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ABSTRACT

We study four subclasses of topological pseudo-Boolean algebras

representing increasingly strong intuítionistic counterparts of mona-

dic Boolean algebras. The fourteen equivalent classical conditions

are shown to split into six non-equivalent sets of equivalent condi¬

tions, whose inter-connections are all determined. We also deal with

several algebraic-logic properties of our classes, such as regular,den

se, Peircean elements, and others. We conclude that a closure operator

derived from an interior one is not meaningless in this context of

intuítionistic modal logic.
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0. Introduction

It is generally accepted that in intuítionistic modal logic the

two modal operators cannot be completely dual in the sense of the

two classical laws: L *+ and M +*■ \ Most authors have chosen

to work considering both operators as primitive and independent,

linking them with other weaker relations; this is the case of Prior,

Bull, Ono, Fischer-Servi, Sotirov, and others. In some cases, such

as in part of [Bul] and [0], they avoid having M. In this paper we

begin an algebraic study of the application of Godel's proposal

(that is, to have a primitive L and define to an intuitio-

nistic base. It is worth noting that the remaining alternative,

having M primitive and defining 1> is not viable, as example
5.10 shows*

The work has been done and written in the algebraic side of the

subject, and in order to avoid repetitions we will not refer,
outside of this section, to the equivalent logical formulations of

several results; some of them will be dealt with in another paper.

Here we start from a system of (propositional) intuitionistic modal

logic analogous to S4, whose algebraic models are topological pseu-
I

do-Boolean algebras (tpBa); th'ese are defined as in [0] using only
the interior operator I, in the Godelian style. A deductive and

implicational study of tpBa and of the logical system, whithout a

mention to M, has been published in ( Fo].

In section 1 we introduce the operator 6 = I*1 corresponding to

M and we study some properties related to it. It is of special
interest the analysis of several conditions (axioms or inference
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rules) which can be added to the S4 system to obtain S5, that is,

conditions which turn a topological Boolean algebra into a monadic
one. In such structures these conditions are all equivalent but it

is not so in topological pseudo-Boolean algebras, due to the pecu¬

liar features of intuitionistic negation; henee the interest of its

study. H. Ono has done some work concerning several conditions

without the possitibility operator.

We examine fourteen diffe'ent conditions involving L and/or M.

Some of them come from classical modal logic, such as the laws of

reduction of modalities, Becker’s rule and axioms, or the M" axiom

of von Wright. Some others origínate in mainly algebraic works, as

are those of Halmos, Davis, Monteiro, Bull, Beth and Nieland mentio-

ned here. We determine all the equivalences and implications that

hold between these conditions, and we define with some of them four

subclasses of tpBa and study some of their algebraic properties. We

specially deal with several concepts and results formally analogous

to other classical concepts of modal or intuitionistic logic. All
this is contained in sections 2,3 and 4. In section 5 we have

gathered all the counterexamples we use throughout the paper.

The four logical systems that would correspond to the subclas¬

ses of tpBa here defined are all of type S5 in the sense of [ Bu2],
although the last one is not intuitionistically plausible. We have
made no attempt to single out one of them as a "true" analogue of

S5, but we rather study the properties that establish differences

between them, thus finding they have an increasing "degree of monadi-

city". On the other hand, H. Ono has proven in [0] that there is an

infinite number of systems of intuitionistic modal logics analogous
to S5, and G. Fischer-Servi has worked on this subject with remarka-
ble deepness in [ Fil), [ Fi2) and [Fi3], among other papers.

We recall some of the definitions and notational conventions

introduced in [ Fo) and that will be used here. A topological pseudo-

Boolean algebra (tpBa) < A,I,nfA,V,^> is a pseudo-Boolean algebra
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<Atn,A,v,-*-> where 1 denotes the máximum and 0 the mínimum, with an

interior operator I on A. The open elements are those of B =

= {aGA: Ia=aJ, and the deductive systems of A are the sets in £ =
= (D <= A: ÍGD, if a,a-*bGD then Ia,bGD). If for each we

define by a = ^b iff a* bGD and b-*- a€D then the correspondence
D **■ = is a lattice isomorphism between and the congruence lattice
of A. We denote by D the consequence operator associated with^ and

L = <A,D > is the associated abstract logic. This abstract iogic has

the following properties: The Adjunction Principie p(a,b) =

= D(aAb), the Strong Disjunction Principie d (X,a)n d (X,b) =

= D(X,aVb) where aVb = IaVIb, the Deduction Principie be ptX.a)
iff a*beD(X) and the Pseudo-Reductio ad Absurdum Principie

~t*aeiD(X) iff D(X,a) = A, where “1* a = a*0, and * is any of the

following implication operations: We weak implication a4* b = Ia+b,

the intuitionist implication a^b = I(Ia+Ib)t and the strange impli¬

cation a ^b = Ia+Ib. Henee the logic L has an intuitionistic

character when we take into account the preceding connectives, and

this is reinforced by the following construction: with each D€JJ we

associate the relation % defined as a ^b iff D (D,a) = D (D,b)
iff a* beD and b*aGD. Then % is a logical congruence of L in

the sense of [B-S] and the quotie^t A/ ■Vp is a pseudo-Boolean
algebra with respect to the operations there induced by ^*,A$ and *.

The purely intuitionistic character of these structures is

shown in results as the following: for all D^A, Dí=0 iff 1 G D and D

is closed by Modus Ponens with respect to * (that is, if a, a«bGD

then b6D). We can extend the analogy with intuitionistic structures

by introducing two kinds of elements related to implication and

negation as in pseudo-Boolean algebras: the *-dense elements D# =

= í a € A: a = 0) and the »-Peircean elements P# = {aGA: a =

= ((b* c)* b)* b for some b,cGA). We have the usual characteriza-

tion of the (maximal) radical of A: R(A) = D(P*) and the following
relations: P^ s P cp = r(a) = D 2D * D , and D OBcp =

= I(P^ ) = = R(A) nB. Moreover for each aGA we have that
aGP^ iff a = ((a =*0) =* a) =* a. In the present paper these results
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will be strengthened for some of the subclasses of tpBa studied and

more properties of these special elements and of other related

concepta will be obtained.

