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LOCALIZATION OF FIBRATIONS WITH NILPOTENT FIBRE
by

Irene Llerena

§l.- Introduction

The theory of localization for nilpotent spaces, parallel
to that for nilpotent groups, has proved to be a powerful tool
in algebraic topology. Recently, P. Hilton has developed a lo-
calization theory for relative nilpotent groups [ 5] and for
nilpotent crossed-modules [ 6] which represents a first step in
the construction of a localization theory for nilpotent fibra-
tions and for fibrations with nilpotent fibre (weak nilpotent
fibrations). A fibre map f:E — B is said to be nilpotent if
7 E acts nilpotently on the homotopy groups of the fibre. Nil-
potent fibre maps turn out to be the right relativization of
nilpotent spaces, because their Moore-Postnikov systems admit
principal refinements | 7). In [ 8] we constructed a localization
theory for nilpotent fibrations. In this note we consider the
more general situation of fibrations with nilpotent fibre and
develop a localization theory for such fibrations.

The paper is organized as follows: in §2 we recall some
basic facts and definitions; in §3 we define a P-localization
for fibrations with nilpotent fibre and prove its existence;
the proof of the expected universal property justifying the
term P-localization is divided into two parts: in §4-5 we prove
such a universal property for fibrations with fibre an Eilen-
berg-MacLane space of type (G,1) and in §6 for the general case.
As a consequence we obtain the uniqueness up to a homotopy equi-
valence of the P-localization of a fibration with nilpotent fi-
bre.

I am indebted to Peter Hilton for suggesting me this work
and spending his time in helpful conversations with me.




§2.- Some basic definitions and results

We work in the pointed homotopy category of path-connected
spaces having the homotopy type of a CW-complex. A space is nil-
potent if 7 X is nilpotent and acts nilpotently on "X for all
n>2. A fibre map f:E — B is nilpotent if W|E acts nilpotently
on the homotopy groups of the fibre. Nilpotent spaces as well
as nilpotent fibrations are characterized by the fact that their
Postnikov decompositions admit principal refinements { 7;1I.2.4]).

Let P be a given arbitrary collection of rational primes.
A space is P-local if all its homotopy groups are P-local. A
fibre map is P-local if its fibre is P-local. By a theory of
P-~localization in a category with P-local objects we mean the
following: For every object X there is a P-local object Y and
a morphism f:X — Y satisfying the following universal proper-
ty: for every P-local object %,

f*: [Y,2] =1X,2],

where [ A,B] stands for the set of morphisms from A to B. A theo-
ry of P-localization for nilpotent groups and spaces is develo-
ped in detail in {7]. A comprehensive treatment of a process
more general than localization but executed in the semi-simpli-

cial category is given in [2].

A crossed-module is a right exact sequence of groups
L RN Q together with an action of G on N satisfying
i) ﬂ(x.a)=x(pa)x_1, i1) p(a).b=aba™!, a,beN, x€G. We refer to
it briefly as the crossed module k.

If N is nilpotent and e:N—>3N_ is a P-localization there

P

always exists a crossed-module NP ——*G(P)

from ¥ to it inducing e; this gives a P-localization theory in

—* Q and a morphism

the category of crossed-modules k¥ with N nilpotent [ 6].

Let G be a non abelian group and let K(G,1} be an Eilenberg-
MacLane space of type (G,1). There is a universal classifying

fibration, hereafter referred to as K(G,1) — EG—ga B, where E
is a K(Aut G,1), B is BH with H the H-space of homotopy equiva-
lences of K(G,1) and the homotopy sequence for q reduces to the
natural one 2G>— G —»Aut G —»Out G [3].
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Now let G be an abelian group, Q a CW-complex of type
K(Aut G,1) and Q* the universal cover of Q. Let

R(G,n) = K(G,n) x Q*
o e
Aut G
be the quotient of K(G,n) x Q' by the diagonal action of Aut G.
The CW-complex R(G,n) is a classifying space for K(G,n-1)-fibra-
tions and
K(G,n-1) — P -B3R(G,n)

is a universal fibration, where P is the space of unbased paths
in R(G,n) which have initial point in Q (Q ¢— R(G,n) is induced
by the canonical map Q* —K(G,n) X Q*) and which lie entirely
within some fibre of q:R(G,n) — Q (induced by g(G,n)xQ* —>0*)
[10]).

