CAXA 31. A

UNIVERSITAT DE BARCELONA FACULTAT DE MATEMÀTIQUES

LOCALIZATION OF FIBRATIONS WITH NILPOTENT FIBRE

by

Irene Llerena

PRE-PRINT N.º 22 març 1984

LOCALIZATION OF FIBRATIONS WITH NILPOTENT FIBRE

by

Irene Llerena

§1.- Introduction

The theory of localization for nilpotent spaces, parallel to that for nilpotent groups, has proved to be a powerful tool in algebraic topology. Recently, P. Hilton has developed a localization theory for relative nilpotent groups [5] and for nilpotent crossed-modules [6] which represents a first step in the construction of a localization theory for nilpotent fibrations and for fibrations with nilpotent fibre (weak nilpotent fibrations). A fibre map f:E \rightarrow B is said to be nilpotent if π_1 E acts nilpotently on the homotopy groups of the fibre. Nilpotent fibre maps turn out to be the right relativization of nilpotent spaces, because their Moore-Postnikov systems admit principal refinements [7]. In [8] we constructed a localization theory for nilpotent fibrations. In this note we consider the more general situation of fibrations with nilpotent fibre and develop a localization theory for such fibrations.

The paper is organized as follows: in §2 we recall some basic facts and definitions; in §3 we define a P-localization for fibrations with nilpotent fibre and prove its existence; the proof of the expected universal property justifying the term P-localization is divided into two parts: in §4-5 we prove such a universal property for fibrations with fibre an Eilenberg-MacLane space of type (G,1) and in §6 for the general case. As a consequence we obtain the uniqueness up to a homotopy equivalence of the P-localization of a fibration with nilpotent fibre.

I am indebted to Peter Hilton for suggesting me this work and spending his time in helpful conversations with me.

§2.- Some basic definitions and results

We work in the pointed homotopy category of path-connected spaces having the homotopy type of a CW-complex. A space is nilpotent if $\pi_1 X$ is nilpotent and acts nilpotently on $\pi_n X$ for all $n \ge 2$. A fibre map f:E \longrightarrow B is nilpotent if π_1 E acts nilpotently on the homotopy groups of the fibre. Nilpotent spaces as well as nilpotent fibrations are characterized by the fact that their Postnikov decompositions admit principal refinements [7;II.2.4].

Let P be a given arbitrary collection of rational primes. A space is P-local if all its homotopy groups are P-local. A fibre map is P-local if its fibre is P-local. By a theory of P-localization in a category with P-local objects we mean the following: For every object X there is a P-local object Y and a morphism $f:X \longrightarrow Y$ satisfying the following universal property: for every P-local object Z,

$f^*: [Y, Z] \cong [X, Z],$

where [A,B] stands for the set of morphisms from A to B. A theory of P-localization for nilpotent groups and spaces is developed in detail in [7]. A comprehensive treatment of a process more general than localization but executed in the semi-simplicial category is given in [2].

A crossed-module is a right exact sequence of groups $N \xrightarrow{\rho} G \xrightarrow{\kappa} Q$ together with an action of G on N satisfying i) $\rho(x.a)=x(\rho a)x^{-1}$, ii) $\rho(a).b=aba^{-1}$, $a,b\in N$, $x\in G$. We refer to it briefly as the crossed module κ .

If N is nilpotent and $e: N \longrightarrow N_p$ is a P-localization there always exists a crossed-module $N_p \longrightarrow G_{(P)} \longrightarrow Q$ and a morphism from κ to it inducing e; this gives a P-localization theory in the category of crossed-modules κ with N nilpotent [6].

Let G be a non abelian group and let K(G,1) be an Eilenberg-MacLane space of type (G,1). There is a universal classifying fibration, hereafter referred to as $K(G,1) \longrightarrow E_{G} \xrightarrow{-G} B$, where E_{G} is a K(Aut G,1), B is B_{H} with H the H-space of homotopy equivalences of K(G,1) and the homotopy sequence for q reduces to the natural one $ZG \longrightarrow G \longrightarrow Aut G \longrightarrow Out G$ [3].

2

Now let G be an abelian group, Q a CW-complex of type K(Aut G, 1) and Q^* the universal cover of Q. Let

$$\hat{R}(G,n) = K(G,n) \times Q^*$$
Aut G

be the quotient of $K(G,n) \propto Q^*$ by the diagonal action of Aut G. The CW-complex $\hat{K}(G,n)$ is a classifying space for K(G,n-1)-fibrations and

$$K(G, n-1) \longrightarrow P \xrightarrow{p} \tilde{K}(G, n)$$

is a universal fibration, where P is the space of unbased paths in $\hat{K}(G,n)$ which have initial point in Q (Q $\hookrightarrow \hat{K}(G,n)$ is induced by the canonical map Q* $\longrightarrow K(G,n) \times Q^*$) and which lie entirely within some fibre of $q:\hat{K}(G,n) \longrightarrow Q$ (induced by $K(G,n) \times Q^* \longrightarrow Q^*$) [10].

