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MODALITY AND POSSIBILITY IN SOME INTUIT ION ISTIC MODAL LOGICS

1 INTRODUCTION

Traditionally, since the time of Aristotle, modal logic was built upon

two main concepts, namely those of necessity and possibility, currently taken

in an ontological sense. In the formal language they are represented by two

unary operators, L for necessity and M for possibility. In classical logic,

these operators are considered to be dual to each other and mutually definable

through the forimilae M^^L-1 and L <—^M-1 . However if we work on an in-

tuitionistic non-modal base logic, then the properties of the negation are

weakened, the duality disappears, and it is commonly admitted that both equi-

valences cannot remain val id, because they lead to conclusions stronger than

wished (see [3]). Of course one could ignore one of the two modal operators,

but we think this has no meaning, because the dual interpretation of one of

them gives natural birth to the other one*. On the other hand, several studies

of intuitionistic modal logic have been published where neither of the two

equivalences hold$,the operators L and M being both primitive and independent,

and linked through other indirect properties; see [15] , [3] , [4] , [5] , [7j ,

[8] , [14] , [16] and [13] .

Our choice is to try to apply Gfidel's proposal for S4, [ll], to an intu¬

itionistic base, that is, to consider L as a primitive symbol with implicative

S4-type axioms and to define M as ~,L"' . So we are formalizing a kind of

derived or "negative" possibil ity; here "p is possible" means that "it is con-

tradictory that p is necessarily contradictory", that is, a "logical" possibil ity

rather than an "ontological" one, although it derives from an ontological con-

2
cept of necessity .

The specific purpose of this paper is twofold: first, to analyse the beha-

viour of M in this context; second, to show the use of algebraic models to
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obtain logical properties of the Systems under consideration. Concerning the

behaviour of M, we focus on two points of special interest: On one hand, the

study of al 1 different modalities, that is, of al 1 possible combinations of

the three operators L j-1 and M that are non-equivalent. As it is well-known,

54 has a finite and indeed small number of different modalities, and they have

a relatively simple structure (see, e.g., C6J). The situation will be here much

more complex, of course, but we will find also a finite number of modalities.

On the other hand, a really interesting point is the possible definition of

intuitionistic modal logics analogous to S5 in the sense of [4], Clearly, this

is easy to do: it is enough to add to the basic system any one of the theses of

55 that are ndttheses of S4. However, due to the peculiar features of intuitio¬

nistic negation, different but classically equivalent axioms yield intuitionis-

tically non-equivalent Systems, and so it is of interest to investigate the

relationships which hold between them.

We are concerned only with extensions by formulae that have already been

used in classical works of modal logic to obtain S5 as an extensión of S4. Moreover,

the operator M does appear in almost all these formulae, and this increases the

interest of the analysis. We show four logical Systems of type S5, but we

make no attempt to single out one of them as "the true analogue of S5", although

we see that they are of increasing strength while sharing more and more modal

theorems with S5. Only the last one is not intuitionistically plausible, again

in the sense of T4] . We hope that the results shown in this paper can constitute

a basis to reflect on and to discuss about the adequacy of considering _,L'1 as

a genuine intuitionistic modal operator.

As we said before, we try to make an exhaustive use of algébrale models,

and accordingly we will use logical fomulae only when it is strictly necessary,

mainly to define logical systems and to State some results,as reduction of moda-
1 i ti es. The algebraic models of our systems are the topological pseudo-Boolean

algebras we have studied in [9] and [10] . Thus this paper will contain very
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few proofs the reader can consult [10] for all propositions and other facts

stated without proof in section 3.

2 THE BASIC SYSTEM AND ITS MODALITIES

The formulae of all our logical systems are built up from a (usual1y

denumerable) set of propositional letters with the connectives L , (unary)

and a ,v , —> (binary). We use the letters p,q, ... as metamathematical

variables for formulae, and we abbreviate '1L~' as M . Our basic system is:

Definition 1 We cali IM4 the logical system having the following axiom

schemes and rules of inference: A complete basis for intuitionistic propositio¬

nal calculus, and: Lp—>p

L(p-»q)—MLp->Lq)

Lp^LLp

The "Rule of Necessity" pi Lp .

