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There is only one god, and his name is Set of Initial Conditions Of The
Universe And Physical Laws That Have Given Rise To My Particular

Circumstances. And what do we say to Set of Initial Conditions Of The
Universe And Physical Laws That Have Given Rise To My Particular
Circumstances? Yeah, I guess it might be today, depending on the

initial conditions of the universe and physical laws that have given
rise to my particular circumstances.

— H. G. M. Silverwood
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A B S T R A C T

Cosmology is the study of the origin and evolution of our Universe as
a whole. Despite the great advance in the last decades, culminating
into the definition of a standard model of Cosmology, the ΛCDM,
there are still several open problems that we need to address to provide
a comprehensive description of this Universe from its first moments
to the present-day. The goal of this thesis is to explore how several
of these open problems in Cosmology can be addressed in novel
ways, with particular attention to the observational consequences and
possibility of experimental confirmation.

The work is divided in five parts. The first one is an introductory
chapter in which I present the main ingredients of the ΛCDM, namely
General Relativity, the different components existing in our Universe
and Inflation.

The second part is focused on the possible degeneracy between
the effects of massive neutrinos and modified gravity theories. In
particular I investigate how Horndeski theory has enough freedom to
reproduce a ΛCDM-like expansion and, at the same time, to boost the
growth of structures at small scales, hiding the effects that massive
neutrinos have on the clustering of matter.

In the third part we discuss about one of the most popular dark
matter candidate, primordial black holes. I show how it is possible to
obtain upper limits on the abundance of primordial black holes with
an extended mass distribution starting from upper limits obtained
assuming a monochromatic one. I also prove that for popular mass
distributions the constraints on primordial black holes abundance in
the 10 M� window are tighter with respect to the monochromatic case.
Moreover I also explain how, cross-correlating gravitational waves and
galaxies maps, we can establish if the origin of black holes in merging
binaries is stellar or primordial.

The fourth part describes how we can obtain new probes of the
inflationary physics. I present a novel way to determine the energy
scale of inflation through the measurement of a specific primordial
non-Gaussianity signal, called “graviton exchange”, in the clustering
properties of dark matter halos. Moreover I present how primordial
black holes can be used to put constraints on the maximum amplitude
of the primordial curvature power spectrum.

The fifth part includes the summary of the results, discussion and
conclusion reached in each work. Future perspectives and possible
extension are also discussed in this section.

ix
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R E S U M E N E N E S PA Ñ O L

La Cosmología es el estudio de las orígenes y la evolución de nuestro
Universo como un todo. Aunque desde el punto de vista teórico la
Cosmología nació hace un siglo, con la formulación de la teoría de la
Relatividad General por Albert Einstein, ha sido únicamente en las
últimas décadas que ha habido un avance experimental tan importante
que la ha transformado desde una ciencia “pobre de datos” a una
ciencia “guiada por los datos”. Estamos viviendo la que se dice la
“Edad del Oro” en Cosmología: no sólo tenemos suficiente eviden-
cias experimentales para medir parámetros cosmológicos con una
precision alrededor del uno por ciento, sino que también podremos
ir mas allá de esa precisión con los experimentos planeados en las
próximas décadas, que probarán por primera vez épocas de nuestro
Universo nunca observadas directamente hasta ahora. Además, los
avances tecnológicos conseguido en los últimos años serán fundamen-
tales para darnos una visión alternativa de nuestro Universo, no sólo
mediante la radiación electromagnética, sino también mediante las
ondas gravitatorias, detectadas por primera vez hace cuatro años.

Esta tesis está dividida en cinco partes. La primera está constituida
por un capítulo introductorio que describe el modelo estándar que
se utiliza hoy en Cosmología, el modelo ΛCDM. Los ingredientes
principales de este modelo son una teoría de la gravedad que describe
como nuestro Universo evoluciona, en este caso la Relatividad General;
las diferentes componentes que existen en nuestro Universo, es decir
fotones, neutrinos, bariones, materia oscura fría (en inglés CDM) y
energía oscura, descrita por una constante cosmológica Λ; y una teoría
que explique las condiciones iniciales del Universo, que asumimos ser
la teoría de la Inflación. Aunque décadas de investigación nos han
permitido describir muchos de esto aspectos en gran detalle, hay varios
problemas en los tres ámbitos (teoría de la gravedad, componentes
del Universo y teoría de las condiciones iniciales). El objetivo de esta
tesis es de explorar cómo estos problemas abiertos pueden encontrar
una posible solución; en particular se discute cómo nuevas muestras
experimentales y nuevos avances teóricos puedan jugar un papel en
responder a estas preguntas abiertas.

La segunda parte se centra en la posible degeneración entre los
efectos que neutrinos y teorías de gravedad modificada tienen en los
observables cosmológicos. En el trabajo “Hiding neutrino masses in
modified gravity cosmology” se investigó como la teoría de Horndeski,
que es la teoría más general que incluye un campo escalar que tiene
ecuaciones del movimiento del segundo orden y que obedece al prin-
cipio de equivalencia débil, tenga suficiente libertad para reproducir

xiii
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una expansión como la que predice el ΛCDM y, al mismo tiempo,
pueda incrementar el crecimiento de las estructura a grandes escalas.
Dicho crecimiento, si se produjera a escalas del orden de 100 Mpc,
podría esconder los efectos que los neutrinos masivos tienen en el
espectro de potencia de la materia.

En la tercera parte se debate de uno de los candidatos a ser materia
oscura, es decir de agujeros negros primordiales, es decir, aquellos
que se formaron en las primeras fracciones de segundos de nue-
stro Universo. En “Primordial black holes as dark matter: converting
constraints from monochromatic to extended mass distributions” se
muestra cómo, empezando desde los límites superiores que ya existen
para agujeros negros primordiales que tienen una distribución de
masa monocromática, es posible obtener límites superiores en la abun-
dancia de agujeros negros primordiales que tengan una distribución
de masa extendida. Además, se establece cómo validar si todas las
asunciones hechas en la parte de modelización teórica se cumplen en
el caso de distribuciones de masa extendidas. Por último, se enseña
cómo para distribuciones log-normal y de ley potencial los límites en
la abundancia de agujeros negros primordiales en la ventana de 10
masas solares son más estrictos que respeto al caso monocromático.
En “GW×LSS: chasing the progenitors of merging binary black holes”
se explica cómo, relacionando mapas de galaxias y mapas de ondas
gravitatorias generadas respectivamente por los survey de galaxias y
los observatorios de ondas gravitatorias, se puede llegar a entender
cuál es la origen de los agujeros negros que forman las binarias detec-
tadas. Resulta que con experimentos ya en funcionamento, como DESI
para galaxias y ALIGO para las ondas gravitatorias, se puede tener
una primera indicación sobre la origen estelar o primordial, aunque se
necesitarán los experimentos de la siguiente generación para obtener
una confirmación definitiva.

La cuarta parte describe cómo se puede obtener nuevas pruebas
sobre las primeras fracciones de segundos de nuestro Universo, y en
particular sobre la teoría de la Inflación. En “Measuring the energy
scale of inflation using large scale structure” enseñamos cómo se po-
dría medir la escala energética de la Inflación mediante la medida
de una señal especf́ica de no-gaussianidades primordiales, llamada
“graviton exchange”. Esta no-gaussianidad está generada por la interac-
ción de dos campos escalares con un gravitón y depende directamente
del parámetro tensor-to-scalar ratio r, lo cual, a cambio, está directa-
mente relacionado con la energía de la Inflación en los modelos de
campo escalar cuya energía cinética es muy pequeña en comparación
con su energía potencial. En el trabajo se enseña cómo esta señal
primordial resulta ser del mismo orden de magnitud que la función a
tres puntos estándar a escalas grandes, incrementando la posibilidad
de una detección. En “From primordial black holes abundance to pri-
mordial curvature power spectrum (and back)” se utilizan los agujeros
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negros primordiales para poner límites en la máxima amplitud que
puede tener el espectro de potencia de la curvatura primordial. Más
específicamente, se ha desarrollado un procedimiento que conecta las
simulaciones numéricas de formación de agujeros negros primordiales
a una correcta interpretación cosmológica de dichas simulaciones
hasta el cálculo de la abundancia de estos agujeros negros primor-
diales utilizando la teoría de picos. Este desarrollo teórico permitió
obtener limites significativamente más robustos respecto a la literatura
anterior.

La quinta parte incluye el resumen de los resultados encontrados
y una discusión de los mismos. Además, se debate sobre cuáles son
las perspectivas futuras y sobre cómo extender estos trabajos para
siguientes proyectos científicos. Aunque parezca que los diferentes
problemas explorados en esta tesis vayan uno separado del otro,
la explicación final de cuál es la origen, la evolución y también el
futuro de nuestro Universo tiene que incluir respuestas a todos estas
instancias.

xv
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1
I N T R O D U C T I O N

The desire to understand our Cosmos has deep roots in every human
civilization. While ancient cultures used to explain its very existence
through mythology, since the 20th century we have developed the
mathematical tools and the technology to approach the problem using
the scientific method.

Cosmology (from the Ancient Greek κóσµoς, kósmos, “world, uni-
verse, order” and -λoγία, -logía, “treating of”) is in fact the study of
the origin and evolution of our Universe from its first moments to the
present and possibly also to its future.

In this chapter we will review the basic concepts which are necessary
to understand the original works presented in chapters 2, 3 and 4. The
content is freely inspired by several classical books of Cosmology, as
the Dodelson [1], the Coles&Lucchin [2], the Kolb&Turner [3] or the
Weinberg [4].

1.1 notation and conventions

In the following, we define the conventions and the notation we use in
the rest of this chapter, in the introductory part of sections 2, 3 and 4,
and in chapter 5. These conventions might change in the published
works in chapters 2, 3 and 4, however any eventual change in the
notation is specified directly in the articles.

Greek indices indicate spacetime coordinates and range from 0 to
4. Repeated indices are summed over, according to Einstein notation.
We use the (−,+,+,+) signature. Covariant derivatives are indicated
by Dµ, while ∂µ indicates standard derivatives with respect to temporal
and spatial coordinates, in particular “ ˙ ” will indicate derivatives
with respect to cosmic time t. We choose natural units, in which c =
h̄ = kB = 1, where c is the speed of light, h̄ is the reduced Planck
constant and kB is the Boltzmann constant. The scale factor today is
taken to be a0 = 1.

1.2 general relativity

In 1915 Albert Einstein presented his theory of General Relativity, able
to describe gravitational effects ranging from laboratory experiments
to the entire Universe using geometry. He introduced the concept of
spacetime, a mathematical model that joins the three spatial and one
temporal dimensions into a four dimensional continuum. This entity
is not immutable, in fact all the different components that exists in

1
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2 introduction

our Universe define its evolution. At the same time, the motion of
these components is determined by the form of spacetime itself. In this
novel description of our Universe, the container and the content are
intertwined, in fact the theory of General Relativity can be summarized
as

Matter curves spacetime while, at the same time, the curved
spacetime controls how matter moves in it.

The geometry of spacetime is described by the metric gµν or, equiv-
alently, by the invariant interval ds2 = gµνdxµdxν, where xµ are space-
time coordinates. The equations of motion for the metric are derived
using a variational principle from the Einstein-Hilbert action:

SEH =
∫

d4x
√
−g

[
M2

p

2
R + Lm

]
, (1.1)

where g is the determinant of the metric, Mp = (8πG)−1/2 is the
reduced Planck mass, G is Newton gravitational constant, R is the
Ricci scalar and Lm is the Lagrangian density of all the matter fields1.
These equations of motion are called Einstein equations and they read
as

Gµν = Rµν −
1
2

gµνR =
Tµν

M2
p

(1.2)

where Gµν is called Einstein tensor, Rµν is the Ricci tensor and Tµν =

−(2/
√−g)δ (

√−gLm) /δgµν is the matter stress-energy tensor.
The covariant formulation of the theory guarantees that the form of

the equations does not change in different reference frames, therefore
the choice of any observer is completely equivalent.

1.2.1 The Metric of the Universe

According to the Hot Big Bang cosmological model, we live in an Uni-
verse which has been expanding since its first moments. Nowadays we
also have an overwhelming evidence from multiple sources that this
prediction is true. In chronological order, the first piece of evidence
came from the Hubble diagram, i.e., from the measurement that galax-
ies are, on average, receding from us; later on we had confirmation
of such expansion also from the abundance of light elements (mostly
Hydrogen and Helium) predicted by Big Bang Nucleosynthesis and
from the detection of a relic radiation in the microwave range of wave-
lengths, i.e., the Cosmic Microwave Background (CMB). Due to the
expansion, physical distances between different objects increase even

1 In this case we use the term “matter” to indicate every component of the Universe,
not only non-relativistic species. Therefore also the Lagragian density for photons is
included in Lm.
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1.2 general relativity 3

if objects do not move from their initial position, hence to describe
this effect it is useful to introduce the scale factor a.

A second pillar of the modern Cosmology is the Cosmological
Principle:

Viewed on a sufficiently large scale, the properties of the universe
are the same for all observers,

which is equivalent to state that on large scales the Universe is homo-
geneous and isotropic. The Cosmological Principle, combined with the
observed cosmological expansion, suggest that the correct metric for
an observer comoving with the expansion is the Friedmann-Robertson-
Walker-Lemaitre (FRWL) one:

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2dΩ2
]

, (1.3)

where t is the cosmic time, the scale factor a depends only on time be-
cause of homogeneity and isotropy, r is a comoving radial coordinate,
dΩ is the solid angle measure and k is the spatial curvature. Since the
geometry of the Universe is consistent with being flat and error bars
on this constarints are so small that essentially only negligible devi-
ations from flatness are allowed [5–9], in the following we consider
only the case in which k = 0.

Once the metric has been specified, we can compute the LHS of
equation (1.2) by evaluating first the Christoffel symbols

Γµ
αβ =

1
2

gµν
(
∂βgαν + ∂αgβν − ∂νgαβ

)
, (1.4)

then the Riemann tensor

Rρ
σµν = ∂µΓρ

σν − ∂νΓρ
σµ + Γρ

µλΓλ
σν − Γρ

νλΓλ
σµ, (1.5)

and finally both the Ricci tensor Rσν = Rµ
σµν and the Ricci scalar R =

Rν
ν.
The content of the Universe is typically assumed to be described as

perfect isotropic fluid, to be consistent with homogeneity and isotropy.
Notice that the perfect fluid assumption is realistic in the cosmological
context, where the mean free-path between particle collisions is much
smaller than the physical scales of interest. The stress-energy tensor of
a perfect fluid reads as

Tµ
ν = pgµ

ν + (ρ + p)uµuν, (1.6)

where ρ and p are the energy density and pressure of the fluid
and uµ = dxµ/

√
−ds2 is its four-velocity normalised as uµuµ = −1.

Moreover, we also have to specificy the relation between pressure
and energy density, i.e., the equation of state parameter w = p/ρ.
The reader should keep in mind the two particular cases of fluid
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made of relativistic or non-relativistic particle, which have equation
of state parameter w = 1/3 or w = 0, respectively. Moreover, it can
be proven that standard matter has equation of state parameter in the
range [0, 1/3].

Combining these facts together, we have that in the case of a spatially
flat FRWL metric, Einstein equations reduce to the two Friedmann
equations

(
ȧ
a

)2

=
ρ

3M2
p

,

ä
a
= −ρ + 3p

6M2
p

= − (1 + 3w)ρ

6M2
p

,
(1.7)

where H = ȧ/a is also known as the Hubble expansion parameter.
Friedmann equations explicitly show that the energy content of the

Universe (the RHS) determines its evolution (the LHS). From equa-
tion (1.7) we see that a Universe dominated by any form of standard
matter, i.e., with equation of state parameter w ∈ [0, 1/3], undergoes a
decelerated expansion ä < 0. However, it is useful to notice that more
exotic components with equation of state parameter w < −1/3 induce
an accelerated expansion of the Universe.

We conclude by remarking that the assumption of isotropy has
been supported experimentally by different CMB experiments [10–12]
and possible deviations are so small that we consider them negligible.
Moreover new ways to probe homogeneity has been recently pro-
posed [13], hence what has been for many decades an assumption is
currently becoming an experimental fact.

1.3 the content of the universe

As shown in equation (1.7), the knowledge of the Universe content
determines the evolution in time of the scale factor and ultimately,
of the entire Universe itself. Motivated by this fact, we review in
this section which are the main components of our Cosmos and to
which level we understand their origin, nature and behaviour in a
cosmological context.

The first piece of information we need is the abundance of every
component, typically characterised by its fractional abundance parame-
ter at present time Ωj0 = ρj0/ρc0, where ρj0 = ρj(t0) is the present-day
energy density of the desired species, ρc0 := 3M2

pH2
0 is present-day

critical density and t0 = 13.8 Gyr is the age of our Universe according
to the latest observational results [9].

The second piece of information we need is how each component
evolves in time. The contracted Bianchi identity (DµGµ

ν ≡ 0) applied
to Einstein equations (1.2) guarantees that the stress-energy tensor
of matter is covariantly conserved, i.e., that DµTµ

ν ≡ 0. Therefore,
assuming a species living in an Universe characterised by a FRWL
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metric and that can be described as a perfect fluid, we have that its
energy density evolves according to the continuity equation

DµTµ
0 = ρ̇ + 3H (ρ + p) = ρ̇ + 3H (1 + w) ρ = 0. (1.8)

1.3.1 Photons

Photons are the mediators of the electromagnetic force. Even if today
they represent the most abundant species in terms of number density
density, with approximately nγ ' 410 photons/cm3, in terms of en-
ergy density the are completely subdominant, with Ωγ0 ' 5× 10−5.
Since they are a relativistic species, their equation of state parameter
is wγ = 1/3, hence according to equation (1.8) their energy density
scales as ργ = Ωγ0ρ0ca−4 as the Universe expands.

Even if they do not contribute significantly to the present-day en-
ergy budget of the Universe, in the past they did. These photons,
that constitute the CMB radiation, are in fact the relic of a primor-
dial thermal bath that filled the entire Universe during the so called
radiation-dominated era, in agreement with the Hot Big Bang model.
There are, of course, other photons generated by stars but the CMB
radiation is by far the dominant component. Across the past 50 years,
starting with the first discovery of CMB radiation by Penzias and
Wilson, we have repeatedly measured the properties of these photons.
Today we know that their temperature is TCMB = 2.726 K and they
have an almost perfect black body spectrum with small anisotropies.

1.3.2 Neutrinos

Neutrinos are particles that interact only through weak force with
other particles. In cosmological context, they decoupled from the
photon thermal bath before Big Bang Nucleosynthesis, when the tem-
perature dropped below O(1) MeV, and weak interactions stopped
being effective in coupling neutrinos to electrons and positrons. Af-
ter that moment they free-streamed, interacting with the rest of the
Universe only through gravitational force.

Despite the success of the Standard Model, many of their properties
remain unclear. For instance, it is not clear yet if they are Dirac or Ma-
jorana particles, i.e., if they are their own antiparticle or not. However,
we know that there are three different neutrinos and thanks to the
observation of neutrino oscillation, we have measured the difference
in mass between different mass eigenstates, even if their absolute mass
has not been measured yet.

Existing cosmological data are able to provide upper bounds on
the sum of the three neutrinos masses ∑3

j=1 mj . 0.1− 0.2 eV [14–
17], which are competitive or even stronger than those coming from
ongoing laboratory experiments, as KATRIN [18, 19]. Moreover, future
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galaxy survey as DESI [20] will provide even tighter constraints on
the sum of neutrino masses. A detection of neutrino masses may also
clarify the neutrino mass hierarchy, namely whether there two light
and one heavy neutrinos (normal hierarchy) or one light and two
heavy neutrinos (inverted hierarchy).

1.3.3 Baryons

Baryons are mainly composed by Hydrogen and Helium atoms, both
created during the Big Bang Nucleosynthesis, along with a small
fraction of all the other heavier elements created later as a result
of stellar evolution and merger of stars. For cosmological purposes,
baryons can be described as a non-relativistic form of matter, hence
they have equation of state parameter is wb = 0 and their energy
density scales as ρb = Ωb0ρ0ca−3, with Ωb0 ' 0.05.

Before Recombination, i.e., the moment where neutral atoms form,
the Universe was opaque because of the continuous interaction be-
tween photons and charged nuclei and electrons: we can see the
trace of that epoch interaction in the Baryon Acoustic Oscillations we
observe both in the CMB and in large scale structure of the Universe.

Despite baryonic physics being well described in a very broad range
of energies by the Standard Model, the origin of baryons themselves
remains unexplained as well as the origin of the matter-antimatter
asymmetry.

1.3.4 Dark Matter

Along the past century a great amount of observational evidence piled
up in support of the existence of dark matter, a type of matter that
does not interact electromagnetically. Dark matter drives structure
formation by providing the potential wells in which baryons fall and
form complex structures as galaxies and cluster of galaxies. It is also
responsible of strong and weak gravitational lensing phenomena, in
fact its gravitational interaction is of the same kind of that of baryons.

Even if it does not interact with baryons and it does not emit or
absorb light, we know that dark matter is cold, i.e., non-relativistic. As
baryons, it has equation of state parameter wcdm = 0 and its energy
density scales as ρcdm = Ωcdm0ρ0ca−3, with Ωcdm0 ' 0.26. Moreover,
thanks to CMB data, we also have proven that dark matter was already
non-relativistic long before the epoch of Recombination.

Despite the huge amount of information on this component of the
Universe, we know very little about its nature, namely whether it is
composed of particles, compact objects or it is a mere effect of gravity,
assuming GR, as we know it up to Solar System scales, is not a full
description of gravity at large cosmological scales.
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1.3.5 Dark Energy

The last component to be discovered, and surprisingly the most abun-
dant one today, is dark energy. Dark energy, as dark matter, does not
have any electromagnetic interaction, however its peculiarity resides
in having negative pressure and in sourcing an accelerated expansion
of the Universe.

In its simplest version, it is described by a cosmological constant Λ
(already used by Einstein to motivate a the static Universe model),
with constant energy density ρΛ = ΩΛ0ρ0c, where according to latest
observations the present-day density parameter is ΩΛ0 ' 0.69, and
equation of state parameter wΛ = −1.

In General Relativity all forms of energy gravitate. It is therefore
thought that also the energy of the vacuum should do it and indeed
the energy of the vacuum has the right properties to describe dark
energy. However, if we compute the expectation value of the vacuum
state we find an estimate for ρΛ which is wrong at least by 60 orders
of magnitude [21]. Different explanations have also been proposed for
dark energy, the most popular one being a slow-rolling scalar field.
Unfortunately, the nature of dark energy remains still unknown.

1.4 the initial conditions of the universe

The final state of our Universe is determined not only by its content
but also by its initial conditions. Despite its success, the Hot Big Bang
model cannot justify some observed properties of our Universe, as the
observed spatial flatness (flatness problem) or the fact that region that
in principle were never in causal contact show the same properties
(horizon problem), without invoking an extremely high level of fine-
tuning. Moreover, it cannot provide an explanation for the existence
of small perturbations on super-horizon scales, which provide the
very first seeds of the large scale structure of the Universe we observe
today.

Several classes of solutions to these problems have been proposed
across the past decades, including inflationary models [22], cyclic
universe models [23] and string gas cosmology [24]. In the following
we will consider only the former, which has been establish itself as
the reference model of Early Universe because of the numerous tests
it has passed.

Nevertheless, it is important to keep in mind that the other alterna-
tives have not been ruled out and that the inflationary model has not
been confirmed beyond any doubt. For this reason it is important to
find novel ways to discriminate between different models thanks to
accurate theoretical predictions and new observational evidence.
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1.4.1 The Inflationary Model

Many of the problems the Hot Big Bang model seems to have can be
solved by a stage of accelerated expansion, called Inflation, previous
to the radiation-dominated era. There are several mechanisms that can
generate this stage, however the simplest one which we review in the
following is that inflation has been generated by a scalar field, called
inflaton, slowly rolling down a potential.

We consider a scalar field φ minimally coupled with gravity and
moving in a potential V with Lagrangian density

Lφ = −1
2

∂µφ∂µφ−V(φ). (1.9)

The scalar field energy density and pressure can be computed as the di-
agonal components of the stress-energy tensor Tµν = −(2/

√−g)δ
(√−gLφ

)
/δgµν,

as done for the perfect fluid case. In the case where the potential is
almost flat and the field is slowly rolling down the potential, namely
when φ̇2 � V, the equation of state of the scalar field reads as

wφ =
pφ

ρφ
=

φ̇2/2−V
φ̇2/2 + V

' −1, (1.10)

therefore, according to equation (1.7), in an Universe dominated by
such scalar field the scale factor expands exponentially as a(t) = eHinft,
where Hinf = V/(3M2

p) is the Hubble expansion rate during inflation
and can be considered approximately constant since the field is moving
slowly along the potential.

Once the exponential expansion starts, a small patch of the Universe,
that at that time was in causal contact, is stretched at least to the size
of the Universe we observe today. At the same time, inhomogeneities
are rapidly washed out since spatial curvature energy density scales
as ρk ∝ a−2 = e−2Hinft. The duration of inflation is quantified in terms
of number of e-folds N = log(a f /ai), where a f and ai are the scale
factors at the end and at the beginning of the inflation, respectively.
If N � 60 both horizon and flatness problem are solved.

In this standard picture, quantum fluctuations in the scalar field
are responsible for the generation of curvature perturbations and
will seed structure formation when reentering the horizon, during
radiation- and matter-domination eras. In this sense, the presence
of perturbations on super-horizon scales is a natural prediction of
standard inflationary models. Moreover, since perturbations in fields,
as the photons or matter density fields, in the Late Universe are effec-
tively sourced by Early Universe physical mechanism, by studying the
statistical properties of these fields we can reconstruct the dynamics
of the Early Universe.

Finally, even if inflation solve some of the problems the Hot Big Bang
model has, it does not solve all of them. Because of the accelerated
exponential expansion, Inflation will dilute any other component that
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previously existed, cancelling any trace of how the Universe was
before it started. Hence at the end of inflation we need an additional
stage, called Reheating, in which the Universe is warmed up again
and all the species which exist today are recreated.

1.5 overview of the thesis

General Relativity, the different components of the Universe and
Inflation are the ingredients of the Cosmological Standard Model,
the ΛCDM. The model can describe incredibly well a vast range
of cosmological observables with only six parameters: the reduced
Hubble expansion rate today h = H0/(100 km/s/Mpc), the baryon
physical density ωb = Ωb0h2, the cold dark matter physical den-
sity ωcdm = Ωcdm0h2, the scalar fluctuations amplitude As, the scalar
fluctuations tilt ns and the optical depth to Reionization τ.

Despite its success, the ΛCDM remains a phenomenological model,
which does not provide any description of the nature of its parts.
General Relativity describes a wide range of phenomena both in the
weak and strong field regime, however it has never thoroughly tested
at scales comparable to the cosmological horizon today. The origin of
many of the components, such as dark matter and dark energy, still
escape understanding. Even some properties of less exotic components,
as neutrinos, are still not understood. The physics of first fractions of
seconds remains unexplained and very hard to test.

The goal of this thesis is to explore how several of these open prob-
lems in Cosmology can be addressed in novel ways, with particular
attention to the observational consequences and possibility of experi-
mental confirmation. In fact, since we are entering the golden era of
Cosmology, in which the field is going to move from a data-scarce to
a data-driven science, theoretical predictions and observations need to
be as accurate as possible.

The thesis is organised as follows. In chapter 2 we investigate the
possibility to actually measure neutrino mass in the sky, along with
the intrinsic limitations that this kind of measurement come with.
In chapter 3 we characterise one dark matter candidate, Primordial
Black Holes, improving constraints on their abundance and novel
ways to prove the constitute part of the dark matter sector. In chapter 4

we study novel avenues to extract information on the physics of the
very first moments of our Universe using probes characteristic of the
late Universe. Each chapter will contain a short introduction to the
problem discussed in the papers, to help the reader in connecting the
basic picture described in this introduction to state-of-the-art works.
Finally, in chapter 5 we summarise the main findings of the different
works thesis and we discuss future prospects.
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N E U T R I N O P H Y S I C S
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2
N E U T R I N O M A S S M E A S U R E M E N T

As stated in the Introduction, neutrinos are a component of the Stan-
dard Model, despite some of their properties currently unknown.
Their existence and interaction with other particles have been studied
during decades, however there are better prospect to measure some
of neutrino properties in Cosmology than in traditional laboratory
experiments.

Neutrino physics in Cosmology is well understood, see, e.g., Ref. [25].
Due to their small mass, were relativistic particle for a large fraction
of the expansion of the Universe. They started to free-stream, i.e.,
they started travelling across the Universe without interacting with
other species (with the sole exception of gravitational interaction)
since when they decoupled from photons, before Big Bang Nucleosyn-
thesis. The averaged distance covered by neutrinos before becoming
non-relativistic particles is called free-streaming length. Since they
tend to escape from potential wells because of their large momentum,
they contribute in smoothing out gravitational potentials, hence neu-
trino free-streaming effectively suppress the growth of perturbation
on scales smaller than the free-streaming length. Once they become
non-relativistic, they behave as standard matter, e.g., as baryons and
cold dark matter, falling into potential wells and contributing to the
growth of the large scale structures of our Universe.

We can observe this suppression in the growth of perturbations as
a damping in the clustering of matter at small scales, below the free-
streaming length, with respect to large scales, above free-streaming
length. Therefore the same kind of suppression will be present in the
clustering of biased tracers of matter distribution, as galaxies. The
magnitude of this suppression and the free-streaming length depend
on neutrinos mass, hence by measuring this feature we can constraint
this unknown parameter of the Standard Model.

However, in Cosmology we are performing a simultaneous mea-
surement of the effects of neutrinos and gravity. Disentangling one
from the other represents a challenge, since we have not tested gravity
at cosmological scales as well as we have tested it in our Solar System.
Even small changes in the strength of gravitational force at cosmologi-
cal scales might partially hide this feature created by neutrinos and
bias the measurement of their mass.

Moreover, many of the models proposed to explain dark energy
physics produce change in the gravitational force, hence in the growth
of structures, because of the existence of another long-range force
acting at large scales. In the following, we focus on Horndeski theory

13
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of gravity [26, 27], the most general scalar-tensor theory with one
extra scalar field (playing the role of dark energy and mediating the
extra long-range force) that have second order equations of motions
on any background and that satisfy the weak equivalence principle.
Horndeski theory includes many popular models of modified gravity,
as quintessence [28, 29], f (R) theories [30] and galileons [31], along
with many others, therefore it provides a general framework that can
be applied to a variety of theoretical models.

In this theory, the action for gravity and the scalar field φ reads as

S =
∫

d4x
√
−g
[
L2(φ, X) +L3(φ, X) +L4(φ, X) +L5(φ, X)

]
, (2.1)

where the four Lagrangian densities Lj=2,··· ,5 are functions of the scalar
field φ and its canonical kinetic term 2X = −DµφDµφ and are given
by

L2 = K(φ, X),

L3 = −G3(φ, X)�φ,

L4 = G4(φ, X)R +
∂G4

∂X

[
(�φ)2 −

(
DµDνφ

)
(DµDνφ)

]
,

L5 = G5(φ, X)GµνDµDνφ− 1
6

∂G5

∂X
×

×
[
(�φ)3 + 2

(
DµDνφ

)
(DνDρφ)

(
DρDµφ

)
− 3

(
DµDνφ

)
(DµDνφ)�φ

]
,

(2.2)

where � is the covariant d’Alembertian operator and {K, G3, G4, G5}
are four arbitrary functions. These functions represent the freedom
of Horndeski theory of gravity, i.e., different scalar-tensor theories
of gravity are characterised by a different choice of this set of free
functions, in particular General Relativity is recover for K = G3 =

G5 ≡ 0 and G4 = 1/2.
In the following I present the paper I have written, “Hiding neutrino

masses in modified gravity cosmologies” [32], in which I discuss the
potential degeneracy between neutrino and Horndeski gravity effects.
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1 Introduction

Recent cosmological observations have brought upon us the era of precision cosmology. To
challenge the current standard cosmological model seems to require very precise cosmologi-
cal parameters determinations, as all current available observations are consistent with the
simplest ΛCDM model [1]. However, the current model is just a convenient phenomenolog-
ical description of the Universe as it gives no insight on the nature of the individual energy
components like dark matter and dark energy. Most likely before major breakthroughs in
our understanding of the Universe come through, precision cosmology should verify yet un-
detected, small effects, corresponding to standard expectations. Among them, the effect of
neutrino masses on large-scale structure is the most promising candidate to verify cosmology
at the sub-percent level. Is there any chance for surprise? This has been addressed in a series
of works which involve a plethora of modified cosmological models (for a review, see [2, 3])
where some specific piece of the extended model mimics the impact of neutrino masses. Mod-
ified gravity models stand as the most promising alternative to the current paradigm (see
e.g., [4–6]).

The impact of deviations of Einstein gravity on the determination of neutrino masses
has been studied and analysed both in the linear and nonlinear regime [7–9]. Most often, the
extended gravity models are specific and simplified scenarios which avoid the exploration of
large parameter spaces in time-consuming simulations and/or analysis. The outcome of these
studies typically shows a qualitative understanding of the influence of the modified model’s
parameters in the adopted neutrino mass bound.

In this paper, we make a more general characterization of the influence of modified
gravity models on the determination of the neutrino mass. We characterize and analyse fully
general massive neutrino scalar-tensor (Horndeski) cosmologies, for the first time, working
with the effective theory and observations in the linear regime [10]. The modified gravity
models are very generally characterized by a minimal number of given functions, set by
a limited number of parameters. The redshift dependence of these functions is driven by
searching for the largest impact on the neutrino mass constraints. In this framework, we can
address the questions: “where is the degeneracy between neutrino mass and a modified gravity
model hidden?” and “how could it be partially resolved?”. Moreover, we can quantitatively
characterize the knowledge of neutrino mass in the general models under scrutiny. Our results
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can be directly applied to theoretically motivated tensor-scalar gravity theories by matching
the functions of the effective theory to those used here (see section 2).

2 Models

The idea that DE/MG models could hide the effects of the mass of neutrinos on cosmological
scales is intriguing and deserves investigation. However, one has to choose carefully the
framework to work with. A simple DE/MG model has not enough freedom to be used both
to drive the expansion history and to affect the formation of cosmic structure as massive
neutrinos do. The reason is that neutrinos become non-relativistic at typical times (z ' 100)
far before the usual on-set of DE created to drive the late-time cosmic acceleration (z ' 1).
Then, the models we look at should have at least two different time scales, one for the
background and one for the perturbations. Our focus is on a broad class of scalar-tensor
theories, namely the Horndeski class of models [10–12]. Horndeski is the most general theory
with one extra scalar propagating degree of freedom that have second-order equations of
motion on any background and that satisfies the weak equivalence principle, i.e. all matter
species are coupled minimally and universally to the same metric gµν . This class of models has
the freedom to choose four arbitrary functions of two variables, i.e. the extra propagating
degree of freedom φ and its canonical kinetic term X = −φ;µφ;µ/2. Any choice of these
free functions affects simultaneously both the expansion history and the evolution of the
perturbations.

A different approach, still encoding all the freedom of the Horndeski class of models, is
the so called Effective Field Theory (EFT) for Dark Energy [13–16]. In [17] it was noticed
that all the amount of cosmological information up to linear order in perturbation theory in
Horndeski, can be compressed into one function of time driving the expansion history of the
universe (the Hubble parameter H(t)), plus four functions of time and one constant acting
just at the level of the perturbations. The constant can be identified as the fractional density
of matter today (Ωm0) and the other functions of time have been dubbed: kineticity αK(t),
braiding αB(t), Planck mass run-rate αM (t) or equivalently the Planck mass M∗(t), where

αM ≡ d lnM2
∗

d ln a , and tensor speed excess αT (t). The advantage of using this approach instead
of the original Horndeski function is twofold: (i) since all the cosmological information is
compressed into a minimal set of functions, it is easier to understand the phenomenology of
the models we are studying, and (ii) we can separate the contributions to the background
from the contributions to the perturbations. In other words, we can directly modify the
evolution of the perturbations keeping the expansion history fixed and compatible with data.

The price one has to pay for using this approach is that, since it is not possible
with current data (and probably also with future ones) to constrain the αi functions non-
parametrically, any parametrization we choose can not be considered as representative of the
full parameter space of the Horndeski theories, but it refers to specific and possibly fine-tuned
class of models. In particular, it is not trivial to link this phenomenological description with
classes of action-based theories [18]. Nevertheless, our approach is still useful since our pur-
pose is to give a proof of principle that, under particular circumstances, the effects on the
observables of the mass of neutrinos can be hidden into the gravity sector.

As stated before, the class of models we should look at, must have two time scales, one
related to the on-set of DE at the background level, and one that can mimic the transition of
neutrinos from the relativistic regime to the non-relativistic one. Then, we fix the expansion
history to be the one predicted by the standard ΛCDM in a flat universe. On the other
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hand, the αi functions are parametrized as follow: αK(z) = cK , αB(z) = cB × mod(z),
αM (z) = cM × mod(z) and αT (z) = cT × mod(z), where cj are constants. The choice of a
constant αK is due to the fact that its effect is subdominant on the growth of structures
w.r.t. the other alphas and it is poorly constrained by present data [19] but also the next
generation of surveys will not bring its uncertainty down to the level of the other alphas [20].
The function mod(z), is defined ad-hoc to switch on modifications to Einstein gravity at a
given redshift zth with a transition given by ∆z. Then, a convenient formulation can be

mod(z) =
1 + tanh

(
zth−z

∆z

)

1 + tanh
(
zth
∆z

) . (2.1)

For our purposes, we choose zth close to the redshift of neutrinos becoming non-relativistic
and ∆z comparable to zth (see other scenarios in [21]).

In addition, Horndeski theories introduce a new scale dependence, the braiding scale kB,
that can be useful to separate the effects on small and on large scales. Indeed, kB signals the
transition between two different gravity regimes, imprinting a characteristic scale-dependence
in the Power Spectrum. In a ΛCDM background, it reads

k2
B

a2H2
=

9

2
Ωm + 2

(
3

2
+
αK
α2
B

)
(αM − αT ) . (2.2)

While the braiding scale is related to the scale where the shape-dependent modification of
the growth manifests itself, in the ΛCDM model this scale is undefined. For this reason we
cannot report a kB value or limit where one univocally recovers the standard gravity regime.

3 Mock data and Likelihoods

We analyse our modified gravity models against the CMB temperature, E-mode polarization
and deflection angle power spectra, as well as their cross correlation, simulated with the
fiducial cosmological model using Planck results [22] and Planck blue book beam and noise
specifications [23]. We use the cosmological parameters listed in table 1 along with the
CAMB code [24] to produce the fiducial CMB temperature and E-mode polarization power
spectra. We feed these to the FuturCMB package [25] to compute the noise power spectra
for T, E-modes and the lensing deflection angle based on the Hu-Okamoto [26] quadratic
estimator. For further details about the FuturCMB code we refer the reader to [25] while for
the construction of the spectrum likelihood we refer to [25, 27].

We also consider an Euclid-like survey [28], with 14 redshift bin in the range [0.7, 2.0]
and scales in the range [0.001, 0.12] Mpc−1 (or k < 0.2h/Mpc), in order to stay within the
linear regime at every redshift. The number of galaxies per square degree is given by the
Euclid 2016 settings, as well as the observed fraction of the sky. Our basic likelihood was
constructed following [29] and includes a scale independent bias, a Kaiser term for redshift
space distortions and errors in determining galaxies line of sight positions, which contains
spectroscopic/photometric errors and Fingers of God effects. This basic setting will be indi-
cated as P(k) dataset. We have then extended it to the Full P(k) dataset, where we added
information due to geometrical distortions (i.e. BAO and Alcock-Paczynski) related to dif-
ferent expansion histories. In both cases we can choose to include just an observational
error σobs, given by shot noise and cosmic variance, or also a theoretical error σthe, as ex-
plained in appendix A of [29], which should account for all possible effects not considered
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fiducial MCMC run MCMC run

Parameter GRfid+M0 MG1+M500 MG2+M500

100ωb 2.218 [2.23,2.28] [2.26,2.30]

ωcdm 0.1205 [0.113,0.115] [0.112,0.114]

h 0.6693 [0.650,0.659] [0.656,0.665]

109As 2.124 [2.08,2.15] [2.52,2.63]

ns 0.9619 [0.969,0.979] [0.965,0.975]

zreio 8.24 [7.7,9.3] [15.3,17.0]

cK 10 1000

102cB [3.7,5.7] [3.7,5.7]

103cM [3.1,7.9] [2.8,7.4]

102cT [-0.8,-0.4] [-15.5,-10.1]

zth 100 100

∆z 20 20

Table 1. Cosmological parameters of the fiducial model and the 95 % CL intervals of the modified
gravity model parameters for two particular cases that have different values of cK . These results
were derived by analysing CMB + Full P(k)(σobs) dataset. The apparent detection of a non-zero MG
parameter is due to the fact that cosmological parameters alone can not compensate for the presence
of significantly heavy neutrinos.

in our likelihood. To calculate cosmological observables in our analysis we have used the
hi class [30] public code, an extension of the CLASS [31–33] code that allows us to include
an additional scalar degree of freedom in the gravitational sector and to model its effects on
gravity and matter, while the Monte Carlo Markov Chain (MCMC) forecast has been done
with the MONTEPYTHON [34] code. Chains were considered converged when the Gelman and
Rubin parameter was R− 1 < 0.01.

In this work we used the following neutrino models: a) three massless neutrinos (model
M0), b) three massive neutrinos in the normal ordering with

∑
mν = 150 meV (model M150)

and c) three quasi-degenerate neutrinos in the normal ordering with
∑
mν = 500 meV

(model M500). The first and second model were used to create the fiducial mock data, while
the third was used along with modified gravity models.

4 Hiding neutrino masses

We have run several MCMC using the CMB+Full P(k)(σobs) dataset (see table 2). The
fiducial model was calculated assuming General Relativity plus three massless neutrinos,
using fiducial values reported in table 1. This fiducial will be indicated in what follows by
GRfid+M0. Every MCMC run was characterised by a different choice of the values of the
kineticity function αK and of the modulation function parameters (zth,∆z), which were
taken as fixed parameters. We explored the parameter space given by the cosmological and
MG parameters {ωb, ωcdm, h, As, ns, zreio, cB, cM , cT }, assuming a flat prior for each of them.
In every run the neutrino mass scheme was given by the M500 model. The results for the
particular case MG1+M500, where αK = 10, zth = 100 and ∆z = 20, are shown in table 1.
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MCMC described in section Fixed parameters Varying parameters

Hiding neutrino masses cK ,Σmν , zth,∆z ωb, ωcdm, h, As, ns, zreio, cB, cM , cT
Removing degeneracies cK , cT , zth,∆z ωb, ωcdm, h, As, ns, zreio, cB, cM ,Σmν

Table 2. List of fixed and varying parameters in MCMC runs described in sections “Hiding neutrino
mass” and “Removing degeneracy”. We assumed a flat prior for each varying parameter.

