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Abstract 

Let us be given a morphism 'P: S - C with connected fibres from a complex surface onto 
a curve. Toe aim of this paper is to show that the multiplicities of the fibres can be read off at 
the level of singular homology. Namely, a suitable exact sequence 

is constructed, where F denotes a general fibre and G('P) is a finite abelian group de­
fined only in terms of the multiplicities { m 1 , ... , mt} of the multiple fibres. More precisely, 

G('P): = Coker(f: Z - (f)¡Z/(m¡)) where /(1) = (i, ... , i). lt is also shown that (f)¡Z/(m¡) 

is invariant under smooth deformations of 'P· All this generalizes the already known situation 
for elliptic surfaces, whose fundamental groups can be explicitely described. Moreover Iitaka 
has proved that for an elliptic fibration the set of multiplicities { m1 , ... , mt} is a deformation 

invariant 



MULTIPLE FIBRES OF A MORPHISM 

Fernando Serrano 

§ O. INTRODUCTION 

Let us be given a morphism cp : S -+ C with connected fibres from a compact 

complex surface onto a curve. The aim of this paper is to show that the multiplicities of 

the fibres can be read off at the level of singular homology. Na.mely, the first homology 

groups ( over Z) of the surface, the base curve and a general fibre F are related by means 

of an exact sequence (Theorem 1.3): 

H1(F, Z)-+ H1(S, Z)-+ H1(C, Z) x G(cp)-+ O 

Here G( cp) denotes a finite abelian group defined only in terms of the multiplici­

ties { m1, ... , mt} of the multiple fibres. More precisely, G( cp) : = C oker (f : Z -+ 

ffi:=l Z/m¡Z) where f(l) = (I, ... , I). This generalizes the already known situation 

for elliptic surfaces, for which the sequence above can be deduced from the explicit de­

scription of the fundamental group of the surface ([61). However, for a larger fibre genus 

such a description is lacking in general. 

Next we will address the question of the variation of G( cp) and ffi!=l Z/m¡Z un­

der smooth deformations of cp. It will be shown in§ 2 that both groups are actually invari­

ant under deformation. The proof for G( cp) relies on the above exact sequence plus the 

fact that a smooth analytic map is differentiably locally trivial. Then a base change trick 

will give the invariance of ffi¡ Z/m¡Z. Again for elliptic fibrations, the general picture 

is neater since Iitaka. proved that in this case the set of multiplicities of the fibres is a 

deformation invariant ([5]). 

1 



§ l. HOMOLOGY GROUPS 

We shall always be working over the field of complex numbers. A surface is a compact 

connected complex manifold 0f complex dimension 2. A fibration is a proper surjective 

holomorphic map from a surface onto a smooth connected curve, all of whose fibres are 

connected. We will also use the following notation: 

- Zm: = integers Z modulo (m)Z. 

- tor H : = torsion of an abelian group H. 

- 1r1 (X) : = fundamental group of X. 

- hiOs: = dimcHi(S, Os), where Os is the structure sheaf of S. 

Let <p : S -+ C be a fibration, and F = E n¡B¡ a fi.bre of <p where the B!s 

are the irreducible reduced components of F and the nis are their multiplicities. Let 

m be the greatest common divisor of the n¡s. We say that m is the multiplicity of 

F and write F = mD, where D = ¿(n¡/m)B¡. Whenever we say "let mD be 

a multiple fibre" we shall always mean that m is the multiplicity of m D and m ~ 2. 

Let <p : S -+ C be a fibration and let m 1 D 1 , ... , mtDt be all its multiple fibres. 

Definition 1.1. 
t 

G(<p): = Coker (z-+ EB Zm;) 
í=l 

l 1---+ (1, ... ,1) 

t 

L(<p): = E9 Zm; 
i=l 

If µ is the least common multiple of m 1 , ..• , mt, by dualizing the sequence 

t 

O-+ Zµ.-+ E9 Zm; -+ G(<p)-+ O 
i=l 

we obtain an alternative description of G( <p) as: 

t 

G(<p) = Ker ( E9 Zm; -+ Z,,.) 
i=l 

The third characterization that follows will be used later: 
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Lemma 1.2. vVrite EB!=l Zm; ~ EB;=l ld; where each dj divides dj+I · Then 

k-1 

G(cp) ~ EB ld; 
j=l 

Proof: Since µ/m1, ... , µ/mt are relatively prime, we can find integers .A1, ... , At 

such that I:!=l (Aiµ/mi) = l. The homomorphism 

is a retraction of 

we put G(cp) 

vide µ and 

t 

EB Zm¡----+ lµ 
i=1 

t 

( a1, ... , at) t---t ¿ a¡(Aiµ/mi) 
i=l 

O ---+ lµ ---+ EB!=l Zm; ---+ G( cp) ---+ O, and this sequence splits. If 

EBj=l le; with ej dividing ej+l for all j, then all <is di-

t r 

EB Zm; = G( cp) EB Zµ = ( EB Ze;) EB Zµ 
i=l j=l 

Since the d~s are uniquely determined, it follows that (d1, ... ,dk-t,dk) = (e¡, ... ,er,µ) 

