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BALANCFD BIG COHEN-MACAULAY MODULES AND LOCALIZATION

Santiago Zarzuela Armengou *

Let (A,m) be a (conmutative, noetherian) local ring. An A-module M
is to be said a balanced big Cohen-Macaulay module (b.b.C.M. A-module)
if mM#£M and any system of parameters of A is regular on M (i.e. any
s. of p., of A is an M-sequence). Balanced big Cohen-Macaulay modules
are a particular class of big Cohen-Macaulay modules and their exis-
tence for any equicharacteristic local ring follows from the well known
Hochster's construction of a big Cohen-Macaulay module for such a ring

(see {2}, (5}, [7] and |8]).

Big Cohen-Macaulay modules arz not, in general, finitely genera-
ted, so that their properties related to M-sequences are not the same

that for finitely generated modules (see (2} and [5]).

However Sharp in {11] and [12] shows that balanced big Cohen-Macau-
lay modules verify some of the properties of finitely generated Cohen-
Macaulay modules. In particular he proofs that for a catenary local
domain balanced big Cohen-Macaulay modules localize and he conjectures

that this property holds for any local ring.

The aim of this paper is to give an affirmative answer to the
above-mentioned question. In part 1 we generalize Griffith's Proposi-

tion 1.4 of (6] (Proposition 1.1). It follows from this result that the
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ring A may be assumed to be complete and so catenary. Final_ly we see
that for any catenary local ring balanced big Cohen-Macaulay modules

localize. This is part 2.

1.

Let A—£~B be an extension of local rings (A,n}, (B,m}. Suposse
that:
(i) Given any family of elements XireeoaX € f(A) such that they form
part of a system of parameters of B there exist f—l(xl),...,f—l(xr)

such that they form part of a system of parameters of A.

(ii) m is the only prime ideal of B lying over n.

1.1. Proposition. If M is a B-moduie such that as an A-module is

b.b.C.M. then M is a b.b.C.M. B-module.

Proof: by (ii) it is clear that mM#M. We must show that any system of

parameters of B xl,...,x is regular on M. Let r be the number of

d

elements in the system of parameters not belonging to f(A). The proof

follows by induction on r.

r=0, By (1) xl,...,x is regular on M.

d
r>0. Assume that xléf(A) (if not we may consider an adequate quo-

tient). Take the extension

c
A/(xz,...,xd) —-F—‘B/()_(Z""'xd)'
Dim(B/(xz....,xd)) = 1 hence x % PTRRRTS I x€EB is a system of parame-

ters of B if and only if iei‘lu N Fs, where P .,f’s are the mini-
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mal prime ideals of B/(X Xd). On the other hand by (ii) we have

preten

— =C P
that (xl)CQ PU...U P: so there exists y€A such that f(y) = bx,
beB, and yQ.PiU ...Uf‘z. Hence f(y) = F(;T)Q‘ﬁlu...u'ﬁs and f(y), Xy

sy is a system of parameters of B.

By induction f(y}, KoreesXy is regular on M and so also is %y
t»2 . . R R
Now suposse that i=1 ximi = 0, mieM Vi, Multiplying this
t»2 R
equality by b we get that i=1 bximi = 0. But f(y).xz,...,xd is regu-

t-1
lar on M so bmte(f(y),x2,...,xt_1)M and bmt: nlf(y) +Zi:2 niX.

niEM vi. Multiplying this by 'x. we obtain that f(y)mt = nlxlf(y) +

1

t-1
+ n,x.x.. Since f(y),x S is regular on M we get that
ivi

i=2 1
f(y)e ZA(M/(XQ" CaX

2" d

M)} so m_-n_x € (x

U 2""’xt-1)M and mtE(xl,...

t-1

ceaXy 1)M. Thus, certainly, x,,...,x, is regular on M and the proof is

29
1

d

complete.
1.2. Corollary. Let A ~f—‘B be a faithfully flat extension of local
rings verifying conditions (i) and (ii). Then, if M is a b.b.C.M. A-mo-

dule M X B is a b.b.C.M. B-module.