1. Negation and possibility in tpBas.

In all pseudo-Boolean algebras we have the closure operator

x whose properties are well-known; see for instance [ M-T ] or

[ R-S]. In tpBas there is another closure operator which is defined

as follows:

1.1 Definition. In every tpBa A the closure operator associated with

the interior operator I is 6a = Ti”' a for all a€A. The closed

elements of A are those of T » (a€A: a = 6 ai.

1.2. Proposition. In all tpBa A the following hold:

(1) la£ a for all a€A,

(2) fi0=0, a£fia = fiz a for all a€A, and if aj<b then fiaVfib for
all a,b€ A, and

(3) T is A-closed, contains 0 and 1, and for all a€A, fia = =

min ( teT: a <_ tí.
Proofs: All trivial.■

We observe that (2) States that 6 is an order closure satis-

fying 60=0 and, from (3), fi(fiaAfib) = fiaAfib for all a,b6 A. While I
is a lattice-interior operator, 6 is not a lattice-closure operator

because it does not necessarily satisfy fi(aVb) = fiaVfib ñor even

fi(fiaVfib) = fiaVfib, as example 5.7 shows. We now give some relations
and properties satisfied by I,fi and which we shall use from now on

without mentioning them.

1.3. Proposition. In every tpBa A and for all a€A:

(1) fia = fi 1 ' a = a,

(2) if aGT then a^a,
(3) if “ia = 0 then fia = 1,
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(4) 6 I "la = I<$a,

(5) 6^a <_~lla, and
(6) "lia GT.

Proofs: All reduce to easy computations dealing only with the defini-
tions of 6 and T and with elementary properties of negation in pseu-

do-Boolean algebras.®

Now we ask whether the negation induces any relation between

open and closed elements. As it is well-known, in topological Boo-
lean algebras, as in ordinary topological spaces, there is a perfect

duality between them, and there are four valid implications: (1) if

a is open then na is closed; (2) if na is closed then a is open;

(3) if a is closed then na is open; and (4) if na is open then a

is closed. In our case the results are more limited:

1.4. Proposition: If a is an open element of a tpBa then na is

closed.

Proof: From a£n~la we deduce a » Ia<I-,~,a and then $na - ina <

£ ^Ia = na, so 6 na - na.®

We have proven that implication (1) is always true. The remai-

ning three are not true in general, as we see in example 5.3, al-

though (2) and (3) can hold in some cases, as in 5.2. This is not

the case of (4), which turns out to be characteristic for topologi¬

cal Boolean algebras:

1.5. Proposition. A tpBa A is a topological Boolean algebra iff for

all a€A, if na is open then a is closed.

Proof: If A is Boolean there is nothing to prove. If it is not, then
there is an a€A, a#l, such that na = 0. This implies that na is

open and that a is not closed since by 1.3(3), ¿a » l^a. •

The most direct relations between open and closed elements,

namely B^t and T5B, will be shown to be equivalent to the defini-
tions of some subclases of tpBa in sections 3 and 4. Another kind of
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relations between B and T are given by the so-called "connecting

conditions" of [Fi3j; here we have one of them:

1.6. Proposition: In every tpBa A the following hold:

(1) 6 (a + b) Ia + 6b for all a,bGA, and

(2) B -► T^t.

Proof: We have a-*■ b ^b-^a = (b-*■ 0) ♦ (a-► 0) and therefore b^0<

< (a>b)-*-(a-»-0) = a + ((a-*- b) -► 0) and a £ (b + 0) ((a-► b)*► 0), that
is, a £ "^b b); now la £ I(~lb+ ~1 (a + b) )£ I ^b -► I ~*(a -+ b)£
£ ^I^ía •* b) ♦ ^I^b = Ó(a+b) + 6b which is equivalent to (1). Now
(2) is a trivial consequence of (1).B

The remaining condition 6a ■* Ib £ I(a -*• b), which is equivalent to
T+ B^B, will be dealt with at the end of section 3.

The rest of this section is devoted to the introduction of the

concept of regularity in tpBas. The concept of regular element comes

from topology and was introduced in [M-T] by using the negation of

pseudo-Boolean algebras. With respect to the pseudo-Boolean algebra

underlying a tpBa A, we denote by Reg„(A) = {a€A: a =~Ha} the set

of H-regular elements, that is, the set of regular elemente of the

pseudo-Boolean algebra (or Heyting algebra). Now 1.3(2) is read

T£RegH(A); it is not possible to strengthen this relation: in 5.7
the inclusión is proper, and even in monadic Boolean algebras it can

be so.

In topological pseudo-Boolean algebras there are there opera-

tions which have the behaviour of logical negations of the
intuitionistic type; but we have a topological interior operator and

an associated closure operator, and so it can have some interest

trying to write down the original topological ideas. We think that

finding some coincidences between the two formulations is not merely

casual.

1.7 Proposition. In every tpBa A and for all a€A the following

conditions are equivalent:
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(1) a = íla,

(2) a = “!»— and

(3) a - ~' 'v* 1 'w a.

Proof: From the definition of and l'v* we see that +♦ a =

=”lv* a = “'la and then 1+>3+*a = _ “li ~1ia = íla.B

1.8. Proposition. In every tpBa A and for all a A the following
conditions are equivalent:

(1) a = 16a, and

(2) a - 1=» a.

Proof: From the definition of “i** we see that ”l=*a - I’Tla and

then 1=* “!*• a = I^I^Ia = I6la, but a - 16a implies a is open and

so a » I6la =~W"l=»a* Conversely a = ~~l=*~l=»a = I61a aiso implies a is

open and therefore a = I¿a.B

In this situation we are nearly forced to give the two follo¬

wing definitions.

1.9. Definitions. In a tpBa A the elements a€A such that a = 61a

will be called regular, and those satisfying a = I6a will be
called I-regular. We denote by Reg(A) and Regj(A) the sets of
regular and I-regular elements, respectively.

The most immediate properties of regular elements are the following:

1.10. Proposition. In every tpBa A we have:

(1) (0,1)E Reg(A)STSRegH(A),
(2) (O.llETnB = Reg(A) OBSRegjtAjS B, and
(3) Reg(A)n R(A) = Regí A)O D ^ = (1).

