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LOCAI,IZATION OF FIBRATIONS WITH NILPOTENT FIBRE

by

Irene Llerena

§1. - Introduction

The theory of localization for nilpotent spaces, parallel
to that for nilpotent groups, has proved to be a powerful tool
in algébrale topology. Recently, P. Hilton has developed a lo¬
calization theory for relative nilpotent groups ( 5) and for
nilpotent crossed-modules I 6) which represents a first step in
the construction of a localization theory for nilpotent fibra-
tions and for fibrations with nilpotent fibre (weak nilpotent
fibrations). A fibre map f:E —* B is said to be nilpotent if
» E acts nilpotently on the homotopy groups of the fibre. Nil¬

potent fibre maps turn out to be the right relativization of
nilpotent spaces, because their Moore-Postnikov Systems admit
principal refinements I 7] . In { 8} we constructed a localization
theory for nilpotent fibrations. In this note we consider the
more general situation of fibrations with nilpotent fibre and
develop a localization theory for such fibrations.

The paper is organized as follows: in §2 we recall some

basic faets and definitions; in §3 we define a P-localization
for fibrations with nilpotent fibre and prove its existence;
the proof of the expected universal property justifying the
term P-localization is divlded into two parts: in §4-5 we prove

such a universal property for fibrations with fibre an Eilen-
berg-MacLane space of type (G,l) and in §6 for the general case
As a consequence we obtain the uniqueness up to a homotopy equi
valence of the P-localization of a flbration with nilpotent fi¬
bre.

I am indebted to Peter Hilton for suggesting me this work
and spending his time in helpful conversations with me.



§2.- Some basic definitions and results

We work in the pointed homotopy category of path-connected

spaces having the homotopy type of a CW-complex. A space is nil-
potent if Jr(X is nilpotent and acts nilpotently on for all
ní*2. A fibre map f:E —»B is nilpotent if ir(E acts nilpotently
on the homotopy groups of the fibre. Nilpotent spaces as well
as nilpotent fibrations are characterized by the fact that their
Postnikov decompositions admit principal refinements [7;II.2.4|.

Let P be a given arbitrary collection of rational primes.
A space is P-local if all its homotopy groups are P-local. A
fibre map is P-local if its fibre is P-local. By a theory of
P-localization in a category with P-local objects we mean the

following: For every object X there is a P-local object Y and
a morphism f:X »Y satisfying the following universal proper-

ty: for every P-local object Z,

f *: ( Y, Z] S [ X,Z] ,

where [ A,B] stands for the set of morphisms from A to B. A theo¬
ry of P-localization for nilpotent groups and spaces is develo-
ped in detail in | 7]. A comprehensive treatment of a process

more general than localization but executed in the semi-simpli-
cial category is given in I 2] .

A crossed-module is a right exact sequence of groups

N G Q together with an action of G on N satisfying
i) p(x.a)=x(pa)x 1, ii) p(a).b=aba 1, a,beN, xeG. We refer to
it briefly as the crossed module x.

If N is nilpotent and e:N >Np is a P-localization there
always exists a crossed-module Np *G(p)—* Q and a morphism
from x to it inducing e; this gives a P-localization theory in
the category of crossed-modules x with N nilpotent [ 6] .

Let G be a non abelian group and let K(G,1) be an Eilenberg-
MacLane space of type (G,l). There is a universal classifying

fibration, hereafter referred to as K(G,1) > E„-3-> b, where E„
O G

is a K(Aut G,l), B is BH with H the H-space of homotopy equiva-
lences of K(G,1) and the homotopy sequence for q reduces to the
natural one ZG >—»G —>Aut G —í»Out G l 3] .
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Now let G be an abelian group, Q a CW-complex of type
K(Aut G,l) and Q* the universal cover of Q. Let

R(G,n) = K(G,n) x Q*
Áírt G

be the quotient of K(G,n) x Q* by the diagonal action of Aut G.
The CW-complex K(G,n) is a classifylng space for K(G,n-1)-fibra-
tions and

K (G,n-1) » P -E_»K(G,n)

is a universal fibration, where P is the space of unbased paths
in K(G,n) which have initial point in Q (Q C—»R(G,n) is induced
by the canonical map Q* >K(G,n) X Q*) and which lie entirely
within some fibre of q:K(G,n) >Q (induced by K(G,n)xQ* >Q*)
I 10] .