Let G be a local coefficient system on X and $e:X \longrightarrow Q$ a map inducing $\epsilon:\pi_1 X \longrightarrow \pi_1 Q$ = Aut G, where ϵ is the action of $\pi_1 X$ on the local system G. If $[X,\hat{K}(G,n)]_e$ denotes the set of fibrewise homotopy classes of maps $\phi:X \longrightarrow \hat{K}(G,n)$ satisfying $q\phi=e$, we have

$$H^{n}(X;G) = [X,\hat{K}(G,n)]_{Q}.$$

The results on homotopy pullbacks we need are all included in [9]. In particular, a topological pullback

where f is a fibration is a homotopy pullback. Homotopy pullbacks satisfy the pullback property, i.e. for every space X and any maps u:X \longrightarrow B, v:X \longrightarrow A such that gu≈fv, there is a map ϕ such that the diagram

is homotopy commutative and "essentially unique".

3

§3.- Existence of a P-localization

All spaces are (pointed) path-connected and have the homotopy type of a CW-complex. If $f:E \longrightarrow B$ is a fibration with nilpotent fibre F and P is an arbitrary collection of rational primes, we say that f is P-local if F is P-local [7].

3.1. Definition. Let $f:F \longrightarrow B$ be a fibration with nilpotent fibre F. A map β from f to a P-local fibration $f_{(P)}:E_{(P)} \longrightarrow B$ is a P-localization if it induces a P-localization on the fibres

$$\begin{array}{c} F \longrightarrow E & -f \longrightarrow B \\ e \downarrow & \beta \downarrow & f \\ F_p \longrightarrow E \begin{pmatrix} f \\ (P) \end{pmatrix} & B \end{array}$$

The following theorem asserts the existence of a P-localization for fibrations with nilpotent fibre.

3.2. Theorem. Every fibration $f: E \longrightarrow B$ with nilpotent fibre F admits a P-localization.

Proof. We argue step-wise on the Moore-Postnikov factorization of f

$$E \to \ldots \to E_n \xrightarrow{p_{n-1}} E_{n-1} \to \ldots \to E_1 \xrightarrow{p_1} B,$$

where each p_n is a fibration with fibre $K(\pi_n F, n)$.

First step: Let $G=\pi_1 F$. p_1 is induced from a universal fibration $K(G,1) \longrightarrow E_C \longrightarrow B_H$ by a map $\phi: B \longrightarrow B_H$.

We know that every automorphism $\psi: G \longrightarrow G$ determines uniquely an automorphism $\psi_p: G_p \longrightarrow G_p$ such that $e\psi = \psi_p e$, where e:G $\longrightarrow G_p$ is a P-localization. Hence if H and \tilde{H} are the H-spaces of self homotopy equivalences of K(G,1) and K(G_p,1) respectively, by Lemma 3.3 of [4] applied to the pair (B_H, E_G), there is a map between the corresponding universal fibrations

$$\begin{array}{c} \mathsf{K}(\mathsf{G},\mathsf{1}) \longrightarrow \mathsf{E}_{\mathsf{G}} \longrightarrow \mathsf{B}_{\mathsf{H}} \\ \downarrow \qquad \qquad \downarrow^{\mathsf{G}} \qquad \qquad \downarrow^{\mathsf{G}} \qquad \qquad \downarrow^{\mathsf{G}} \\ \mathsf{K}(\mathsf{G}_{\mathsf{P}},\mathsf{1}) \longrightarrow \mathsf{E}_{\mathsf{G}_{\mathsf{P}}} \longrightarrow \mathsf{B}_{\mathbf{\bar{H}}} \end{array}$$

such that on the fibres is a P-localization.

Now we can define $p_{1(P)}:E_{1(P)}\longrightarrow B$ as the fibration indu-

ced from $K(G_{p}, 1) \longrightarrow E_{G_{p}} \longrightarrow B_{\overline{H}}$ by $\alpha \phi : B \longrightarrow B_{\overline{H}}$. The universal property of the pullback allows us to define a map $\beta_{1}: E_{1} \longrightarrow E_{1}(P)$ over B inducing a P-localization on the fibres.

 n^{th} step ($n \ge 2$): Assume we have constructed

such that the map of fibrations $p_i \longrightarrow p_i(P)$, $i \le n-1$, induces a P-localization on the fibres. In particular, the fibre of $p_i(P)$ is $K(\pi_i F_P, i)$.