Comparing the MG1+M500 model results with the fiducial model, we find a lower value
of h, required in order to preserve the acoustic peak scale, as well as a higher value of ns, as
expected since it helps to compensate the neutrino power suppression at small scales. The
value of ωcdm decreases significantly in order to keep the global ωm similar to the fiducial one,
since also neutrinos contribute to the physical matter density with ων = 0.0054. We found
compatibility between cosmological parameters confidence regions for different sets of the
modulation function parameters. The main changes between the models due to the choice of
(zth,∆z) is the allowed range of MG parameters, in particular αB, since we have checked that
it is responsible for the enhanced structure growth at small scales. Any deviation from GR
that appears earlier requires a smaller global amplitude, since the modifications of gravity
will be at work for a longer period of time; on the other hand, modifications that become
significant slowly (or later) will require a bigger overall magnitude. The parameter αM is
highly correlated with αB because they have opposite effects on the matter power spectrum.
Notice that we have imposed stability conditions on the positiveness of the scalar field sound
speed which partially induces such correlation.

The potential of modified gravity to hide neutrino mass is shown in figure 1. Using the
MG1+M500 result, we plot the relative matter power spectrum (to the GRfid) at representative
redshift z = 1.4 (at other redshift such as 0.5 or 2 the plot is virtually indistinguishable) for
three different models: the fiducial model with massive neutrinos (GRfid+M500), the modified
gravity best fit model with massless neutrinos (MGbf+M0) and the modified gravity best fit
model with massive neutrinos (MGbf+M500). Massive neutrinos imprint a power suppression at
small scales in the GR cosmology, while the modified gravity model with massless neutrinos
leads to an increased power at small scales. Both effects, massive neutrinos and modified
gravity, can be approximately cancelled as shown by the model MGbf+M500, where the relative
differences are below the error bars. We stress here the generality of this result, which we
have verified for several modulation function parameters and redshifts.

Contrary to naive expectations, the value of αK is not unconstrained. In the CMB
only analysis, αK changes the overall width of the MG parameters posteriors, but does not
modify cosmological parameters. Once we include the Full P(k)(σobs) dataset, cosmological
parameters posteriors also change. Comparing the MG1+M500 to the MG2+M500 model results
reported in table 1, we note that the value of αK = 10 is preferred with respect to higher
values, due to a substantial shift in the confidence interval of As and, consequentially, of zreio.

This shift can be attributed to the interplay between the two relevant scales, the neutrino
free-streaming scale at the non-relativistic transition knr and the MG braiding scale kB. In
order to hide the typical step-like feature in the power spectrum due to massive neutrinos, our
MG model should introduce small deviations from GR for scales k . knr and a considerable
enhancement for k & knr. This constraint already introduces a preferred value for the
braiding scale kB, which has to be similar to knr. In general one could tune the ratio αK/α

2
B

in order to place the transition between the two gravity regimes at the desired scale, but
in this case the amplitude of αB is already fixed by the neutrino mass, since it is the only
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Figure 1. Relative difference in the matter power spectrum of three models with respect to the
fiducial model GRfid at redshift z = 1.4. The blue line shows the suppression due to massive neutrinos
M500 model vs M0. The green line corresponds to the MCMC best fit cosmological and MG parameters
with the M0 neutrino model, showing the MG enhancement in the matter power spectrum at small
scales. The red line represents the MCMC best fit of the MG model with massive neutrinos, which
mimics the GR model with massless neutrinos.

parameter that can enhance the power spectrum at large k. Therefore the only possible
way to match the two scales is to change the value of αK . Note however that, at linear
level, different values of αK do not change matter power spectrum features but just the
range of modes where these features appear. For bigger kineticity values the braiding scale is
translated to larger k as well as the desired MG step-like feature, however as soon as kB > knr
there is a range of scales where we start to observe the neutrino-induced suppression but not
the MG-induced enhancement. As a result the fit favours a larger primordial fluctuations
amplitude (see right column of table 1).

Given this particular signature due to the kineticity, we have done additional runs where
also αK was allowed to vary (assuming a uniform prior) while keeping fixed the modulation
function parameters to (zth,∆z) = (100, 20) and the neutrino model to M500, finding for the

first time constraints on this parameter: αK is peaked around αpeak
K = 6.5 and is bounded to

be in the interval [1.9, 20.4] at the 95% CL.
Naively this is unexpected, since in the quasi-static (QS) limit — i.e. for modes such

that k/kcs � 1, where kcs = aH
cs

is the dark-energy sound horizon [35] — the kineticity
αK disappears from the perturbed equations. However, an Euclid-like survey will probe
considerably large scales where the QS approximation may not hold. In fact,

k

kcs
≥ ksurvey,min

kcs(z = 2)
∼ 0.3, (4.1)

indicating that the QS limit condition is not fulfilled for every mode and redshift.

5 Removing degeneracies

In order to explore the degeneracy between modified gravity parameters and neutrino mass,
we performed additional MCMC runs with different datasets and two different fiducial models
(see table 2). We used the GR+M0 fiducial described in the previous section and a new
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Figure 2. Neutrino mass posterior (relative to its maximum) of modified gravity models for several
datasets. The posterior wide tail of the CMB dataset is considerably damped when power spectrum
data is added. Significantly, heavy neutrinos, considered in the previous section, are highly disfavoured
once we include information coming from the expansion history.

fiducial model: GR+M150; this has the same cosmological parameters of GR+M0 but it includes
the M150 neutrino mass model. In both cases we fixed the values of (cK , cT , zth,∆z) to
(10, 0, 100, 50), choosing this value for the tensor speed excess because its impact on the
growth of structures is negligible. In each chain the varying parameters were the six standard
cosmological parameters, the coefficients of the braiding and the Planck mass run-rate (cB
and cM ) and the neutrino mass Σmν , under the simplifying assumptions of normal mass
ordering. For each varying parameter we assumed uniform priors.

We show the posterior distributions in figure 2 for different datasets. The broad tail in
the CMB posterior indicates that this dataset alone is not able to tightly constrain neutrino
mass, allowing neutrinos to be quite massive (

∑
mν . 0.761 eV at 95% CL). We also consid-

ered power spectra datasets, where we implemented different combinations of observational
error σobs, theoretical error σthe and effects coming from changes in the expansion history.
Neutrino mass constraints come mainly from the small scales, where few percent observa-
tional errors lead to tight constraints. On the other hand, non-linear effects and modelling
systematics both in neutrinos and modified gravity physics appear precisely at these scales,
so even a theoretical error rough estimate, as adopted here, can show how our constraints
weaken. Comparing curves with and without the theoretical error we can see that, if we don’t
take into account effects coming from different expansion histories (CMB+P(k) (σobs +σthe)
dataset), inaccurate modelling at small scales could really modify the high mass tail of the
distribution (

∑
mν . 0.400 eV at 95% CL). The expansion history information enclosed in

Full P(k) is able to play a significant role in constraining neutrino mass (compare CMB+Full
P(k) to CMB+P(k)), but these constraints could weaken by changing the Hubble expansion
rate H(z) or the angular diameter distance DA(z) through a suitable choice of equation of
state parameter for dark energy, away from the cosmological constant value, wφ(z) 6= −1.

In the case of the M0 fiducial model, considering the most constraining dataset, MG can
hide neutrino masses up to 160 meV at 95% CL. On the contrary, a large neutrino mass
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Figure 3. Correlation between cB and Σmν assuming a fiducial model GR+M0 (upper panels) or
GR+M150 (lower panels). Fiducials are represented as black dots. Contours are shown for the 68%
and 95% CL when considering CMB (left panels), CMB+P(k) and CMB+Full P(k) (right panels)
datasets. In the latter case we have plotted the case with only observational errors, which is the most
constraining case. Cuts in the correlations appear as a result of our assumptions: in our model cB
cannot be negative without triggering instabilities and Σmν cannot be less than ' 0.06 eV since we
imposed that neutrinos obey the normal ordering mass scheme.

compatible with present bounds (M150 fiducial model) can not be hidden by MG as shown
in figure 3, where the analysis with the largest dataset finds a minimum mass of 100 meV at
95% CL.

Our results show that the neutrino mass is degenerate with the cB parameter, as illus-
trated in figure 3 for the two fiducial models GR+M0 and GR+M150. cB is the only parameter
(at the linear level) in our models that can hide the suppression induced in the power spec-
trum by massive neutrinos. We can draw this conclusion also by looking at the CMB MCMC
result, since we included in the dataset also the power spectrum of the weak lensing CMB
deflection angle, which in turns depends on the gravitational potentials along the line of
sight. Adding power spectrum observations also shows the cB −

∑
mν correlation, with a

neutrino mass range partially limited.

6 Conclusions

In this work, we have explored the nature of the degeneracy between neutrino masses and
modified gravity. We focussed on widely applicable results by using the Horndeski generalized
scalar-tensor theories of gravity. These generic models contain, in the linear regime, few
redshift dependent functions that here are tuned to maximize the impact on the neutrino
mass determination. We have studied the parameter space of the number of modified gravity
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parameters (6) in the model for several neutrino mass schemes and considered mock state-
of-the-art CMB data sets and forthcoming galaxy redshift surveys. Among other minor
contributions, one parameter describing one of the four Hordenski functions is the dominant
source of degeneracy with neutrino masses. Not unexpectedly this is the braiding, which
physically arises from a mixing between the kinetic terms of the metric and the scalar and it
modifies the growth of perturbations boosting small scale power.

We have shown the cancellation of the impact of the neutrino mass with a modified
gravity model in the power spectrum in the linear regime. This cancellation is very efficient
at a particular redshift; combinations of several redshifts may lift the degeneracy and we
have explored the potential of future datasets in doing so. We find that future data such
as those provided by an Euclid-like survey would limit, but not fully cancel, the degeneracy
of neutrino mass with one of the Hordenski parameters, cB. Here we have only considered
galaxy redshift surveys as large-scale structure probes. Of course the weak gravitational
lensing signal could further help, but consideration of this probe is left to future work.
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3
P R I M O R D I A L B L A C K H O L E S A S D A R K M AT T E R

What the nature of dark matter is remains very hard to assess, despite
decades of direct, indirect and colliders experiments, see e.g., Refs. [33,
34] and references therein.

Even if dark matter can be composed by Beyond Standard Model
particles, which we might need to solve some of Standard Model
puzzles, other dark matter candidates are still allowed by current
data. During the past years one of them, Primordial Black Holes
(PBHs), started to attract more attention, thanks to the detection of
gravitational waves coming from mergers of black hole binaries. In
fact the properties of the ten confirmed events of the first two runs [35]
showed some unexpected properties, namely large masses of the
progenitors and low effective spin of the binary. While these properties
can potentially being explained by stellar models, they also fit quite
well some of the predictions for PBHs.

PBHs are black hole that formed deep in the radiation-dominated
era. They differ from astrophysical black holes, i.e., those created at
the end of stellar evolution, because PBHs mass can span a huge
range, from MPBH ' 10−38 M� if they formed at time t f ' 10−43 s to
MPBH ' 105 M� if born at time t f ' 1 s. Moreover, in some formation
scenario as the collapse of a large overdensity, they are naturally
expected to have small spin [36–38].

In this chapter I present two works, “Primordial black holes as dark
matter: converting constraints from monochromatic to extended mass
distributions” [39] and “GW×LSS: chasing the progenitors of merging
binary black holes” [40], which discuss two crucial problems: defining
which is the correct present-day maximum fraction of dark matter
made of PBHs and confirming whether detected black holes have a
primordial or astrophysical origin. Addressing these issues is a key
step in defining if PBHs constitute the majority, or at least a part, of
dark matter.

The phenomenology of PBHs is very rich, in part due to the ex-
tended range of masses they can have (in contrast to black holes
generated as end-point of stellar evolution), but also because they are
extended compact objects generating a strong gravitational field and
not just particles. Establishing the present-day abundance of PBHs
represents a delicate issue, which has sometimes been overlooked:
in most of the cases, current constraints are computed assuming a
monochromatic mass distribution, i.e., that all the black holes have
the same mass. This assumption is not realistic, in fact there are sev-
eral known processes that change the black hole mass distribution,

29
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as accretion in environments with different baryon density or black
holes mergers. Therefore we need a consistent, yet fast, way to gener-
alise these monochromatic constraints to the case of extended mass
distributions without involving long analysis, in order to quickly ex-
plore the parameter space of possible PBHs mass distributions. At the
same time, we must keep under control whether all the assumptions
made in obtaining the constraint are still valid, at least to preserve the
robustness of the constraint under analysis.

After having determined the maximum fraction of dark matter
that can be made up of PBHs, we need to identify which black hole
detected by the LIGO/Virgo Collaboration, or by future gravitational
waves observatories as Einstein Telescope, has a primordial origin.
In fact the existing gravitational wave observatory network (which
soon will include also KAGRA and LIGO India) has the potential to
discover compact objects whose mass ranges from subsolar masses to
hundreds of solar masses. Any black hole with subsolar mass can form
only in radiation-domination, however for larger masses both channels
are possible. Therefore finding different avenues to infer the origin of
detected black holes is crucial, since any eventual confirmation that
PBHs exist must be supported by multiple evidence.
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1 Introduction

The ΛCDM model has become the cosmological standard model thanks to its ability to
provide a good description to a wide range of observations, see e.g., [1]. However, it remains
a phenomenological model with no fundamental explanations on the nature of some of its key
ingredients, e.g., of dark matter, see e.g., [2]. Several possible dark matter candidates have
been proposed, ranging from yet undetected exotic particles like WIMPs [3] or axions [4], to
compact objects such as black holes [5], including the ones possibly forming at early times,
therefore called Primordial Black Holes (PBHs).

Since so far none of the numerous undergoing direct dark matter detection experiments
has given positive results (neither for WIMPs [6] nor for axions [7]), PBHs have started to
(re)gain interest after the first gravitational waves detection by the LIGO collaboration [8].
Those gravitational waves were generated by a merger of two black holes with masses around
30M�. Given the large mass of the progenitors, some authors [9, 10] have proposed that
it could be the first detection of PBHs, whose merger rate is indeed compatible with LIGO
observations. Since PBHs were first proposed as a candidate for dark matter, there have
been considerable efforts from both theoretical and observational sides to constrain such
theory. PBHs might produce a large variety of different effects because the theoretically
allowed mass range spans many order of magnitude. As a consequence, the set of constraints
coming from a variety of observables is broad too. Starting from the lower allowed mass,
constraints come from γ-rays derived from black holes evaporation [11], quantum gravity [12],
γ-rays femtolensing [13], white-dwarf explosions [14], neutron-star capture [15], microlensing
of stars [16–20] and quasars [21], stellar distribution in ultra-faint dwarf galaxies [22], X-
ray and radio emission [23], wide-binaries disruption [24], dynamical friction [25], quasars
millilensing [26], large-scale structure [27] and accretion effects [28–31]; given the strong
interest in the model, there have been recently suggestions for obtaining constraints from
e.g. the cross-correlation of gravitational waves with galaxy maps [32, 33], eccentricity of the
binary orbits [34], fast radio bursts lensing [35], the black hole mass function [36, 37] and
merger rates [38].

These constraints have been obtained (mostly) for a PBH population with a Monochro-
matic Mass Distribution (MMD). This distribution has been always considered as stationary,
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even if during its life any black hole changes its mass due to different processes, such as Hawk-
ing evaporation [39], gravitational waves emission, accretion [29] and mergers events [9]. The
magnitude of such effects has been analysed recently. In ref. [40] the authors investigate
the importance of evaporation and Bondi accretion during the whole Universe history. They
found that PBHs with mass 10−17M� . M . 102M� neither accrete or evaporate signifi-
cantly in a Hubble time (unless they are in a baryon-rich environment). On the other hand,
the mass lost in gravitational waves emission due to mergers has to be small, since the frac-
tion of dark matter converted into radiation after recombination cannot exceed the 1%1 [41].
This finding rejects the possibility of an intense merging period at z ≤ 1000. Although these
effects are small compared to current experimental precision and theoretical uncertainties in
the modelling of the processes involving PBHs, a comprehensive treatment must eventually
include a description of their evolution.

More importantly, a large variety of formation mechanisms directly produce Extended
Mass Distributions (EMDs) for PBHs. Such mechanisms generate PBHs as the result of,
among other precesses, collapse of large primordial inhomogeneities [42] arising from quantum
fluctuations produced by inflation [43], spectator fields [44] or phase transitions, like bubble
collisions [45] or collapse of cosmic string [46], necklaces [47] and domain walls [48].

As pointed out in ref. [49], no EMD can be directly compared to MMD constraints.
Since re-computing the constraints for any specific EMD can be time-consuming, at least two
different techniques [49, 50] have been proposed so far to infer EMDs constraints from the
well-known MMD ones. In this paper we propose a new and improved way to compare EMDs
to MMD constraints, directly based on the physical processes when PBHs with different
masses are involved.

The paper is organized as follows. In section 2 we present our method to convert between
monochromatic constraints and EMD ones and compare it with existing ones. In section 3
first we introduce the EMDs we will analyse, then we provide some practical examples of how
our technique works for three different observables, namely microlensing 3.1, ultra-faint dwarf
galaxies 3.2 and the cosmic microwave background 3.3. In section 4 we derive constraints for
EMDs and discuss the validity of the limits found in previous sections. Finally, we conclude
in section 5.

2 Equivalent monochromatic mass distribution

Most of the constraints derived in previous works have been obtained under the simplifying
assumption that PBHs have a MMD, despite the fact that such distribution is unrealistic
from a physical point of view. Since EMDs have more robust theoretical motivations, it is
extremely important to derive accurate constraints for EMDs in order to establish if PBHs
could be a valid candidate for (at least a large fraction of) dark matter.

As pointed out for the first time in ref. [49] and then in ref. [51], it is not straightforward
to interpret MMD constraints in terms of EMD. It is therefore important to derive constraints
precisely using directly the chosen EMD or to provide an approximated technique to convert
between MMD and EMD constraints, as done in [49, 50]. Advantages and shortcomings of
the presently available methods to convert between MMD and EMD constraints have been
discussed in ref. [51]; in short they may bias (i.e., overestimate or underestimate depending
on the EMD) the inferred constraints.

1A single merger event may surpass this limit, for example the LIGO event GW150914 has been estimated
to have converted about 5% of the mass in GW. Here however what matters is the overall integrated conversion.
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As it is customary, hereafter fPBH denotes the fraction of dark matter in primordial
black holes, fPBH = ΩPBH

Ωdm
. The fundamental quantity in our approach is the PBHs differential

fractional abundance
dfPBH

dM
≡ fPBH

dΦPBH

dM
, (2.1)

defined in such a way that fPBH represents the normalisation and the distribution dΦPBH
dM

describes the shape (i.e., the mass dependence) of the EMD and it is normalized to unity.
By definition this function is related to the differential PBH energy density or, equivalently,
to the differential PBH number density by

dρPBH

dM
=

dnPBH

d logM
= fPBHρdm

dΦPBH

dM
, (2.2)

since PBHs are a dynamically cold form of matter. Each EMD is specified by a different
number of parameters {ζj} that define its shape and the mass range [Mmin,Mmax] where the
distribution is defined. Known theoretically-motivated models provide a variety of EMDs; in
what follows we consider two popular EMDs families, namely the Power Law (PL) and the
Lognormal (LN ) ones, which we will describe in section 3 (for other examples of EMD, see
e.g., ref. [52]).

We start from the same consideration done in ref. [50], where it was noticed that PBHs
with different masses contributes independently to the most commonly considered observ-
ables. In order to account for a PBHs EMD, when calculating PBHs effects on astrophysical
observables we have to perform an integral of the form

∫
dM

dfPBH

dM
g(M, {pj}), (2.3)

where g(M, {pj}) is a function which encloses the details of the underlying physics and
depends on the PBH mass, M , and a set of astrophysical parameters, {pj}. Therefore,
g(M, {pj}) is different for each observable (some example of these functions are provided in
section 3). Because of this integral over the mass distribution, there is an implicit degen-
eracy between different EMDs, which means that two distributions (indicated below by the
subscripts 1 and 2) such that

fPBH,1

∫
dM

dΦ1

dM
g(M, {pj}) = fPBH,2

∫
dM

dΦ2

dM
g(M, {pj}) (2.4)

will be observationally indistinguishable. As the constraints for MMDs have already been
computed in the literature, we set one of the two distributions in equation 2.4 to be a MMD
and the other to be an arbitrary EMD i.e.,

dfPBH,1

dM = fMMD
PBH δ(M − Meq) and

dfPBH,2

dM =

fEMD
PBH

dΦEMD
dM , so that we can easily rewrite equation 2.4 as

fMMD
PBH g(Meq, {pj}) = fEMD

PBH

∫
dM

dΦEMD

dM
g(M, {pj}), (2.5)

where Meq will be called Equivalent Mass (EM). The equivalent mass is, by definition, the
effective mass associated with a monochromatic PBHs population such that the observable
effects produced by the latter are equivalent to the ones produced by the EMD under con-
sideration.

Constraints for EMDs can be extracted from the previous equation through the following
procedure.

– 3 –
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(A) Fix the ratio rf = fEMD
PBH /fMMD

PBH to a specific value. Here, since we want to reinterpret
fMMD

PBH as a fEMD
PBH and solve for Meq we set rf = 1, that is we assume that PBHs total

abundance in both scenarios is the same. In principle and for other applications one
may want to work with other values of rf or one may want to fix Meq and solve for
rf . For this reason in our equations we have left rf indicated explicitly, but in explicit
calculations it is set to unity.

(B) Given the (known, see e.g., section 3) function g for the selected observable, solve for
Meq the equation

g(Meq, {pj}) = rf

∫
dM

dΦEMD

dM
g(M, {pj}) (2.6)

to calculate the equivalent mass Meq(rf , {ζj}) as a function of the parameters of the
EMD. As we will see below, in some case this can be done analytically (see e.g., equa-
tion (3.20)), but in other cases must be done numerically (see e.g., equation (3.16)).
The dependence of Meq on the EMD parameters describing its shape is helpful to
understand which observable effects are produced by a certain EMD.

(C) The allowed PBHs abundance (for the considered observable) is given by

fEMD
PBH ({ζj}) = rff

MMD
PBH (Meq(rf , {ζj})) , (2.7)

where fMMD
PBH (Meq) is the largest allowed abundance for a MMD with M = Meq. If

we are interested in just one constraint in particular, then this formalism allows us to
immediately state if a given EMD is compatible or not with observations. If instead we
want to account for several constraints at once, we have to a find the set of Equivalent
Masses associated to each function g. Every mass calculated in this way has a maximum
allowed (MMD) PBHs fraction (e..g, as found in the literature); of these fPBH values,
the minimum one that satisfies all the constraints at once is the largest allowed PBH
abundance of that EMD. This is illustrated in figure 1. Hereafter we refer to the
maximum allowed value of the PBH fraction as f̂PBH.

In figure 1 we consider two specific EMDs, a PL (left) and a LN (right) and four
observational constraints obtained for MMD: microlensing, ultra-faint dwarf galaxies (UFDG)
and CMB. The adopted functions g for these observables will be described in section 3. For
each observable and each EMD we show the corresponding Meq (dashed vertical lines) and

maximum allowed PBHs fraction f̂PBH. For the PL EMD the maximum allowed f̂PBH is
the lowest of the four i.e., the one obtained from EROS2 microlensing (for its corresponding
EM). On the other hand, for the chosen LN distribution the maximum allowed f̂PBH is that
provided by the UFDG for their EM.

An additional feature of this approach is that it allows one to understand which part of a
EMD (e.g., low-mass or high-mass tail) is more relevant for a given observational constraint.
Such information can be inferred from the value of the equivalent mass i.e., from the position
of the vertical dotted lines in figure 1.

Our method extend existing ones [49, 50] in several ways. First of all it introduces
a clear physical connection between the effects of EMDs and those of a MMD thanks to
the introduction of the new concept of the Equivalent Mass. Thanks to this concept one
can predict the approximated strength of the constraint even without computing it, since
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Figure 1. Illustration of the new method proposed in this paper. Upper Panels: microlensing
(EROS-2, MACHO), ultra-faint dwarf galaxies (UFDG) and cosmic microwave background (CMB)
constraints for MMD. Solid lines are used for constraints generally considered robust to astrophysical
assumptions, while dashed lines are used for constraints which robustness has yet to be fully discussed
in the literature. Lower Panels: examples of Power Law (on the left) and Lognormal (on the right)
mass distributions. The vertical dotted lines highlight the position of the equivalent mass for each
observable, calculated from equations (3.12), (3.16) and (3.20). From their intersection with the
corresponding constraint in the upper panels, we extract the set of four maximum PBHs allowed
fractions f̂PBH. The fraction of PBHs that satisfies the four constraints at once is the minimum of
the four, i.e. f̂EROS2

PBH for the Power Law and f̂UFDG
PBH for the Lognormal. This is then the maximum

fPBH allowed for that EMD and that combination of observables.

the EM highlights which part of an arbitrary EMD is more relevant for the physics of a
given observable. Secondly, our method allows to calculate constraints coming from single
experiments taking into account properly the effects coming from the EMD low- and high-
mass tails, since the integrals are performed over the whole mass range and not only where
f̂MMD

PBH < 1. One advantage of such formulation is the possibility to easily check the validity
of the assumptions of the underlying modelling (see e.g., section 4).

3 Application to different observables

In light of recent observations by LIGO [8], we focus on the O(10) M� window in the
theoretically allowed PBHs mass range. This particular window is limited on the lower mass
end by microlensing constraints and on the higher mass end by UFDG and CMB constraints,

– 5 –

[ September 30, 2019 at 6:32 – classicthesis v4.6 ]



J
C
A
P
0
1
(
2
0
1
8
)
0
0
4

which could in principle rule out the possibility that PBHs make up the entirety of the DM,
under certain assumptions (e.g., if PBHs form an accreting disk [30]). Inside this mass range
there are other constraints, e.g. those coming from PBHs radio and X-ray emission [23].
We chose not to consider this probe since the constraints are extremely sensitive to one
particular poorly known parameter, the accretion efficiency relative to the Bondi-Hoyle rate
λ, to the point that mildly different values of λ, all consistent with current literature, make
the constraint disappear, as pointed out by the same authors of ref. [23].

In order to obtain equivalence relations between the MMD and the EMD cases, we will
introduce some approximations that will be described in each specific case. Given all the
astrophysical uncertainties that enter in the computation of the limits, one has to keep in mind
that constraints have to be considered as orders of magnitude. Therefore the performance
of our proposed approach should be evaluated keeping in mind this underlying limitation.
Even under our stated simplifying assumptions, here we show the potential of our method
to mimic the effects of a MMD and easily obtain constraints for any EMD.

Finally, it should be kept in mind that, even for a MMD, every constraint has been
derived under some approximation that determines the range of masses where the same
constraint is meaningful. Since our method does not change such assumptions, it should be
used for EMDs contained, or at least peaked, in the valid mass domain, in order to extract
consistent constraints. We comment on such limitations at the end of each subsection and
at the beginning of section 4.

We consider two different families of EMDs:

• A Power Law (PL) distribution of the form

dΦPBH

dM
=
NPL
M1−γ Θ(M −Mmin)Θ(Mmax −M), (3.1)

characterized by an exponent γ, a mass range (Mmin,Mmax) and a normalization factor
NPL that reads

NPL(γ,Mmin,Mmax) =





γ

Mγ
max −Mγ

min

, γ 6= 0,

log−1

(
Mmax

Mmin

)
, γ = 0.

(3.2)

Such EMDs appear, for instance, when PBHs are generated by the collapse of large
density fluctuations [42] or of cosmic strings [46]. The epoch of the collapse determines
the exponent γ, in fact, if we call w = p

ρ the equation of state parameter of universe

at PBHs formation, γ = − 2w
1+w and spans the range [−1, 1], assuming that this process

happens in an expanding Universe (w > −1/3). Interesting values of the exponent are
γ = −0.5 (w = 1/3) and γ = 0 (w = 0), corresponding to formation during radiation
and matter dominated eras, respectively.

• A Lognormal (LN) distribution

dΦPBH

dM
=
e−

log2(M/µ)

2σ2

√
2πσM

, (3.3)

defined by the mean and a standard deviation of the logarithm of the mass, µ and σ,
respectively. This distribution gives a good approximation to real EMDs when PBHs
form from a symmetric peak in the inflationary power spectrum, as proven numerically
in [51] and analytically in [53].
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3.1 Microlensing

Microlensing is the temporary magnification of a background source which occurs when a
compact object passes close to its line of sight [54] and crosses the so-called “microlensing
tube”. The compact object, a PBH in our case, usually (and in this work) belongs to our
galaxy halo, but in some works (see e.g., [17]) the background source (M31) was external to
the Milky Way and PBHs could belong to either halo. The microlensing tube is the region
where the PBH amplification of the background source is larger than some threshold value
AT . For the standard value AT = 1.34, the radius of the microlensing tube is given by the
Einstein radius

RE(x) = 2

√
GMLx(1− x)

c2
, (3.4)

where G is Newton’s gravitational constant, L is the distance to the source and x is the
distance to the PBH in units of L. Standard analyses usually assume for our galaxy a cored
isothermal dark matter (either made by PBHs or not) halo model, for which the density
profile reads as

ρ(r) = ρ0
r2
c + r2

0

r2
c + r2

, (3.5)

where rc is the halo core radius, r0 is the Galactocentric radius of the Sun and ρ0 is the
local dark matter density. The duration of each event is the Einstein tube crossing time for
the compact object involved. Therefore globally (considering the entire Milky Way halo),
the differential microlensing event rate for a single source, for PBHs with an EMD, i.e., how
many events we should expected for every Einstein diameter crossing time ∆t, is [55–57]

dΓ

d∆t
=

512G2Lρ0(r2
c + r2

0)

∆t4c4v2
c

∫ 1

0
dx

x2(1− x)2

A+Bx+ x2
fPBH

∫
dM

dΦ

dM
Me−Q(x,∆t,M), (3.6)

where

A =
r2
c + r2

0

L2
, B = −2

r0

L
cos b cos l, Q(x, t,M) =

(
2RE
vc∆t

)2

, (3.7)

(b, l) are the galactic latitude and longitude of the source (usually the Magellanic Clouds)
and vc is local circular velocity.2 For a specific survey, the number of expected microlensing
events will be

Nexp = E

∫
d∆t

dΓ

d∆t
ε(∆t), (3.8)

where the exposure E and the detection efficiency ε(∆t) depend on the specific experiment
and instrument. The choice ε(∆t) = 1 correspond to the theoretical number of expected
events N the

exp.

The average microlensing tube crossing time scales as M1/2. This suggests that the mass
and time dependence in Q

(
x, M

∆t2

)
can be described by a single parameter y. We change the

old variables (M,∆t) to new ones
(
M,y = M

∆t2

)
, obtaining in this way that

Nexp ∝
∫
dxf(x)

∫
dy y1/2e−Q(x,y)fPBH

∫
dM

ε
(√

M/y
)

M1/2

dΦ

dM
, (3.9)

2In this paper we use ρ0 = 0.008 M�pc
−3, r0 = 8.5 kpc, rc = 5.0 kpc, L = 50 kpc, vc = 220 km s−1,

(b, l) = (−33o, 280o).
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which we use to find the equivalent mass. Since M and y are coupled by the detection
efficiency, the function g introduced in section 2 reads as

g(M, {pj}) =

∫
dxf(x)

∫
dy y1/2e−Q(x,y)

ε
(√

M/y
)

M1/2
, (3.10)

where we have already dropped all the constant factors in equation (3.6), since they are
present in both side of equation (2.5). Moreover, when we focus on N the

exp, for which ε = 1,
the mass dependence can be decoupled, the common (x, y)-dependent factor cancels and the
final g function simplifies to

g(M) = M−1/2. (3.11)

Now we can use Equation 2.5 to obtain

M−1/2
eq = rf





NPL
M

γ−1/2
max −Mγ−1/2

min

γ − 1
2

, PL, γ 6= 1

2
,

NPL log
Mmax

Mmin
, PL, γ =

1

2
,

e
σ2

8 µ−1/2, LN.

(3.12)

To validate our approximation, since we are interested in converting MMD to EMD
constraints, the relevant quantity is the ratio between the expected microlensing events for the
two mass distributions: NEMD

exp /NMMD
exp , which should be unity. To quantify the performance

of the approximation ε = 1 (which enabled us to provide an analytic solution) we also consider
an ε(∆t) of a form3 similar to that of the MACHO survey (see figure 8 of ref. [57]).

The duration of detected candidates events was typically ∼ 50 days, which for high
amplification yields a typical mass of 0.3M� according to the expected scaling (see e.g.,
ref. [55]). For illustration purposes we therefore set the equivalent mass Meq = 0.3M�. For
the PL EMD we set Mmax = 100M� and consider two cases for the exponent (γ = −0.5
and γ = 0) which implies (equation (3.12)) that Mmin = 0.079M� and Mmin = 0.015M�,
respectively; and for the LN we have σ = 1.0 and µ = 0.385M�. The left panel of figure 2
shows the theoretical (ε = 1) differential event rate as a function of duration for the four
mass distributions and reports the ratio NEMD

exp /NMMD
exp . The fact that this ratio is the unity

indicates that the effective mass approach works well. The right panel is the same as the
left panel but the number of expected events is now computed with our adopted ε(∆t).
In this case the performance of the approach (quantified by (NEMD

exp /NMMD
exp − 1) ∼ 10 −

25%) introduces errors smaller than, or at worst comparable, to those introduced by other
assumptions in the model (e.g., the PBHs velocity dispersion choice of the halo model, see
figure 3 in [58]). For instance, using the same parameters, a 10% change in the velocity
dispersion yields a 25% change in NMMD

exp . A detailed analysis of the effects of astrophysical
uncertainties on PBH constraints from microlensing can be found in [58].

The range of validity of this approach for microlensing is given by the observational
window i.e., by the experimental efficiency ε(∆t), characteristic of every given experiment. In
particular, below the minimum ∆tmin and above the maximum ∆tmax sampled, the efficiency
drops to zero, along with the capability to detect PBHs. Through the above mentioned scaling
relation, we can translate the crossing time window sampled by the experiment to a sampled

3ε(t) = exp
[
− log2(t/µt)

2σ2
t

]
/
√

2πσ2
t , with time, t, in days, µt = 70 days and σt = 1.25.
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Figure 2. Theoretical (ε(∆t) = 1) and experimental differential event rate for a MMD with Meq =
0.3M�, two PL and a LN with Mmax = 100M� and σ = 1.0. Mmin and µ have been obtained with
equation (3.12) imposing the same equivalent mass of the MMD. The stars source is the LMC, whose
parameters can be found in [51, 58]. We assume fPBH = 1 for every distribution to calculate the EM.
Notice the level of concordance of the expected number of events.

mass range. For this approach to be valid, Mmin and Mmax appearing in equation (3.12)
must be within the sampled mass range. In general, properly computed lensing constraints
would require a detailed modelling including simulations, which is beyond the scope of this
paper. Since PBHs constraints are indicative, we followed the most common modelling.

3.2 Ultra-faint dwarf galaxies

In dwarf galaxies, dominated by dark matter, the stellar population can be dynamically
heated by gravitational two-body interaction between PBHs and stars. These interactions
tend to equalize energy of different mass groups, but if PBHs have a mass larger than one
solar mass (average mass of a star), stars will extract energy from them and the stellar system
will expand [59]. Since this is the case commonly considered in the literature we will limit
ourselves to consider cases in which MPBH > M�.

For a generic PBHs mass distribution, the half-light radius of the stellar population
evolves according to [22]

drh
dt

=
4
√

2πGfPBH

σPBH

(
αM?

ρcorer2
h

+ 2βrh

)
∫
dM

dΦ

dM
M log Λ(M), (3.13)

where M and σPBH are the PBH mass and velocity dispersion, M? is the galaxy stellar
mass, ρcore is the dark matter core density, α and β are constants that depend on the mass
distribution of the dwarf galaxy and the Coulomb logarithm reads as

log Λ(M) = log
rhσ

2
PBH

G(M� +M)
. (3.14)

In general, there should also be a cooling term, which becomes important only if the mass
of the PBH is smaller than the mass of the stars. Moreover this modelling is valid if there is
no central black hole massive enough to stabilise the stellar distribution [60, 61].
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Figure 3. Half-light radius evolution for different values of the PBHs velocity dispersion. The PBHs
distributions considered here are a MMD withMeq = 30M�, a Power Law with two different exponents
and a Lognormal, all with the same Equivalent Mass. In the PL case we fixed γ and Mmin = 2M�,
while in the LN we have fixed σ = 0.5; Mmax and µ were calculated using equation (3.16) and
assuming fPBH = 1 for every distribution.

Aside from common factors we are not interested in, the g function for this observable,
directly read from equation (3.13), is given by

g(M, rh, σPBH) = M log Λ(M) = M log
rhσ

2
PBH

G(M� +M)
. (3.15)

We find that Equation 2.5 with this particular choice of g reads as

Meq log Λ(Meq) =

rf





NPL
1 + γ

(
M1+γ

max log

[
Λ(Mmax)e

1−2F1(1,1+γ,2+γ,−Mmax)
4

1+γ

]
−

−M1+γ
min log

[
Λ(Mmin)e

1−2F1(1,1+γ,2+γ,−Mmin)

1+γ

])
, PL, γ 6= −1,

NPL
[
log Λ(0) log

Mmax

Mmin
+ Li2(−Mmax)5 − Li2(−Mmin)

]
, PL, γ = −1,

µe
σ2

2 log Λ(µeσ
2 −M�), LN

(3.16)
where the PL result is exact but for the LN case we assumed that the EMD was peaked at
M & M� to have on average PBHs more massive than stars, in order for stars to extract
energy from the PBHs.

In figure 3 we show the evolution of the half light radius for different EMDs with the
same equivalent mass and the corresponding MMD, for the fiducial dwarf galaxies model

4Gaussian Hypergeometric function.
5Polylogarithm function.
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considered in [22]. We have fixed Meq = 30M� and we have used the same halo parameters6

of figure 3 of ref. [22]. We fixed Mmin = 2 M� for the PL EMDs and σ = 0.5 for the LN.
Then, by using equation (3.16), we obtain Mmax and µ for two PL and one LN distributions,
respectively. In the three cases we used the initial value of the half-light radius rh0 to calculate
the equivalent mass (recall that the equivalent mass has a logarithmic dependence on rh). As
it can be seen in figure 3, our equivalence relations provide a good match between the MMD
and the EMDs, which in turn will give an accurate interpretation of abundance constraints.

Beside the requirement that MPBH & M� for the PBH to heat the star system, one
should also impose M . σ2

PBHrh/G − 1, otherwise the assumption of PBHs travelling in an
homogeneous star field will not be valid [62]. Moreover if an EMD provides enough PBHs
with masses & 102M�, it is reasonable to believe that some of these may be placed at the
centre of dwarf galaxies and may thus stabilise the stellar distribution, making equation (3.13)
invalid [60, 61]. Therefore, in order to obtain constraints for EMDs using equation (3.13),
EMDs should not have significant contribution outside this mass range. The sensitivity of
the PBH abundance constraints to astrophysical uncertainties in this technique has yet to be
fully analysed and discussed in the literature. However given the discussion above in what
follows we present separately combined constraints with and without this probe and specific
constraints from this probe are indicated by a different line-style.

3.3 Cosmic microwave background

The impact that PBHs have on CMB observables derives from the energy they inject into the
plasma. In fact, the extra radiation is responsible for the heating, excitation and ionization
of the gas. We refer the interested reader to refs. [29, 30], where the authors presented an
updated treatment of the underlying physics of the energy injection for spherical and disk
accretion, respectively, and to ref. [31], where cosmological effects of PBHs are described and
investigated in detail. In order to include an EMD in this framework, one should integrate
the volumetric rate of energy injection over the whole mass range spanned by PBHs as

ρ̇inj = ρdmfPBH

∫
dM

dΦ

dM

〈L(M)〉
M

, (3.17)

where 〈L(M)〉 is the velocity-averaged luminosity of a PBH with mass M . We immediately
read that

g(M, {pj}) =
〈L(M)〉
M

. (3.18)

In general, the averaged luminosity will depend not only on the mass but also on redshift, gas
temperature, free electron fraction and ionization regime. Here we will make the simplifying
assumption that these dependencies can be factored out, and focus on the mass dependence.
Using the results obtained for spherical accretion [29], we can estimate the mass dependence
of the integrand as

〈L〉
M
∝ L

M
∝ Ṁ2/LEdd

M
∝ M4λ2(M)/M

M
= M2λ2(M), (3.19)

where L is the luminosity of an accreting black hole, Ṁ is the black hole growth rate, LEdd

is the Eddington luminosity and λ(M) is the dimensionless accretion rate. As can be seen in
figure 4 of [29], PBHs with different masses accrete in different manners at different redshift.

6In this paper we use rh0 = 2 pc, M? = 3000M�, ρcore = 1 M�pc
−3, α = 0.4, β = 10.
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Figure 4. Relative difference in temperature (left panel) and polarization (right panel) power spectra
for two PL and one LN distributions with respect to a MMD with Meq = 30M�, all of them with
the same Equivalent Mass. In the PL case we fixed γ and Mmin = 1M�, while in the LN we have
fixed σ = 1.0; Mmax and µ were calculated using equation (3.20) and assuming fPBH = 1 for every
distribution. We chose to show the photoionization limit case, since it is the most constraining case.
Finally we have used α = 0.2 because it keeps the differences with respect to the MMD case under
the cosmic variance level.

In particular, heavy (light) PBHs mostly accrete, and therefore inject energy, after (before)
decoupling. However, in the same figure it can be noticed that λ ∼ O(1/2) for z . 17007 for
a wide range of masses. Assuming λ = const is a possibility. However, a much better option
is to parametrize the accretion rate as λ(M) = Mα/2 (neglecting the redshift dependence),
where α is a parameter to be tuned numerically a posteriori to minimize differences in the
relevant observable quantity between the EMD case and the equivalent monochromatic case.

Equation (2.5) thus becomes

M2+α
eq = rf




NPL

Mγ+2+α
max −Mγ+2+α

min

γ + 2 + α
, PL,

µ2+αe
(2+α)2σ2

2 , LN.

(3.20)

In figure 4, produced with a modified version of HYREC [31, 63, 64], we compare temper-
ature and polarization power spectra of three different EMDs chosen so that their equivalent
mass is Meq = 30M� with those of a fiducial MMD with Meq = 30M�, assuming fPBH = 1
in the photoionization limit. We have explored α in the interval [0.0, 0.4] but we have plotted
the C`s only for the intermediate value α = 0.2, since it guarantees that differences are kept
under the cosmic variance limit for every ` . 3 × 103, especially for the E-mode polariza-
tion. The choice of α can be further optimised depending on the experiment. For example
experiments not limited by cosmic variance at ` � 103, such as Planck, may require a dif-
ferent value of α, since they have the smallest error bar at lower ` [31]. Despite the good
agreement, we stress that no choice of this parameter is able to simultaneously match early
(before decoupling, for ` > 200) and late time (after decoupling, for ` < 200) energy injection.

7The modified HYREC version calculates the modified thermal history for z < 1700, redshift of the beginning
of Hydrogen Recombination.