Let G be a local coefficient system on X and e:X—> Q a

map inducing e:»jX »ir^Q= Aut G, where e is the action of ff^X
on the local system G. If [X,K(G,n)l denotes the set of fibre-
wise homotopy classes of maps 0:X—> K(G,n) satisfying q0=e,
we have

Hn(X;G) = [ X,K(G,n)]e.
The results on homotopy pullbacks we need are all included

in [9]. In particular, a topological pullback

i
f

*

1.
where f is a fibration is a homotopy pullback. Homotopy pull¬
backs satisfy the pullback property, i.e. for every space X and
any maps u:X —» B, v:X —»A such that gu*fv, there is a map 0
such that the diagram

is homotopy commutative and "essentially unique".
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§3.- Existence of a P-localization

All spaces are (pointed) path-connected and have the homo-

topy type of a CW-complex. Xf f:E tB is a fibration with nil-

potent fibre F and P is an arbitrary collection of rational pri¬
mes, we say that f is P-local if F is P-local f 7].

3.1. Definition. Let f:F *B be a fibration with nilpotent fi¬
bre F. A map P from f to a P-local fibration —* B Tí?
a P-local'ization if it induces a P-localization on the fibres

F ——» E B

The following theorem asserts the existence of a P-locali-
zation for fibrations with nilpotent fibre.

3.2. Theorem. Every fibration f:E with nilpotent fibre F
admite a P-localization.

Proof. We argüe step-wise on the Moore-Postnikov factorization

where each p is a fibration with fibre K(» F,n).
n n

First step: Let G^jF. p^ is induced from a universal fibration
K(G,1J »Eg »Bh by a map 0:B —t BH .

We know that every automorphism <¡/:G —»G determines uni-

quely an automorphism ^p:Gp—» Gp such that e*ls = ^pe, where
e:G—»Gp is a P-localization. Henee if H and H are the H-spaces
of self homotopy equivalences of K(G,1) and K(Gp,l) respective-
ly, by Lemma 3.3 of [ 4| applied to the pair (B ,E ) , there is aH Cj

map between the corresponding universal fibrations

K(G, 1) > E_ » B

I I i»
K (Gp , 1) 1 EGp > Bg

such that on the fibres is a P-localization.

Now we can define p^pjiEj^pj »B as the fibration indu-
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ced from K (G , 1) ——»E„ *B- bv a<t> tB —»B~. The universal pro-P Gp H H
perty of the pullback allows us to define a map >Ej^pj
over B inducing a P-localization on the fibres.

n^1 step (ri>2) : Assume we have constructed

E
Pn-n-1 n-2

n-1

P n-1

n-2

P n-2

Pn-
Jn-lTPT

n-1(P)
* En-2lPl^ ' ~*E1(P)

such that the map of fibrations p^ *Pi(p)> i**"-!» induces a
P-localization on the fibres. In particular, the fibre of P^(pj
is K(»1Fp,i).

Note that if F^r are the fibres of E^ >B, E^(p) > B
respectively, the square of fibrations

Pi*l
Ji+1

i + 1

E pi*l(P),
i+l(P) EÍ(P)

induces on the fibres a diagram

K(*. ^.Fri+l) * F1*1 *■ F1
i l i

K**i+1FP' i*l) * fi+1 *fÍ
and, arguing by induction, it turns out that F
a P-localization

Let P: P i

1*1 -^F1'1 is

■K(»nF,n+1) and P:P K(ffpFp,n+1) be the uni¬
versal fibrations for K(* F,n)- and K(» F_,n)-fibrations respec-

n n f

tively (see §2) and let 0n:En_-j »K(»rnF,n+l) the map which
classifies pn- We define Pn(p):En(p)-
tion induced from p by a map

E ,as the fibra-n-1(P)

V'n:En-1(P) K(»nFp,nM)

such that 0*_1(^n) = e,(*n),
5



where

""‘VllPrW —-i-» Hn(E (E ,it F)n-1 n

are induced by Pn j and e respectively. The existence of a &n
uniquely determined up to homotopy follows from Lemma 3.3 below.
The desired map Pn¡En ^nfP) over ® inducing P-locallzation
on the fibres follows then from the universal property of the

pullback.

3.3. Lemma. Let P be a map of fibrations

FP~

-> E —£—y

. „ 'íPl.
'(P)

B

I
0

inducing a P-localization on the fibres. tet A be a local coeffi-
cient system on with P-local abstract groupt such that the
induced acti.on of r-¡Ep on A is nilpotent. Then

P*: Hn(E(p);A) *Hn(E;A)
is an isomorphiom for all n>0.

