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Introduction

In this paper we generalise the well-known Gauss algo-
rithm for counting primitive representations of positive
integers by positive definite ternary quadratic forms ([3],
Arts 278-292) to the case of guadratic forms in k variables.
Our main considerations are based on the systematic use of
exterior algebra which, in our opinion, simplifies the whole
treatment and helps to understand some apparently hidden
ideas.

Some applications of our treatment are given.

1. Preliminaries

k
Let f(xl,...,xk) = E: fij Xy xj be a k-quadratic form
1,j=1

with associated matrix F = (fij). We will assume throughout
that all our quadratic forms are (ntegraf in the classical

sense (i.e., with fije Z), symmetric (i.e., F = Ft where

t

# 0). We shall also assume that our forms are positive

F~ denotes the transpose of F) and non singufanr (i.e., det F #

m%
” Céf@l,



definite though most results still hold for the general case.
We shall write indistinctly either f or F for a gquadratic
form. We will say that £ is padimitive if the entries of F

generate the unit ideal.

The adfoint M9 of a square k-matrix M can be intro-

duced as follows: it is the matrix associated to the endo-

k-1 & k-1 4 k-1 4
morphism (A ¢) ¢+ A E —> A E 1in the basis
j-1 * * *
{{(-1) € neesnyni.uney) , where 1is the endomorphism

1<izk

of E = Z!k with matris M in the (canonical) basis S ERRRTL N

* *
and where €yreeeryp denotes its dual basis.

From the commutative diagram

t
t A t
ANE —2f 5 A E
(1)
*
detg.(ve ) e
k-t

k-t o Ay) k-t
A E¢<—— A E

*
where ue stands for the contraction (on the left) with

*
1
we infer, taking t = 1, the well-known expression

*
€ynea.aly (the commutativity of (1) is easily checked),

M43 M- et M . I,

adj

and, by duality, that M.M = det M.Ik, with Ik standing

for the identity matrix of order k . If det M # O, weobtain

det M233) = (get m¥! ana M?93)293 = (gert m¥" 2. .



When we speak of the adjoint of a gquadratic form f we
will mean the quadratic form associated with the adjoint
of the matrix F(symmetry and nonsingularity are obviously
preserved).

We remark in passing that Laplace's expansion rule for
determinants is a consequence of the commutativity of (1)
~which holds for an arbitrary commutative ring R and a
finitely generated free R-module E- provided that we take

{eI} as basis in AtE, where I = {11<...<it} runs over the

I
ordered subsets of t elements of {1,...,k} and e; stands
k-t
for € ~seenBy and {mIv] as basis in A E , where I'

1 t I
is the ordered complement (jl,...,Jk t} of I in {1,...,k}

and w = sgn(I,I"') e A...Ae . Actually it is easy to
I ) Ik-t

see, with the above bases, that the matrix of At? is the
t-th exterior power At M of the matrix M, i.e.,(MIJ), where

MIJ stands for the t-minor of M defined by the rows of I

and the columns of J. The matrix (AI.J.) associated with

k‘t 'Y

Ay satisfies A = sgn(I,I') sgn(J,J') M

'y’ JI °

(Observe that the t-th exterior power can be defined for

a nonsquare matrix).

Remark. In the case t = 1, we observe that the adjoint MadJ

k21t i-1
of M is the matrix A. A M .A where A = ((-1)
k-1 k-1
for a square k-matrix N we put A N = 8( A N)A ' we see that
adj k-1 t k-1 k-1 k-1 k"l
M = xmpt = (2 mYand that 3 (wp) = A N. A P, if P

Gij) . If,

is also a square k-matrix.



Let f be as before, i.e., a k-quadratic form and g an
*
h-quadratic form with h<k. The set R (g,f) of primitive

nepresentations of g by £ is defined as
* _ + _ h
R (g,f) = {Aekah(z)| A'FA = G,g.c.d. of the entries of A A=l1}.

The condition that the entries of AhA have g.c.d. one means
exactly that the columns of A may extended to a basis of
E = Zk.

Similarly, if n is an integer, the primitive nepresen-

tations of n by £ is the set

*
R (n,£) = {(x;) € Z°| £(x,...0%) =n, g.c.d.(x;,...,%) = 1).

k)
*
This coincides with R (g,f), for g the form nx2.