– 12 –

[ September 30, 2019 at 6:32 – classicthesis v4.6 ]



J
C
A
P
0
1
(
2
0
1
8
)
0
0
4

Values of α larger than the adopted one suppress deviations with respect to the MMD case
for ` < 200 in both spectra, but increase deviations for ` > 200. Deviations from the fiducial
MMD model are larger for EMDs that exhibit a wider high-mass tail, as in the PL case with
negative exponent or in the LN case. We refer the interested reader to reference [31], where
these equivalence relations (equation (3.20)) are used, along with a full MCMC treatment, to
quantify the performance of our approach. The differences in the obtained PBHs abundance
constraints are below the 10%.

Finally one should keep in mind that all constraints (including the monochromatic ones)
are derived under the steady-state approximation, which is valid only for PBHs with masses
M . 104M�. Hence effects of an EMD high-mass tail beyond this critical value are not
properly accounted for.

4 Practical considerations and observational constraints

Before calculating experimental constraints, some important considerations are in order. For
a MMD one can unambiguously check if the validity conditions (of the adopted modelling,
code, equations etc.) that depend on the PBH mass hold: e.g., the mass is in the sampled
mass range for microlensing (section 3.1), PBHs cede energy to the stellar system and travel
in a homogeneous field for UFDG and there is no central black hole to stabilise the system
(section 3.2), steady-state approximation is valid for CMB constraints (section 3.3). In
other words the adopted modelling defines a mass range of validity; outside this range,
results (if any) are not reliable and sometimes even unphysical. On the other hand, for non-
monochromatic cases, parts of the EMDs can lie outside the mass range of validity. This
issue is not only important for our equivalent mass formalism (as discussed previously), but
also for every analysis dealing with extended distributions.

In the case of a PL distribution, it is always possible to tune Mmin and Mmax to restrict
the mass range where the distribution is defined, but the LN is infinitely extended and the
effects of the tails can be relevant. In order to account for them, we propose to compare the
amplitude of the EMD at the lower and upper boundaries (if both exist, otherwise just at
the relevant one) of the mass range of validity which we indicate as M±

lim, to the amplitude
of the EMD maximum, situated at Mpeak. Then require the relative amplitude to be smaller
than an arbitrarily chosen threshold δ where8 δ ≤ 1. Without any loss of generality, for any
EMD and δ, we can define a mass Mδ through

dΦ

dM

∣∣∣∣
Mδ

= δ
dΦ

dM

∣∣∣∣
Mpeak

. (4.1)

By solving equation (4.1) for Mδ in the case of a LN EMD, we find two solutions,
symmetric with respect to the peak:

M±
δ = µe−σ

2±σ
√

log(δ−2). (4.2)

Finally, by requiring that
M−

lim ≤M−
δ , M+

δ ≤M+
lim, (4.3)

8Here we have in mind the lognormal distribution. In general this approach applies for EMD that are
monotonic around and beyond each of the M±lim. This is not the only viable criteria, in fact one could directly

impose some upper bound on the integrals
∫∞
M+

lim
dM dΦ

dM
g(M, {pj}) and

∫M−
lim

0
dM dΦ

dM
g(M, {pj}) instead of on

the EMD.
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Figure 5. Schematic representation of the criterion proposed to ensure that an EMD does not
have significant contributions from masses outside the range of validity for a given observable and
the adopted modelling. The mass rage of validity is indicated by M±

lim, δ quantifies a tolerance i.e,
how much the EMD is required to drop from its maximum before we accept that the tails of the
distribution may extend beyond the range of validity. In this example, for δ = 10−1 this EMD is
considered in the range of valid. This is not the case for the more stringent δ = 10−5 tolerance level.

we find the set of inequalities




σ2 + σ
√

log(δ−2)− log
µ

M−
lim

≤ 0,

σ2 − σ
√

log(δ−2)− log
µ

M+
lim

≥ 0 ,
(4.4)

which satisfies the condition that the amplitude of the tails is smaller than the desired
amplitude δ dΦ

dM

∣∣
Mpeak

. This procedure translates the mass range of validity to a range of

validity for the parameters describing the EMD. The smaller the δ, the more reliable the
abundance constraint will be. At the same time, low values of δ disqualify wider regions of
the EMD parameter space. A schematic representation of this criterion is shown in figure 5.

In the following we calculate the LN EMD allowed parameter regions for CMB and
UFDG constraints. For the CMB, we have just an upper bound M+

lim ' 104M�, but for
UFDG we have an upper and a lower bound. We consider two sub-cases: in UFDG-1 we
take M−

lim ' 1M� and M+
lim ' 104M�, considering just limits that come from equation (3.13),

while in UFDG-2 we take M−
lim ' 1M� and M+

lim ' 102M�, adding the further condition
of not having stabilizing PBHs at the center of the dwarf galaxy. Inserting these values in
equation (4.4), we obtain the allowed region of parameter space for three different values of
δ. We show it in figure 6. In the CMB case, unless a really small value of δ is chosen, the
parameter space is not heavily constrained. We refer the interested reader to ref. [31] to see
how these limitations apply to the concrete case of CMB-derived abundance constraints. On
the other hand, in the case of UFDG we observe that there is a limited region of validity
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Figure 6. Parameter-space region of validity (in gray) for Lognormal distributions, in the cases of
CMB (left panel) and UFDG (central and right panel) formalism. The region have been obtained
according to the limits presented in section 3 and different values of δ. We show two different cases
for ultra-faint dwarf galaxies. In the central panel, we considered just the mass limits that come with
the description of equation (3.13), while in the right panel we include limitations due to the presence
of a central PBH that further stabilises the dwarf galaxy.

in the EMD parameter space, even for quite high values of δ. This does not mean that
lognormal distributions outside the gray region in figure 6 are ruled out! It means that the
adopted modelling for computing fPHB constraints for these observable is not valid outside
the gray region and therefore nothing can be said about distributions corresponding to that
region of parameters.

Once established which part of the parameter space is consistent with the modelling,
we focus on calculating PBHs constraints in the 10 − 100M� window using the equivalent
mass approach we presented here. We are interested in assessing whether for these EMD the
allowed window remain open. On the contrary, it would rule out the possibility for PBHs
with PL or LN EMDs to make all the dark matter in that mass range.

This is shown in figures 7 and 8. The color coding is the same used in figure 1, i.e. solid
lines represent constraints more robust with respect to astrophysical uncertainties, dashed
lines are used for other constraints and dotted lines (when present) represent the MMD
constraints. In figure 8, on top of UFDG constraints, we have also introduced diamond
markers to highlight the region where the constraints satisfy validity conditions with δ = 10−3

(see central panel of figure 6).

For the PL EMDs, figure 7 show the maximum allowed PBH fraction f̂PBH as a function
ofMmax for fixedMmin and vice versa. By construction, forMmax = Mmin the monochromatic
constraints are recovered. For illustrating the LN EMD, we select two representative values
of the distribution width σ. By looking at figure 6 one can immediately see that for such
values of the EMD width, the mean value µ has only a small range of validity for the UFDG
probe around µ = 102M�. Conveniently, the UFDG f̂PBH limits are most stringent and
useful exactly in this mass range. Figure 8 shows the maximum allowed PBHs fraction f̂PBH

for the LN EMD as a function of the mean µ (solid lines). For comparison also the MMD
constraint is shown for M = µ (dashed lines). By construction a LN tends to a MMD of
mass set by µ for vanishing σ. When the width increases, the window starts shrinking since
microlensing constraints drift towards larger mass values while UFDG and CMB constraint
drift in the opposite direction.
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Figure 7. Power Law constraints for γ = −0.5 (upper panels) and γ = 0.0 (lower panels). Solid
lines are used for constraints generally considered robust while dashed lines for constraints which
dependence on astrophysical assumptions is less known. Left panels: Mmin = 1 M�, Mmax varying.
Right panels: Mmin varying, Mmax = 103 M�.

Finally, to analyse the behaviour of the window where fPBH ∼ 1 is allowed by the data,
we explore the 2D/3D parameter space for the LN and PL distributions in figures 9 and 10,
respectively. In both scenarios we find that with EMDs the PBHs fraction allowed by the
combination of all the observables is lower than for a MMD. From the figures we can derive
the combination of parameters for each EMD that allow the highest PBHs fraction. Even if in
these two figures we have shown wide regions of the parameter space, we want to stress again
that constraints can be considered valid only in the subspace allowed by validity conditions,
marked with black lines.

The LN EMD is shown in figure 9 (the same conventions are kept as in figure 10). The
dashed line indicates the boundary of the valid region for UFDG for δ = 10−3 as of figure 6.
We notice that to have large fPBH allowed by the whole set of data, the value of µ is quite
constrained, and peaked around 20M�, while the set of possible σ is wider.

The top and central panels of figure 10 show the maximum allowed fPBH as a function
of Mmin and Mmax for several choices of γ. We chose to explore the parameter space for the
extreme values of γ because the behaviour of any intermediate exponent can be extrapolated
from the three cases shown. The bottom panels show sections of the maximum fPBH allowed
as a function of Mmin for fixed Mmax. These sections are chosen to intercept the maximum.
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on top of dashed lines in parameter space regions where validity conditions (for δ = 10−3) are not
fulfilled. The 10 − 100 M� window closes as soon as σ starts growing. When σ decreases, EMD
constraints tend to MMD ones.
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Figure 9. Maximum allowed PBHs fraction for LN distributions for different sets of observables.
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By looking at the f̂PBH > 0.5 region in the central panels, we can confirm the findings of [50],
i.e. that in the γ < 0 (γ > 0) case the relevant boundary is Mmin (Mmax), while in the γ = 0
case both boundary values are equally relevant.

5 Conclusions

PBHs as a dark matter candidate has recently become a popular scenario. Because of the
rich phenomenology implied by this possibility, a wide set of different observables can be used
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to test and set constraints on this scenario. However, to date most of the PBH constraints
have been derived assuming a monochromatic mass distribution, which is over-simplistic.

In this paper we provide a new way to compare extended to monochromatic mass dis-
tribution constraints and translate MMD constraints on the maximum allowed PBH abun-
dance to EMD constraints. The aim of our approach is to provide the most accurate and
physically-motivated framework to date, while still being quick and easy to implement. For
every observable and EMD, we show that there is a corresponding MMD with an “Equivalent
Mass” which produces the same physical and observational effects.
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We provide three practical examples of our method, considering the MMD constraints of
the maximum allowed fraction of PBH from microlensing, ultra-faint dwarf galaxies and CMB
constraints. We then focus on the mass window at tens of M� — where for MMD a fPBH ∼ 1
is allowed — for two popular and physically motivated families of EMDs: Power Law and
Lognormal. When considering EMDs and their observational constraints, it is important to
consider carefully their regime of validity. In fact the modelling of each observable relies on
several assumptions which, while valid for a MMD, may not be for an EMD, especially if it
has extended tails. Ignoring this important fact may lead to unreliable or even unphysical
constraints. This is a danger not only for the approach presented here but of any study
of PBH constraints with EMDs: we study this issue in detail and present an easy to use
reference to avoid this pitfall.

We find that in both cases (lognormal and power law EMDs), for a consistent and valid
choice of distribution parameters, the f̂PBH ∼ 1 mass window shrinks or is displaced, allowing
a lower PBHs abundance compared to MMD calculations. Before exploring a larger EMD
parameter space, the physical description behind constraints from microlensing, dynamics
of dwarf galaxies and CMB energy injection must be improved to be valid over a wider
mass range.

As it is well known, because of all the theoretical uncertainties, all constraints on the
maximum allowed fPBH have to be considered as order of magnitudes rather than exact num-
bers. Similarly the behaviour of this window, where f̂PBH ∼ 1 is allowed, for the considered
EMDs should not be thought as general, in fact it could well become wider and allow a larger
fPBH for other EMDs. A window that is closed for a MMD can open for an EMD. We leave
the exploration of other windows in other mass range for future work. We envision that our
effective “equivalent mass” technique will be useful to study systematically different EMDs
and a broad range of observables.
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[29] Y. Ali-Häımoud and M. Kamionkowski, Cosmic microwave background limits on accreting
primordial black holes, Phys. Rev. D 95 (2017) 043534 [arXiv:1612.05644] [INSPIRE].

[30] V. Poulin, P.D. Serpico, F. Calore, S. Clesse and K. Kohri, CMB bounds on disk-accreting
massive primordial black holes, Phys. Rev. D 96 (2017) 083524 [arXiv:1707.04206] [INSPIRE].

[31] J. Luis Bernal, N. Bellomo, A. Raccanelli and L. Verde, Cosmological implications of
Primordial Black Holes, JCAP 10 (2017) 052 [arXiv:1709.07465] [INSPIRE].

[32] A. Raccanelli, E.D. Kovetz, S. Bird, I. Cholis and J.B. Muñoz, Determining the progenitors of
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Abstract. Are the stellar-mass merging binary black holes, recently detected by their gravita-
tional wave signal, of stellar or primordial origin? Answering this question will have profound
implications for our understanding of the Universe, including the nature of dark matter, the
early Universe and stellar evolution. We build on the idea that the clustering properties of
merging binary black holes can provide information about binary formation mechanisms and
origin. The cross-correlation of galaxy with gravitational wave catalogues carries informa-
tion about whether black hole mergers trace more closely the distribution of dark matter —
indicative of primordial origin — or that of stars harboured in luminous and massive galax-
ies — indicative of a stellar origin. We forecast the detectability of such signal for several
forthcoming and future gravitational wave interferometers and galaxy surveys, including, for
the first time in such analyses, an accurate modelling for the different merger rates, lens-
ing magnification and other general relativistic effects. Our results show that forthcoming
experiments could allow us to test most of the parameter space of the still viable models
investigated, and shed more light on the issue of binary black hole origin and evolution.
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1 Introduction

The first detection of gravitational waves (GWs) emitted by the coalescence of two black holes
(BHs) of approximately 30 M� [1, 2] opened the era of gravitational waves astronomy, not
only by confirming General Relativity predictions, but also establishing a new way to observe
and analyse the cosmos. Even if some authors expected such massive progenitors to be the
first sources to be detected, see e.g., refs. [3–6], this fact was hailed by part of the community
as unexpected and led some researchers to suggest that such events may not be uncommon.
Indeed other GWs events followed [7–10] and confirmed that apparently a significant fraction
of the detected progenitors has masses between 20 and 40 M�. Such large masses of the pro-
genitors are not incompatible with classical stellar/binary evolution [11–13]. Nevertheless the
possibility that BHs with an origin different from the standard end-point of stellar evolution
and constituting a significant fraction of the dark matter regained interest [14, 15].

The authors of refs. [16–18] were the first to show analytically that, because of large
density fluctuations in the primordial cosmic fluid, some extremely overdense regions in the
primordial Universe may have overcome pressure forces and have collapsed to give birth to
so-called Primordial Black Holes (PBHs). These results were later confirmed by the authors
of ref. [19], who were the first to provide general relativistic numerical computations of PBHs
formation during the radiation-dominated era. Even if the PBHs formation mechanism is
unknown, many proposals have been made, including collapse of cosmic string loops [20–22]
and domain walls [23, 24], bubble collisions [25, 26], through the collapse of large fluctua-
tions produced during inflation as pioneered in refs. [27–29] or even through the collapse of
(interacting) dark matter clumps [30].

Given the high interest in PBHs as dark matter candidates, a remarkable amount of
different observational constraints have been obtained, including constraints coming from
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gravitational lensing effects [31–40], dynamical effects [41–46] and accretion effects [47–51].
Even if these constraints cover the whole mass range and seem to disfavour PBHs as a
significant fraction of the dark matter, these results are far from being conclusive due to
the variety of assumptions involved, see e.g., [52, 53]. Some mass “windows” still exist, for
instance one around 10−10 M� and another 10 M�, where the latter one can be probed by
future GWs observatories as Advanced LIGO (aLIGO) [54] or Einstein Telescope (ET) [55].

Despite the fact PBHs may not constitute the totality of the dark matter, it is valuable
to explore different ways to determine if mergers progenitors’ origin is stellar or primordial.
Several proposals have been made, including testing the cross-correlation between galaxy and
GW maps [56–58], BHs binaries orbital eccentricity [59], fast radio bursts [60], the BHs mass
function [61, 62].

In this work we focus on developing further the cross-correlation approach suggested by
the authors of ref. [56], who show that the statistical properties of the type of galaxy (or halo)
hosting a GWs event can provide information about the system origin (stellar or primordial).
In fact, in more massive halos the typical velocities are higher than those in the less massive
ones (the reader can think of the virial theorem or check numerical simulations [63]). As a
consequence, it is much more probable that two PBHs form a gravitationally bound binary
through GWs emission in low-mass halos, since the cross section of such process is inversely
proportional to some power of the relative velocity of the progenitors. The higher velocity
dispersion of high-mass halos make this process for PBHs less likely to happen. In addition,
low-mass halos tend to be less luminous [64] than high-mass ones and trace more closely the
dark matter distribution than high-mass halos. On the other hand the merger probability
for stellar black holes is more likely to correlate with galaxies’ (or halos’) stellar mass, hence
stellar black holes mergers tend to happen in more luminous and massive halos. Recall
that star formation efficiency increases with halo mass for halo of masses below 1012M�. It
decrease for higher mass-halos but these are very rare and more closely associated to galaxy
clusters rather than galaxies. We refer the interested reader to ref. [65] and references therein.

Therefore, once a significant number of GWs coming from BHs mergers will be detected,
it will be useful to correlate the corresponding events map with a map of galaxies. If the
BHs progenitors were mostly of stellar origin, GWs events would be associated with massive
halos, and thus would be highly correlated with luminous galaxies. On the other hand,
if these progenitors were more likely to have primordial origin, GWs would come mostly
from low mass halos (i.e., they would be poorly correlated with luminous galaxies). While
mergers of BHs of primordial origin tend to trace the filaments (dark-matter/low mass-halos
distribution1) of the large-scale structure, stellar-BHs mergers tend to trace the distribution
of galaxies of high stellar mass. The clustering properties of these two populations and the
statistical properties the two maps are different. Low-mass halos tracing filaments are less
strongly clustered than high (stellar) mass galaxies: in particular they have different bias
parameters. The bias parameter governs the ratio of clustering amplitude of the selected
tracer to that of the dark matter.

At the moment too few GWs events have been detected to measure the auto and cross
correlation of maps of GWs events and galaxies, but during next LIGO’s runs, thousands of
events are likely to be detected due to the improved sensitivity. On the other hand, during
the next decade a large volume of the Universe at high redshift will be surveyed thanks

1Since we are performing a statistical analysis, the presence of subhalos inside high mass halos does not
affect significantly the results because of their relative abundance compared to “field” halos (located in lower
density regions such as filaments) of the same mass.
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to several surveys, as EMU [66], DESI [67] or SKA [68], which we consider in the rest of
the paper. Here we develop a Fisher and a ∆χ2 analysis to forecast the ability of future
surveys to accomplish this goal. We improve the treatment of ref. [56] in different ways.
Firstly, we consider both cross and auto correlation terms between our tracers (more details
in section 2), whereas the latter ones were previously neglected. Secondly, our computations
include all possible general relativistic effects which, as we will show, can influence the results.
Thirdly, we use a theoretically-motivated PBHs merger rate without neglecting its redshift
dependence. Finally, when modelling the GWs events distribution, we provide for the first
time an analytic expression for the magnification bias of gravitational waves. This is a
step forward in the study of the lensing of gravitational waves coming from black holes
or neutron stars mergers and can provide significant insight on BHs binary formation and
evolution [69–71], on estimates of the luminosity distance [72] or even on alternatives to
General Relativity [73].

The paper is structured as follows: in section 2 we explain the methodology used in this
work and introduce the multi-tracer cross-correlation formalism, in section 3 we characterize
the galaxies (3.1) and GWs (3.2) tracers considered while in section 4 we present the results
of the forecast. Finally we conclude in section 5.

2 Methodology and galaxy-GW correlation

Since BH-BH mergers do not have an electromagnetic counterpart, the identification of their
host object is impossible even if the event is measured by more than three detectors. Because
of the poor localisation in the sky of the GWs events, the GWs maps are typically very
“low resolution”. For this reason we approach the problem in a statistical way, by using
measurements and statistical properties of their number counts. In particular, we work in
harmonic space and we consider the number counts angular power spectrum, C`, where only
low multipoles ` are considered because of the maps’ low angular resolution. The maximum
multipole `max is determined by the angular resolution θ that can be achieved: `max ∼ 180o/θ.
For the aLIGO+Virgo network `max = 20, once also LIGO-India and KAGRA are included,
we improve the spatial resolution up to `max = 50 and finally with the futuristic Einstein
Telescope, `max = 100 will be reached. The interested reader can check refs. [74–77]. We
discuss the benefits of having higher resolution in GWs maps in section 4.2.

In the following we assume to have (tomographic) maps of GWs events and of galaxies
(i.e., the tracers). The observed harmonic coefficients used to compute the angular power
spectra are given by

aX`m(zi) = sX`m(zi) + nX`m(zi), (2.1)

where sX`m and nX`m are the partial wave coefficients of the signal and of the noise for tracer
X. We consider the noise angular power spectrum to be given only by a shot noise term
NX
` (zi) and we assume that the noise terms from different experiments and different redshift

bins are uncorrelated, which means that

〈nX`m(zi)n
Y ∗
`′m′(zj)〉 = δ``′δmm′δXY δijNX

` (zi), (2.2)

where δ denotes the Kronecker delta. The expectation value of the signal gives the C`s [78, 79],

〈sX`m(zi)s
Y ∗
`′m′(zj)〉 = δ``′δmm′C

XY
` (zi, zj), (2.3)
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while the signal-cross-noise expectation value is given by

〈sX`m(zi)n
Y ∗
`′m′(zj)〉 = 0, (2.4)

since we assume signal and noise to be statistically independent. Finally, the observed angular
power spectrum C̃XY` (zi, zj) reads as

〈aX`m(zi)a
Y ∗
`′m′(zi)〉 = δ``′δmm′C̃

XY
` (zi, zj) = δ``′δmm′

[
CXY` (zi, zj) + δXY δijNX

` (zi)
]
. (2.5)

Following the notation of ref. [80] (which is re-arranged differently than the standard
way, but reflects how the public code CLASS [81, 82] is structured) and generalizing their
formalism to the case of multiple tracers we can write the angular power spectrum as

CXY` (zi, zj) =
2

π

∫
dk

k
P(k)∆X,zi

` (k)∆
Y,zj
` (k), (2.6)

where {X,Y } stands for the different tracers (galaxies and GWs in our case), P(k) = k3P (k)
is the primordial power spectrum and

∆X,zi
` (k) =

∫ zi+∆z

zi−∆z
dz
dNX

dz
W (z, zi)∆

X
` (k, z), (2.7)

where we have introduced a window function2 W (z, zi), centered at redshift zi with bin half-
width ∆z, the source number density per redshift interval dNX

dz , and the tracer X angular

number count fluctuation ∆X
` (k, z). The integral of W (z, zi)

dNX

dz
is normalized to unity.

In general the observed number count fluctuation receives contributions from density (den),
velocity (vel), lensing (len) and gravity (gr) effects [80, 83]:

∆`(k, z) = ∆den
` (k, z) + ∆vel

` (k, z) + ∆len
` (k, z) + ∆gr

` (k, z). (2.8)

We report in appendix A the complete form of the various terms in equation (2.8). Even
if the bias parameter bX of the tracer X enters only in the density contribution ∆den

` (k, z),
we cannot overlook the effect of the other terms on the signal-to-noise, as sometimes done
in the literature. Since the public code CLASS allows us to choose whether include or not
the velocity, lensing and gravity effects in the computation of the C`, we estimate the error
one would introduce by neglecting these contributions in section 4.1. The reader interested
in a more in general discussion on the importance of a correct modelling of an observable
can check ref. [84]. To compute the angular power spectra we extend the public code CLASS

to include the possibility to have different tracers (X 6= Y ). We present this new version of
CLASS, called Multi CLASS, in ref. [84]. It should be noticed that, in the case of different
tracers, the angular projections are not symmetrical under the exchange of redshift zi ←→ zj ,
therefore, if we have n redshift bins, we have to compute n2 different C`, while for identical
tracers we have to compute only n(n+ 1)/2 angular power spectra.

Hereafter we consider two tracers, galaxies and gravitational waves, labelled by {g,GW}.
For illustrative purposes, the tracers have been divided in three redshift bins with central
redshift values {z1, z2, z3} = {1.5, 2.5, 3.5} and bin half-width ∆z = 0.5. This choice
refers to the main generic case discussed in section 4.1; in section 4.2, we also provide results
for specific surveys: EMU [66] (a wide-field radio continuum survey planned for the new

2In this work we use a Top-Hat window function.
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Australian Square Kilometre Array Pathfinder telescope), DESI [67] (a Stage IV ground-
based dark energy experiment planned to study baryon acoustic oscillations and the growth
of structure through redshift-space distortions with a wide-area galaxy and quasar redshift
survey), and SKA [68] (as a radio continuum survey with 5µJy flux limit at redshift z < 5).
For gravitational waves experiments we consider aLIGO [54] (a GWs experiment which cur-
rently being developed with enough sensitivity to detect 30 M� binary black holes mergers
up a redhsift zmax = 0.4), LIGO-India [85] and KAGRA [86] (we also include these last two
detectors as to improve event localization in the sky and thus increase the resolution of the
resulting GW map) and Einstein Telescope (ET) [55] (a planned GWs detector with higher
sensitivity and resolution than aLIGO).

We estimate the capability of future surveys to determine BHs mergers progenitors’
origin in two different ways, one more conservative that follows the approach suggested in
ref. [56], the other more optimal and closer to an actual data analysis but that relies on
modelling well some properties of the tracers that are currently still uncertain. We perform
what can be seen as a null hypothesis testing, comparing two models, one in which progenitors
origin is stellar, the other in which is primordial. We assume one model as fiducial and we
check if the alternative model can be differentiated from the fiducial one by computing a
Signal-to-Noise ratio S/N . The null hypothesis is that the model is indistinguishable from
the fiducial, which happens for low values of the Signal-to-Noise ratio (S/N . 1).

The first procedure relies on a standard Fisher analysis, where we consider a parameter
set {θα}, given by the cold dark matter physical density ωcdm, the baryon physical density
ωb, the angular scale of the sound horizon at decoupling 100θs, the amplitude of scalar
perturbations log 1010As, the spectral index ns and an effective bias Bg and BGW of galaxies
and GWs, respectively.3 More details on how we calculate the effective bias of the tracers
are given in section 3. Following the authors of refs. [87–89], we write the upper triangular
part of the covariance matrix C` as

C`=




C̃`
gg

(z1,z1) C̃`
gg

(z1,z2) C̃`
gg

(z1,z3) C̃`
gGW

(z1,z1) C̃`
gGW

(z1,z2) C̃`
gGW

(z1,z3)

C̃`
gg

(z2,z2) C̃`
gg

(z2,z3) C̃`
gGW

(z2,z1) C̃`
gGW

(z2,z2) C̃`
gGW

(z2,z3)

C̃`
gg

(z3,z3) C̃`
gGW

(z3,z1) C̃`
gGW

(z3,z2) C̃`
gGW

(z3,z3)

C̃`
GWGW

(z1,z1) C̃`
GWGW

(z1,z2) C̃`
GWGW

(z1,z3)

C̃`
GWGW

(z2,z2) C̃`
GWGW

(z2,z3)

C̃`
GWGW

(z3,z3)




,

(2.10)
where the lower triangular part can be easily obtained noticing that the covariance matrix is
symmetric. The covariance matrix is then used to compute the Fisher matrix elements as

Fαβ = fsky

∑

`

2`+ 1

2
Tr
[
C`−1(∂αC`)C`−1(∂βC`)

]
, (2.11)

where ∂α indicates the derivative with respect to the parameter θα and fsky is the fraction
of the sky covered by (the intersection of) both surveys. Notice that, since we are not

3The fiducial values of the five standard cosmological parameters reads as

{ωcdm, ωb, 100θs, log 1010As, ns} = {0.12038, 0.022032, 1.042143, 3.0980, 0.9619}. (2.9)

The fiducial values of the effective galaxy and GWs bias, Bg and BGW, are discussed in detail in section 3,
but see also table 1, where results discussed in section 3 are summarized.
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interested in the cosmological parameters but only on the GW bias, we marginalise over all
other parameters, also using a prior for the six standard cosmological parameters coming
from Planck4 data [90]. In this first approach the significance for distinguishing a fiducial
model (hereafter “fiducial”) from an alternative one (hereafter “alternative”) is given by the
difference between the effective GWs bias parameters (see section 3), after marginalising over
all other parameters: (

S

N

)2

∆B/B

=

(
BAlternative

GW −BFiducial
GW

)2

σ2
BFiducial

GW

, (2.12)

where BGW is the effective bias defined in equation (3.1) and σBFiducial
GW

is the Fisher-estimated
marginal error on BGW.

In the second way we quantify the distance of an alternative model from the fiducial
using a ∆χ2 statistics. In our case the ∆χ2 is given by the logarithm of a likelihood, in
particular we assume a likelihood quadratic in the angular power spectra. The resulting ∆χ2

statistics reads as

(
S

N

)2

√
∆χ2

∼ ∆χ2 := fsky

`max∑

2

(2`+1)(CAlternative
` −CFiducial

` )TCov−1
` (CAlternative

` −CFiducial
` ),

(2.13)
where the vector C` contains the same data of the covariance matrix C` in equation (2.10)
but organized as

C` =




Cgg
` (z1, z1)

...

CgGW
` (z1, z1)

...

CGWGW
` (z1, z1)

...




, (2.14)

and where the Cov` is a new covariance matrix, computed from angular power spectra of the
fiducial model. We can associate to every element I = 1, . . . , 21 of the C` vector two indices
(I1, I2), corresponding to the two tracers (in a given redshift bin) that produce the angular
power spectra that appear in the Ith row; for instance we associate to I = 1, corresponding
to Cgg

` (z1, z1), the couple of indices (I1 = gz1 , I2 = gz1). Then the elements of the new
covariance matrix Cov` read as

(Cov`)IJ = C̃I1J1
` C̃I2J2

` + C̃I1J2
` C̃I2J1

` , (2.15)

where the C̃` are those defined in equation (2.5).
Notice that in both cases the ability to distinguish between two scenarios can differ ac-

cording to which model is the alternative model and which one is the fiducial, since the covari-
ance matrix and thus the errors depend (sometimes strongly) on the fiducial model adopted.
The Fisher and ∆χ2 methods do not have to give the same results because they are two
different approximations. The Fisher approach is based on a quadratic approximation of the
log-likelihood, estimating its curvature around the fiducial scenario, while the ∆χ2 approach
is based directly on the log-likelihood and assumes all other parameters are perfectly known.

4http://pla.esac.esa.int/pla/.
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BX Generic EMU DESI SKA

Galaxies 1.55 0.83 1.37 1.58

Primordial-Early Binaries 1.00 1.00 1.00 1.00

Primordial-Late Binaries 0.50 0.50 0.50 0.50

End-point of Stellar Evolution 1.81 0.84 1.53 1.85

Table 1. Effective bias for different scenarios and surveys calculated according to equation (3.1).

3 Tracers

In this section we describe the two tracers we consider in this work, galaxies and GWs.
For cosmological purposes, each of these tracers is characterised by a source number density
per redshift bin and square degree d2NX/dzdΩ, bias bX(z), magnification bias sX(z) and
evolution bias f evo

X (z) parameters, which will be defined in detail below. While some of these
quantities are uncertain at the moment, in the following we will attempt to keep track of
these uncertainty and how they may affect the final results.

In particular, the two methods presented in section 2 allow us to assess the effect of the
uncertainty on the redshift dependence of the bias, in fact in the Fisher analysis case, starting
from the source number density and bias, we associate to a given tracer X an effective bias
parameter

BX =

∫ zmax

zmin

dz bX(z)
d2NX

dzdΩ∫ zmax

zmin

dz
d2NX

dzdΩ

(3.1)

over the entire redshift range [zmin, zmax] of the survey, while in the ∆χ2 statistics case, we
assume that bX(z) is known. We summarize the values of the effective bias for the different
tracers, scenarios and surveys in table 1. In the first case we assume that only the averaged,
effective bias is the relevant quantity known well enough to be used as a model parameter,
neglecting the information coming from its redshift dependence, while in the second one we
are exploiting it to maximize the differences between the two models.

While the procedure to obtain such quantities for galaxies is well established, in the case
of GWs this is quite a new field, and an accurate modelling would involve not only the knowl-
edge of the physics behind the merging process but also an understanding of GWs detection
efficiency for mergers events detectors. For this initial investigation we have to make assump-
tions that may need to be revised and improved in the future. For this reason we present a
step-by-step introduction in the GWs section 3.2, guiding the reader through all the details.

3.1 Galaxies

Depending on the experimental set up under consideration, we choose as luminous tracers
emission-line galaxies in the redshift range [0.6 − 1.7], targeted by DESI, or star-forming
galaxies, targeted by EMU and SKA in the redshift range [0.0− 5.0]. In particular the latter
will be mapped up to relatively high redshift by forthcoming radio surveys, as extensively
discussed in ref. [91], where they dominate the total number of sources. For the generic case
we use radio galaxies, as in the SKA case.
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In all the three surveys we find that we can model the number density per redshift bin
and square degree as

d2Ng

dzdΩ
= a1z

a2e−a3z, (3.2)

where different surveys have different parameters a1, a2, a3.5 For DESI we used figure 3.12 of
ref. [67], while for EMU and SKA we used the Tiered Radio Extragalactic Continuum Simula-
tion (T-RECS) [92] catalogue with different detection threshold (100 µJy for EMU and 5 µJy
for SKA). We report in the top left panel of figure 1 the three normalized number densities.

The bias for emission-line galaxies is taken to be bg(z) = 0.84/D(z) [67], where D(z)
is the linear growth factor normalized to unity today, while the bias for EMU and SKA
star-forming galaxies is modelled as [93]

bg(z) =

{
b0e

zb1 , z < 3,

b0e
3b1 , z ≥ 3,

(3.3)

where b0 = 0.755 and b1 = 0.368. Following the prescription of ref. [94], the bias is assumed
to be constant after redshift z = 3 to avoid unrealistically high values. We show the bias
redshift dependence in the bottom left panel of figure 1. The effective bias of equation (3.1)
for these surveys yields Bg,EMU = 0.83, Bg,DESI = 1.37 and Bg,SKA = 1.58.

Gravitational lensing changes the sources surface density on the sky in two competing
ways [95], by increasing the area, which in turn decreases the projected number density, but
also by magnifying individual sources and promoting faint objects above the magnitude limit.
These effects change the observed number density nobs in a flux-limited survey as

nobs = ng [1 + (5sg − 2)κ] , (3.4)

where ng is the intrinsic galaxies number density, sg is called galaxy magnification bias pa-
rameter and κ is the convergence [96], namely an isotropic increase or decrease of source size,
defined as κ = 1

2∇2ψ, where ψ is the lensing potential. The change in the number of observed
sources depends the value of the slope of the faint-end of the luminosity function [97–99]

sg(z) =
d log10

d2Ng(z,m<mlim)
dzdΩ

dm

∣∣∣∣∣
mlim

= −2

5

d log10
d2Ng(z,L>Llim)

dzdΩ

d log10 L

∣∣∣∣∣
Llim

, (3.5)

where m is the apparent magnitude, L is the intrinsic source luminosity and mlim, Llim are
the maximum detectable magnitude and the minimum detectable source luminosity of the
survey. The magnification bias enters in the velocity, lensing and gravity terms of equa-
tion (2.8) (see also appendix A), however its main contribution is in the lensing part, which
dominates the amplitude of the signal in the cross-bin case. The reader should keep in mind
that the specific value sg = 0.4 is the one associated to a compensation between the two
competing effects, therefore it is the one that cancels lensing contributions. For DESI we use
figure 3.11 of ref. [67], while for EMU and SKA we use the T-RECS catalogue [92] to compute
it. We report the magnification bias parameter sg(z) in the bottom right panel of figure 1.

Finally, it should be noted that the number of galaxies does not have to be conserved
as function of redshift, e.g., galaxies can form, therefore their number density does not scale

5For EMU we find aEMU
1 = 1236.0, aEMU

2 = 0.77, aEMU
3 = 1.39; for DESI we have aDESI

1 = 56491.0,
aDESI

2 = 1.89, aDESI
3 = 3.70 while for SKA we have aSKA

1 = 57642.0, aSKA
2 = 1.05, aSKA

3 = 1.36.
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Figure 1. Top panels: normalized number density distribution per redshift bin per square degree
d2NX
dzdΩ

for galaxies (top left) and GWs (top right). Bottom panels: bias bX(z) (bottom left) and magni-

fication bias parameter sX(z) (bottom right) for galaxies and GWs. We report the GWs magnification
bias parameter associated to a BHs population with monochromatic mass distribution detected by an
interferometer with characteristics similar to those of ET.

as a−3, where a is the scale factor. To account for the creation of new galaxies we include
also the evolution bias f evo

X defined as [100–102]

f evo
g (z) =

d log
(
a3 d

2Ng

dzdΩ

)

d log a
. (3.6)

This term enters in the velocity and gravity contributions in equation (2.8) (see also ap-
pendix A). Since it appears only in subleading terms and since there are significant uncer-
tainties in the modelling of galactic evolution, we can use in the definition of evolution bias
the observed number density instead of the true one, without adding significant errors.

3.2 Gravitational waves

The number density of detected GWs events per redshift bin per square degree can be
estimated as

d2NGW

dzdΩ
= Tobs

cχ2(z)

(1 + z)H(z)
Rtot(z)F

detectable
GW (z), (3.7)
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where Tobs is the total observational time,6 χ(z) is the comoving distance, H(z) is the Hub-
ble expansion rate, Rtot(z) is the total comoving merger rate, F detectable

GW (z) is the fraction of
detectable events, that depends on the Signal-to-Noise cut %lim imposed at the GWs observa-
tory. The total merger rate depends on the progenitors origin. In section 3.2.1 we consider a
scenario where mergers are from PBHs; in section 3.2.2 a scenario with BHs of stellar origin.
We comment in section 3.2.3 how we compute F detectable

GW (z). Starting from the observed
number density, we can calculate GWs evolution bias f evo

GW(z) using equation (3.6).
Here we should mention that the uncertainty in the total merger rate Rtot is of orders

of magnitude, however what enters in the calculation of the angular power spectra CXY` (i.e.,

the signal) is the shape of d2N
dzdΩ , not the global amplitude. On the other hand, the merger

rate (and its normalisation) affects the signal-to-noise ratio (i.e., the error-bars): a larger
number density will decrease the shot noise, improving the constraints on the cosmological
parameters of interest.

3.2.1 Primordial scenario

In the case where BHs have primordial origin and form a significant part of the dark matter
there are at least two important processes that lead to BHs binary formation. In the late pri-
mordial formation scenario the binary forms when progenitors are already part of dark matter
halos [14] and become a bound system by emitting GWs, while in the early primordial forma-
tion scenario the bound pair forms during radiation-dominated era [45, 103, 104]. In partic-
ular, the first mechanism, effective at late times, yields merger rate compatible with those of
LIGO. The second mechanism, according to theoretical estimates done in ref. [45], provides
a preferred present-day merger rate thait is already excluded by the LIGO constraints. Nev-
ertheless, given the large theoretical uncertainties that these estimates involve, we keep both
scenarios into account, adjusting the merger rate value of the early primordial case to make
it compatible with LIGO current constraints (we discuss this in more details in section 4).

In the following we focus on the late primordial scenario and we briefly review the
theoretical modelling of ref. [14], reporting only the most important results and extending
their formalism to the case where PBHs have an extended mass distribution instead of a
monochromatic one. In this model, the total merger rate Rtot(z) is expressed as a function
of the merger rate per halo Rhalo as

Rtot(z) =

∫ Mhalo,max

Mhalo,min

dMhalo
dn(Mhalo, z)

dMhalo
Rhalo(Mhalo, z), (3.8)

where Mhalo,min,Mhalo,max are the minimum and maximum mass of dark matter halos and
dn(Mhalo, z)

dMhalo
is the halo mass function [105]. Following the notation of ref. [53] and extending

their formalism, for a completely general PBHs mass distribution, the merger rate per halo
is given by

Rhalo(Mhalo, z) = f2
PBH

∫
d3rdM1dM2

dΦPBH

dM1

dΦPBH

dM2

〈σPFvPBH〉
2M1M2

ρ2
halo(r), (3.9)

where fPBH is the fraction of dark matter composed by PBHs,7 dΦPBH
dM describes the shape

of the mass distribution and is normalized to unity, M1,M2 are progenitors masses, σPF

6We assume as fiducial observational time Tobs = 10 years.
7In this work we assume that PBHs compose the totality of dark matter, i.e., fPBH = 1.
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is the pair-formation cross section [106, 107], vPBH is the relative velocity between two
PBHs, angle brackets 〈 · 〉 stand for the average over PBHs relative velocity distribution
(a Maxwell-Boltzmann distribution with a cut-off at virial velocity) and ρhalo(r) is the halo
radial profile which we choose to be a Navarro-Frenk-White (NFW) [108]. The NFW profile
is governed by the so-called concentration parameter that can be calibrated on numerical
simulations [109, 110], in turn the “typical” value of the concentration parameter depends
only the halo mass and on the redshift. Since the pair-formation cross section σPF scales as

(M1 + M2)10/7M
2/7
1 M

2/7
2 with progenitors masses, the black holes mass dependence of the

halo merger rate can be factorized as

MPBH =

∫
dM1dM2

dΦPBH

dM1

dΦPBH

dM2

(M1 +M2)10/7

M
5/7
1 M

5/7
2

. (3.10)

Therefore, in the case where the two merging objects come from a monochromatic mass
distribution, i.e., a Dirac delta centred at a certain value MPBH, equation (3.10) simplifies to
MMonochromatic

PBH = 45/7, independently from where the mass distribution is centred.
Since perfectly monochromatic mass distributions are unphysical, we estimate how the

merger rate in this model changes when considering two popular extended mass distributions
(see ref. [53] for more details about them). We focus on Power Law distributions

dΦPBH

dM
=
NPL
M1−γ Θ(M −Mmin)Θ(Mmax −M), (3.11)

characterized by an exponent γ ∈ [−1,+1], a mass range (Mmin,Mmax) and a normalization
factor NPL and on Lognormal distributions

dΦPBH

dM
=
e−

log2(M/µ)

2σ2

√
2πσM

, (3.12)

where logµ and σ are the mean and standard deviation of the logarithm of the mass, respec-
tively. It is not possible to find an analytical result of the integral in equation (3.10) for these
two distributions, however we provide in figure 2 the ratio between merger rates calculated
for an extended and a monochromatic mass distribution, which is equivalent to the ratio
MExtended

PBH /MMonochromatic
PBH between the factors calculated in equation (3.10). As can be ap-

preciated from the figure, the ratio is always a factor few bigger than unity. This important
result allows us to generalize to the extended mass distribution case (for distributions centred
in theO(10)M� window) conclusions we draw for the monochromatic one in section 4, just by
rescaling the merger rate by some numerical factor. Furthermore, in the case of a Lognormal
distribution, the ratio depends on the width of the distribution but not on the “scale” µ.8

Since the total merger rate in equation (3.8) is dominated by low-mass halo, the choice
of the minimum halo mass may have a big impact on the final result. The minimum mass
is set by requiring that the small halos evaporation time is larger the Hubble time. The
authors of ref. [45] pointed out that the presence of Poisson fluctuations significantly affects
the estimation of the characteristic density and velocity dispersion, increasing the initial
estimate of the minimum allowed halo mass in ref. [14] by one order of magnitude. However,
still in ref. [45], it was also found that the total merger rate computed including Poisson

8This result is exact, in fact the scale µ disappears from equation (3.10) once that we rescale the masses
through a change of variables.
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Figure 2. Ratio between the mass-dependent factor MPBH of different extended mass distribution,
centred in the O(10) M� window, with respect to the monochromatic case MMonochromatic

PBH = 45/7.
Top panel: Lognormal distribution. Bottom panel: Power Law distribution. In both cases theMPBH

factor does not deviate significantly from the one obtained in the monochromatic case.

fluctuations is of the same order of magnitude of that found in ref. [14]. These results
have been obtained assuming that the initial clustering of PBHs is Poissonian, however this
assumption is still a matter of discussion. If PBHs are born strongly clustered, merger rate
estimates could be heavily affected, see e.g., refs. [111–115].