Note that if F^{i} , \overline{F}^{i} are the fibres of $E_{i} \longrightarrow B$, $E_{i(P)} \longrightarrow B$ respectively, the square of fibrations

$$\stackrel{E_{i+1} \xrightarrow{p_{i+1}}}{\underset{E_{i+1} \xrightarrow{p_{i+1}(P)}}{\overset{p_{i+1}(P)}{\underset{p_{i+1}(P)}{\underset{p_{i+1}(P)}{\underset{p_{i+1$$

induces on the fibres a diagram

$$\begin{array}{c} \mathsf{K}(\pi_{i+1}\mathsf{F},i+1) & \longrightarrow \mathsf{F}^{i+1} \longrightarrow \mathsf{F}^{i} \\ \downarrow & \downarrow & \downarrow \\ \mathsf{K}(\pi_{i+1}\mathsf{F}_{\mathsf{P}},i+1) \longrightarrow \overline{\mathsf{F}}^{i+1} \longrightarrow \overline{\mathsf{F}}^{i} \end{array}$$

and, arguing by induction, it turns out that $F^{i+1} \longrightarrow \overline{F}^{i+1}$ is a P-localization.

Let $\rho: P \longrightarrow \hat{K}(\pi_n F, n+1)$ and $\bar{\rho}: \bar{P} \longrightarrow \hat{K}(\pi_n F_p, n+1)$ be the universal fibrations for $K(\pi_n F, n)$ and $K(\pi_n F_p, n)$ -fibrations respectively (see §2) and let $\phi^n: E_{n-1} \longrightarrow \hat{K}(\pi_n F, n+1)$ the map which classifies p_n . We define $p_n(P): E_n(P) \longrightarrow E_{n-1}(P)$ as the fibration induced from $\bar{\rho}$ by a map

 $\psi^n: \mathbf{E}_{n-1}(\mathbf{P}) \longrightarrow \hat{\mathbf{K}}(\pi_n \mathbf{F}_{\mathbf{P}}, n+1)$

such that

$$\beta_{n-1}^{*}(\psi^{n}) = e_{*}(\phi^{n}),$$

5

where

$$H^{n}(E_{n-1}(P), \pi_{n}F_{P}) \xrightarrow{\beta_{n-1}} H^{n}(E_{n-1}, \pi_{n}F_{P}) \xrightarrow{e_{*}} H^{n}(E_{n-1}, \pi_{n}F)$$

are induced by β_{n-1} and e respectively. The existence of a ψ^n uniquely determined up to homotopy follows from Lemma 3.3 below. The desired map $\beta_n: E_n \longrightarrow E_n(p)$ over B inducing P-localization on the fibres follows then from the universal property of the pullback.

3.3. Lemma. Let β be a map of fibrations

$$\begin{array}{c} F \longrightarrow E & \underline{f} \\ e \\ e \\ F_{P} \longrightarrow E_{(P)} \end{array} \begin{array}{c} f_{(P)} \\ F_{P} \end{array} \end{array}$$

inducing a P-localization on the fibres. Let A be a local coefficient system on $E_{(P)}$ with P-local abstract group, such that the induced action of $\pi_1 F_p$ on A is nilpotent. Then

$$\beta^*: H^n(E_{(D)};A) \longrightarrow H^n(E;A)$$

is an isomorphism for all $n \ge 0$.

Proof. A simple generalization of the algebraic case $\{7; I.4.14\}$ to spaces assures that for nilpotent X acting nilpotently on the P-local group A

$$e^*: H^n(X_p;A) \cong H^n(X;A)$$
 for all $n \ge 0$.

Hence $e : H^{n}(F_{p};A) \cong H^{n}(F;A)$ and therefore the homomorphism induced by β on the Serre spectral sequence with local coefficients

is an isomorphism at the E_2 -level. Thus the homomorphism $\beta^*: H^*(E_{(P)}; \Lambda) \longrightarrow H^*(E; \Lambda)$ is an isomorphism and the proof of Lemma 3.3 is completed.

If the Moore-Postnikov factorization of $f:E \longrightarrow B$ is finite, the above procedure yields the desired P-localization. In the general case let $E_{(P)}$ the geometric realization of the singular complex of $\lim_{\leftarrow} E_{n(P)}$. Then there is a map $\beta: E \longrightarrow E_{(P)}$ such that the diagram

is homotopy commutative. Recall [2;p.254] that there exists a short exact sequence

$$0 \longrightarrow \lim_{i \to 1} \pi_{i+1} E_n \longrightarrow \pi_i (\lim_{i \to 1} E_n) \longrightarrow \lim_{i \to 1} \pi_i E_n \longrightarrow 0.$$

But in our case the $\lim_{i \to 1} 1$ -term vanishes because $\pi_{i+1}(p_n)$ is an isomorphism for all $n \neq i, i+1$ and an epimorphism for n=i+1. Therefore $\varphi: E \longrightarrow \lim_{i \to 1} E_n$ is a weak homotopy equivalence.

