ON POLYNOMIAL BOUNDS FOR THE KOSZUL HOMOLOGY OF CERTAIN MULTIPlicitY SYSTEMS

by

J-L. GARCIA ROIG
ON POLYNOMIAL BOUNDS FOR THE KOSZUL
HOMOLOGY OF CERTAIN MULTIPLICITY SYSTEMS

J.-L. GARCIA ROIG

1. Introduction

In this paper \(R \) will be a commutative Noetherian local ring.

Let \(M \) be a finitely generated \(R \)-module and \(x_1, \ldots, x_r \in R \) a multiplicity system on \(M \), which means that

\[\text{length}_R(M/IM) \leq \text{length}_R(M/I^nM) \]

where \(I \) is the \(R \)-ideal generated by \(x_1, \ldots, x_r \). We will tacitly assume that no \(x_i \) is a unit, for, otherwise the functions to be considered in what follows would be all zero.

It is well-known that the function

\[n \mapsto \text{length}_R(M/IM) \]

is polynomial of degree equal to the dimension \(d \) of \(M \), for \(n \) large (\(d \) is necessarily less than or equal to \(r \)).

As \(I^n \subseteq (x_1^n, \ldots, x_r^n)R \subseteq I^n \), we see that the function

\[n \mapsto \text{length}_R(M/(x_1^n, \ldots, x_r^n)M) \]

is bounded above and below by polynomial functions in \(n \) of degree \(d \). However \(M/(x_1^n, \ldots, x_r^n)M \) is just the zeroth homology module of the Koszul complex \(K(x_1^n, \ldots, x_r^n|M) \), so part of the above assertion says that the function

\[n \mapsto \text{length}_R H_0 K(x_1^n, \ldots, x_r^n|M) \]

is bounded above by a degree \(d \) polynomial in \(n \).

In this paper we prove that a similar statement is true for the higher homology modules of the Koszul com-
plex, i.e., that \(\text{length}_{R} H_{1}K(x_{1}^{n}, \ldots, x_{r}^{n}|M) \) is bounded above by a polynomial in \(n \) of degree \(d \), for any \(i \geq 0 \).

I am indebted to Dr. D. Kirby for his helpful suggestions.

12. The higher Koszul homology modules. We start with two technical lemmas.

Lemma 1. Let \(M \) be an \(R \)-module and \(x_{1}, \ldots, x_{r}, y \) be elements of \(R \). Then, for any \(i \geq 0 \),

\[
\text{length}_{R} H_{1}K(x_{1}, x_{2}, \ldots, x_{r}|M) \geq \text{length}_{R} H_{1}K(x_{1}^{n}, \ldots, x_{r}^{n}|M).
\]

Remark. It is not necessary for the lengths involved to be finite.

Proof. The inequality follows from the exact sequence (cf. [4] p.IV-2)

\[
\begin{array}{cccccc}
0 & \rightarrow & H_{1}K(x_{2}, \ldots, x_{r}|M) & \rightarrow & H_{1}K(x_{1}, x_{2}, \ldots, x_{r}|M) & \rightarrow \\
& & x_{1}H_{1}K(x_{2}, \ldots, x_{r}|M) & \rightarrow & \rightarrow (0:x_{1}) & \rightarrow \rightarrow 0,
\end{array}
\]

and the corresponding one for \(H_{1}K(x_{1}y, x_{2}, \ldots, x_{r}|M) \), by observing that both \((0:x_{1}) \subseteq H_{1-1}K(x_{2}, \ldots, x_{r}|M) \), \((0:x_{1}y) \subseteq H_{1-1}K(x_{2}, \ldots, x_{r}|M) \) and \(x_{1}H_{1}K(x_{2}, \ldots, x_{r}|M) \supseteq x_{1}yH_{1}K(x_{2}, \ldots, x_{r}|M) \). #
Lemma 2. If x is a non-zero-divisor on M, we have

$$\text{length}_{R} H_{1}K(y_{1}, \ldots, y_{r}|_{M} / x^{n}M) \leq n \cdot \text{length}_{R} H_{1}K(y_{1}, \ldots, y_{r}|_{M} / xM).$$

Proof. Apply the functor $H_{1}K(y_{1}, \ldots, y_{r}|_{*})$ to the sequence

$$0 \rightarrow M / x^{n-1} \rightarrow M / x^{n} \rightarrow M / xM \rightarrow 0,$$

which is exact because x is M-regular, and use induction on n. #

Next, the goal of this paper.

Theorem 3. Let M be a finitely generated R-module of dimension d and $x_{1}, \ldots, x_{r} \in R$ a multiplicity system on M. Then, for each $i \geq 0$, the function

$$n \mapsto \text{length}_{R} H_{1}K(x_{1}^{n}, \ldots, x_{r}^{n}|M)$$

is bounded above by a polynomial in n of degree not greater than d.

Proof. By induction on d, the case $d=0$ being trivial.

Assume $d>0$. As x_{1}, \ldots, x_{r} is a multiplicity system on M,

$$(x_{1}, \ldots, x_{r})R \notin \bigcup_{P \in \text{Ass}(M)} P .$$

P non-maximal

Thus, by Theorem 124 of [1], there exist $\lambda_{2}, \ldots, \lambda_{r}$ in R

such that $x=x_{1}^{\lambda_{2}}x_{2}^{\lambda_{2}} \ldots + x_{r}^{\lambda_{r}} \notin \bigcup_{P \in \text{Ass}M} P$. In particular

P non-maximal

$\dim(0:x^{n})<d$ for all n, since

M
Ass(0:x^n) = AssHom(R/\langle x^n \rangle, M) = V(x^n) \cap AssM = V(x) \cap AssM,

and if P \in \text{Supp}(M) has coheight d, then x \notin P.

