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Abstract: We show that when Brownian motion takes place in a heterogeneous medium, the presence
of local forces and transport coefficients leads to deviations from a Gaussian probability distribution
that make that the ratio between forward and backward probabilities depend on the nature of the host
medium, on local forces, and also on time. We have applied our results to two situations: diffusion in
a disordered medium, and diffusion in a confined system. For such scenarios, we have shown that our
theoretical predictions are in very good agreement with numerical results. Moreover, we have shown
that the deviations from the Gaussian solution lead to the onset of rectification. Our predictions could
be used to detect the presence of local forces and to characterize the intrinsic short-scale properties of
the host medium—a problem of current interest in the study of micro- and nano-systems.
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1. Introduction

The symmetry of the probability distribution of a system in equilibrium, expressed through the
detailed balance condition, breaks down when a driving force is applied [1]. The ratio of probabilities
between forward and backward particle displacements is in this case independent of time, equal
to a Boltzmann factor. For a Brownian particle under a constant conservative force, f0—such as a
gravitational [2], optical [3], or entropic [4] force—the ratio is given by:

p(∆x, t|x0, t0)

p(−∆x, t|x0, t0)
= eβ f0∆x (1)

where p(∆x, t|x0, t0) is the probability of measuring a particle displacement of magnitude ∆x at time t,
given the initial condition p(x0, t0) and β−1 = kBT, with kB the Boltzmann constant. Equation (1)
has been obtained using different theoretical frameworks [1,5], and for different observables such as
entropy production rate [6] or mechanical work [7].

The peculiar form of the ratio between probabilities given by Equation (1) is a consequence of the
Gaussian nature of the probability distribution function (pdf) [3,4], the solution of the corresponding
Smoluchowski equation, and of the potential nature of the force [8]. For a 1D dynamics—as is the case
of Equation (1)—forces are always potential, ensuring a Gaussian probability distribution function.
For a 3D dynamics—as in the case of Brownian motion in a shear flow—the ratio between probabilities
depends on time, due to the fact that the shear flow is not potential [8]. In a variety of situations,
such as for particles diffusing in porous media or displacing through ion channels or membrane
pores, the assumption of a constant force and/or transport coefficients is not justified. For these local
transport scenarios, Equation (1) cannot be applied.
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In this work, we will characterize the dynamics of Brownian particles when they displace in
a heterogeneous environment in which transport coefficients and forces may depend on position.
The local nature of these quantities leads to a non-Gaussian pdf for particle displacement, due to a
coupling between particle advection and diffusion. This behavior has not been reported in previously
studied systems, where particles diffuse in a homogeneous medium and are subjected to uniform
forces [2–4] (a case of nonuniform forces where an analytical solution of the associated Smoluchowski
equation exists is the Ornstein–Uhlenbeck process; however, in this case, the probability distribution
converges rapidly to a Gaussian due to the confining nature of the potential [9]). Hence, for local
transport, the time evolution of the particle pdf cannot be regarded as a diffusion process with respect
to a moving mean value; rather, convection and diffusion affect each other non-trivially, leading to the
appearance of new dynamical regimes. In particular, our results highlight the presence of a rectification
regime in which particle transport benefits from the heterogeneity of the medium.

The article is organized as follows. In Section 2, we derive the equivalent of Equation (1) for local
transport, in which the diffusion coefficient and the driving forces may depend on position, and derive
an analytic perturbative expression that measures the deviation from the standard fluctuation relations.
In Sections 3 and 4, we present the cases of transport in an inhomogeneous medium and in a confined
system. Finally, in the last section, we present our main conclusions.

2. Diffusion in Heterogeneous Systems

To show how Equation (1) is obtained, let us consider a particle moving in a homogeneous
medium subjected to a constant force acting on the x-direction, as provided, e.g., by gravity [2],
an optical trap [3], or an entropic force [4]. The particle is initially at position x = 0. The homogeneous
nature of the medium leads to a constant diffusion coefficient, D0. Therefore, it is enough to analyze
the particle displacement distribution in the direction of the applied force. In the overdamped regime,
the particle dynamics is governed by the Smoluchowski equation:

∂

∂t
p(x, t) = − ∂

∂x

[
D0

(
β f0 p(x, t)− ∂

∂x
p(x, t)

)]
, (2)

whose conditional solution, given the initial condition p(x, 0) = δ(x− x0), reads

p(x, t|x0, 0) =
1√

4D0πt
e−

(x−βD0 f0t)2

4D0t (3)