Analogously it turns out that

 $\pi_{i}^{E}(P) \cong \pi_{i}^{(\lim_{\leftarrow} E_{n}(P))} \cong \lim_{\leftarrow} \pi_{i}^{E_{n}(P)} \cong \pi_{i}^{E_{N}(P)}$ for N large (N≥i+1).

Consider now the diagram

where $f_{(P)}$ is induced by the natural map $\lim_{\leftarrow} E_{n(P)} \longrightarrow B$ and \overline{F} is the homotopy fibre of $f_{(P)}$. The commutative square over B

$$\begin{array}{c} E & \longrightarrow & E_n \\ \beta & & & \downarrow^{\beta}_n \\ E_{(P)} & \longrightarrow & E_n(P) \end{array}$$

induces on the homotopy fibres a square

where $F^n \longrightarrow \overline{F}^n$ is a P-localization.

Given an integer i we can take n large enough such that the horizontal arrows induce isomorphisms on the homotopy groups. Hence $\pi_i F \longrightarrow \pi_i \tilde{F}$ is a P-localization for all i and therefore $F \longrightarrow \tilde{F}$ is a P-localization. This completes the proof of Theorem 3.2.

§4.- A universal property for fibrations with fibre a K(,1)

In this paragraph we want to prove a special case of the main theorem 6.1.

4.1. Theorem. Let $f: E \longrightarrow B$ be a fibration with nilpotent fibre K(G, 1) and let $\beta: f \longrightarrow f_{(P)}$ be a P-localization. For every map $\tau: f \longrightarrow \overline{f}$ from f to a P-local fibration $\overline{f}: \overline{E} \longrightarrow B$ with nilpotent fibre $K(\overline{G}, 1)$ there exists a map $\delta: f_{(P)} \longrightarrow \overline{f}$ uniquely determined up to homotopy over B such that $\delta\beta \simeq \tau$ over B.

Proof. Let $K(\overline{G},1) \longrightarrow E_{\overline{G}} \xrightarrow{\mathbf{q}} \overline{B}$ be the universal fibration for $K(\overline{G},1)$ -fibrations and let $\alpha: B \longrightarrow \overline{B}$ be the classifying map corresponding to \overline{f} . Look at the diagram

We shall construct a map $\varphi: E_{(P)} \longrightarrow E_{\overline{G}}$ with $q\varphi = \alpha f_{(P)}$ so that it induces a map $\delta: E_{(P)} \longrightarrow \overline{E}$ satisfying the desired conditions by applying Lemma 4.2 below which generalizes Lemma 3.3 of [4].

We use the following notation: z_f , $z_f_{(P)}$, z_q denote the mapping cylinders of f, $f_{(P)}$, q respectively, f=hf', $f_{(P)}$ =h'f'_(P), q= $\bar{h}q'$ the natural decompositions into a cofibration and a homotopy equivalence and j:B $\rightarrow z_f$, j':B $\rightarrow z_{f(P)}$, $\bar{j}:\tilde{B} \rightarrow z_q$ the canonical imbeddings.

4.2. Lemma. Let (X,A) be a 1-connected CW-pair, where X is pathconnected and let $B \stackrel{i}{\frown} X$ a sub-CW-complex with $A \cap B = \emptyset$ which is a deformation retract of X. Let $X: \pi_1 A \longrightarrow Aut \overline{G}$ and $\nu: \pi_2(X,A) \longrightarrow \overline{G}$ be homomorphisms rendering commutative the diagram

Let $\sigma:\pi_2 X \longrightarrow Z\overline{G}$ and $\psi:\pi_1 X \longrightarrow Out \overline{G}$ be the homomorphisms induced by ν and χ . If $\alpha:B \longrightarrow \overline{B}$ is a map which induces ψ and σ on π_1 and π_2 respectively, then there exists a unique homotopy class over α of maps

 $\varphi: (X,A) \longrightarrow (Z_{q}, E_{\overline{q}})$

such that $\chi = (\varphi | A)_* : \pi_1 A \longrightarrow \pi_1 E_{\overline{G}}$ and $\nu = \varphi_* : \pi_2(\chi, A) \longrightarrow \pi_2(Z_q, E_{\overline{G}})$.

The proof of the Lemma is given in §5.