From the preceding axioms and rules a syntactical consequence relation

I is obtained in the customary finitistic way; the Symbol i will be

omitted when it is clear that we refer to theorems. It is easy to show that in

IM4 , i— LLp<—x-Lp and p-^-q I— Lp->Lq ; so it is a "normal" modal

logic. It has appeared elsewhere under different ñames (see [3] , [13] , [14] ,

[16] ), and it is a "canonical" analogue of S4, at least regarding the necessity

operator. The analogy applies also to its regular unidesignated logical matrices,

that is, to its algebraic models, which are a weakening of topological Boolean

algebras.

Definition 2 A topological pseudo-Boolean algebra (tpBa froni now on) is an

algebra (A,I,"1, A ,V ,-> ) of type (1,1,2,2,2) such that (A,-1, A , v , —> ) isa

pseudo-Boolean algebra and 1 is a unary operator on A satisfying:
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la < a for all aeA ,

I(a-*b) < la—>Ib for all a.beA ,

2
I a = la for all a eA , and

II = 1 , where 1 is the máximum of A.

It is easy to see that I is monotone, that is, if a < b then la Ib,

and that it satisfies I(aAb) = la a Ib for all a.beA; we say that I is a

topological interior operator on A. An asA such that la = a is called open,

and the set of all open elements of A is denoted by J3 ; it is a sublattice of

A containing 0 and 1 and being relatively sup-complete, namely we have la =

= max {beB : b < a} , for all aeA . An alternative way of defining a tpBa
over a given pseudo-Boolean algebra A is to give a BC.A satisfying all the pre-

ceding properties; this is what we are going to do in the examples at the end

of section 3.

4
As it is well-known, algebraic semantics is the most faithful one and

it gives a completeness theorem under some natural assumptions, basically equi-

valent to the fact that the logic admits a Lindenbaum-Tarski algebra and it is

the free algebra of the class of algebraic inodels. Since this is our case, it

results that a formula is a theorem of IM4 if and only if it is true in every
tpBa, that is, the corresponding algebraic expression equals 1 in^every
tpBa for all allocations of valúes to its propositional variables s . This is

a usually fast way for proving things, because in tpBas we have a lot of resources

other than operating with the algebraic translations of logical formulae.

For instance, the properties of M are those of the operator 6 = _,P „

Note that from the definition we always have SPa = "’I 8 a for all aeA. If

a = 6a then we say that a is closed, and we denote the set of all el osed ele¬

ments by 1^ . We quote here the most immediate and interesting properties of 5
and T .



Proposition 1 In every tpBa A the following hold :

(1) 80 = 0 , a ^ 8a , 6a = 8^a for al 1 a eA ;

(2) If a 5 b then 8a <8b for all a,be A ;

(3) Pa é^Sa *í "’a « A^a síPIa for all a eA ;
(4) a *í8a = S^a ='1'18a for all aeA; and
(5) T is closed under a and contains 0 and 1 , and for all aeA it

holds that 8a = min {t eT : a .

We remark that (1) and (2) above tell us that 8 is an order-closure ope-

rator, but it is easy to see that it is not a topological closure ; see for ins-

tance example 4 at the end of section 3. Of course all preceding properties

(better : almost all) could be rewritten in their logical form as properties

of M . Let us do so in what concerns the reduction of modalities:

Proposition 2 The following formulae are theorems of IM4 :

(1) "’L ",_,Lpe-^> "’Lp ;

(2) IPT'p-^IPp ; and

(3) PlPIPLp-í^lPLp .

Proofs: For (1) put la for a in the right half of (3) in Prop. 1 . For (2)

apply I to the left half of (3) in Prop. 1. For (3), apply I to Pía Spia

to obtain Pía ^ISPIa , and do the same to la áSla to obtain la 15la ,

and then by negation and further application of I get 18Pía = PISIa ¿ Pía

To achieve the reduction of modalities it is enough to consider all combi

nations of ^ and L , since M is nothing but "’L'1 . Taking into account Propo

sition 2 and the fact that LLp e-»Lp and that np ■«->_,p , we see that all

modalities with more than three L reduce to shorter ones. It is obvious that

a modality with at most three L does not admit more than six "> without redu-

cing to a shorter one, so we see that the total number of essentially different

modalities is finite. By working methodically and with the aid of suitable tpBas

we can arrive at the following
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Theorem 1 The system IM4 has 31 different modalities, 17 being affirmative

and 14 being negative, satisfying the relations shown in the following schemes

(where • means the empty modality) :

m > M

iM 5* iMLM > nML-.n > ->Ml

^ | A M
L"1 3- LML'1 ^ LM"1 PL

This theorem can be found, essentially, in [13j , with some typographycal

mistakes; we are giving it here for the sake of completeness of the paper, but

we will not give more details of its proof.