The corresponding ratio between positive, ∆x, and negative, −∆x, particle displacements reads

p(x0 + ∆x, t|x0, 0)
p(x0 − ∆x, t|x0, 0)

= eβ f0∆x (4)

The quantity f0∆x represents the work done on the particle by the force.
Let us now consider that particles move under the action of an x-dependent force, f (x) = f0 + f1(x),

where f1 = −∂xU0(x) is a potential periodic contribution of period L and zero average. A similar form
is assumed for the diffusion coefficient: D(x) = D0 + D1(x), where D1(x) is periodic of period L, and it
is vanishing small once averaged over L. The corresponding Smoluchowski equation is given by:

∂

∂t
p(x, t) = − ∂

∂x

{
D(x)

[
β f (x)p(x, t)− ∂

∂x
p(x, t)

]}
. (5)

In this case, the solution of Equation (5) is not Gaussian, and Equation (4) is no longer fulfilled.
To analyze the symmetry of the probability distribution function, we extend Equation (4)

by introducing

Γ(∆x, t) =
∫

p(x0 + ∆x, t|x0, 0)p(x0, 0)dx0∫
p(x0−∆x, t|x0, 0)p(x0, 0)dx0

, (6)
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where p(x0, 0) is the probability distribution for t = 0. In the case of constant force and diffusion
coefficient, and for the initial condition p(x0, 0) = δ(x0), this expression reduces to Γ = Γ0 = eβ f0∆x;
i.e., to Equation (4). An estimate of the changes in Γ due to deviations from Gaussianity can be
obtained from

χ(∆x, t) =
Γ(∆x, t)
Γ0(∆x, t)

. (7)

Since analytical solutions of the Smoluchowski equation for x-dependent forcing and/or diffusion
coefficient are in general difficult to obtain, we will assume that

p(x, t|x0, 0) ' p0(x, t|x0, 0) + p1(x, t|x0, 0) (8)

where p0(x, t|x0, 0) is given by Equation (3) and p1 is a perturbation. Accordingly,∫
p(x0 + ∆x, t|x0, 0)p(x0, 0)dx0 ' ρ0(∆x, t) + ρ1(∆x, t) (9)

Substituting Equation (9) in Equation (6), and expanding up to the first order in ρ1, we get

Γ(∆x, t) ' ρ0(∆x, t)
ρ0(−∆x, t)

[
1− ρ1(−∆x, t)

ρ0(−∆x, t)
+

ρ1(∆x, t)
ρ0(∆x, t)

]
(10)

therefore, χ reduces to

χ(∆x, t) ' 1− ρ1(−∆x, t)
ρ0(−∆x, t)

+
ρ1(∆x, t)
ρ0(∆x, t)

. (11)

Symmetry enforces that (noting that
∫ ∞
−∞[ f (x)− f (−x)]dx = 0) 〈χ〉(t) = 1/Λ

∫ Λ/2
−Λ/2 χ(x, ∆x)d∆x = 1

from Equation (11). It is useful to consider its averaged second moment

Ω(t) =
1
Λ

∫ Λ/2

−Λ/2
[χ(∆x, t)− 〈χ〉(t)]2 d∆x, (12)

where Λ is the subset over which Ω(t) and 〈χ〉(t) are computed (the choice of Λ does not significantly
affect the value of Ω(t) and 〈χ〉(t), and their dependence on Λ becomes vanishing small at long time
intervals). Ω quantifies the deviations of Γ from the homogeneous case for which Equation (4) holds.
For homogeneous systems, for which f1 = D1 = 0, one has Ω = 0, then Γ = eβ f0∆x; i.e., it recovers the
expression in Equation (4).

For both small local forcing, f1(x) � f0, and small modulations of the diffusion coefficient,
D1(x) � D0, we can compute Ω(t) by using the expressions ρ0(−∆x, t) = ρ0(∆x, t)e−β f0∆x and
ρ1(−∆x, t) = ρ1(∆x, t)e−β∆G. Expanding Equation (12) to first order in |β f0∆x− β∆G| � 1, one obtains

Ω(t) ' A(t)〈 f 2
1 〉2 + B(t)〈D2

1〉2 + C(t)〈 f 2
1 〉〈D2

1〉+

+E(t)〈 f 2
1 〉

3
2 〈D2

1〉
1
2 + F(t)〈 f 2

1 〉
1
2 〈D2

1〉
3
2 , (13)

where 〈a(x)〉 = 1
Λ

∫ Λ/2
−Λ/2 a(x)dx, and the time-dependent coefficients A(t), B(t), C(t), E(t), and F(t) are

integration constants whose explicit forms are given in the Appendix.
Ω depends in general on the second moment of the force, 〈 f 2

