the relations
between open and closed elements we have found for monadic tpBas.
Finally we find here the second '"connecting condition" of Fischer-

Servi:

3.15 Proposition: In every strongly monadic tpBa A we have

(1} T » BSB, and

(2) sa» Ib< I(a+ b) for all a,b€EA.
Proof: By 3.10, 3.1(2) and 3.9(2) we have T+-BSB2+BSB and so (1)
holds. In every tpBa agsa and Ib<b, so sa+Ib < a.b; by (1)
6a+Ib€B and therefore ga *Ibil(a+ b). B
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Example 5.5 shows us that condition (2) does not hold in every
monadic tpBa. Moreover, it cannot be characteristic of strongly mona-
dic tpBas because it can hold even in non-weakly-monadic tpBa, as
5.2.

4. Semisimplicity in tpBas

Semigimplicity is a property of every monadic Boolean algebra,
as Halmos showed, and it is a sufficient condition for a topological
Boolean algebra to be monadic, as Monteiro (easily) showed. Ac~
tually, semisimple topological Boolean algebras are exactly monadic
Boolean algebras. We shall examine in our case the logical signifi-
cance of this algebraic concept and some interesting conéequences.
The concepts of simple and semisimple tpBa are of course the usual
ones of universal algebra: an algebra is simple iff its only con-
gruences are the trivial ones, and they are different; in tpBa this
is equivalent to say that B = (0,1} and O#1. An algebra is semisim-
ple iff it is (isomorphic to) a subdirect product of simple alge-

bras. We then have:

4.1. Proposition. Every semisimple tpBa is strongly monadic.

Proof: {0,1} is always a subalgebra, so every simple tpBa is strong-
ly monadic. The condition in 3.8 is an equation, so it is preserved
under the formation of direct products and subalgebras; thus every

semisimple tpBa will satisfy it.®

The converse is obviously false, as for instance in 5.6, 5.7
and 5.8. Although we have not shown any example, it is easy to see
that there are semisimple tpBa which are not simple. We now give
several characterizations of semisimplicity, the first ones with
more algebraic contents and the others having a more logical signi-

ficance.

4.2. Theorem. In every tpBa A the following conditions are equiva-
lent:
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(1) A is semisimple,

(2) R{(A) = (1},

(3) ((a*b)*a)*ra =1 for all a,b€EA,

(4) {((a*0)*a)*a =1 for all a€A, and

(5} 1a = (a=0)=a for all a€A,

where * stands for any of =, “ and + .
Proof: It is easy to see that the simple quotients of any tpBa are
in correspondence with its maximal deductive systems. Then by known
results of wuniversal algebra (1) becomes equivalent to (2). The
equivalence between (2) and (3) results from R(A) = D(P,). (3)
trivially implies (4), and from O&b follows that ({a* 0)x a)xa<
< ((a*b}ra)*a, so (3) follows from (4). Finally, Ia<(a=0)+1Ia,
so Ia<(a=0)=>a in general; replacing * by =, (4) says that
(a=0)=a<la, s0o we see that (4) for = is equivalent to (5). But
the three versions of (4) are mutually equivalent, as it is clear

from (1) and (2), so (4) and (5) are completely equivalent.®

4.3. Proposition. A strongly monadic tpBa A is semisimple iff Ia =
= (a™v 0)* a for all a €A.

Proof: From 3.9(4) and 4.2(5).0

4.4, Proposition. A weakly monadic tpBa is semisimple iff 1 is the
only dense element of the algebra.
Proof: Trivial by 4.2(2) and 2.6.8

Note that the preceding result could have been stated for gene-
ral tpBa by refering only to =-dense elements. This result reminds
us that a pseudo-Boolean algebra is Boolean (semisimple) iff 1 is

its only (H-)dense element.

4.5, Theorem. A tpBa A is semisimple iff its set of open elements B
is a Boolean subalgebra of A.

M: We already know that if A is semisimple then B is a subalge-

bra of A and thus a pseudo-Boclean algebra where + and the three

coincide. Now 3.7 and 4.4 tell us that a v'la = 1 for all a€B, so B
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is Boolean. Conversely, if B is a Boolean subalgebra of A, we must
have ((a+0)+Ia)+Ia =1 for all a€A, and this implies
Ia = (Ia+ 0)+Ia = (a~0)vw a because B is closed by + . But we

also have that A is strongly monadic, so 4.3 completes the proof.B

We observe that 4.5 says that a tpBa is a semisimple algebra
iff its open set is a semisimple subalgebra of it. In connection
with this setting we note that a tpBa is a simple algebra iff its

open set is a simple subalgebra of it.