The second scenario we consider is the early primordial formation mechanism. In this
case PBHs binaries form in the early Universe and can merge in less than a Hubble time.
The estimated total merger rate for this scenario is five orders of magnitude larger than the
one given by the late primordial scenario, however there are several theoretical uncertainties;
the interested reader can check ref. [45] to find a broad discussion on these uncertainties.
Finally we mention that other binary formation mechanisms exist, see e.g., ref. [58], however
we do not consider them since uncertainties at play are even larger.

Let’s turn our attention on the bias the GWs associated to different binary formation
mechanism. If the progenitors have primordial origin, the estimates in ref. [45] indicate that
the merger rate is heavily dominated the early primordial one. In this scenario the PBHs trace
the dark matter, therefore they have constant bias bGW(z) ≡ 1 and constant effective bias
BGW ≡ 1. However, if primordial binaries are disrupted during the history of the Universe
and the merger rate is dominated by the late primordial mechanism, then the merger events
trace low-velocity dispersion low-mass halos (Mhalo < 106M�). The bias of these halos is
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given by [116]

blmh(z) = 1 +
ν2 − 1

δsc
, (3.13)

where ν = δsc/σ(Mhalo, z) is the dimensionless peak height, δsc = 1.686 is the spherical
collapse threshold and σ(Mhalo, z) is the root-mean-squared density fluctuation at redshift
z for a smoothing scale corresponding to mass Mhalo in a Press-Schechter-like philosophy.
Since the bias does not evolve significantly in redshift, we consider it as a constant, therefore
in this second case its effective value is BGW = 0.5.

3.2.2 End-point of stellar evolution scenario

Several authors have estimated the merger rate of BH binaries coming from stellar evolution,
see e.g., refs. [117–119]. In this work we use the prescriptions given by ref. [119] who obtain
the merger rate of stellar BH binaries by combining the Illustris cosmological simulation with
population-synthesis simulations of black hole binaries. They rely on up-to-date prescriptions
for stellar winds and core collapse Supernovae. In this merger rate all three populations of
stars are included. We consider as our fiducial model the fiducial merger rate of figure 1
of [119]. We can model their merger rate as

Rtot(z) = A
(

1 +

(
z

z0

)p1
)p2

e−(z−z1)2/2 (3.14)

where A = 786.0, z0 = 3.0, z1 = 1.8, p1 = 4.9 and p2 = 1.4. Other models (based on
different properties of the population-synthesis simulations, using different prescriptions for
Supernovae, natal kicks distribution, Hertzsprung gap stars and common envelope phase effi-
ciency) still have approximately the same shape, but a different amplitude A. Uncertainties
in this case are around one order of magnitude. We report the normalized number density
of sources per redshift bin per square degree compute using this total merger rate in the top
right panel of figure 1.

When progenitors of a merging event have stellar origin, they are more likely correlated
with higher-mass halos that had a higher star-formation rate, therefore their bias will be the
same of the galaxies under consideration, i.e. bGW(z) = bg(z), where the different bias are
reported in section 3.1 and figure 1. In these cases the effective bias reads as BGW,EMU = 0.84,
BGW,DESI = 1.53 and BGW,SKA = 1.85.

3.2.3 Gravitational waves signal-to-noise ratio and event detectability

In this section we calculate the expected signal-to-noise ratio for BH-BH merger events. Given
the uncertainties in the final design of future GWs observatories, we take several simplifying
assumptions. However, we try to be as realistic as possible striking a balance between being
conservative but not over-conservative. Our main findings are robust against changes of
specific details.

We define the GW averaged9 signal-to-noise ratio measured at a given GWs observatory
as
√
〈%2〉. This is obtained via (see e.g., ref. [120]),

〈
%2
〉

=
1

5

∫ fmax

fmin

df
h2
c(f)

f2Sn(f)
, (3.15)

9Here the average is over the system-detector relative orientation and over waves polarization.
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where f is the observed frequency, hc(f) is the characteristic strain amplitude, Sn(f) is the
one-sided noise power spectral density and fmin and fmax are the minimum and maximum
frequencies the detector is sensible to. We choose (fmin, fmax) = (10, 104) when considering
aLIGO and (fmin, fmax) = (1, 104) when considering ET. To be more precise, the 1/5 factor
slightly depends on the characteristics of the analysed system considered, however it is usually
very close to the value we have chosen [121].

The characteristic strain amplitude depends on the physical phenomenon one is inter-
ested in. In this work we consider a two body system, the merging binary, with progenitors
masses M1 and M2, total mass Mtot and reduced mass µr. The characteristic strain is related
to its spectral energy distribution dE/dfs as [122]

hc(f) =
21/2

πχ(z)

√
dE

dfs
, (3.16)

where fs = (1 + z)f is the frequency of the emitted wave at the source, located at redshift z.
Every merger event is characterized by three different phases, inspiraling (I), merging (M)
and ringdown (R), that correspond to the emission in three different and separate frequency
ranges with different spectral energy distributions (see ref. [122] for specific details). In the
following we consider only the first two phases (inspiraling and merging) since during the
third one the strain is rapidly damped. These phases are associated to the observed frequency
ranges

I : f <
fm

1 + z
, M :

fm
1 + z

< f <
fr

1 + z
, (3.17)

where fm = 4100 (M�/Mtot) s
−1 and fr = 28600 (M�/Mtot) s

−1 are the so called merger
and ringdown frequencies.

Given that different merger phases do not share the same frequency domain, the signal-
to-noise ratio can be computed separately for each phase and then combined:

〈
%2
〉

=
〈
%2
〉
I

+
〈
%2
〉
M
,

〈
%2
〉
I

=
2µrM

2/3
tot G

5/3

15π4/3c3

(1 + z)−1/3

χ2(z)

∫ fIup(z)

fmin

df
f−7/3

Sn(f)
,

〈
%2
〉
M

=
32Gµ2

r ε

5π2Mtotc(fr − fm)

1

χ2(z)

∫ fMup(z)

fMlow(z)
df

f−2

Sn(f)
,

(3.18)

where ε is the fraction of the total mass emitted in GW and typically assumes values around
ε ∼ 0.05 (this is the value we assume). The signal-to-noise ratio for the different phases are
non-zero only if fmin < f Iup(z) and fMlow(z) < fMup(z), where

f Iup(z) = min

(
fmax,

fm
1+z

)
, fMlow(z) = max

(
fmin,

fm
1+z

)
, fMup(z) = min

(
fmax,

fr
1+z

)
.

(3.19)
Each of the observatories we consider (aLIGO starting in the next decade and, beyond that,
ET) is characterised by its sensitivity or, equivalently, by its own noise power spectral density
Sn(f). The interested reader can find these details in ref. [123] for aLIGO and in ref. [124]
for ET.

To define the fraction of detectable events F detectable
GW introduced in equation (3.7), we im-

pose
√
〈%2〉 > %lim; following existing literature we choose the typical minimum value %lim = 8.
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Figure 3. Probability distribution function of the signal-to-noise for Lognormal black holes extended
mass distribution with (µ, σ) = (30, 0.5) (dashed line) and (µ, σ) = (30, 1.0) (solid line) at different
redshift. Left panel: aLIGO detector. Right panel: ET detector. The black dotted-dashed line
represents the detection threshold at %lim = 8.

The distribution of detected signal-to-noise ratio at different redshift, that we denote with

F
(√
〈%2〉, z

)
, expected from different BHs mass distributions is computed as follows.

In the case where the BHs have a monochromatic mass distribution, all the mergers have
the same averaged signal-to-noise ratio at a given redshift, therefore in this approximation
we are able to detect all the merger events up to some maximum redshift zmax such that√
〈%2(zmax)〉 = %lim. We calculate that zaLIGO

max = 0.4 for aLIGO and zET
max > 5 for ET. In this

case F detectable
GW ≡ 1 up to the maximum redshift.

For an extended mass distribution we simulate 105 BH mergers at different redshift with
progenitors masses drawn from two Lognormal mass distributions, one narrow (σ = 0.5),
the other wider (σ = 1.0), both having µ = 30.0 M�. We calculate the averaged signal-
to-noise ratio distribution using the aLIGO [123] and ET [124] expected sensitivity. We

report the probability distribution F
(√
〈%2〉, z

)
in figure 3 for different redshift. For the

aLIGO detector details of the extended mass distribution can be relevant, in fact in both
cases of narrow and broad mass distribution, a significant fraction of events may lie below
detection threshold, up to half of the total events in the broad distribution case for redshift
z = 0.4, corresponding to F detectable

GW (z = 0.4) ' 0.5. However, the next generation of GWs
observatories will overcome this limitation. In particular ET sensitivity will be so large that in
the narrow mass distribution case all the event are detectable, therefore F detectable

GW ≡ 1. In the
broad mass distribution case we observe that part of the tail is below the threshold, however
even at redshift z = 5 the overall effect is very small, in fact we find that F detectable

GW & 0.97.
Since in the ET case the effect of an extended mass distribution is so small, every conclusion
we draw for the monochromatic case applies also the extended one.

The GW averaged signal-to-noise ratio and the distribution of detected signal-to-noise
ratio as a function of redshift are also a key inputs to compute the magnification bias.

3.2.4 Gravitational waves magnification bias

In this section we calculate for the first time the magnification bias for GWs. As for galaxies,
the magnification bias contains the information on which of the two effects of gravitational
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lensing, explained in section 3.1, dominates. It enters in the velocity, lensing and gravity
terms of equation (2.8) (see also appendix A).

In complete analogy to what has been done for galaxies in equation (3.5), we identify the
galaxy apparent magnitude m with the GWs averaged signal-to-noise ratio

√
〈%2〉 measured

at a given GWs observatory. As in equation (3.5), instead of a maximum apparent magnitude
mlim, we define a minimum average signal-to-noise ratio %lim = 8 to claim the detection of
an event. Finally, we define the GWs magnification bias parameter as

sGW(z) = − d log10
d2NGW(z,

√
〈%2〉>%lim)

dzdΩ

d
√
〈%2〉

∣∣∣∣∣∣
%lim

, (3.20)

where the minus sign has been introduced to preserve the interpretation of a positive or
negative magnification bias parameter. Notice that instead of the averaged signal-to-noise
ratio

√
〈%2〉 one could have defined the GWs magnification bias using just the signal-to-noise

ratio %. In that case one should consider not only the mass distribution but also the system
orientation and GWs polarization distribution. This goes beyond the purposes of this article
and is left to future work.

The distribution of detected signal-to-noise ratio at different redshifts F
(√
〈%2〉, z

)

and different BHs mass distributions (see section 3.2.3) is the key quantity to estimate the
GWs magnification bias. For a monochromatic mass distribution, all the mergers have the
same averaged signal-to-noise ratio at a given redshift and we observe all the events (or none
of them), hence the magnification bias parameter for a BHs monochromatic population is
identically zero (sGW(z) ≡ 0.0) except in an infinitely thin redshift shell around zmax.

On the other hand, for an extended mass distribution, the magnification bias parameter
can be non-zero since, especially for the broad mass distribution, in fact we potentially have
events above and below the detection threshold at every redshift. As shown in figure 3 and
discussed in section 3.2.3, the ET sensitivity guarantees that for narrow mass distribution
all events are detectable, sGW ≡ 0.0, as in the monochromatic mass distribution case. In the
broad mass distribution case only few events are missed and we find sGW . 0.01 at redshift
z = 5. For the aLIGO case we find sGW . 0.07 at redshift z = 0.4 in both cases. In general,
for any given extended mass distribution, more sensitive experiments, as the ET, have smaller
magnification bias parameter. Since the values of the magnification bias parameter are so
close to zero, the error coming from working with a monochromatic mass distribution are
subdominant with respect to other uncertainties in the modelling. Therefore we can safely
extrapolate our results for monochromatic cases to extended mass distribution cases.

4 Results

Beside the tracer’s bias, the merger rates are also poorly known, both on the observational
and theoretical side, spanning several orders of magnitude and affecting the overall expected
number of GWs events. After the first run of LIGO, the observational merger rate today is
estimated to be [125]

RLIGO
today ' 9− 240 Gpc−3yr−1, (4.1)

while the theoretically predicted merger rates for the stellar and late primordial scenario are

RStellar
today ' 150 Gpc−3yr−1,

RLate Primordial
today ' 4 Gpc−3yr−1.

(4.2)
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The predicted merger rate for the early primordial scenario is approximately 105 Gpc−3yr−1

or even higher [126], therefore ruling out this scenario. However, given the high uncertainties
in its computation which could significantly lower this value [45], in this work we consider a
fiducial value for this scenario of

REarly Primordial
today ' 200 Gpc−3yr−1, (4.3)

which is consistent with LIGO constraints. Nevertheless, these uncertainties act mainly as a
rescaling of the number of events, thus of the noise and of the resulting signal-to-noise ratio.

We parametrize the uncertainty on the number of GWs events (3.7) by introducing a
new parameter r constant in redshift. In the stellar case r reads as

rStellar =
Tobs

10 years
× R
RStellar

today

, (4.4)

where R/RStellar
today parametrizes the uncertainty coming from the chosen fiducial model in

ref. [119]. In the primordial scenarios we have

rLate Primordial =
Tobs

10 years
× f2

PBH ×
MExtended

PBH

MMonochromatic
PBH

×
〈
F detectable

GW

〉
× R
RLate Primordial

today

,

rEarly Primordial =
Tobs

10 years
× R
REarly Primordial

today

, (4.5)

where in the late primordial formation scenario we have explicitly separated the contri-
butions analysed in section 3.2, even if the dependence on the observational time Tobs,
the fraction fPBH of PBHs that constitutes the dark matter, the choice of PBHs mass
distribution (extended or monochromatic) and the average fraction of observables events〈
F detectable

GW

〉
can be generalized also to the early primordial formation scenario. The quan-

tity R/RLate, Early Primordial
today contains any possible uncertainty related to the modelling of

the merger rate that affects its overall normalisation, expressing deviations from the fidu-
cial values of equations (4.2) and (4.3). The values rStellar, Late, Early Primordial = 1 corre-
spond to the merger rates reported in equations (4.2) and (4.3). To account for several
theoretical uncertainties that can influence the merger rates, we provide results for a range
rStellar, Late, Early Primordial ∈ [10−1, 10].

Finally, we report in table 2 the details of the survey we analyse in section 4.1 and 4.2,
in particular the combinations of GWs observatories and large scale structure surveys, the
covered fraction of the sky, the maximum multipole, connected to the maximum angular
resolution achievable (see section 2) and the redshift binning we choose.

4.1 Generic case and importance of projection effects

In this section we study a generic case to highlight the importance of projection effects. In
terms of angular resolution and covered fraction of the sky, this generic case can be thought
as a ET×SKA in the redshift range [1.0, 4.0] (see table 2).

We perform the Fisher and ∆χ2 analyses adding one by one the effects listed in equa-
tion (2.8) to estimate their importance, in particular we consider only density and velocity
contributions (den + vel case), then we add lensing (den + vel + len case) and finally gravity
effects (den + vel + len + gr case). In particular we call projection effects the combination of
the latter two, namely lensing and gravity contributions (len + gr). We refer the interested
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SURVEYS COMBINATION fsky `max REDSHIFT BINNING

GENERIC CASE 0.75 100
1.0 ≤ z1 ≤ 2.0
2.0 ≤ z2 ≤ 3.0
3.0 ≤ z3 ≤ 4.0

aLIGO × EMU 0.75 50 0.0 ≤ z1 ≤ 0.4

ET × DESI 0.34 100
0.60 ≤ z1 ≤ 1.15
1.15 ≤ z2 ≤ 1.70

ET × SKA 0.73 100

1.0 ≤ z1 ≤ 2.0
2.0 ≤ z2 ≤ 3.0
3.0 ≤ z3 ≤ 4.0
4.0 ≤ z4 ≤ 5.0

Table 2. Prescription used for the forecast. We report the GWs observatory and the galaxy surveys,
the covered fraction of the sky fsky, the maximum achievable multipole `max of the GWs observatory
and redshift binning. Note that we take the value `max = 50 for aLIGO, because we assume that
KAGRA and LIGO India will also be running, improving the source localisation and resolution of the
resulting GWs events map.

reader to ref. [84], where a broader discussion on the importance of the full modelling can be
found. Results from the Fisher analysis, with and without a Planck prior, are reported in fig-
ure 4, both for the stellar and primordial black holes scenarios. As expected, adding the CMB
prior improves the results, lowering the value of the error σBFiducial

GW
defined in equation (2.12),

due to the extra power in constraining the standard cosmological parameters. We also find
lensing effects have a large impact on determining the final Signal-to-Noise and that gravity
contributions barely affects the final results, since they are relevant mostly at horizon scales.

We argue here that even if projection effects (lensing, gravity) do not depend on the
signal one is trying to measure — the bias in this case — their contributions cannot necessarily
be ignored in a Fisher error forecast for two reasons: i) they must be included in the covariance
matrix as they act as an effective source of “noise” — think of the cosmic variance contribution
— as such ignoring them would underestimate the resulting error, ii) they do depend on other
“extra” parameters, i.e. the cosmological parameters. When marginalizing over these extra
parameters, the presence of projection effects help constraining them and thus improve the
overall error-bars. The interplay and balance between these two trends yields a combined
effect on the resulting forecasts, which we investigate now in more details.

We show on top panels of figure 5 how the inclusion of projection effects affects the
results obtained through the Fisher analysis, depending on the value of the parameter r and
on the adoption of the Planck prior. In particular we appreciate that without adding Planck
prior projection effects yield an improvement while adding it we observe a small degradation.
This counter-intuitive result can be understood as follows. The lensing contribution does not
directly depend on the bias parameter (see appendix A) but it dominates the global C` signal,
especially for the cross-bin angular power spectrum, acting as an effective source of “noise”,
since bigger C` yield smaller Fisher matrix elements (see equation (2.11)) and, consequently, a
higher error σBFiducial

GW
. On the other hand, lensing effects can improve forecasts on the other

(cosmological) parameters considered in the Fisher analysis, increasing the corresponding
Fisher elements. In the presence of degeneracies this can lead to an improvement on the bias
parameter determination. This can be seen explicitly in the top left panel of figure 5: in the
three cases, for high enough values of r, the improvement of other cosmological parameters
estimates breaks degeneracies, improving the forecasts on GWs bias BGW. This is not so
evident for low values of the parameter r, as the higher shot noise works against the lensing-
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Figure 4. Generic case. Signal-to-Noise (S/N)∆B/B estimates from the Fisher analysis for different
fiducial and alternative models, including and neglecting projection effects and the Planck prior on
cosmological parameters. We assume Tobs = 10 years. The lower (upper) edge of the coloured bars
corresponds to r = 0.1 (r = 10), while the white dashed line corresponds to the fiducial value r = 1.
The fiducial and the alternative models are indicated on top of each panel.

induced improvements on cosmological parameters. We have seen that in this method the
inclusion of projection effects can change the forecast errors up to a factor of 2, therefore we
argue that in general they cannot simply be neglected, even if there could be situations where
the change is not so significant. When using the strong Planck prior, whose Fisher matrix
elements are orders of magnitude bigger than those of the clustering, the lensing improvement
on cosmological parameter forecasts is not significant any more, and we observed only the
increased “noise” effect on σBfiducial

GW
.

In the lower panels of figure 5 we observe the same effect, this time with the ∆χ2

method. In this case cosmological parameters are assumed to be known, and thus the lensing
effect does not add signal, it only increases the noise.
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Figure 5. Generic case. Upper panels: ratio of the Signal-to-Noise (S/N)∆B/B obtained with the
Fisher analysis, including and neglecting projection effects, for different values of r, including (right
panel) or not (left panel) the Planck prior. Lines indicates the assumed fiducial model. Lower panels:
ratio of the Signal-to-Noise (S/N)√

∆χ2 obtained with the ∆χ2 analysis, including and neglecting

projection effects, for different values of r, for the stellar as fiducial model (left panel) or as alternative
model (right panel).

4.2 Forecast for future large scale structure surveys

In this section we provide forecasts for those specific combinations of GWs observatories and
large scale structure surveys given in table 2.

We report the Signal-to-Noise forecasts, obtained with both methods described in sec-
tion 2, in figure 6 (stellar as fiducial model), figure 7 (late primordial as fiducial model) and
figure 8 (early primordial as fiducial model). In each of these figures we show four panels:
the upper ones show results coming from the Fisher analysis, while the lower ones come from
the ∆χ2 formalism. In the left panels we show bar charts obtained for different values of
the parameter r at fixed maximum multipole `max, while in the right panels we report the
scaling of the Signal-to-Noise for different values of the maximum angular resolution when
rStellar, Late, Early Primordial = 1, corresponding to the merger rates reported in equations (4.4)
and (4.5).

We show that surveys covering a bigger volume (or redshift range) have can discriminate
better between different models, i.e. have higher Signal-to-Noise ratios, as expected from
surveys with smaller shot noise. In the case where the stellar model is assumed as fiducial, it
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Figure 6. Specific surveys. Signal-to-Noise S/N estimates coming from Fisher analyses, along with
the Planck prior, (upper panels) and ∆χ2 formalism (lower panels) for specific surveys combinations.
Left panels: Signal-to-Noise S/N estimates as a function of r, assuming a fixed `max (50 for aLIGO
and 100 for ET). The horizontal dashed white lines refer to the r = 1 case. Right panels: Signal-to-
Noise S/N estimates as a function of `max for the fiducial merger rate case r = 1. The fiducial scenario
assumed is the stellar, to be distinguished by the early and late primordial alternative models. We
choose as observation time Tobs = 10 years.

is generally more difficult to distinguish the early primordial scenario than the late primordial,
since the former has a bias (or an effective bias) closer the stellar model one. Notice also
that in the cases of stellar and early primordial as fiducial, we have better Signal-to-Noise
ratio than in the late primordial scenario, due to higher merger rates, thus higher number of
detected sources and lower shot noise.

In general we can conclude that future surveys will enable us to address questions about
binary BHs mergers given enough observation time and resolution. One caveat is that this
does not always happen for the aLIGO×EMU combination, which will have a Signal-to-Noise
lower or very close to unity in some cases (especially if mergers come from the late primordial
formation mechanism). This is due to the fact that this combination of GWs observatory
and large scale structure survey can only cover a low redshift range, where the biases (or the
effective biases) are very similar (see e.g., the bottom left panel of figure 1) and we have an
higher shot noise due to the scarce number of detected objects.
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Figure 7. Specific surveys. Signal-to-Noise S/N estimates coming from Fisher analyses, along with
the Planck prior, (upper panels) and ∆χ2 formalism (lower panels) for specific surveys combinations.
Left panels: Signal-to-Noise S/N estimates as a function of r, assuming a fixed `max (50 for aLIGO and
100 for ET). The horizontal dashed white lines refer to the r = 1 case. Right panels: Signal-to-Noise
S/N estimates as a function of `max for the fiducial merger rate case r = 1. The horizontal dashed
white lines refer to r = 1. The fiducial scenario assumed is the late primordial, to be distinguished
by the stellar model. We choose as observation time Tobs = 10 years.

5 Conclusions

The renewed interest in primordial black holes has highlighted their importance not only as a
possible constituent of the dark matter but also because their existence (if confirmed) would
have profound implications about the physics of the early Universe. It is therefore essential
to explore new ways to discriminate between primordial or stellar origin of the black holes
which mergers have been observed with laser interferometers. Beyond the standard ways to
constrain the existence of stellar mass primordial black holes through lensing or the effect on
cosmic backgrounds, a complementary approach is to assess whether the GWs signal from
merging binary BHs we detect are produced by objects of primordial origin or not.

Here we build on the idea that the cross-correlation of galaxy catalogues with GWs
(from the merger of binary BHs) maps is a powerful tool to statistically study the origin of
the progenitors of BHs mergers [56]. This will be possible once the next generation of GWs
detectors will provide localization of enough events to make low resolution maps. Galaxy
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Figure 8. Specific surveys. Signal-to-Noise S/N estimates coming from Fisher analyses, along with
the Planck prior, (upper panels) and ∆χ2 formalism (lower panels) for specific surveys combinations.
Left panels: Signal-to-Noise S/N estimates as a function of r, assuming a fixed `max (50 for aLIGO
and 100 for ET). The horizontal dashed white lines refer to the r = 1 case. Right panels: Signal-to-
Noise S/N estimates as a function of `max for the fiducial merger rate case r = 1. The fiducial scenario
assumed is the early primordial, to be distinguished by the stellar model. We choose as observation
time Tobs = 10 years.

catalogues covering a significant fraction of the sky and an overlapping redshift range are
also under construction or at an advanced planning stage. Then, by measuring the bias of
the halos hosting the binary BHs mergers, as well as the variation in their number counts
due to lensing magnification and projection effects, we can infer the clustering properties of
the progenitors of the binary BHs. Clustering properties matching those of luminous, high
velocity-dispersion, high stellar-mass galaxies, would indicate a stellar origin, while clustering
properties more similar to those of low-mass galaxies preferentially populating the filamentary
structure of large-scale structures indicate a primordial origin. Moreover, this approach could
also set constraints on the abundance of PBHs, and hence on the fraction of dark matter
that can be comprised of them.

We consider different models for the binary BHs formation, accretion mechanism, merger
rate and clustering properties, both for the stellar and primordial nature of the BHs. We gen-
eralize similar studies on the cross-correlation between galaxy and gravitational wave maps

– 23 –

[ September 30, 2019 at 6:32 – classicthesis v4.6 ]



J
C
A
P
0
9
(
2
0
1
8
)
0
3
9

by performing a full multi-tracer analysis that accounts for different redshift distributions,
galaxy bias evolution, magnification bias of luminous sources as well as GWs, and relativistic
projection effects. To perform such analyses one need to include a variety of different quan-
tities and physical effects that are still poorly understood. For this reason, we investigated
several possible scenarios and reported our results for a wide range of values of uncertain
parameters, so that our results are quite general and can be still used once some of such
quantities will be better understood.

Before studying specific forthcoming experiments, we highlighted the importance of pro-
jections effects on the estimate capability of a given experiment to differentiate between differ-
ent origins of BHs mergers. Then, we find that the near future combination of aLIGO×EMU
would be able to address the nature of observed mergers in the case where their origin is
mostly stellar or, if primordial, dominated by early binaries, due to a higher merger rate. If
instead BHs have a late primordial origin, the corresponding merger rate would be too low to
make it possible to distinguish this scenario from the stellar one with current observations. On
the other hand, more futuristic survey combinations, such as ET×DESI or ET×SKA, would
allow a real discrimination between all possible model combinations. Our results show that
forthcoming experiments could allow us to test most of the parameter space of the still viable
models investigated, and shed more light on the issue of binary black hole origin and evolution.

However, it is important to keep in mind some of the assumptions made in this work,
that we will list below; it will therefore be important to keep refining these studies in order
to have a robust model, formalism and pipeline once laser interferometers will deliver large
GWs maps ready to be correlated with other datasets. Most of all, it is very difficult to
understand, in the absence of full simulations, the process of binary formation and evolution
of early binaries for PBHs scenarios. Related to this, another major source of uncertainty
is the BHs accretion mechanism and efficiency across different cosmic epochs; estimates
available in literature vary by several orders of magnitude.

In this work we considered PBHs with a monochromatic mass distribution peaked
around 30M�; while we verified that our results hold when considering instead some com-
monly used extended mass distributions, these types of analyses will differ when considering
very different mass ranges. Finally, for the stellar model, uncertainties in the star formation
rate, existence and distribution of sub-halos, massive star ejections and the epoch of first
star formation can as well influence conclusions drawn from the GW×LSS cross-correlation,
and therefore need to be further studied. Nonetheless, we believe that the present work can
contribute to further develop the new avenue of GW-LSS synergies, and that the vast range
of parameters and models explored here make our results general enough to provide a realistic
forecast of what this can teach us on the nature of binary BHs progenitors in the next decade.
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A Relativistic number counts

In this appendix we explicitly report relativistic number counts effects, following the notation
of ref. [82]. The elements of equation (2.8) read as

∆den
` (k,z)=bXδ(k,τz)j`,

∆vel
` (k,z)=∆rsd

` (k,z)+∆dop
` (k,z),

∆rsd
` (k,z)=

k

Hj
′′
` V (k,τz),

∆dop
` (k,z)=

[
(f evo
X −3)

H
k
j`+

(H′
H2

+
2−5sX
r(z)H +5sX−f evo

X

)
j′`

]
V (k,τz),

∆len
` (k,z)=`(`+1)

2−5sX
2

∫ r(z)

0
dr
r(z)−r
r(z)r

[Φ(k,τz)+Ψ(k,τz)]j`(kr),

∆gr
` (k,z)=

[(H′
H2

+
2−5sX
r(z)H +5sX−f evo

X +1

)
Ψ(k,τz)+(−2+5sX)Φ(k,τz)+H−1Φ′(k,τz)

]
j`

+

∫ r(z)

0
dr

2−5sX
r(z)

[Φ(k,τ)+Ψ(k,τ)]j`(kr), (A.1)

+

∫ r(z)

0
dr

(H′
H2

+
2−5sX
r(z)H +5sX−f evo

X

)

r(z)

[
Φ′(k,τ)+Ψ′(k,τ)

]
j`(kr).

According to the notation of ref. [82], r is the conformal distance of on the light cone, τ = τ0−r
is the conformal time, τz = τ0 − r(z), bX is the bias parameter, sX is the magnification bias
parameter, f evo

X is the evolution bias parameter, Bessel functions and their derivatives j`, j
′
` =

dj`
dy , j′′` = d2j`

dy2 are evaluated at y = kr(z) unless explicitly stated, H is the conformal Hubble

parameter, a prime ′ indicates derivatives with respect to conformal time, δ is the density
contrast in comoving gauge, V is the peculiar velocity, Φ and Ψ are Bardeen potentials.

The velocity term ∆vel
` (k, z) has been written in terms of the pure (Kaiser) redshift-

space distortions term ∆rsd
` (k, z) and in term of Doppler contributions ∆dop

` (k, z). Notice
that the magnification and evolution bias enter only in the Doppler term.
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C O N S T R A I N I N G T H E I N F L AT I O N A RY S C E N A R I O

The simplest inflationary models, i.e., those belonging to the single-
field slow-roll class, have passed numerous tests, namely they generate
a flat, isotropic and homogeneous Universe, they create super-horizon
scalar perturbations with Gaussian statistics, the power spectrum of
these perturbations is almost scale-invariant and reads as

Pζ(k) = As

(
k
k?

)ns−1

, (4.1)

where As and ns are the scalar perturbation amplitude and tilt and k?
is a pivot scale.

Assuming that a single-field inflationary model is slow-rolling is
equivalent to require that the kinetic energy of the scalar field is
significantly smaller than the potential one, i.e., φ̇2 � V, and that
the acceleration of the field is negligible with respect to its velocity,
i.e., φ̈� Hinfφ̇. Alternatively, we can express the same set of conditions
in terms of the slow-roll parameters

ε =
M2

p

2

(
∂φV
V

)2

, η = M2
p

∂2
φV
V

, (4.2)

which describe the steepness of the scalar field potential and how fast
the scalar field moves along it: slow-roll means that we require ε� 1
and |η| � 1. The dynamics of the field is also encoded in the two-point
function of the perturbations, in fact we have that

As ∝
H2

inf
εM2

p
, ns − 1 = 2η − 6ε, (4.3)

therefore measurements of Late Universe properties can actually put
constraints on the dynamics of the Early Universe.

However, we are still missing the so called “smoking gun” of in-
flation: the gravitational waves produced as tensor fluctuations in
the metric and stretched to super-horizon scales by the exponential
expansion, as in the case of scalar perturbations. Also tensor perturba-
tions are predicted to have an almost scale-invariant power spectrum,
namely

Ph(k) = At

(
k
k?

)nt

, (4.4)

where At and nt are the tensor perturbations amplitude and tilt, in
analogy with scalar perturbations. The standard predictions is that
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the tilt reads as nt = −2ε while the amplitude is suppressed with
respect to scalar perturbation: this suppression is typically quantified
by the tensor-to-scalar ratio at pivot scale r = At/As = 16ε. Therefore
measuring properties of tensor modes in the Late Universe helps in
breaking the degeneracy between the energy scale of inflation Hinf
and the slow-roll parameters ε and η.

In this chapter I present two works, “Measuring the energy scale
of inflation using large scale structures” [41] and “From primordial
black holes abundance to primordial curvature power spectrum (and
back)” [42]. In both works I propose a novel way to measure properties
of the Early Universe.

The first article I investigate how to measure the energy scale of
inflation, i.e., the Hubble expansion parameter Hinf, through a mea-
surement of the tensor-to-scalar ratio r. The only model-independent
lower limit we have comes from Big Bang Nucleosynthesis, which
bound inflation to happen at energies greater than O(MeV). We also
have an upper limit of O(1016 GeV) coming from the upper limit on
B-modes amplitude, which bounds r . O(10−1) [9]. In this work I
propose a method to measure r using the data coming from the large
scale structure of the Universe, providing an alternative to classical
CMB B-modes detection or to detect a primordial gravitational waves
background using next generation detectors as LISA, BBO or DECIGO.
The determination of this energy scale is a key step in addressing
other open questions in the ΛCDM, for instance related to the physics
of reheating or how baryons and matter-antimatter asymmetry was
created. Moreover, the inflaton itself would represent the first Beyond
Standard Model particle to be ever detected in a range of energies
inaccessible by any laboratory on Earth.

In several inflationary scenario, the scalar field is not slow-rolling
indefinitely, and possible deviations from slow-roll might boost the
power spectrum at very small scales, which has not been probed
yet. If the boost is large enough, the mildly non-linear or non-linear
perturbations created might be able to collapse and form compact
objects, PBHs, already during the radiation-dominated era. In the
second paper I put on a firm theoretical ground the correspondence
between PBHs abundance in present-day Universe and the primordial
curvature power spectrum. Eventual detections of PBHs would shed
light on a completely new range of scales orders of magnitude smaller
than cosmological scales. At the same time, we would be able to probe
the dynamics of the inflation in a new regime completely different
by the slow-roll one, which is totally incompatible with the existence
even of a single PBH in our Universe.
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Abstract. The determination of the inflationary energy scale represents one of the first step
towards the understanding of the early Universe physics. The (very mild) non-Gaussian sig-
nals that arise from any inflation model carry information about the energy scale of inflation
and may leave an imprint in some cosmological observables, for instance on the clustering
of high-redshift, rare and massive collapsed structures. In particular, the graviton exchange
contribution due to interactions between scalar and tensor fluctuations leaves a specific sig-
nature in the four-point function of curvature perturbations, thus on clustering properties
of collapsed structures. We compute the contribution of graviton exchange on two- and
three-point function of halos, showing that at large scales k ∼ 10−3 Mpc−1 its magnitude
is comparable or larger to that of other primordial non-Gaussian signals discussed in the
literature. This provides a potential route to probe the existence of tensor fluctuations which
is alternative and highly complementary to B-mode polarisation measurements of the cosmic
microwave background radiation.

Keywords: inflation, power spectrum

ArXiv ePrint: 1809.07113

We dedicate this paper to the memory of our friend and colleague Bepi Tormen who did
pioneering work in the understanding of the abundance and clustering of dark matter halos.

c© 2018 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1475-7516/2018/11/043

[ September 30, 2019 at 6:32 – classicthesis v4.6 ]



J
C
A
P
1
1
(
2
0
1
8
)
0
4
3

Contents

1 Introduction 1

2 Non-Gaussianity 2

3 Dark matter halos 5

4 Graviton exchange signal in large scale structure 8
4.1 Signal in the halo power spectrum 10
4.2 Signal in the halo bispectrum 13

5 Conclusions 16

A Bispectrum templates 18

1 Introduction

The inflationary paradigm has passed four major tests: there are super-horizon perturbations,
as shown for the first time in ref. [1]; the power spectrum of these fluctuations is nearly scale
invariant [2] but deviates by a small amount from it, as first shown compellingly in refs. [3, 4];
the Universe is essentially spatially flat [3, 5–7] and appears homogeneous and isotropic on
large scales [8–10]; initial conditions are very nearly Gaussian [1, 11–14].

The fact that the inflationary paradigm has passed these tests does not mean it has
been verified. Indeed, alternative models exist that also pass the above tests [15, 16]. What
is unique of the inflationary paradigm is the existence of an accelerated expansion phase that
results in a (quasi) exponential growth of the scale-factor of the metric. This, in turn, facili-
tates that tensor fluctuations in the metric will manifest themselves as potentially observable
gravitational waves [17]. This crucial feature of inflation has not yet been measured. Obvi-
ously, measuring it would be momentous as it would open up a window into inflation and
the early Universe physics not explored before, and would offer the possibility to understand
physical mechanisms at play at the energy scale of inflation.

In the simplest inflationary models the amplitude of tensor modes (usually parametrised
by the parameter r, the tensor-to-scalar ratio at a given scale) can be related to the energy
scale of inflation, given by the inflaton potential V , by

V 1/4 =

(
3

2
π2rPζ

)1/4

MP ∼ 3.3× 1016 r1/4 GeV, (1.1)

where Pζ is the power spectrum1 of curvature perturbations on uniform energy density hy-
persurfaces ζ and MP =

√
~c/(8πG) is the reduced Planck mass. The firm lower limit on

1Here we refer to the almost scale-invariant power spectrum

Pζ =
k3

2π2
Pζ =

1

2M2
P ε

(
H?
2π

)2 (
k

aH?

)ns−1

,

determined by the Hubble expansion rate during inflation H? and the slow-roll parameter ε =
M2

P
2

(
∂ϕV

V

)2

,

where ∂ϕ represents the partial derivative with respect to the inflaton field. Past experiments have already

measured with great precision the scalar power spectrum amplitude 2π2As =
H2

?

4εM2
P

and the scalar tilt ns. In

this work we use As = 2.105 · 10−9 and ns = 0.9665 [7].
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the energy scale of inflation is around the MeV scale, to guarantee hydrogen and helium
production during Big Bang Nucleosynthesis [18–21].

An inflationary stochastic background of gravitational waves could in principle be mea-
sured directly via future(istic) gravitational wave detection experiments as LISA [22] (see
also [23–25]), DECIGO [26] or BBO [27], or indirectly via its effect on the polarization of
the cosmic microwave background radiation (CMB, see e.g., refs. [28, 29]). The current ob-
servational limit on the tensor-to-scalar ratio is r . 0.1 [6, 7]. Proposed experiments, as
CMBPol [30], PRISM [31] and CORE [32], can reach the 10−3 level, however it is well known
that measuring r < 10−4 via CMB polarisation is extremely challenging (see e.g., ref. [33])
and the cosmic variance limit is at the 10−5 level [34]. This implies that the measurement of
the CMB polarisation signal can only access inflationary energy scales above 1015 GeV, only
less than an order of magnitude away from the current limit.

A third way one could use to determine the scale of inflation is by probing primordial
non-Gaussianities using the information contained in the large-scale structure of the Universe.
During the next decade, several galaxy surveys, as DESI [35], LSST [36] and Euclid [37], will
probe a large volume of our Universe, providing an unprecedented amount of new data. In this
context, measuring higher-order statistics, such as the three- or the four-point functions, will
extend our knowledge on the inflationary dynamics, which in turn can be used to discriminate
between minimal, slow-roll inflationary paradigm and more complex models. On the other
hand the specific details of these higher-order statistics can be highly model dependent,
therefore the interpretation of the results can be not so straightforward. The non-Gaussian
signature arising from particle exchange between scalar fluctuations has recently received
attention [38, 39]. In this work we concentrate on a particular non-Gaussian signal called
graviton exchange (GE) [40]. This signal arises from correlations between inflaton fluctuations
mediated by a graviton and enters in the four-point function of scalar curvature perturbations.
The magnitude of this non-Gaussian effect is directly proportional to the tensor-to-scalar ratio
r, therefore by isolating this contribution we can extract a direct information (or a stronger
upper bound) on the energy scale of inflation. Moreover, this GE contribution contains much
more information about inflationary dynamics, in particular on whether inflation is a strong
isotropic attractor, as discussed in ref. [41].

The paper is organised as follows: in section 2 we review the main results on non-
Gaussianities relevant for this work, in section 3 we review the framework of excursion re-
gions and halo n-points functions and in section 4 we investigate the magnitude of graviton
exchange contribution in large scale structure, in particular to the halo power spectrum 4.1
and to the halo bispectrum 4.2. Finally we conclude in section 5. In section A we discuss
bispetrum templates. In this work we use the MP = 1 convention.

2 Non-Gaussianity

Primordial fluctuations have been found to be consistent with being Gaussian to a very
stringent level [13, 14], however some small deviations from Gaussianity are unavoidable,
even in the simplest models, due to the coupling of the inflaton to gravity [42–46]. The
information on how these deviations are created is encoded in the connected part of n-point
correlators 〈ζk1 · · · ζkn〉 (with n ≥ 2), where ζ is the curvature perturbation (on uniform
energy density hypersurfaces), which is conserved on super-horizon scales for single-field
models of inflation. Since curvature perturbations are small (typically ζ ∼ O(10−5) at
cosmological scales), it is naively believed that the (n + 1)-point function is just a small
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correction to the n-point function, however this statement does not take into account the
numerous possible mechanisms that can generate a non-Gaussian signal. Moreover, exist-
ing small non-Gaussianities can be boosted in the clustering of high density regions that
underwent gravitational collapse, as the peaks of the matter density field, that today host
virialized structures.

Since the goal of this work is to provide a new way to constrain the energy scale of in-
flation, we want to identify some non-Gaussian signal whose strength is directly proportional
to the tensor-to-scalar ratio r. In particular, in this work we consider the GE contribution to
the four-point function and its contribution to the two- and three-point correlation function
of collapsed structures. This signal is contaminated by other non-Gaussian signals, such as
those coming from the primordial three-point function, which has not been measured yet. For
this reason we consider different scenarios, to cover as many inflationary single-field models
as possible.