1 〉, and on 〈D2
1〉. Hence, to lowest

order in both quantities, different physical mechanisms leading to comparable modulations may lead
to similar values of Ω. As shown in the Appendix, the coefficients of the second moment of the forcing,
A(t), and of the diffusion coefficient, B(t), are positive, while the cross terms like C(t), E(t), and F(t)
can be positive or negative. Therefore, in the presence of both modulations, the deviations from the
Gaussian behavior that modulate the magnitude of Ω can either increase or decrease. Ω also depends
implicitly on the average force, f0, through the time-dependent coefficients.
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3. Results

In order to study the accuracy of the perturbative expression Equation (13), we will consider two
scenarios where different physical mechanisms lead to a local force and diffusion coefficient. In the first
example, we will study the diffusion of particles in an inhomogeneous medium under the influence of
a constant force. This case is frequently observed in colloidal suspensions in which particles interact
through direct or hydrodynamic interactions, and in diffusion in complex systems [10–14]. As a second
case, we will analyze the motion of a Brownian particle moving in a confined medium which induces
x-dependent entropic forces [15–24]. Such a situation is typically observed in molecules moving
through ion-channels or membrane pores [25–30], and for molecular motors in porous media [31–33],
to mention just a few among others.

3.1. Diffusion in an Inhomogeneous Unbounded Medium

We consider the motion of a Brownian particle moving under the action of a constant force in a
medium characterized by a spatially varying diffusion coefficient

D(x) = D0 + D1 sin
(

2π
x
L

)
(14)

The corresponding Smoluchowski equation reads

∂

∂t
p(x, t) = − ∂

∂x

[
D(x)βp(x, t) f0−D(x)

∂

∂x
p(x, t)

]
. (15)

We have solved Equation (15) numerically, by means of a Lax–Wendroff method, with initial condition
p(x, 0) = δ(x), and over a channel made by 10 identical units, each of which is periodic with
period L, where we have assumed periodic boundary conditions at the channel ends, located at
x = ±5L. To avoid the interference of periodic images, we have followed the evolution of the
particle displacement probability up to a maximum time Tmax, defined as the time at which the
ratio θ = p(±5L, Tmax)/p(0, Tmax) between the probability of particles at the system edges and the
corresponding probability in the middle of the channel overcomes a threshold value(i.e., θ ≤ 10−10).
For t < Tmax, the contribution to p(x) from particles at x± 5L is negligible.

Figure 1A shows the dependence of χ on ∆x for different values of D1. For D1 = 0, Γ reduces
to Equation (4), and we recover the expected relation χ = 1. Increasing D1 leads to a non-Gaussian
density distribution [9] and χ 6= 1, as shown in Figure 1A. The overall departure from Gaussianity is
captured better by Ω. As shown in Figure 1C, when increasing the diffusion coefficient modulation,
Ω increases and behaves as Ω ∝ (D1/D0)

4, in good agreement with Equation (13).
Figure 1A shows a breakdown of the left-right symmetry superimposed on a smoother modulation

of χ. Indeed, we can regard the system as being driven by an effective force fe f f = f0 + δ f , where δ f is
a bias. Hence, δ f / f0 can be regarded as a dimensionless parameter that quantifies particle rectification
arising from the interplay between the net force, f0, and the x-dependent diffusion coefficient (for
δ f / f0 = 0, no rectification occurs, while for δ f 6= 0, the sign of δ f identifies the rectification direction).
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Figure 1. Fluctuation relation for a particle in a constant-amplitude channel and inhomogeneous
medium, D1 6= 0 under a constant force β f0L = 0.5. (A) χ as function of the displacement, ∆x,
at tD0/L2 = 0.2 for different values of the diffusion coefficient modulation: D1

D0
= 0.125, 0.25, 0.5 for

dotted (brown), dashed (red), and solid (orange) lines, respectively. (B) χ̃ as a function of ∆x for the same
parameters as in panel A, where δ f has been calculated using Equation (18). (C) Ω as a function of D1/D0

for β f0L = 0.5 with Λ = 4 and tD0/L2 = 0.2; dotted line stands for Ω ∝ (D1/D0)
4. (D) δ f / f0 as function

of D1/D0 for the same parameters as in panel C; dotted line stands for δ f / f0 ∝ (D1/D0)
2. (E) Ω as

a function of time normalized by τ = L2/D0 with Λ = 4, for D1/D0 = 0.05, 0.075, 0.1, 0.25, 0.5, 0.75;
the darker the line, the larger the ratio D1/D0. (F) Ω as a function of the driving force β f0L for
D1/D0 = 0.5.