Proof. A simple generalizatlon of the algébrale case [7;1.4.141
to spaces assures that for nilpotent X acting nilpotently on

the P-local group A

e*: Hn(Xp;A) a Hn(X;A) for all n>0.
Henee e :Hn(Fp;A)® Hn(F;A) and therefore the homomorphism indu¬
ced by P on the Serre spectral sequence with local coefficients

HP(B;Hq(Fp;A) ) ==%> HP+<J(E(p);A)
I

HP(B;Wq(F;A) ) --—-> HP+q(E;A)
is an isomorphism at the Ej-level. Thus the homomorphism

0*:H*(Ejp);A) >H*(E;A) is an isomorphism and the proof of
Lemma 3.3 is completed.

If the Moore-Postnlkov factorizatlon of f:E—»B is finite,

the above procedure yields the desired P-localization. In the

general case let the géometric realization of the'singular
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complex of lim E . Then there is a raap 0:E >E,„. such that^
«- n (P) ^ (P)

the diagram
-> lim E

Uim 0.

(P)
-» lim E

n (P)

is homotopy commutative. Recall |2;p.254] that there exists a

short exact sequence

l^m1» i+ lEn ir. (lim E )
i <- n

lim ir . E
<- i n

0.

But in our case the lim^-term vanishes because x. ,(p ) is an+1 i ♦ 1 *n
isomorphism for all n^i,i+l and an epimorphism for n=i+l. The-
refore ^>:E —> lim E is a weak homotopy equivalence.

4- n

Analogously it turns out that

"^(P) ® 'idi™ En(P)) = 1¿m ,riEn(P) 53 "^NlP)
for N large (N>i+1).

Consider now the diagram

E

I "i
-* E (P)

B

(P)
B ,

where is induced by the natural map lim En(p)_ B and F

is the homotopy fibre of f^pj. The commutative square over B
E_

I K
<p) Jn(P)

induces on the homotopy flbres a square

„ v

F > F

I 1
F » F°,

where Fn—» Fn is a P-localization.

Given an lnteger i we can take n large enough such that
the horizontal arrows induce isomorphisms on the homotopy groups.
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Henee ».F—nr.F is a P-localization for all i and therefore
i i

F—>F is a P-localization. This completes the proof of Theo-
rem 3.2.

§4.- A universal property for fibrations with fibre a K( >1)

In this paragraph we want to prove a special case of the
main theorem 6.1.

4.1. Theorem. Let f:E be a fibration with nilpotent fibra
K(G,1) and let 0:f *f(p) ^e a P-localization. For every map
r:f */ from f to a P-looal fibration f:E■—\B with nilpotent
fibre K(G,1) there existe a map b:f^^-~—±f uniquely determined
up to homotopy over B such that 6(3-: r over B.

Proof. Let K(G,1)——»E=-S-»B be the universal fibration for
VJ

K(G,1)-fibrations and let a:B—»B be the classifying map corres-

ponding to f. Look at the diagram

We shall construct a map ¥>:E^pj > E- with q<f> = °^(p) so t^lat
it induces a map 8:Ejpj *É satisfying the desired conditions
by applying Lemma 4.2 below which generalizes Lemma 3.3 of [41.

We use the following notation: Z,, z. . Z denote thef f(P) q
mapping cylinders of f,f^pj,q respectively, f=hf', f^pj=h'fípj.
q=hq' the natural decompositions into a cofibration and a homo¬
topy equivalence and j:B —»Z,, j’:B—► Z_ , j:B—>1 the£ r(P) q
canonical imbeddings.
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4.2. Lemnia. Let (X,A) be a 1-connected CW-pair, where X ie path-
connected and tet Br X a sub-CW-complex uith AOB=0 which is a

deformation retract of X. Let X-'*jA * Ant G and v :tí X ,A) >5
be homomorphisms rendering aommutativn the diagram

*2(X,A)
’ l J,*

G ► Aut G.

Let o.’ir^X —> 7,G and ')i:n ^X —» Out G be. the homomo rphisms induced
by v and X. If <*:B —> B ie a map which induces <¡/ and o on n

and *2 respectively, then there existe a unique homotopy clase
over a of maps

<p: (X,A)——*(Z ,E~)
q O

suck that x = (<p\A) *:■* jA ~—>* and v= <p t: ir ^ (X, A ) *n ? (ZE-).
The proof of the Lemma is given in §5.

Take as (X,A) the pair (Z, ,E. .) and as a:B —»B the
(P)

classifying map of f and consider the diagram of homotopy exact

sequences

0 ’V3

iP* i
Aut G —> Out G -* 0

Since G is a P-local group the map G ——>G factors through the
P-localization e:G »Gp making the corresponding square commu-
tative. The existence (and uniqueness) of a homomorphism

^!lrlE(P) » "’jE which makes the diagram commutative follows
from the fact that G —» ir^É —» ir^B is a P-local crossed-module
and

G -» iTjE XjB
6 J ] P* I

Gp —^^E(p) »*lB
is a P-localization of crossed-modules 16].



