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INTRODUCTION

The singutar series has great importance in the study of the number of representations of a
rational integer as a sum of integral squares (cf. (3]).

As is known (cf. [3], [8]) the sum of the singular series is just the average number
r(n, gen I) of representations of a positive integer n by the genus of the jdentity quadratic
formin k variables.

Bateman [2] calculated the sum of the singular series in the cases k = 3,4, following
Hardy and Hecke methods. His results can though more easily be obtained by using Siegel's
formula for the evaluation of r(n, gen 1,).

In this paper we derive in some special cases a formula for r(n, gen I})), from Siegel's
formula, which covers those considered by Bateman. We use Gauss-Weber sums to evaluate the
2-adic densities, which, in Siegel's method, causes the main difficulties.

Our considerations in the case k = 24 also yield the celebrated Ramanujan's formula
about the number of representations of an integer as sum of 24 squares.

I wish to thank Professor P. Bayer for her encouragement in doing this paper.

1. EVALUATION OF r(n, gen I;).

The number of representations r(n,f) of a given positive integer by a quadratic form
cannot be determined in general. However, this number can be approximated by the average value
1(n, gen f), where gen f stands for the genus of f. Recall (see [8]) that two integral quadratic
forms are said to belong to the same genus if they are equivalent over all Zp including p = oo,

Given a positive integer n and a positive definite integral quadratic form f of k

variables, k 22, Siegel's formula (see [8]) asserts that 1(n, gen f) can be evaluated by means

of p-adic densities Bp(n,t), with p primeor oo, as follows
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tm,genf) = ed_(n NI dp (n, 0,
P
with €=% if k=2 and e=1 if k>2; where

T2y (det % 0920272, §f poca.
9 -
pio fp2a (0, 1), forall o 22B+1, where pBli2n , if p is prime.

(rq(n,f) means the number of representations of n by f modulo q).

Proposition 1. Let k be an odd positive integer, and let 1, be the quadratic form

Xq+..+Xyg. Then:
iy o (L) = Tk s¥2n&22 | forany neZ.
o0 k
(‘1)(k-1)/2 p-2b n
ii) Let x,(a,b) = {a_(— Hpt-hre}l
P

with p2in bur p2+2 t n, b>0. Thenfor p#2, andany neZ.
a-p'M k@0, i pin

ap n L) = b-1
a-pH (X pW L PR @ b)) i pln.
§=0
k-1 2 if k=n(mod8)
i) 95 (n, 1) = 22k ( 2(§)+v), with v = , for n odd.
q=1 0 in other case
q=n (mod 4)

The symbol (-) always means Legendre’s symbol.

Proof. The statements of i) and ii) come directly from ( [8], Hilfssatz 16). iii) By
definition, 82 nIy)= 23(1-k) 13 (n, I3) and by elementary combinatoric methods one gets

the result, »

From proposition 1 and Siegel's formula we can state the following

Proposition 2. If k and n are odd positive integers, then the value of 1(n, gen L) is:



-1&D2 g b-1
Ag (n) k22 Y, m(l-k)lz( ) - ( Y pi2 , ph2-b) K(n b)) i
m odd m po j=0
k-1
where  Apm:=23M2[ @1 TR L1 )T ( Z (!!‘)+v)
?1;:. (mod 4)

Here § denotes the Riemann zeta function and v  is defined as in proposition 1.

Proposition 3. Let n be a positive integer such that 421 n, p2®|n, p?®*2}n, a20,

b20. Then:
b-1
£(n 1) = Ay(n).n% L (L X 40 TT (Z pi+pb xp(n, b)),
pin j=0

where L (S, X_gy) is the L-series associated 1o the character X_ 44 and

0 if 4%np = 7 (mod 8),
As(n) = 1 wl2i6 if 420 = 3 (mod8),
w1224 if 48n = 1,2,5, 6 (mod8),

Proof, Since for k=3 there is only one class in the genus of I3, we have r{(n,genl;)=
=r(n, I3). Therefore, if n is odd the claim of the proposition follows from proposition 2.
Now, if n is even, to calculate 32 (n, I3) we distinguish two cases:

) 4 tn, inwhichcase ryts1 (0, 13) = 2215t (n, 13), t23. So, 3 (n13) = 3/2
if n =26 (mod8).

ii) 4%n, az1, inwhichcase r(n,I3) =r (4®n, 13). Therefore, wecan apply either the

expression given in proposition 1if 47n is odd or the one obtained above if 2{43n. «

Next, we calculate r(n, genl5,) forevery n andfor k even. As usual, vp(n)

will denote the p-adic valuation of n.