The contribution of δ f to χ is given by

χ̃(∆x, t) = χ(∆x, t)e−βδ f ∆x, (16)

which accounts for the deviations from Gaussianity for a system under an effective force. The second
moment of χ̃

Ω̃(t) =
1
Λ

∫ Λ/2

−Λ/2
[χ̃(∆x, t)− 〈χ̃〉 (t)]2d∆x (17)
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quantifies both the overall departure from Gaussianity and also provides a route to obtain δ f . The value
of δ f that better captures the breakdown of left-right symmetry in Figure 1A can be obtained by
minimizing Ω̃. Hence, minimizing Equation (17) leads to the following expression for δ f :

βδ f (t) =
∫

χ(∆x, t)∆x [χ(∆x, t)− 〈χ〉(t)] d∆x∫
χ(∆x, t)∆x2 [2χ(∆x, t)− 〈χ〉(t)] d∆x− 〈∆xχ〉2

. (18)

Interestingly, Equation (18) predicts δ f = 0 for χ − 〈χ〉 = 0, implying Ω = 0. Therefore, in the
present regime, no rectification occurs either at equilibrium or for systems leading to a Gaussian
distribution of particle displacements. For vanishing values of 〈D1〉 and 〈 f1〉, we can approximate
χ(∆x, t) ' 〈χ〉(t) + ξ∆x, implying Ω ∝ ξ2. In the limit of ξ → 0, Equation (18) reduces to

βδ f (t) ' ξ

〈χ〉(t) ∝
√

Ω. (19)

Figure 1B displays the dependence of χ̃ on δ f , showing the absence of any net tilt. Therefore, the linear
approximation for δ f given by Equation (18) properly captures the departure of χ, and consequently
of Ω, with respect to their values obtained for homogeneous diffusion, D1 = 0. Figure 1D shows
the dependence of δ f / f0 on the modulation in the diffusion. While for larger values of D1 a steeper
dependence is observed, for smaller modulations of the diffusion, δ f / f0 reaches an asymptotic
behavior δ f / f0 ∝ D2

1. Comparing the dependence of δ f and Ω on D1, we notice that δ f ∝
√

Ω,
as predicted by Equation (19). The regime of validity of Equation (13) is captured in Figure 1C, where
the good agreement with the numerical solution of Equation (15) highlights the wide range of reliability
of Equation (13). The temporal evolution of Ω is shown in Figure 1E. At short times, Ω displays a
remarkable dependence on time and reaches a plateau at longer times, for t ≥ t0 ' 0.1L2/D0.
Since L < Λ, Ω relaxes to its steady value faster than particle diffusion over the relevant length scale, Λ.
Finally, Figure 1F shows the dependence of Ω on the external constant force, f0, obtaining a quadratic
dependence Ω ∝ f 2

0 , and consequently a linear dependence of δ f on f0 (data not shown).

3.2. Diffusion in a Periodic Channel

We consider the diffusion of a particle in a channel of periodic half-section

h(x) = h0 + h1 cos
(

2π
x
L

)
, (20)

where L is the period, and Lz the width along the z-direction, assumed to be constant. In the
overdamped regime, the evolution of the probability density function, P(x, y, z, t), of the particle
under the action of a constant force, f0, is governed by the 3D Smoluchowski equation:

∂

∂t
P(x, y, z, t) = Dβ∇ · [P(x, y, z, t)∇U(x, y, z) + D∇P(x, y, z, t)] (21)

where the potential U(x, y, z) is given by

U(x, y, z) = U(x + L, y, z)

U(x, y, x) =

{
f0x, |y| ≤ h(x)& |z| ≤ Lz/2

∞, |y| > h(x) or |z| > Lz/2
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and involves both the external driving, f0, and the presence of boundaries. For smoothly varying
channel amplitudes, ∂xh(x) � 1, the diffusing particles equilibrate much faster in the transverse
direction than in the main transport direction. One can then assume

P(x, y, z, t) = p(x, t)
e−βU(x,y,z)

e−βA(x)
(22)

e−βA(x) =
∫ Lz/2

Lz/2

∫ h(x)

−h(x)
e−βU(x,y,z)dydz, (23)

where p(x, t) is the probability distribution in the coarse-grained description, and A(x) is the
corresponding free energy

A(x) = f0x− 1
β

ln [h (x)] . (24)

This quantity consists of an enthalpic contribution, f0x, and an entropic contribution, − 1
β ln [h (x)].