• 

Now it comes the main result of this paper. For elliptic surfaces it can be deduced from the 

well-known description of their fundamental groups (see [5]). Our proof has been inspired 

in that of Prop. 1.41 of [2]. 

Theorem 1.3. Let cp : S ---+ C be a fibration from the surface S onto a smooth 

curve C. 

Denote by m 1 D1 , ... , mt Dt all multiple fibres of cp, and let F be any smooth 

fibre, and G: = G( cp ). Then there exists an exact sequence 

H 1(F,l)---+ H1(S,l)---+ H1(C,l) x G---+ O 

induced by cp and the inclusion of F into S . 

Proof: Let n = {p E e I cp- 1(p) is singular}, 6 = e - n, s = s - ( u,,eo cp-1(p)). 
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Consider the following commutative diagram with exact rows and columns, whose 

homomorphisms come from the obvious inclusions and restrictions: 

o o 

í í 
o M 

~ 

H1(S, Z) 'P• H1(C,Z) --+ o --+ ---+ ---+ 

Íf jg jh 
H1(F, Z) H1(S, Z) 

u 
H1(C, Z) --+ o ---+ --+ 

i i 
N1 

T 

N2 --+ 

i i 
o o 

M, N 1 and N 2 are defi.ned to be the kernels of the corresponding homomorphisms. The 

second row is exact because S-+ C is a C00-fi.bre bundle. 

Claim 1: The cokernel of T: N 1 -+ N2 is a quotient of G. 

Proof of Claim 1: Given p En, denote by 'Yp a simple loop around pin C. Tbe 

group N 2 is generated by all the "(p, p E n, with the single relation IlpEO'Yp = O. 

If Bis a component of multiplicity n of a fi.bre <p-1 (p), p En, th1!n there is a loop 

a in S around B such that a E N 1 and r( a) = n'Yp• Consequently, if m is tbe total 

multiplicity of <p-1(p) then m-yp E Jm( r), and the claim follows. 

Claim 2: There exists an exact sequence: 

H1(F,Z) ~ M-!!...+ Coker(r)-+ O 

Proof of Claim 2: Define the map p: M -+ Coker(r) as follows. Given x E M, 

there is y E H 1(S, Z) such that g(y) = e(x). Thus u(y) E N2, and we write p(x) 
as the class of u(y) in N2/(Im(r)). An easy diagram-checking shows that the above 

sequence is exact. This is nothing else than the so-called Snake Lemma, but later we are 

going to need the explicit description of the map p. 

Claim 3: There exists a commutative diagram with exact rows and columns as 
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follows: 
o o 

1 í 
H1(F, l) 

f 
M 

p 
Coker(r) -----+ o -----+ -----+ 

~ 1, 10 
H 1 (S, l) 

A 
G -----+ 

1 ~. 
H1(C, Z) 

1 
o 

Proof oí Claim 3: 0 : G -+ Coker( r) is the epimorphism of Claim 1, and j = é o f 
by definition. We must define .X and prove p = 8 o A o€. The fundamental group 

1r1 (C) is generated by elements a¡,{3¡,,p (for i from 1 up to genus of C, and p E O) 

with the unique relation (II¡a¡{3¡a¡-1,a;1
) (IIpen,p) = l. Given p E n and m(p) = 

multiplicity of <p- 1 (p), there corresponds to <p- 1(p) a direct summand Zm(p) in 

EB!=i Zm,, with Zm(p) = O in case m(p) = l. Define an epimorhism 1r1 (C)-+ G 

by mapping IP to the image of I E Zm(p) ~ (:B¡ Zm, in G, and a1l a¡, {3¡ to O. We 

get in this fashion a ramified covering B -+ C, unramified outside n and such that 

the ramification index on points over p E n divides m(p ). If R denotes the nor­

malization of S Xc B then R-+ S is unramified with group G (see (1], 111 9.1), and 

thus it is determined by an epimorphism ,r1 ( S) -+ G which descends to an epimorphism 

.X: H 1 (S, Z) -+ G. The preimage of F by R-+ S splits into as many components as 

the order of G, so that the induced map 1r1(F) -+ G is O. It follows that .X o j = O. 