The curvature perturbation ζ, generated by scalar field(s) during inflation, can be con-
nected to the scalar field(s) fluctuation δϕ on an initial spatially-flat hypersurface. The com-
putation of higher-order correlators can be performed using the so-called in-in or Schwinger-
Keldysh formalism [47–50], which allows to follow the evolution of the correlators from sub-
to super-horizon scales. One can also use other methods, such as second- and higher-order
perturbation theory [45, 51], or using the so-called δN formalism [42, 52–56]. The latter
is equivalent to integrating the evolution of the curvature perturbation on super-horizon
scales from horizon exit until some later time after inflation. The correlators of the scalar
field(s) fluctuation δϕ at horizon-crossing can then be calculated in an expanding or curved
background spacetime using the in-in method. Numerous results have been obtained in
this context using these well-established formalisms, both at the level of the bispectrum in
single- [42, 43, 45, 46, 57] and multi-field inflation, see, e.g., [58–61], and at the level of the
trispectrum in single- and multi-fields inflationary scenarios [62–64]. In this work we consider
for simplicity single-field slow-roll inflationary models.

When considering the three-point function, we commonly express it in terms of the
bispectrum as

〈ζk1ζk2ζk3〉 = (2π)3δD (k123)Bζ(k1,k2,k3), (2.1)

where δD is the Dirac delta, kij...n = ki + kj + · · ·+ kn and the details and the assumptions
on the inflationary dynamics are encoded in the Bζ function. For completeness, following
ref. [63], we also report the curvature bispectrum:

Bζ(k1,k2,k3) = (∂ϕN)3Bδϕ(k1,k2,k3) + (∂2ϕN) (∂ϕN)2 [Pδϕ(k1)Pδϕ(k2) + (2 perms.)] ,
(2.2)

where Pδϕ and Bδϕ are the scalar field fluctuation power spectrum and bispectrum, N is the
number of e-foldings, ∂nϕN ∼ O(ε(n−2)/2) is the n-th derivative of the number of e-folding

with respect to the scalar field and it scales with the slow-roll parameter ε = 1
2 (∂ϕV/V )2

as indicated. In particular, it has been calculated by Maldacena [46] that in the simplest
single-field slow-roll inflationary scenario, at leading order in the slow-roll parameters, the
bispectrum reads as

BMaldacena
ζ (k1,k2,k3) =

1

2

(
H2
?

4ε

)2 ∑ k3j∏
k3j


(1− ns) + ε



∑

i 6=j kik
2
j + 8

∑
i>j k

2
i k

2
j

kt∑
k3j

− 3






(2.3)
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where kt =
∑3

j=1 kj . The term in squared parenthesis, as expected [65], has a shape-
dependent part explicitly suppressed by the slow-roll parameter ε. In the limit of one momen-
tum going to zero (squeezed triangular configurations) the term in round parenthesis goes
to zero and the whole bispectrum is proportional to (1− ns), while in equilateral triangular
configurations the same term is maximal and equal to 5/3. Typically the entire squared

parenthesis is written in terms of a f ζNL constant parameter (modulus some proportionality
constant), to compare data with theory in a simpler way.2 Notice that non-Gaussianities
of this type include also a prominent local contribution (the one proportional to (1 − ns))
associated in real space to the well-known quadratic local model [43, 66, 67]

ζ = ζG +
3

5
f ζNL

[
ζ2G −

〈
ζ2G
〉]
, (2.4)

where ζG is a Gaussian curvature perturbation.

There is a current debate in the literature about whether the (1 − ns) term in equa-
tion (2.3) represents the minimum amount of non-Gaussianities that can be observed in the
squeezed limit. While some authors argue that it is indeed an intrinsic property of the infla-
ton that gets imprinted in the dark matter density field [68], others argue that it is simply a
gauge quantity that will only manifest itself on higher-order terms with a suppressed value

of f ζNL ∝
(
kL
kS

)2
(1 − ns), where kL and kS are a long and a short mode, respectively (see

e.g., ref. [69] and refs. therein). We point out that it is still an open question which one
is the truly gauge invariant quantity in which the calculation can be performed. It should
describe the perturbations behaviour on super-horizon scales and connect the fluctuations in
early and late Universe to be used to model the corresponding observables. We also refer the
interested reader to ref. [70], where a third view on the subject has been presented.

On the other hand, in this work we are mainly interested in the four-point function or
trispectrum, in particular its connected part (the disconnected part is always present even
in the purely Gaussian case). The complete form of the curvature perturbation trispectrum
in single-field inflation, up to second order in slow-roll parameters, reads as [63]

Tζ(k1,k2,k3,k4) = (∂ϕN)4Tδϕ(k1,k2,k3,k4)

+ (∂2ϕN)(∂ϕN)3 [Pδϕ(k1)Bδϕ(k12, k3, k4) + (11 perms)]

+ (∂2ϕN)2(∂ϕN)2 [Pδϕ(k13)Pδϕ(k3)Pδϕ(k4) + (11 perms)]

+ (∂3ϕN)(∂ϕN)3 [Pδϕ(k2)Pδϕ(k3)Pδϕ(k4) + (3 perms)] ,

(2.5)

where Tδϕ is the scalar field fluctuation trispectrum. By using the linear relation ζ ∝ ε−1/2δϕ
we notice that the third and fourth lines of the r.h.s. of equation (2.5) are order ε2 while the
order of the first and second line remains to be determine through an explicit computation.
The last two lines have also the typical scale dependence coming from the cubic local model

2Notice that in the literature there are a series of equivalent, but slightly different parameters. If we would
have written the correlators in term of the curvature perturbations on comoving hypersurfaces R we would
have worked with fRNL, while if we have used with the Bardeen’s gauge invariant potential Φ, corresponding
to the gravitational potential on subhorizon scales, therefore more suitable to work in relation to late times
large scale structures, we would have found some constant fΦ

NL. Since the three perturbations mentioned
above are connected to each other at superhorizon scales by Φ = 3(1+w)

5+3w
R = − 3(1+w)

5+3w
ζ, the parameters are

also connected to each other by fΦ
NL = fRNL = −fζNL, for perturbations entering the horizon during matter

domination (if ones uses Φ = ΦG + fΦ
NL

[
Φ2
G −

〈
Φ2
G

〉]
).
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in real space:

ζ = ζG +
1

2

(
τ ζNL

)1/2 [
ζ2G −

〈
ζ2G
〉]

+
9

25
gζNL

[
ζ3G − 3ζG

〈
ζ2G
〉]
, (2.6)

where we have introduced two non-linearity parameters τ ζNL and gζNL that generate the third
and fourth line of equation (2.5), respectively. These two parameters are expected to be of
second order in slow-roll parameters. Finally, notice that only in single-field inflation there
is a one-to-one correspondence between f ζNL and τ ζNL.

In ref. [62] it was demonstrated that the scalar field and the metric remain coupled even
in an exact de Sitter space, therefore curvature fluctuations are unavoidably non-Gaussian
and there is always a connected four-point function, while naively one would have expected
it to be zero. This four-point function is associated to so-called contact interactions, that in
terms of Feynman diagrams are associated to a diagram with four scalar external legs. The
strength of contact interactions has been roughly estimated to be order ε [62], disfavouring the
possibility of a detection, however, in successive works [40, 64] it has been noticed that non-
linear interactions mediated by tensor fluctuations should also be accounted for, in particular
the amplitude of the trispectrum generated by the GE is in general comparable to that gener-
ated by contact interactions. More details on the GE contribution can be found in section 4.

3 Dark matter halos

Even if some level of non-Gaussianity is imprinted in the primordial field ζ, the most relevant
quantity for observations is the late-time (smoothed) matter density field. In particular, the
effect of non-Gaussianity is enhanced on higher-order correlations of excursion regions which
are traced by potentially observable objects such as dark matter halos (or the galaxies these
halos host). We define the smoothed linear overdensity field as

δR(x) =

∫
d3yWR(x− y)δ(y), (3.1)

where WR is a window function of characteristic radius R and δ is the linear overdensity
field. We identify regions corresponding to collapsed objects as those where the smoothed
density field exceeds a suitable threshold, namely when

δR(x) > δc(zf ) =
∆c(zf )

D(zf )
, (3.2)

where zf is the formation redshift of the dark matter halo and we assume that it is very
similar to the observed redshift (zf ' zo = z), δc(z) is the collapse threshold, ∆c(z) is the
linearly extrapolated overdensity for spherical collapse (1.686 in the Einstein-de Sitter and
slightly redshift-dependent for more general cosmologies) and D(z) the linear growth factor.
The Fourier transform of the (smoothed) linear overdensity field is related to the Bardeen
potential Φ and to the curvature perturbation ζ via the Poisson equation

δR(k, z) =
2

3

T (k)k2D(z)

H2
0Ωm0

WR(k)Φ(k) = −2

5

T (k)k2D(z)

H2
0Ωm0

WR(k)ζ(k) ≡MR(k, z)ζ(k), (3.3)

where H0 is today’s Hubble expansion rate, Ωm0 is the present day matter density fraction,
T (k) is the matter transfer function3 and WR(k) is the Fourier transform of the window

3In this work we use for the transfer function the analytical estimation provided in ref. [71], after check-
ing that it does not differ more than 10% at large k from the transfer function obtained from Boltzmann
codes as CLASS [72]. To compute the transfer function we use the cosmological parameters ωb = 0.02242,
ωcdm = 0.11933 and h = 0.6766 [7].
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function in real space WR(r).4 The linear growth factor D(z) depends on the background
cosmology and reads as D(z) = (1 + z)−1g(z)/g(0), where g(z) is the growth suppression
factor for non Einstein-de Sitter universes.

The two-point function of the smoothed matter field reads as
〈
δR(k, z)δR(k′, z)

〉
= (2π)3δD(k + k′)PR(k, z), (3.4)

where PR(k, z) = M2
R(k, z)Pζ(k) is the smoothed matter field power spectrum and it is

the Fourier transform of the two-point correlation function of the smoothed overdensity
field ξR(r, z). Finally, we define the variance of the underlying smoothed overdensity field as

ξR(0, z) = σ2R(z) =

∫
d3k

(2π)3
PR(k, z). (3.5)

For Gaussian or slightly non-Gaussian fields, virtually all regions above a high threshold
are peaks and therefore will eventually host virialized structures (i.e., massive dark matter
halos). Non-Gaussianities change the clustering properties of halos. For regions above a
high threshold (and therefore to an extremely good approximation for massive halos), the
two-point correlation function reads [73–75]

ξhalo(r) = exp



∞∑

N=2

N−1∑

j=1

νNσ−NR
j!(N − j)!ξ

(N)
R (x1, . . . ,x1︸ ︷︷ ︸

j times

,x2, . . . ,x2︸ ︷︷ ︸
(N−j) times

)


− 1, (3.6)

where r = x1−x2, ν(z,M)=∆c(z)/σR(z) is the dimensionless peak height, ξ
(N)
R = 〈δR · · · δR︸ ︷︷ ︸

N times

〉

are the N -point connected correlation functions and ξ
(2)
R ≡ ξR. The generalization of equa-

tion (3.6) to the three-point correlation function is [74]

Ξhalo(x1,x2,x3) = F (x1,x2,x3)


∏

i<j

ξhalo(xi,xj) + [ξhalo(x1,x2)ξhalo(x2,x3) + (2 perms.)]




+ [F (x1,x2,x3)− 1]


∑

i<j

ξhalo(xi,xj) + 1


 , (3.7)

where

F (x1,x2,x3) = exp



∞∑

N=3

N−2∑

j=1

N−j−1∑

k=1

νNσ−NR
j!k!(N−j−k)!

ξ
(N)
R (x1, . . . ,x1︸ ︷︷ ︸

j times

,x2, . . . ,x2︸ ︷︷ ︸
k times

, x3, . . . , x3︸ ︷︷ ︸
(N−j−k)times

)


 .

(3.8)

4In this work we use a top-hat filter of radius R, of enclosed mass (possibly corresponding to a collapsed
object at late times) given by

M =
3H2

0 Ωm0

8πG
× 4

3
πR3.

In the rest of this work we use R = 1.824 Mpc, corresponding to Mhalo = 1012 M� dark matter halos. At
redshift z = 0 these halos cannot be considered very massive, however, as we explain in the following section,
our goal is to use the information coming from the high redshift Universe, where e.g., Mhalo = 1014 M� dark
matter halos (corresponding to R = 8.45 Mpc) are not common. Nevertheless we explicitly checked that at
large scales the choice of a different smoothing radius does not change significantly the results.
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Here we notice that the N -th order term scales with redshift as D(z)−N , hence going to
high redshift we observe enhanced non-Gaussian features with respect to redshift z = 0. In

fact, from our definitions, we have that (ν/σR)N ∝ D(z)−2N and ξ
(N)
R ∝ D(z)N , since in the

N -point function each δR comes along with a D(z) factor, independently on the Gaussian
or non-Gaussian origin of such N -point connected correlation function. Therefore going to
higher redshift boosts the non-Gaussian signal with respect to its magnitude at redshift z = 0,
even if we don’t expand the exponential in equations (3.6) and (3.8).

In the limit of purely Gaussian initial conditions, where ξ(N≥3)
R ≡ 0 hence F (x1,x2,x3)=1,

the two- [76–78] and three-point [74] functions of excursion regions becomes

ξGhalo(r) = exp

[
ν2

σ2R
ξ
(2)
R (r)

]
− 1,

ΞGhalo(x1,x2,x3) =


∏

i<j

ξGhalo(xi,xj) +
[
ξGhalo(x1,x2)ξ

G
halo(x2,x3) + (2 perms.)

]

 .

(3.9)

The above equations are typically expanded in the limit of high-density peaks (ν � 1) and

large separation between halos (large scale limit, r � R, where ξ
(N)
R � 1). In this limit, we

expect δR to be small, therefore we can identify it as a small parameter in which the expansion

is done and we can roughly estimate the N -point correlation functions as ξ
(N)
R ∼ O(δNR ). We

choose to expand equations (3.9) up to second order, to check that higher order corrections
do not contaminate the non-Gaussian signal we are interested in. In particular for the two-
and three-point point correlation functions we obtain

ξGhalo(r) ≈ b2Lξ(2)R (r) +
b4L
2

[
ξ
(2)
R (r)

]2
,

ΞGhalo(x1,x2,x3) ≈ b4L
[
ξ
(2)
R (x1,x2)ξ

(2)
R (x2,x3) + (2 perms.)

]

+ b6Lξ
(2)
R (x1,x2)ξ

(2)
R (x2,x3)ξ

(2)
R (x1,x3)

+
b6L
2

[
ξ
(2)
R (x1,x2)

[
ξ
(2)
R (x2,x3)

]2
+ (2 perms.)

]
,

(3.10)

where bL(z) = ν(z)/σR(z) = ∆c(z)/σ
2
R(z) is the Lagrangian linear bias. As noted for the first

time by the authors of ref. [74], even if initial conditions are perfectly Gaussian, the three-
point correlation function of excursion regions is non-zero and constitutes an unavoidable
background signal from which the true primordial non-Gaussian signal has to be extracted.
We further analyse the form of the Gaussian part in section 4.2, however we stress that it is
not unexpected for the filtering procedure to introduce some feature in correlations functions
of all orders, since the smoothing procedure is highly nonlocal and nonlinear. We refer
the interested reader to ref. [79], where the authors investigate the effects of the smoothing
procedure on dark matter halos bias.

On the other hand, for non-Gaussian initial conditions, other terms appear in the above
Taylor expansion. By expanding up to N = 4 order to include the four-point correlation func-
tion contribution, we have that the non-Gaussian part of the two- and three-point functions
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read as [80, 81]

ξNGhalo(r)≈ ξGhalo(r)+b3Lξ
(3)
R (x1,x1,x2)+b4L

[
ξ
(4)
R (x1,x1,x1,x2)

3
+
ξ
(4)
R (x1,x1,x2,x2)

4

]

+b5Lξ
(2)
R (x1,x2)ξ

(3)
R (x1,x1,x2), (3.11)

ΞNGhalo(x1,x2,x3)≈ΞGhalo(x1,x2,x3)+b3Lξ
(3)
R (x1,x2,x3)

+b4L

[
ξ
(4)
R (x1,x1,x2,x3)

2
+
ξ
(4)
R (x1,x2,x2,x3)

2
+
ξ
(4)
R (x1,x2,x3,x3)

2

]

+b5Lξ
(3)
R (x1,x2,x3)

∑

i<j

ξ
(2)
R (xi,xj),

(3.12)

where in the last lines of equations (3.11) and (3.12) we report also the first Gaussian/non-
Gaussian mixed contribution, even if it is expected to be one order of magnitude lower in δR
than the trispectrum contribution. To leading order, the non-Gaussian correction to the
n-points functions of massive halos is a -truncated- sum of contributions of the three- and
four-point (primordial) functions, enhanced by powers (third and fourth powers respectively)
of bias, bL. Notice that so far these results are very generic, in fact the equations above do not
assume any specific origin of the three- and four-point correlation functions and constitute
the starting point of our analysis.

The validity of the approach described above has been repeatedly tested against nu-
merical simulations with Gaussian and non-Gaussian initial conditions, finding that theory

agrees with simulations. In particular, on large enough scales, we have that bNL ξ
(N)
R is small

and the series expansion does not have convergence issues. The interested reader can check
e.g., refs. [82–88].

4 Graviton exchange signal in large scale structure

The trispectrum generated by GE was derived in detail in ref. [40]. Very recently Baumann
and collaborators [39] re-derived the GE-induced higher order correlations in a more gen-
eral context. We leave the analysis of their findings to future work and consider here the
GE trispectrum of ref. [40]. In principle there are two distinct ways to measure the GE
contribution in large scale structure data.

The first one is to look for it directly in the trispectrum of the dark matter or low-to-
moderate biased tracers of it. In this case, as pointed out by ref. [40] some configurations are
particularly interesting and well suited since the size of non-Gaussianity is amplified. These
configurations are associated to the so-called counter-collinear limit, where the sum of two
momenta goes to zero (e.g., when k12 � k1 ≈ k2, k3 ≈ k4). We show in figure 1 the two
possible (dual) configurations, called kite, if the momenta summing up to zero are on opposite
sides of the parallelogram, and folded kite, if the momenta summing up to zero are on contigu-
ous side of the parallelogram. In these configurations, where all momenta are finite, the GE
contribution diverges (e.g., scaling as k−312 ) opening the possibility for amplifying the signal.

A direct measurement of the primordial trispectrum has been done at the CMB level in
refs. [12–14, 90–93]. However doing so from large-scale structure surveys may be challenging
because of the number of trispectrum modes involved and the low-signal to noise per mode;
for this reason very few attempt have been done so far [94].
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Figure 1. Kite (left panel) and folded kite (right panel) diagrams. In the left diagram we have
k13 � k1 ∼ k3, k2 ∼ k4, while in the right one we have k12 � k1 ∼ k2, k3 ∼ k4. Diagrams have been
drawn with TikZ-Feynman [89].

In this section we consider the alternative approach of looking at the effect of the GE
trispectrum contribution in the halo two- and three-point functions. The trispectrum due to
a graviton exchange is given by [40]

〈ζk1ζk2ζk3ζk4〉GE = (2π)3δ(k1234)

(
H2
?

4ε

)3
r/4∏
j k

3
j

×
[
k21k

2
3

k312

[
1−(k̂1 ·k̂12)

2
][

1−(k̂3 ·k̂12)
2
]

cos2χ12,34 ·(I1234+I3412)+

+
k21k

2
2

k313

[
1−(k̂1 ·k̂13)

2
][

1−(k̂2 ·k̂13)
2
]

cos2χ13,24 ·(I1324+I2413)+

+
k21k

2
2

k314

[
1−(k̂1 ·k̂14)

2
][

1−(k̂2 ·k̂14)
2
]

cos2χ14,23 ·(I1423+I2314)
]
,

(4.1)

where cosχij,kl = (k̂i× k̂j) · (k̂k× k̂l) is the angle between the two planes formed by {ki,kj}
and {kk,kl},

I1234+I3412 =
k1+k2
a234

[
1

2
(a34+k12)(a

2
34−2b34)+k212(k3+k4)

]
+(1,2↔ 3,4)

+
k1k2
kt

[
b34
a34
−k12+

k12
a12

(
k3k4−k12

b34
a34

)(
1

kt
+

1

a12

)]
+(1,2↔ 3,4)

− k12
a12a34kt

[
b12b34+2k212kp

(
1

k2t
+

1

a12a34
+

k12
kta12a34

)]
,

(4.2)

aij = ki + kj + kij , bij = (ki + kj)kij , kt =
∑4

j=1 kj and kp =
∏4
j=1 kj .

5

In principle there are a multitude of late-time, non-primordial effects that should be
taken into account when measuring non-Gaussianity in large scale structure. Here, we are
interested in estimating only the size of specific effects, and we refer the interested reader
e.g., to ref. [95] for a comprehensive analysis.

5Note that scalar and vector products in the above equation can be uniquely computed using spherical
coordinates as

k̂i · k̂j = sin θi sin θj cos(φi − φj) + cos θi cos θj ,

k̂i × k̂j = (sin θi sinφi cos θj − cos θi sin θj sinφj) k̂x

+ (cos θi sin θj cosφj − sin θi cosφi cos θj) k̂y

+ sin θi sin θj sin(φj − φi)k̂z.
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In this work we use the public Cubature6 package to compute the multidimensional
integrals. Notice that in doing the integrals, besides the obvious singularity when one of the
momenta goes to zero that the package can easily deal with, there is another singularity, i.e.,
the counter-collinear limit, when the sum of two momenta goes to zero. Since the region where
this happens has some non-trivial shape, we decided to regularize the integrand close to the
singularity by multiplying each term (lines two, three and four) in equation (4.1) by e−khor/kij ,
where khor is a mode entering the horizon at late time and kij is the respective momentum
at the denominator. The physical interpretation of such regularization is straightforward:
we cannot probe wave numbers smaller than those that are crossing the horizon today,
since smaller wave numbers appear as an uniform background. In doing so we are removing
extremely folded configurations (that might be related to “gauge-invariance” considerations).
On the one hand our regularisation method artificially suppresses modes k . khor, on the
other hand we explicitly checked that this procedure does not introduce any significant bias in
the magnitude of the GE contribution when k � khor. We choose khor = 10−6 Mpc−1, much
less than ktodayhor ∼ O(10−4) Mpc−1, in order not to affect the modes that are of cosmological
interest. This phenomenological procedure represents a first attempt to tackle the long-
standing problem of a correct treatment of super-horizon modes. The improvement of this
method is left for future work.

The GE contribution was derived in the context of standard single-field slow-roll infla-
tion, namely using standard kinetic term, no modified gravity, Bunch-Davies vacuum and
others [40]. However, in order to help the readers to compare these contributions to other
bispectrum templates they may be familiar with, we include in the figures of the following sec-
tions also the bispectrum templates of appendix A, which arise when different assumptions are
taken. We choose as reference values for non-Gaussianity parameters r = 0.1 (maximum value

allowed by current CMB data [7]), ε = r/16 = 0.00625 and |f ζNL| = (1 − ns)/12 = 0.00279.
It should be noticed that Cosmic Microwave Background data currently allow higher values
of |f ζNL| ∼ O(1–10), depending on the bispectrum template, see e.g., ref. [13]. However, in

the cases we are interested in, r and f ζNL act only as an overall amplitude rescaling factor,
therefore the reader can simply shift vertically the lines to match with the desired value of
such parameters.

4.1 Signal in the halo power spectrum

To compute the halo power spectrum, in the equations below we take the Fourier transform
(FT {·}) of equation (3.11),

PNGhalo(k, z) ≈ PGhalo(k, z) +B112(k, z) + T1112(k, z) + T1122(k, z) +M12−112(k, z), (4.3)

where we recognise the Gaussian halo power spectrum,

PGhalo(k, z) ≈ b2L(z)PR(k, z) +
b4L(z)

2

∫
d3q

(2π)3
PR(q, z)PR(|k− q|, z), (4.4)

6The package has be written by Steven G. Johnson and can be found in GitHub https://github.com/
stevengj/cubature.
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the purely non-Gaussian contributions,

B112(k,z) = b3L(z)FT
{
ξ
(3)
R (x1,x1,x2)

}

= b3L(z)

∫
d3q

(2π)3
MR(q,z)MR(|k−q|,z)MR(k,z)Bζ(q,k−q,−k),

T1112(k,z) =
b4L(z)

3
FT
{
ξ
(4)
R (x1,x1,x1,x2)

}

=
b4L(z)

3

∫
d3q1
(2π)3

d3q2
(2π)3

MR(q1,z)MR(q2,z)MR(|k−q12|,z)MR(k,z)

×Tζ(q1,q2,k−q12,−k),

T1122(k,z) =
b4L(z)

4
FT
{
ξ
(4)
R (x1,x1,x2,x2)

}

=
b4L(z)

4

∫
d3q1
(2π)3

d3q2
(2π)3

MR(|k−q1|,z)MR(q1,z)MR(q2,z)MR(|k+q2|,z)

×Tζ(k−q1,q1,q2,−k−q2),

(4.5)

and the mixed contribution

M12−112(k, z) = b5L(z)FT
{
ξ
(2)
R (x1,x2)ξ

(3)
R (x1,x1,x2)

}

= b5L(z)

∫
d3q1
(2π)3

d3q2
(2π)3

PR(|k− q12|, z)BR(q1, q2, q12, z).
(4.6)

In the context of quadratic and cubic models of local non-Gaussianities of equa-
tions (2.4) and (2.6), the three- and the four-points contribution has already been evaluated
by refs. [96, 97], respectively. We compute the GE contribution following the same proce-
dure, by substituting equation (4.1) into the four-point correlation function on the r.h.s.
of equation (4.3). Since we are interested only in primordial features, we report in figure 2
the ratio between the primordial non-Gaussian contributions of equation (4.3) and the
Gaussian halo power spectrum at different redshift, to compare the relative strength of the
signals coming from Gaussian and non-Gaussian processes and the relative strength of the
bispectrum and trispectrum terms.

Notice that from an operational point of view, the GE signal should be extracted from
the total halo power spectrum by subtracting the bispectrum contribution, which in this case
acts as an additional source of “noise”. As we explained in section 2, there is an ongoing
debate in the literature on the correct form of the bispectrum in the local case, therefore
we report both possibilities. Following Cabass [69], we multiply the (1− ns) factor in equa-
tion (2.3) by an additional factor (klongest/kshortest)

2, where klongest and kshortest are the longest
and shortest modes of the considered triangle. We are aware that the GE contribution has
not been computed under different assumptions, for example the conditions that give rise to
different bispectra shapes such as non Bunch-Davies vacuum states. However the authors
of ref. [40] indicate that their results can be extended to more general conditions. Here, for
helping the reader to compare these contributions to other bispectra they may be familiar
with, we have included also the bispectrum templates, B, defined in equations (A.1), (A.2)
and (A.3), which have already been studied in the halo power spectrum context for instance
in refs. [98, 99]. As it can be seen in figure 2, depending on the specific model and magnitude
of primordial non-Gaussianities, the GE contribution is comparable to or even larger than
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Figure 2. Ratio between different primordial non-Gaussian contribution (bispectra and GE trispec-
trum) and the Gaussian halo power spectrum at redshift z = 0 (left panel) and z = 2 (right panel)
for Mhalo = 1012 M� dark matter halos. For the Maldacena and Cabass bispectra, indicated by B112,
we use ε = 0.00625, while for the Equilateral, Folded and Orthogonal templates, indicated by B112,
we use fNL = 0.00279. In the case of the templates, a different value of fNL would simply rescale
vertically the lines. For the GE contribution we use r = 0.1 and khor = 10−6 Mpc−1. Also in this case
different values of r simply rescales vertically the GE contribution.

the primordial bispectrum signal at the largest scales. By comparing the two panels, we also
notice that the importance of the GE increases with redshift.

Although a detailed signal-to-noise and survey forecast calculation is well beyond the
scope of this paper, figure 2 indicates that the GE contribution can be singled out and
extracted from the measured halo power spectrum thanks to the different scale dependence
of the terms in equation (4.3). In particular, at large scales, we have that

BCabass
112 /PGhalo, BEquilateral112 /PGhalo ∝ k0(1 + z)

g(0)

g(z)
,

BOrthogonal
112 /PGhalo, BFolded112 /PGhalo ∝ k−1(1 + z)

g(0)

g(z)
,

BMaldacena
112 /PGhalo ∝ k−2(1 + z)

g(0)

g(z)
,

(4.7)

while the two trispectrum contributions scale as

T1112/P
G
halo ∝ k−2

[
(1 + z)

g(0)

g(z)

]2
,

T1122/P
G
halo ∝ k−4

[
(1 + z)

g(0)

g(z)

]2
.

(4.8)

We have checked that for all the cases of interest, that is bias of order few, the second term
in equation (4.4) is subdominant with respect to the first one that scales as D−2, therefore in
equations (4.7) and (4.8) only the dominant term matters. Notice also that in equation (4.8)
the term T1122(k) dominates over the T1112(k) term at large scales and it has a scale depen-
dence different from any other common bispectrum template. Other terms of the trispectrum
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could have the same scale dependence, e.g., the terms in the third line of equation (2.5), as
found in ref. [97], however these terms are second order in slow-roll parameters, therefore
they are suppressed approximately by a factor O(ε) with respect to the GE contribution.
Furthermore we note that the first order correction to the Gaussian halo power spectra in
equation (4.4) and the Gaussian/non-Gaussian mixed contribution of equation (4.6) become
scale-independent at large scales, namely when taking the k → 0 limit. This further highlights
the fact that the GE scale dependence is quite unique, offering an opportunity to separate
it from other signals. Moreover, as can be seen in equations (4.7) and (4.8), the bispectrum
contribution scales with redshift approximately as (1+z) while for the trispectrum contribu-
tion the scaling is proportional to (1 + z)2; hence going to high redshift further helps the GE
term to dominate over the bispectrum contributions, as can be explicitly seen in figure 2.

In conclusion, looking for this specific scale dependence at high redshift is a possible
way to extract this specific signal from the halo power spectrum, providing an alternative
way to determine the energy scale of inflation.

4.2 Signal in the halo bispectrum

The Fourier transform of the Gaussian part of equation (3.10) reads as

BG
halo(k1,k2,k3,z)≈ b4L(z) [PR(k1,z)PR(k2,z)+(2perms.)]

+b6L(z)

∫
d3q

(2π)3
PR(|k1−q|,z)PR(|k2−q|,z)PR(q,z)

+
b6L(z)

2

[
PR(k1,z)

∫
d3q

(2π)3
PR(|k2−q|,z)PR(q,z)+(2perms.)

]
.

(4.9)

Even if the initial conditions are perfectly Gaussian, we have a well-defined bispectrum of
excursion regions. To compute the GE contribution to the halo bispectrum we take the
Fourier transform of equation (3.12), obtaining

BNG
halo(k1, k2, k3, z) ≈ BG

halo(k1, k2, k3, z) +B123(k1, k2, k3, z) (4.10)

+ T1123(k1, k2, k3, z) + T1223(k1, k2, k3, z) + T1233(k1, k2, k3, z)

+M12−123(k1, k2, k3, z) +M23−123(k1, k2, k3, z) +M13−123(k1, k2, k3, z),

where we recognise the non-Gaussian contributions,

B123(k1, k2, k3, z) = b3L(z)FT
{
ξ
(3)
R (x1,x2,x3)

}
≡ b3L(z)BR(k1, k2, k3)

= b3L(z)MR(k1, z)MR(k2, z)MR(k3, z)Bζ(k1, k2, k3),

T1123(k1, k2, k3, z) =
b4L(z)

2
FT
{
ξ
(4)
R (x1,x1,x2,x3)

}

=
b4L(z)

2

∫
d3q

(2π)3
MR(q, z)MR(|k1 − q|, z)MR(k2, z)MR(k3, z)

× Tζ(q,k1 − q,k2,k3),

T1223(k1, k2, k3, z) =
b4L(z)

2
FT
{
ξ
(4)
R (x1,x2,x2,x3)

}

=
b4L(z)

2

∫
d3q

(2π)3
MR(k1, z)MR(|k2 − q|, z)MR(q, z)MR(k3, z)

× Tζ(k1,k2 − q,q,k3),
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T1233(k1, k2, k3, z) =
b4L(z)

2
FT
{
ξ
(4)
R (x1,x2,x3,x3)

}

=
b4L(z)

2

∫
d3q

(2π)3
MR(k1, z)MR(k2, z)MR(q, z)MR(|k3 − q|, z)

× Tζ(k1,k2,q,k3 − q), (4.11)

and the mixed contributions,

M12−123+M23−123+M13−123 = b5L(z)

∫
d3q

(2π)3
PR(q,z)

[
BR(|k1−q|, |k2+q|,k12,z)

+BR(k1, |k2−q|, |k12−q|,z)
+BR(|k1−q|,k2, |k12−q|,z)

]
.

(4.12)

We compute the GE contribution following the same methodology described in the pre-
vious section, namely we substitute equation (4.1) into the four-point correlation function on
the r.h.s. of equation (4.10). As before, since we are interested only in primordial features,
we report in figure 3 the ratio between the primordial non-Gaussian contributions of equa-
tion (4.10) and the Gaussian halo power spectrum. This allows us to compare the relative
strength of the signals coming from Gaussian and non-Gaussian processes and the relative
strength of the primordial bispectrum and trispectrum terms.

In the three panels of figure 3, since the exploration of every possible triangular config-
uration goes beyond the purpose of this work, we choose to explore just three representative
triangular configuration, namely the equilateral (k1 = k2 = k3), squeezed (k1 = k2 ≈ 10k3)
and folded (k1 = k2 ≈ k3/2) configurations. Also in this case we include, for comparison,
different primordial bispectrum templates (see figure caption for the choice of normalisation).
As seen also in section 4.1, at large scales, in the case there is no primordial non-Gaussianity
of any sort down to the “gravitational floor”, the GE contribution easily dominates over the
one arising from reasonably expected primordial non-Gaussian bispectrum. It is interesting
to note that, at scales around k ∼ 10−3 Mpc−1, the trispectrum contribution to the halo
bispectrum in the squeezed and equilateral configurations becomes of the same order of the
intrinsic halo bispectrum for an initial Gaussian field. In the three panels we can identify the
following scale and redshift scalings:

B123/B
G
halo, B123/BG

halo ∝ k−2
g(z)

g(0)(1 + z)
, (4.13)

which is valid for all models and templates except for those that vanish in specific triangular
configurations, e.g., the Equilateral template in squeezed triangular configurations. On the
other hand the trispectrum contributions scales as

T1123+1223+1233/B
G
halo ∝ k−6, (4.14)

independently from redshift, in contrast to the signal coming from primordial bispectra,
which is suppressed approximately by a factor (1 + z) going to higher redshift. We do not
report the magnitude of primordial bispectra signals in figure 3 for redshift z > 0, however
the interested reader can simply divide the chosen model by the appropriate redshift factor,
while keeping fixed the GE contribution, to get them. Since going to higher redshift shifts the
primordial bispectra signal downward, the GE contribution will become even more dominant.
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Figure 3. Ratio between different primordial bispectra and GE trispectrum contribution with respect
to the Gaussian halo bispectrum for squeezed (top left panel), equilateral (top right panel) and folded
(bottom panel) triangular shapes at redshift z = 0 for Mhalo = 1012 M� dark matter halos. We
use ε = 0.00625 for Maldacena and Cabass bispectra, indicated by B123, and fNL = 0.00279 for the
Equilateral, Folded and Orthogonal templates, indicated by B123. For the GE contribution we use
r = 0.1 and khor = 10−6 Mpc−1. Different values of fNL and r correspond to vertically scaling the
Equilateral, Folded, Orthogonal templates and GE contribution, respectively.

Finally, we note that also in this case in all the configurations considered, Gaussian
halo bispectrum corrections in equation (4.9) are scale-independent. On the other hand the
mixed Gaussian/non-Gaussian term appearing in equation (4.12) exhibits a potential scale
dependence when taking the limit k1, k2 → 0. We report in figure 4 the magnitude of this
contribution relative to the Gaussian halo bispectrum at redshift z = 0. As it can be seen
from the figure, for our choice of parameters, the magnitude of this contribution is typically
smaller than GE one, however, since this ratio grows approximately as (1+z) with redshift, it

might dominate over the GE signal at high redshift, depending on the real value of r and f ζNL.
Nevertheless its scale dependence is completely different from the characteristic one of the
GE, therefore we still have some way to identify the signal we are interested in.
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Figure 4. Ratio between different Gaussian/non-Gaussian mixed terms with respect to the Gaussian
halo bispectrum for squeezed (top left panel), equilateral (top right panel) and folded (bottom panel)
triangular shapes at redshift z = 0 for Mhalo = 1012 M� dark matter halos. We use ε = 0.00625
when Maldacena and Cabass bispectra appear in M , and fNL = 0.00279 when the Equilateral, Folded
and Orthogonal templates appear in the mixed term. Different values of fNL correspond to vertically
scaling the Equilateral, Folded, Orthogonal templates.

5 Conclusions

Determining the underlying physics of inflation is one of the big goals of Cosmology. A
first step necessary to accomplish such a goal is determining the inflationary energy scale.
In simple single-field slow-roll scenarios, the energy scale of inflation is proportional to the
tensor-to-scalar ratio r or, equivalently, to the first slow-roll parameter ε. Several cosmological
observables have been proposed to measure the value of r, such as B-mode polarization and
direct interferometric measurements of gravitational wave stochastic backgrounds. In this
work we explore a third avenue, the study of non-Gaussianities.

Non-Gaussianities are unavoidably produced during inflation and they constitute on
their own a probe of the inflationary physics. Their importance as window into the self-
interaction of the field during inflation is known (see e.g., ref. [100] and references therein).
In this work we focused on the so-called graviton exchange, in particular on the specific non-
Gaussianity generated by the interaction of scalar and tensor fluctuations at the horizon scale
during the epoch of inflation. One of the peculiarities of this contribution to the four-point
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function is that it is suppressed only by one power of the slow-roll parameter. It becomes
therefore interesting to entertain the idea that the GE contribution to the trispectrum could
be relevant for future large-scale galaxy surveys. Moreover, this avenue is worth exploring as
the signal contains configurations that cannot be “gauged” away. This is not surprising as
the graviton exchange is a real quantum effect and not an artefact due to local effects.

We know from CMB observations that non-Gaussianities are small, in fact we have only
upper bounds [12–14]. Here we proposed to look at the n-point function of gravitationally
collapsed structures to further boost the signal coming from the primordial universe. In
particular, we computed the contribution of the graviton exchange to the two- and three-
point function of massive dark matter halos. We have shown that at large scales (k ∼ 10−4–
10−3 Mpc−1) the contribution due to graviton exchange to the power spectrum of rare peaks is
comparable to, if not dominant over, the one generated by the primordial three-point function
expected from generic inflationary models (e.g., Maldacena and Cabass bispectrum). We
have also shown that this contribution has a particular scale dependence and that it scales
with increasing redshift faster than the three-point function contribution. Once going to
high redshift favours the GE contributions compared to other non-Gaussian signals. The
same can be said to the GE contribution to the three-point function of dark matter halos
for specifics configurations. This analytical approach to the clustering of peaks is of course
an approximation to the clustering of realistic halos. While in detail the bias modelling for
realistic halos may be much more complex than adopted here, the good agreement between
simulations and the predictions obtained with this approach (see e.g., refs. [82–88]) offers
strong support that our initial investigation captures the behaviour of the signal both as a
function of scale and redshift.

The effects produced by the GE contribution are significant at large scales, which are
notoriously cosmic variance dominated. Since the signal depends on the tracer bias, the
multi-tracer approach can be used beat down cosmic variance [101, 102]. These results
open an observational window, yet unexplored, but with the potential to help us understand
and verify the physics of inflation. This new avenue is highly complementary to direct or
indirect (via CMB polarization) detection of primordial gravitational waves. We leave for
future work a thorough computation of the observational configurations that have the largest
signal-to-noise.
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A Bispectrum templates

In general, the functional form of the primordial bispectrum is complicated and unsuitable
for visualisation and data analysis. For this reason bispectrum templates have been con-
structed that are useful to approximate the physical bispectrum and are suitable for data
analysis. There is no shortage of inflationary models where non-Gaussianities peak in config-
urations different from the squeezed one. In fact, if any of the conditions giving the standard,
single-field, slow-roll is violated, important non-Gaussian signatures will be produced, and
in particular the violation of each condition leaves its signature on specifics triangular con-
figurations, see e.g., ref. [100] and [103] and refs. therein. These types of non-Gaussianities,
as shown in ref. [104], are generically well described by a linear combination of three basic
bispectrum templates. The widely known and used templates are the so-called, local, equilat-
eral, folded and orthogonal. Of these four templates, only three are independent, the fourth
can obtained as a linear combination of the other tree see e.g., [87, 88, 104]. For example the
local template is not independent from the other three templates, in fact it can be described
as a linear combination of them. Here below we report the most studied templates and in the
main text we use them to check whether there is any particular shape that could contaminate
the GE signal we are interested in.

The equilateral template [105]

BEquilateralζ (k1,k2,k3) = 6f ζNL

(
H2
?

4ε

)2 ∑ k3j∏
k3j

[
−1 +

∑
i 6=j k

2
i kj − 2kp∑
k3j

]
, (A.1)

is used to model non-Gaussianities arising from e.g., inflaton Lagrangians with non-canonical
kinetic terms; in this case the bispectrum is peaked on equilateral shapes.

The folded template [106–109]

BFoldedζ (k1,k2,k3) = 6f ζNL

(
H2
?

4ε

)2 ∑ k3j∏
k3j

[
1 +

3kp −
∑

i 6=j k
2
i kj∑

k3j

]
, (A.2)

is used to model non-gaussianities arising from different assumption on the initial vacuum
state.

The orthogonal template [104]

BOrthogonal
ζ (k1,k2,k3) = 6f ζNL

(
H2
?

4ε

)2 ∑ k3j∏
k3j

[
−3 +

3
∑

i 6=j k
2
i kj − 8kp∑
k3j

]
, (A.3)

where kp =
∏3
j=1 kj is the product of the three momenta, has been built to be orthogonal to

the equilateral one.
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Abstract. In the model where Primordial Black Holes (PBHs) form from large primordial
curvature (C) perturbations, i.e., CPBHs, constraints on PBH abundance provide in principle
constraints on the primordial curvature power spectrum. This connection however depends
necessarily on the details of PBH formation mechanism. In this paper we provide, for the first
time, constraints on the primordial curvature power spectrum from the latest limits on PBH
abundance, taking into account all the steps from gravitational collapse in real space to PBH
formation. In particular, we use results from numerical relativity simulations and peak theory
to study the conditions for PBH formation for a range of perturbation shapes, including non-
linearities, perturbation profile and a careful treatment of smoothing and filtering scales. We
then obtain updated PBH formation conditions and translate that into primordial spectrum
constraints for a wide range of shapes and abundances. These updated constraints cover
a range of scales not probed by other cosmological observables. Our results show that the
correct and accurate modelling of non-linearities, filtering and typical perturbation profile,
is crucial for deriving meaningful cosmological implications.
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1 Introduction

During the first two runs of the LIGO-Virgo observatory, a considerable fraction of detected
events [1–7] shows two characteristics that were generally unexpected by part of the commu-
nity: large progenitors masses (& 20 M�) and low binary effective spin.