Proof. (1) and (2) are direct consequences of the definitions. For

(3), we have Reg(A)np^ £ Reg(A)n R(A) and if a € Regí A) o R(A) then,
taking into account that R(A) = , we have a = “1+*. ~l++a =

= (a+^O) +*o = (a =>0) 4-* 0 = 0++0 = l.B

Examples 5.2 and 5.3 show us that the inclusions of 1.10 are

not equalities in general. Later we will complete the analysis of
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the concept(s) of regularity and some of this properti es will be

partially improved.

2. Weakly monadic tpBas

The concept of monadic Boolean algebras was invented by P.R.

Halmos to set out an algebraic description of the monadic predícate

calculus. He defined them in [ H ) with the specific axiom 6(aA6b) =

= fiaAfib, and showed that this was equivalent to the addition of the

condition fi-'fi = ~lfi to a topnlogical Boolean algebra. Independently

and at nearly the same time C. Davis defined in [D] the class of
" S5 operators" on a Boolean algebra with the condition "if aAb =

=• 0 then 6a A 6b = 0", and showed that it was also equivalent to
6*^6 =”>6. The motivation fcr Davis' work was modal logic, and in
fact this last condition corresponds to the specific axiom of von

Wright's system M" presented in [vW]; as it is well-known, B. Sobo-

cinski showed the equivalence between M" and S5. Now we see the

equivalence of these conditions on a topological pseudo-Boolean

algebra.

2.1. Theorem. In every tpBa A the following conditions are equiva¬

lent :

(1) 6 ~l6a - “l$a for an a€A (that is, T is closed by nega-

tion),

(2) if aAíb = 0 then fia Afib = 0 for all a,b€A, and

(3) 6(aA6b) = fiaAfib for all a,bGA.

Proof; (1)=*(2): aAfib s 0 is equivalent to a<“lfib and from this and

(1) we have 6a < fi^fib =~1fib, which is equivalent to fiaAfib s= 0.

(2)=*(1) because we always have ~lfia £ fi^fia, and since
”~lfi a Afia = 0, by (2) we have fi^fiaAfia = 0, thus establishing 6~**fi a_<

«“'fia.

(2)=*(3): a<fia and so aAfib<fiaAfib€T as T is A-closed.

By 1.2(3), to show (3) it suffices to show that for any t€T, if
aAíb <t then íaAíbft. But aAfib< t is equivalent to fib£a-*t<
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< "It + la which in turn is equivalent to 6bA“lt <Ha and henee to

fibA^tAa = 0. Now fibA~lteT and so we have fi(fibA“lt)Aa - 0, and

applying (2) we obtain fibA^tAfia = fiífibAltjAfia = 0 from where we

can infer fia A 6 b _<~^t = t by 1.3(2). Thus we have proved that

fi(aAfib) = fiaAfib.

(3)=*(2) is trivial. ■

The preceding result justifies the following

2,2 Definition. A tpBa is called weakly monadic iff it satisfies any

of the conditions in Theorem 2.1.

We give a list of several useful rules for weakly monadic tpBas
and some elementary properties.

weakly monadic
2.3. Proposition. In every'tpBa A the following hold:

(1) 6I~la = ^fia = ^Ifia for all aEA,

(2) ~I la = fila for all a£A,

(3) niia = fila for all a€A,

(4) if a€B then fia = "t^a, and

(5) if a^T then Ha = "'la and a

Proofs: They all are straightforward computations making use of

2.1(1); for (5) recal 1 that T£Reg„(A).BH

2.4. Proposition. In every tpBa the following conditions are equiva¬

lent :

(1) A is weakly monadic,

(2) ^"llaGT for all aGA, and

(3) a =“>”lla for all a€ T.

Proof. In 2.3(3) we have seen that (1) implies (2), and in 2.3(5) we

show that (1) implies (3). If we assume (2) and apply it to ”la we

have ~1fi a = I 11 Ila€T and we see that T is closed by negation,
which is equivalent to (1). Similarly if we assume (3) and apply it

to fia we find fia = “l^Ifia = Pipila = ~'-l~'I_1a = ~1$ -1$a

and by negation “Ifia = ^^fi ^fia = fi“l$a because T^rieg,,(A). Therefo-
re we have (1) again. ■
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2.5. Proposition. In every weakly monadic tpBa A and for every a€A

we have:

(1) a=0 iff “1-h-a=0, that is, i '^Ia = 0 iff ~>Ia = 0, and

(2) if a€T and la = 0 then a = 0.

Proof♦ For (1) there is nothing to prove in one direction; and if

I ~*Ia = 0 then using 2.3(5) for ^Ia€T we obtain "lia = ~lfc"ll ^Ia =

* “I 10 - 0. (2) is also a direct consequence of 2.3(4). ■

2.6. Corollary. In every weakly monadic tpBa A,R(A) =

and if we put R_.(A) = (a€A: ’1 a=0) (the maximal radical of
H

pseudo-Boolean algebra under A) then R(A)£R (A).lH

It is worth noting that, according to 2.6, in weakly monadic

tpBas there is only one kind of dense elementa, D# - (a€A: 1#a = 0)
because of the coincidence of and D^. (example 5.1 shows
that this is not general). Therefore, there is a unified characteri-

zation of the radical in terms of dense elements: R(A) = D#. This
characterization can be logically interpreted as follows: if we

think of dense elements as representing "almost true" sentences in
the sense that their logical negation is false, and if we think of

the elements in the radical as representing "almost true” sentences

in the sense that they belong to every complete consistent theory,

then the equality R(A) = D# can be read as stating the equivalence
of these two kinds of "almost true” sentences.

There is no coincidence among the three types of Peircean ele¬

ments, as exemple 5.3, where the inclusions P^ £ P^S P^ are pro¬
per, shows. In the same example we see that it is not possible to

improve, for weakly monadic toBas, the results obtained in section 1

concerning the relations between open and closed elements vía nega¬

tion. Concerning 2.5(1 )# we announce that it is not true in every

weakly monadic tpBa A that ^a = ^"^a ^^^a for all a€A: in 3.5

we will show that this fact characterizes an effective subclass of

those algebras.
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It is well known that the set of H-regular elements in a

pseudo-Boolean algebra A is a Boolean algebra with respect to ~1,A,$
and , where the join is a^b = * ^aVb), and also that it is

isomorphic to the ordinary quotient of A by its radical. In tpBas we

have two kinds of regular elements and a radical linked with the

dense elements. We shall obtain for these concepts, in weakly
monadic tpBas, several results partially similar to the classical

ones.