However, the above mentioned paper does not use M at all, that is, all

modalities appear written only with L and n . In such a way they have a

unique shortest form, but if we use our M then this uniqueness disappears,

because of the law "’LMp «-s-MPp ; there are some worth-noting equivalences



produced by this law, such as MLMp nLMPp and its "dual" '1MLM",p<=-»- _1'1LML'1‘1

On the other hand, the only "real" laws of reduction of modalities in IM4 are

the ones in Proposition 2 and those arising from them ; besides LLp Lp we

quote the following ones : MMp <->• Mp , LMLMp LMp , MLMLp«^MLp , "'M',Lp

and T’M p L^p . In giving the written form of most modalities we

have made use of M so as to show them in their shortest form, and when this is

not unique we have simply chosen the one we found more interesting.

Another outstanding feature of IM4 modalities is the fact that if we want

to use only L and M and leave aside then we find exactly the same moda¬

lities as in classical S4 , and we find them arranged following the same scheme

We can also note that if </> is any modality built up prom L and M , then

we have IM4 t- v><pp -e-s-vp , that is, iteration of modalities which can be

written without makes no sense.

It is not surprising at all that the situation turns out to be very

different when we introduce negation, and that the intuitionistic base we are

working with results in a quite complicated and non-symmetric System of modali¬

ties, either affirmative or negative , as well as in the lack

of symmetry (or duality) between these two groups.
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3 SYSTEMS OF TYPE S5 AND THEIR MODALITIES

In this section we will present the four extensions of IM4 we are con¬

cerned with, each one with its algebraic models, and we will State the corres-

ponding theorem of reduction of modalities, along with sorae other properties.

We will complete the proofs of these theorems by going backwards from the

strongest system to the weakest one, in order to reduce to a minimuin the number

of tpBas actually shown or the number of computations to be performed on them„

The first extensión of IM4 we treat will be defined by the axiom that

von Wright used in [17j to define his system H",which is deductively equivalent

to S5 :

Definition 3 We cali IM4W the extensión of IM4 with the axiom fPMp—íPMp .

A tpBa A will be called weakly monadic if and only if it satis-

fies S^Sa = n8a for al 1 aeA .

It is clear that weakly monadic tpBas are the algebraic models of IM4W

and that we have the corresponding completeness theorem. There are some alterna-

tive definitions which use well-known conditions of classical modal logic or

of its algebraic studies ^, as the following proposition shows :

Proposition 3 In every tpBa A the following conditions are equivalent :

(1) S^Sa =',5a for all aeA , that is, T is closed under ;

(2) If aASb = 0 then SaASb = 0 for all a,beA ; and

(3) s(aASb) = SaASb for all a,beA .

Weakly monadic tpBas are very interesting from the algebraic point of view.

For Instance, in addition to (1) it can be shown that T is closed under ->,

and moreover it has the structure of a Boolean algebra with a suitable supremum;

as such it is a very natural quotient of the algebra. We quote here two (trivial)

properties we shall need later :



9

Proposition 4 In every weakly monadic tpBa it holds that(1)"'16a = 6Pa = "15a for al 1 aeA ; and

(p) ''Sla = ""la for all aeA.