The proper isotropy group of f is defined as
+ t
o (f) = {Aesx.k(m]A FA = F}.

* * *
We set r (g,f) = # R (g,f), r (n,f) = ¥ R (n,f) and
+ +
o (f) =¥ 0 (f).
Two k-forms f, f'are paoperly equivalent if and only

1
if there exists a matrix Ae SLk(Z) such that F = AtFA.

2. Primitive representations of positive integers by

quadratic forms

Proposition 1. Let f be a k-quadratic form. Then there
exists a primitive representation X of a positive integer

n by £ if and only if there exists a (k~1) - quadratic form
g of determinant n.(det(f))k_2 and a primitive representa-
tion A of g by fadj such that X = Akxlh.

-4 -



Proof. Let X be a primitive representation of n, so that,
k"l *
in particular, XtFX =n. As A E =E (by contraction) and
k-1
each element of A E is decomposable (see [1] p.-A II1I1 171,

Cor., which also holds for a free module), there exists an
k-1
integral kx(k-1) matrix Y such that A Y = AX or, equivalently,
k-1 . .
A. ANY = X. Let G = YtFadJY. By the symmetry of FadJ we have

k-1 k-1 . k~1
det G = AG= (At A rdd)(hy) =
k-1 k-1 . k-1 . .
= (At aac A ) a8 (A = xtpadiyadiy o

Xt.(det F)k_z.F.X = n, (det F)k.2 .

Obviously Y is primitive because X is so. The converse is

clear from the above. #

Remark. If k = 2, this proposition is vacous, so we will

assume henceforth that k > 2.

From the preceding proposition we can assure that the
map A +—> Ak;lA from the set (1 of primitive representations
of (k-1) - quadratic forms of determinant n.(det(f))k"2 by
fadj to R‘(n,f) is surjective. With this notation we have.

k-1 k-1
Proposition 2. If A and B are in @, then A A = A B if and

only if there exists a matrix Ce SL (Z) such that A = BC,

k-1
Proof. Let VyseaerVi and Wireoo W be the respective
columns of A and B. We can complete VieeessVig to a basis

of zk with a suitable v, because A is primitive., Then



Wireesa¥Wy 45 V is also a basis of Zﬂ(with the same orienta-

tion as VyreeesVyp_ 1oV because, by hypothesis,
ViaeseaVy_ ) = WineeoaWy o .

If we now write each vis 1 24 <k, as a linear combina

tion of WireeasWp 1oV 2

v, = A.w, ¢+

i 11 ...+Ak_1wk_l+xv ’

we see, by making the wedge product with v AreeaVy g that

1

A =0, from which follows the existence of C. The converse

is obvious. #

Proposition 3. Let g and g' be two (k-1) - quadratic forms
of determinant n(det(£))% 2
k=1 *_adj . adj
Aw—> A A A of the subsets R (g,f2%)) and R (q',£297) of O

. Then the images under

are either egual or disjoint according as g and g' are pro-
perly equivalent or not.

proof. Let G = aAtr?¥Ja apna ¢’ = Btr29ip, 1f a s
then, by proposition 2, A = BC for some C eSLk_I(Z) and
this implies that G = ctG'c, i.e., that g and ¢' are pro-
perly equivalent, in which case A +——> AC establishes a

adj)'

. * .adj * .
bijection between R (qg,f ) and R (g',f and these

*
two sets have the same image in R (n,f) because

k-1 k-1
AAa= A (AC) . ¥

v
Remark. In the above proof, observe that if G = G , then C

automatically belongs to O+(g).



From the preceding results the next theorem is obvious.

* adj
Theorem 4. r*(n,f) = EE: —f—lglf——ii— ,

0+(g)
where the sum is extended to a complete set of representatives
g of (k-1) - quadratic forms of determinant n(det f)k_2 modulo

proper equivalence.

*
3. Evaluation of r (g,f)

For simplicity, instead of fadJ, we take f as a k - quadra
tic form and g a (k-1) - quadratic form primitively represented
by f.

For each primitive representation B of g by f let us now
construct a square nroot of - det(f) gad] modulo det{g) :
Extend B to an oriented basis B of Zk and put

t

G = B'FB . Then G is an extension of G properly equivalent

to F. In particular det G = det f.