Let G be a local coefficient system on X and e:X—3» Q a
map inducing e:th ~—9w10= Aut G, where € is the action of nlx
on the local system G. If [X,ﬁ(G,n)Ie denotes the set of fibre-~
wise homotopy classes of maps #:X — K(G,n) satisfying qgé=e,

we have n .
H (X:G) = [X,K(G,n))e.

The results on homotopy pullbacks we need are all included
in [9}. In particular, a topological pullback
P —— B

I, s

A —— C

where f is a fibration is a homotopy pullback. Homotopy pull-
backs satisfy the pullback property, i.e. for every space X and
any maps u:X — B, v:X — A such that gu=fv, there is a map ¢
such that the diagram

A -—Jia c

is homotopy commutative and "essentially unique".



§3.- Existence of a P-localization

Al) spaces are (pointed) path-connected and have the homo-
topy type of a CW-complex. If f:E——B is a fibration with nil-
potent fibre F and P is an arbitrary collection of rational pri-
mes, we say that f is P-local if F is P-local [7].

3.1. Definition. Let f:F— B be a fibration with nilpotent fi-
bre F. A map B from f to a P-local fibraticn f(P):E(P)——» B is

a P-localization 1f it inducce a P-localization on the fibres

The following theorem asserts the existence of a P-locali-
zation for fibrations with nilpotent fibre.

3.2. Theorem. Every fibration f:E —>B with nilpotent fibre F

admits a P-loecalization.

Proof. We arque step-wise on the Moore-Postnikov factorization
of £

E-—... —)Engn—°I~s En_l—a...——m;El —EI—)B,

where each p  is a fibration with fibre K(# F,n).

First step: Let G=n_F. Py is induced from a universal fibration

1

K(G,l)——)EG—-)BH H*

We know that every automorphism ¢:G —>G determines uni-

by a map ¢:B —B

guely an automorphism WP:GP——e GP such that ey = WPe, where

e:G ——sGP is a P-localization. Hence if H and H are the H-spaces
of self homotopy equivalences of K(G,1) and K(Gp,l) respective-
ly, by Lemma 3.3 of [ 4] applied to the pair (BH,EG), there is a

map between the corresponding universal fibrations

K(G,1) —> EG —_— BH

l } Lo

K(Gp, 1) — Eg,— By

such that on the fibres is a P-localization.
Now we can define pl(P):El(P)———>B as the fibration indu-



ced from K(Gp'l)“’_’EGP’“"’Bﬁ by a¢:B ——eBﬁ. The universal pro-

perty of the pullback allows us to define a map ﬂl:El——é El(P)

over B inducing a P-localization on the fibres.

nth step (n>2): Assume we have constructed
P | S P, P
E—...—E - g 071, 2, . E —bs
n n-1 n-2 1
lﬁn—l lﬁn—Z lﬁl n

Pn-o1(p)
En-lTPS En-2(P)

< B (578

such that the map of fibrations pi-—épi(P), i<n-1, induces a
P-localization on the fibres. In particular, the fibre of Pj(p)
is K(wiFP,i). . ;1

Note that if F~, F~ are the fibres of E
respectively, the square of fibrations

iy B

—— B, E

i

£ Piey
141 > Ey

Bin l 1?1

Pi+1(P)
Ein1{P) > E

i(P)
induces on the fibres a diagram

1+1 i
1+1F'i*1) —> F —3F

l l |

1s1)— F*l 5 F

K(x

i
K(m g1 Fpe

and, arguing by induction, it turns out that Fi*L——a Fi‘l is

a P-localization.
Let p:p.__>i(wnr,n+1) and p:P ~—+i(ﬂnFP,n*l) be the uni-

versal fibrations for K(lnF,n)— and K(tnFP,n)—fibrations respec-

tively (see §2) and let ¢":En:r——+ i(an,n+1) the map which
classifies P,- We ?efine pn(P):En(P)"—$ En—l(P) as the fibra-
tion induced from p by a map