Theorein 2 The logical System IM4W has 16 different modalities, 9 being affir-

mative and 7 negative, satisfying the relations shown in the following scheme :

-> M"1 > "’L

t A

^ LM"1 > IPL

Proof: We have just explicitly seen the reductions -lMLp<>_,Lp and nLMp

•e-s-"'Mp ; from them we obtain "’ML"1 ^p <-*- fPp , n‘,LMp<^-Mp , '1-,Lp <-^MLp ,

Ln“'Lp'f-»LMLp and L"1-1 p «f-^-LMlp-'p by the use of and taking (4) of Prop. 1

into account. Now the diagram for IM4 becomes the one shown above. After having

proved theorems 5 and 6 we will see that this diagram is exact, that is, that

there are no other implications than those actually shown and that these are

proper.

t
"’M

t
L"1

The second extensión of IM4 will make use of any one of four well-known

axioms and rules, originally used by Wajsberg [18] , Lewis [12] and Becker [l].
The definition rests on the following

Proposition 5 In every tpBa A the following conditions are equivalent :

(1) I la = nIa for all aeA , that is, B is closed under ;

(2) I5a = 5a for all aeA , that is, T sB ;

(3) a <. I5a for all aeA ; and
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(4) If 6a b then a <.Ib for all a,beA .

Definition 4 We cali 1M4M the extensión of IM4 with any one of the following

axioms : '1Lp->L'1Lp , Mp->LMp , p —*-LMp or with the rule Mp—>q i— p-s-Lq .

A tpBa A will be called monadic if and only if it satisfies any

one of the conditions in Proposition 5 .

Thus monadic tpBas are the models of IM4M . It is easy to see that they

are also weakly monadic (for instance, (1) of Prop. 5 implies (1) of Prop. 3 ,

trivially) , and so IM4M is actually an extensión of IM4W (and example 4 at the

end of this section tells us that it is a proper one). Some of the new axioms

for IM4M are themselves really classical laws of reduction of modalities. Let

us see them all :

Theorem 3 The system IM4M has 10 different modalities, 6 being affirmative and

4 negative, and they are arranged according to the following scheme :

L~> -i *- M"1 > -’L

Proof: From the very axioms we get L'1 Lp <->',Lp , LM ^ p M“’p , LMp<—>Mp ,

and LMLp <^>MLp . Since monadic tpBas are also weakly monadic, from a <.5a

we have 6-|6a =~'5a ^'’a and then (4) of Prop. 5 gives us _,5a ^ Pa , which

completes in IM4M the law i—"'Mp Pp . From it one gets "’M^’p L"1“,p .

Thus the diagram for IM4W becomes the one above, and, as in the preceding case,

we delay the complete proof a little.

Our third extensión of IM4 uses an implicatlve axiom without M which was

used by Beth and Nieland in [2j .
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Definition 5 We cali IM4S the extensión of IM4 with the extra axiom

L(Lp->q) •e—>(Lp->Lq) .

A tpBa A will be called strongly monadic if and only if it

satisfies that I(Ia—^b) = Ia~>Ib for a 11 a.beA.

It is equivalent to say that B is a subalgebra of A. This makes clear

that all strongly monadic tpBas are monadic, that is, IM4S is an extensión

of IM4M ; example 3 will show that it is a proper one. However we shall see

later that IM4S has exactly the same modalities as IM4M has.

Our last extensión of IM4 can be obtained with three distinct axioms ;

the first ones are both well-known modal laws whose duals have already been

used, while the third one appears in [3] (and in a slightly different form

in [13] ).

Definition 6 We cali IM5 the extensión of IM4 with any one of the following

axioms : MLp—?-Lp , MLp-?p , and fLpvLp .

These three axioms are equivalent <m the basis of IM4 because they are

true in the same class of tpBas, a very well singled out one, namely the class

of all semisimple tpBas . The information we need is contained in the following

Proposition 6 In every tpBa A the following conditions are equivalent :
O

(1) A is a semisimple algebra ;

(2) B is a Boolean subalgebra of A ;

(3) 5a = min {16 B : a < t} for all a e A ;

(4) 5 la = la for all aeA , that is, BsT ;

(5) 61a <a for all aeA ; and

(6) I^IavIa = 1 for all aeA .