2.7. Proposition. In every weakly monadic tpBa A, we have that T =

= Reg(A) and this is a Boolean algebra with respect to n,A,.
Proof: According to 1.10(1) we always have Reg(A) Q T; and if a€T
then using 2.3(1) twice we obtain 5la = 515a = 51 3i“la - “1$ I "1 a =

= ~I_*5a =^1_1a = a, and so a€Reg(A). On the other hand T^Reg,,(A) andH

we know that Reg,,(A) is a Boolean algebra with respect to theH

desired operations; henee we only need to prove that T is closed

with respect to them. T is always closed by A, and if A is weakly

monadic then T is closed by “i. Moreover we have b = _'~'(aVb) =

= ~3( 3aA~lb), therefore T is closed by ^ , and since in Regu(A)
a + b = "la Vb then T is also closed by + . As a result T = Reg(A) is

a Boolean algebra with ~\,A$ and'*' Ji

Note that in weakly monadic tpBa the set T is closed by 1, and

♦. However it is not a subalgebra of A, since it does not need to be

closed byv(see 5.1), and this condition will later on play a role.

The point whether B is or is not closed by ”1 and will also play
an important role in the next section, but we can say nothing about

this now. On the other hand, in 2.7 we have turned one of the

inclusions of 1.10 into an equality; we cannot do the same for the

remaining ones, for all weakly monadic tpBas, as the examples 5.3

(for the first inclussion of 1.10(1) and the ones of (2)) and 5.2

(for the rest) show. Therefore T = Regí A)^ Regj(A) and the inclusión
can be proper; thus we still have two different kinds of regular

elements. This is not an impediment to show that one of them has all

the properties cited above. We first need a general result:
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2.8. Lemma. In every tpBa A we lave that a^p^^^Ia for all aeA.
Proof: On one side we have Ia^I^^a and from this a +-*■ 'la =

- la -*-~l-'Ia = 1€R(A). On the other side, from 0^ a we deduce

(a+-|'0)-*-0_^(a+'*0)+*-0_<(a+^0) +^a and so ^^Ia +-*• a = I ^ ^Ia a =

= ((a-H-0)-*-0)-H-a^ífa-i-+0)+-*-a)+*a£ P+* = R( A) and, as R (A) is a
deductive system and henee an order filter, we find that

^Ia * a e R( A). Then a ^ „,. ."H la. ■R( A)

It is easy to show (see [Fo]) that in every tpBa A and for

every D e/>, the quotient A/^ is a semisimple pseudo-Boolean alge¬

bra (i.e., a Boolean algebra) if and only if D3R(A); this is the

case of R(A) itself, therefore A/ 'v is a Boolean algebra with
H \ A)

respect to the operations n,A,v,-*- induced in the quotient by H*,
*

a,v,* respectively. Then we have:

2.9. Theorem. In every weakly nonadic tpBa A the Boolean algebras T

and A/^ are isomorphic.

Proof: We define the following mapping from A to T: h(a) = fila for

all a€A. Recall that here 6 la ""^a - 1_lIa. This mapping is

onto, because T = Reg(A), and Shell h = h *((1)) = ía€A: fila =

=1) = laeA:1h1**a = 1} = la€A: ~l'H'a = 0=0+*= R(A).
We first show that for all a,b€A, h(a +-► b)£ h(a) ++ h(b): using

1.6(1) we have h(a+*- b) = fil(la + b) £ fi(Ia + Ib)£Ia ■+■ 51b, and so

fil(a ++b)AIa£fiIb from where, applying 2.1(3), we obtain

fil(a +* b) A Ifila£ 5I(a+*b) A 61a = fi (51(a-*-*b) A la) ^ fi Ib and therefore

fil(a+-*-b)_£IfiIa+5Ib = fila +*■ Ib, that is, h(a+^b)£h(a)^-*-h(b) as

we desired.

We can now show that for all a.bGA, h(a) = h(b) iff a^p^jb:
if h(a) = h(b) we have fila = filb and by 2.8 we have a%p^jfila and
b%„/.vfilb, so a ^ „/.vb. Conversely if a'v^/.xb we have that

R(A) R(A) R(A)
a +* bGR(A) = Shell h and b-KaCR(A) = Shell h, and then 1 =

« h(a +♦ b) < h(a) ^h(b) and l^híb)*-*- h{a); therefore h(a)+-*- h(b) =

= h(b) +*■ h(a) = 1 which implies Ih(a) = Ih(b). But h(a),h(b)€7 =

* Reg(A), so h(a) = filh(a) and h(b) = 5Ih(b), and finally h(a) =

= h(b).
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It follows from what has been done until now that the induced

mapping h maps onto T and is indeed a bijection between
A)

them. We must only prove that h is a morphism, and then it will be

the required isomorphism. It suffices to show it for the negation "i

and the meet A: h(~'a) - h( *++ a) = h(’’l la) = 5I^Ia = ™Mla = 'h(a)

using 2.3(1); if we recall that $Ia€T for all aeA and that

T = Regí A) is A-closed, then we have that h(aAb) = h(6la A 6 Ib) =

= h(« la A 6 Ib) = 5 I (6 la A 6lb) = «IaA6Ib = h(a)A h(b).B

3. Monadic and strongly monadic algebras

In this section we present two subclasses of the topological

pseudo-Boolean algebras related to five classical conditions belon-

ging to S5, that is, to monadic Boolean algebras. First, the condi-
tion I ^1 = "II, dual to another one studied in the previous sec¬

tion, has been used by A. Monteiro in [m], and in its logical form

it appears in the 1933 axiomatics given by M. Wajsberg in [w]. We

must say that A.N. Prior calis it insistently "the Godelian axiom
for S5" (see for instance [Pl] page 20 and [P2] page 312) although

the reference given [G¡ does not seem to provide reasons for this.

