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Abstract: Bielliptic surfaces (also called "hyperelliptic surfaces") are defined to be minimal algebraic 
surf aces of Kodaira dimension O and irregularity 1. They play a special role in the birational classification 
of surfaces. The first part of this paper gives an explicit description of the cohomology group H 2(S, Z) 
for a bielliptic surface S. In the second part the author proves the existence of smooth bielliptic surfaces 
in P4 • The proof relies on Reider's criterion for very-ampleness. In fact, a complete characterization of 
polarized bielliptic surfaces in P4 is given. These surfaces add to the very short list of known irregular 
surfaces in P4 , the other two being the abelian surfaces of Horrocks-Mumford and the elliptic quintic 

scrolls. 



DIVISORS OF BIELLIPTIC SURFACES AND 

EMBEDDINGS IN P4 

Fernando Serrano 

§ O. INTRODUCTION 

The aim of this paper is to describe the Picard group of the bielliptic surfaces and to 

show that sorne of these surfaces can be embedded into P4 • 

Bielliptic surfaces are defined to be minimal algebraic surfaces of Kodaira dimension 

O and irregularity l. They play a special role in the birational classification of surfaces. 

Often they are also called "hyperelliptic surfaces" ( as in [l]) although we prefer to use the 

name "bielliptic" as proposed by Beauville in [2). It is already classical the distribution of 

the bielliptic surfaces into seven families. 

In Section 1 we give an explicit description of the cohomology group H 2 (S, Z) for 

a bielliptic surface S. A pleasant reward of such a study is the construction of smooth 

models in P4 for sorne of these surfaces, for a very special class indeed. This is carried out 

in Section 2. We will also provide a complete characterization of the polarized bielliptic 

surfaces in P4 • Surfaces in P4 are in general quite hard to study, and severa! important 

questions remain unaswered. In particular, it is still a mystery whether there is a univer­

sal bound for their irregularity. Until now, to this author's knowledge, there were only 

two known families of smooth irregular surfaces in P4 , namely the abelian surfaces of 

Horrocks-Mumford and the elliptic quintic scrolls. The family of bielliptic surfaces we are 
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constructing here provides a third example. Hence their interest. The proof relies on the 

description of Pie( S) combined with Reider's criterion for very-ampleness. 

§ l. PICARD GROUP OF BIELLIPTIC SURFACES 

Let us set up the notation first. Our surfaces will always be smooth, irreducible, 

projective achernes of dimension 2 defined over the field of complex numbers C. If D is a 

divisor on a surface S we will denote: 

- Os(D): = the invertible sheaf associated to D. 

- hiOs(D) : = dim HiOs(D). 

- xOs(D): = ¿¡=0(-l)i hiOs(D). 

- K s : =0 the canonical divisor on S. 

- g(D) : = ½(D2 + DKs) + 1, the genus of D. 

Given two divisors D, E, we will write D = E (respectively, D ~ E) if they are 

numerically (resp., linearly) equivalent. The group of divisors on S modulo numerical 

equivalence is denoted Num(S); it is a free abelian group. 

A bielliptic surface ( also called a hyperelliptic surface) is a minimal surface of Kodaira 

dimension zero with h10s = 1, h2 0s = O. It satisfies Ks = O. Its structure can be 

described as follows ( see [2]): 

Proposition 1.1. Given a bielliptic surface S, there exist two elliptic curves A, B, 

and an abelian group G acting on A and on B such that: 

(i) A/G is elliptic and B /G ~ P1 . 

(ii) S ~(AX B)/G, where G acts on A X B componentwise. D 

The curve B is isomorphic to C/(Z • w EB Z), where w E C is uniquely deter­

mined if it is chosen in the fundamental region -1/2 S Rew < 1/2, Im w > O, lwl 2'.: 

1 if Rew:::;O, lwl>l if Rew>O. Write p:=(-1/2)+(./3/2)i•Thegroup 

G acts on A by translations and the action over B is shown in the following table. 

This is an already classical result given by Bagnera and de Franchis at the beginning of 

the century. Here Zn stands of Z modulo ( n )l. 

