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ABSTRACT 

This paper is concerned with the study of the asymptotic properties of Rao distance maximum-likelihood 
estimation obtained from two independent samples of two statistical populations, under certain regularity 
conditions. These results allow the construction, by meaos of the Rao distance, of a statistical test to com­
pare different populations, which may be regarded as an alternative to the standard likelihood ratio test. 
Furthermore, a geometrical model is supplied which can be used to obtain graphical outputs through numer­
ical taxonomy methods or multidimensional scaling techniques. Finally, sorne of the previously-mentioned 
methods are illustrated by meaos of a specific example based on the univariate normal distribution. 



l. INTRODUCTION 

Frequently in statistics and data analysis it is not enough to use hypothesis test theory 

in order to solve the wide class of problems in applied research, since it is often interesting 

not only to decide between several alternative hypotheses but also to compare different 

experimental conditions, studying how different they are. For this purpose it is convenient 

to use geometrical models which help us to visualize the analogies and differences between 

them. 

On the other hand, the use of geometrical models is implicit in many statistical tech­

niques, like analysis of variance and multivariate analysis. All these considerations have 

been pointed out earlier, from the works of Pearson (1902, 1926), Mahalanobis (1930, 1936) 

and Fisher (1925) among others. 

Later, in many areas of applied research and also in statistics, many works appeared 

which make use of geometrical models. Consider for instance Rao (1945) and Matusita 

(1964) in statistics, Rao (1948) in anthropology, Prevosti et al. (1975) in genetics, Legendre 

and Legendre (1979) in ecology, among many others in different fields of study. In all these 

cases the distance used is considered as a measure of the information we have about the 

differences between the objects compared. 

In the above-mentioned paper of Rao, (1945), he introduced a Riemannian metric, 

through the Fisher information matrix, over a manifold of parametric probability distri­

butions, and proposed the Riemannian distance induced by the metric as a measure of 

dissimilarity between two probability distributions. Since then, many statisticians have 

attempted to construct a geometrical theory of probability spaces. We may mention the 

works of Efron (1975) who introduced the concept of statistical curvature, Amari (1968, 

1980, 1982, 1985), Cencov (1965, 1982), who introduced new affine connections, Atkinson 

and Mitchell (1981), Burbea and Rao (1982, 1984), Burbea (1985) and also the works of 

Campbell (1985, 1986), Oller and Cuadras (1985), Oller (1987), Burbea and Oller (1988), 

Mitchell (1988) and Skovgaard (1984) who studied different aspects of the information 

metric, among others. 

In the present paper we study the asymptotic distribution of certain natural transfor­

mations of maximum likelihood estimation of the Rao distance, obtained from two inde­

pendent samples of two statistical populations, under certain regularity conditions. From 
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these results we propose sorne statistical hypothesis tests in order to compare two or more 

parametric statistical populations, which may be viewed as an alternative to the standard 

likelihood ratio tests. Lastly, we apply these methods to the problem of comparing two 

univariate normal statistical populations. 

2. NOTATION AND REMARKS 

We first introduce sorne notation. Let x be a sample space and A a u-algebra of 

subsets of X· Let µ be a u finite additive positive measure on the measurable space (X, A) 

which we shall call a reference measure. We denote by c,r = cr(X : µ) the usual 

Lebesgue space of µ-measurable real valued functions pon X so that: 

r>O 

and let V be the convex subset of ,C, 1 consisting in ali µ-almost everywhere positive functions 

p E C1 such that IIPllµ,I = 1. In the probability context, V is the set of density functions 

corresponding to the measure µ. 

Now we introduce the following definition: 

Deflnition l. 

Given a reference measure µ, an n-parametric family of probability density 

functions is a C00 n-dimensional manifold (D,av) where D C V and av is a max­

imal C00 atlas for D. Since this concept is µ-dependent, we shall use the following 

notation: ((D, av), µ). 

Clearly, from the Lebesgue-Radon-Nykodim theorem, a parametric family of probabi­

lity density functions is a representation of a parametric family of probability measures on 

(x,A). 

Frequently the manifold ( D , a v) is defined directly, by an auxilia.ry function / such 

that f: x x 0 ~ R, f(x, 8) ~ O for µ-almost all x E X, V8 E 0, where 0 is an open 

set of Rn, and additionally fxf(x,8) dµ(x) = 1 V8 E 0. In this case the manifold 

(D, av) is defined as: 

D = {p E 7J : p = /(·, 8) 8 E 0} 

and the atlas avis the maximal atlas which contains the chart (8, D) where 8 : D ~ Rn 
and 8(p) = 8 with p = f ( • , 8). We shall call 0 the parametric space, which is obviously 

an n-dimensional manifold on Rn . 
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Given an n-parametric family of probability density functions, ((D, av), µ) and given 

a local chart, (B,U), U C D, it is customary to write p(xlB) or p(·IB) for p E U, where 

B = B(p) : that is, the components of 0 are the coordinates of p under the coordinate 

system induced by fJ • Also, given x E X and given a certain real function h , if we define a 

function on D through <l> : U -+ R , <I>(p) = h (p( x)) , we usually wri te: 

i = l, ... ,n 

moreover, 

and so on. 