Second, the law of reduction of modalities 1$ « 6 already used in its
logical and strict form by C.I. Lewis to define S5 over SI. Third,
the axiom a£ I$a which can be used to produce S5 from S4 and
characterizes a system called "Bronwerian" because of a comment of

0. Becker in [ B] about the intuitionistic character of a property of

the strict negation or impossibility in some modal systems. Fourth,
the rule "if 6a £b then a£Ib" which has been classically regarded
as equivalent to the last axiom. And finally an interesting axiom

involving the most elementary operators, namely implication and
interior: I(Ia-*-b) = Ia+Ib; it was used by E.W. Beth and J.F.F.

Nieland to give an axiomatization of S5 out from S4 in [ B—N] • We

begin our study by showing that the first four preceding conditions
are equivalent in our case.
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3.1» Theorem. In every tpBa A the following conditions are equiva-

lent:

(1) I ^Ia = 1Ia for all a€A, that is, B is closed by negation,

(2) Ifia = fia for all a€A, that is, TcB,

(3) a£lfia for all a€A, and
(4) if fia^b then a£Ib for all a,b£ A.

Proof: (1) ** (2)-=*(3) are trivial. Tf fia £b then Ifia£lb and by (3)
a £Ib and so we have (4). Finally, as for every a€A we have fi la =

= ^Ia by 1.3(6), in particular filia £ la, and if we apply (4) then
we have la £ Illa and we obtain (1).B

3.2. Definition. A tpBa A is called monadic iff it satisfies any of

the conditions in Theorem 3.1.

3.3. Proposition. Every monadic tpBa is weakly monadic.

Proof: From 3.1(1) we have «''fia = ^1 ""'"l = ll 3a = =

= ^fia. So we obtain 2.1(1).■

The converse of 3.3 is not true, as example 5.3 shows. Thus we

have a proper subclass of a 1 weakly monadic tpBa. We now give some

properties of the several operations of negation we have at hand; we

begin by improving the relations between open and closed elements
via negation.

3.4. Proposition. In every monadic tpBa if a€A is closed then ’"'a

is open.

Proof. aGT implies "la € T by 3.3, and T£B by 3.1(2). ■

We already know that the converse does not hold unless A is

Boolean (Prop. 1.5). Only one implication remains (if la is closed

then a is open) and 5.6 shows that it is not true for all monadic

tpBas, although it can be true for particular cases, as in 5.7.

3.5. Proposition. A tpBa is monadic iff the three logical negations
~I++ and coincide.

14



Proof: It is enough to observe that _1'V4 a = ""'+* a = la and ^a =

- I 3 la and Xook at 3.1(1).B

3.6. Corollary. In every monadic tpBa A, we have T = Reg(A) =

- Regr(A) = BORegH(A).
Proof: In weakly monadic tpBas T = Reg(A) and by 3.5 Reg(A) =

= Reg (A). On the other hand by 2.3(4) we have B <3 Regu( A) ^ T andi H

always T£Reg^(A); but if A is monadic we have in addition that T£B
and so the last equality is proved.■

Therefore we see that in monadic tpBa there is only one kind of

regular elements, thus emphasizing the result in 2.9. We see in 5.4

and 5.5 that we still have three types of Peircean elements.

3.7. Proposition. In every monadic tpBa A, if a£A is open then

a V “la and • a a are dense.

Proof: If a is open so will be ~la and a v~3a, and then (aV~’a) =

= ^KaV^a) = ^(aV^a) =“la A^^a =■ 0, that is, aV 3a is dense.

In every pseudo-Boolean algebra ~laVb< a-*■ b for all a,b€A, so

"3 a V a » "'^"'aVa < ”3 “la -*• a, and then ~3 3 a + a is dense as R( A) is

an order filter.B

The logical interpretation of this result is as follows: If we

read dense as "almost trueM and open as "necessary" then 3.7

describes a partially classical behaviour of necessary sentences in

the sense that two strictly classical laws concerning negation are

almost true when referred to necessary sentences. This classical

character of the set of open elements will be total in the semisim-

pie tpBas. But before let us say something about an intermedíate

class of tpBa given by the condition of Beth and Nieland.

3.8. Definition: A tpBa A will be called strongly monadic iff it

satisf ies I(Ia^b) = la + Ib for all a,b e A.

15



3.9. Proposition. In every tpBa the following conditions are equiva-

lent:

(1) A is strongly monadic,

(2) I(Ia-*- Ib) * la + Ib for all a,beA, that is, B is closed by

♦i

(3) B is a subalgebra of A, and

(4) a=*b = a b for all a,b6A.

Proof: (2) and (4) say exactly the same thing, and they are equiva-

lent to (3) because B is always closed by A,V and 0€B; to be a

subalgebra of A it only needs to be closed by and but “la =

= a -*•0, so we see that (2) and (3) are equivalent. Putting Ib for b
in the definition we see that (1) implies (2), and if we assume (2)
then la-*-Ib = I(Ia-»-Ib)£l(Ia+b £ la Ib, so we have (1). ■

3.10. Corollary. Every strongly monadic tpBa is monadic.®

Example 5.4 shows that the converse is not true. Now we shall

see two kinds of topological pseudo-Boolean algebras which are al¬

ways strongly monadic. One of them is any tpBa defined on a linearly

ordered set:

3.11. Proposition. If A is a tpBa whose underlying ordering relation

is linear, then A is strongly monadic.

Proof: In a linearly ordered set there is only one binary operation
-*• which can give it the structure of a Hilbert algebra (and henee of

a pseudo-Boolean algebra), namely a+b = 1 iff a<b and a+b = b
otherwise. It is then trivial that any interior operator on this set

will produce an open set B closed by -*■ .■

Another kind of strongly monadic tpBa are functional algebras
as defined in [ H ] for the Boolean case. We cali functional every

y
tpBa of the form A = H where H is a complete (or at least sup-com-

plete) pseudo-Boolean algebra and X^0 is any set, with the point-
wise defined pseudo-Boolean structure and the interior operator is

(If)(y) = sup (f(x): x ex) for all f€ A, y£X. We then have:
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3.12. Proposition. Every functional tpBe is strongly monadic.

Proof: From the definition it follows that the open elementa of a

functional tpBa are the constant functions, and these have the

structure of H, thus forming a subalgebra of A. ■

In the following result we see thafc 3.9(4) is the only general
coincidence among the implication operations that can hold in any

kind of (non trivial) tpBa.