The third important characterization of semisimplicity involves
three conditions already known, namely the law of reduction of moda-
lities 8% = I, the law §Ia <a which is dual to Becker's 3.1(3), and

the axiom I 1IavIa = 1 which appears in [Bul].

4.6. Theorem. In every tpBa A the following conditions are equiva-
lent:

(1) A is semisimple,

(2) 6a = min{b€B: b>a} for all a€A,

(3) §1a = Ia for all a€A, that is, BCST,

(4) 8Ia<a for all a€A, and

(5) 1 'Iavia = 1 for all a€A.

Proof: (1) =(2): If A is semisimple then it is also monadic, and so
T&B; then 8a€B and a<déa, end if b€EB is such that a<b, it
follows that 'b€EB and 'b<la, so 'b<I'a and then sa<'b =b
as B is Boolean. Thus we have (2).

(2) = (3) = (4) are trivial.

(4) =(5): If we assume (4) we have 'I 'Ia + Ia = 1, but la+b<
<" avb) for all a,bEA, so we also have 1 = ! YI 1llavia) =
= 17I(I 'laVIa)< $I{I 'IavIa)<I 'favia applying {(4) once more.
Now we have obtained (5).

(5)=(1): If a#1 then Ia#1 and the assumption of (5) forces
us to accept that I 'la#0. From this it follows that there is a
maximal deductive system DE) such that 'Ia€D and therefore a¢D
(see theorem 3.7 of [Fo]); then a@R(A) and this establishes (1) via
4.2(2).m
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As a consequence of the two preceding theorems we observe that
in a semisimple tpBa the open elements and the closed elements are
the same and form a subalgebra which is Boolean, that is, these
elements have a completely classical behaviour. Hence we have, among
other properties, that for all a€A, ''Ia = Ja. The validity of
such formula is considered by Bull as an "intuitionistically implau-
sible thesis" in [Bul}, and consequently all systems containing it
are rejected as genuine intuitionistic analogues of S5 according to
the criteria of [Bu2]. We must say that the logical system that
would correspond to semisimple tpBa is weaker than the one initially
considered by Bull, because this one has the interdefinability of
the two modal operators, which is not true in every semisimple tpBa

as 5.8 shows.

We next examine the semisimplicity of the two special kinds of
tpBas dealt with in 3.11 and 3.12; we find that there is no proper

semisimple tpBa among them:

4.7. Proposition. A linearly ordered tpBa is semisimple iff it is
simple.

Proof: If A is a semisimple tpBa, then B will be a linearly ordered

Boolean algebra, and this implies B = {0,1}, so A is simple. The

converse is general.l

4.8, Proposition. A functional tpBa A = Hx is semisimple iff H is a
semisimple pseudo-Boolean algebra, that is, iff A is a monadic
Boolean algebra.

Proof: We only need to consider that the set of open elements of A

has the same structure of H, as we already said in 3.12.8

We now come to the last two conditions of the fourteen ones

mentioned at the beginning of the paper.

4.9. Proposition. In every semisimple tpBa A:
(1) T is a subalgebra of A,
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(2) I(avib) = Iavib for all a,beA, and

(3) §(avb) = 6avéb for all a,beA.
Proof: (1) is a consequence of 4.5 and 4.6, as we have already obser-
ved. (2) and (3) are true in every simple tpBa, as it is easily

checked, and therefore they are t-ue in every semisimple tpBa.B

Condition (1) is equivalent to saying that T is a Boolean subal-
gebra of A, and in this form it appears in Halmos' definition of
monadic Boolean algebras as equivalent to 2.1(1). Condition (2) is
dual to 2.1(3) and it has been explicitly used by Monteiro. Condi-
tion (3) is of a different character: it is a property of all topolo-
gical Boolean algebras. This three conditions have in common that
they are not equivalent to the semisimplicity of tpBas, as 5.6
shows. We are going to find all the relations between these condi-
tions and between the four classes of tpBas we have introduced in
sections 2 and 3. In the first place, taking 2.1(1) into account we
see that

4,10, Proposition. If in a tpBa A the set T is a subalgebra of A

then A is weakly monadic.®

Example 5.7 shows usg that the converse is not true even in
monadic or strongly monadic tpBas. However in 5.3 we see that condi-
tion (1) can hold in any kind of weakly monadic tpBa. Condition (2)
is even more independent from monadicity than (1), because it can
hold in very general tpBa (as the one of 5.1) and it can fail in
strongly monadic tpBa (such as in 5.8). The same is true for
condition (3), as it is shown in examples 5.1 and 5.7. The only

relation among the three conditions is the following:

4.11, Proposition. If in a tpBa A the set T is a subalgebra of A
then §{(avb) = davéb for all a,b€A.

