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A GENERALIZATION OF WRIGHT'S INEQUALITY

J-L. Garcia Roig

Let R be a commutative ring with identity, E an

R-module and X,,...,Xx eR a multiplicity system on E ( see (11,

nr
""’xr )E

any positive integers nl,...,nr. and Wright's inequality

p.295 ). Then the length lR(E/(xnz ) is finite for
1

( see [1] p.296 ) says

n

E n E
L € Nye.on -t
r{ /(xll,...,xr’)x) nyeeon - el /(xl,...,xr)E)’

for arbitrary nl.....nr.

This inequality can be written as

n np
‘aHoK(xl veeer Xy |IE) < nl...nr-LRHoK(xl....,xrlE),
nl nr
where K(x1 veee s Xy |E) denotes the Koszul complex defined by
n n
r

E and the elements L R RERES S
In this paper we establish that for a Noetherian

module similar inequalities hold for the higher Koszul homo-
n n
logy modules, i.e., for 120, LHiK(xll,...,xrrlE) <

nl...nr-lﬂiK(xl....,xrlE). Moreover, the same is true for the

higher Euler-Poincaré characteristics of the Koszul complexes
n n
1 r

n .
1
1 ....,xrrlE), i.e.,, for i20, we have xi(x1 yo e

K(x

nl...nr-xi(xl,...,xrlE), where, by definition,

Xy (%) 50, % |E) =J§1(—1)J'i EHK(xy s ey x 1B,

Actually the inequality for x; is en equality if 1=0 (see [1)

p.311 ).



n n
We also prove that the functions '.Hix(xll,...,xr
n

n
and xi(xll,...,xrrlE) increase with the exponents LIPRERN

TIE)

In what follows R denotes a commutative ring with
identity, E is a Noetherian module over R and xl,...,xrcR
is a system of multiplicity on E. This will ensure that all
the lengths which appear are indeed finite, though some of the
results would also hold without assuming the lengths to be

finite. We denote the length by & or th.
Lemma 1. Let E be an R-module and xl,....xr,y be elements of R.

Then, for any 130,

L
RHiK(xl""’xr|E) < LRHIK(xly,xz,....xrlE).

Proof. The inequality follows from the exact sequence (cf. [2]

p.Iv-2 )
H,K(x,,...,x_|E)
0 — i 2 L ~—s H,K(X, ,X,1000,%X_|E) —=
i 1'72 r
leiK(xz,...,xr!E)
(0:x,) 0,
Hi—lx(x2""'xrlE)

and the corresponding one for HiK(xly,xz,...,x |E), by obser-

ving that both (O:x,) ¢ (o: xly)

P Hy_ 1K(x2,...,x IE) 1_1K(x2,..,xrlE)

Q}f\s\? xlﬂix(xz, eee ,xrlE) 2 xlyHiK(xz, cee ,xrlE) .

\“:; Bearing in mind that the Koszul homology modules do

not depend on the order of the elements defining it, we get

the following



Proposition 2. For any 120, the mapping from NT to N defined by

n n
1 r
(nl,...,nr)b———--*)tHiK(x1 veeea X |E}
is increasing, 1i.e., nlsml,...,nFSmr imply

n

1 nr ml mr
mix(x1 ....,xr.lE) < mix(x1 veeea X |E). #

Lemma 3. If aeR, then we have:
1) s(0:a™) ¢ n-¢(0:a), and
E E
E E
i) (Y ng) en-e (77 )
Proof. By induction on n. From the exact sequence

n-1
.a R/an

R R
/ R e /an..lR.—._.._, 0,
R ~ n
if we apply HomR( ,E), we get i), for HomR( /anR'E)=0éa ,

and if we apply .8E, we get ii), for (R/anR)QE;E/anE. #
R R

Proposition 4. The following inequality holds for all 120,

n
LHiK(xl,x ,xrlE) £n LHiK(xl,xz,...,xrlE).

PRRE
Proof. From the exact sequences (see (21 p.Iv-2 )

0 ———*HOK(alﬂiK(x ..,xrlE))———>HiK(a,x2,...,xrlE),,.m\\ .

2’

UN'VERS

—>H K(alH, ,K(x,,...,% |E))—>0, / 1 PARCELON,

£y
with a=x, or x| , we get ‘ ‘\%

1 1
H,K(x,,...,%x_|E)
1H1K(x?.x2,....xrlE)=l( ni 2 L )+£(O:x?)
x1HiK(x2.....xr|E) Hi—l(xz""xrlE)



HiK(xz,...,xrlE)

< n-t{ +n-2(0:x,) =

xIHiK(xz,...,erE) Hi—lx(xz""’xr|E)

= n~LHiK(x1,x2,...,xr/E),

the inequalities being by virtue of lemma 3. #

Again by the independence of the Koszul homology
modules with respect to the order of the elements, Proposition
4 yields the following theorem which generalizes Wright's

inequality.

Theorem 5. For any 1;0, and any nl,....nrao, we have

n

n
1 r
LHiK(x1 yeeea Xy |E) € n -LHiK(xl,...,xrlE). #

1...nr

Let us consider now the higher Euler-Poincaré charac

n

1 nr -
RERREE N IE) =

teristics. Observe first that xo(x

$ >
nl...nr~xo(x1,...,xr|E) and that xo(x ..,erE)/O (cf. [1]

1"
p.311 ). For the higher characteristics we have

Proposition 6. For all i»0, the mapping

ny nr
(nly'--onr) }'__’ xi(xl ,."’xl‘ 'E)

from NT to N is increasing, i.e., n1$m1....,nrsmr, imply

5 nl nr ml ml‘
v Xi(x1 yeees Xy |E)g Xi(x1 vesea X |E).

Proof. By (2] p.IV-56, we have

- (
xi(a,xz....,xr|E) = LHIK(aIHi_lK\x ..,xrlE))+

2’

- 4 -



+ xo(alxi(xz....,xrlE)).

Setting a = Xy or x,y and using the multiplicativity of %o

( see {1] p.311 Cor.1 ), we deduce
xi(xl,xz,...,xrlE) £ xi(xly.xa,...,xrlE).
From this we get, for n<m, that
n m
Xy (X0 x5s e 00 1E) € xy(x5,%5,0 00, x |E).
Proceeding equally with the other variables ( Xi does not

depend on the order of the elements), we get the result. #

We finish with a theorem on higher Euler-Poincaré

characteristics similar to theorem 5.

Theorem 7. For any 120, and any nl....,nrzo, we have

nl nr
xi(x1 veeea X |IE) € nl...nr-xi(xl,....xrlE).

Proof. It 1s enough to prove
n
xi(xl,xz,...,xrlE) <€ n‘xi(xl'XZ""’xt“E)'

and this can be done by considering the formula used in the

proof of the preceding proposition with a=x, or x?. We get
n
xi(xl,xz....,xr/E) =

= L(o:x?) + xo(x?lxi(xa,-...xrlE))

H1—1K(x2"“'xr/E)

< n-2o: . . >
n (O.xl)H K(x 1) +n Xo(xllxi(XZ' % |E))
1-1K X0 e ea Xy



= n-Xi(xl,xZ,...,xrlE),

the inequality being justified by lemma 3. #
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