This approximation shows that diffusion in 3D can be analyzed through 1D diffusion in the presence
of entropic barriers [15–18,34]. Accordingly, we can define the dimensionless energy barrier that the
particles experience along the channel,

∆S = ln
[

hmax

hmin

]
(25)

where hmin and hmax are the minimum and maximum channel apertures, respectively. Integrating
Equation (21) along the channel transverse section, we obtain the Fick–Jacobs equation

∂

∂t
p(x, t) =

∂

∂x

{
D(x)

[
βp(x, t)

∂

∂x
A(x) +

∂

∂x
p(x, t)

]}
, (26)

where
D(x) =

D0[
1 + (∂xh(x))2

]α (27)

is an effective diffusion coefficient, with alpha α = 1/3(1/2) in three (two) spatial dimensions [17].
Comparison of Equation (26) with Equation (5) shows that the geometrical confinement enters
through the potential A(x). Its spatial derivative gives rise to an effective force; therefore, we can
understand the impact of the channel corrugation as providing a spatially-varying force acting on the
Brownian particle.

We have numerically solved Equation (26) with the same numerical scheme used in the previous
section. Figure 2A shows the behavior of χ. Analogously to the results reported in the previous
section, χ is strongly affected by the local drift and diffusion coefficient modulation. Larger values of
∆S (i.e., larger modulations), lead to a more involved dependence of χ on ∆x, and consequently to a
larger departure from the Gaussian solution obtained for ∆S = 0. Moreover, comparing Figure 2A
and Figure 1A, we notice that the qualitative and quantitative behaviors of χ differ for bounded and
unbounded diffusion. While the latter case is characterized by a smoothly modulated overall extra-tilt
for χ, in the former, larger modulations are overimposed to a smoothly-varying tilt, even for entropy
barriers as large as ∆S = 10.
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Figure 2. Fluctuation relation for a Brownian particle in a varying-amplitude channel, h1 6= 0, that
induces a modulation in the effective diffusion coefficient, D1 6= 0, for a constant force β f0L. (A) χ as
function of the displacement, ∆x, for tD0/L2 = 2, with β f0L = 1 and different values of the entropic
barrier ∆S = 0.1, 1, 10 for dotted (brown), dashed (red), and solid (orange) line, respectively. (B) p(∆x)
as function of ∆x for the same values of the parameters as in panel A. (C) Ω at tD0/L2 = 2, as a
function of ∆S for β f0L = 0.1, 1, 10 bigger points standing for larger ∆S, with Λ = 4. Inset: Ω as a
function of the reduced entropic barrier ∆S−∆S0, with ∆S0 = 1.5, for the same value of the parameters
in the main figure; dotted line stands for Ω ∝ (∆S − ∆S0)

4. (D) |δ f |/ f0 as function of ∆S for the
same value of the parameters in panel C. (E) Ω as a function of time normalized by τ = L2/D0 for
∆S = 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10, darker lines standing for larger values of ∆S. (F) Ω as a function
of the forcing β f0L for ∆S = 0.1, 0.5, 1, 5 darker lines standing for higher values of ∆S, being Λ = 4.

The dependence of Ω on ∆S is also modified with respect to the behavior observed for a constant
channel section, as can be appreciated comparing Figure 1C with Figure 2C. In the system analyzed, Ω
shows a weaker dependence on ∆S. Disentangling the underlying mechanisms responsible for this
lack of sensitivity is not straightforward, because modulations of D1 and f1 due to variations of the
channel section compete with each other, as becomes clear in Equation (13). Nonetheless, for ∆S > 1,
using Equation (27), we have

〈D2
1〉 ∝

e∆S − 1
e∆S + 1

(28)
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implying that 〈D2
1〉 vary very smoothly for larger ∆S. Thus, the dependence of Ω on ∆S essentially

enters through the entropic force. One can assume that 〈D2
1〉 is practically constant to obtain:

Ω ' (∆S− ∆S0)
4 (29)

where ∆S0 accounts for the contribution coming from the modulation in the diffusion coefficient.
The inset of Figure 2C shows the good agreement of the theoretical prediction with the numerical
results, up to ∆S ' 10. The deviation from the behavior Ω ∝ (∆S− ∆S0)

4 observed for smaller values
of ∆S is due to the time-dependence of Ω. As shown in Figure 2E, Ω reaches a quasi-steady state after
a transient that depends on ∆S. For increasing entropy barriers, ∆S, the effective forces acting on a
Brownian particle increase, leading to a reduction of the relaxation time, as it happens for particles in a
potential well [9]. Smaller values of ∆S require longer relaxation times that cannot be considered in
our numerical solution.