Proposition 4. Let n and k be positive integers, k even. We have:
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Bl = Ik ! nkakl,
vp(n)

i) 2, Ty = (p) (2 ), for par2.
§=0

iiiy If n isodd 9y(n,ly) =1. If n iseven, then:

Vz(n)-l
14, 2000 2vMA0 | if k=20 (mod 4)
j=1
82 (n, l2k) =
Vo ()1
1.2, BUK 4 290K it 2 (mod 4)
j=1
Proof. i) and ii) follow immediately from ({8], Hilf. 16). iii) The evaluation of
3, (n, I9) is not covered by Siegel's formulae. So, in order to calculate these densities we define
2 2k

0,3 (m, Ipy) =~ 2 exp{(282ximiy (x)), for me(Z/25Z)*, and
xe (2/252)2k

Bs m, Iz) = Z p‘2ks . 928 (m, Iyy) .
te Qq/Z,
va(§)=-s

‘Then (cf. {1}, prop. 3):

32 Iy = Z Bg(n, Ipy) .
Ee Qz/Zz
va8) < o

Forany me(Z/!/2%Z )‘ , wehave (cf[4], Ch.7)
2k(s+1), if k=0 (mod4)

925 (m, le) =
W+ exp (27 mimk) if  k=2(mod4)



Taking into account well-known results about the values of the ordinary Gauss sums (Cf. [4],
Ch. 7), it is easy to evaluate the sums B(n, I5;). They are given by:
1 if s=0

0 if s=1o0rs>vy(n+1

By(n, 1220 = ]

W2 26D G 1cs<vy ()

{ (DR2 2K e s van) 41, von) >0
To achieve the asserted results, it suffices to substitute these values in the expression of
dmly) e
Let n be apositive integer and write n=22.m with a2>0,2tm. Then, we set
o' ) = (D[ 20, (n/2) -6, (W]
where, as usual, oy (n) denotes the sums of the k-th powers of the divisors of n; we

agree that o, (n/2)=0 if n isodd. Next, applying the preceding proposition we get:

Proposition 5. Let n=2%m, with a2 0 and 2tm be a positive integer and k an

even positive integer. Then:

) r(n genly) = CRo'y () , if k=0(mod4).
(a-1)

i) r(n genly) = C(k)oy  (m) @D .Y, 2ikD 41y, i k=2(mod Ay,
j=1

where C(k)=2k[ (2k-1) Bk,z]‘l , with By denoting the Bernoulli numbers (see [S) ).
From the above proposition, in particular, we have:

16
) ringenly) = _ o))
691

ii) r(nIg)=24a(m) and r(n, lg)=16 03' (n), since, in the genus of Iy and Ig

there is only one class.



Next, we apply the preceding considerations to give:

2. RAMANUJAN FORMULA.

Let 0 (Iy4,2) = 2 (0, Tpg) q", q=e2TiZ be the theta series associated to the
n20

quadratic form Iy4 andlet 0 (gen ly4,2) = Z r(n, gen I4) q" be the theta series associated
n20

to the genus of Ipg. Asis known, 8 (Ip4,z) belongs to the space M, (g (4)) of modular
forms of weight 12 with respect to the group Ty (4) (see [7]). Let F(z) = e 2 A@) =

=2 1(n) q“=1]24(z), be the discriminant modular form ([5). Here, t(n) is the
n21

Ramanujan function and m(z) is the Dedekind eta-function.

Lemma 6. The space S5 (T'y(4)) of cusp forms of weight 12 with respect to the group

Fo (4) admits the following basis:
{n?@, nM@+%), e, o'l n'220)},

being 0 (z) = Z q“2 the Jacobi theta-function.
n20

Proof. As F(z) belongsto S;j(SLy(Z)) is straightforward that F (2z) belongs to
a b

Si2 (Tp(2)). Moreover, as forany y = ( ) €Ty (4) we can write
c d

4a+2c 4b-c - 2a-d)

F(W(@ +%) =F(ypy(z+%)), with v, 1/4 ( )e T4
4c 4d-2%

wehave that F(z +%) isin Syp (Fy(4)).
The last function 6'2 (z)n12 (2z) belongs also to Sy (I (4)) because o2 (z)

is in Mg(Ty(4) and “12 (2z) in  Sg(T(4)). Itis wivial to test that the four



functions are linearly independent. They are a basis because dim¢: Sy (l‘o @) =4 (Cf.[6),

th. 2.23). .

Now, taking into account the following data:

n t(n) r(n, I4) 691 r(n, gen Iyy)
1 1 48 16
2 -24 1104 32752
3 252 16192 2834368
4 - 1472 170064 67141616

we see, applying lemma 6, that the function 0 (Ip4,2)- 0 (gen Iy, z), which lies in
S12(Ty(4)), can be expressed in the following way:

8(lyy,2)-0(genly,,2) = 691-! (33152 F(z + %) - 65536 F(22)) .
Therefore by proposition 5 we get Ramanujan formula to count the number of representations
of a positive integer as sum of 24 squares:

16 . 128
r(mly) = — oM+
691 691

{¢-1)" 259 T () - 512 T (% )},

where T(y) means zero when y isnot an integer.
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