Take as (X,A) the pair $({}^{7}r_{(P)}, {}^{2}r_{(P)})$ and as $\alpha: B \longrightarrow \overline{B}$ the classifying map of \overline{f} and consider the diagram of homotopy exact sequences

Since \overline{G} is a P-local group the map $G \longrightarrow \overline{G}$ factors through the P-localization e:G $\longrightarrow G_p$ making the corresponding square commutative. The existence (and uniqueness) of a homomorphism $\theta:\pi_1 E_{(P)} \longrightarrow \pi_1 \widetilde{E}$ which makes the diagram commutative follows from the fact that $\overline{G} \longrightarrow \pi_1 \widetilde{E} \longrightarrow \pi_1 B$ is a P-local crossed-module and

is a P-localization of crossed-modules [6].

Consider now $\chi = \rho_{\star} \theta$ and $\nu : \pi_2 ({}^{\mathbb{Z}}f_{(P)}) = G_P \longrightarrow \overline{G}$. Applying Lemma 4.2 it follows that there exists a unique map

$$\overline{\varphi} : (\overline{z}_{f(P)}, \overline{E}_{(P)}) \longrightarrow (\overline{z}_{q}, \overline{E}_{\overline{G}})$$

which extends α and induces χ and ν . The restriction $\overline{\phi}_1 = \overline{\phi}|_{E_{(P)}}$ then satisfies

$$q\bar{\varphi}_1 = \bar{h}q'\bar{\varphi}_1 = \bar{h}\bar{\varphi}f'_{(P)} \approx \bar{h}\bar{\varphi}j'h'f'_{(P)} = \alpha h'f'_{(P)} = \alpha f_{(P)}.$$

But, since q is a fibre map, there exists a map $\varphi_1: E_{(P)} \longrightarrow E_{\vec{G}}$ homotopic to $\overline{\varphi}_1$ such that

$$q\varphi_1 = \alpha f_{(P)}$$

which can be extended to a map

by

$$\varphi : (Z_{f_{(P)}}, E_{(P)}) \longrightarrow (Z_{q}, E_{\overline{G}})$$

$$\varphi(x, t) = (\varphi_{1}x, t) \quad \text{if } (x, t) \in E_{(P)}xI$$

$$\varphi(b) = \alpha(b) \qquad \text{if } b \in B.$$

(Observe that φ satisfies the conditions in Lemma 4.2 and moreover $\bar{h}\varphi = \alpha h'$.)

Look now at the diagram

$$\rho r \begin{pmatrix} E & f' & Z_{f} \\ \downarrow \beta & f'_{(P)} & \downarrow \eta \\ E_{(P)} & Z_{f} \\ \downarrow \varphi_{1} & \downarrow \varphi \\ E_{\bar{G}} & q' & Z_{q} \end{pmatrix} \gamma$$

where η and γ are defined as follows:

$$\begin{split} \eta(\mathbf{x}, \mathbf{t}) &= (\beta \mathbf{x}, \mathbf{t}) & \text{if } (\mathbf{x}, \mathbf{t}) \ \epsilon \ \text{ExI} \\ \eta(\mathbf{b}) &= \mathbf{b} & \text{if } \mathbf{b} \ \epsilon \ \text{B}, \\ \gamma(\mathbf{x}, \mathbf{t}) &= (\rho \tau \mathbf{x}, \mathbf{t}) & \text{if } (\mathbf{x}, \mathbf{t}) \ \epsilon \ \text{ExI} \\ \gamma(\mathbf{b}) &= \alpha(\mathbf{b}) & \text{if } \mathbf{b} \ \epsilon \ \text{B}. \end{split}$$

Since the maps γ and $\varphi \eta$ both induce the same homomorphisms $\chi \beta_* = \rho_* \tau_* : \pi_1 E \longrightarrow \operatorname{Aut} \overline{G}, \ \nu e : \pi_2(Z_f, E) = G \longrightarrow \overline{G}$ and both extend the map α , by Lemma 4.2 they are homotopic over α ; in other words, there is a homotopy

1.1

H:
$$(Z_f \times I, E \times I) \longrightarrow (Z_q, E_{\overline{q}})$$

such that $H_{tj} = \bar{j}\alpha$ for every t.