Even though the dependence of χ on ∆x is quite involved and does not show a clear breaking
of the left–right symmetry, we have used Equation (18) to compute the rectification parameter δ f .
It results that δ f ∝ (∆S− ∆S0)

4, as shown in Figure 2D. Since Ω ∝ (∆S− ∆S0)
4, we predict δ f ∝ Ω,

which differs from the behavior observed in the previous case, in which variations of χ led to
δ f ∝

√
Ω.

We can then conclude that different local transport mechanisms lead to different relationships
between the rectification parameter and the deviations from Gaussianity inherent to Omega. Figure 2F
displays the dependence of Ω on the external force, and shows that for decreasing forces, the deviation
in Ω becomes vanishing small, recovering the equilibrium value Ω = 0 for β f0L = 0. Moreover, Ω ∼ f 2

0
(Figure 2F), as also observed for a constant section channel (Figure 1F).

4. Discussion

We have shown that the diffusion of particles is strongly affected by heterogeneities resulting
from irregularities of the boundaries or from the intrinsic nature of the host medium. The presence
of local forces or of a local diffusion coefficient breaks down the Gaussian form of the probability
distribution for the particles and leads to an effective rectification.

For small modulations of the spatial heterogeneities, it is possible to analyze the consequences
of a non-Gaussian probability distribution. We have found that the ratio between the probabilities
of forward and backward moves depends on the heterogeneities of the medium, and also on time.
We have derived an expression for their ratio, Γ (Equation (6)), that is valid for small modulations
both in the forcing and/or in the diffusion coefficient. In order to quantify the average deviation from
Gaussian behavior, higher moments of Γ are insightful. The functional shape of the second moment Ω
of Γ shows that the corrections to Γ induced by local transport are proportional to the dispersion of
the modulation. When both force and diffusion coefficient are modulated, Equation (13) predicts that
different regimes can be achieved, depending on the constructive or destructive interaction between
the two mechanisms.

To test our predictions, we have checked Equation (13) for two different scenarios, namely
a particle moving in an inhomogeneous medium with a position-dependent diffusion coefficient,
and a particle in a channel of varying cross-section in the presence of entropic forces. In the first case,
the force exerted is constant, whereas the diffusion coefficient depends on position. In the latter case,
both the geometrically-induced effective force and the local particle diffusion coefficient depend on
particle’s position along the channel. In both situations, we observe a remarkable agreement between
the numerical results and our prediction for Ω in the case of mild variations in the forcing and/or
medium heterogeneities.

The coupling between local forcing and diffusion can also lead to particle rectification; our analysis
predicts when rectification emerges and identifies an effective parameter, δ f , which quantifies the
effective rectification. In particular, our analysis reveals how the dependence of rectification on the
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departure from Gaussianity is affected by the physical mechanism responsible for local transport.
These results suggest a possible way to characterize the intrinsic properties of the host medium and of
the confinement based on the use of the new fluctuation relation and the tracking of the particles.
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Appendix A

Here we derive the expression for Ω given by Equation (13). Substituting Equation (10) into
Equation (12) and remembering that 〈χ〉 = 1 when calculated by Equation (11), we obtain:

Ω =
∫ [

ρ1(−∆x, t)
ρ0(−∆x, t)

− ρ1(∆x, t)
ρ0(∆x, t)

]2

d∆x (A1)

Remembering that ρ0(−∆x, t) = ρ0(∆x, t)e−β f0∆x and assuming ρ1(−∆x, t) = ρ1(∆x, t)e−β∆G, we obtain:

Ω =
∫ [

ρ1(∆x, t)
ρ0(∆x, t)

]2 (
eβ f0∆x−β∆G − 1

)
d∆x. (A2)

Expanding for |β f0∆x−∆G| � 1, we get:

Ω =
∫

(β f0∆x− β∆G)2
[

ρ1(∆x, t)
ρ0(∆x, t)

]2

d∆x (A3)

where we have used the fact that
∫
(β f0∆x− β∆G)

[
ρ1(∆x,t)
ρ0(∆x,t)

]2
d∆x = 0, due to the even character of[

ρ1(∆x,t)
ρ0(∆x,t)