3.13 Proposition. In every tpBa A the following conditions are equi-

valent:

(1) a=»b = a-H- b for all a,beA,

(2) a'v* b = a++ b for all a,bGA, and

(3) la = a for all aGA.

Proof: (3) trivially implies (1) and (2); and putting a=l in (1) or

in (2) we obtain (3).B

A trivial although worth mentionning consequence of 3.9(4) is:

3.14 Proposition. In every strongly monadic tpBa, P. = P . ■
'W

However, this set of Peircean elemente must not be equal to P ,

as example 5.6 shows.We also observe that examples 5,é and 5.7 are

strongly monadic algebras and so we cannot improve the relations

between open and closed elementa we have found for monadic tpBas.

Finally we find here the second "connecting condition" of Fischer-

Servi:

3.15 Proposition: In every strongly monadic tpBa A we have

(1) T + B c b, and

(2) 6a + Ib£ I(a + b) for all a,bGA.
Proof: By 3.10, 3.1(2) and 3.9(2) we have T-B^B-B^B and so (1)
holds. In every tpBa a< {a and Ib<b, so ga+Ib < a + b; by (1)
5 a * Ib € B and therefore 5a Ib < I(a + b). ■
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Example 5.5 shows us that condition (2) does not hold in every

monadic tpBa. Moreover, it cannot be characteristic of strongly mona-

dic tpBas because it can hold even in non-weakly-monadic tpBa, as

5.2.

4. Semisimplicity in tpBas

Semisimplicity is a property of every monadic Boolean algebra,

as Halmos showed, and it is a sufficient condition for a topological

Boolean algebra to be monadic, as Monteiro (easily) showed. Ac-

tually, semisimple topological Boolean algebras are exactly monadic

Boolean algebras. We shall examine in our case the logical signifi-
cance of this algebraic concept and some interesting consequences.

The concepta of simple and semisimple tpBa are of course the usual

ones of universal algebra: an algebra is simple iff its »only con-

gruences are the trivial ones, and they are different; in tpBa this
is equivalent to say that B = (0,1} and 0#1. An algebra is semisim¬

ple iff it is (isomorphic to) a subdirect product of simple alge¬

bras . We then have:

4.1. Proposition. Every semisimple tpBa is strongly monadic.

Proof: tO,l) is always a subalgebra, so every simple tpBa is strong¬

ly monadic. The condition in 3.8 is an equation, so it is preserved
under the formation of direct products and subalgebras; thus every

semisimple tpBa will satisfy it.B

The converse is obviously false, as for instance in 5.$, 5.7

and 5.t. Although we have not shown any example, it is easy to see

that there are semisimple tpBa which are not simple. We now give

several characterizations of semisimplicity, the first ones with

more algebraic contents and the others having a more logical signi-
ficanee.

4.2. Theorem. In every tpBa A the following conditions are equiva¬

lent:
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(1) A is semisimple,

(2) R(A) = U) ,

(3) ((a#b)*a)*a = l for all a,b€A,

(4) ((a*0)*a)*a = 1 for all aGA, and

(5) la = (a«0)=»a for all aGA,

where * stands for any of =* , ^ and ++ .

Proof; It is easy to see that the simple quotients of any tpBa are

in correspondence with its maximal deductive systems. Then by known
results of universal algebra (1) becomes equivalent to (2), The

equivalence between (2) and (3) results from R(A) = D(P#). (3)
trivially implies (4), and from O^b follows that ((a#0)* a)*a£
£ ((a*b)*a)*a, so (3) follows from (4). Finally, la £ (a =* 0) -*■ la,
so Ia^ía^O^a in general; replacing * by =*, (4) says that

(a=*0)^a£la, so we see that (4) for =* is equivalent to (5). But
the three versions of (4) are mutually equivalent, as it is olear

from (1) and (2), so (4) and (5) are completely equivalent.■

4.3. Proposition. A strongly monadic tpBa A is semisimple iff la =

= (a^ 0)^ a for all aGA.

Proof: From 3.9(4) and 4.2(5).B

4.4. Propos i tion. A weakly monadic tpBa is semisimple iff 1 is the

only dense element of the algebra.

Proof: Trivial by 4.2(2) and 2.6.B

Note that the preceding result could have been stated for gene¬

ral tpBa by refering only to =* -dense elements. This result reminds

us that a pseudo-Boolean algebra is Boolean (semisimple) iff 1 is

its only (H-)dense element.

4.5. Theorem. A tpBa A is semisimple iff its set of open elements B

is a Boolean subalgebra of A.

Proof: We already know that if A is semisimple then B is a subalge¬

bra of A and thus a pseudo-Boolean algebra where -*• and the three

coincide. Now 3.7 and 4.4 tell us that a v^a = 1 for all aGB, so B
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is Boolean. Conversely, if B is a Boolean subalgebra of At we must

have ((la 0) -*■ la) ♦ la = 1 for all aGA, and this implies

la = (la ♦ 0) ♦ la = (a 'v*- 0) “v* a because B is closed by -► . But we

also have that A is strongly monadic, so 4.3 completes the proof.B

We observe that 4.5 says that a tpBa is a semisimple algebra

iff its open set is a semisimple subalgebra of it. In connection

with this setting we note that a tpBa is a simple algebra iff its

open set is a simple subalgebra of it.

The third important characterization of semisimplicity involves

three conditions already known, namely the law of reduction of moda-

lities 61 = I, the law 61a £a which is dual to Becker’s 3.1(3), and
the axiom I lia vía = 1 which appears in [Bul].

4,6. Theorem. In every tpBa A the following conditions are equiva-

lent:

(1) A is semisimple,

(2) 6a = miníbGB: b^a} for all aGA,
(3) 6 la = la for all aGA, that is, B^T,

(4) 6la£a for all aGA, and
(5) I ^ la v la = X for all aGA.

Proof; (1)^(2): If A is semisimple then it is also monadic, and so

TQB; then 6aGB and a£6a, snd if bGB is such that a£b, it
follows that ”*bGB and ^b^^a, so lb£l 'a and then 6 a <_ 1_1b = b
as B is Boolean. Thus we have (2).