We can see that every semisimple tpBa is strongly monadic. This tells

us that IM5 is an extensión of IM4S, but it also helps us to understand the

structure of semisimple tpBas : they are exactly those tpBas where T = B and
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this is a subalgebra of A which is Boolean. This has an interesting logical

reading : In IMS the necessary propositions agree with the possible ones, and

they bave a totally classical behaviour ; this is a ctaracteristic property of

S5 , already noted by Lewis in [12] . Consequently, we have the laws ",'1Lp«Lp

and ~'LpvLp ; the validity of such formulae is considered by Bull as "intui-

tionistically implausible" in [3j and all Systems containing it are rejected

as genuine intuitionistic analogues of S5 according to the criteria of [4] ,

namely according to the one requiring that collapsing the modal operators the

System must yield the intuitionistic propositional calculus. However, our IM5

is weaker than the system initially considered by Bull, because this one had

the mutual interdefinability of L and M , which is not true in IM5, as we shall

see later. It is easy to compare 1M5 with MIPC, a system introduced by Prior

in [15] and studied by Bull in [4] and [5] , in spite of the difference of

languages, due to the respective algebraic semantics. So we can State :

Theorem 4 IM5 is the extensión of MIPC with the extra axiom Mp n L"1 p .

Proof: Both Systems IM5 and MIPC are complete with respect to their algebraic

semantics, IM5 with semisimple tpBas and MIPC with matrices (H,K, [l] ,n , a,

v,—>, I ,5 ) , where (H,-1, a , v, —>) is a pseudo-Boolean algebra and

K &H is a subalgebra of H which is relatively complete , with la = max tbeK :

b^a) and 6a = min {teK : a¿t) for all aeA ; that is, MIPC is complete
with respect to a special class of strongly monadic tpBas which have an addi-

tional 6 not related to I. But if we extend MIPC with Mp-^»-_,L~1p then 6

becomes the usual one of all tpBas and moreover it satisfies (3) of Prop» 6 ,

which tells us that the models of the extended system are the semisimple tpBas .

So the two Systems are equivalent and the theorem is proved,

It should also be noted that if is a formula without M such that

IM4S I—^ then we also have MIPC «—^ . The converse is not true, because
g

there are strongly monadic tpBas whose B is not relatively inf-complete . So



we can say that to a certain extent MIPC is an intermediate System between

IM4S and IM5.

Concerning the reduction of modalities it is quite odd tliat in IH5 there

is oniy one new law of reduction, namely the one appearing in the definition ,

MLp Lp . So we have :

Theorem 5 The logical system IM5 has 9 different modalities, 5 being affirmative

and 4 negative, according to the following scheme :

Proof: It is clear that the scheme for IM4M is transformed in the one here

shown for IM5 . To see that all implications are proper and that no one holds

between p and L-,_1p we consider the

Example 1 On the pseudo-Boolean algebra

with 12 elements A = (0,a,b,c,d,e,f,g,h,i,j,l}
given by the present Hasse diagram ^ , we

take B = (O , c , j , l] as the set of open

elements. This obviously defines a tpBa, as

we observed after Definition 2 ; we give here

tables for "• , I and 6 as they are the operators we use more often :

0 a b c d e f g h j 1

“I 1 e j b h c 0 e b c 0

I 0 0 0 c c c 0 C 0 c j i

s 0 j j c 1 1 j i j 1 j i

As we can see , B = T and this is a Boolean subalgebra of A , so this tpBa

is a semisimple one, that is, a model for IM5 . One can check that here
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If < f < -i-'f , If < I "’-'f , I -l~,b , -ni 8 i , b4 I "-l-,b , I-nf ^ f ,

Pb -c'nb<5'1b and ¿Pf <PIf . Consequently no one of the implications of

the scheme can be reversed ñor can we add any one more : the scheme is exact.

We can also verify in the preceding example that the formula Lp-^►"'M"'p

is not a theorem of IM5 , giving p for instance the valué f .

We can now complete the determination of the modalities in all systems

weaker than IM5 :

Theorem 6 The logical System IM4S is weaker than IM5 and has the same modalities

as IM4M .

Proof : For the proof we are going to use the

Example 2 Let A = fO,a,b,c,d,e,f,g,h,l] be
the pseudo-Boolean algebra given by the present

Hasse diagram, and take B={0,c,e,h,l}.
It is easy to check that B is a subalgebra of A ,

that is, the tpBa is strongly monadic, but B is

obviously not Boolean, so the tpBa is not semisimple. We have a model for

IM4S which is not a model for IM5, thus proving that the latter is stronger

than the former. Concerning modalities, of course IM4S has at most those of

IM4M , but in our example h = Ih <n_,Ih = 1 , so the only possible new

reduction (the one which holds in IM5) is not true in IM4S . Since example 1

is also strongly monadic, we conclude that the diagram in Theorem 3 is exact

for IM4S .