Proof: take M a b.b.C.M. A-module. Since A—f-aﬂ is a faithfully flat
extension M g B is a b.b.C.M. A-module, hence by Proposition 1.1. M x B

is a b.b.C.M. B-module.

1.3. Lemma. If ACB is an integral extension of local rings then (i)
and (ii) hold. If A —!—-B is a faithfully flat extension of local rings
such that dim A = dim B then (i) holds. In particular ACA and ACAh

verify (i) and (ii).

Proof: Let ACB be an integral extension and let xl.....xr be a family

of elements of A such that they form part of a system of parameters of



B, i.e., dim(B/(xl,...,xr)B) = dimB-r. By ({91, Theorem 5),
dim(A/(xl,...,xr)A) = dim(B/(xl,...,xr)B) = dimB-r = dimA-r. Thus
XyveeeoX, form part of a system of parameters of A and condition (i)

holds. Since ACB is an integral extension condition (ii) hclds too.

Now assume that A—L'B is a faithfully flat extension such that
dim A = dim B. Let XpoeoeaX, be a family of elements of f(A) such that
they form part of a system of parameters of B, i.e., dim(B/(xl,...,xr))=

= dim B-r. Choose f_l(xl),...,f_1

(xr) and consider A/(f_l(xl),....
...,f—l(xr)). By ([9], Theorem 3 and Theorem 4), dim(A/(fﬁl(xl),...
....,f_l(xr))( dim(B/(xl,...,xr)) = dim B-r = dim A-r. But ever
dim(A/(f_l(xl),...,f—l(xr)))dim A-r, hence the equality holds and

f—l(xl),...,f_l(xr) form part of a system of parameters of A.

1.4.Corollary. Let A be a local ring and M be a b.b.C.M. A-module. Then
M g A (M g Ah) is a b.b.C.M. A-module (Ah—module).
1.5.Corollary. Let ACB be a finite, free extension of local rings. If

M is a b.b.C.M. A-module then M g B is a b.b.C.M. B-module.
Remark 1. Corollary 1.5 has been proved by Riley (see {10] (2.2)).

Remark 2. Let A be a local ring and M and A-module. ﬁ, the separated
completion ¢cf M, is an i—module. On the other hand if M is a big Cohen-
Macaulay module M is a b.b.C.M. A-module (see [21, (1.7)). So M is also
a b.b.C.M. A-module. However, if M is not finitely generated M and

M g A don't coincide necessarily.



1t (A,mk} is a local ring the equality depthA(M)=inffilExtA(k,M)z
:ul(m,M)# o} may be taken as a definition of depth for any A-module M,

in such a way that if x XL is an M-sequence and meAssA(M/(x

1 "
...,xr)M) then depthA(M) = r (see {31, part 1). Therefore if M is a big
Cohen-Macaulay module and dim A = n we get that dn.pt:hA(M) = n. On the
other hand let suppA(M) be the set of prime ideals of A such that
depthAp(Mp)<oo, i.e., the set of primeideals of A such that ui(p.M)*O
for some i (see [4), part 7). For a b.b.C.M. A-module the set suppA(M)
may be characterized as those prime ideals for wich there exist an M-se-

quence x oKL such that pe€ Ass(M/(xl,...,xr)M), r=ht(p) (see [111],

e
3.2).

We want to proof that b.b.C.M. A-modules localize, what means that
if M is a b.b.C.M. A-module &nd pesuppA(M) then Mp is a b.b.C.M. Ap-mo—

dule.

2.1.Proposition. Let (A,m) be a local ring. Then if b.b.C.M. A-modules

localize also b.b.C.M. A-modules do.

Proof: suppose that M is a b.b.C.M. A-module and take pe€ suppA(M); then
pGASSA(M/(XI""'xr)M) for some M-sequence XyvereoX r=ht{(p). But

AssA(M/(x ..,xr)M) = Assﬁ(M : ﬁ/(xl,....xr)M : )¢ (19}, 9.8, Corolla-

1"
ry), so there exists q€Assy(M @ f\/(xl,....xr)M b 4) such that ¢° = p;
moreover qesuppﬁ(M g A) and ht(p) = ht(g) = r since M g R is & b.b.C.M

R-moduie and xl,...,xr is also an M g A -sequence.