(2) ^(3)=* (4) are trivial.(4)=>(5): if we assume (4) we have ^I ^Ia + la = 1, but ”la ♦ b<

fl^íavb) for all a,bGA, so we also have 1 = ^ I ~lla v la) -

= "llld ^Ia V Ia)£ 51(1 ^Ia v la) < I "'la vía applying (4) once more.

Now we have obtained (5).(5)=»(1): If a#l then la^l and the assumption of (5) forces

us to accept that I^Ia^O. From this it follows that there is a

maximal tíeductive system D^O such that "'laGD and therefore a£D
(see theorem 3.7 of [Fo]); then a^R(A) and this establishes (1) via

4.2(2) .■
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As a consequence of the two preceding theorems we observe that

in a semisimple tpBa the open elements and the closed elemente are

the same and form a subalgebra which is Boolean, that is, these

elements have a completely classical behavdour. Henee we have, among

other properties, that for all a£A, ^ 'la - la. The validity of

such formula is considered by Bull as an "intuítionistically implau¬

sible thesis" in [Bul], and consequently all Systems containing it
are rejected as genuine intuítionistic analogues of S5 according to
the criteria of [Bu2]. We must say that the logical System that

would correspond to semisimple tpBa is weaker than the one initially

considered by Bull, because this one has the interdefinability of

the two modal operators, which is not true in every semisimple tpBa

as 5.8 shows.

We next examine the semisimplicity of the two special kinds of

tpBas dealt with in 3.11 and 3.12; we find that there is no proper

semisimple tpBa among them:

4.7. Proposition. A linearly ordered tpBa is semisimple iff it is

simple.

Proof: If A is a semisimple tpBa, then B will be a linearly ordered

Boolean algebra, and this implies B = (0,1), so A is simple. The

converse is general.■

X
4.8. Proposition. A functional tpBa A = H is semisimple iff H is a

semisimple pseudo-Boolean algebra, that is, iff A is a monadic

Boolean algebra.

Proof: We only need to consider that the set of open elements of A
has the same structure of H, as we already said in 3.12.®

We now come to the last two conditions of the fourteen ones

mentioned at the beginning of the paper.

4.9. Proposition. In every semisimple tpBa A:

(1) T is a subalgebra of A,
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(2) I(avlb) » la v Ib for all a,be A, and

(3) í(avb) = 6av6b for all a,beA.

Proof: (1) is a consequence of 4.5 and 4.6, as we have already obser-

ved. (2) and (3) are true in every simple tpBa, as it is easily

checked, and therefore they are t'ue in every semisimple tpBa.H

Condition (X) is equivalent to saying that T is a Boolean subal¬

gebra of A, and in this form it appears in Halmos* definition of

monadic Boolean algebras as equivalent to 2.1(1). Condition (2) is

dual to 2.1(3) and it has been explicitly used by Monteiro» Condi¬
tion (3) is of a different character: it is a property of all topolo-

gical Boolean algebras. This three conditions have in common that

they are not equivalent to the semisimplicity of tpBas, as 5.é

shows. We are going to find all the relations between these condi¬
tions and between the four cla3ses of tpBas we have introduced in

sections 2 and 3. In the first place, taking 2.1(1) into account we

see that

4.10. Proposition. If in a tpBa A the set T is a subalgebra of A

then A is weakly monadic.■

Example 5.7 shows us that the converse is not true even in

monadic or strongly monadic tpBas. However in 5.3 we see that condi¬
tion (1) can hold in any kind of weakly monadic tpBa. Condition (2)
is even more independent from monadicity than (1), because it can

hold in very general tpBa (as the one of 5.1) and it can fail in

strongly monadic tpBa (such as in 5.8). The same is true for

condition (3), as it is shown in examples 5.1 and 5.7. The only

relation among the three conditions is the following:

4.11, Proposition. If in a tpBa A the set T is a subalgebra of A

then í(avb) = 5av«b for all a,b€A.

Proof: We always have í (avb)< 6av{b < t for all t€T such that

a £t, b£t. If T is a subalgebra then fiavfibST and by 1.2(3) this
gives ub $ av6 b = 6 (av b). ■
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There are no other implications, because the converse of 4.11

is not true as we see in 5.1. Condition (1) does not imply (2) as

5.4 shows, so (3) does not either, and conversely (2) does not imply
(3) because of 5.7, and then it does not imply (1) either. The follo-

wing scheme summarizes all implications we have found between the

classically equivalent conditions; note that we have shown that

there are no other implications between them.

We will cióse this section by giving several characterizations

of semisimplicity in terms of the lattice of all deductive systems

of A and in terms of the abstract logic h. Particularizing what we

have summarized in section 0, we can associate an equivalence

relation to the least deductive system {1) : a~b iff D(a) = D(b) iff

la = Ib, which is a logical congruence with respect to a,v and

*, and by Theorem IX-6 of [ B—S ] it is the máximum of . Then we

have:

4.12. Theorem. In every tpBa A the following conditions are equiva¬

lent :

(1) A is semisimple,

(2) A/'v is semisimple (that is, a Boolean algebra), and

(3) L satisfies the Reductio ad Absurdum Principie with respect

to n*: D(X, "'•a) = A iff a € D(X) for all ae A, XS A.

Proof: By 4.2(3) A is semisimple iff ((a*b)*a)*a = l for all

a,be A, and this is equivalent to ((a1* B) a) + a -1 because

1 = ( 1) , and this is equivalent to the semisimplicity of A/% as a
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pseudo-Boolean algebra. Thus (1) and (2) are equivalent. To see that

(2) and (3) are equivalent we consider the canonical projection from

A onto AA*: it is a bilogical morphism between L and the logic L
asociated with all filters of A/~. Then L satisfies the four

Principies mentioned in section 0, and by Theorem 13 of ÍV|, in such

situation a necessary and sufficient condition for A/~ to be Boolean

(that is, semisimple) is that L satisfies the Reductio ad Absurdum

Principie with respect to "1 . Again by the already mentioned

bilogical morphism this is equivalent to the fact that L satisfies

it. ■

The Strong Disjunction Principie D (X, a)^ D (X,b) = D(X,avb) gi-

ves the operation v a certain character of a "logical disjunctionM.
This can be extended if we cali prime every deductive system D€ 0
such that for all a,b€A, if avbGD then aGD or bGD. The prime

deductive systems turn out to be exactly the (finitely) irreducible

deductive systems, and we also find the following characterization

of semisimplicity, of a clear Boolean flavour:

4.13. Theorem. A tpBa is semisimple iff the prime deductive systems

and the maximal deductive systems of^ coincide.
Proof: The semisimplicity of A is equivalent by 4.12 to the semsim-

plicity of AA- , and this one is equivalent to the coincidence of its

irreducible and maximal filters. But the bilogical morphism between
A and AA, induces a lattice isomorphism between £ and the lattice of
all filters of A/%. Therefore the last coincidence is equivalent to

the one stated in the Theorem, which is proved.■

More details about the most basic concepts that are involved in

the last part of this section can be seen in [ Fo] - Some of them were

introduced in [R] for topological Boolean algebras.

