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Abstract: Bielliptic surfaces (also called “hyperelliptic surfaces”) are defined to be minimal algebraic
surfaces of Kodaira dimension 0 and irregularity 1. They play a special role in the birational classification
of surfaces. The first part of this paper gives an explicit description of the cohomology group H?(S,Z)
for a bielliptic surface S. In the second part the author proves the existence of smooth bielliptic surfaces
in P4, The proof relies on Reider’s criterion for very—ampleness. In fact, a complete characterization of
polarized bielliptic surfaces in P4 is given. These surfaces add to the very short list of known irregular
surfaces in P4, the other two being the abelian surfaces of Horrocks—Mumford and the elliptic quintic
scrolls.




DIVISORS OF BIELLIPTIC SURFACES AND
EMBEDDINGS IN pP*

Fernando Serrano

§ 0. INTRODUCTION

The aim of this paper is to describe the Picard group of the bielliptic surfaces and to

show that some of these surfaces can be embedded into P*%.

Bielliptic surfaces are defined to be minimal algebraic surfaces of Kodaira dimension
0 and irregularity 1. They play a special role in the birational classification of surfaces.
Often they are also called “hyperelliptic surfaces” (as in [1]) although we prefer to use the
name “bielliptic” as proposed by Beauville in [2]. It is already classical the distribution of

the bielliptic surfaces into seven families.

In Section 1 we give an explicit description of the cohomology group H?(S,Z) for
a bielliptic surface S. A pleasant reward of such a study is the construction of smooth
models in P* for some of these surfaces, for a very special class indeed. This is carried out
in Section 2. We will also provide a complete characterization of the polarized bielliptic
surfaces in P*. Surfaces in P* are in general quite hard to study, and several important
questions remain unaswered. In particular, it is still a mystery whether there is a univer-
sal bound for their irregularity. Until now, to this author’s knowledge, there were only
two known families of smooth irregular surfaces in P, namely the abelian surfaces of

Horrocks—Mumford and the elliptic quintic scrolls. The family of bielliptic surfaces we are
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constructing here provides a third example. Hence their interest. The proof relies on the

description of Pic(S) combined with Reider’s criterion for very—ampleness.

§ 1. PICARD GROUP OF BIELLIPTIC SURFACES

Let us set up the notation first. Our surfaces will always be smooth, irreducible,
projective schemes of dimension 2 defined over the field of complex numbers C. If D is a

divisor on a surface S we will denote:
— Os(D) : = the invertible sheaf associated to D.
- h'Os(D) : = dim H'Og(D).
- XOs(D) : = ¥iso(-1)" HOs(D).
— Kg :=: the canonical divisor on S.
- g(D) := 3(D* + DKg) + 1, the genus of D.
Given two divisors D,E, we will write D = E (respectively, D ~ E) if they are

numerically (resp., linearly) equivalent. The group of divisors on S modulo numerical

equivalence is denoted Num(S); it is a free abelian group.

A bielliptic surface (also called a hyperelliptic surface) is a minimal surface of Kodaira
dimension zero with h'QOg =1, h20g = 0. It satisfies Kgs = 0. Its structure can be
described as follows (see [2]):

Proposition 1.1. Given a bielliptic surface S, there exist two elliptic curves A, B,

and an abelian group G actingon A and on B such that:
(i) A/G isellipticand B/G ~ Pl
(ii) S~(AxB)/G, where G actson A x B componentwise. )

The curve B is isomorphic to C/(Z - w & Z), where w € C is uniquely deter-
mined if it is chosen in the fundamental region —1/2 < Rew <1/2, Imw >0, |w|>
1 if Rew<0, |w>1 if Rew>0. Write p:=(~1/2)+ (v/3/2)i- The group
G actson A by translations and the action over B is shown in the following table.
This is an already classical result given by Bagnera and de Franchis at the beginning of
the century. Here Z, standsof Z modulo (n)Z.

