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In this work we obtain axiomatizations of the concepts of latti-

ce, distributive lattice, positive implication algebra, implication

algebra, relative pseudocomplemented lattice, pseudoBoolean algebra

and Boolean algebra by means of the concept of closure operator. The

axiomatics express the algebra as a logical quotient of a logic ha-

ving properties which reflect some classical rules of inference as

adjunction, excluding cases, deduction and reductio at absurdum.

If 5 ={S,A,v, ') is an algebra of type (2,2,2,1), C is a closu¬

re operator on S, x,y€S and T is a finite subset of S, then:

(i) C(x,y)=C(xAy) reflects and adjunction rule for the connec-

tive A

< i i) c(x,T)n C(y,T) = C(xVy,T) reflects an excluding cases rule

for the conective V and for finitely axiomatized theories.

(i i i) x + yeC(T) y€C(T,x) reflects a classical deduction rule for

the connective + and for finitely axiomatized theories.

(iv) xeC(T) «* C (T ,x') = S reflects a reductio at absurdum rule

for the connective * aVid finitely axiomatized theories.

(v) c(x) = C(y) ^ x=y reflects the idea of Tarski-Lindenbaum quo¬

tient .

The conditions (i) - (v) are those that are used for the axioma¬

tizations given in this paper.
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We recall that if C is a closure operator on S then the follo-

wing relation on S: xjCy » yec(x) is a preordering and if C satis-

fies C(x)=C(y) =» x=y, then this preording is an order and we cali

it the C-order.

Theorem 1. Let 5 = {S,A,V) be an algebra of type (2.2). 5 is a lattice,

where A is the infimum and V is the supremum, if and only if there

exists a closure operator C on S such that for all x,y€S.

(i) C(x,y) = C(xAy),

(ii) C (x) n c (y) = C(x vy) ,

(iii) CEx) = Cfy) => x=y.

Proof:

a) It is already known that the closure operator associated with all

filters of a lattice satisfies conditions (i) - (iii).

b) Condition a) implies that the following equivalence relation on S:

x~y C(x) = C(y) is a congruence on (S,A) and (S/~,A) is a

meet-semilattice.

Condition (ii) implies that the equivalence relation ~ is a

congruence on (S,V) and (S/~,V) is a join-semilattice.

The above comments and condition (iii) imply that (S,A,V) is a

lattice.

It is easy to see that de C-order is the same that the order of

the lattice.

Theorem 2. Let 5 = (S,A,V) be an algebra of type (2,2). 5 is a distribu-

tive lattice if, and only if, then exists a closure operator C on S
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such that for all x,y€S and all finite subsets TSS:

(i) C(x,y) =* C (y A y) ,

(ii) C(T,x) O C(T,y) = C(Trxvy),

(i i i) C(X) = C(y) =* x=y.

Proof:

a) It is easy to see that the closure operator associated with all

filters of a distributive lattice satisfies conditions {i) - (iii).

b) By Theorem 1 it suffices to prove that

zA(xVy) £ (zAx)V(zAy) , x,y,zeS.

which is equivalent to

(zAx)V(zAyl £ C(z,x) nc(z,y) ,

which is true.

Theorem 3. Let 5=(S,*) be an algebra of type (2). 5 is a positive

implication algebra (or a Hilbert algebra) if, and only if, there

exists a closure operator C ou S such that for all x,y£S and all

finite sets TSS.

(i) yeC(T,x) x + y £ C (T) ,

(ii) C (x) = C(y) =» x=y.

Proof:

a) It is easy to see that the closure operator associated with all

implicative filters of 5 satisfies conditions (i)-(iii).

b) In order to prove that (S,*) is a positive implication algebra we

will prove that:
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(xx) ■* y=y, x + (y + z) = (x+ y) + <x+ z) ,

and

(x + y)-*-((y + x)+y) = (y+ x) -*■ (<x+ y)+ x)

(see Rasiowa, p.25)

(x x) y = y «■ C ( (x-*- x) -*■ y) = C (y)

y € C ((x -*• x) + y) because x + x6C(0 ) by(i)

(X-^X)^ yec(y) «• yec(y,(x+x)),

which is true, and so on. It is easy to see that the C-order is the

same that the order of the positive implication algebra.

Theorem 4. Let 5 = (S,*) an algebra of type (2). 5 is an implication

algebra if, and only if, three exists a closure operator C on S such

that for all x,y€S and all finite sets Tí S:

(i) x+y6C (T) ~ yec<T,x),

(ii) C (x) = C{y) =* x=y

(iii) the closure system C (associated with C) has a basis of maxi-

mal closed sets.

Proof:

a) It suffices to prove (iii). It is already known that irreducible

implicative filters and maximal implicative filters are the same in

an implication algebra (see Rasiowa, p.33). On the other handr the

irreducible sets form a basis of C, because C is algebraic, so maxi¬

mal sets form a basis.

b) Assume that (i)—(iii) holds. Then 5 is a positive implication alge-

hra. If 0 is the closure system of all implicative filters of 5, then
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C^O. Then

c(0) = 0 t > 0 t = c ((((*■» y)* x)* x: x.yesn
T ec Te/9 0

T maximal T maximal

(see [ 3])

So(({x*y)-*-x)+x: x,yes}£C<0) and so the posit i ve impli-

cation algebra is an implication algebra.

Theorem 5. Let S = (S,-*,A,V) and algebra of type (2,2,2). 5 is a relati-

vely pseudo-complemented lattice, where x+y is the pseudocomplement

of x relative to y, if, and only if, there exists a closure operator

C on S such that for all x,y€S and all finite sets T^S:

(i) C(x,y) = C(xAy) ,

(ü) c (x) n c (y) = c(xvy),

(iii) C<x) = C (y) =* x=y ,

(iv) yeC(T,xí » x+yec(T).