Even if such massive progenitors were (by some) expected to be the first detected
sources [8–11] and are not incompatible with classical stellar/binary evolution [12–14], this
fact suggested that detected black holes could also have an origin different from the standard
end-point of stellar evolution and that they may constitute a significant fraction of the dark
matter [15–17]. Moreover, black holes of primordial origin, PBHs hereafter, are expected to
have low spins, as recently showed in Refs. [18–20], hence they would produce binaries with
values of the effective spin parameter compatibles with the observed ones. The observed
merger rate is on the upper end of the predicted range for stellar progenitors [21] (even
though there are still many uncertainties), and at least some contribution from primordial
objects would reconcile theory with observations. Furthermore, PBHs might constitute the
seeds of the super-massive black holes [22, 23] that inhabit the center of galaxies [24–27].

Given the interest in this potential dark matter candidate and the rich phenomenology
of black holes, a large number of observational constraints on the abundance of PBHs have
been obtained so far. They cover a remarkable portion of the allowed mass range and they
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include constraints coming from gravitational lensing effects [28–36], dynamical effects [37–
48], accretion effects [49–57] and effects on large-scale structure [58, 59]. Two mass ranges
remain still open, around 10−15 M� and 10−12 M�. Nonetheless, these constraints are
not conclusive because they are computed for monochromatic mass distributions and they
involve a variety of assumptions, see e.g., Refs. [60–62]. Therefore, the model in which PBHs
constitute at least a non negligible fraction of the dark matter is still allowed by observations.

The idea that an overdense region of the primordial Universe could collapse gravitation-
ally to form a black hole was proposed already fifty years ago [63–66]. Several mechanisms
to produce such overdensities have been suggested, including cosmic topological defects [67–
75], (interacting) dark matter clumps [76] or large curvature perturbations generated during
inflation [77–79]. In the latter formation mechanism, curvature perturbations are generated
during inflation, hence they carry a substantial amount of information about the Early Uni-
verse. In particular, there are a plethora of inflationary scenarios able to generate PBHs in
the late Universe, see e.g., Refs. [80–93]. In this paper we concentrate on this scenario of
PBHs generated by primordial curvature (C) perturbations, CPBHs.

CPBHs, apart from providing a dark matter candidate and being the seeds of super-
massive black holes, can provide insights on the first moments of our Universe. It has already
been established that at cosmological scales (k . O(1) Mpc−1) the primordial curvature
power spectrum is almost scale-invariant, both in model-dependent and model-independent
analyses, see e.g., Ref. [94]. Moreover, during the past two decades, the amplitude and the
tilt of the primordial curvature power spectrum has been measured with high accuracy [95–
97]. On the other hand we still have very little information about the primordial curvature
power spectrum on small scales (k > O(1) Mpc−1). Several authors have proposed different
ways to probe such scales, including CMB spectral distortions [98], analyses of Silk damping
effects [99], exploiting WIMP properties [100, 101] (in the last case assuming they are the
main component of dark matter), reconstructing quasar light curves [102] or through the
detection of gravitational waves generated by large scalar perturbations, see e.g., Refs. [103–
111] and references therein for constraints coming from ongoing (PTA [112–114]) and future
(SKA [115, 116], LISA [115, 117]) experiments.

An additional method to set constraints on the amplitude and shape of the power spec-
trum consists in using PBH abundance [118–120]. CPBH formation requires at least mildly
non-linear fluctuations to form during radiation domination, hence it requires an inflationary
dynamics that deviates significantly from the standard slow-roll paradigm. It is generally
accepted that in the simplest standard, single-field slow-roll inflationary models, initial per-
turbations are very close to Gaussian and their power spectrum is an almost scale invariant
power law; hence perturbations large enough to go non-linear in the early Universe are ex-
ceedingly rare. Therefore constraints on PBH abundance can be translated into constraints
on the Early Universe physics. This connection was pioneered in Ref. [121] and later extended
in Refs. [122–124] to include an early matter-dominated era. We refer the interested reader
also to Refs. [125, 126], where the authors report constraints on the primordial power spec-
trum amplitude from the most updated PBH abundance constraints, and to Ref. [127], where
the authors investigated the effects of critical collapse and non-sphericities on the primordial
power spectrum constraints.

In the previous literature a series of approximations and shortcuts were used. Given the
potential implications of an accurate and robust connection between PBH abundance con-
straints and early Universe physics, we argue that these approximations should be revisited.
The goal of this work is to extend previous works and to put constraints on the primordial
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curvature power spectrum on a firmer theoretical ground. We aim to do this by building on
and improving upon previous analyses as outlined below in section 2.

2 Executive Summary

This work is based on three pillars: the numerical simulations needed to assess the conditions
under which PBHs form, the cosmological connection, fundamental to link the properties of
the individual peak eventually forming a CPBH to the statistics of random fields and in
particular their correlation functions, and peak theory, used to assess CPBH abundance
and its link to primordial statistical properties. Each one of these pillars has a dedicated
section, 3, 4 and 5 for numerical simulations, cosmological connection and peak theory,
respectively. These elements constitute the fundamental building blocks we use to reconstruct
the primordial power spectrum.

We improve upon previous analyses by reducing the number of approximations (also in
light of recent theoretical developments) and providing new insights on each of the building
blocks as follows. We go beyond the linear approximation for the curvature perturbation in
modelling CPBH formation and improve the reliability of the estimate of the critical threshold
the perturbation has to overcome to collapse. We include information about the profile of
the initial density perturbation. We clarify the role of smoothing scales and their relation to
the underlying physics and we propose a filtering recipe that respects all the relevant physics.
Finally, we go beyond Press-Schechter theory to connect PBH abundance to the primordial
power spectrum and adopt the most recent PBH abundance constraints which have changed
significantly since the time of Ref. [121].

In section 3 we treat the details of CPBH formation. We perform an advanced study of
the effects of non-linearities. In particular we study the impact of the linear approximation
of curvature on the typical scale of the collapsing region, on the overdensity profile, on the
mass of the final object and on the criterion used to assess whether a PBH forms or not. We
prove that none of these quantities is accurately computed using linear theory.

In section 4 we further develop cosmological perturbation theory to be applicable in
the context of CPBH formation and to include non-linear effects which are non-negligible.
We motivate, on a physical basis, how the filtering/smoothing procedure should be done
to avoid introducing artificial features on the filtered field. While numerical simulations
treat one density perturbation at the time, cosmological perturbation theory treats the entire
density field (made by the superposition of many density perturbations) at once. The density
field statistical properties are determined by the primordial curvature power spectrum (and
possibly higher-order statistics) and by non-linearities. Here we provide a fully analytical
method to include non-linearities and primordial non-Gaussianity contributions to the density
field statistics.

In section 5 we connect the results found using numerical simulations to the statistical
properties of the density field, which ultimately determines the abundance of PBHs. We
comment on how the statistical properties of the density field should be evaluated during
radiation-domination and under which conditions the shape of the peak in the density field
is connected to statistical properties of the field itself.

We conclude in section 6, where we provide the most updated and accurate limits on the
primordial curvature power spectrum amplitude allowed if CPBHs constitute the maximum
fraction of the dark matter consistent with observations. Furthermore, we show to which
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extent the initial conditions of numerical simulations, corresponding to the threshold for
CPBH formation, can be used to reconstruct the shape of the primordial power spectrum.

In this work we use natural units c = ~ = G = 1 unless otherwise specified.

3 Primordial black holes formation

The gravitational collapse of density perturbations in the radiation-dominated era and the
subsequent formation of PBHs are highly non-linear processes. Hence their study requires
numerical simulations [128–130]. After these pioneering works, the collapse of initial per-
turbations in the form of primordial curvature fluctuations, was numerically studied in
Refs. [131, 132], followed some years afterwards by an extensive numerical analysis by one of
us using an explicit Lagrangian hydrodynamics code developed and used in Refs. [133–137]
and, recently, by other authors in Refs. [138, 139]. More details about the code and the result
of these simulations are discussed in appendix A. Here we rely on results of this code and
these simulations.

Numerical simulations of PBH formation have always assumed spherical symmetry. This
assumption is quite natural in this context because large perturbations, as in the case of those
generating CPBHs, are expected to be quasi-spherical (see also section 5); therefore we will
continue assuming spherical symmetry1. The simplest form of the metric in a spherically
symmetric spacetime is

ds2 = −A2(t, r)dt2 +B2(t, r)dr2 +R2(t, r)dΩ2, (3.1)

where t is the cosmic time, r is a comoving radial coordinate, A, B and R are strictly positive
functions, dΩ is the solid angle measure. The function R is also called areal radius and it
measures the physical distance of a point of the space-time with coordinates (t, r) from the
centre of symmetry.

3.1 Curvature and density perturbations in the super-horizon regime

Formation of a CPBH requires a cosmological perturbation large enough to collapse, forming
an apparent horizon [140, 141] which is obtained from initial conditions characterized by non-
linear curvature perturbations. To use the standard description of cosmological adiabatic
perturbations behaving as pure growing modes, these initial conditions must be set on super-
horizon scales, where the length scale of the perturbation(s) we are considering must be
much larger than the cosmological horizon at initial time. This is easy to envision if initial
curvature perturbations are generated in the context of cosmological inflation.

In this regime the curvature perturbations are conserved (time-independent) because
pressure gradients are negligible and an analytic treatment, usually called the gradient expan-
sion or long-wave length approximation2, is possible [132, 142]. The metric in equation (3.1)
can then be written using a spherically-symmetric spatial curvature perturbation K(r̃) [134]

ds2 ' −dt2 + a2(t)

[
dr̃2

1−K(r̃)r̃2
+ r̃2dΩ2

]
, (3.2)

1Small deviation from non-spherical perturbations could play an important role when computing PBH
abundance, however in this work we follow the standard approach.

2In this description the exact solution is expanded in a power series of a small parameter that is conveniently
identified with the ratio between the Hubble radius and the length-scale of the perturbation.
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where a(t) is the scale factor and r̃ is a comoving radial coordinate. This expression is
approximated because here for simplicity we neglect the time-dependent components of the
metric perturbations, which are small on super-horizon scales. However these components
are taken into account when the initial condition of numerical simulations are specified.

For a more expert reader we point out that, although this approach reproduces the time
evolution of linear perturbation theory on super-horizon scale, it also allows one to consider
non-linear curvature perturbations if the spacetime is sufficiently homogeneous and isotropic
on large scales [143]. This is equivalent to say that pressure gradients are negligible and
shows that the large initial curvature perturbations, as required for PBH formation, has to
appear already at zero order in the background form of the metric.

In a cosmological framework it is more convenient to use a different parametrisation of
the curvature perturbation, for instance by using the curvature perturbation on comoving
hypersurfaces R or the curvature perturbation on uniform energy density hypersurfaces ζ.3

Both can be interpreted as perturbations of the scale factor a(t). Here we choose to work
with the latter, where equation (3.2) becomes [143]

ds2 ' −dt2 + a2(t)e−2ζ(r̂)
[
dr̂2 + r̂2dΩ2

]
, (3.3)

valid in this form during radiation-domination only on super-horizon scales. Different parame-
trisations of the curvature perturbation yield different parametrisation of the radial comoving
coordinate (see Ref. [149] for an exhaustive discussion on different metrics in the context of
CPBH formation), and comparing the two forms of the metric above one finds they are
related by [137]

r̃ = r̂e−ζ(r̂),

K(r̃)r̃2 = r̂
dζ(r̂)

dr̂

[
2− r̂ dζ(r̂)

dr̂

]
.

(3.4)

From now onwards we assume that the spatial metric perturbations in equations (3.2)
and (3.3) describe a peak centred in the coordinates origin. In Refs. [134, 137] the authors
analysed the gravitational collapse of density perturbations generated by peaks of the K-
curvature perturbation, whose profile is parametrised as

Kpeak(r̃) = Apeak exp

[
− 1

α

(
r̃

rt

)2α
]
, (3.5)

where Apeak is the K-curvature peak amplitude, α describes the steepness of the peak profile
and rt, as it will become clearer later, sets the typical scale of the peak. We choose this
one-parameter family of profiles because it allows us to study both steep (α → 0) and flat
peaks (α → ∞), as we show in the upper left panel of figure 1. This family of profiles
assumes a spatially flat background at infinity, i.e., K(r̃) → 0 when r̃ → ∞. According to
the super-horizon regime prescription, the scale rt has to be much larger than the comoving
cosmological horizon rhor = (aH)−1 at initial time tini, i.e., ainiHinirt � 1, where H is the
Hubble expansion rate, aini = a(tini) and Hini = H(tini). The simulations show that, if
the perturbation amplitude, controlled by the parameter Apeak, is larger than a suitable
threshold, these curvature profiles lead to CPBH formation. That is, if certain conditions

3In cosmology there are different notation conventions regarding the curvature perturbation. Throughout
this work we follow the one of Refs. [144–146]; however there are alternative conventions, for instance the one
used by the WMAP and Planck Collaborations, see e.g., Refs. [147, 148].
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Figure 1: Upper left panel: curvature profile Kpeakr
2
t at initial conditions, on super-horizon

scales, for different values of the shape parameter α. We use Apeakr
2
t = 5.18, 2.03, 0.99 for

α = 0.5, 1.0, 30, respectively. While the peak amplitude Apeak changes when the typical
scale rt varies, the quantity Apeakr

2
t is constant. Initial conditions are set up super-horizon,

so that the typical scale of the perturbation rt is much larger than the coming horizon at
initial time, i.e., ainiHinirt � 1. Upper right panel: Curvature profiles ζpeak, corresponding
to the K-curvature peaks of the upper left panel, at initial time tini for different values of
the parameter α. Also in this case the typical scale of the perturbation is rt. Lower panel:
Corresponding overdensity profiles at initial time tini.

on the peak profile are satisfied, these curvature profiles generate overdensities that, after
crossing the cosmological horizon, are large enough to overcome pressure forces, collapse and
form PBHs. These conditions will be discussed in § 3.2.

On super-horizon scales a constant shift in ζ is equivalent to a rescaling of the radial
coordinate; therefore, without any loss of generality, we can take ζ(r̂) → 0 when r̂ → ∞.
Hence for the family of profiles under consideration, a peak in the K-curvature becomes a
trough in the ζ-curvature perturbation which reads as

ζpeak [r̂(r̃)] =

∫ r̃

∞

dr

r

[
1√

1−Kpeak(r)r2
− 1

]
, (3.6)

reported in the upper right panel of figure 1. Despite the näıve idea that peaks in the curva-
ture field correspond to peaks in overdensity, in this case peaks in the metric of equation (3.2)
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correspond to troughs in the metric of equation (3.3), even if both perturbations generate
a peak in the energy density4 ρ. The ζ-curvature perturbation generates an overdensity
perturbation δpeak = ρ/ρ̄− 1, where ρ̄ is the background energy density, given by

δpeak(t, r̂) =
3(1 + w)

5 + 3w

(
1

aH

)2(
−4

3

)
e5ζpeak(r̂)/2∇2e−ζpeak(r̂)/2

=
4

9

(
1

aH

)2

e2ζpeak(r̂)
[
∇2ζpeak(r̂)− 1

2
∇ζpeak(r̂) · ∇ζpeak(r̂)

]
,

(3.7)

where w := p/ρ is the equation of state for a perfect fluid and p is the pressure5 (w = 1/3
in radiation-dominated era). As it can be seen in the lower panel of figure 1 (and later in
figure 4), the peak shows an overdensity in the central region surrounded by an underdense
region. We call zero-crossing distance r̂0 the distance from the peak where δpeak(r̂0) = 0, i.e.,
where the overdensity becomes an underdensity.

Notice that the relation between the overdensity and curvature perturbations is intrinsi-
cally non-linear. A linear relation is recovered only when the curvature perturbation and the
gradient of the curvature are small (|ζpeak| � 1, |∇ζpeak| � 1) and we explicitly show in § 3.3
that this approximation is not accurate in the context of CPBH formation. In the following
subsection we work with the full non-linear relation between overdensity and curvature.

3.2 Primordial black hole formation criterion

Many criteria have been proposed to assess whether a CPBH forms (see Ref. [137] and
references therein for a broad discussion on different criteria). In this work we use the criterion
proposed in Ref. [132], based on the so called compaction function. This approach allows
us to consistently compare curvature and overdensity profiles with different shapes. The
compaction function C quantifies the magnitude of the gravitational potential and, following
Ref. [137], we define it as twice the ratio between the mass excess δM inside a sphere of areal
radius R at time t and the areal radius itself:

C(t, r) := 2
δM(t, r)

R(t, r)
. (3.8)

Here with r we refer to a generic comoving variable as in equation (3.1), without specifying
the particular parametrisation of the curvature profile used.

In the cases where the overdensity perturbation has a single peak, as in those described
by equation (3.5), the compaction function has a maximum at some comoving scale rm.
Moreover, it can be shown that the compaction function is conserved [137] (i.e., constant
in time) on super-horizon scales, where R(t, r)H(t) ≥ 1. The condition R(t, r)H(t) = 1
defines the horizon crossing time t of the comoving scale r, hence for any t? ≤ t the cos-
mological horizon is smaller than the scale of interest r and we have C constant in time:
C(t?, r) = C(t, r). In the following we take as reference scale rm and as reference time tm,
defined implicitly by HmRm = 1, with Rm = R(tm, rm) and Hm = H(tm). In this sense the
value of the compaction function can be used as a time-independent measure of the ampli-
tude of the perturbation on super-horizon scales: a CPBH forms if C(tm, rm) is larger than

4If we use the curvature perturbation on comoving hypersurfaces R ' −ζ instead of the curvature pertur-
bation on uniform energy density hypersurfaces ζ, then peaks in the K-curvature correspond to peaks in the
R-curvature and both generate peaks in the density.

5We refer the interested reader to appendix B of Ref. [140] for more details about the equation of state of
a perfect fluid.
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Figure 2: Left panel: compaction function C corresponding to the curvature and density
perturbations of figure 1. Right panel: Critical threshold as a function of the shape of
the perturbation profile. Steep profiles correspond to α → 0, while flat profiles correspond
to α → ∞. Purple dots represents values found by numerical simulation, interpolated with
the orange line.

some critical threshold [132] whose specific value depends on the particular shape of the peak
curvature [137].

By comparing equations (3.1) and (3.3) we find that the areal radius in the second
metric reads as R = ar̂e−ζpeak(r̂) and therefore, according to our parametrisation of the peak
shape of equation (3.5), the physical scale of the maximum of the compaction function is
Rm = amr̂me

−ζpeak(r̂m) (with am = a(tm)). This is tightly related to the typical comoving
scale of the perturbation rt ≡ r̃m = r̂me

−ζpeak(r̂m) defined by the horizon crossing condi-
tion amHmrt = 1. Qualitatively, we say that at time tm the perturbation enters the horizon,
i.e., the perturbation enters the horizon when the physical scale Rm (corresponding to the
maximum of the compaction function) is crossing the cosmological horizon. We show in
figure 2 the compaction function for the overdensity perturbations appearing in figure 1.

For practical purposes, the criterion collapse is often formulated in terms of the inte-
grated overdensity profile δI , given by

δI(t, r) =
δM(t, r)

M(t, r)
=

3

R3(t, r)

∫ r

0
dx
dX(t, x)

dx
X2(t, x)δpeak(t, x), (3.9)

where X and x are physical and comoving coordinates, respectively, and the mass excess

δM(t, r) = M(t, r)−M(t, r) = 4π

∫ r

0
dx
dX(t, x)

dx
X2(t, x) [ρ(t, x)− ρ̄(t)] (3.10)

has been measured with respect to an unperturbed sphere of areal radius R, uniform den-
sity ρ̄ (which in the case considered here corresponds to the background cosmological energy
density) and enclosed mass M . Since we assume spherical symmetry, as in the numerical
simulations we use, the mass is defined without ambiguity by the Misner-Sharp mass6 [152].

6In general one should use the Komar mass [150], which is equivalent to Kodama mass [151] and to the
Misner-Sharp mass [152] in this context.
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However the two criteria are not conflicting, in fact, using the definition of compaction
function, we have that on super horizon scales C(t, r) = H2(t)R2(t, r)δI(t, r) [149]. Using the
horizon crossing condition HmRm = 1, our threshold criterion reads as

C(tm, rm) = δI(tm, rm) > δI,c(α), (3.11)

where the exact numerical value of the critical threshold δI,c(α) has to be found using numer-
ical simulations (see appendix A). We report the critical value of the integrated overdensity
amplitude as a function of the parameter α in the right panel of figure 2. We note that
the critical threshold is shape-dependent and that it takes values between δmin

I,c = 0.4135
and δmax

I,c = 2/3 for steep (α → 0) and flat (α → ∞) profiles, respectively. The difference
in the value of critical threshold is related to the role of pressure gradients during the non-
linear evolution [137]: a steeper initial profile needs a lower excess of mass to form a PBH
because most of the energy density is already located in the centre and the pressure gradients
around rt are negligible. On the contrary, when the profile is more homogeneous, as for a
top-hat profile, the pressure gradients around rt are very large and the required value of δI,c
is higher.

The mass of the resulting CPBH follows the scaling law of critical collapse [153] de-
termined by how much the integrated density profile exceeds a critical value and it reads
as [131, 135, 153, 154]

MPBH = K(α)Mhor(tm) [δI(tm, rm)− δI,c(α)]γcrit , (3.12)

where Mhor(tm) = (2Hm)−1 is the mass contained inside the cosmological horizon at horizon
crossing time, γcrit ' 0.36 is a critical exponent for radiation, which depends only on the
equation of state parameter w7 [159] while K is a numerical coefficient that depends on the
specific density profile. This result holds under the conditionMPBH .Mhor, i.e., for δI−δI,c .
O(10−2), beyond these values the scaling law is not very accurate. We discuss further the
validity of equation (3.12) in § 5.1. It is important to note here that in equation (3.12) the
estimated values of K and γcrit are computed with a δI(tm, rm) which comes from the initial
conditions linearly extrapolated and rescaled by the background cosmic evolution (i.e., the
effects of pressure gradients are neglected). Also this subtlety will be revisited later, in § 5.1.

As we will see in section 5, it is useful to re-interpret equation (3.12) in terms of the peak
amplitude δpeak,0 = δpeak(tm, 0). Also in this case the peak amplitude is linearly extrapolated
from initial conditions by using only the cosmic expansion 1/a2H2 factor. The integrated
overdensity is related to the overdensity peak amplitude by a shape-dependent, but time-
independent, relation Fδ(α) = δI(tm, rm)/δpeak(tm, 0). Hence equation (3.12) can be re-
written as

MPBH = K′(α)Mhor(tm) [δpeak,0 − δpeak,0,c(α)]γcrit , (3.13)

where K′(α) = [Fδ(α)]γcrit K(α) and the new critical threshold is related to the integrated
critical threshold by δpeak,0,c(α) = δI,c(α)/Fδ(α).

7Notice that the equation of state is not exactly constant during the entire radiation-dominated era.
For instance, during the QCD phase transition, the equation of state and the sound speed soften dropping
to γ ' 0.20− 0.25 and the production of PBHs is enhanced [155–158]. This change of the equation of state,
not any more characterised only by one parameter, generates a deviation from the scaling law, as simulations
suggest [156]. Since refined simulation of PBH formation during the QCD phase transition investigating are
still missing, in this work we consider only the standard case where γ ' 0.36.
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Figure 3: Linear-to-Non-Linear ratio between different physical scales. Left panel: ratio of
typical comoving scales rt of the perturbation, horizon crossing times tm, masses enclosed in-
side the horizon Mhor and overdensity zero-crossing scales r̂0. Right panel: ratio of integrated
density profiles δI(tm, Rm) and integrated-density-to-peak-amplitude relation Fδ.

3.3 Effects of the linear curvature approximation

It is usually assumed, even in the context of CPBH formation, that both the ζ-curvature and
curvature gradients are small (|ζpeak|, |∇ζpeak| � 1) and therefore equations involving them
can be linearised. In particular, in equation (3.7) it is often assumed that the exponential
damping e2ζpeak and the quadratic gradient correction (∇ζpeak · ∇ζpeak) can be neglected,
effectively linearising the relation between ζ-curvature perturbation and the overdensity per-
turbation δ: δLINpeak ∝ ∇2ζpeak.

Even if at initial time the linear approximation is accurate, at horizon crossing time,
when both curvature and overdensity perturbations are of order unity, non-linearities have
already produced significant effects. Neglecting non-linearities biases the results obtained at
every level of the analysis done in this work (the three pillars of section 2). Hence, we use
the full non-linear results coming from numerical simulations.

Since, for simplicity, it is tempting to use the linear approximation – and it has been
used in the literature not infrequently – in this subsection we explicitly show the effects that
the linear approximation generates in the CPBH formation process. To quantify the effects
of the linear approximation, we proceed in comparing key quantities evaluated with the full
non-linear equation (NL) with the corresponding linear approximation (LIN).

Under linear approximation, the typical scale of the perturbation becomes rLINt = r̂m, to
be compared against the typical non-linear scale rNL

t = r̂me
−ζpeak(r̂m). Since ζpeak is negative,

linearisation underestimates the real size of the perturbation, i.e., rLINt /rNL
t < 1. Because

in radiation-domination the comoving horizon scales as rhor ∝ t1/2 and the horizon crossing
condition is amHmrt = 1, linearisation also underestimates the horizon crossing time tm:

tLINm

tNL
m

=

(
rLINt

rNL
t

)2

< 1. (3.14)

The inferred mass of the PBH is also affected by linearisation through a different esti-
mate of the horizon crossing time, as can be seen in equation (3.12). The main effect is that
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lines indicate overdensity (δpeak > 0) while dashed lines indicate underdensities (δpeak < 0).
The profile is showed in units of the typical scale of the perturbation rt = r̂m in the linear
approximation or rt = r̂me

−ζpeak(r̂m) in the non-linear case. In both cases the non-linear
corrections damps and shrink the overdensity profile significantly with respect to the linear
case. We use Apeakr

2
t = 5.18, 0.99 for α = 0.5, 30, respectively.

the linear approximation underestimates the mass inside the horizon, by a factor

MLIN
hor

MNL
hor

=
tLINm

tNL
m

< 1. (3.15)

We report in the left panel of figure 3 the magnitude of such effects, where we can see that
the largest effects are for the steeper profiles.

The second effect of the linear approximation is to change the non-linear relation be-
tween overdensity and ζ-curvature perturbations of equation (3.7) yielding:

δLINpeak =
4

9

(
1

aH

)2

∇2ζpeak. (3.16)

We show in figure 4 the comparison between the non-linear overdensity δpeak ≡ δNL
peak and

its linear counterpart δLINpeak on super-horizon scales. Notice that the profiles are presented
in terms of their respective typical scale rt, which we have already showed to be different.
Unsurprisingly, the linear approximation clearly fails when curvature and overdensity per-
turbations are order unity. As we can see from equation (3.7), non-linearities produce two
effects: an exponential damping of the peak given by e2ζpeak and a change in the tails of
the profile given by the gradient correction ∇ζpeak · ∇ζpeak. The exponential damping is
relevant especially towards the center of the perturbation, where |ζpeak| ∼ O(1), whereas
the gradient-squared correction changes the tails by shifting the zero-crossing scale r̂0. The
change in the absolute value of r̂0 is showed in the left panel of figure 3. The exponential
damping is relevant for the whole range of profile under consideration, while the gradient
correction is significant only for steep profiles. Non-linear effects therefore damp and shrink
the overdensity profile computed under the linear approximation. At the same time, they
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also shrink the typical scale, as discussed before. The magnitude of these two competing
effects depends on the case under consideration.

Finally, since the linearised overdensity profile is different, the compaction function, the
integrated overdensity and the threshold criterion will change as well. We show the linear-to-
non-linear ratio of the integrated overdensity profiles δI(tm, rm) and of the integrated-density-
to-peak-amplitude relation Fδ in the right panel of figure 3. Since the linearised overdensity
is overestimated, it is easier for a perturbation to exceed the critical threshold and to form
a CPBH in the linear approximation. Moreover, the mass of the resulting CPBH and, more
in general, the CPBHs mass distribution will be shifted with respect to the non-linear case.
The magnitude of the shift and the direction (towards lower/higher masses) depend on two
competing effects: the change in the horizon crossing time and the change in the threshold
criterion. Notice also that the integrated-density-to-peak-amplitude relation Fδ changes as
well, hence the numerical coefficient K′(α) derived in the linear approximation is smaller.

While the magnitude of all these effects is specific to the family of profiles we have anal-
ysed, the qualitative effects remain in general valid, showing that the linear approximation
is inadequate to describe the formation of CPBHs. As a consequence, adopting the linear
approximation to compute the inferred statistical properties of the overdensity field yield an
incorrect estimate of the global PBH abundance. A discussion on these effects can be found
in section 5 and in Refs. [160–162]. Since this require a set of preliminary results that are
connected to the standard description of cosmological perturbations, we present them after
section 4.

4 The cosmology connection

Our numerical simulations model the collapse of one overdensity peak at a time; however, if
CPBHs are the dark matter, we have to construct a self-consistent description of a Universe
filled with many of those peaks. Even if the mechanism generating these overdensity pertur-
bations is not known and many of them have been proposed so far, in this work we assume
that they are created by large fluctuations of the curvature perturbation, generated during
inflation. Hence the information encoded in the overdensity peaks can be connected to the
Early Universe physics.

Cosmological perturbation theory provides in principle the necessary framework and
tools to connect Early and Late Universe physics. However, in the standard cosmological
context and on large cosmological scales, perturbations are typically (almost) linear while we
have seen in section 3 that CPBH formation is strongly non-linear and that non-linearities
cannot be neglected. Therefore, for this application, standard cosmology perturbation theory
has to be extended and modified to account for these effects.

We begin by reviewing cosmological linear theory, which represents our starting point
in § 4.1. The first extension we must introduce is connected to the role of the filter functions
in the context of CPBH formation, which we discuss in § 4.2 and we motivate their use
based on physical arguments. The second extension is the inclusion of non-linearities, hence
of non-Gaussainities, both primordial (eventually) and due to gravity: their presence is
unavoidable precisely because of the non-linear relation between curvature and overdensity
and we quantify their effects in § 4.3.

In this section we always work with the metric defined in equation (3.3), hence for
convenience we drop the “ ̂ ” symbol on top of spatial comoving coordinates. Notice that
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in this section we consider generic overdensity and curvature perturbations (and not only
peaks, as in section 3), hence we also drop the “ peak ” subscript.

4.1 Linear theory

In the standard cosmological framework, linear theory can be used and stretched even to study
the collapse of massive objects such as halos (see e.g., the Press Schechter approach [163]).
As a warm up exercise, we start by adopting the linear approximation and reviewing the
necessary background to be applied to CPBH formation.

In linear theory, as it can be seen in equation (3.16), the overdensity perturbation δ is
uniquely determined by the second derivatives of the ζ-curvature perturbation, (i.e., δ ∝ ∇2ζ).
According to the standard interpretation of cosmological perturbation theory, both perturba-
tions are random fields whose properties are determined by the family of n-point correlators,
e.g., 〈ζ(x1) · · · ζ(xn)〉 or 〈δ(x1) · · · δ(xn)〉, and by the relation between the two random fields.
For instance, since the Laplacian is a linear operator, if ζ is a Gaussian random field then
also δ will be a Gaussian random field.

It is well-known that random fields are neither continuous or differentiable [164–166],
hence it is necessary to smooth out the field on small scales using a filter function, especially
to define topological concepts as peaks or troughs of the random field. In full generality, we
define a smoothed field, e.g., the overdensity field, as

δs(x) =

∫
d3yWs(|x− y|)δ(y), (4.1)

where Ws is a filter function of comoving radius s. The filter function is typically nor-
malized to unity

(∫
d3yWs(|y|) = 1

)
and it can be written in terms of an unnormalized

filter function ws(|y|) and a comoving volume normalizing factor V com.
w =

∫
d3yws(|y|) as

Ws = ws/V
com.
w .

Since we are working in the linear approximation, where spatial curvature is assumed
to be small, the smoothing can be done directly in comoving coordinates. We discuss the
smoothing procedure when spatial curvature is not negligible and the appropriate size of the
smoothing radius s in § 4.2. In principle, since the relation between ζ and δ is non-linear,
smoothing the curvature field is not equivalent to smoothing directly the over density field.
However, at linear order, the two operations are equivalent, in fact by applying the smoothing
procedure of equation (4.1) to equation (3.16) we obtain

δs(x) =
4

9

1

a2H2

∫
d3yWs(|x− y|)∇2

yζ(y)

=
4

9

1

a2H2

∫
d3y

{
ζ(y)∇2

yWs(|x− y|)+

+∇y · [Ws(|x− y|)∇yζ(y)− ζ(y)∇yWs(|x− y|)]}

=
4

9

1

a2H2
∇2

xζs(x) .

(4.2)

The surface contribution vanishes under the fairly general assumption that Ws and its
derivative vanish at large scales (as for Top-Hat or Gaussian filter functions), where we
use ∇2

yWs = ∇2
xWs because of the form of the filter function argument and we recog-

nise ζs(x) ≡
∫
d3yWs(|x − y|)ζ(y). Therefore, at linear level, it is completely equivalent

to smooth out the overdensity field or the curvature field.
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In general, the statistical properties (the n-point correlators) of smoothed fields will be
different from those of the original unsmoothed field. In particular, the power spectrum of the
smoothed field will be that of the unsmoothed field multiplied by the square of the Fourier
transform of the kernel. Moreover, the filter function may introduce non-trivial effects in
the context of PBHs abundance constraints such as those presented in Ref. [167] and later
re-analysed in Ref. [168] (see also § 4.2) or in Ref. [169] for effects applied to dark matter
halos.

Even if so far we have considered the spatial curvature on super-horizon scales as time-
independent, on every sub-horizon patch the curvature is actually evolving with time. The
evolution of sub-horizon scales is typically described by a transfer function T . By taking the
Fourier transform of equation (4.2) and including pressure effects on sub-horizon scales, we
have that in linear theory the overdensity field in Fourier space reads as

δ̂s(τ,k) = −4

9

k2

a2H2
Ŵs(k)T̂LIN(τ, k)ζ̂(k), (4.3)

where τ is the conformal time and Ŵs and T̂LIN are the Fourier transform of the filter
and linear transfer functions. Under the linear approximation assumption, in the radiation-
dominated era, the transfer function reads as [170, 171]

T̂LIN(τ, k) = 3
sin(cskτ)− (cskτ) cos(cskτ)

(cskτ)3
, (4.4)

where c2s = 1/3 is the sound speed of the relativistic fluid. As can be seen from equation (4.4),
pressure effects act as a smoothing and naturally damp perturbations on scales smaller than
the sound horizon rs(τ) = csτ = cs/(aH), i.e., for modes k � (csτ)−1.

The statistical properties of the smoothed overdensity field, i.e., the n-point func-

tions
〈
δ̂s(k1) · · · δ̂s(kn)

〉
can be computed using equation (4.3), assuming that we know the

entire set of n-point functions of the curvature field, e.g.,
〈
ζ̂(k1)ζ̂(k2)

〉
= (2π)3δD (k12)Pζ(k1),

〈
ζ̂(k1)ζ̂(k2)ζ̂(k3)

〉
= (2π)3δD (k123)Bζ(k1,k2,k3),

(4.5)

etc., where δD is the Dirac delta, k1...n = k1+ · · ·+kn and Pζ and Bζ are the curvature power
spectrum and bispectrum, respectively. For instance, the two-point function or, equivalently,
the power spectrum of the smoothed density field is

Ps(τ, k) =
16

81

k4

a4H4
Ŵ 2
s (k)T̂ 2

LIN(τ, k)Pζ(k). (4.6)

4.2 Filtering random fields

Filtering is a procedure widely used in signal processing that eliminates the power contained
in a range of “frequencies” (scales in this case) from some “signal” (the overdensity field in
the case under consideration). Operationally, this is done by convolving the signal with a
filter/smoothing/window function (all the three names have been used in the literature)8. A

8Smoothing is usually the result of a low-pass filter, where high-frequencies are suppressed, but high-pass
filters are also useful, where low frequency signals that might mimic an almost-DC mode or long baseline
variations are suppressed. Here for example, as it will be clear later, long wavelength modes on scales much
larger than the typical size of the perturbation of interest are considered as DC modes and effectively ignored
in the simulations. In certain cases, see § 5.2, these modes have to be cut out.
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low-pass filter is what is mostly used in cosmological settings and it results in a smoother
version of the initial signal. Because of this, in the rest of the section we use interchangeably
the term filter and smoothing function.

As already emphasized in Refs. [164–166], a filtering procedure is absolutely necessary
to define concepts such as peaks or troughs of random fields, which require the field to be
at least differentiable. In this sense, the filter function is just a mathematical artefact we
introduce to treat analytically random fields, therefore it is fundamental for this procedure
not to bias the statistical properties of the random field (or, in case it is unavoidable, one
should asses the magnitude of the bias). Notice that in the Press-Schechter formalism of
large-scale structure the filter function is used to define the mass of the object of interest
(the dark matter halo). In the CPBHs case this does not apply; in fact the mass of the CPBHs
is specified by the shape of the overdensity, the horizon crossing time of the perturbation
and by how much the integrated overdensity (or the height of the overdensity peak) exceeds
some critical threshold (see equations (3.12) and (3.13)).

Since the purpose of the filter function in the large-scale structure and CPBHs frame-
works is completely different, we cannot apply directly what is typically done in large-scale
structure to CPBHs. In particular we have to re-assess the appropriate smoothing scale and
how the filtering is performed when the spatial curvature is non-negligible.

To set the smoothing radius, first we have to establish which scales r (or modes k :=
r−1) play a physical role in the collapse. As we have seen in section 3, we identify the
typical scale of a collapsing perturbation in real space with rt, corresponding to a typical
mode kt = r−1t in Fourier space9. To avoid affecting the shape of the peaks, and the properties
of the resulting CPBH, the smoothing should be done on scales much smaller than the
typical scale of the fluctuation, i.e., for the “ultra-short” scales r � rt or modes k � kt.
We show a visual example of an overdensity field and its smoothed version in figure 5, in
particular in the zoomed-in panel. The specific details of how these modes (corresponding to
“ultra-short” scales) are filtered out should not influence the dynamics of the perturbation
on scales O(rt), where the gravitational collapse is the dominant process. Note that this
procedure is implicitly implemented every time the spacetime is discretized, as in numerical
simulations.

The other relevant physical scale is the size of the sound horizon, where pressure gradi-
ents effectively smooth the perturbations. As seen in equation (4.4), in linear theory, pressure
effects act as an effective filter function that damps perturbations on scales smaller than the
sound horizon. At horizon crossing, the size of the sound horizon rs(tm) = cs/(amHm) =
rt/
√

3 is comparable to the typical scale of the perturbation. Hence, a filter function of
smoothing radius rt ≡ 1/(amHm) would artificially increase the damping effect produced by
pressure. Finally, the height of the peak δpeak,0, used in equation (3.13) to determine the
mass of the PBH, should not depend on how the filtering procedure is performed (see also
appendix A).

The condition s � rt thus s � rs(tm), ensures that: (i) what determines the true
height of the peaks are pressure effects and not the artificial smoothing, (ii) does not alter
the relevant properties of the field nor the physics involved in CPBH formation and (iii) allows

9While in flat space we typically have k = (2π)/r, in this case, where curvature is non-negligible, the
conversion factor between k and r will be different from 2π, with a coefficient that depends on the shape. To
avoid discussing scenarios on a case by case basis, we define k := 1/r and we refer the interested reader to
Ref. [172] for a broader discussion. Notice that the conversion factor is order unity in all the cases of interest,
hence this definition does not influence our conclusions.
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Figure 5: Sketch of the overdensity random field in one spatial dimension. Upper panel:
total overdensity (solid line) given by the sum of a peak overdensity (dashed line) with typical
scale rt and the four random fluctuations with different wavelengths illustrated in the lower
panel. For completeness we report also the size of the sound horizon rs = rt/

√
3. Zoomed-

in panel: how the peak profile would be before and after smoothing on scale s (s � rt,
s � rs), i.e., removing ultra-short perturbations with frequency k � kt. Lower panel: the
four components of the sketched overdensity with different wavelengths.

us to use all the (cosmological) results about properties of (smoothed) random fields. In other
words, the smoothing of the field on small scales should be done on a scale rhor(tini), where tini
is some initial time, much smaller than all the typical horizon re-entry time scales tm.

In the majority of the existing literature the smoothing radius has been typically chosen
to be comparable to the typical scale of the perturbation or, equivalently, to the radius of
the cosmological comoving horizon when the perturbation starts to collapse, namely s ∼
O (rt ≡ 1/amHm). This operation removes both ultra-short and short perturbation of fig-
ure 5. Some effects of this choice might be seen in Ref. [167], where it was shown that different
window functions with this smoothing radius lead to different CPBH abundance constraints.
The choice we propose here, s � rs(tm), ensures that the details (or even the presence) of
the (artificial but unavoidable) smoothing do not affect the dynamic of the collapse and thus
the final results including PBH mass and abundance.
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It is also important to note that, while the gravitational collapse of a CPBH is a process
ongoing at cosmological horizon scales, scales that are well above the horizon at all times
during the collapse do not influence sub-horizon dynamics. The collapse is not instantaneous,
therefore it is reasonable to expect that long perturbations with modes k . kt might influence
the process; on the other hand ultra-long scale perturbations associated to modes k � kt
appear as a constant background during the collapse, hence they should not play any role in
determining whether a CPBH forms or not. We refer the reader to figure 5 for a visualization
of these two cases. One way to avoid super-horizon effects is to introduce a second (high
pass) filter function Ws2 that smooths out scales much larger than the typical scale of the
perturbation, i.e., scales s2 � rt or modes k2 � kt. This is what will be implemented in § 5.2.

The second difference in the smoothing procedure regards the treatment of non-linearities.
So far we have neglected spatial curvature and worked with comoving coordinates. But spa-
tial curvature is not negligible; this introduces some subtleties which ultimately lead to a
re-interpretation of the filtering procedure. To account for the curvature, the filtering should
be done in physical coordinates Y = ae−ζ(y)y instead of comoving coordinates y, as in linear
theory. For instance, the filtered overdensity field would be

δS(X) =

∫
d3YWS(|X−Y|)δ(Y), (4.7)

where WS is a filter function of smoothing physical scale S. Also in this case the filter function
has been normalized to unity and it can be written as WS = wS/V

phys.
w , where wS is the

unnormalized filter function and V phys.
w =

∫
d3Y wS(|Y|) is the physical volume normalization

coefficient. Therefore the overdensity field, filtered on a comoving scale s corresponding to a
physical scale S = ae−ζ(s)s, becomes in comoving coordinates

δs(x) = δS(s) (X(x)) =

∫
d3ye−3ζ(y) [1− y · ∇ζ(y)]

a3

V phys.
w

wS(s)(|X(x)−Y(y)|)δ(y)

=

∫
d3y

a3

V phys.
w

wS(s)(|X(x)−Y(y)|)δnew(y),

(4.8)

where, using equation (3.7), the “new” overdensity field we want to smooth out reads as

δnew(y) =
4

9

(
1

aH

)2

e−ζ(y) [1− y · ∇ζ(y)]

[
∇2ζ(y)− 1

2
∇ζ(y) · ∇ζ(y)

]
. (4.9)

Notice that in the linear approximation, where curvature and gradients are small (ζ � 1,

|∇ζ| � 1), thus V phys.
w → a3V com.

w and wS → ws
10, we recover exactly the linear theory

definition of filtering of equation (4.1).
However, once the spatial curvature is included in the filtering procedure and the full

non-linear relation between overdensity and curvature is used, filtering the overdensity or the
curvature fields is not equivalent any more (cf. equation (4.2)). Although we do not report

10Here we report a practical example of the linear limit. In the case of a Top-Hat filter function in physical
coordinates we have wS(|Y|) = Θ(1− |Y|/S), where Θ is the Heaviside function. The physical volume reads
as V phys.

w = 4πS3/3 = a3e−3ζ(s)4πs3/3 → a3V com.
w when ζ � 1. In the same limit the unnormalized filter

function reads as wS(|Y|) = Θ(1− ye−ζ(y)/se−ζ(s))→ Θ(1− y/s) = ws(|y|).
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the full calculation, it can be easily shown that

δs(x) =

∫
d3y

a3

V phys.
w

wS(s)(|X(x)−Y(y)|)δnew(y)

6= 4

9

(
1

aH

)2

e2ζs(x)
[
∇2ζs(y)− 1

2
∇ζs(y) · ∇ζs(y)

]
,

(4.10)

using the same smoothing function ws for both δ and ζ, where the second line of RHS
corresponds to equation (3.7).