n -
] 'En—l(P)_—ﬁﬁ K(ﬂnFP,n+l)

such that n, _ n
Br_ WM = e (4T,



where
H

*
n n-1 n Cx n
(B _1(p)"nFp = H(E _ 7 F) —> H (E

n-1""'n F)

n
n~-1’"n

are induced by an-l and e respectively. The existence of a Y
uniquely determined up to homotopy follows from Lemma 3.3 below.
The desired map ﬂn:En——~9En(P) over B inducing P-localization
on the fibres follows then from the universal property of the
pullback.

3.3. Lemma. Let B be a map of fibrations

indueing a P-~localization on the fibrees. Let A be a local coefft-
citent system on E(P) with P-loecal abstract group, such that the
induced action of ®,Fp on 4 s nilpotent. Then

n

f*: RY(E A) ~—>H(E; A)

(p)}
ts an isomorphism for all n=0.
Proof. A simple generalization of the algebraic case [7;1.4.14]
to spaces assures that for nilpotent X acting nilpotently on
the P-local group A

e*: Hn(XP;A) = g (x;A) for all n>0.

Hence e :Hn(FP;A)E Hn(F;A) and therefore the homomorphism indu-
ced by B on the Serre spectral sequence with local coefficients

HP (B HI(F,;2)) == up*q(E(P);A)

J !

P Hd(r;a)) == ' YE:n)
is an isomorphism at the Ez—level. Thus the homomorphism

ﬂ’:H‘(E(P);A)———>H'(E;A) is an isomorphism and the proof of
Lemma 3.3 is completed.

If the Moore-Postnikov factorization of f:E— B is finite,
the above procedure yields the desired P-localization. In the

general case let E the geometric realization of the’singular

(P)
6



Then there is a map f:E —3E such that

complex of 1im En( (P)

p)°
the diagram

E ——1L—~¢ lim En
-

1 hins,

Epy—— 1im E 4,

is homotopy commutative. Recall [2;p.254] that there exists a

short exact sequence
1

0-— 1jim LI En~—4ﬂ1(lim En)—~9lim w.E —>0.

1 i

But in our case the liml—term vanishes because "i*l(pn) is an

isomorphism for all n#i,i+1 and an epimorphism for n=i+l. The-

refore ¢:E ——>lim En is a weak homotopy equivalence.
Analogously it turns out that

TiBpy ® Ty UM By py) = im miBL gy = "By
for N large (N=i+1).

Consider now the diagram

where f(P) is induced by the natural map lim E —> B and F

n(P)
is the homotopy fibre of f(P)' The commutative square over B

E ——> E

n
||
Ep)y— Enepy

induces on the homotopy fibres a square
F "
F ",

where F'—3 F” is a P-localization.

_

_

Given an integer i we can take n large enough such that

the horizontal arrows induce isomorphisms on the homotopy groups.

4



Hence riF-——>wi§ is a P-localization for all i and therefore
F—>F is a P-localization. This completes the proof of Theo-

rem 3.2,

§4.- A universal property for fibrations with fibre a K( ,1)

In this paragraph we want to prove a special case of the

main theorem 6.1.

4.1. Theorem. Let f:E-——B be a fibration with nilpotent fibre
K(G,1) and let ﬁ:f-—)f(P) be a P-localization. For every map

1:f— F from f to a P-local fibration f:E—> B with nilpotent
fibre K(G,1) there exists a map 6:f(p)—«—;f uniquely determined
up to homotopy over B such that 88~7T1 over B.

Proof. Let K(é,l)-»;Ea-g—>§ be the universal fibration for
K(G,1)-fibrations and let «:B —> B be the classifying map corres-

ponding to f. Look at the diagram

—-——>E~——————>B

K(GPyl) (Pf——*——** B
l

K(G 1) > B
ﬂl g e

K(G.l) > Eé > B

We shall construct a map ¢‘E(pf——9 E— with gy = af( P) so that
(P) E satisfying the desired conditions
by applying Lemma 4.2 below which generalizes Lemma 3.3 of [4].
Z., % , Z_ denote the

f f(P)

mapping cylinders of f,f(P),q respectively, f=hf',

it induces a map 6:E

We use the following notation:

f(P)~h sz)'

q=Eq' the natural decompositions into a cofibration and a homo-

topy equivalence and j:B ——+Zf, j':B ->Zf(P), E:ﬁ ——+Zq the

canonical imbeddings.