Proposition 1.2 (see [2]). There are seven types of bielliptic surfaces, which are described 

as follows: 
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Type w G Action of G on 
B ~ C/(lw EB Z) 

1 any Z2 X 1---+ - X 

2 any Z2 X Z2 X 1---+ -X 
x 1---+ x + e with 2e = O 

3 l l4 X 1---+ i X 

4 l l4 X Z2 X 1---+ i X 
X 1---+ X+ (1 + i)/2 

5 p l3 X 1---+ px 

6 p l3 X l3 X 1---+ px 
X 1---+ X+ (1 - p)/3 

7 p z6 X 1---+ -pX 

• 
We will denote by ~ : S -+ (A/G), 'V : S -+ (B /G) the two natural projections. 

Since A -+ (A/G) is étale, all fibres of ~ are smooth. The fibre of 'V over a point 

P E B /G is a multiple of a smooth elliptic curve, the multiplicity being the one of P 

by the finite map B -+ (B/G). lnasmuch as all smooth fibres of 'V (respectively of ~) 

are isomorphic to A (resp., to B), in the seque! we will also denote by A or B the class 

(in Num(S), H 2 (S, l) or H 2 (S, Q)) of a fibre of 'V or ~ respectively. This notation is 

very economic and produces no ambiguity. Finally, let, be the order of the group G . 

The terminology introduced so far will be used throughout this paper without further 

notice. 

From the exponential sequence one obtains the exact sequence 

Consequently, the group Num(S) coincides with H 2 (S, Z) modulo torsion (use 

Poincaré duality as in [4], page 53), and Q 0z Num(S) ~ H 2 (S, Q). 

Let e(S) denote the topological Euler characteristic of S. From Noether's formula 

12x0s = K1 + e(S) and xOs = K} = O one gets e(S) = O. Having into account 

that dim H 1(S, Q) = 2 · h10s = O we obtain dim H 2 (S, Q) = 2. The classes A, B 

intersect (in H 2 (S, Q) or in Num(S)) as: 

A 2 = B 2 = O ; AB = , , (, = order of G) 

Clearly {A, B} is a basis of H 2 (S, Q). 
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Let us put together sorne useful observations: 

Lemma 1.3. Let D be a divisor of numerical class o.A + f3B with a, /3 E Q. 
Then: 

(i) xOs(D) = a./3,. 

(ii) D is ample if and only if a> O, /3 > O. 

(iii) If D is ample then hºOs(D) = xOs(D). 

(iv) lf HºOs(D) =/= O then a.~ O, /3 ~ O. 

Proof: (i) and (ii) are immediate consequences of Riemann-Roch and Nakai's criterion 

respectively. If D is ample then D - Ks = D is ample too, and Kodaira vanishing 

g1ves h10s(D) = h10s( -(D- K)) = O, so we have (iii), As for (iv), if D is effective 

then DA~ O, DB ~ O. • 

Our aim now is to compute a basis of Num(S) over Z: 

Theorem 1.4. The following table yields the multiplicities { m1, ... , mt} of the sin­

gular fibres of '11' : S --+ ( B / G) ~ P1 and a basis of N um( S) for the seven types of 

bielliptic surfaces: 

Type {m1, ... ,mt} Basis of Num(S) 

1 {2,2,2,2,} {(1/2)A; B} 
2 {2,2,2,2,} {(1/2)A; (1/2)B} 
3 {2,4,4,} {(1/4)A; B} 
4 {2,4,4,} {(1/4)A; (1/2)B} 
5 {3,3,3,} {(1/3)A; B} 
6 {3,3,3,} {(1/3)A; (1/3)B} 
7 {2,3,6,} {(1/6)A; B} 

The values of { m 1 , ... , mt} are easily computed by applying Hurwitz formula to 

the map B --+ ( B / G) ~ P1 and recalling the action of G on B described in Proposition 

1.2. In arder to determine a basis of N um( S) we need an auxiliary result: 

Lemma 1.5. Let µ be the least common multiple of {m1 , ... , mt}. Then µ is the 

largest integer d such that (l/d)A belongs to Num(S). 

Proof of the Lemma: This claim holds in general for any morphism, such as our '11', 

which is an elliptic quasi-bundle fibration different from the Albanese map (see [9]). 
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Nevertheless we are going to give here an ad hoc simpler proof for bielliptic surfaces. On 

the one hand, it is clear that (l/µ)A E Num(S). Let a~ 1 be an integer such that 

(1/a)A E Num(S). Note that 'Y/a= (l/a)AB E Z. Checking the values of µ for the 

seven types of bielliptic surfaces we observe that a > µ implies a = 'Y. Hence it is 

enough to show that if (1/'Y)A E Num(S) then 'Y=µ. Let D be a divisor of class 

(l/'"'f )A+ B. By Riemann-Roch xOs(D) = l > O. Since Ks - D = (-l/'Y)A - B 

canno~ be effective, we can choose D to be effective. Assume D to be irreducible. From 

DB = l it follows that the restriction of <P : S --t (A/G) to D is an isomorphism, and 

so g(D) = g(A/G) = l. But adjunction formula yields g(D) = 2, a contradiction. 