Since

is a pullback, φ_1 and $f_{(P)}$ induce a map $\delta: E_{(P)} \longrightarrow \overline{E}$ such that $\overline{f}\delta = f_{(P)}$ and $\rho\delta = \varphi_1$ (see the diagram at the beginning of §4). But this pullback is also a homotopy pullback because q is a fibre map. Consider now the diagram

where all possible squares and triangles are commutative except that $\rho\delta\beta = \varphi_1\beta \simeq \rho\tau$. Let M denote the restriction of H to ExI, which satisfies qM~ α f; i.e. there exists a map

G:
$$(ExI)xI \longrightarrow \overline{B}$$

 $(x,s,r) \longmapsto \overline{h}H((x,r),s)$

such that

$$\begin{split} G(x,s,0) &= \bar{h}H((x,0),s) = \bar{h}H_{g}jf(x) = \bar{h}\bar{j}\alpha f(x) = \alpha f(x) \\ G(x,s,1) &= \bar{h}H((x,1),s) = qM(x,s) \\ G(x,0,r) &= \bar{h}H((x,r),0) = \bar{h}\gamma(x,r) = \alpha f(x) \\ G(x,1,r) &= \bar{h}H((x,r),1) = \bar{h}\bar{j}\alpha f(x) = \alpha f(x) . \end{split}$$

This means that the second diagram is homotopy commutative and therefore, by the universal property of homotopy pullbacks [9], $\tau \simeq \delta\beta$ by a homotopy N:ExI \longrightarrow E such that $\bar{f}N \sim f$. But, since \bar{f} is a fibre map, there exists a homotopy \bar{N} from τ to $\delta\beta$ such that $\bar{f}\bar{N} = f$. Hence τ and $\delta\beta$ are fibrewise homotopic and the first part of Theorem 4.1 is proved.

In order to show the uniqueness of δ suppose that $\delta':f_{(P)} \longrightarrow f$ also satisfies the condition in Theorem 4.1 and extend $\rho\delta'$ to a map $\varphi':(Z_{f_{(P)}}, E_{(P)}) \longrightarrow (Z_q, E_{\overline{G}})$ over α . By the uniqueness in Lemma 4.2, φ and φ' are homotopic over α and arguing as before it follows that δ and δ' are fibrewise homotopic.

§5.- Proof of Lemma 4.2

Let X*, \mathbb{Z}_q^* be the universal cover of X, \mathbb{Z}_q respectively and let A*, $\mathbb{E}_{\overline{q}}^*$, B*, \overline{B}^* the restrictions to A, $\mathbb{E}_{\overline{G}}^-$, B, \overline{B} respectively. The homotopy classes of maps $(X,A) \longrightarrow (\mathbb{Z}_q,\mathbb{E}_{\overline{G}}^-)$ which induce $\psi:\pi_1 X \longrightarrow \pi_1 \mathbb{Z}_q^- = \text{Out } \overline{G}$ correspond one to one to the based ψ -equivariant homotopy classes of maps $(X^*,A^*) \longrightarrow (\mathbb{Z}_q^*,\mathbb{E}_{\overline{G}}^*)$. Therefore it suffices to show that there exists a unique ψ -equivariant homotopy class inducing

and

$$r: \chi | \pi_1 \mathbf{A}^* : \pi_1 \mathbf{A}^* \longrightarrow \mathrm{In} \ \overline{\mathbf{G}} = \pi_2 (\mathbf{Z}_q^*, \mathbf{E}_{\overline{\mathbf{G}}}^*) = \pi_2 (\mathbf{Z}_q, \mathbf{E}_{\overline{\mathbf{G}}})$$

B* and \overline{B}^* are the universal covers of B and \overline{B} , hence we can lift $\alpha: B \longrightarrow \overline{B}$ to a map $\alpha^*: B^* \longrightarrow \overline{B}^*$. Let $\varphi_1: A \longrightarrow E_{\overline{G}}$ be a map inducing χ on the fundamental groups and let φ_1^* be a lifting of φ_1 . B* is a deformation retract of χ^* and the imbedding and retraction $B^* \xleftarrow{1^*}{r_*} \chi^*$ are lifting maps of the imbedding and retraction $B \xleftarrow{1^*}{r} \chi$ respectively. Analogously, $\overline{B}^* \xleftarrow{1^*}{\overline{n}^*} Z_q^*$ are an imbedding and a retraction which lift $\overline{B} \xleftarrow{1^*}{\overline{n}} Z_q$.

Now define

g:
$$X^* \longrightarrow Z^*_q$$

g = $\overline{j}^* \alpha^* r^*$.

by

Then, by Lemma 5.1. of [4], in the diagram

we have $gc = q^{**}\varphi_1^*$. Since c is a cofibration there exists a

a map $g_1: X^* \longrightarrow Z_q^*$ homotopic to g which makes the diagram commutative and such that the restriction to B^* is equal to α . Therefore

 $g_1 c = q'^* \varphi_1^*$ and $g_1 i^* = \overline{j}^* \alpha^*$.

 g_1 coincides with φ_1^* and α^* on A^* and B^* respectively and thus it is a ψ -equivariant map. From the facts that $\pi_1 X$ acts freely on the cells of X^*-A^* (we can assume that (X,A) has no relative cells of dimensions <2, since (X,A) is 1-connected) and that $\nu:\pi_2(X^*,A^*)=\pi_2(X,A) \longrightarrow \bar{G}=\pi_2(Z_q^*,E_{\bar{G}}^*)$ is ψ -equivariant we can construct, cell by cell, a homotopy relative to $A^* \cup B^*$ from g_1 to an ψ -equivariant $\bar{\varphi}$.