Also, Ee(s(X)) = fxs(x) p(xlB) dµ(x) stands for the mean value of s(X) with 

respect to the density p( ·IB), provided the above integral exists. In particular let 9ii 

be the coefficients of the Fisher information matrix, G = (9ij ), defined as g¡;( B) = 
Ee(oe, logp(XIB) Be; logp(XIB)) i,j = l, ... ,n provided they exist. Notice that 9ij are 

both dependent on a local chart (6,U) and the point p E U. It will be more rigorous to 

write 9ij ( B(p)) , but it is customary to write g¡j{ 8), taking into account that f) = 8(p). 

Let us now consider an independent sample of size k from the sample space 

X, X E xk, X= (x 1 , ... , xk). The joint density function is given by: 

p(x1,X2, ... ,Xk 18) =p(x118): .... p(xk 18) 

and given a sample X E xk, the likelihood function Lx, on D, is defined as: 

Lx: D--+ R, Lx(P) = íl~=l p(x¡IB), where 6 = B(p). It is customary to write Lx(6) 
instead of L x (p) , in other words a coordinate-dependent approach is usually followed, but 

it is also possible to consider the previous coordinate-free approach. 

The likelihood equations are given by 

k 

Be, log Lx(8) =La,. logp(x; 16) = o i = 1, ..• , n 
j=l 

here "X" is fixed and "8" are the unknowns. From these equations we usually obtain the 

maximum-likelihood estimation of the parameters 6. It is also possible to consider 

a coordinate-free approach in order to define the maximum-likelihood estimation of a 

density. Consider Lx or a monotonous transformation of the likelihood function, as the 

log-likelihood, l(p) = log (Lx(p)), which under the usual regularity condition is a C1 

function of D . Finding the solutions of likelihood equations is equivalent findig the critical 

points of l, that is finding the points p E M such that the differential of l, l. , at p is the 
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zero linear map. In other words, p* is a critical point of e, if and only if 0* = 0(p*) is a 

solution of the likelihood equations, which means that every critical point of e defines a 

solution of likelihood equations and the converse. 

It is useful to introduce sorne additional notation. We denote by {Xn}nEN ~ X and 

{Xn}n ...!!...+X, that the random sequence {Xn}nEN converges in law or in probability, 

respectively, to the random variable or vector X . 

We understand by X~ Nk(µ, :E) that X is a k-dimensional random vector distributed 

as a k-variate normal distribution with µ mean vector and :E covariance matrix. 

For the purpose of our paper, we shall restrict our study to certain n-parametric 

families of probability density functions which satisfy certain regularity conditions. 

Let ( ( D, an ), µ) be an n-parametric family of probability density functions. We shall 

consider the following assumptions: 

Al.- (D, an) is a connected Hausdorff manifold. 

There exists a sub-atlas Y contained in an such that for every local chart (0, V) 

of the atlas Y , then: 

A2.- 80; log p(xlB), ºi;o; log p(xl0), 0:;o; º" log p(xl0) i,j, k = 1, ... , n almost certainly ex­

ists for all p E V , 0 = 0(p) . 

A3.- The moments of Oo;log p(xlB) i = 1, ... , n exist up to second order satisfying: 

Eo(8o; logp(XIB)) = O and Eo((oo;logp(Xl0))
2

) < oo i = 1, ... ,n for all 

p E V , 0 = B(p) . 

A4.- The functions 801 log p( xlB), ... , 8on log p( xlB) are linearly independent, that is if 

.A¡ 81 log p(xl0) + ... + .An On log p(xl0) = O almost everywhere, then .A¡ = ... = .An =O. 

A5.- The components of the Fisher information matrix, g¡;(0), are C00 functions, whatever 

coordinate system we consider, that is for every local chart ( 8 , V) . 

A6.- The expected value of ,,-dmoi;o; p(xlB) i,j = 1, ... , n exists and is equal to zero: 

Eo (,,-dmoi;o;P(XIB)) =o. 
A 7 .- There exists a function M ( x) such that: 

10:;9;91,logp(xlB)I < M(x) i,j,k=l, ... ,n 

almost surely, for all p E V, 8 = 8(p) and Eo(M(X)) < oo for all 8 values. 

We shall call an n-parametric family of probability density functions that satis:6.es 

Al-A 7 a regular n-parametric family of probability density functions. 