Now, from the expression for x, we observe that

\((x_1, \ldots, x_r)_R = (x, x_2, \ldots, x_r)_R\),

so that \(x, x_2, \ldots, x_r\) is also a multiplicity system on \(M\) and that \(x^n = \nu_1 x_1^n + \cdots + \nu_r x_r^n\)

for some \(\nu_1, \ldots, \nu_r\) (depending on \(n\)). But we have

\[\mu H_1 K(x_1^n, \ldots, x_r^n | M) \leq \mu H_1 K(\nu_1 x_1^n, x_2^n, \ldots, x_r^n | M) = \mu H_1 K(x_1^n, x_2^n, \ldots, x_r^n | M), \]

the inequality by virtue of lemma 1 and the equality due to the fact that the invertible matrix

\[
\begin{pmatrix}
1 & 0 & \cdots & 0 \\
\nu_1 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\nu_r & 0 & \cdots & 1
\end{pmatrix}
\]

together with its exterior powers establish an isomorphism between \(K.(x_1^n, x_2^n, \ldots, x_r^n | M)\) and \(K.(\nu_1 x_1^n, x_2^n, \ldots, x_r^n | M)\) and so it is enough to prove the theorem with \(x_1^n\) replaced by \(x^n\).

Take \(t\) large enough so that in the exact sequence

\[0 \to 0:x^{rt}_M \to M_M \to M/(0:x^{rt}_M) = \overline{M}_M \to 0 \]

\(x^n\) be \(\overline{M}\)-regular. From the Koszul homology sequence

\[H_1 K(x_1^n, x_2^n, \ldots, x_r^n | 0:x^{rt}_M) \to \]

- 4 -
\[\rightarrow H_1 K(x^n_1, x^n_2, \ldots, x^n_r|\overline{M}) \rightarrow H_1 K(x^n_2, \ldots, x^n_r|\overline{M}) \]

we have, for \(n \geq t \),

\[\leq H_1 K(x^n_2, \ldots, x^n_r|\overline{M}) \leq \]

\[\leq H_1 K(x^n_2, \ldots, x^n_r|0:x^r t) + H_1 K(x^n_2, \ldots, x^n_r|\overline{M}). \]

The first summand on the right is bounded by induction by a polynomial in \(n \) of degree at most \(d-1 \). As to the second, since \(x \) is \(\overline{M} \)-regular, we have

\[\leq H_1 K(x^n_2, \ldots, x^n_r|\overline{M}) = H_1 K(x^n_2, \ldots, x^n_r|\overline{M}/x^n_r) \quad \text{(by [3]p.368)} \]

\[\leq n \cdot H_1 K(x^n_2, \ldots, x^n_r|\overline{M}/x^n_r) \quad \text{(by lemma 2),} \]

and as \(\dim(\overline{M}/x^n_r) < \dim(\overline{M}) = \dim(M) \), by induction also,

\[\leq H_1 K(x^n_2, \ldots, x^n_r|\overline{M}/x^n_r) \leq \text{polynomial in } n \text{ of degree strictly less than } d. \]

This concludes the proof. #

Remarks. 1. In case \(r=d \), for instance, if \(x_1, \ldots, x_d \) is a system of parameters for \(M \), then a stronger result is obtained from [2]. There it is proved that \(H_1 K(x^n_1, \ldots, x^n_r|M) \) is bounded by a polynomial in \(n \) of degree at most \(r-1 \). So the importance of the theorem above becomes clear when \(r \) takes large values.

2. A proof by double induction on \(d \) and \(r \) can be given to theorem 3 if we bear in mind that [2] ensures the case \(r=d \).
Corollary 4. Let M and x_1, \ldots, x_r be as in the theorem. Then the functions

$$n \mapsto x_i^n(x_1^n, \ldots, x_r^n|M)$$

where x_i stands for the i'th Euler-Poincaré characteristic (cf. [4] App. II), are bounded above by polynomials in n of degree not exceeding the dimension of M. #

Remark. The results above carry over almost immediately to the case of a semilocal ring by means of the formulae

$$\text{length}_R(N) = \sum_{\text{maximal } m} \text{length}_{R_m}(N_m),$$

for any module N of finite length, and $\dim_R M = \sup_{\text{maximal } m} (\dim_{R_m}(M_m))$, together with the fact that taking homology commutes with localisation, i.e., in our case $H_i K(x_1^n, \ldots, x_r^n|M) = H_i K(x_1^n, \ldots, x_r^n|M_m)$. In fact, if the Hilbert-Samuel polynomial function associated with (M,I) has degree g (where $g \leq d$), then, for each $i \geq 0$, both $H_i K(x_1^n, \ldots, x_r^n|M)$ and $x_i^n(x_1^n, \ldots, x_r^n|M)$ are bounded above by polynomials in n of degree at most g.

REFERENCES

J-L. García Roig,
Cruz Roja 26, 3º4º,
Hospitalet,
Barcelona,
Spain

Key words, Hilbert polynomial functions, multiplicity system, Koszul complex.