Proposition 1.2 (see [2]). There are seven types of bielliptic surfaces, which are described

as follows:




Type w G Action of G on
B~C/(Iwea 1)

1 any Z, T —T

any 2y x 1, T+ —
z+—zx+¢e with 26 =0

4 1 y x1, Tz
zr—rz+{(1419)/2

5 P Z; T +— px

6 P Z; x I3 T — px
2z +(1-p)/3

7 P L T — —pI

O

We will denote by & : S — (A4/G), ¥ :S — (B/G) the two natural projections.
Since A — (A/G) is étale, all fibres of ® are smooth. The fibre of ¥ over a point
P € B/G 1is a multiple of a smooth elliptic curve, the multiplicity being the one of P
by the finite map B — (B/G). Inasmuch as all smooth fibres of ¥ (respectively of &)
are isomorphic to A (resp., to B), in the sequel we will also denote by A or B the class
(in Num(S), H?(S,Z) or H%(S,Q)) of a fibre of ¥ or & respectively. This notation is
very economic and produces no ambiguity. Finally, let 4 be the order of the group G .

The terminology introduced so far will be used throughout this paper without further

notice.
From the exponential sequence one obtains the exact sequence
HY(S,0%) — H*(S,Z) - H*(S,05) =0
Consequently, the group Num(S) coincides with H?(S,Z) modulo torsion (use
Poincaré duality as in [4], page 53), and Q ®z Num(S) ~ H?(S, Q).
Let e(S) denote the topological Euler characteristic of S. From Noether’s formula
12x0s = K% +e(S) and xOs = K% =0 onegets e(S)=0. Having into account

that dim H'(S,Q) = 2- h'Os =0 we obtain dim H*(S,Q) = 2. The classes A,B
intersect (in H?(S,Q) or in Num(S)) as:

A’=B?=0 ; AB=+v , (y=orderof G)

Clearly {A,B} isabasisof H?(S, Q).



Let us put together some useful observations:

Lemma 1.3. Let D be a divisor of numerical class ¢A + B with «a,8 € Q.
Then:

(i) xOs(D) = afr.

(i) D is ampleifand onlyif a>0, 8> 0.

(ili) If D is ample then h°Og(D) = xOs(D).

(iv) If H°Og(D)#0 then a >0, 8>0.
Proof: (i) and (ii) are immediate consequences of Riemann-Roch and Nakai’s criterion
respectively. If D 1is ample then D — Kg = D is ample too, and Kodaira vanishing
gives h'Os(D)=h'Os(—(D—K)) =0, so we have (iii), As for (iv), if D is effective
then DA >0, DB > 0. O

Our aim now is to compute a basis of Num(S) over Z:

Theorem 1.4. The following table yields the multiplicities {m;,...,m;} of the sin-
gular fibres of ¥ : S — (B/G) ~ P! and a basis of Num(S) for the seven types of

bielliptic surfaces:

Type {mi,...,ms} Basis of Num(S)
1 {2,2,2,2,} {(1/2)A; B}
2 {2,2,2,2,} {(1/2)4; (1/2)B}
3 {2,4.4,} {(1/4)A; B}
4 {2,4,4,} {(1/49)A; (1/2)B}
5 {3,3,3,} {(1/3)A; B}
6 {3,3,3,} {(1/3)A; (1/3)B}
7 {2,3,6,} {(1/6)A; B}

The values of {mj,...,m:} are easily computed by applying Hurwitz formula to

the map B — (B/G) ~ P! and recalling the action of G on B described in Proposition

1.2. In order to determine a basis of Num(S) we need an auxiliary result:

Lemma 1.5. Let u be the least common multiple of {my,...,m:}. Then u is the
largest integer d such that (1/d)A belongs to Num(S5).