]2
in the limit |β f0∆x−∆G| � 1 and to the odd character of β f0∆x− β∆G. Finally, we expand

both β∆G and ρ1 as a power series of the local modulation of the forcing, f1(x), and/or diffusion
coefficient, D1(x). Since both f1(x) and D1(x) are periodic with zero mean, see Equations (14) and (24),
the first non-vanishing contribution to β∆G and ρ1 is provided their second moment:

〈 f 2
1 〉 =

∫
f 2
1 (x)dx (A4)

〈D2
1〉 =

∫
D2

1(x)dx (A5)

When the modulations are vanishing small, we have that ρ1 → 0 and, remembering
ρ1(−∆x, t) = ρ1(∆x, t)e−β∆G, we have ∆G→ f0∆x. Using the last expressions, we can expand ∆G and
ρ1 up to first order:

β∆G = β f0∆x + α1(∆x)
√
〈 f 2

1 〉+ α2(∆x)
√
〈D2

1〉 (A6)

ρ1(∆x, t) = γ1(∆x, t)
√
〈 f 2

1 〉+ γ2(∆x, t)
√
〈D2

1〉 (A7)
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where α1(∆x), α2(∆x), γ1(∆x, t), and γ2(∆x, t) are to be determined numerically or by a path integral
solution of Equation (26). Substituting Equations (A6) and (A7) into Equation (A3), we get:

Ω =
∫ (

α1(∆x, t)
√
〈 f 2

1 〉+ α2(∆x, t)
√
〈D2

1〉
)2
·
[

γ1(∆x, t)
√
〈 f 2

1 〉+ γ2(∆x, t)
√
〈D2

1〉
]2 d∆x

ρ2
0(∆x, t)

(A8)

and finally, we can define the coefficient that appears in Equation (13) as:

A(t) =
∫

α2
1(∆x)γ2

1(∆x, t)
d∆x

ρ2
0(∆x, t)

B(t) =
∫

α2
2(∆x)γ2

2(∆x, t)
d∆x

ρ2
0(∆x, t)

C(t) =
∫

α2
1(∆x)γ2

2(∆x, t) + α2
2(∆x)γ2

1(∆x, t) + 4α1(∆x)α2(∆x)γ1(∆x, t)γ2(∆x, t)
d∆x

ρ2
0(∆x, t)

E(t) = 2
∫

(α1(∆x)γ2(∆x, t) + α2(∆x)γ1(∆x, t)) α1(∆x)γ2(∆x, t)
d∆x

ρ2
0(∆x, t)

F(t) = 2
∫

(α1(∆x)γ2(∆x, t) + α2(∆x)γ1(∆x, t)) α2(∆x)γ1(∆x, t)
d∆x

ρ2
0(∆x, t)

References

1. Campisi, M.; Hänggi, P.; Talkner, P. Colloquium: Quantum fluctuation relations: Foundations and
applications. Rev. Mod. Phys. 2011, 83, 771.

2. Astumian, R.D. The unreasonable effectiveness of equilibrium theory for interpreting nonequilibrium
experiments. Am. J. Phys. 2006, 74, 683.

3. Astumian, R.D. Equilibrium theory for a particle pulled by a moving optical trap. J. Chem. Phys. 2007,
126, 111102.

4. Reguera, D.; Rubi, J.M. Thermodynamics and stochastic dynamics of transport in confined media. Chem. Phys.
2010, 375, 518–522.

5. Ciliberto, S.; Joubaud, S.; Petrosyan, A. Fluctuations in out-of-equilibrium systems: From theory to
experiment. J. Stat. Mech. 2010, 2010, P12003.

6. Gallavotti, G.; Cohen, E.G.D. Dynamical Ensembles in Nonequilibrium Statistical Mechanics. Phys. Rev. Lett.
1995, 74, 2694.

7. Crooks, G.E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy
differences. Phys. Rev. E 1999, 60, 2721.

8. Vainstein, M.H.; Rubi, J.M. Gaussian noise and time-reversal symmetry in nonequilibrium Langevin models.
Phys. Rev. E 2007, 75, 031106.

9. Risken, H. The Fokker-Planck Equation; Springer: Berlin/Heidelberg, Germany, 1988.
10. Pagonabarraga, I.; Rubi, J.M. Long-range correlations in diffusive systems away from equilibrium.