2 . '

A& . A @) = @etn i, .
(3)

On the other hand, by the diagram (1),

2 k-2

_ %
AG . ( A G) = det(f).I .
T

These two expressions yield

2 _ a3 k-2_ *
AG29T) = det(f).( A C)



from which, writing 24 - (G 3293 o G

150 13

2 ..
AE9) = G[2)), and setting T = {1,k) , J = {j,k)} , with

i,j<k , we get, taking into account akk = det(g) and
T ) .
sgn(1,I ).sgn(J,J ) = (-1)1+3, that
2 82 -G ..a G, @ d e
(2) 17 = Gij' et(g) - Gik ij = det(f).( A G)I,J' =
k=1 4
= det(f).{ A G) ' y = det(f).Gi. R
{i}, {3} J
i.e.,
éik Ejk z - det(f).Gij {mod. det(g)), which means
that
_ 2
G.. x z - det(£) .63 (moa. det(g)) '
ix *4 = . : grt-.
i=1

Remark. Obviously, if g and g' are properly eguivalent then

# *
r (g,f) = r (g',f).

Proposition 5. With our previous notation, the association
k-1 _
B +—> E G
i=1

*
¥y induces a well defined map from R (g,f)

ik

to the set of homogeneus linear forms in
(z/det(g)z)[xl""'xk-l] which are square-roots of
dj

-det (£).q%%? modulo det(g).

47
Proof. Let us extend B to another oriented basis B of Zk.

v -
Then B = BT for some T of the form

-8 -



(3)

t

n Y 4V
If G=B F B, then G = Tt G T, and by applying
k-1 t
X ( ), i.e., passing to adjoints, we get
vadj adj _adj & adj
G =T G (T") .
vadj
An explicit calculation for the last column of G gives
v -
(4) Gix = Gyp - oy det(g),

for 1 < 1 < k, so that

v

Gy = E;ik (mod. det(g)). #

To the square roots of - det(f) gad] modulo det(g), we

next associate extensions of g. More precisely,

Proposition 6. Let f be a k-quadratic form, g a(k-1l)-quadratic

form and b = b x +...4by_ %, | €X [xl”"'xk-l] a square root
of -det(f) gadJ modulo det(g). Then there exists a unique

k-quadratic form g, (with matrix G, = (g,.)), extension of g
b b ij

with det G, = det(f), such that aik = bi , for 1 <i <k,

b
where (aij) = (Eb)adl. The entries of éb are not necessarily

integral,

~deane. o



Proof. From the expression (see formula (2))

(5) Gij.det g - bibj = det(f).Gij

we have that a;dj is unique and therefore §b is unique too. #

Remark. The k-quadratic form §b in the preceding proposition
can have all its entries integral but this implies neither
that § is equivalent to f nor that Eb belongs to the genus
of £ (cf.[2] ch.9).

For each square root b = b1x1+"'+bk—lﬁvdez[xl""’xk-1]
of —det(f).gad) modulo det(g), such that Eb is properly
equivalent to f, which implies that §b has integral entries,
let Z+(§b,f) denote the set of proper representations of

abby £, i.e.,
(G f) = { M = G, )
T (g, f) = (MeSL (Z)|MFM = G }.

Obviously, %’ (3,,f) is in bijection with 0’ (f).

- *
We map Z*(gb,f) to R (g,f) by sending each M to the

submatrix obtained from M by deleting its last column.

Remark. Let ¢ the map induced from the union of the sets

Z*(ab,f) to R*(g,f). Clearly ¢ is surjective : if

* -
B ¢R (gq,f), extend B to a oriented basis B of zk and

t FB. Then, if b is the square root associated

put G =8
to @33 then by uniqueness (cf. prop. 6), G = g, + so that

BeY (@ f) and ¢(B) = B.

~ 10 -



Proposition 7. Let b = b x,+...+b, _;x,_, and

adj modulo

C = C X *tee tCy_ 1%y be square roots of -det(f) g
det(g) such that both §b and §C are properly equivalent to f.
Then, the images under ¢ of ?f(Eb,f) and zf(ac,f) are either
disjoint or coincide according to b £ c or b = ¢ (mod det(g))

respectively. Moreover, the restriction of ¢ to each

€' (3,.f) is injective.