Hence D must be reducible, and the only way this can be true is if there exists an effective 

divise E - (l/'Y)A (use Lemma 1.3). But EA= O implies that E is contained in 

fibres d '11 : S --t (B /G). Therefore '11 has a fibre of multiplicity 'Y, and µ='Y· • 

Proof of Theorem 1.4: The main point to be checked is that the cocycles listed in the 

Theorem do actually belong to Num(S). Once we have seen this, a straightforward 

calculation shows that the given pairs define basis. 

For surfaces of types 1, 3, 5, and 7 we know that (1/'Y)A E Num(S). Suppose that 

we are in cases 2, 4 or 6. We claim that (1/'Y)A + óB does not belong to Num(S) 

for any ó E Q. Otherwise, if D = (l/'Y)A + óB is a divisor, then ó = xOs(D) E 

Z. Thus D - óB = (l/'Y)A belongs to Num(S), contradicting Lemma 1.5. As a 

consequence of the claim we obtain that for all D E N um( S) : 

DB E (2)Z for types 2 and 4; 

DB E (3)Z for type 6. 

Applying Poincaré duality ([4]), page 53) we conclude: 

(1/2)B E Num(S) 

(1/3)B E Num(S) 

for types 2 and 4; 

for type 6. • 

Remark 1.6. For bielliptic surfaces of types 2, 4 and 6, B is divisible in N um( S) 

by an integer ~ 2 despite the fact that <P : S --t (A/G) is a smooth fibration, so that 

the divisibility of B is not accounted for by the existence of multiple fibres of <P. As it is 

pointed out in [9], Serre's spectral sequence gives a relationship between the divisibility of 
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the fibre of a fibre bundle S and the torsion of H 1 (S, l). For a bielliptic surface, this 

torsion has been computed ([5], (10], [11], (9]) and is shown in the following table: 

Type Torsion of H 1 ( S, l) 

1 Z2 X Z2 
2,3 Z2 

4,6, 7 o 
5 l3 

In general, given an algebraic elliptic fibre bundle 4>: S--+ C with h10s = g(C), 

there are only seven possibilities for the pair ( d; torsion of H 1 (S, Z)), where d is the 

largest integer dividing a fibre of 4> in Num(S) (see (9]). It turns out that each one 

of these cases in realized in one type of bielliptic surface, and thus the seven are actually 

possible. 

The torsions of H 1 (S, l) and H 2(S, l) are always isomorphic (non-canonically). 

For bielliptic surfaces of types 4 and 6 the group H 2 (S, l) is torsion-free and thus B 

is divisible in H 2 (S, l) (not only in Num(S) = H 2 (S, l)/ (torsion)) by 2 or 3 respec­

tively. Things are not so clear for type 2. Now we want to find out whether in this case 

B is or is not divisible by 2 in H 2 ( S, l). 

Proposition l. 7. If S is a bielliptic surface of type 2 then B is divisible by 2 in 

H 2 (S, l), i.e. B = 2L in H 2 (S, Z) for sorne L. 

Proof: As we know, B = C/(lw ffi Z) and G acts on B as X 1-----+ -X, X 1-----+ 

X+ t where t is the class of e E r = {1/2; (1/2) w; (1/2) w + (1/2)}. Choose 

8 E r, li =/. e, and denote by r: B--+ B the translation by 6. We see that r (/. G 

and r commutes with the elements of G. The curve E : = B/(r) is elliptic and 

G acts on E so that no non-zero subgroup of G is acting trivially. The surface 

T : = ( A x E)/ G is bielliptic of type 2 and the map B --+ E induces an étale map 

f : S--+ T of degree 2. By general theory (e.g. (3], (2.6)), there exists a divisor M E 