Proof: We always have §(avb)<savsb<t for all te€T such that

a<t, b<t. If T is a subalgebra then §avéb ST and by 1.2(3) this

gives us §avéb = 5{(avb). B
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There are no other implications, because the converse of 4.11
is not true as we see in 5.1. Condition (1) does not imply (2) as
5.4 shows, so {3) does not either, and conversely (2) does not imply
(3) because of 5.7, and then it does not imply (1) either. The follo-
wing scheme summarizes all implications we have found between the
classically equivalent conditions; note that we have shown that

there are no other implications between them.

semisimple

strongly monadic
T subalgebra
monadic
I(avib)=IaV Ib s§(avb) = savsb

weakly monadic

We will close this section by giving several characterizations
of semisimplicity in terms of the lattice” of all deductive systems
of A and in terms of the abstract logic L. Particularizing what we
have summarized in section 0, we can associate an equivalence
relation to the least deductive system {1}: a~b iff D(a) = D(b) iff
Ia = Ib, which is a logical congruence with respect to %, A,V and
*, and by Theorem IX-6 of [B-s] it is the maximum of HL . Then we

have:

4,12, Theorem. In every tpBa A the following conditions are equiva-
lent:
(1) A is semisimple,
(2) A/~ is semisimple (that is, a Boolean algebra), and
(3) L satisfies the Reductio ad Absurdum Principle with respect
to ™: D(X, ™a) = A iff a€ D(X) for all a€A, XSA.

Proof: By 4.2(3) A is semisimple iff ({(as*b)w»a)sa =1 for all
a,be A, and this is equivalent to ((a3b)+a)sa =1 because

1= {1}, and this is equivalent to the semisimplicity of A/v as a
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pseudo-Boolean algebra. Thus (1) and (2) are equivalent. To see that
{2} and (3} are equivalent we consider the canonical projection from
A onto Aks: it is a bilogical morphism between L and the logic i:._
asociated with all filters of A/~. Then L satisfies the four
Principles mentioned in section O, and by Theorem 13 of [vl, in such
situation a necessary and sufficient condition for A/~ to be Boolean
{that is, semisimple) is thati_- satisfies the Reductio ad Absurdum
Principle with respect to . Again by the already mentioned
bilogical morphism this is equivalent to the fact that ; satisfies
it.|

The Strong Disjunction Principle D(X,a)"D(X,b) =2(X.a\:b) gi-
ves the operation U a certain character of a "logical disjurlction".
This can be extended if we call prime every deductive system DE D
such that for all a,b€A, if atleD then a€D or b€D. The prime
deductive systems turn out to be exactly the (finitely) irreducible
deductive systems, and we also find the following characterization

of semisimplicity, of a clear Boolean flavour:

4,13. Theorem. A tpBa is semisimple' iff the prime deductive systems
and the maximal deductive systems of § coincide.

Proof: The semisimplicity of A is equivalent by 4.12 to the semsim-
plicity of A/, and this one is equivalent to the coincidence of its
irreducible and maximal filters. But the bilogical morphism between
A and A/ induces a lattice isomorphism between ® and the lattice of
all filters of A/~. Therefore the last coincidence is equivalent to

the one stated in the Theorem, which is proved. B
More details about the most basic concepts that are involved in

the last part of this section can be seen in [Fo]. Some of them were

introduced in [R] for topological Boolean algebras.

5. Examples and counterexamples

We gather here all distinct examples of tpBa that have been
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used in several places throughout the paper. They are in all cases
finite algebras. For brevity's sake we do not give the table of any
operation; they all can be produced from the Hasse diagram of the
algebra (recall that there is one and only one operation » on a
finite distributive lattice, namely a+ b = max {c€A: aAc<b},
which gives it the structure of a pseudo-Boolean algebra). The open
elements are indicated by a circle in the diagrams; then the inte-
rior operator is Ia = max {b€B: b<a)l. We do not show any explicit
computation but simply state the properties that each algebra has or

has not and which have been mentioned in the paper.