Note that we have already completed the proof of Theorem 3, too, because

examples 1 and 2 are monadic tpBas, and so the counterexamples there found do

hold for IM4M. That this System is actually weaker than IM4S is shown by

Example 3 Take B= (0 , d , g , 1} in the same pseudo-Boolean algebra as

example 2. Here B is closed by "i but g -> d = f £ B , so this makes a monadic
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tpBa which is not strongly monadic, that is, a model for IM4M whicli is not a

model for IM4S.

Now to complete the proof of Theorem 2 we will exhibit a weakly monadic

tpBa where we can find counterexamples for all implications between modalities

of 1M4W not appearing in stronger systems; the remaining ones are proper simply

because examples 1 and 2 aré, of course, weakly monadic.

Example 4 Take B=[0,a,b,d,l} o/er the same pseudo-Boolean algebra

of example 2. The resulting tpBa has the following tables for "i , I and 5 :

0 a b c d e f 9 h 1

~1 1 e c e 0 c 0 0 0 0

I 0 a b a d b d d d 1

8 0 c e c 1 e 1 1 1 1

T = lo , c . e 1) is closed under

tpBa is weakly monadic and not monadic. This tells us that IM4M is stronger than

IM4W. If we allocate p to e we see that the implications LMLp-^MLp ,

ln_'p —^M^p , LMp—^Mp , fp-^Mp , IkPp —fPp and L"1Lp --^',Lp
cannot be reversed. So all the implications of Theorem 2 are proper. Finally

there cannot be any more implications than those shown in Theorem 2 because

otherwise they would appear in Theorem 3 or they are simply disproved by allo-

cating p to a .

Note that in example 4 8cv8e = cve = h t 1 = 8h = 8(cve) , which

shows us that 8 is not a topological closure, which we announced between
J>í

Proposition 1 and Proposition 2. Actually, the condition ofVbeing a topological

closure is true in all semisimple tpBas but it is independent of all other

systems, see [10] . For the sake of completeness we should show that JM4W is

really stronger than IM4 :
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Example 5 Take B = fO , c , 1] in the same pseudo-Boolean algebra of the

preceding examples„ Now T = [0 , e , 1] which is not closed under "i , so

this is a tpBa which is not weakly monadic.

NOTES

1. It is worth noting that in modern studies of several modal-like logics, as

deontic, epistemic, temporal we always find two unary operators similar

to the classical ones.

2. It should be emphasized that the remaining alternative, that of considering

M as primitive and defining L as M, is not interesting at al 1, because

even if we adopt very strong axioms for M we are not able to prove the sim-

plest properties of L. For details ste example 5.10 in [l0].

3. On the other hand, this is not the first paper on reduction of modalities in

intuitionistic modal logic : see [13].

4. However, this virtue can be a sin in specific circumstances, as Sotirov points

out in page 160 of [16] : "(...) algebraic semantics is very general, but at

the same time not very informative because it differs insignificantly from

the logic itself".

5. Recall that in every pseudo-Boolean algebra a->b = 1 iff a b , and that

a <-*»b =' 1 iff a = b iff a < b and b ^ a .

6. This proposition is stated without proof in [13] , where there is a mistake

in (3) .

7. For instance, the definition of monadic Boolean algebras by Halmos.

<vv*A 0=^ 1
8. A tpBa is simple iff it has only two open elements, 0 ancfT^(this is equi-

valent to having only two distinct congruence relations, which is the ori-
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ginal universal algebra concept of simplicity). A tpBa is semisimple iff

it can be represented as a subdirect product of simple tpBas. Severa!

properties of semisimple algebras are first proved for simple algebras and

then extended to semisimple ones through this representation.

9. For instance, take A to be the set of all real numbers between 0 and 1, and

take B = (0 , lj U{reA : 1/3 < r 2/3 } . This B is relatively

sup-complete and a subalgebra of A , but it is not relatively inf-complete.

10. As it is well-known, finite pseudo-Boolean algebras are the finite distri-

butive lattices, and the operation -?■ is characterized by a b =

= max { ceA : a ac ^b) for all a.beA . So the table for —can be
obtained from the Hasse diagram, as are those for a and v ; and

recal 1 that ~>a = a-^-0 for all aeA .
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