Consider now x~P»8 and ,E^pj) = Gp > G .

Applying Lemma 4.2 it follows that there exists a unique map

* ! (zf(P)'E<p>) ><zq'E5)
which extends a and induces x and v. The restriction ipj = iplE^
then satisfies

= hqVj = hpf'(p) = h^j'h'fjpj = ah'f|p) = "f(p>-
But, since q is a fibre map, there exists a map * E-

homotopic to such that

q»i = af(p)'
which can be extended to a map

* = ^(p/V)’ “"(Zq'EG)
by <p(x,t) = ív>jX,t) if (X, t)e E(P)XI

<p(b) =» a(b) if be B.

(Observe that f satisfies the conditions in Lemma 4.2 and mo-

reover h<p = ah’.)
Look now at the diagram

pr

where tj and y are defined as follows:

»j(x,t) = (0x,t) if (x,t) e ExI

V(b) = b if b e B,

7(x,t) = (prx,t) if (x,t) e ExI

7 (b) = a(b) if b eB.

Since the maps y and ipr¡ both induce the same homomorphisms

XP* = P*r*:riE ~—>Aut G, »e:*j(Zj,E) = G —»G and both extend
the mapa, by Lemma 4.2 they are homotopic over a; in other
words, there is a homotopy
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-» íz„,EF)q G
H: <ZfxI,ExI) —

sach that Hfcj = jar for every t.
Since

E f ., B

"1 I'
EG —-SI > B

is a pullback, <p^ and fjpj induce a map S:E|pj » É such that
?8 = and p6 =¡p^ (see the diagram at the beginning of §4) .
But this pullback is also a homotopy pullback because q is a

fibre map. Consider now the diagram

where all possible squares and triangles are commutative except
that p60 =» ip^0z:pr . Let H denote the restriction of H to ExI,
which satisfies qM~orf; i.e. there exists a map

G: (Exl)xl » B

(x,s,r) i » hH((x,r),s)
such that

G(x,s,0) = hH((x,0),s) = ÍÍHgjf(x) = hjorf(x) = af(x)
G(x,s,1) = hH((x,l),s) = qM(x,s)
G(x,0,r) = f\H((x,r),0) = ír)r(x,r) = arf(x)

G(x,l,r) = hH((x,r),l) = hjotf(x) - arf(x).

This means that the second diagram is homotopy commutative and
therefore, by the universal property of homotopy pullbacks f 91,
r = 60 by a homotopy N:ExI »E such that fN~f. But, since f is
a fibre map, there exists a homotopy N from r to 60 such that
fN = f. Henee r and 60 are fibrewise homotopic and the first

part of Theorem 4.1 is proved.
In order to show the uniqueness of 6 suppose that

S':fjpj » f also satisfies the condition in Theorem 4.1 and
extend p6 ' to a map v':(Z, ,E. .) ?(Z ,E-) over a, By the

i(P) q G
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uniqueness in Lemma 4.2, ifi and <p ‘ are homotopic over a and ar-

giling as before it follows that 5 and 5' are fibrewise homoto¬
pic .

§5.- Proof of Lemma 4.2

Let X*, Z* be the universal cover of X, Z respectively
41 v ^3

and let A*, E*, B*, B* the restrictions to A, E- B, B respec¬ta ü

-»(Z ,E = ) which
q Gtively. The homotopy classes of maps (X,A)

induce é:w,X •—»ir,Z = Out G correspond one to one to the basedr 1 1 q r
i/r-equlvariant homotopy classes of maps (X*,A*) MZ*,Eg). The-
refore it suffices to show that there exists a unique iff-equiva-
riant homotopy class inducing

v : jr
2 (X, A) = 7r2<X‘,A*)

and
n2iZ*q’Eñ) = *r2(VE6)

r: J^A* In G *ieg-

B* and B* are the universal covers of B and B, henee we can -

lift of: B > B to a map a* B* -—-» B* . Let <p^:A —* Eg be a map

inducing x on the fundamental groups and let be a lifting
of . B* is a deformation retract of X* and the imbedding andi i*
retraction B*^=~X* are lifting maps of the imbedding and re-r *

i - i *
traction B ^ X respectively. Analogously, B* —* 7*Z’

n* q
an imbedding and a retraction which lift B -■ J *■ Z

R q
Now define

g: X*
by

>Z*
q

Then, by Lemna 5.1. of [ 4| , in the diagram

A» — > X*

9

■'*
, Z*-» q

«ti
we have ge = q’*.¿>* . Since c is a cofibration there exists a
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a map g^rX* » Z^ homotopic to g which makes the diagram coramu-
tative and such that the restriction to B* is equal to a. The-
refore

gjC^q-VJ and g^-j***.
gl coincides with ip* and a* on A* and B* respectively and thus
it is a ^-equlvarlant map. From the facts that ir acts freely
on the cells of X*-A* (we can assume that (X,A) has no relati-
ve cells of dimensions <2, since (X,A) is 1-connected) and that
v ! ir (x* ,A* ) =ir (X, A) > G=>r _ ( Z* , E^) is í/'-equivar iant we can