Proof:

a) It is easy to see that the closure operator associated with all

filters of a relatively pseudo-complemented lattice satisfies condi-

tions (i)-(iv).

b) By theorem 1 (S,A,V) is a lattice. Then it suffices to prove that

t£x+y tAx< y t,x,yes

But

t< x y «* x- yec(t) » yec(t,x) «■ yec(tAx) » tAx<y.

Corollary: Let 5 - (S,+ , A,V,0) an algebra of type (2,2,2,0). 5 is a

pseudo-boolean algebra if, and only if, there exists a closure opera-



tor C on S such that íi)-(iv) of theorem 5 hold and there exists an

x€S such that C(x)=S.

Theorem 6. Let 5 = (S,A,') and algebra of type (2,1). 5 is a Boolean

algebra, where A is the infimum and ' is the complement, if, and only

if, there exists a closure operator C on S such that for all x,y6S:

(i) C(x,y) = C(x Ay) »

(ii) y6C(x) C (x ,y') = S,

(iii) C (x) = C (y) -=> x=y

Proof:

a) It is easy to see that the closure operator associated with all

filters of a boolean algebra satisfies conditions (i)-(iii).

b) We begin showing that the operation * satisfies:

x" = x and x£y «* x'^y'.

Proof: xeC(x") «» C(x",x') = S «* x*€C(x')f which is true.

S = C (x, x' ) = C{x,C(x') ) S C(x,C(x'*M);

so

C(x*'',x) = S and then x"€C(x).

x< y «■ yec(x) C(x,y')=S ** C(x",y')=S ** x'eC(y')

So * is a dual isomorphism of (S,£) .

We know that conditions (i) and (iii) imply that (S,A) is a

meet-semilattice. As ' is a dual isomorphism, then xVy = (x'Ay')'

is the supremum of {x,y} and so (S,A,V) is a lattice.

In order to prove that the lattice (S,A,V) is distributive, we
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must show that

C(z,xVy) * Cfz,x) OC(z,y)

On one hand

xVyCC(z.x) » C (z, x, x 'Ay *) -S,

which is true.

A similar argument applies to show that xVy£C(z,y). On the

other hand if r <= C (z ,x) n C (z, y) , then x'ec(z,r') and y'eC(z,r')¡

therefore x ’ A y' e C (z, r') and so r e C (z, (x’Ay') ') .

We finally show that ' is a complement.

C(xtx')=S, so xAx' is the first element of (S,£). On the other

hand x*Ax" = 0, so {x'Ax’M^u and then xvx';u.

Theorem 7. Let 5 = (S,V,') and algebra of type (2,1). 5 is a Boolean

algebra if, and only if, there exists a closure operator C on S such

that for all x,y€S artd all finite TSS:

(i) C(T,x) nc(T,y) = c(T,x vy) ,

(ii) yeC(T) ** C(T,y' ) = S,

(i i i) C (x) = C (y) =» x=y.

Proof:

a) It is easy to see that the closure operator associated with all

filters of a Boolean algebra satisfies conditions (i) - (iii).

b) In order to see that 5 is a Boolean algebra it suffices to see

that there exists a binary operation A on S such that C(x,y) » C(xAy)

Put xAy=(xVy')'. Then

x€ c( (x'vy')') ® x'vy'ec(x'),

which is true.
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(x'vy')'6C(x(y) ** C(x’vy’ ,x,y)=s *» C(x',x,y)n C(y’,x(y) = S,

which is true.

Theorem 8. Let 5 ~(S ,*■,*) an algebra of type (2,1). 5 is a Boolean

algebra if, and only if, there exists a closure operator C on S such

that for all x,yes and all finite TSS:

(i) yec(x) « C(x,y’)=S,

(ii) y6C(T,x) ** x4y€C(T),

(iii) C (x) = C(y) => x=y .

Proof:

a) It is easy to see that the closure operator associated with all

implicative filters of a Boolean algebra satisfies conditions (i)-

(iii) .

b) We shall see that 5 is a Boolean algebra by showing that (S,+ ) is

a positive implication algebra with first element 0 and which sa¬

tisfies (x -*■ 0) -*■ 0£ x.

By Theorem 3, (S, + ) is a positive implication algebra,

x- xec<0 ) , so C(0 ) * 0 .

This fact and condition (iii) imply that C(0) is a singleton, and we

write C(0)=íuj. By condition (i) we see that 0=u' is the first

element of 5. Now we show that x'=x + 0.

x*€ C(x-*- u') «* C(x,x + u*) = S, which is true.

x-*-u'€C(x') u'€C(x',x)f which is true.

Finally we have (x+0)-*0£x because

(x 0) ♦ 0 = x" » x.
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Theorem 9. Let 5 = (S,-*-) an algebra of type (2). 5 is a Boolean algebra

if, and only if, there.exists a closure operator C on S such that for

all x,y e S:(i)x- yeC(T) ~ yeC(T(x) ,

(i i) the closure system C (associated with C) has a basis of maximal

sets,

(iii) there exists an inconsistent element in C (i.e.: an xGS such

that C(x)=S);

(iv) C (x) = C (y) =* x=y

Proof:

a) It is easy to see that the closure operator associated with all

implicative filters of a Boolean algebra satisfies conditions (i)-(iv)

b) From Theorem 4 we have that (S,*) is an implication algebra. Condi-

tion (iii) implies that the algebra has a first element, say 0. Fi¬

na lly we have that

(x* 0) -*■ 0 = sup(x,0) = x,

so as in theorem 8 we have that (S,-*-) is a Boolean algebra.
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