Finally, the commutativity of the diagram of Claim 3 stems from the description of p 

given in Claim 2 combined with the commutativity of the following diagram: 

H1(S, Z) 

91 
H1(S,l) 

Claim 4: 8 is an isomorphism. 

A 
-----+ 

(T 

-----+ 
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) 

Proof of Claim 4: Since >. o j = O, one has a commutative diagram 

M/Im(J) ~ Coker(r) 

Ao~ r8 
G 

In particular, Coker( r) is a direct summand of G. Now it suffices to show that ,\ot 

is surjective. The class of the loop 'Yp in H 1 ( C, Z) maps by q : H 1 ( C, Z) -+ G to 

the image of I E Zm(p) ~ EB!=l Zm, in G. By the commutativity of the diagram (*) 
above, one gets that if o-( x) = 'Yp then g( x) E J m( €), and ( >. o g )( x) is also the 

image of I E Zm(p) in G. Consequently >. o t is surjective, as we wanted. 

Claim 5: The following sequence is exact: 

Proof oí Claim 5: Clearly Im(j) ~ Ker(>.,<.p.). Conversely if x E Ker(>..,<.p.) 

then x E M and p(x) = O, sothat x E Jm(j). Letusfinallyprovethesurjectivity 

of (>.,<.p,..). Let (y,z) E G x H1(C,Z). There exists an element x E H1(S,Z) such 

that <.p,..(x) = z. Since >.o€ is surjective, one can find t E M such that >..(é(t)) = 
y - >.(x). Then >.(x + é(t)) = y and <.p,..(x + é(t)) = z. This ends the proof of 

Theorem 1.3. O 

For the remainder of this section we will assume all surfaces to be algebraic. 

Remark 1.4. When g(F) = 1, that is, when <.p : S -+ C is an elliptic fibration, 

one has a more accurate information. If <.p has a singular fibre other than a multiple 

of a smooth curve, then the homomorphism H 1 ( F, Z) -+ H 1 ( S, Z) is the zero map ( [2], 

1.39). In particular, h10s = h10c in this case. For the other cases, see [9]. In general, 

the fundamental group of an elliptic surface can be almost completely described ([6]). 

Given a fibration <.p : S -+ C we always have h10s ~ h10c, with equality if 

and only if either h10s = O or <.p is the Albanese map. This follows easily from the 

universal property of the Albanese variety. Denote by tor ( H) the torsion of an abelian 

group H. From Theorem 1.3 one immediately gets 
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Corollary 1.5. Let J denote the image of H 1(F, Z) in H 1(S, Z). Then there is 

an exact sequence 

O-+ tor J-+ tor H1(S, Z)-+ G 

Furthermore, tor H 1(S, Z)-+ G is surjective provided that h10s = h10c. • 

We recall that torH1 (S,l) ~ torH2 (S,l) (non-canonically). The following 

Proposition describes explicitely sorne of the elements of tor H2 (S, l) in case h10s = 
h10c. Let m 1 D 1 , ... , mt Dt be the multiple fibres of a fibration r.p : S -+ C, and 

denote µ the least common multiple of m 1 , ... , mt. Since µ/m 1 , ... , µ/mt are 

relatively prime, there exist integers ..\¡, ... ,..\t such that E!=l (..\¡µ/m¡) = 1 Let 

D = E!=l ..\¡ D¡. Denote by [E] thP, class in H 2(S, Z) of a divisor E, and G : = 

G( r.p ). 

Proposition 1.6. If h10s = h10c, then the classes {[D¡ -(µ/m¡)D] 1 i = 1, ... , t} 
generate a subgroup of tor H 2 (S, l) isomorphic to G. 

Proof: First we remark that the subgroup generated by these classes 1s precisely 

{ E!=i a¡[D¡] 1 a¡ E Z, E!=l (a¡/m¡) =O}· 

If F is a general fibre of r.p then 

m¡(D¡ - (µ/m¡)D] = [m¡D¡) - [µ D] = 
= [F] - [F] = O 

Thus [D¡ - (µ/m¡)D] E tor H 2(S, Z). Define the homomorphisms: 

t 

u: Z-+ E9Zm;, 
i=l 

t 

p: E9 Zm; -+ tor H 2(S, l) 
i=l 

as u(l) = E:=l ,\¡ e¡, p( e¡) = [D¡ - (µ/m¡)D], where e¡ = (O, ... , O, i, O, ... , O), (i 

in the i th-position). 