If $\overline{\varphi}_1: (X^*, A^*) \longrightarrow (\mathbb{Z}_q^*, \mathbb{E}_{\overline{G}}^*)$ is another ψ -equivariant map which induces $\alpha^* \mathbb{B}^* \longrightarrow \overline{\mathbb{B}}^*$, $\nu: \pi_2(X^*, A^*) \longrightarrow \overline{\mathbb{G}} = \pi_2(\mathbb{Z}_q^*, \mathbb{E}_{\overline{G}}^*)$ and $\tau = \chi | \pi_1 A^*: \pi_1 A^* \longrightarrow \text{In } \overline{\mathbb{G}}$ then

 $\vec{\varphi}_1 | B^* = \vec{\varphi} | B^*$ and $\vec{\varphi}_1 | A^* \simeq \vec{\varphi} | A^*$

and, since both maps induce the same homomorphism on $\pi_2^{\prime}(X^*,A^*)$, we can extend the last homotopy to a homotopy rel α on the 2-skeleton of X* and hence on X* because all obstructions vanish. Furthermore there is no obstruction to deforming this homotopy into an equivariant one rel α . This completes the proof of Lemma 4.2.

§6.- The universal property

In this paragraph we prove a universal property which justifies the definition of P-localization of a fibration with nilpotent fibre introduced in §3.

6.1. Theorem. Let $f: E \longrightarrow B$ be a fibration with nilpotent fibre F and let $\beta: f \longrightarrow f_{(P)}$ a P-localization. For every P-local fibration $\overline{f}: \overline{E} \longrightarrow \overline{B}$ with nilpotent fibre \overline{F} and every map $\tau: f \longrightarrow \overline{f}$ there exists a map $\delta: f_{(P)} \longrightarrow \overline{f}$, uniquely determined up to fibre-wise homotopy, such that $\delta \beta \simeq \tau$ (fibrewise).

Proof. Let $\alpha: \mathbb{B} \longrightarrow \overline{\mathbb{B}}$ be the map induced by τ on the base spaces and let \overline{f} be the fibre map induced by \overline{f} and α .

Denote by $r': f \longrightarrow \tilde{f}$ the map induced by r (by the pullback property). The fibrewise homotopy classes of maps δ_1 are in one to one correspondence with those of maps δ_2 , because, since \tilde{f} is a fibre map, the bottom square is a homotopy pullback [9] and all the diagrams are homotopy commutative. So we have only to prove the theorem in the special case $\tilde{B}=B$ (so that r is a map over B).

Consider then the diagram

Because of the naturality of the Moore-Postnikov decompositions $\{E_n, h_n\}, \{E_{(P)n}, h'_n\}, \{\overline{E}_n, \overline{h}_n\}$ of f, $f_{(P)}, \overline{f}$, respectively [1], β and r determine up to homotopy maps $\beta_1: E_1 \longrightarrow E_{(P)1}$ and $r_1: E_1 \longrightarrow \overline{E}_1$ over B such that

 $\beta_1 h_1 \simeq h_1^{\prime} \beta$ and $\tau_1 h_1 \simeq \bar{h}_1 \tau$ over B.

The desired map δ determines up to fibrewise homotopy a map $\delta'_1: \mathbf{E}_{(\mathbf{P})1} \longrightarrow \mathbf{\bar{E}}_1$ such that $\delta'_1 \beta_1 \simeq \tau_1$ over B and $\delta_1 = \delta'_1 \mathbf{h}'_1$ is the first lifting of $f_{(\mathbf{P})}$ in

Now $\tilde{p}_1: \tilde{E}_1 \longrightarrow B$, $p'_1: E_{(P)1} \longrightarrow B$ and $p_1: E_1 \longrightarrow B$ are fibrations

with fibres $K(\pi_1\bar{F},1)$, $K(\pi_1F_P,1)$ and $K(\pi_1F,1)$ respectively, β_1 induces P-localization on the fibres and $K(\pi_1\bar{F},1)$ is a P-local space by assumption. Theorem 4.1 then guarantees the existence of a δ_1^{\prime} , unique up to homotopy, and therefore of a unique lifting $\delta_1: E_{(P)} \longrightarrow \bar{E}_1$ of $f_{(P)}$.