It is easy to see that the extension A — A is faithfully flat

and that every system of parameters of Ap is ‘a system of parameters of
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Ag-
=g Tx)q we have that M, is a b.b.C.M. A-module.

Thus if b.b.C.M. A-modules localize given that M

Any complete ring is catenary, thus we may assume that A is cate-

nary.

2.2.Lemma. Let (A,m) be a catenary, local ring and p €Spec(A) such that

dim A = dim "'p + dim A/p. Assume that xl""'xre A is a system of para-
meters of Ap' Then there exists y €A such that ye xlAp, y forms part of
a system of parameters of A and y,xz,...,xr is o system of paramters of
A .
'

Proof: We are looking for y€I = (XlAp)ﬁA such that (1) y ¢ g¢q
vq GSpec(A~) with dim 2/g=dim A (i.e. y forms part of a system of
parameters of  A) and (2) vy ¢ q Vq € Spec(A) such  that
(XZ""'Xr)chP' q+P(i.e. y,x2,...,xr is a system of parameters of
Ap). Both conditions (1) and (2) concern to a finite number of prime
ideals, namely ql....,qs, and we seek that qulu...uqs,' so it's

sufficient to show that qui Vi,

Let ¢ be = prime ideal such that dim(A/g) = dim A. A is catenary,
hence if g Cp we get that ht(p/g) = dim A,. So x,¢q and therefore I1dq.
Assume now that g ¢p and take B = A/(xl); if xleq then ¢ is a minimal
prime ideal of B, hence Bq is an artinian local ring. Thus for te€gqg,
t¢p there exist n such that AnB(T:")dq and, consequently, ((Xl):tn)¢q.

But tnép and I = U ((xl):s). Therefore 1¢p.
s¢p

Finally if ¢ € Spec A is such that (xz,...,xr)CqCp and q #p given

that (xl,...,xr) is a system of parameters of Ap and (x .,xr) C

1
C(I,x?,...,xr) it's clear that I ¢ p .



2.3.Proposition. Let (A,m) be a catenary, local ring. Let M be a

b.b.C.M. A-module and p€suppA(M). Then Mp is a b.b.C.M. Ap—module.

Proof: first we must show thatpMp;&Mp. By (111), (3.5)) we have that
dim A = ht{(p)+dimA/p, so we may find a chain of prime ideals Pq ...
seeCpL=pC...Cp. =m, r=ht(p], n=dim A. Then use ([1] (1.11)) to

choose ul,...,erA such that x S is a system of parameters of A

170" \
and xl,...,xr form part of ¢ system of parameters of A. Given that M is
a b.b.C.M. A-module we pget that xl,...,xr is an M-sequence, hence
peAssA(M/(xl,....xr)M). In particular MP/(xl,...,xr)Mp#O and pMpaﬁMp.

Assume now that x .,xr is a system of parameters cf Ap. We must

100"

show that x ""'Xr is regular on M_ thus we may suppose that x ..

1 P 1"

...,xre A. Let k be the greatest number such that x »X, form part

TERRREL

of a system of parameters cof A. The proof follows by induction on s=r-k.

s=0. Then Xl""’xr is a system of parameters of A so xl,...,xr is

regular on M and also regular on M_.

p

s>0. Taking an adequate quotient and using ([11], (2.3)) we may assu-

me that n=r. By Lemma 2.2 there exists y€ A such that y€ xlA . ¥y forms

P
part of a system cf parameters of A and YoXpa e e X, is a system of para-
meters of Ap. By induction YoXguesesX, is regular on Mp so, similarly
to Proposition 1.1 we get that XyaXgye oy X is regular on vp.

2.4.Corollary. Let (A,m) be a local ring. Let M be a b.b.C.M. A-module

andpesuppA(M)‘ Then M, is a b.b.C.M. Ap—module.

Proof: Use Propositions ¢.1. and 2.3.



Remark 1. Proposition 2.3 has been proved by Foxby (private comunica-

tion).

Remark 2. Proposition 2.3 has been proved by Sharp when in adition A is

a domain ([ 12}, (4.3)).
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