Proof of the Lemma: This claim holds in general for any morphism, such as our ¥,

which is an elliptic quasi-bundle fibration different from the Albanese map (see [9]).
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Nevertheless we are going to give here an ad hoc simpler proof for bielliptic surfaces. On
the one hand, it is clear that (1/p)A € Num(S). Let a >1 be an integer such that
(1/a)A € Num(S). Note that v/a =(1/a)AB € Z. Checking the values of p for the
seven types of bielliptic surfaces we observe that « > u implies a = +. Hence it 1s
enough to show that if (1/v)A € Num(S) then v =pu. Let D be a divisor of class
(1/4)A + B. By Riemann-Roch xOg(D)=1>0. Since Kg¢— D = (-1/v)A—- B
cannot be effective, we can choose D to be effective. Assume D to be irreducible. From
DB =1 itfollows that the restrictionof ®:S — (A4/G) to D isan isomorphism, and
so ¢g(D) = ¢g(A/G) = 1. But adjunction formula yields g¢(D) = 2, a contradiction.
Hence D must be reducible, and the only way this can be true is if there exists an effective
divisce. E =(1/4)A (use Lemma 1.3). But EA =0 implies that E is contained in
fibrescf ¥ :S — (B/G). Therefore ¥ has a fibre of multiplicity v, and p =1~. O

Proof of Theorem 1.4: The main point to be checked is that the cocycles listed in the
Theorem do actually belong to Num(S). Once we have seen this, a straightforward

calculation shows that the given pairs define basis.

For surfaces of types 1, 3, 5, and 7 we know that (1/4)A € Num(S). Suppose that
we are in cases 2, 4 or 6. We claim that (1/4)A + éB does not belong to Num(S)
for any 6 € Q. Otherwise, if D = (1/4)A + 6B is a divisor, then §é§ = xOs(D) €
Z. Thus D — 6B = (1/4)A belongs to Num(S), contradicting Lemma 1.5. As a
consequence of the claim we obtain that for all D € Num(S):

DB e (2)Z for types 2 and 4;

DB e (3)Z for type 6.

Applying Poincaré duality ([4]), page 53) we conclude:
(1/2)B € Num(S) for types 2 and 4;

(1/3)B € Num(S)  for type 6. O

Remark 1.6. For bielliptic surfaces of types 2, 4 and 6, B is divisible in Num(S)
by an integer > 2 despite the fact that & :S — (A/G) is a smooth fibration, so that
the divisibility of B is not accounted for by the existence of multiple fibres of ®. As it is

pointed out in [9], Serre’s spectral sequence gives a relationship between the divisibility of
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the fibre of a fibre bundle S and the torsion of H;(S,Z). For a bielliptic surface, this
torsion has been computed ([5], [10], [11], [9]) and is shown in the following table:

Type Torsion of Hy(S,Z)
1 I, x 1,
2,3 Z
4,6,7 0
5 Z;

In general, given an algebraic elliptic fibre bundle @:S — C with Ah'Og = ¢(C),
there are only seven possibilities for the pair (d; torsion of H,(S,Z)), where d is the
largest integer dividing a fibre of @ in Num(S) (see [9]). It turns out that each one
of these cases in realized in one type of bielliptic surface, and thus the seven are actually

possible.

The torsionsof H;(S,Z) and HZ?(S,Z) arealwaysisomorphic (non—canonically).
For bielliptic surfaces of types 4 and 6 the group H?(S,Z) is torsion—free and thus B
is divisible in H%(S,Z) (not only in Num(S) = H?(S,Z)/ (torsion)) by 2 or 3 respec-
tively. Things are not so clear for type 2. Now we want to find out whether in this case
B is or is not divisible by 2in  H?(S,2).

Proposition 1.7. If S is a bielliptic surface of type 2 then B is divisible by 2 in
H?*(S,Z), ie. B=2L in H?*(S,Z) for some L.

Proof: As we know, B = C/(Zw® Z) and G actson B as X — -X, X —
X +¢& where & istheclassof ¢ €' ={1/2; (1/2)w; (1/2)w+(1/2)}. Choose
§€l’, §#¢, anddenoteby 7:B — B thetranslationby 4. Weseethat 7¢ G
and 7T commutes with the elements of G. The curve E := B/(7) is elliptic and
G acts on E so that no non-zero subgroup of G is acting trivially. The surface
T :=(Ax E)/G is bielliptic of type 2 and the map B — E induces an étale map
f:8 =T of degree 2. By general theory (e.g. [3], (2.6)), there exists a divisor M €
Pic(T) such that f is the 2—cyclic covering determined by the “equation” 2M ~ 0