4.2. Lemma. Let (X,A) be a 1-connected CW-pair, where X 18 path-
connected and let BCE X a sub~CW-complex with ANB=@ which is a

deformation retract of X. Let X:W A —sAut G and u:n?(X,A) —> 3

1
be homomorphisms rendering commutative the diagram
7 (X A) ~——> 7 /5
v l lx
¢ —— > Aut G.

Let o:m,X ~—3 %G and w:ﬂll -—»0ut G be the homomorphisms induced

by v and x. If «:B—> B i{s a map which induces ¢ and ¢ on ,
and T, respectively, then there exists a unique homotopy class
over a of maps

v: (X,A)—> (Zq, E&)

suck that x = (ol4)y:m A ~— 7, Ez and v= w‘:ﬂ2(X,A)-——9ﬂ2(aq,Ea).

The proof of the Lemma is given in §5.

Take as (X,A) the pair (Zf )) and as @:B —>» B the

Ep
classifying map of f and consider the diagram of homotopy exact

sequences
0~—9ﬂE — nB > G > 7 E A"lB —0
|| le 1"* n
(p) —r Cp — 1By "B 70
o EV ;0
b 3y i i
—>7,E -—-)wn — 6 ——% E ——" B —0
l I 1Ps
0 — 26 —> G — Aut G — Out G0

Since G is a P-local group the map G —G factors through the

P-localization e:G —— G, making the corresponding square commu-

P
tative. The existence (and uniqueness) of a homomorphism
f: xlE(P)-—4 ﬂli which makes the diagram commutative follows

from the fact that G —» I1E-* 7B is a P-local crossed-module

and

G —> le Enm—— ﬂlB

el | 8 I




Consider now x=p,6 and V:lz(Zf(p),E(p)) = GP-——9 G .
Applying Lemma 4.2 it follows that there exists a unique map

¢ : (3 ,E ) ——>(Z ,E=)
f(P) (P) q’'7G

which extends a and induces x and v. The restriction 61 = QIE(

P)
then satisfies
5 = ha'e = hof' = hei'h'f’ = T e - .
qv; = hgq ¥y hwf(P) hyj'h f(P) ah f(P) af(P)
But, since q is a fibre map, there exists a map WI:E(P)——a Ea
homotopic to 51 such that
av; = «fpys
which can be extended to a map
"2 (Zf 'E(P)) -—~——->(Zq,Ea)
(P)
by p(x,t) = (¢ x,t) if (x,t)e E, . xI
r l r 14 (P)
¢(b) = a(b) if be B.
(Observe that ¢ satisfies the conditions in Lemma 4.2 and mo-
reover hy = ah'.)
Look now at the diagram
f'
E —mm—» Zf
o fip) b
P
pr E(Py——————é Zf b4
(P)
lwl .
ql
E(—; —_— Zq
where n and v are defined as follows:
ni{x,t) = (Bx,t) if (x,t) e ExI
n(b) = b if be B,
y(x,t) = (prx,t) if (x,t) € ExI
v{(b) = a(b) if b e¢B.
Since the maps y and ¢n both induce the same homomorphisms
XBs = paty:m E —Aut G, vein,(ZsE) =G —>»G and both extend

the map a, by Lemma 4.2 they are homotopic over a; in other
words, there is a homotopy

10



a)

H: (foI,ExI) —-—ua(Zq,EG

such that H = 50 for every t.