Phys. Rev. E 1994, 49, 267.
11. Höfling, F.; Franosch, T. Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 2013,

76, 046602.
12. Maes, C.; Steffenoni, S. Friction and noise for a probe in a nonequilibrium fluid. Phys. Rev. E 2015, 91, 022128.
13. Bénichou, O.; Illien, P.; Oshanin, G.; Sarracino, A.; Voituriez, R. Diffusion and Subdiffusion of Interacting

Particles on Comblike Structures. Phys. Rev. Lett. 2015, 115, 220601.
14. Marconi, U.M.B.; Malgaretti, P.; Pagonabarraga, I. Tracer diffusion of hard-sphere binary mixtures under

nano-confinement. J. Chem. Phys. 2015, 143, 184501.
15. Jacobs, M.H. Diffusion Processes; Springer: Berlin/Heidelberg, Germany, 1967.
16. Zwanzig, R. Diffusion past an entropy barrier. J. Phys. Chem. 1992, 96, 3926–3930.
17. Reguera, D.; Rubi, J.M. Kinetic equations for diffusion in the presence of entropic barriers. Phys. Rev. E 2001,

64, 061106.
18. Kalinay, P.; Percus, J.K. Approximations of the generalized Fick-Jacobs equation. Phys. Rev. E 2008,

78, 021103.



Entropy 2016, 18, 394 12 of 12

19. Kalinay, P.; Percus, J.K. Mapping of diffusion in a channel with abrupt change of diameter. Phys. Rev. E 2010,
82, 031143.

20. Dagdug, L.; Berezhkovskii, A.M.; Makhnovskii, Y.A.; Zitsereman, V.Y.; Bezrukov, S. Communication:
Turnover behavior of effective mobility in a tube with periodic entropy pot. J. Chem. Phys. 2011, 134, 101102.

21. Malgaretti, P.; Pagonabarraga, I.; Rubi, J.M. Entropic transport in confined media: A challenge for
computational studies in biological and soft-matter systems. Front. Phys. 2013, 1, 21.

22. Chacón-Acosta, G.; Pineda, I.; Dagdug, L. Diffusion in narrow channels on curved manifolds. J. Chem. Phys.
2013, 139, 214115.

23. Kalinay, P. Moment expansion for mapping of the confined diffusion. Phys. Rev. E 2013, 87, 032143.
24. Kalinay, P. Integral formula for the effective diffusion coefficient in two-dimensional channels. Phys. Rev. E

2016, 94, 012102.
25. Chinappi, M.; De Angelis, E.; Melchionna, S.; Casciola, C.M.; Succi, S.; Piva, R. Molecular Dynamics

Simulation of Ratchet Motion in an Asymmetric Nanochannel. Phys. Rev. Lett. 2006, 97, 144509.
26. Marconi, U.M.B.; Melchionna, S.; Pagonabarraga, I. Effective electrodiffusion equation for non-uniform

nanochannels. J. Chem. Phys. 2013, 138, 244107.
27. Malgaretti, P.; Pagonabarraga, I.; Rubi, J.M. Entropic Electrokinetics: Recirculation, Particle Separation,

and Negative Mobility. Phys. Rev. Lett. 2014, 113, 128301.
28. Malgaretti, P.; Pagonabarraga, I.; Rubi, J.M. Geometrically Tuned Channel Permeability. Macromol. Symp.

2015, 357, 178–188.
29. Malgaretti, P.; Pagonabarraga, I.; Rubi, J.M. Entropically induced asymmetric passage times of charged

tracers across corrugated channels. J. Chem. Phys. 2016, 144, 034901.
30. Bianco, V.; Malgaretti, P. Non-monotonous polymer translocation time across corrugated channels:

Comparison between Fick-Jacobs approximation and numerical simulations. J. Chem. Phys. 2016, 145, 114904.
31. Malgaretti, P.; Pagonabarraga, I.; Rubi, J.M. Cooperative rectification in confined Brownian ratchets.

Phys. Rev. E 2012, 85, 010105.
32. Malgaretti, P.; Pagonabarraga, I.; Rubi, J.M. Confined Brownian ratchets. J. Chem. Phys. 2013, 138, 194906.
33. Malgaretti, P.; Pagonabarraga, I.; Rubi, J.M. Working under confinement. Eur. Phys. J. Spec. Top. 2014,

223, 3295–3309.
34. Martens, S.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P. Entropic particle transport: Higher-order

corrections to the Fick-Jacobs diffusion equation. Phys. Rev. E 2011, 83, 051135.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Diffusion in Heterogeneous Systems
	Results
	Diffusion in an Inhomogeneous Unbounded Medium
	Diffusion in a Periodic Channel

	Discussion
	