(see [1], I. 17). Consider the commutative diagram

s L7
3\, /h
A/G



Let E, be asmooth fibre of h such that By:= f~!(E,) is asmooth fibre of &.
Inasmuch as f|B0 : By — Ey 1is the 2—cyclic covering defined by 2M|g, ~ 0, we
get that M|, is not linearly equivalent to 0 (otherwise f ~1(Ey) would have two
connected components). The Albanese map of T is h because h'Or = g(A/G). Hence
Alb(Eg) — AIb(T) is the zero map, and thus Pic®(T) — Pic®(Ey) is also zero, since
Picard and Albanese varieties are dual to each other. It follows that the class M of M
in H?(T,Z) is the only torsion element (of order 2). The class of E, in H?*(T,Z)
is either of the form 2D or 2D+ M. But f*(M)~0, sothat By = f*(D) in
H?(S,Z). O

§ 2. BIELLIPTIC SURFACES IN pP*

In this section we are going to construct smooth bielliptic surfaces of degree 10 in P*
and give a complete characterization of them. Their existence contradicts the statement
made in ([8], page 172), which is due to an obvious arithmetical mistake. We emphasize
that the bielliptic surfaces which admit an embedding into P* are somewhat of the most
special kind; in particular, B must have j—invariant equal to 0. Once we have a complete
description of the Picard group, provided by Theorem 1.4, the essential part of the proof

will be based on Reider’s criterion for very—ampleness, which is stated as follows:

Theorem 2.1 [7]. Let L be a divisor on a surface S suchthat L2 >10 and LC >0
for all curves Con S. Then L+Kg is very ample unless there exists an effective divisor

E on S satisfying one of the following conditions:

() LE=0, E?=—1or-2
(iil) LE=1, E?=0 or -1
(ilil) LE =2, E?=0 a

With the notation introduced so far one has:

Theorem 2.2. Let S be a bielliptic surface of type 6 and L adivisoron S of
numerical class (1/3)A+(5/3)B. Then L is very ample and provides an embedding
of S into P* as a surface of degree 10. Conversely, any smooth bielliptic surface in

P* is of type 6 and has a hyperplane divisor of the class indicated.

Proof: Suppose first that S is of type6and L =(1/3)A+(5/3)B. Wehave L% =10
and h°0Og(L) =5 (Lemma 1.3). The only irreducible curves E in S with E? <0
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are of numerical class (1/3)4, A or B, andso LE >3. Theorem 2.1 shows that L
is very ample.

Conversely, let S be a smooth bielliptic surface embedded in P*. Since $
cannot lie in P3 nor can be the projection of a surface in P?, we may as well as-
sume that h°Og(L) = 5, where L is the hyperplane divisor. We can write L =
(a/v)A+(B/y)B with y=orderof G and «,f positive integers.

From af/y = xOs(L) =h°0Os(L) (Lemma 1.3) we get
*) af/y=5

We will divide the proof into three cases:

Case I: Assume that S isof type 1,3,5o0r 7.

The morphism ¥ : S — (B/G) has a fibre of multiplicity 5. The reduced com-
ponent of this fibre is an elliptic curve of class (1/v)A. Hence S/y=(1/y)A -L>3.
B s also elliptic and thus a=B -L>3. Hence af/y>19, which contradicts (*).

Case II: Let S be of type 2 or 4.

On the one hand we note that o« = 2§ with é§ € Z. Also the map ¥ :
S — (B/G) has a multiple fibre whose reduced component is of class (2/y)A. Write
n=28/y. Then n = (2/4)AL >3 and 26§ = BL >3, sothat 6 < né§ = af/y,
against (*).

Case III: Suppose that S is of type 6.

Now we have a = 3§ with 6 € Z. Write n = 38/y € Z. Then n =
(3/Y)AL >3 and 3§ =BL>3. From 5=af/y=n6 weobtain é=1, n=25
as the only possibility. Thus L =(1/3)A+ (5/3)B. O
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