4 Z 6 ÍJ

construct, cell by cell, a homotopy relative to A*UB* from gj
to an i/'-equivariant <p.

If v?^:(X*,A*) ^ (Z*,Eg) is another ^-equivariant map
which induces <*^B*—»§*, v :ir (X* ,A*) > G=>r - ( Z* ,F.%) andZ ¿ b

r = xl TjA* ► In G then

^jIb* = and ¥>jIa* m <f> Ia*
and, since both maps induce the same homomorphism on v^(X*,A*),
we can extend the last homotopy to a homotopy reí a on the
2-skeleton of X* and henee on X* because all obstructions va-

nish. Furthermore there is no obstruction to deforming this ho¬

motopy into an equivarlant one reí a. This completes the proof
of Lemma 4.2.

§6. - The universal property

In this paragraph we prove a universal property which jus-
tifies the definition of P-localization of a fibration with

nilpotent fibre introduced in §3.
6.1. Theorem. Let f:F >B be a fibration with nilpotent fibre
F and let P:f *f(p) a F-localis.ation. For every P-looal fi¬
bration f:F, *B with nilpotent fibre F and every map r:f
there existe a map S: f *■ f, uniquely determinad up to fibra-
wi.se homotopy, suah that 6(1 == t (fibrewise).

Proof. Let «:B —>B be the map induced by r on the base spaces

and let f be the fibre map induced by f and «.
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Denote by r':f »f the map induced by r (by the pullback pro¬

per ty) . The fibrewi.se homotopy classes of maps 8^ are in one to
one correspondence with those of maps 82» because, since f is a
fibre map, the bottom square is a homotopy pullback [ 9] and all
the diagrams are homotopy commutative. So we have only to prove

the theorem in the special case B=B (so that t is a map over B)
Conslder then the diagram

F i. E i >■ B

F > É * B

Because of the naturality of the Moore-Postnikov decompositions

lEn'hn)' íE<P)n'hñ}' [En'ñn}of f' f(P)' f' respectively [ 1], P
and t determine up to homotopy m^ps (J^íE^ ^Ejpjj and
TjtEj > over B such that

(31h1 hj0 and r jhj o* hjT over B.

The desired map 8 determines up to fibrewise homotopy a map

6Í:E(p)i—* such that SJflj = over B and S1 = S^hJ is
the first Xifting of in

E

P

E

f
4»

B .

Now > B, p^zEjpjj * B and p^Ej-—>B are fibrations

14



with fibres K(XjF,l), KfXjFp.l) and Ktx^F,!) respectively, 0
induces P-localization on the fibres and KfXjF,!) is a P-local
space by assumption. Theorem 4.1 then guarantees the existence
of a 8’, unique up to homotopy, and therefore of a unique lif-
ting VE(p)—>EX of f(p).

The higher obstructions to the lifting of 8^ lie in the
group Hn + 1 (Ejpj ,EjIí^F) , where T^F is the local coefficient Sys¬
tem determined by the action of x^E^p^ on x^F via the map

S^,:iTjE^pj = and the action of XjÉ on x^F is determi¬
ned by the fibration f. The action of x^E^ induces a nilpotent
action of ir,F_ on x F. For consider the diaqramJ P n 3

Vp

’lF

el f(P)x .* *1E(P) *1®

‘l*l
x^E XjB

For £ex F and 0ex,F-, we have
n 1 P

Since f S, e. = f(ri. e, = 0, there is a feir.F such that
* 1» 1 (P)« 1 1

e
2 ) = ®i*ei^ and thus

But F is nilpotent and therefore the action of XjF on xnF is
nilpotent. From the last equality it follows that the action
of x^Fp on x^F is also nilpotent.

Since x F are P-local groups we deduce from Lemma 3.3 that

Hn+1(Ejpj,E;1KnF) = 0 and henee there is a unique lifting of 8j
to E. This completes the proof of the theorem.

From this universal property it follows by a standard ar-

gument

6.2. Corollary. The P-localization of a fibration with nilpotent

fibre is uniquely determined up to a homotopy equivalence.
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