Notice also that the curvature enters in the argument of the window function a3WS ,
hence the domain of integration in comoving coordinates will be different from a sphere cen-
tred at a given point x. Large curvature fluctuations will produce large deformation in the
domain, however we expect this effect to be negligible when estimating the statistical prop-
erties of the whole field since large fluctuations are extremely rare. Moreover, as explained
in § 4.2, we are smoothing on scales much smaller than the scale of the peak, therefore we
can neglect this curvature dependence when taking correlators of the smoothed overdensity
of equation (4.8) and treat the window function as curvature-independent.

According to equation (4.10), in principle filtering ζ is not equivalent to filtering δ in
the non-linear case. The effect of ignoring this subtlety in the filtering procedures cannot
be established a priori, since it depends on the statistical properties of the curvature and
density fields. However, given that the abundance of CPBHs depends on those statistical
properties, it is important to assess which is the role of the filtering procedure in determining
the statistics of the field at initial time (see also § 5.1). Given the general nature of this
paper, we leave the quantitative estimation of this effect to a future work. In this paper we
will apply the smoothing to the density field.

4.3 Impact of primordial non-Gaussianities

Non-Gaussianities can be separated into two categories: primordial non-Gaussianities, gen-
erated by some inflationary mechanism and imprinted into the “matter” fields at horizon
re-entry, and non-Gaussianities generated dynamically, for instance by gravitational evolu-
tion. In this section we are interested only in the former.

The fact that non-linearities are so important in the context of CPBHs already sug-
gests that non-Gaussianities, linked to non-linearities, could be important as well. In fact,
primordial non-Gaussianities affect both CPBH formation and abundance and are generally
expected to be produced in many of the proposed models for CPBHs generation, see e.g.,
Refs. [173–179]. While it has been tested that at cosmological scales initial conditions are
very close to be Gaussian [148, 180–183], this has not been verified at very small scales, i.e.,
for the range of scales k & 105 Mpc−1 relevant for CPBH formation.

Here we assess for the first time what is the contribution of primordial non-Gaussianities
to the n-point function of the smoothed overdensity field including the non-linear effects of
equation (3.7). The procedure is exact and can be applied to any n-point function, however
in this work we concentrate only on the two-point function, i.e., the power spectrum, for
reasons that will become clear in section 5.

For simplicity, we initially neglect filter and transfer functions and re-introduce them
at the end. The full non-linear overdensity field in Fourier is computed from equation (4.9)
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yielding:

δ̂(k) =
4

9

1

a2H2

∫
d3r [1− r · ∇ζ(r)]

[
∇2ζ(r)− 1

2
∇ζ(r) · ∇ζ(r)

]
e−ζ(r)e−ik·r

= −4

9

1

a2H2

∑

n

(−1)n

n!

∫
d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

[
ζ̂0(q1) + 3ζ̂(q1)−

∂ζ̂(q1/λ)

∂λ

∣∣∣∣∣
λ=1

]
×

× q2 · q3

[
ζ̂(q2)ζ̂0(q3 − q2)ζ̂n(k− q12)−

1

2
ζ̂(q2)ζ̂(q3)ζ̂n(k− q123)

]
,

(4.11)
where we have introduced an auxiliary parameter λ11 and we have expanded the exponen-
tial e−ζ in series, introducing the function ζ̂n, which is the Fourier transform of ζn. The
function ζ̂n can be computed at every order in n and it is given by

ζ̂0(k?) = (2π)3δD(k?) n = 0,

ζ̂1(k?) = ζ̂(k?) n = 1,

ζ̂n(k?) =

∫ n−1∏

j=1

[
d3pj
(2π)3

ζ̂(pj)

]
ζ̂


k? −

n−1∑

j=1

pj


 n ≥ 2.

(4.12)

Because of non-linearities, even when the ζ-curvature field is Gaussian and has zero one-point

correlator
(
〈ζ̂(k)〉 = 0

)
, the one-point correlator of the overdensity field is non-zero. Its exact

value can be computed from equation (4.11) and it can be checked that it is non-zero only
for the ultra-long mode k = 0 and it depends only on the statistical properties of the field:

〈
δ̂(k)

〉
= (2π)3δD(k)G(σ2j ), (4.13)

where the G(σ2j ) is a function of the spectral moments of the ζ-curvature field (see section 5
for the definition of spectral moments).

Notice that in computing the two-point function
〈
δ̂(k1)δ̂(k2)

〉
of the overdensity field we

should include also the disconnected component
〈
δ̂(k1)

〉〈
δ̂(k2)

〉
, however this contribution

is zero for our range of scales of interest, i.e., when k 6= 0. On the other hand, the connected

11Equation (4.11) has been obtained using

∫
d3rr · ∇ζ(r)e−ik·r =

∫
d3r

∫
d3q

(2π)3
ir · qζ̂(q)eiq·re−ik·r =

∫
d3r

∫
d3q

(2π)3
ζ̂(q)

∂eiλq·r

∂λ

∣∣∣∣
λ=1

e−ik·r

=
∂

∂λ

[∫
d3rζ(λr)e−ik·r

]

λ=1

=
∂

∂λ

[
λ−3ζ̂(k/λ)

]
λ=1

= −3ζ̂(k) +
∂ζ̂(k/λ)

∂λ

∣∣∣∣∣
λ=1

.
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component of the overdensity field power spectrum is given by

〈
δ̂(k1)δ̂(k2)

〉
c

=
16

81

(
1

aH

)4∑

n,m

(−1)n+m

n!m!

∫
d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

d3q4
(2π)3

d3q5
(2π)3

d3q6
(2π)3

(q2 · q3)(q5 · q6)×

×
〈[

ζ̂0(q1) + 3ζ̂(q1)−
∂ζ̂(q1/λ)

∂λ

∣∣∣∣∣
λ=1

] [
ζ̂(q2)ζ̂0(q3 − q2)ζ̂n(k1 − q12)−

1

2
ζ̂(q2)ζ̂(q3)ζ̂n(k1 − q123)

]

[
ζ̂0(q4) + 3ζ̂(q4)−

∂ζ̂(q4/λ)

∂λ

∣∣∣∣∣
λ=1

] [
ζ̂(q5)ζ̂0(q6 − q5)ζ̂m(k2 − q45)−

1

2
ζ̂(q5)ζ̂(q6)ζ̂m(k2 − q456)

]〉

(4.14)
First of all we stress that this result is exact, no approximation has been taken so far. Second,
we see that the entire family of n-point function of the ζ-curvature contributes to the two-
point function of the overdensity due to the e−ζ factor. In this sense, non-linearities and
primordial non-Gaussianities are very important in determining the full power-spectrum of
the overdensity field. From the inflationary model-building side, it is therefore important not
only to compute the primordial curvature power spectrum, but also the primordial bispectrum
and higher-order correlations, and to assess the magnitude of their contribution, given by
equation (4.14), to the overdensity two-point function.

As we will explain in section 5, we are interested in filtering only the overdensity field,
hence filter functions can be introduced multiplying equation (4.14) by Ŵ ′s(k1)Ŵ ′s(k1),

where Ŵ ′s is the Fourier transform of the filter function a3WS . As explained after equa-
tion (4.10), this procedure is not strictly correct, since the curvature perturbation appears
also in the argument of the filter function, deforming the volume of the smoothing region.
However, since we are performing the smoothing on scales much smaller than the scale of
the perturbations, this effect is expected to be sub-leading. The other (physical) smoothing
is the one introduced by the sound horizon and described by the transfer function. The
transfer function, by definition describes the evolution of the curvature perturbation on sub-
horizon modes, hence in equations (4.12) and (4.14), every curvature perturbation ζ̂ should
be substituted with T̂NLζ̂, where T̂NL is the fully non-linear transfer function.

Finally, we provide a practical example of how equation (4.14) can be used to compute
the leading bispectrum Bζ contribution to the two-point function of the smoothed overdensity
field:

Ps(τ, k) =
16

81

k4

a4H4
Ŵ ′

2

s(k)T̂ 2
NL(τ, k)

[
Pζ(k) +

1

k2T̂NL(τ, k)
×

∫
d3q

(2π)3
T̂NL(τ, q)T̂NL(τ, |k + q|)

[
6|k + q|2 − 2q2 + q · (k + q)

]
Bζ(k, q, |k + q|) + · · ·

]
.

(4.15)
The dots in the second line represent sub-leading Gaussian and mixed Gaussian/non-Gaussian
corrections, generated for instance by terms proportionals to 〈ζζζζ〉 ∝ PζPζ and 〈ζζζζζ〉 ∝
PζBζ , respectively12. Similar terms appear also in the analysis of clustering properties of ha-
los, see e.g., Ref. [184], and they appear to be a general prediction of non-linear overdensity
fields.

12The fact that these extra Gaussian terms are subleading can be easily seen by noticing that they contain
four transfer functions instead of just two, as in the leading term, hence they will be highly suppressed
compared to the first line of equation (4.15). The same reasoning applies also to mixed terms, where there
will be even more transfer functions.
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Equation (4.15) reduces to the well-known form of equation (4.6) (but with a different
window function) in case of Gaussian initial conditions, i.e., Bζ ≡ 0, and neglecting sub-
leading contributions. This equation also shows that the relation between the power spectrum
of δ and that of ζ is not univocal: in this example, the same smoothed overdensity power
spectrum can be generated by a non-Gaussian ζ with power spectrum Pζ and bispectrum Bζ
or by a Gaussian ζ ′ with power spectrum Pζ′ equal to the argument of the square bracket
in the RHS of equation (4.15). We conclude that particular care is needed when trying to
reconstruct the primordial curvature power spectrum from the overdensity two-point function
(see section 6).

5 Peak theory applied to Primordial Black Holes

Since CPBHs form from peaks in the overdensity field, we resort to peak theory [166] to
calculate PBH abundance at formation time, starting from the statistical distribution of the
local maxima. In order to define a maxima, we need a smooth and differentiable random field,
obtained by using the prescription given in § 4.2. In principle the field can be either Gaussian
or non-Gaussian, however we work with a smoothed Gaussian random overdensity field, whose
statistical properties are completely specified by its power spectrum Ps or, alternatively, by
its Fourier transform, the correlation function ξs(|x1−x2|) = 〈δs(x1)δs(x2)〉. To be accurate,
the Gaussian assumption might be too strict for the PBHs scenario, in fact we already saw
in § 4.3 that non-linearities induce departures from the Gaussian statistics in the overdensity
field. However peak theory has not been fully developed for non-Gaussian fields, hence we
will consider only the Gaussian case.

The original framework considers the statistics of a smoothed random field deep in
the matter-dominated era and it connects the initial statistics to the formation of large-
scale structure. The original framework was designed for matter-domination, where pressure
effects are negligible, hence we need to slightly upgrade it to employ it also during radiation-
domination. In fact, pressure effects on sub-horizon scales naturally wash out perturbations,
changing the statistical properties of the random field.

5.1 Primordial Black Holes abundance

The statistical properties of the field are encoded in the spectral moments

σ2j (τ) =

∫
d3k

(2π)3
k2jPs(k, τ), (5.1)

where the smoothed power spectrum is given in equation (4.15) after imposing Gaussian
initial conditions (Bζ ≡ 0).

The statistical properties must be evaluated for the entire field at once, therefore in this
case we are not filtering out ultra-long scales (cf. § 4.2). In section 3 we considered each
perturbation separately; in reality the Universe is filled by a superposition of perturbations,
with a distribution of shapes (or, equivalently, of shape parameter α) and typical scales. If
PBHs form from rare events drawn from the tail of the probability distribution of peaks, at
any given time the distribution of α and typical scales for PBH “seeds” is likely to be fairly
narrow. In particular, the typical scale is of the order of the horizon and the higher the peak,
the narrower the distribution of α (see also § 5.2).

As anticipated in § 4.2, the smoothing of the field on small scales should be done on a
scale rhor(τini), where τini is some initial time, much smaller than all the typical scales of the
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entire set of perturbations that will be relevant for PBH formation. The exact value of τini
is not relevant, as long as the condition is satisfied. The smoothing procedure should also
guarantee that the three spectral moments σ0, σ1 and σ2 are finite at initial time. This extra
requirement ensures that spectral moments remain finite at every time and that statistical
properties are well-defined. Any result of peak theory cannot be used unless this preliminary
requisite is satisfied. Note that if statistical properties are evaluated incorrectly because of a
wrong filtering procedure, one could reach incorrect conclusions and thus incorrect inference
of cosmology.

Once spectral moments are well defined, we can construct the spectral parameters

γ(τ) =
σ21(τ)

σ2(τ)σ0(τ)
, R?(τ) =

√
3
σ1(τ)

σ2(τ)
, (5.2)

which completely determine the comoving density of peaks. In fact, by defining the relative
peak height as ν = δpeak,0/σ0, the differential comoving peak density reads [166]

dncom.peak(τ, ν)

dν
=

1

(2π)2R3
?(τ)

e−ν
2/2G (γ(τ), γ(τ)ν) , (5.3)

where the function G(γ, γν) can be approximated by [166]

G(γ, ω) ≈ ω3 − 3γ2ω + [B(γ)ω2 + C1(γ)]e−A(γ)ω
2

1 + C2(γ)e−C3(γ)ω
(5.4)

for 0.3 < γ < 0.7 and for −1 < ω < +∞, keeping the difference between the numerical result
and the analytic estimation below 1%13.

During matter-dominated era, at linear order, the overdensity field grows self-similarly
on every scale, hence all the spectral moments share the same time dependencies and the
spectral parameters of equation (5.2) are time-independent. Therefore, in the large-scale
structure framework, the comoving density of peaks does not depend on the time at which it
is computed. This is not the case during radiation-domination where the magnitude of the
spectral moments diminishes with time because of the suppression of perturbations with high
wave modes k due to pressure effects (see equation (4.4)). Therefore, evaluating equation (5.3)
at different times yield different number densities because the random field itself is different.

The evolution of the field is uniquely determined by the cosmic expansion and pressure
effects, therefore it is possible to compute consistently the comoving peak density at any time
by accounting for these two effects. For convenience we choose to evaluate the differential
physical number density of peaks at horizon crossing (conformal) time (see Sec 3.2), τm:

dnphys.peak (ν, τm)

dν
= a−3m

dncom.peak(ν, τm)

dν
. (5.5)

This is the number density of regions that will collapse and form a PBH at formation
time τf & τm. Notice that, since CPBH formation is not instantaneous, the differential

13The coefficients of equation (5.4) are given by [166]

A(γ) =
5/2

9− 5γ2
, B(γ) =

432

(10π)1/2 (9− 5γ2)5/2
,

C1(γ) = 1.84 + 1.13
(
1− γ2)5.72 , C2(γ) = 8.91 + 1.27e6.51γ

2

, C3(γ) = 2.58e1.05γ
2

.
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physical number density of CPBHs has to be rescaled by a factor a−3f /a−3m , where af = a(τf ).
Numerical simulations show that the the cosmic time of formation tf/tm ' 10 [137], where tm
is the horizon crossing time defined in § 3.2, and therefore τf/τm = af/am ' 3. The ex-
act relation between horizon crossing and formation time is not important, since this factor
cancels out when computing the PBHs abundance today (see section 6, equation (6.4)).

We have already discussed in section 3 that not all the peaks correspond to sites where a
CPBH forms and that we need a threshold criterion to assess which peaks collapse and which
do not. As seen in equations (3.12) and (3.13), in this case the criterion to start gravitational
collapse reads as δpeak,0(τm) > δpeak,0,c(α), where δpeak,0,c(α) depends on the shape of the
perturbation. Since CPBHs are non-relativistic compact objects, their differential energy
density is expected to be written as dρPBH/dν ∝ MPBH(ν)dnpeak/dν. Here there are two
subtleties that enter in MPBH(ν): the time evolution of δpeak,0(τm) and the shape dependence
of the threshold.

Two considerations are in order. First, the amplitude of the peak, δpeak,0, has been
computed considering only cosmic expansion and not pressure effects. Thus the argument
of MPBH should be ν ′ instead of ν, because it refers to the relative amplitude of a field that
has been evolved in time in a different way. On the other hand, if we evaluate the effects of
pressure, i.e., the contribution due the linear transfer function, on scales close to the typical
scale of the perturbation, i.e., for kτ ' 1, we find that T̂LIN ' 0.9. However the required
transfer function in our case is the non-linear one T̂NL. It is not possible to estimate the non-
linear transfer function from the linear one reported in equation (4.4). It has been shown
for instance in Refs. [185–187], that the transfer function at second order in perturbation
theory is not simply the square of the linear transfer function, as one would have näıvely
expected. We leave the derivation of the non-linear transfer function for future work [188],
however here we give a first estimate of these effects. By comparing the profiles obtained
assuming linear theory, i.e., using the linear transfer function, and profiles obtained from our
numerical simulations, we estimate the relative difference between the non-linear and linear
transfer function as the average difference between the density profiles for scales smaller than
the typical scale of the perturbation:

[(
T̂NL − T̂LIN

)2]1/2

T̂LIN
∼

[(
δ̄NL
peak − δ̄LINpeak

)2]1/2

δ̄LINpeak

, (5.6)

where the profiles δ̄NL
peak have been obtained using numerical simulations. Even if the esti-

mation is crude, we find that T̂NL/T̂LIN ' 1.8, 1.5, 1.2 for profiles characterised by α =
0.15, 1.0, 30.0, respectively. In conclusion we find that at horizon crossing, pressure effects
are inefficient at smoothing inhomogeneities on horizon scales at horizon re-entry time simply
because such region was not in causal contact before and effects due to the non-linear growth
of the perturbation have not produce significant deviations from the linear theory. Therefore,
in what follows, we will assume ν ′ ' ν for simplicity.

We also find that the position of the maximum of the compaction function changes
by a factor 10 − 15% towards larger values with respect to the position estimated using
initial conditions (cf. section 3). Therefore the true horizon crossing happens later than
what predicted by initial conditions criteria, even when considering non-linearities (see the
updated version of Ref. [137] for more details). This difference in horizon crossing scales
generates a 20% difference in the horizon crossing time and in the mass contained inside the
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horizon, however these differences will not affect significantly our conclusions because what
really determines the CPBH mass is how much above the critical threshold the perturbation
is.

Second, the threshold is shape-dependent, therefore the approach to get the correct
energy density would be to integrate

d10ρPBH

dνd3J d6H ∝MPBH(ν,J ,H)
d10npeak
dνd3J d6H , (5.7)

where J is a three-dimensional vector containing information on first derivatives (ηj , with
j ∈ {1, 2, 3} in the notation of Ref. [166]) and H is a six-dimensional vector containing
information on second derivatives (ζij , with ij ∈ {11, 22, 33, 12, 13, 23} in Ref. [166]). Since
the estimation of this integral for a population of different perturbations with different shapes
goes beyond the purpose of this paper, in the following we assume that all the peaks share
the same shape, i.e., MPBH(ν,J ,H) = MPBH(ν), thus the same (time-dependent) critical

threshold ν
(α)
c,m = δpeak,0,c(α)/σ0(τm).

Therefore, under these approximation and following Ref. [189], we define the relative
energy density of CPBHs with respect to the energy density of radiation at formation time
as

β(τf ) =
ρPBH(τf )

ρrad(τf )
=

1

ρrad(τf )

∫ ∞

ν
(α)
c,m

dν
dρphys.PBH (ν, τf )

dν

=
1

ρrad(τf )

∫ ∞

ν
(α)
c,m

dν

(
af
am

)−3
MPBH(ν, τm)

dnphys.peak (ν, τm)

dν
.

(5.8)

Given that CPBHs effectively behave as dark matter, we can connect the abundance at initial
time to the constrained abundance fPBH = ρPBH/ρdm, i.e., the fraction of dark matter in
PBHs (assuming that they all form at the time τf ), as [190, 191]

β(τf ) =
ρPBH(τf )

ρrad(τf )
=
g?,ρ(τ0)

g?,ρ(τf )

(
g?,s(τf )

g?,s(τ0)

)4/3 Ωdm,0

Ωrad,0
fPBHaf , (5.9)

where τ0 is the conformal time today, Ωdm,0 and Ωrad,0 are the present dark matter and
radiation densities with respect to the critical density today ρ0c, while g?,ρ and g?,s are
the total number of effective degrees of freedom for the energy density and the entropy
density [192]. Significantly different approximations of equation (5.9) have been used in the
literature; we report here the correct result and we refer the reader to appendix B for its
derivation, our choice of values for the effective degrees of freedom and further comments,
especially on the role of neutrinos. Typical values of initial abundance are β(τf ) ' 10−17

(β(τf ) ' 10−6) for Mhor ' 10−18 M� (Mhor ' 104 M�) and fPBH = 1, explicitly showing
that regions where overdensity perturbations are large enough to collapse are very rare (hence
justifying also our treatment of windows functions in § 4.2 and § 4.3).

The definition in equation (5.8) is accurate only when all the CPBHs form at a given
time (or, equivalently, at a given scale). However, in a realistic scenario, CPBHs form over
some time interval, therefore equations (5.8) and (5.9) should be interpreted as dβ/dτf and
the total abundance of CPBHs would become

βtotf =

∫ τmax

τmin

dτf
dβ

dτf
, (5.10)
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with the condition τm = τf/3, τmin � τini to avoid being biased by the filtering procedure,
and τmax . τeq since we are interested only in PBHs forming during the radiation-dominated
era.

In principle peak theory would suffer from the cloud-in-cloud problem or, in this case,
the black-hole-in-black-hole problem. If CPBHs are generated by a localised peak in the
primordial power spectrum, this problem is unimportant. For a very broad peak or a plateau,
it may in principle be an issue but since CPBHs are exceedingly rare the black-hole-in-black-
hole problem should be much reduced compared to the standard cloud-in-cloud one for dark
matter haloes (see also e.g., Ref. [193]). In the context of large-scale structure this problem
has already been cured in Ref. [194], introducing the so called Excursion Set Peaks formalism.
We leave its implementation to future work.

5.2 The shape of the overdensity peak

Peak theory enables us to connect the average shape of the peaks to the statistical properties
of the random field. Assuming that at x = 0 there is a peak of height ν and averaging over
all possible curvatures and orientations14, the mean value of the overdensity at distance r
from the peak, i.e., the average shape of the peak, can be written as [166]

δ̄peak(τ, r)

σ0(τ)
= νψ(τ, r)− θ (γ(τ), γ(τ)ν)

γ(τ) (1− γ2(τ))

[
γ2(τ)ψ(τ, r) +

∇2ψ(τ, r)

3

]
, (5.11)

where ψ(τ, r) = ξs(τ, r)/σ
2
0(τ) and the function θ(γ, ω) is given by [166]

θ(γ, ω) =
3(1− γ2) + (1.216− 0.9γ4)e−2γ/ω

2

[
3(1− γ2) + 0.45 + ω2

4

]1/2
+ ω

2

(5.12)

and it is accurate for γ ∈ [0.4, 0.7] and ω ∈ [1, 3]. This result is very similar to the average
density profile around a point with the same height ν as the peak but which is not a peak,
in fact in the latter case we have [164, 195]

δ̄no−peak(τ, r)

σ0(τ)
= νψ(τ, r), (5.13)

where equations (5.11) and (5.13) coincide in the limit of high ν, since for high thresholds
virtually all regions are peaks.

Not all peaks share the same shape, therefore we associate a variance of shapes σ2peak(τ, r)

and σ2no−peak(τ, r) to the mean profiles of equations (5.11) and (5.13) (see Ref. [166] for the
explicit form of the variance). For high peaks the variance is small, however far from the
peak the variance grows and it becomes as large as the amplitude of the overdensity itself.
Following Ref. [195], we call this distance the decoherence distance rdec, because at this point
we cannot distinguish any more if we are “in a peak” or not. In the limit of zero shape variance
(σ2peak, σ

2
no−peak ≡ 0) the decoherence distance corresponds to the zero-crossing distance r0

defined in section 3 for the family of profiles under consideration. A more conservative choice

14In principle is not mandatory to average over curvatures and orientations, however deviations from spher-
ical symmetry are suppressed by a factor 1/ν [166], hence they are suppressed for high peaks, as in the cases
of interest. Moreover the numerical simulations we use assume spherical symmetry, therefore our choice is
natural.
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of decoherence distance is given by rm, however the difference between r0 and rm is of O(1)
in our cases, therefore choosing one or the other does not significantly affect our results15.

Since we consider high peaks (or alternatively, rare events), we can neglect the θ(γ, γν)
correction in equation (5.11) and use

ξs(τ, r) = σ20(τ)
δ̄peak(τ, r)

δ̄peak(τ, 0)
, (5.14)

which is valid for scales smaller than the decoherence radius. For distances greater than
the decoherence length, the density fluctuations become “uncorrelated”. In this regime, an
estimate of the two-point correlation function Ξs(τ, r) = ξs(τ, r > rdec) can be obtained, for
instance, by studying the effects of primordial clustering of PBHs [193, 196–201], however
this goes beyond the scope of this article, hence we leave it for future work.

Equivalently, one can also work with the Fourier transform of equation (5.14), i.e., the
smoothed power spectrum, which reads as

Ps(τ, k) =

∫
d3rξs(τ, r)e

−ik·r

= 4π

[
σ20(τ)

∫ rdec

0
dr r2

sin(kr)

kr

δ̄peak(τ, r)

δ̄peak(τ, 0)
+

∫ ∞

rdec

dr r2
sin(kr)

kr
Ξs(τ, r)

]
.

(5.15)

Here we can neglect the second integral in the second line of equation (5.15) because of
the sin(x)/x suppression factor, as long as we consider modes k & kdec = r−1dec, i.e., modes
that play a role in the gravitational collapse. Moreover, all those scales are super-horizon at
horizon crossing time, hence they should be filtered out using the second window function
defined in § 4.2. Equation 5.15 makes evident how an incorrect estimate of the profile of the
peak yields a mis-estimation of the statistical properties of the field. For this reason, in this
work we have used a family of profiles which covers multiple possibilities. In section 6 we
report the constraints on the power spectrum obtained from the entire family.

6 The reconstruction of primordial power spectrum amplitude and shape

We now combine the results from the previous sections, our three pillars, to reconstruct both
the amplitude and the shape of the primordial curvature power spectrum, assuming Gaussian
initial conditions.

By combining equation (4.15) (in the Gaussian limit, Bζ ≡ 0) and equation (5.15), and
evaluating both at horizon crossing, we obtain

Ŵ ′
2

s(k)T̂ 2
NL(τm, k)Pζ(k) =

81

16

(
amHm

k

)4

× 4πσ20(τm)

∫ rt

0
dr r2

sin(kr)

kr

δ̄peak(τm, r)

δ̄peak(τm, 0)
, (6.1)

where we choose the typical scale of the perturbation as the decoherence radius, i.e., rdec = rt.
In the following we concentrate on wavemodes ranging from kt = r−1t to 5kt, which we
expect to be the modes relevant for the collapse. Alternatively, we will also consider the
“almost scale-invariant” power spectrum Pζ(k) = k3Pζ(k)/(2π2), where Pζ is obtained from
equation (6.1).

15In general the ratio r0/rm varies from 1 to ∞, however it has been shown that shapes with a similar
behaviour in the region r . rm, but a different one in the outward region, have almost the same threshold.
The variation is at most few percent even when r0/rm changing significantly [137].
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Regarding the window functions, according to § 4.2, we will have a window function on
super-horizon scales, implying that the second term on the RHS of equation (5.15) becomes

negligible, and one, Ŵ ′s, on scales much smaller than the scales of the peak, which appear
in the LHS of equation (6.1). In the range of wave modes of interest here Ŵ ′s(k) ≡ 1. We
approximate the non-linear transfer function T̂NL as the linear transfer function corrected by
the numerical factors found using numerical simulations and reported in § 5.1.

The statistical properties of the field that generates the collapsing peaks can be esti-
mated given the assumed shape of the peaks. The spectral moments in equation (5.1) can
be computed at any time as

σ20(τ) =

∫
d3k

(2π)3
Ps(k, τ)e−ik·r

∣∣∣∣
r=0

= ξs(τ,0),

σ21(τ) = · · · = −∇2ξs(τ,0), σ22(τ) = · · · = ∇2∇2ξs(τ,0),

(6.2)

therefore, using equation (5.14), we can write the spectral parameters in equation (5.2) as

γ(τ) = − ∇2δpeak(τ,0)√
δpeak(τ,0)∇2∇2δpeak(τ,0)

, R?(τ) =

√
−3

∇2δpeak(τ,0)

∇2∇2δpeak(τ,0)
. (6.3)

Finally, for every peak profile, we can derive the variance of the overdensity field at horizon
crossing σ0(τm) generating a given fraction of dark matter in PBHs by using equations (5.8)
and (5.9):

fPBHρ0cΩdm,0 =
K′(α)Mhor(τm) [σ0(τm)]γcrit

4π2R3
?(τm)

×

×
∫ ∞

ν
(α)
c,m

dν
(
ν − ν(α)c,m

)γcrit

G (γ(τm), γ(τm)ν) e−ν
2/2,

(6.4)

where the variance σ0(τm) appears also in the expression for the critical threshold ν
(α)
c,m, com-

puted using the peak height obtained in numerical simulations. Notice that the g? factors
simplifies when combining equations (5.8) and (5.9). The variance σ0 obtained from the
equation (6.4) is consistently 10 − 30% smaller than the typical Press-Schechter-like esti-
mate σPS0 = δpeak,0,c/

(√
2Erfc−1(βf )

)
, where Erfc−1 is the inverse of the complementary

error function, for all the profiles and masses of interest. Therefore, using Press-Schechter
overestimates the true amplitude of the curvature power spectrum by a factor 20−70% with
respect to the prediction from Peak Theory.

In this work we consider CPBHs with masses between 10−17 M� and 103 M�, even if our
method applies also to different mass ranges. This mass range includes all the PBHs which
have not evaporated by the present-day and for which we have observational constraints.
We assume that all the CPBHs share the same formation time, hence that the primordial
curvature power spectrum has a localised feature such as a spike. To connect typical scales
and the compact object mass, we assume that all the CPBHs exceeded the critical threshold
for formation by the same amount, which we choose to be (δI − δI,c) = 0.01, generating
CPBHs with masses MPBH = Mhor(τm), leaving the estimate of the CPBH initial mass
function for future work. Following our conventions, the CPBHs mass is given by

MPBH = Mhor(τm) =
a2eq
4teq

k−2t , (6.5)
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Figure 6: Maximum allowed amplitude of the primordial curvature power spectrum. Cur-
rent (solid lines) and forecasted (dashed lines) constraints from the cosmic microwave back-
ground (CMB, 1σ CL) [183], spectral distortions (FIRAS and PIXIE) [98], gravitational
waves (PTA, SKA and LISA) [108], Silk damping (SD) [99], quasar light curves (QSO) [102]
and PBHs (the thin and thick orange lines correspond to Ref. [121] and [126], respectively).
The red shaded region is the result of this work. It shows upper limits from PBH abun-
dance for the range of profiles with shape parameter α ∈ [0.15, 30.0], considering the most
recent constraints on the maximum allowed fraction of PBHs. We report our constraint for
PBHs masses ranging from MPBH = 10−17 M� (kt ' 1015 Mpc−1) to MPBH = 103 M�
(kt ' 105 Mpc−1).

where aeq and teq are the scale factor and cosmic time at matter-radiation equality, respec-
tively, and kt is related to the typical scale of the collapsing perturbation (see § 4.2). Notice
that relaxing this assumption does not have any impact on the constraint itself, in fact dif-
ferent choices of (δI − δI,c) induce a rescaling in the relation linking the CPBH mass to the
characteristic scale of the perturbation that generate it. Notice that a factor 10 of difference
in (δI−δI,c) generates a factor 3 of difference in MPBH, therefore the connection between typ-
ical scales of the perturbation and the CPBHS masses is not extremely sensitive to changes
in the value of the critical threshold.

In the following we will explicitly consider two extreme and one intermediate cases,
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α = 0.15, α = 1 and α = 30, corresponding to very steep, a so-called “Mexican-hat”
shape and very flat peaks, respectively. In figure 6 we show the maximum amplitude of
the primordial curvature power spectrum computed using equation (6.1) along with the
previous upper bound obtained using an approximated version of this procedure [121, 126]
and current and future upper bounds coming from different observables16. This should be
interpreted as the upper envelope of a family of spikes in the primordial curvature power
spectrum each of which generates CPBHs of a given (monochromatic) mass falling in the
range 10−17 M� < MPBH < 103 M�.

Compared to previous analyses, our more accurate procedure, which reduces the num-
ber of assumptions, gives stronger constraints on the maximum amplitude of the power
spectrum. The improvement is approximately one order of magnitude on the scales of inter-
est, from 105 Mpc−1 to 1015 Mpc−1, with tighter constraints for steeper profiles. In figure 6
the red band includes all the peaks profiles considered here, for the maximum fraction of
dark matter in PBHs fmax

PBH allowed by observations (see e.g., figure 1 of Ref. [105]).
Even if the observational limits on fPBH(MPBH) are very irregular and vary of several

orders of magnitude between different masses, these differences are almost erased in figure 6
because at leading order σ0 ∝ (− log fPBH)−1/2, as can be estimated using the Press-Schechter
result. Therefore the improvements on the modelling are much more important than im-
provements on the observational constraints. Moreover, given that abundance constraints
for PBHs with extended mass distributions are typically of the same order of magnitude of
those for monochromatic ones [60–62], the use of the former will not shift significantly our
predictions.

Figure 6 also shows that the range of power spectrum amplitudes needed to generate
PBHs as (a component of) the dark matter, can be probed by future experiments, as SKA and
LISA. This enables interesting synergies between these different experiments and probes. For
example, in case of PBHs detection, of, say, ∼ 1 M� by LIGO, if these are to be CPBHs then
SKA should see the signature of the corresponding stochastic background of gravitational
waves generated by large curvature fluctuations. A non-detection of this signal on the other
hand would indicate a different origin for PBHs, such as generation by topological defects.

On the other hand, the weak sensitivity to the abundance fraction fPBH already suggests
that the existence of one single CPBH in our Universe is not compatible with a scale-invariant
curvature power spectrum. The fraction of dark matter made of a single PBH can be written
as

f singlePBH =
ρPBH,0

ρdm,0
=
nPBHMPBH

ρdm,0
=
MPBH/VU
ρdm,0

, (6.6)

where VU is the proper volume of the Universe17. Typical values of f singlePBH ranges form f singlePBH =

3.2× 10−39 for MPBH = 10−17 M� to f singlePBH = 3.2× 10−19 for MPBH = 103 M�. In figure 7
we show the minimum amplitude of the primordial power spectrum necessary for generating

16To compute certain constraints, for instance those coming from spectral distortions and GWs, it is nec-
essary to assume a shape of the primordial curvature power spectrum. We refer the interested reader to
Ref. [108], where the change in the constraints assuming different power spectra shapes is shown. Since many
of these constraints are forecast and the specifics of the instruments are unknown, in this work we use the
curves found in Ref. [108], obtained assuming a curvature power spectrum that grows as Pζ(k) ∝ k4.

17The proper volume of the Universe is given by VU = 4π

∫ ∞

0

dz
χ2(z)

(1 + z)3H(z)
' 1011 Mpc3, where χ is

the comoving distance, and it is approximately 100 times smaller than the comoving volume of the Universe
Vc = 4πχ3(∞)/3 ' 1013 Mpc3.
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Figure 7: Same constraints of figure 6. Constraints from PBH abundance obtained using
our methodology are indicated by the red shaded region and they assume the maximum
abundance allowed by observations (fPBH = fmax

PBH), while the blue shaded region represents

the constraints for the case where there is only one PBH in our Universe, i.e., fPBH = f singlePBH .

a single PBH in the whole Universe, also in this case assuming a spike in the primordial
curvature power spectrum.

Thus, even the existence of one single CPBH in the whole Universe is strongly incom-
patible, by orders of magnitude, with a simple scale invariant power spectrum at the level
predicted by CMB observations (and extrapolated to these small scales). Therefore the detec-
tion of one single CPBH will reveal a completely different regime in the inflationary dynamic:
it will indicate that the power spectrum has to rise from Pζ ' 10−9 to Pζ ' 10−3 − 10−2,
almost independently from the abundance of these objects, if they exist at all. Conversely, a
null result by future experiments (SKA or LISA) in their target region of Fig. 6 will rule out
the possibility that PBHs might have formed via the collapse of primordial fluctuations.

Moreover, by using equation (6.1), we can also compute the shape of the spike for
modes k & kt comparable to or slightly larger than the typical mode kt. As we show in
figure 8, the power spectrum to the right of the spike becomes increasingly steeper when α
increases, i.e., when the profile becomes flatter. Determining the shape of the power spectrum
allow us to determine the shape parameter α, which together with the peak amplitude Pζ(kt)

– 30 –

[ September 30, 2019 at 6:32 – classicthesis v4.6 ]



10−5 10−1 103 107 1011 1015

k
[
Mpc−1

]
10−10

10−8

10−6

10−4

10−2

P ζ
(k

)

PTA

SKA

LISA

FIRAS

PIXIE

QSO

SD PBHs

CMB

α = 0.15

(m,n) = (2, 0) (m,n) = (4, 0) (m,n) = (5, 2)

10−5 10−1 103 107 1011 1015

k
[
Mpc−1

]
10−10

10−8

10−6

10−4

10−2

P ζ
(k

)

PTA

SKA

LISA

FIRAS

PIXIE

QSO

SD PBHs

CMB

α = 30

(m,n) = (2, 0) (m,n) = (4, 0) (m,n) = (5, 2)

MPBH = 10−15 M� MPBH = 10 M�

Figure 8: Shape of the reconstructed primordial curvature power spectra for steep (left
panel) and flat profiles (right panel). In both cases we report the profile for MPBH =
10−15 M� (light blue line) and MPBH = 10 M� (red line). To the right of the peak, the
profile is reconstructed using equation (6.1), and to the left is computed assuming different
model for the growth of the power spectrum (see text for details).

fix σ0, thus the abundance fPBH of CPBHs produced by the spike in the primordial curvature
power spectrum. Therefore, without knowing the shape of the spike, it is not possible to
uniquely determine if CPBHs form a relevant fraction of dark matter.

In figure 8 we show possible shapes of the curvature power spectrum profile from cos-
mological scales up to the scale of the peak. At cosmological scales (k . 1 Mpc−1) the
primordial curvature power spectrum is very well constrained to be almost scale invari-
ant, namely Pζ(k) = As (k/kpivot)

ns−1, where As is the scalar perturbations amplitude,
ns is the scalar tilt and kpivot is the pivot scale18. At intermediate scales (1 Mpc−1 .
k . kt), the primordial curvature power spectrum determines the clustering properties of
CPBHs [193, 196–201]. Since a full modelling of this goes beyond the scope of this paper,
we phenomenologically parametrise the power spectrum in this range of scales using the for-

mula P(m,n)
ζ (k) = Bkm logn(k)+C, where B and C are fitting parameters. Ref. [108] claimed

that the choice (m,n) = (4, 0) represents the steepest rise of the primordial power spectrum
in the context of single-field inflation, however it was later shown that an even steeper rise,
characterized by the parameters (m,n) = (5, 2), is also possible [203]. We show in figure 8
both options, along with a third one, characterized by a milder rise (m,n) = (2, 0). These
different curves effectively change the clustering properties of CPBHs which can in principle
be determined observationally. As stated previously, to compute some of these constraints
we need to assume a shape of the curvature power spectrum. The constraints reported in the
figure are obtained in Ref. [108] for the (4, 0) case. While we expect that in the (5, 2) case
the constraints do not change significantly, the amount of change in the shallower growth
case (2, 0) might be larger.

In conclusion, we summarize here the relevant steps to follow to reconstruct both am-
plitude and shape of the primordial curvature power spectrum:

18According to the latest Planck collaboration results [202], we have log(1010As) = 3.047 ± 0.014 and
ns = 0.9665± 0.0038, measured with kpivot = 0.05 Mpc−1.

– 31 –

[ September 30, 2019 at 6:32 – classicthesis v4.6 ]



1. choose an overdensity peak profile. In principle this should not be an arbitrary choice
but in the absence of a complete prediction for the peak profile we advocate using one
from the family of equation (3.5);

2. use peak theory’s result in equation (5.14) to connect the overdensity peak profile and
the two-point correlation function, thus the power spectrum combining equations (4.15)
and (5.15);

3. in absence of a exact prediction of the non-linear transfer function T̂NL, correct the
linear one using the numerical factors calibrated on the numerical simulations. For the
family of profiles we adopted, these values reads as T̂NL/T̂LIN ' 1.8, 1.5, 1.2 for profiles
characterised by α = 0.15, 1.0, 30.0;

4. after estimating the spectral parameters γ(τm) and R?(τm) from the profile shape, com-
pute the variance at horizon crossing σ0(τm) by solving equation (6.4). The amplitude
of the peak (in the ν variable) has to be computed using numerical simulations. The
PBHs abundance value fPBH has to be set for the mass of the corresponding compact
object which is related to the horizon crossing time via, for instance, equation (6.5);

5. finally, the peak maximum amplitude of figures 6 and 7 is obtained evaluating equa-
tion (6.1) at the wavemode kt = r−1t ;

6. the peak shape (e.g., red and cyan lines in figure 8) is obtained by evaluating equa-
tion (6.1) at wavemodes kt ≤ k ≤ 5kt for scales smaller than the typical scale of the
perturbation. For scales greater than the typical scale of the perturbation, match the

Pζ at maximum to one of our P(m,n)
ζ models.

7 Conclusions

In the model where Primordial Black Holes (PBHs) form from large primordial curvature
perturbations, CPBHs, PBH abundance can be used to set limits on the amplitude of the
primordial power spectrum of perturbations on scales that are not easily accessible by other
probes. However, making this connection requires a detailed modelling of PBHs collapse and
formation in a cosmological context. We improve upon previous literature by eliminating
a series of approximations used so far. It turns out that the accuracy in the modelling is
(much) more important than the precision on the constraints on the PBH abundance, further
motivating our effort.