Claim 1: The sequence 

t 

Z ~ EB Zm;-!!....+ torH2(S,l) 
i=l 

is exact. 
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Proof of Claim 1: First note that 

t 

P(L Aei) = [(¿ AiDi) - ¿ (>.iµ/mi)D] -
i=l . i 

= [D - D] = O 

Hence Im(a) ~ Ker(p). Now assume p( E!=l ')'¡e¡) = O, and put 8: = ¿¡ (1'¡µ/m¡). 

From [ ( Li ')'¡D¡)-8D] = O it follows that ( ¿¡ ')'¡D¡)-8D belongs to the Picard va­

riety of S, denoted Picº(S). As indicated before, the fact that h10s = h10c im­

plies that the Albanese varieties of S and C are isomorphic, hence also their Picard 

varieties are isomorphic. The symbol ~ is going to denote linear equivalence of divi­

sors. Obviously the restriction Picº(C)-+ Picº(Dk) is the zero map, and it follows that 

( E!=l ')'¡D¡ - 8D) 10" ~ O. We know that (D¡)¡v" ~ O if i f:. k, and (Dk)¡v" 1s 

torsion of order mk in Pic(Dk) ([l]; III 8.3). Combining with D¡v" ~ >.k(Dk)¡v" 

one gets ("r'k - 8>.k) (Dk)¡v" ~ O, which implies that ,k - 8>.1c is a multiple of mk. 

Thus ¿¡-y¡e¡ = 8 Li A¡e¡ E Im(a), as we wanted. 

Claim 2: Ker(a) = (µ)l 

Proof of Claim 2: Let (v)Z: = K er(a). Multiplying the equation E!=t (>i,¡µ/m¡) = 1 

by mk we obtain that >.1cµ is a multiple of mk. Hence a(µ) = O and one can 

write µ = v·d for sorne d E Z. Since m¡ divides >.w we have ¿¡ (>.¡v/m¡) E Z. 
On the other hand 1 = ¿¡(>.¡µ/m¡) = d¿¡(>.w/m¡). so that d = 1 and Claim 2 

follows. 

The exact sequence 

t 

O-+ lµ ....!..+ E9 Zm; -+ Im(p)-+ O 
i=l 

splits because ff admits a retraction r defined by r(e¡) = µ/m¡. Let Im(p) ~ 

EBj=l lb; with b; dividing b;+i for all J • Since Im (p) is a quotient of 

EB!=l Zm, we see that br divides µ. Hence 

t 

E0 Zm; ~ Zb1 ffi • • • ffi lbr ffi Zµ 
i=l 

The uniqueness of this decomposition together with Lemma 1.2 imply that Im (p) ~ 
G. O 
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§ 2. FAMILIES OF FIBRATIONS 

We will consider the following situation. Let X, Y, M be connected complex mani­

folds, and let f : X -+ Y, g : Y -+ M be surjective, proper, flat holomorphic maps 

with connected fibres. Write h : = g o f, and suppose that all fibres of g are smooth 

curves, and the fibres of h are all smooth surfaces. If Xt, Yi denote the fibres of h 

and g over t E M, then the induced map ft : Xt -+ Yi is a fibration. 

Definition 2.1. With the hypothesis just stated, we will say that {ft : Xt -+ Yt}tEM 
is a family of fibrations. For any O, t E M, ft is called a smooth deformation of f 0 • 

Now we ask ourselves how do the groups L(ft) of Definition 1.1 vary for a family 

of fibrations {ft }tEM. As a matter of fact, we will see that they are all isomorphic. 

To begin with, the following Proposition shows the invariance of G(ft) under smooth 

deformations. The proof relies on the fact that a smooth holomorphic map is differentiably 

locally trivial. Then we will recall that G(ft) is a direct summand of L(ft) and will 

do a base change in order to obtain the invariance of L(ft), 

Proposition 2.2. If {ft : Xt -+ Yi}tEM is a family of fibrations, then the groups 

G(ft) are all isomorphic. 

Proof: Let (X, Y, M, f, g) be the quintuplet which determines the family {ft : Xt-+ Yi}, 
as defined before. In order to fix ideas, we will choose an element O E M and will write 

S : = X O, C : = Yo, <.p : = f O. The maps ft are smooth deformations of <.p : S -+ C. 