Proof. Let Mc% (3, ,£) and M e¢T*(3_,£) be such that

(M) = ¢(M'). Then necessarily there exists Te¢ SLk(Z) of
type (3) such that M = M'T. But then ab = Ttéc T and
proceeding as in the proof of proposition 5 we get (cf.

formula (4))

i cy ~ oy det(qg) ,

which implies b = ¢ (mod det g), and the injectivity statement
if b = c. Moreover, from G, = Tt &c T we see that M —» MT
establishes a bijection between ¥'(J_,f) and ¥' (g, ,f) and as
p(M) = @(MT), because T is of type (3), these sets have the
same image under ¢ .
Conversely, if b = ¢ (mod det g), write bi =c; - ooy det g

for suitable integers ay and consider

S \-//



Then a simple calculation shows that the last column of

. aa adj
adj szj (rh is(bl,.n,bk_l,det g)t and so, by uniqueness

T
e nAa adj —ane
(cf. propos. 6), TadJ szj (Tt) = ngj . In other words,
Tt(_;cT = (-;b , and thus, as we have just seen,
+ = + =
¢ (% (gcrf) = (f (‘z (gbrf) . #

Corollary 8. If g is a (k-1)-quadratic form primitively

represented by a k-quadratic form f, then
* +
r (g,f) = o (f).s(g,f),

where s(g,f) denotes the total number of inequivalent
(mod. det(g)) square roots b = b1x1+...+bk_1xk_1 of
—det(f).gadJ whose associated §b are properly egquivalent

to f.

Remark. In fact s(g,f) is an invariant of the genus of

g (for the definition of genus see (2] , Ch. 9). If g'
is in the genus of g , then (cf. [2] , p. 140) there
exists a form g" properly equivalent to g such that

g" = g' (mod M), for all M > 1, Then, cobviously for each

fj in the genus of £, s(g,fj) is an invariant of the genus

of g. We shall write s(gen g,fj).

3. Sums of squares

We now give some special properties that appear when
2
f = I, + i.e., f(xl...,xk) = x1+...+xi . We keep all the

preceding notations.

- 12 -



Proposition 9. If g is primitively represented by Ik .

Then, ¢ is necessarily primitive.

Proof. Let p be a prime which divides all the entries of g.
Then p|det(g) and plG1j so that from (2), for 1 = j , we
infer plaik , for all i, in which case, expanding the
determinant of G297 by its last column, we get

k-1

adJ) = (det Ik) , which is impossible. #

pldet(G
Proposition 10. If f = Ik' the unique k-quadratic form §b
obtained in proposition 6 is in fact integral.

dj

. a
adJ) = Gb , it suffices to see

Proof. As in this case (Eb
that Ebadj is integral. This assertion is immediate from

the expression (5) .

Gjj-det(g) - byby = G,

k-~
together with the fact that E:% b,x; is a square root of

i=1
—gadj , i.e., that

bibj = -Gij + Aij det(qg),

for suitable integers Aij . i

4. Applications

*
1) As a first application we give a formula for r (n,I3)
known by Gauss, and which, in fact, motivated the deve-

lopments of some techniques we have just already explained.

- 13 -



We assume that n is a positive integer non congruent to 0,4
or 7 modulo 8. Otherwise, as is well-known, n is not a
primitive sum of three squares.

Under this condition, by theorem 4 and proposition 9,
*
* r (9113)
r (n,I3) = _—
+
o (g)

where the sum is extended to a complete set of representatives
g of primitive 2-quadratic forms of determinant n, i.e., of

discriminant -4n, modulo proper equivalence. Moreover, in this

*
sum we can reject the terms such that r (g,I3) O, If n > 3,
then we know o+(g) = 2 (see [9] s P. 63). If n = 3, we observe
that if g = ax2+2bxy+cy2 is a primitive, i.e., g.c.d.(a,b,c)=1,

binary form represented by I then g.c.d.(a,2b,c) = 2 so that

3'
o+(g) = 6.

Thus, for n > 3, the above sum may be written as
* 1 *
r (n,I3) =3 r (g,I3) ’

*
but by corollary 8, r (g,13) = o+(I3).s = 24.s.
Now, for a sguare - root of -gadj(mod n), there exist a
unique integral extension ab of g, with det ab =1 (cf.

proposition 10). Such a §b must be necessarily positive-

definite and consequently properly equivalent to 13, because
13 has improper automorphs, that is, there exists U GL3(E) B
with det U = ~1 , such that U'I,u = I, (cf. [6] , Section9.2).