The higher obstructions to the lifting of δ_1 lie in the group $\operatorname{H}^{n+1}(\operatorname{E}_{(\mathbf{P})}, \mathbf{E}; \mathcal{T}_n^{\mathbf{F}})$, where $\mathcal{T}_n^{\mathbf{F}}$ is the local coefficient system determined by the action of $\pi_1 \operatorname{E}_{(\mathbf{P})}$ on $\pi_n^{\mathbf{F}}$ via the map $\delta_1^{\mathbf{*}:\pi_1}\operatorname{E}_{(\mathbf{P})} \longrightarrow \pi_1^{\mathbf{E}}\operatorname{I}=\pi_1^{\mathbf{E}}$ and the action of $\pi_1^{\mathbf{E}}$ on $\pi_n^{\mathbf{F}}$ is determined by the fibration \mathbf{f} . The action of $\pi_1^{\mathbf{E}}_{(\mathbf{P})}$ induces a nilpotent action of $\pi_1^{\mathbf{F}}_{\mathbf{P}}$ on $\pi_n^{\mathbf{F}}$. For consider the diagram

$$\begin{array}{c} \pi_{1} \mathbf{F}_{\mathbf{p}} \xrightarrow{\epsilon_{1}} \pi_{1} \mathbf{E}_{(\mathbf{p})} \xrightarrow{\mathbf{f}_{(\mathbf{p})} \star} \pi_{1} \mathbf{B} \\ & \delta_{1} \star \downarrow & \| \\ \pi_{1} \mathbf{\bar{F}} \xrightarrow{\epsilon_{2}} \pi_{1} \mathbf{\bar{E}} \xrightarrow{\mathbf{\bar{f}}} \xrightarrow{\mathbf{\bar{f}}} \pi_{1} \mathbf{B} \end{array}$$

For $\xi \in \pi_n \overline{F}$ and $\beta \in \pi_1 F_p$ we have

$$\xi^{\beta} = \xi^{\epsilon_1(\beta)} = \xi^{\delta_1 * \epsilon_1(\beta)}$$

Since $\overline{f}_* \delta_{1*} \epsilon_1 = f_{(P)} \epsilon_1 = 0$, there is a $\xi \epsilon_{\pi_1} \overline{F}$ such that $\epsilon_2(\xi) = \delta_{1*} \epsilon_1(\beta)$ and thus $\xi^{\beta} = \xi^{\epsilon_1(\xi)} = \xi^{\xi}$.

But \overline{F} is nilpotent and therefore the action of $\pi_1\overline{F}$ on $\pi_n\overline{F}$ is nilpotent. From the last equality it follows that the action of $\pi_1\overline{F}_p$ on $\pi_n\overline{F}$ is also nilpotent.

Since $\pi_{n}\bar{F}$ are P-local groups we deduce from Lemma 3.3 that $H^{n+1}(E_{(P)}, E; \tilde{\pi}_{n}\bar{F}) = 0$ and hence there is a unique lifting of δ_{1} to E. This completes the proof of the theorem.

From this universal property it follows by a standard argument

6.2. Corollary. The P-localization of a fibration with nilpotent fibre is uniquely determined up to a homotopy equivalence.

References

- H.J. Baues, Obstruction theory, Lect. Notes in Math 628, Springer, 1977.
- [2] A.K. Bousfield-D.M. Kan, Homotopy Limits, Completions and Localizations, Lect. Notes in Math 304, Springer, 1972.
- [3] R.O. Hill Jr, Geometric interpretation of a classical group cohomology obstruction, Proc. Amer. Math. Soc. 54 (1976), 405-412.
- [4] R.O. Hill Jr, Moore-Postnikov towers for fibrations in which π_1 (fibre) is non-abelian, Pac. J. Math. 62 (1976), 141-148.
- [5] P. Hilton, Relative nilpotent groups, Lect. Notes in Math. 915, Springer, 1982, 136-147.
- [6] P. Hilton, Localization of crossed-modules, Preprint, 1982.
- [7] P. Hilton-G. Mislin-J. Roitberg, Localization of nilpotent groups and spaces, North-Holland Math. Studies 15, 1975.
- [8] I. Llerena, Localization of nilpotent fibre maps, Collect. Math. 33 (1982), 177-185.
- [9] M. Mather, Pullbacks in homotopy theory, Can. J. Math. 28 (1976), 225-263.
- [10] C.A. Robinson, Moore-Postnikov systems for non-simple fibrations, Illinois J. Math. 16 (1972), 234-242

Universitat de Barcelona Barcelona, Spain

Dipòsit Legal B.: 9913-1984 BARCELONA – 1984