Since

¢J

s}

p @

8 €

foel]

£
G —1
is a pullback, ¢, and f induce a map G:E(Py——é E such that

1 (P)

£ = f(p) and pé8 =y, (see the diagram at the beginning of §4) .
But this pullback is also a homotopy pullback because g is a

fibre map. Consider now the diagram

\—\ wl f
E —-————4 B

e
pl 1 14 p
B -
where all possible squares and triangles are commutative except

that p8f = wlﬂzzpr . Let M denote the restriction of H to ExI,
which satisfies gM~af; i.e. there exists a map

E'l {311
Wl{——m
>}

___.__)B _J._.g

G: (ExI)xI —> B

(x,s8,r) +——> hH((x,r),s)

such that
G(x,s,0) = hH((x,0),s) = Ensjf(x) = hjaf(x) = af(x)
G(x,s,1) = hH((x,1),s8) = gM(x,s)
G(x,0,r) = hH((x,x),0) = hy(x,r) = af(x)
G(x,1,r) = hH((x,x),1) = hjof(x) = af(x).

This means that the second diagram is homotopy commutative and
therefore, by the universal property of homotopy pullbacks {9},
72 8@ by a homotopy N:ExI —>E such that IN~f. But, since T is
a fibre map, there exists a homotopy N from 7 to 88 such that
w = f. Hence 7 and 88 are fibrewise homotopic and the first
part of Theorem 4.1 is proved.

In order to show the uniqueness of § suppose that
6':f(Py——» f also satisfies the condition in Theorem 4.1 and

v ', [y -
extend pd' to a map ¢ .(Zf(P),E(P))-——¢(Zq,EG) over «, By the

11



uniqueness in Lemma 4.2, ¢ and v¢' are homotopic over « and ar-
guing as before it follows that § and §' are fibrewise homoto-

pic.

§5.- Proof of Lemma 4.2

Let X*, 2* be the universal cover of X, 2 _ respectively

and let A*, Eé, B*, B* the restrictions to A, Eé'

tively. The homotopy classes of maps (X,A)———a(zq,Ea) which

B, B respec-

induce w:ulx-——awlzq = Out G correspond one to one to the based

y—~equivariant homotopy classes of maps (x*,A*)»——é(za,Eé). The-
refore it suffices to show that there exists a unique y¢-equiva-

.

riant homotopy class inducing

vim (X,A) = 7, (X*,A*) — G = (zé,Ei

G) = 12(Zq,Ea)

"2
and _
T xlxlA*: wlA* —> In G = 7 E3.

B* and B* are the universal covers of B and §, hence we can

1lift @:B——>B to a map a*:B* —> B*. Let ¢,:A —>Eg be a map

inducing y on the fundamental groups and let ¢; be a lifting
of 0y B* is a deformation retract of X* and the imbedding and
*
retraction B‘;%ﬁfx‘ are lifting maps of the imbedding and re-
- I
traction B ;=%9 X respectively. Analogously, B* ;Q::EZ& are
. R*
an imbedding and a retraction which 1ift B ;:g:f Zq.
41
Now define
: X*—>3z?
g q
by -
g = Jra*r*.

Then, by Lemma 5.1. of [4], in the diagram

A‘ c > x*
" j’ 19
2 (R ] *

EG q 3 Zq

we have gc = q'*p* . Since c is a cofibration there exists a
g q v,

12



a map glzx‘———éz‘ homotopic to g which makes the diagram commu-
tative and such that the restriction to B* is equal to «. The-
refore -

g,c = q'*e] and gli* = jta*.
g, coincides with ¢I and a* on A* and B* respectively and thus

it is a y-equivariant map. From the facts that 7 _X acts freely

on the cells of X*-A* (we can assume that (X,A) ias no relati-
ve cells of dimensions <2, since (X,A) is l-connected) and that
v:nz(x‘,A‘)=ﬂ2(x,A)-——>5=ﬂ2(za,Eé) is y~equivariant we can
construct, cell by cell, a homotopy relative to A*UB* from 94
to an Y-equivariant ¢.