This shows that s is equal to the total number of sqguare-

roots of -gadj (mod n). Let us now calculate these.

- 14 -



We have to solve for b = b1x1+b2x2 the congruences

(6) bi E-g22 (mod. n)
(7) b1b2 9y, (mod. n)
(8) b; =91, (mod. n)

By the chinese remainder theorem, if

uooy oy
n = 2 p1 -+ <Pg (u = oorl, oy > o), this is reduced to

solve the same system modulo 2"(ifu= 1) and the different
Py -

The case modulo 2 obviously has a unique solution.

Let us now consider the case modulo p:i (this occurs
if and only if n > 2), and observe that 911 and 959 cannot
both be divisible by Py since, otherwise, pilg12 and g
would not be primitive. So, assume for instance, that
pi,}'g22 . Then (6) has exactly 2 solutions (cf. [5] p.44),
because g is primitively represented by I3 and this implies
the existence of solutions for the above system as we have
seen in §2. But, for each solution b1 of (6), there exists
a unigque sclution b2 of (7) . this is because b1 is invertible
{mod p:i), since p;fg,, . This solution for b, in (7) satisfies

(8) automatically :

-1 2 -1 2

2 ):_ :_-1( )
1 9127 7 7927 912 7 7922-1911-922

b2 z (b

E—gll (mod. P



o,
Thus the above system has exactly 2 solutions modulo pi1 and,

consequently, 2® solutions modulo n. So we have

Theorem 11. If n # 0,4,7 (mod 8) is an integer greater than

3, then
* t
r (n,I3) = 12.2°.% ,

where £ is the number of proper equivalence classes of primi
tive binary quadratic forms of determinant n which are primi

tively represented by I, and t is the number of distinct odd

3
prime factors which divide n, #

ii) Recall (cf. [7]) that the weight of the number of primi-
tive representations of n by all the forms in the genus of £
is
*
r (n,f.)

u*(n, gen f) : = i —;——J——
i=1 o (fj)

with the fj running over a complete set of representatives
of the classes in the genus of £ and k denotes the number
of proper classes in the genus of £.

Now, let p(gen f) be the weight of the genus of f, i.e.,

k1

u(genf) =)  —mp—

j=1 o (f.)
3

So, if s{gen gi, gen f) is the number of square roots

of ‘det(fad])-gidj whose associated §b are in the same

of £, we obtain

- 16 -



. m

Proposition 12. v (n, gen f) = E:: s (gen g, +gen £).u(gen gi)
i=1

where m is the number of genera of (k-1)-quadratic forms of

determinant det(£)X72. n .

adj)

Proof. We first observe that o+(f = o+(f), and so, by

theorem 4 and corollary 8, we have

%*
- (n'fj) S(gi'fj) 5?: ( £f.).u( )
—_— = ——— = s(gen g_, .u{gen g B
o+(fj) o+(gi) i=1 i3 i

which concludes the proof, because obviously

s(gen g,,gen f) = i
j=1

s (gen gi’fj) . ]

iii) We now consider the congruent number problem (see [8]),
and denote by h(-4n) the number of classes of primitive binary
quadratic forms of discriminant -4n, i.e., of determinant n.
We give another proof of the fact (cf. [8]) that no prime

congruent to 3 modulo 8 is a congruent number.

Proposition 13. Let p = 3(mod 8) be a prime integer. Then p
is not congruent.

Proof. We let f stand for the quadratic form 2x2+y2+3222 and

2+y2+822 , and use the fact that if n is congruent

g for 2x
*
then r (n,g) = 2r*(n,f), for n a square free positive integer

(see [8]).

- 17 -



By applying Siegel's "Hauptsatz" [7] we know that
r*(n,gen g) = 4h({-4n).

As the genus of g consist of a unique class (see [4]),

we conclude that for a congruent square-free positive integer,

*
we must have r (n,f)

2h{-4n).
On the other hand, we have seen that r*(n,f) = 4¢t, for

some positive t, so, if n is congruent then h(-4n) is even.

Now, take a prime p = 3(mod 8). We have that h(-p) is

.odd (cf. [9] p. 112 Korollar), and that h(-4p) = 3 h{-p)

(cf. Ex. 8)d), p. 74 cf. [9]). We thus conclude that p is

not congruent. #
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