In this work we set the connection between primordial power spectrum and PBH abun-
dance on solid theoretical grounds. To achieve this goal we have, for the first time, combined
three key inputs to the problem: (i) the numerical relativistic simulations, to assess the
conditions under which CPBHs of a given mass form; (ii) the cosmology connection, to link
the properties of individual overdensity peaks able to create CPBHs to the statistics of the
underlying cosmological random field; and (iii) Peak theory, to interpret PBH abundance in
terms of a primordial amplitude of the power spectrum of a cosmological density field.

Our major results can be summarised as follows. The first four results are methodolog-
ical, the last two are new constraints.

1. Full non-linear results for the evolution of a curvature perturbation must be used, for
which numerical simulations are crucial. Even if at initial time the ζ-curvature pertur-
bation (eventually giving rise to a CPBH) and its gradients are small (and therefore
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the equations can be linearised), at horizon crossing this is not the case any more.
In fact, using a linear approximation underestimates the real size of the perturbation
(and hence the mass enclosed in the horizon) by a relatively large factor (up to ∼ 6),
depending on the shape of the perturbation: steeper perturbation profiles are most
dramatically affected (see § 3).

2. There are three scales involved in the problem to be compared to the horizon crossing
scale of the perturbation. Two of which are physical, one is a mathematical require-
ment. One (small) scale is the one necessary to define a smoothing scale to make the
underlying overdensity field at least differentiable and to define in it peaks and troughs.
This scale is also necessary to define finite spectral moments of the field. One larger
scale is the size of the sound horizon, below which pressure gradients smooth out per-
turbations. Finally scales well above the horizon at all times during the collapse should
not influence the dynamics. The first scale is not physical, it is a mathematical opera-
tion and we have some freedom to decide what “smoothing” should be used. We argue
that it should be smaller than the typical scale of the perturbation of interest in such a
way that its specific choice should not influence the description of the dynamical evo-
lution of a perturbation. The second scale is instead physical: pressure effects damp
perturbations on scales smaller than the sound horizon. At horizon crossing this is
comparable to the size of the perturbation itself. In our approach this is accounted for
as the evolution of the collapse is modelled numerically (see appendix A for details).
Finally, scales that are well above the horizon at all times during formation do not
influence sub-horizon dynamics. The collapse is not instantaneous so perturbations of
scales above but comparable to the horizon at a given time might influence the col-
lapse at a later time. Nevertheless, ultra-long scale perturbations associated to modes
well above the horizon throughout the CPBH formation and collapse must appear as a
constant background, hence should not play any role in determining whether a CPBH
forms or not.

3. Non-linearities are important also in the process of smoothing. In this work we rec-
ommend to perform the smoothing in physical coordinates, to correctly include the
fact the curvature might be not negligible. In this sense, there is an ambiguity on
which field should be smoothed, since smoothing the curvature or the overdensity field
is not equivalent, as it is in linear theory. Moreover, the importance of non-linearities
suggests that also non-Gaussianities might be important, in fact we proved in § 4.3
that the two-point function of the overdensity field receives contributions from all the
n-point functions of the ζ-curvature field because of the non-linear relation between
overdensity and curvature.

4. While numerical simulations can follow one perturbation at the time, the Universe
is filled by a superposition of perturbations. Peak theory connects the statistics of
a smoothed (Gaussian) random field defined by its power spectrum to the statistical
distribution of its local maxima (above a given threshold). By identifying these local
maxima with peaks of initial overdensity perturbations, the results from numerical
simulations (especially the conditions on the peak height for collapse to a BH) can
be used to derive the abundance of collapsed objects. Not all the peaks correspond
to sites where a CPBH form; numerical simulations are key in defining a threshold
criterion to assess which peaks collapse and which do not. This criterion depends
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also on the shape of the initial perturbation. Peak theory then enables us to connect
the average shape of the peaks and its variance to the statistical properties of the
random field and thus make a statistical connection to the numerical simulation results.
Future improvements in Peak theory, e.g., accounting for the “black-hole-in-black-hole”
problem for models characterised by a very flat power spectrum, will certainly provide
an even more accurate estimate of CPBHs abundance. Inclusion of non-Gaussianities
will also contribute to increase the accuracy.

5. We show in figure 6 that the modelling done in the previous steps is fundamental
in determining the correct constraint on the maximum amplitude of the primordial
curvature perturbations power spectrum. In particular, our more accurate approach,
which resorts to less approximations, for instance in the estimation of the variance or of
the window and transfer functions, yields constraints are one order of magnitude tighter
than what was previously estimated, for the entire range of modes or, equivalently, for
a wide range of CPBHs masses.

6. The existence of CPBHs generated from primordial perturbations, we confirm, is in-
compatible with a scale-invariant power spectrum as measured at cosmological scales
(see figure 7). Moreover we show that the detection of one single CPBHs would signal
a significant departure from the standard slow-roll inflationary scenario.

7. The method presented in this work provides also an alternative way to probe the for-
mation mechanism of PBHs. If PBHs are detected and no boost in the primordial
curvature power spectrum is found by SKA or LISA, for instance by detecting a gravi-
tational waves background generated by the same large scalar perturbation that created
the PBHs, then an alternative PBH formation mechanism must be at play, e.g., cosmic
topological defects. In this context it is crucial to find new ways to probe the origin
(end-point of stellar evolution or primordial) of BHs detected by current and future
gravitational waves observatories, for instance cross-correlating galaxy and gravita-
tional waves maps [204–206], measuring BHs binaries eccentricity [207], the BH mass
function [208, 209] and the BHs merger rate [44, 46], or using fast radio burst [210].

8. While here we have concentrated on scales comparable to the typical peak size, in
principle our method can be extended to constrain larger scales, in the intermediate
regime between standard cosmological scales and typical peaks size, via primordial
clustering of PBHs [193, 196–201]. We have illustrated this in figure 8 and will be
presented elsewhere.

This paper highlights that the details of the connection between the limits on the PBHs
abundance, fPBH, and the primordial curvature power spectrum are much more important
than the limits on the abundance themselves. Nevertheless many of the results presented in
this work can be applied to estimate the CPBHs abundance from a given primordial curvature
power spectrum, i.e., the way back. In particular, our work covers some key aspects up to
the time of CPBHs formation. However there are many others subtleties involved in that
estimation, for instance the modelling of processes involving the CPBHs from the time of
formation to today, e.g., the modelling of CPBHs accretion or CPBHs clustering, that are
not addressed. For this reason the way back is a very delicate issue. Even if our work does
not treat those aspects, we believe it is of value as it still provides the first key steps to obtain
the correct CPBHs abundance today.
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To conclude, the results presented in this work represent a remarkable example of how
both the existence and the non-existence of one of the most popular dark matter candidates
can be used in cosmology. In particular, PBHs have the potential to probe 10 order of
magnitude in terms of scales or, alternatively, 20 extra e-folds, shedding new light on the
inflationary paradigm [211].
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A Numerical simulations

The results for the threshold of PBH formation used in this paper to reconstruct the shape
of the power spectrum, which allows PBHs to account for the whole dark matter, have
been obtained with numerical simulation of gravitational collapse, stating from the initial
conditions described in § 3.1. The numerical code used is the same of Refs. [133–137], which
has been fully described previously and therefore we give only a brief outline of it here.

It is an explicit Lagrangian hydrodynamics code with the grid designed for calculations
in an expanding cosmological background. The basic grid uses logarithmic spacing in a
mass-type comoving coordinate, allowing it to reach out to very large radii while giving finer
resolution at small radii necessary to have a good resolution of the initial perturbation. The
initial conditions – initial data obtained as numerical solutions – are specified on a space-like
slice at constant initial cosmic time tini defined as ainiHinir̃m = 10 while the outer edge of
the grid has been placed at 90Rm (where r̃m and Rm have been defined in § 3.2), to ensure
that there is no causal contact between it and the perturbed region during the time of the
calculations. The initial data are evolved using the Misner-Sharp-Hernandez equations so
as to generate a second set of initial data on an initial null slice which are then evolved
using the Hernandez-Misner equations. During the evolution, the grid is modified with an
adaptive mesh refinement scheme (AMR), built on top of the initial logarithmic grid, to
provide sufficient resolution to follow black hole formation down to extremely small values
of (δI − δI,c).

The critical threshold δI,c is found from the evolution of 2M/R as function of time, look-
ing at the evolution of the peak of this ratio: when δI > δI,c, the peak is increasing during
the collapse, reaching the condition for the apparent horizon R(r, t) = 2M(r, t) identifying
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Figure 9: Left panel: dynamical behaviour of 2M/R against R/Rm plotted at different
time-slice for the critical solution of a zero mass black hole when δI = δI,c obtained from
equation (3.12) when α = 1 (Mexican-Hat shape). The dashed line corresponds to the initial
time-slice, and the peak of 2M/R is initially decreasing when the perturbation is still ex-
panding, reaching afterwards nearly equilibrium state moving inward when the perturbation
is collapsing. Figure taken from Ref. [135]. Right panel: numerical behaviour of the critical
threshold δI,c against the corresponding behaviour of the critical peak amplitude δpeak,0 for
different shapes (0.15 ≤ α ≤ 30). Figure taken from Ref. [137].

the formation of a BH (see e.g., Ref. [140, 141]), while when δI < δI,c, the peak is decreas-
ing, no apparent horizon forms and the collapsing overdensity bounces into the expanding
Friedmann-Robertson-Walker Universe. In the left panel of figure 9 we show the behaviour
of 2M/R when δI ' δI,c, where the dashed line is the time slice of the initial conditions.
During the first stage of the evolution the perturbation is still expanding and the peak is
decreasing, as can be seen from the following time slices, while when the perturbation starts
to collapse, the peak of 2M/R is in equilibrium, moving towards the centre with an almost
constant value, because of the very close equilibrium between gravity and pressure one has
at the threshold (δI ' δI,c). During this nearly equilibrium phase, matter is spread outward
from a relativistic wind, keeping the shrinking region with an almost constant compactness
(see Ref. [135] for more details).

As we have seen in § 3.2, δI(rm, tm) ' (2M/R)peak and one can calculate the amplitude
of δI,c looking for this equilibrium solution characterized by self-similar behaviour. This
explains also the nature of the critical collapse characterizing PBH formation when δI ' δI,c,
with the mass spectrum given by the scaling law of equation (3.12) (see Ref. [136] for more
details).

In the right panel of figure 9 we can see the numerical relation between the threshold δI,c
and the corresponding critical value of the peak amplitude δpeak for cosmological perturba-
tions with the energy density profile obtained from equation (3.5), for the profile steepness
parameter varying between α = 0.15 (high δpeak,0, low δI,c), and α = 30 (low δpeak,0, high δI,c)
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corresponding to the lowest and the largest value of α for the simulated profiles, respectively.
Because we are considering here only shapes characterized by one parameter, each value

of δI,c is associated to a different value of the peak amplitude δpeak,0. The inverse behaviour
between the two quantities is a key feature of the effect of the pressure gradients on the
collapse, measuring the steepness of the profile, which can be simply measured by the ra-
tio (r̃0/r̃m) = (3/2)1/2α (if the profile is characterized by more than one parameter the mea-
sure of the steepness is more complicated). In general, when the profile of the compaction
function is steeper, which corresponds to a broad profile of the density contrast (α� 1), as
one can see from figures 1 and 2, the pressure gradients modify significantly the shape during
the non-linear evolution of the collapse after horizon crossing. This gives a larger value of
the threshold δI,c which accounts for the additional excess of mass necessary to compensate
the mass that will be lost during the collapse, up to the maximum value of δI,c = 2/3 corre-
sponding to a top-hat shape (r̃0/r̃m = 1). On the contrary, if the profile of the compaction
function is not very steep (α . 1), which corresponds to a steep profile of the density con-
trast, the pressure gradients do not modify substantially the shape during the collapse, with
a smaller value of δI,c, bounded by the numerical value δI,c ' 0.4135 (Harada-Yoo-Kohri
limit) found analytically in Ref. [212], where the role of the pressure gradients was neglected.
The connection between the shape and the value of the threshold has been carefully analysed
in Ref. [137].

B Counting the relativistic degrees of freedom

In this appendix we report the exact calculation of how the energy density of radiation scales
from the Early Universe until today, since it is often presented in an approximated version.
We review the main steps to derive equation (5.9), more details can be found in several
classical books, see e.g., Ref. [213].

Consider a thermal bath of photons with temperature Tγ . Deep in radiation-dominated
era there were other relativistic species in thermal equilibrium with photons (at least all or
part of Standard Model particles, depending on the temperature), each characterised by gj
internal degrees of freedom. In principle the existence of other relativistic particles decoupled
from photons is possible, hence in the following we account also for them, assuming that
they have a thermal distribution with temperature Tj 6= Tγ . The energy density and entropy
density of the entire fluid read as

ρrad(Tγ) =
π2

30

(kBTγ)4

(~c)3
g?,ρ(Tγ), srad(Tγ) =

2π2

45

k4BT
3
γ

(~c)3
g?,s(Tγ), (B.1)

where kB is the Boltzmann constant, ~ is the reduced Planck constant, c is the speed of light
and the total number of effective degrees of freedom for energy and entropy densities are
defined by

g?,ρ(Tγ) =
∑

bosons

gj

(
Tj
Tγ

)4

+
7

8

∑

fermions

gj

(
Tj
Tγ

)4

,

g?,s(Tγ) =
∑

bosons

gj

(
Tj
Tγ

)3

+
7

8

∑

fermions

gj

(
Tj
Tγ

)3

,

(B.2)

where the sum runs over relativistic species only because their contribution dominates over
that of non-relativistic ones.
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Number of Relativistic
Neutrinos Today

g?,ρ(T0) g
4/3
?,s (T0)

0 2.00 2.52
1 2.45 3.64
2 2.91 4.86
3 3.36 6.16

Table 1: Total number of effective degrees of freedom for energy density g?,ρ(T0) and en-

tropy density g
4/3
?,s (T0) today. Values are obtained using equation (B.2), neutrino tempera-

ture Tν/Tγ = (4/11)1/3 and gν = 2 for every neutrino family.

Using the conservation of entropy g?,sa
3T 3 = const. we find the scaling of temperature

in an expanding Universe. Therefore the energy density of radiation at any time can be
consistently related to the radiation energy density today ρrad(T0) writing equation (B.1) as

ρrad(Tγ) = ρrad(T0)

(
Tγ
T0

)4 g?,ρ(Tγ)

g?,ρ(T0)
= ρrad(T0)

g?,ρ(Tγ)

g?,ρ(T0)

(
g?,s(T0)

g?,s(Tγ)

)4/3(a0
aγ

)4

, (B.3)

where T0 is the photon temperature today, a0 and aγ are the scale factors today and of when
photons had temperature Tγ , respectively. This relation is then used to obtain equation (5.9).
Notice that the approximation g?,ρ ∼ g?,s has often been taken in the literature.

Now we want to consider the neutrino contribution to equations (B.3) and (5.9). Even if
we have not measured neutrino masses yet, we know from neutrino oscillation that at least two
of them are massive and we measured the mass gap between different mass eigenstates [214]:

m2
2 −m2

1 = 75 (meV)2, |m2
3 −m2

l | = 2519 (meV)2, (B.4)

where ml = m1 in the normal hierarchy scenario (m1 < m2 < m3) while ml = m2 in the
inverted hierarchy scenario (m3 < m1 < m2). Massive neutrinos become non-relativistic
around redshift 1 + znr ' 2× [mν/(1 meV)] [215], therefore in the past at least two neutrinos
became non-relativistic, even when the lightest mass eigenstate is massless, i.e., when m1 = 0
and m3 = 0 for normal and inverted hierarchies, respectively.

In the following we assume that all the neutrinos became non-relativistic, since this
happens even for reasonably low values of the lightest state, e.g., mν ' 1 meV. Therefore,
when considering the energy density in radiation today, we have to include only photons,
corresponding to g?,ρ(T0) = 2.

On the other hand, when estimating the degrees of freedom for the entropy we have to be
more careful, in fact the entropy conservation argument g?,s(Tγ)a3γT

3
γ = g?,s(Tnr)a

3
nrT

3
nr can be

used until when neutrinos were relativistic, the temperature of the photon bath was Tnr and
the scale factor anr. Afterwards they will not contribute to the entropy, however they “disap-
pear” without warming the photons, as it happens with particles annihilation. Therefore af-
ter the non-relativistic transition of neutrinos, photon temperature evolves as a3nrT

3
nr = a30T

3
0 .

For this reason, it is more accurate to report g?,s(Tnr) in equation (B.3) or, alternatively, to
compute g?,s(T0) considering neutrino as relativistic particles, i.e., g?,s(T0) = 3.909.

We report in table 1 the total number of effective degrees of freedom for energy and
entropy density. As it can be seen, the relative difference in assuming 0 or 1 relativistic

neutrinos today is 23% and 44% for g?,ρ and g
4/3
?,s , respectively. On the other hand, the relative
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difference we have assuming 3 relativistic neutrino becomes 68% and 144% for g?,ρ and g
4/3
?,s ,

respectively, compared to the case of no relativistic neutrinos today. In our calculation we
use g?,s(T0) = 3.909 and g?,ρ(T0) = 2.0.
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C. Simpson, T. Theuns, E. A. Gonzáles-Solares, A. Adamson, S. Dye, N. C. Hambly, P. Hirst,
M. J. Irwin, E. Kuiper, A. Lawrence, and H. J. A. Rttgering, “A luminous quasar at a
redshift of z = 7.085”, Nature 474 (Jun, 2011) 616, arXiv:1106.6088.

[26] X.-B. Wu, F. Wang, X. Fan, W. Yi, W. Zuo, F. Bian, L. Jiang, I. D. McGreer, R. Wang,
J. Yang, Q. Yang, D. Thompson, and Y. Beletsky, “An ultraluminous quasar with a
twelve-billion-solar-mass black hole at redshift 6.30”, Nature 518 (Feb, 2015) 512,
arXiv:1502.07418.

[27] E. Baados, B. P. Venemans, C. Mazzucchelli, E. P. Farina, F. Walter, F. Wang, R. Decarli,
D. Stern, X. Fan, F. B. Davies, J. F. Hennawi, R. A. Simcoe, M. L. Turner, H.-W. Rix,
J. Yang, D. D. Kelson, G. C. Rudie, and J. M. Winters, “An 800-million-solar-mass black hole
in a significantly neutral Universe at a redshift of 7.5”, Nature 553 (Jan, 2018) 473,
arXiv:1712.01860.

[28] A. Katz, J. Kopp, S. Sibiryakov, and W. Xue, “Femtolensing by dark matter revisited”,

– 40 –

[ September 30, 2019 at 6:32 – classicthesis v4.6 ]



Journal of Cosmology and Astroparticle Physics 2018 no. 12, (Dec, 2018) 005,
arXiv:1807.11495.

[29] K. Griest, A. M. Cieplak, and M. J. Lehner, “Experimental Limits on Primordial Black Hole
Dark Matter from the First 2 yr of Kepler Data”, The Astrophysical Journal 786 no. 2,
(2014) 158, arXiv:1307.5798.

[30] H. Niikura, M. Takada, N. Yasuda, R. H. Lupton, T. Sumi, S. More, A. More, M. Oguri, and
M. Chiba, “Microlensing constraints on primordial black holes with Subaru/HSC Andromeda
observations”, Nature Astronomy 3 (Jun, 2019) 524–534, arXiv:1701.02151.

[31] The EROS-2 Collaboration, P. Tisserand et al., “Limits on the Macho content of the
Galactic Halo from the EROS-2 Survey of the Magellanic Clouds”, A&A 469 no. 2, (2007)
387–404, arXiv:astro-ph/0607207.

[32] S. Calchi Novati, S. Mirzoyan, P. Jetzer, and G. Scarpetta, “Microlensing towards the SMC: a
new analysis of OGLE and EROS results”, Monthly Notices of the Royal Astronomical Society
435 no. 2, (2013) 1582–1597, arXiv:1308.4281.

[33] The MACHO Collaboration, C. Alcock et al., “MACHO Project Limits on Black Hole
Dark Matter in the 1-30 M� Range”, The Astrophysical Journal Letters 550 no. 2, (2001)
L169, arXiv:astro-ph/0011506.

[34] E. Mediavilla, J. A. Munoz, E. Falco, V. Motta, E. Guerras, H. Canovas, C. Jean, A. Oscoz,
and A. M. Mosquera, “Microlensing-based Estimate of the Mass Fraction in Compact Objects
in Lens Galaxies”, The Astrophysical Journal 706 no. 2, (2009) 1451, arXiv:0910.3645.

[35] P. N. Wilkinson, D. R. Henstock, I. W. A. Browne, A. G. Polatidis, P. Augusto, A. C. S.
Readhead, T. J. Pearson, W. Xu, G. B. Taylor, and R. C. Vermeulen, “Limits on the
Cosmological Abundance of Supermassive Compact Objects from a Search for Multiple
Imaging in Compact Radio Sources”, Phys. Rev. Lett. 86 (Jan, 2001) 584–587,
arXiv:astro-ph/0101328.

[36] M. Zumalacárregui and U. Seljak, “Limits on Stellar-Mass Compact Objects as Dark Matter
from Gravitational Lensing of Type Ia Supernovae”, Phys. Rev. Lett. 121 (Oct, 2018) 141101,
arXiv:1712.02240.

[37] B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, “New cosmological constraints on
primordial black holes”, Phys. Rev. D 81 (May, 2010) 104019, arXiv:0912.5297.

[38] A. Raccanelli, F. Vidotto, and L. Verde, “Effects of primordial black holes quantum gravity
decay on galaxy clustering”, Journal of Cosmology and Astroparticle Physics 2018 no. 08,
(Aug, 2018) 003, arXiv:1708.02588.

[39] G. Ballesteros, J. Coronado-Blázquez, and D. Gaggero, “X-ray and gamma-ray limits on the
primordial black hole abundance from Hawking radiation”, arXiv:1906.10113.
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[78] J. Garćıa-Bellido, A. Linde, and D. Wands, “Density perturbations and black hole formation
in hybrid inflation”, Phys. Rev. D 54 (Nov, 1996) 6040–6058, arXiv:astro-ph/9605094.

[79] P. Ivanov, “Nonlinear metric perturbations and production of primordial black holes”, Phys.
Rev. D 57 (Jun, 1998) 7145–7154, arXiv:astro-ph/9708224.

[80] S. M. Leach, I. J. Grivell, and A. R. Liddle, “Black hole constraints on the running-mass
inflation model”, Phys. Rev. D 62 (Jul, 2000) 043516, arXiv:astro-ph/0004296.

[81] M. Drees and E. Erfani, “Running-mass inflation model and primordial black holes”, Journal
of Cosmology and Astroparticle Physics 2011 no. 04, (2011) 005, arXiv:1102.2340.

– 43 –

[ September 30, 2019 at 6:32 – classicthesis v4.6 ]



[82] M. Drees and E. Erfani, “Running spectral index and formation of primordial black hole in
single field inflation models”, Journal of Cosmology and Astroparticle Physics 2012 no. 01,
(Jan, 2012) 035, arXiv:1110.6052.

[83] M. Kawasaki, N. Kitajima, and T. T. Yanagida, “Primordial black hole formation from an
axionlike curvaton model”, Phys. Rev. D 87 (Mar, 2013) 063519, arXiv:1207.2550.

[84] K. Kohri, C.-M. Lin, and T. Matsuda, “Primordial black holes from the inflating curvaton”,
Phys. Rev. D 87 (May, 2013) 103527, arXiv:1211.2371.

[85] J. Garcia-Bellido and E. Ruiz Morales, “Primordial black holes from single field models of
inflation”, Physics of the Dark Universe 18 (2017) 47–54, arXiv:1702.03901.

[86] C. Germani and T. Prokopec, “On primordial black holes from an inflection point”, Physics
of the Dark Universe 18 (2017) 6–10, arXiv:1706.04226.

[87] K. Kannike, L. Marzola, M. Raidal, and H. Veermäe, “Single field double inflation and
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[138] A. Escrivà, “Simulation of primordial black hole formation using pseudo-spectral methods”,
arXiv:1907.13065.
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[198] Y. Ali-Häımoud, “Correlation Function of High-Threshold Regions and Application to the
Initial Small-Scale Clustering of Primordial Black Holes”, Phys. Rev. Lett. 121 (Aug, 2018)
081304, arXiv:1805.05912.

[199] V. Desjacques and A. Riotto, “Spatial clustering of primordial black holes”, Phys. Rev. D 98
(Dec, 2018) 123533, arXiv:1806.10414.

[200] G. Ballesteros, P. D. Serpico, and M. Taoso, “On the merger rate of primordial black holes:
effects of nearest neighbours distribution and clustering”, Journal of Cosmology and
Astroparticle Physics 2018 no. 10, (2018) 043, arXiv:1807.02084.

[201] J. Garriga and N. Triantafyllou, “Enhanced cosmological perturbations and the merger rate
of PBH binaries”, arXiv:1907.01455.

[202] The Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological
parameters”, arXiv:1807.06209.

[203] P. Carrilho, K. A. Malik, and D. J. Mulryne, “Dissecting the growth of the power spectrum
for primordial black holes”, arXiv:1907.05237.

[204] A. Raccanelli, E. D. Kovetz, S. Bird, I. Cholis, and J. B. Muñoz, “Determining the progenitors
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5
S U M M A RY O F R E S U LT S , D I S C U S S I O N S A N D
C O N C L U S I O N S

In this chapter I present a summary of results and discussions. I also
summarize the conclusions we reached and I outline how these works
can be extended in future works.

5.1 neutrinos - modified gravity degeneracy

In “Hiding neutrino mass in modified gravity cosmologies” [32] I
investigate the potential degeneracy between the cosmological effects
of neutrinos, which are guaranteed to exist since we have already de-
tected them in laboratory experiments, and theories of modified grav-
ity, which provide an interesting alternative to the standard ΛCDM.

Standard analyses of this degeneracy typically assume simple mod-
els of modified gravity, for instance f (R) models, however in this
work I focus on Horndeski theory of gravity, the most general mini-
mally coupled scalar-tensor theory that propagates one extra scalar
field whose equations of motion are of the second order. Horndeski
theory include many specific models, as the f (R) ones mentioned
above, hence it allows us to explore the parameter space of different
alternative theories of gravity at once.

Even if the theory is stated in terms of four free functions {K, G3, G4, G5}
(cf. equation (2.2)), the effects on cosmological observables up to lin-
ear order in perturbation theory depends on combinations of these
functions. Using the Effective Field Theory of dark energy, it was
proved that in Horndeski gravity we have the freedom to set five
functions of time and one constant [43]. In particular, to describe the
expansion history of the Universe we need to fix the equation of state
of the scalar field wφ(t), while to describe perturbations we need four
functions of time called kineticity αK(t), braiding αB(t), Planck mass
running αM(t), tensor speed excess αT(t) and a constant that can be
taken to be the fractional density of dark matter today Ωm0.

The simplest modified gravity theory does not have enough freedom
to produce a stage of accelerated expansion at low redshift (z . 1) and
to affect large scale structure formation at high redshift (z ∼ O(10))
as done by massive neutrinos. However Horndeski gravity does have
such freedom, hence I fix the equation of state to wφ = −1 (given
that it cannot differ from this value more than 5% [44]), and I choose
a parametrisation for the four αJ(t) functions such that they will be
non-zero since when neutrinos became non-relativistic. I consider
three quasi-degenerate neutrinos with normal mass ordering and total
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mass ∑ mν = 500 meV (M500 model) as neutrino model: even is these
neutrino masses are already ruled out assuming ΛCDM, it is not the
case for modified gravity models.

I investigate the impact of this model on temperature, polarization
and deflection angle power spectra (and their cross-correlation) for a
Planck-like CMB experiment and on the galaxy power spectrum for
a Euclid-like galaxy survey. I find that even in the most optimistic
case in which there are no theoretical uncertainties, a modified gravity
model with M500 neutrinos can mimic the clustering properties of
matter produced by standard ΛCDM and massless neutrinos.

Neutrino mass is degenerate especially with one of the modified
gravity functions, i.e., the braiding, which causes dark energy to cluster
and enhances the matter power spectrum at small scales. This property
is robust against changes in the details of the parametrisation of the αJ

functions. Moreover, to have a cancellation between neutrinos and
modified gravity effects, we need to match the relevant scales of the
two sectors: the neutrino free-streaming scale knr and the braiding
scale kB in Horndeski theory. In particular we need to boost the growth
of structure for modes larger than the neutrino free-streaming scale knr

and to have knr ' kB. The latter requirement is in fact a constraint
on the value of the kineticity: since kB ∝ αK/α2

B and the value of αB

is fixed by the value of neutrino masses we have to compensate, we
could find for the first time a constraint on this parameter.

Finally, I show that if we allow deviations from ΛCDM in the grav-
ity sector, not even state-of-the-art CMB and next generation galaxy
survey will be able to constraint the sum of neutrino masses better
than ∑ mν . O(0.1 eV). Only through combinations with other probes,
for instance with weak gravitational lensing surveys, or investigating
the effects of neutrinos in different observables, for instance in galaxy
bias, we might be able to lift this degeneracy.

The significance of this degeneracy has not changed, even after
the neutron stars binary merger events, which allow to constraint the
speed of tensors with respect to the speed of light. This event provided
one of the strongest constraints on modified gravity, in fact requiring
that |αT| . 10−15 imposes constraints on the functional form of the Gj
functions [45, 46]. This was in fact the first constrain we could put on
the free functions of Horndeski Lagrangian. However, models with
non-zero kineticity and braiding are still allowed and it is certainly
interesting to repeat the work done in this article imposing the new
constraints that emerged from this event.

Moreover, in recent years, several authors proposed the so called
Swampland Conjecture [47]. According to this conjecture, the existence
of a cosmological constant is disfavoured with respect to the scenario
in which a scalar field drives this accelerated expansion stage. In other
words, also by a theoretical perspective, simple models of modified
gravity are not only motivated, but also favoured.
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5.2 abundance constraints for primordial black holes

In the paper “Primordial black holes as dark matter: converting con-
straints from monochromatic to extended mass distributions” [39] I
propose a novel way to compute abundance constraints for PBHs with
an extended mass distribution (EMD).

Despite the fact that it is well established that PBHs cannot have
a monochromatic mass distribution (MMD), the vast majority of the
literature reports only abundance constraints for PBHs assuming they
all have the same mass. Moreover, the naive idea of claiming that a
mass distribution is allowed by current data only because it does not
overlap with the constraints once the two are superimposed is know
to be incorrect.

On the other hand, it is certainly useful to look for potential ways
to convert MMD constraint into constraints for a given EMD: for
example such procedure would allow to reinterpret CMB constraints
very quickly without repeating a computationally intensive analysis.
In this work we introduce the concept of equivalent mass Meq: given
an EMD and an observable in which PBHs with different masses
contributes independently (as in the vast majority of observables), it
is always possible to find a MMD with mass Meq which produces an
equivalent observable effect, therefore, in both cases, the abundance
constraint will be the same. This simple concept allows to interpret
MMD constraint as EMD constraints, on the base of the observable
effects of both distributions.

The same EMD will have multiple equivalent masses, one different
from the other because the physics associated to each observable
depends in different ways on the PBHs mass. The method is more
robust than previous ones because it allows to take into account the
effects of the tails of the EMD. We explicitly show that accounting
for the effects of the tails is crucial to establish the robustness of the
constraint: while for a MMD it is always clear whether assumptions
taken in the theoretical modelling are satisfied, in the EMD case parts
of your mass distribution may satisfied them while other parts might
not. It is precisely in those case that some criteria is needed to assess
whether you still trust the theoretical modelling or if you need a better
one.

In this work I analyse the O(10 M�) window and those constraints
that are more relevant for that range of masses, namely microlens-
ing constraints, dynamical constraints coming from ultra-faint dwarf
galaxies and CMB constraints. I show that for popular mass distri-
butions (power-law and lognormal, motivated by different formation
mechanisms) the constraints in that window become tighter with re-
spect to those obtained for a MMD. Notice that this finding cannot be
extended to all the possible mass distributions, in fact since the EMD
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enters in the computation of the equivalent mass, it is possible to find
weaker constraints for certain mass distributions.

The method have been tested successfully in multiple occasions. In
Ref. [48] we showed that the approximations made in the computation
of the equivalent mass are acceptable due to the size of current error
bars in state-of-the-art CMB experiments. We run a full MCMC anal-
ysis and we also computed the equivalent mass and from there the
abundance constraint: both methods gave us the same result. More-
over, also independent analysis, as the one done in Ref. [49] in the
context of CMB constraints coming from radio and X-ray observa-
tions, explicitly showed that our method provides a remarkably good
alternative to run computationally expensive numerical simulations.

The natural extension of this work would be to compute the equiv-
alent mass for all the existing constraints in literature, at least for
power-law and lognormal EMD. However, the most relevant issue is
the robustness of the constraints themselves, as can be seen comparing
those appearing in Ref. [50] in 2016 to those appearing in Ref. [51] in
2019. In many constraints, in fact, we make assumptions that are not
justified, as in the case of femtolensing constraints [52], or that are at
least debatable, as for CMB constraints, in which accretion on PBHs is
assumed spherical since when the compact object formed.

5.3 primordial black holes origin

In “GW×LSS: chasing the progenitors of merging binary black holes” [40]
I discuss how to establish whether the origin of resolved gravitational
waves (GWs) events, detected by GWs present and future observato-
ries, is stellar or primordial.

In the case where these events come from binaries with stellar
progenitors, the resulting GWs map we would correlate with maps
of the large scale structure (LSS) of the Universe, since we expect
stellar BHs to come from massive halos which host galaxies that had
an intense star formation history. On the other hand, if the origin of
the progenitors is primordial, we expect the GWs to come from low
mass halos, dominated by dark matter and where PBHs binaries are
more likely to form due to a smaller relative velocity of the compact
objects: since low mass halos live mainly in filaments, cross-correlating
GWs and LSS maps will result in a smaller degree of correlation.
Finally, if the binaries have primordial progenitors but they formed
already during the radiation-dominated era, we expect them to trace
the totality of the dark matter distribution.

Apart for the application to the PBHs scenario, this kind of multitrac-
ing technique can be used to characterise properties of astrophysical
objects that emit GWs, hence it gives access to the environment in
which these objects formed and lived. Moreover, the theoretical for-
malism is the same of galaxy number counts, hence I generalised the
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CLASSgal creating a new code, called Multi_CLASS, able to compute
angular power spectra for different tracers. The code will be made
public along with another paper [53], however it has already been
used in an other work [54] to constraint cosmological parameters using
different tracers probed by the same survey.

While the properties of galaxies for different LSS survey are known
quite well, some of the GWs properties are not. The GWs distribution
in redshift was computed by calculating the merger rate for PBHs
binaries, both for monochromatic and extend mass distributions, using
state-of-the-art prescriptions. I defined and compute for the first time
the magnification bias of GWs, which is crucial to describe GWs
lensing properties. I found that the magnification bias will be very
small, close to zero, both for existing and future GWs observatories,
therefore eventual changes in the detection threshold would not impact
significantly the number of objects we include in our maps.

Stellar and primordial scenarios are associated to different bias,
which we aim to constraint. In the case of the stellar scenario, the bias
of GWs and galaxies coincide, while in the primordial scenario the
bias of GWs is the one of low-mass halos if the binary formed in the
Late Universe or that of dark matter if the binary formed during the
radiation-dominated era. I used two different Signal-to-Noise ratio
to establish whether the constraining power of the cross-correlation
depends on the statistical technique adopted. The first one was based
on a Fisher matrix approach, the other on the full likelihood, both
provided similar results.

Given the low resolution of GWs maps (due to the poor locali-
sation of GWs events in the sky), we will be limited to investigate
only the clustering properties at large scales. It is well known that at
those scales we have to account for a series of different effects due to
velocity, lensing and gravitational potentials, also to break possible
degeneracies between cosmological parameters. I explicitly show that
including all these general relativistic effects we are able to boost the
Signal-to-Noise ratio from a factor few to a factor ten, also avoiding a
possible source of systematic error.

Finally, I forecast the capability of present and next generation LSS
surveys and GWs observatories to discriminate between the three
different scenarios presented in this work. Even if we have to wait
one-two decades to claim what the origin of these events really is,
already in the next five years we could observe some hint or preference
for one of these. Moreover I show that reducing the uncertainties in
the theoretical modelling will be a crucial factor in selecting one of the
scenario, much more important than improve the sky localization.

The most obvious extension of this work is represented by using this
framework to constrain properties of standard astrophysical sources
by cross-correlating the GWs maps with different galaxy catalogs. In
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our analysis we neglect some details which should be implemented to
increase the robustness of the result, as the effect of metallicity.

Moreover, the same technique can be extended to the case of unre-
solved GWs events to characterize the astrophysical stochastic GWs
background (ASGWB). Despite the similarities of the two cases, the
theoretical prediction for the ASGWB has been developed only re-
cently in Ref. [55], where it was also presented for the first time the
CLASS_SGWB code I developed.

5.4 energy scale of inflation

In “Measuring the energy scale of inflation using large scale struc-
tures” [41] I propose a novel way to measure the energy scale of infla-
tion, which in the single-field slow-roll models is directly connected
to the tensor-to-scalar ratio r parameter. There are different ways in
which this parameter can be measured, from measuring B-modes of
CMB polarization to the detection of the stochastic gravitational waves
background produced by inflation, however this is the first proposal
of using large scale structure data to measure r.

In particular, we aim to detect the signal left by a specific type of
non-Gaussianity, called “graviton exchange”. The existence of non-
Gaussianities is guaranteed by the coupling of the scalar field to
gravity, which is intrinsically non-linear. Of all the different types of
non-Gaussianity that might exist, the one we are interested in exist in
every inflationary models because it is generated by the exchange of a
graviton between a pair of scalar fields.

Even if this non-Gaussianity is expected to be small, since it appears
at the level of the four-point function of the curvature, it depends
directly on the parameter r. Moreover, in certain configurations called
“kite” and “folded kite”, the contribution of the graviton exchange is
boosted, increasing the probability of a detection. The boosting can
be further increased by looking to the clustering properties, i.e., the
n-point function of dark matter halos, especially at large scale and
high redshift.

Instead of measuring directly the trispectrum of dark matter ha-
los, I proposed to look to the four-point function contribution to the
halo two- and three-point functions. I expanded the existing computa-
tion of these correlators, also finding and characterizing new mixed
Gaussian/non-Gaussian terms never discussed before in the litera-
ture, to include the graviton exchange contribution. I found that at
large scale this kind of non-Gaussianity is more relevant than other
primordial ones, for instance those represented by the bispectrum
contribution to the two-point function. Moreover, the scale depen-
dence of this kind of non-Gaussianity is unique, both in the power
spectrum and bispectrum cases. In the latter, the amplitude of the
graviton exchange contribution is found to be at large scales of the
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same order of magnitude of the Gaussian halo bispectrum for values
of r compatible with the current upper bound.

There is a huge debate of whether non-Gaussianities can be detected
in the Late Universe, in particular local non-Gaussianities. The general
argument is that the parameter fNL, which describes the strength of the
non-Gaussian correction, is suppressed by a small factor (klong/kshort)

2,
where klong and kshort are a long and short mode, respectively. While
the controversy is still open, it is well established that modes still on
super-horizon scales today appear as a flat background and cannot be
probed. In this work we have eliminated all those kite configurations in
which the sum of two momenta was smaller the smallest momentum
that entered the horizon up to present-day, hence our predictions are
not affected by any gauge consideration.

The road to the possible detection of this signal has not been fully
explored yet. The present work can be improved first of all by comput-
ing some estimator of this type of non-Gaussianity that fully exploits
the unique scale dependence of the graviton exchange contribution.
Then, once we can compute a Signal-to-Noise ratio, we need to test
the estimator on some mocks containing this kind of effect to test our
capability to recover the signal. However, the most crucial point will
certainly be implementing multitracing techniques in this framework:
the scales we are interested in are exactly those dominated by cosmic
variance, therefore we can easily predict that using multiple tracers of
the underlying matter distribution will be the only possibility to ever
detect this signal.

5.5 primordial curvature power spectrum

In “From primordial black hole abundance to primordial curvature
power spectrum (and back)” I discuss the connection between the
primordial curvature power spectrum and the present-day abundance
of primordial black holes (PBHs), assuming they were formed by the
collapse of large overdensity perturbations generated by curvature
fluctuations. The idea was already explored in the literature, however
the existing procedure included many assumptions that are not neces-
sary any more due to advances both in theoretical understanding of
PBHs physics and in numerical simulations of their formation. The
connection was improved in three different ways.

First I used numerical simulations to establish a robust collapse cri-
teria for different kind of overdensity perturbations, in fact it has been
proved in numerous works that the critical threshold for the collapse
depends significantly on the shape of the perturbation. Numerical
simulations are mandatory at this stage, in fact I explicitly show that
treating analytically the problem (by using linear theory predictions)
bias all the relevant quantities of the problem: the typical scale of the
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perturbation, the typical shape of the perturbation, thus its typical
critical threshold, and the typical mass of the resulting PBH.

In a second step, I developed the connection between numerical
simulations, which study the evolution of a single perturbation, and
the cosmological framework, in which the Universe is filled by many
of these perturbations. I proposed a solution to the long-standing
problem of which is the correct field to filter, i.e., overdensity or curva-
ture field, and which is the correct way to filter it without modifying
the statistics of the field. Moreover I obtained for the first time the
exact expression of the two-point function of the overdensity field in
terms of all the n-points functions of the curvature field, which in turn
encode the information on the inflationary dynamics.

Finally, I discussed how, in the context of Peak theory, the abundance
of PBHs should be consistently computed from the statistics of the
overdensity field at the horizon re-entry of perturbations and how the
overdensity power spectrum and the typical shape of the peaks are
connected.

These improvements were used to compute the new upper bound on
the primordial curvature power spectrum. Given that PBHs can span
a remarkably large range of masses, I was able to constraint around
ten order of magnitude in terms of scales or, equivalently, around
twenty inflationary e-folds. The upper bound I find is approximately
one order of magnitude tighter than the previous ones, showing the
importance of reducing the number of assumptions taken. I also
show that the existence of a single PBH in the entire observable
Universe is completely incompatible with an almost scale-invariant
power spectrum, therefore the detection of just one PBH (for instance
a BH with sub-solar mass) will immediately signal a deviation from
the slow-roll dynamics.

Thanks to numerical simulation I also gave a proof of principle of
how we can reconstruct not only the maximum amplitude, but also the
shape of the curvature power spectrum, at least for scales smaller than
the typical scale of the peak. For larger scales it is necessary to analyse
the effects of PBHs primordial clustering, which are still an open issue.
The shape of the primordial curvature power spectrum can be probed
by future experiments as SKA or LISA through the detection of a
stochastic gravitational waves background, confirming that PBHs were
generated by large curvature fluctuations. However it is still possible
to detect PBHs but no stochastic gravitational waves background, for
instance in those cases where PBHs have an alternative formation
mechanism, for instance due to phase transitions.

According to our analysis, the improvement that affected the most
the constraint on the amplitude was using Peak theory instead of
the Press-Schechter formalism. However Peak theory has been not
fully developed for non-Gaussian field, therefore the next step we
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must take to improve the current analysis is certainly the inclusion of
non-Gaussianity in Peak theory.
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