If Glz(X*,A‘)~—é(Z;,Eé) is another Y-equivariant map
which induces o%B* s B*, v:wz(x*,A')——a-§=w2(za,Eé) and
T o= xlwlA*:ﬂlA‘——4 In G then

allB* = ¢lB* and GIIA* o pla*

and, since both maps induce the same homomorphism on {é(x‘,A*),
we can extend the last homotopy to a homotopy rel « on the
2-skeleton of X* and hence on X* because all obstructions va-
nish. Furthermore there is no obstruction to deforming this ho-

motopy into an equivarlant one rel a. This completes the proof

of Lemma 4.2.

86.- The universal property

In this paragraph we prove a universal property which jus-
tifies the definition of P-localization of a fibration with
nilpotent fibre introduced in §3.

6.1. Theorem. Let f:E-—>B be a fibration with nilpotent fibre

F and let B:f —fipy @ P-localization. For cvery F-leocal fi-
bration f:E-— B with nilpotent fibre F and every map 1:f—> F
there exists a map 5:f(PT-+ F, uniquely determined up to fibre-
wise homotopy, such that 88 =~ 1 (fibrewise).

Proof. Let a:B —>B be the map induced by 7 on the base spaces
and let f be the fibre map induced by ¥ and «a.

13



-«

]

=]
N
B3 e {1 €= == by 611

k\

Denote by 7':f — f the map induced by r (by the pullback pro-

perty) . The fibrewise homotopy classes of maps 61 are in one to

one correspondence with those of maps Py because, since f is a

fibre map, the bottom square is a homotopy pullback [ 9] and all

the diagrams are homotopy commutative. So we have only to prove

the theorem in the special case B=B (so that r is a map over B).
Consider then the diagram

F ——> E ——~£ﬂ«+ B

l € Lﬁ £ I

(P), p

FP—— E(P)
| N
F > B f .8

Because of the naturality of the Moore-Postnikov decompositions
, - - -
{En,hn}, {E(P)n,hn}, {En,hn}of £, £py, E, respectively [1], 8

and r determine up to homotopy m3ps ﬂlel-——aE(P)l and
TytE;— El over B such that
. -
B hy = hyB and 7, h; 2 h;7 over B.

The desired map § determines up to fibrewise homotopy a map

v, P ] ~ = R'h!
61'E(P)1""* E1 such that 6151 = 7, over B and 61 61h1 is

the first lifting of f in

(P)

E —T1

£

o ——— b

j ;
b £
S’L,? l\

e ——
(p) fip)

Now BI:EI——%'B, pi: —>B and pl:E —> B are fibrations

Erpyr 1

14



with fibres K(ﬂlf,l), K(WIFP,I) and K(RLF,I) respectively, 31

induces P-localization on the fibres and K(ﬂlf,l) is a P-local
space by assumption. Theorem 4.1 then guarantees the existence
of a 8!, unique up to homotopy, and therefore of a unique 1if-

Bp)y ™ E) of £p)-

The higher obstructions to the lifting of 61 lie in the

ting 81:

group Hn+¥(E(P),E;ﬂhf), where ﬂ;? is the local coefficient sys-

tem determined by the action of ﬂlE on nn? via the map

(P)

]E1=11E and the action of = E on nnf is determi-

ned by the fibration f. The action of ﬂlE(P) induces a nilpotent

SpuimBipy—> 7 1

action of w‘FP on wnf. For consider the diagram

€) Fip)x
"IFP —> ﬂlE(P)————-a ﬂlB
51 I
- €2 = i
IIF —_— KlE —_— xlB

For EeﬂnF and ﬁeanP we have

EB = gel(ﬂ) = gﬁi*el(ﬁ)
Since 5‘61‘61 = f(P)‘e1
ez(g) = 51‘51(6) and thus . ()

et o

= 0, there is a {eﬂlﬁ such that

But F is nilpotent and therefore the action of wlf on wnf is
nilpotent. From the last equality it follows that the action

of 7, Fpona F is also nilpotent.

Since 'nﬁ are P-local groups we deduce from Lemma 3.3 that

Hn+1(E(P),E:ﬂ;f) = 0 and hence there is a unique lifting of 51
to E. This completes the proof of the theorem.

From this universal property it follows by a standard ar-

gument

6.2. Corollary. The P-localization of a fibration with nilpotent

fibre is uniquely determined up to a homotopy equivalence.
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