5.1. Example
1
Here B = {0,a,1} and T =1{0,b,1}. This tpBa is
c d not weakly monadic (cA8b =0 but 8ScAdb =
= b#0) and therefore T is not a subalgebra
b (beET but b = c¢T). It satisfies I(xVIy) =
a = IxVvIy and 8§(xvy) =éxVsy for all x,y€EA.
Here we have D, = (1} and D_ = {l,a,c,d}, so
4 D,, €D,.
5.2. Example
! Here B = {0,b,d,1} and T = {0,b,1}. This is also
d

a non weakly monadic tpBa (87V6c = 1#b =
=15¢). It satisfiec: if x€T then 'x€B and if

b
a TxeT then x€B for all x€A. It satisfies
T+ BSB. Here Reg(A) = (0,1} and RegH(A) =
() - {0,b,c,1}, therefore Reg{A}§ TF RegH(A)-
5.3. Example

Here B = {0,a,b,d,e,h,1} and T = {0,e,f,1}. This

is a weakly monadic tpBa which is not monadic
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5.6. Example

1

(eeB but Tle = f¢B). Here e€T but Tle =
= féB, Jc =eqT but ce€B and “Ic = e¢B but
c¢T. Here Reg(A) = T = {0,e,f,1} is a subalge-
bra of A (indeed, a Boolean one), RegI(A) =
= {0,a,e,1}, P, = (1,d,h}, P_\» = {1,d,h,i} and
li* =1{1,d,g,h,i,j}. We see that P,eP & P
that (0,1}$TnB$RegI(A)<;B and that (0,1} &
G Reg(A).

Here B = {0,b,e,1} and T = {0,1}. This makes a
monadic tpBa which 1is not strongly monadic
(e,b€EB but e+b = d€B)., T is a subalgebra of
A. I{(cVIb) = e+b = IcVIb. P, = {1,b,e} and

B, = {1,b,d,e}, so P, < P, -

Here B = {0,a,b,c,d,e,1} and T = {0,b,c,1}. This
is monadic tpBa not strongly monadic {c,d€B but
c+d=f¢:). It does not satisfy the condition
T+B<B (because c€T, dE€EB but c»d=f¢B). P =

= {1,d,e} and E\» = P” ={1,d,e,f}, so P ¢ P'\»’

Here B = {0,a,1} and T = {0,1}. This tpBa is
strongly monadic (see 3.11) but is not semisimple,
as it is not simple (see also 4.7). Tb = O€T
but b¢ B. This algebra satisfies that T is a sub-
algebra of A, §(xvy) = 6xvéy, and I(xvly)

= IxVv Iy for all x,y €A. PQ:P,‘”:{a.l) and P+>
={a,b,1}, so P'\» F P»'
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5.7. Example

B = {0,c,e,h,1} and T = {0,c,e,1}. This is a
strongly monadic tpBa which is not semisimple:
p = {1,ht#{1}. T is not a subalgebra of A, as
it is not closed by v. We have that c,e€T and
§(cve) = 1#h = scv6e. This algebra satisfies

that if TXx€T then x€B for all x€A, and

I(xvIy) = Ixviy for all x,y €A,

5.8. Example

1
B =1{0,e,1} and T = (0,1}, which is a subalgebra

d € of A. The tpBa is strongly monadic and not semi-
¢ simple. I(dvle) = 1#e = IdvIe. a =T)7a,
a b b = b although a,bgT, and also §a # 1 la for
a¢gB.
0

5.9. Example

1
B=7T=1{0,1}, that is, we have a semisimple

a

tpBa (actually a simple one!) where I # 1§
because Ima = O#1 = 18 la,

5.30, Example

This is an example of a totally different kind

from the preceding ones. Take the pseudo-Boolean

b algebra A of four linearly ordered elements of
a the disgram. Define the following operator:

60 =0, 8a=8b =Db, 81 = 1. This is a closure
0 operator on A, and indeed a lattice closure, as

it satifies 8§(xvy) = 8xvdy for all x,y€ A. Moreover it satisfies
§{xAdy) = 8x A8y and &'6x = 1éx for all x,y€A. The operator I
defined on A as Ix = '8 'x for all x€A is I0 = 0, Ta=1b = 11 =
= 1. It satifies I1 =1, sz = Ix, and I{xAy) = IxAly for all
Xx,y€ A. Moreover it satisfies x <I8x and if § x<y then x< Iy for all
x,y€A. But it is not an interior operator of any kind, because

b<Ib, a<la.
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This example shows that it is not a good choice to have a primi-

tive operator of possibility M and then define necessity as L+« 'M !

even if we put stronger conditions on M. It is easy to prove that
8 = 117V always produces a closure operator from an interior opera-

tor, while the dual formula I = 18! does not.
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