A theorem of Ehresmann ([3); compare with [8), page 19) states that g and h : = g o f 

are differentiably locally trivial. In particular, there exists a.n analytic open neighbourhood 

U of O E M a.nd a commutative diagram 

h-1(U) f g-l(U) --+ 

p ll qll 
<,~u SxU --+ CxU 

(x, t) 1----t ('llt(X ), t) 

where the vertical arrows p, q are diffeomorphisms, and 'lit : S-+ C a differentiable 

map. Choose a point e E C such that F: = <.p-1 (e) is smooth. The map f: X-+ 

Y is also differentiably trivial in a neighbourhood V ~ g- 1(U) of q-1({,0) that 
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is, there exists a diffeomorphism ¡-1(V) ::: F x V making commutative the following 

diagram 

(projection) 

Put W: = q(V). We have a commutative diagram 

FxW 

1 
SxU 

working as 
(z;(y,t)) 

1 

(projection) 
---+ 

---+ 

w 

1 
CxU 

(y, t) 

I 
(,\(z, y, t, ); t) ..,_ __ ((wt o ,\)(z, y, t, ); t) = (y, t) 

The left vertical arrow is a diff erentiable inmersion, and ,\ : F X W -+ S is a differen­

tiable map. Let us define Ut : F-+ s (t E M) by Ut(z) = ..X(z,e,t). Not~ce that 

Ut(F) is the fibre of Wt over the point e E c. Furthermore the maps Ut, <To are 

homotopic to each other for t close enough to O, and thus they induce the same map in 

homology. With our identifications and Theorem 1.3 we immediately see that the coker­

nel of (ut)•: H1(F,Z)-+ H1(S,Z) is isomorphic to H1(C,Z) x G(ft), whose torsion 

part in G(ft). Since (ut)• = (u0 )., it follows that G(ft) ~ G(fo) íor t near O. As 

a matter of fact, we have just proved that the set of t E M such that G(ft) ::: G(/0 ) 

is open. But similar arguments show that it is also closed, and the connectedness of M 

finishes our proof. O 

Theorem 2.3. Let {ft : Xt -+ Yt}teM be a íamily oí fibrations. Then the groups 

L(f t) are all isomorphic. 

Proof: Let the family be determined by the maps f : X -+ Y, g : Y -+ M as descri­

bed at the beginning of this section. Write h : g o f, and choose a point O E M. First 

we will assume that Y0 is not rational. Let a : B -+ Yo be any étale morphism of 

degree 2. Since g is differentiably locally trivial, there is a neighbourhood U oí O E M 
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such that U x Yo and g- 1 (U) are diffeomorphic over U. The composite (id, a) : 

U x B-+ U x Y0 ::::: g- 1 (U) makes U x B into a topological covering space of g- 1(U). 

Let V denote the space UxB endowed with the complex structure induced by g- 1(U), 

and set W : = h-1 
( U) x r 1 ( u) V. The natural projection ,\ : W -+ V defines a family 

of fibrations parametrized by U. Furthermore, each fibre of multiplicity m of ft : Xt -+ 

Yi, t E U, lifts to a pair of fibres of ,\t : Wt -+ ½, both with multiplicity m. Thus 

L(,\t) ~ L(ft) EB L(ft)- Combining the invariance of G(,\t) asserted in Theorem 2.2 

with Lemma 1.2 yields the invariance of L(ft) for t E U. Now use the connectedness 

of M to get that L(ft) is the same for all t E M. 

N ext let us suppose that Y0 is rational. Then Yi ~ P 1 for all t E M. lt 

follows from (4] that g : Y -+ M is analytically locally trivial, so that g- 1(U) 1s 

analytically isomorphic to U x Yo over U, for sorne neighbourhood U of O E M. Let 

B -+ Y0 be any double cover which is unramified over the points of Y0 where / 0 : 

X 0 -+ Yo fails to be smooth. Making U smaller one may assume that the composite 

/: h- 1(U)-+ g-1(U)::::: U X Yo is a smooth map over all points (t,x) where x is a 

branch point of B-+ Y0 • Set V:= U x B and W: = h-1 (U) x,-1(u) V. Then W 

is smooth and the projection ,\ : W -+ V defines a family of fibrations. One checkes that 

,\t : Wt -+ ½. has no other multiple fibres than the ones coming from ft : Xt -+ }í. 

Hence also L(,\t) ~ L(ftl-B2 for all t, and one finishes as before. D 

Remark 2.4 For elliptic fibrations something stronger than Theorem 2.3 holds, namely, 

that the set of multiplicities of the fibres is invariant under smooth deformations. This 

was proved by Iitaka in (5]. 
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