Pic(T) such that f is the 2-cyclic covering determined by the "equation'' 2M ~ O 

(see (1], I. 17). Consider the commutative diagram 

S ~ T 

<I> '\. ./ h 

A/G 
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Let Eo be a smooth fibre of h such that B0 : = ¡-1 (Eo) is a smooth fibre of ~­

Inasmuch as ÍIBo : B 0 -+ E0 is the 2-cyclic covering defined by 2M¡Eo ~ O, we 

get that M¡Eo is not linearly equivalent to O (other,vise ¡-1 (E0 ) would have two 

connected components). The Albanese map of T is h because h1 0r = g(A/G). Hence 

Alb(Eo) -+ Alb(T) is the zero map, and thus Picº(T) -+ Picº(Eo) is also zero, since 

Picard and Albanese varieties are dual to each other. It follows that the class M of M 

in H 2 (T, Z) is the only torsion element (of order 2). The class of E 0 in H 2(T, Z) 
is either of the form 2D or 2D + M. But f*(M) ~ O, so that Bo = J*(D) in 

H 2 (S,l). • 

§ 2. BIELLIPTIC SURFACES IN P4 

In this section we are going to construct smooth bielliptic surfaces of degree 10 in P4 

and give a complete characterization of them. Their existence contradicts the statement 

made in ([8], page 172), which is due to an obvious arithmetical mistake. We emphasize 

that the bielliptic surfaces which admit an embedding into P4 are somewhat of the most 

special kind; in particular, B must have j-invariant equal to O. Once we have a complete 

description of the Picard group, provided by Theorem 1.4, the essential part of the proof 

will be based on Reider's criterion for very-ampleness, which is stated as follows: 

Theorem 2.1 [7]. Let L be a divisor on a surface S such that L2 > 10 and LC ~ O 

for ali curves Con S. Then L+Ks is very ample unless there exists an effective divisor 

E on S satisfying one of the following conditions: 

(i) LE= O, 

(ii) LE= l , 

(iii) LE= 2, 

E 2 = -1 or -2 

E 2 = O or -1 

E 2 = O • 
With the notation introduced so far one has: 

Theorem 2.2. Let S be a bielliptic surface of type 6 and L a divisor on S of 

numerical class (1/3)A + (5/3)B. Then L is very ample and provides an embedding 

of S into P4 as a surface of degree 10. Conversely, any smooth bielliptic surface in 

IP4 is of type 6 and has a hyperplane divisor of the class indicated. 

Proof: Suppose first that S is of type 6 and L = (l/3)A+ (5/3)B. We have L 2 = 10 

and hºOs(L) = 5 (Lemma 1.3). The only irreducible curves E in S with E 2 ~ O 
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are of numerical class (1/3)A, A or B, and so LE~ 3. Theorem 2.1 shows that L 

is very ample. 

Conversely, let S be a smooth bielliptic surface embedded in P4 . Since S 

cannot lie in P3 nor can be the projection of a surface in P5 , · we may as well as­

sume that hºOs(L) = 5, where L is the hyperplane divisor. We can write L _ 

(a/,)A+(/3/,)B with ,=orderof G and a,/3 positiveintegers. 

From a/3/, = xOs(L) = hºOs(L) (Lemma 1.3) we get 

(*) a/3/, = 5 

We will divide the proof into three cases: 

Case I: Assume that S is of type 1, 3, 5 or 7. 

The morphism '11: S--+ (B/G) has a fibre of multiplicity ,. The reduced com­

ponent of this fibre is an elliptic curve of class (1/,)A. Hence (3/, = (1/,)A • L ~ 3. 

B is also elliptic and thus a= B • L ~ 3. Hence a/3/, ~ 9, which contradicts (*). 

Case II: Let S be of type 2 or 4. 

On the one hand we note that a = 28 with 8 E Z. Also the map '11 : 

S--+ (B/G) has a multiple fibre whose reduced component is of class (2/,)A. Write 

r¡ = 2/3/,. Then r¡ = (2/,)AL ~ 3 and 28 = BL ~ 3, so that 6 ~ r¡8 = a/3/,, 
against (*). 

Case III: Suppose that S is of type 6. 

Now we have a = 38 with 8 E Z. Write r¡ = 3(3/1 E Z. Then r¡ = 

(3/,)AL ~ 3 and 38 = BL ~ 3. From 5 = a:(3/, = r¡8 we obtain 8 = 1, r¡ = 5 

as the only possibility. Thus L = (1/3)A + (5/3)B. O 
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