5. ExampleB and counterexample3

We gather here all distinct examples of tpBa that have been
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used in several places throughout the paper. They are in all cases

finite algebras. For brevity’s sake we do not give the table of any

operation; they all can be produced from the Hasse diagram of the

algebra (recall that there is one and only one operation -► on a

finite distributive lattice, namely a+ b = max {c€A: aAc<b},

which gives it the structure of a pseudo-Boolean algebra). The open

elemente are indicated by a circle in the diagrams; then the inte¬

rior operator is la = max (b€B: b£a). We do not show any explicit
computation but simply state the properties that each algebra has or

has not and which have been mentioned in the paper.

5.1. Example

Here B = {0,a,l} and T = í 0,bpl} . This tpBa is

not weakly monadic (cAób = 0 but ficASb =

= b=ÉO) and therefore T is not a subalgebra

(bGT but “Ib = c£T). It satisfies I(xVly) =

- IxVly and í(xvy) =6xV6y for all x,yEA.

Here we have = (1) and = {l,a»c,d}, so

D+-*. 5 IU-

5.2. Example

Here B = {0,b,d,l} and T = {0»b»l} . This is also

a non weakly monadic tpBa (6 16 c = 1=* b =

x^6c). It satisfiet : if xGT then ^xGB and if

IxGT then xeB for all xGA, It satisfies

T->B£B. Here Reg(A) =={0,1} and RegH(A) =
= therefore Reg(A)^ Reg^(A).

5.3. Example

Here B = (0,a,b,d,e,h,1} and T = (0,eff,l). This

is a weakly monadic tpBa which is not monadic
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e-e

i

(eeB but "le = f£B). Here e£T but “le =

= f£B, 1C s e^T but cGB and ~lc = e^B but

c^T. Here Reg(A) = T = ÍO,e»ftl) is a subalge¬
bra of A (indeed, a Boolean one), Regj(A) =
- { 0,a(e,1}, P^ = (lfd,hí, P ={l,d,h,i> and

P = í 1»d,g,h, i, j}. We see that P $ P í P, ,

that Í0,1)^ TOB^RegjíAJí B and that Í0,1>£
5 Reg(A).

5.4. Example

Here B = Í0,bfe,l) and T = Í0fl) . This makes a

monadic tpBa which is not strongly monadic

(e,b€B but e+b = dflíB). T is a subalgebra of

A. I(cVIb) = e*b = IcVIb. P = íl.b.e) and'V+- ’ ’

R = f1,b,d,e), so P 5 P .+-► W +-*■

5.5. Example

Here B » {0,a»b,c,dfe,l} and T = {0,btc,l}. This

i*s monadic tpBa not strongly monadic (c,d€B but

c-*-d=f£» ). It does not satisfy the condition

T-»B5B (because cGT, d€B but c+d=f£B). P^ =

= <l,d,e) and P = P = í l,d,e,f>, so P S P .'V* 44- 1 ^ ' V4

5.6. Example

1 0
b

Here B = (0,a,l) and T = {0,1} . This tpBa is

strongly monadic (see 3.11) but is not semisimple,
as it is not simple (see also 4.7). ^ b = 0€T

but b£ B. This algebra satisfies that T is a sub¬

algebra of A, 6(xvy) = ÓxvSy, and I(xvly) =

= Ixvly for all x,y€A. P_>=P^=ía,l} and P^ =
={a»b,l)t so P £ P

'W ++
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5»7 * Example

B = (0,c,e,h,l) and T = ÍO,c,e,Il . This is a

strongly monadic tpBa which is not semisimple:
D = (l.hí^íl). T is not a subalgebra of A, as

it is not closed by v. We have that c.eGT and

ó(cve) = l*h = 6cv6e. This algebra satisfies

that if "'xGT then x6B for all x€A, and

I(xvly) = Ixvly for all x,y€A.

5.$. Example

0

5.9. Example

'©
a

°é

B = ÍOfe,l) and T = (0,11, which is a subalgebra
of A. The tpBa is strongly monadic and not semi¬

simple. I(dvle) = l^e = Idvie. a = l”la,
b =_,_,b although a,b£T, and also 6a ^“l^a for

a £ B.

B = T = (0,1), that is, we have a semisimple

tpBa (actually a simple one!) where I # ó”1
because la = 0*1 = ^d^a.

This is an example of a totally different kind

from the preceding ones. Take the pseudo-Boolean

algebra A of four linearly ordered elementa of

the diagram. Define the following operator:

60 = 0, 6a = 6b = b, 61 = 1. This is a closure

operator on A, and indeed a lattice closure, as

it satifies í(xvy) =6xv6y for all x,y€A. Moreover it satisfies
^ (x a 6y) s 6xA6y and 6~^6x « 16 x for all x,yeA. The operator I

defined on A as Ix = _16_1x for all xGA is 10 = 0, la = Ib = II =

2
= 1. It satifies II = 1, I x = Ix, and I(xAy) = IxAly for all

x,ye A. Moreover it satisfies x£I6x and if 6 x< y then x£Iy for all
x,y€A. But it is not an interior operator of any kind, because

b < Ib, a < la.

5.10, Example

1 H

b[]

a •

oii
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This example shows that it is not a good choice to have a primi-

tive operator of possibility M and then define necessity as ,

even if we put stronger conditions on M. It is easy to prove that
5 =_1I~1aiways produces a closure operator from an interior opera¬

tor, while the dual formula I = does not.
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