U nder the above assumptions, the coefficient$ of the Fisher information matrix are 

4 



finite, at each point p E D and for every local chart ( () , V) , and the matrix G , which 

depends on the point p E D and a local chart ( () , V) , is a strictly positive symmetric 

matrix. Furthermore, the coefficients of G, 9ii , are the components of a second order 

covariant symmetric tensor field on the manifold ( D, a D) . Since at each point G is a strictly 

positive definite matrix, this tensor field may be considered as the metric tensor field of the 

manifold, and therefore (D, av) is a Riemannian manifold. We denote by (v, w)p the inner 

product of two tangent vectors and ds 2 = ¿~j=l 9ii d()i • d()i the quadratic differential 

form. 

The Riemannian distance is called the Rao distance of the parametric family of prob­

ability density functions, which is a representation model for a parametric family of prob­

ability measures. 

We now introduce sorne additional differential geometry notation. Let p be a point 

of D,p E D, and let Dp be the tangent space at p. Given v E Dp, there exists a unique 

geodesic 'i'v through p, whose tangent vector at p is v. This geodesic is defined in a 

neighbourhood of p. In this context the exponential map at p, expp is defined as: 

expp( v) = 'i'v(l) for all v E Dp such that 1 is in the domain of 'Yv . Consider an open 

neighbourhood U of O E Dp such that the exponential map will be a diffeomorphism, 

and let e 1 , ... , en be an orthonormal basis for D P • Let x 1, ... , x n be defined as xi ( v) = 
(v, e¡)p i = 1, ... , n, v E Dp. We define a coordinate system on expp(U), through 

x1 oexp¡1 , ••• , xnoexp¡1 • In other words, the coordinates of the point expp(..\1 e1 + ... +..\nen) 

are (..\1, ... , An) for all points such that ..\1e1 + ... + Anen E U. This coordinate system is 

called a normal coordinate system. 

Let us now define Sp C Dp as Sp = { v E Mp : llvllp = 1}, where p E D, for a complete 

manifold D. For each v E Sp we define 

C(v) = sup {t >O: d(p, 'Yv(t)) = t} 

It is well known, see for instance Spivak (1979) or Chavel (1984), that C(v) > O for all 

v E Sp. Notice that if t E (o, C(v)) then d(p, 'i'v(t)) =t. Also, for t E (O, C(v)) ,'Yv must 

be the only minimizing geodesic connecting p to ,( t) . When C ( v) < + oo , --y v ( C ( v)) is 

called the cut point of p along 'Yv. Now define a set l:J.p C Dp as l:J.p = {tv E Dp : O< 

t < C(v), v E Sp} and also Up CD, as: Up = expp(l:J.p). The boundary of Up ,fJUp, is 

called the cut locus of pin D. Notice that l:J.p is a star-shaped open region in Dp which 

is mapped smoothly, by expp onto Up , an open subset of D . 

N ow we shall introduce geodesic spherical coordinates. Consider a point 

q E Up,q =f. p, such that q = ;v(to),v E Sp,to E (O,C(v)). Assume we are given a 
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coordinate system in an open neighbourhood of v on Sp defined through a local map on 

Sp, ((, V) ,where V satisfies V C Sp, v E V, ( : V ------+ IRn-l, ( a 1-1 map onto 

an open set in Rn-l, e(V). We may also assume e( V) = Ü E IRn-l. Now we can de­

fine a coordinate system on an open neighbourhood of q on Up, assigning to the point 

expp(t · e-1 (8)) the coordinates (t, B) E Rn, B E Rn-i. Observe that the point q has 

coordinates (t 0 , O). More formally, if we define the map \JI : Bq ------+ Rn such that: 

where Bq = {z E ~P : z = ,\ • y ,\ > O, y E V} C Dp and if we 

let 1r 1 , ..• , 1rn be the usual coordinate system on Rn, 7ri : Rn ------+ R, 1ri(a) = 
a¡ i = 1, ... , n, a geodesic spherical coordinate is given by: 1r 1 o \JI' o exp;1, ... , 

1rn o \JI' o exp;1 which domain is included in Up - {p}, say Wq = expp(Bq)- Let 

r be a point on Wq , r E Wq , the natural basis induced by the above coordinate system 

in Dr is given by: 

i = l, ... ,n 

where f is smooth function defined in a neighbourhood of r. It is well known, see for 

instance Cheeger and Ebin (1975), that in a geodesic spherical system of coordinates we 

have: 

and therefore the quadratic differential form is given by: 

n n 

ds 2 = dt2 + ¿ ¿ g¡; dB¡ d(}i 
i=l j=l 

i = 2, ... , n 

as a consequence of Gauss' lemma. Notice that without loss of generality we may assume 

that in the point q, the metric tensor coefficients g¡;( q) = b¡; i,j = 2, ... , n where b¡; are 

the usual Kronecker deltas. 

3. PREVIOUS RESULTS 

In the present section we shall develop sorne lemmas that we shall need latter. Sorne 

references are Hicks (1965), Helgason (1978), Ash (1972), Laha and Rohatgi (1979), 

Billingsley (1968) and Giné and Araujo (1980). 
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Lemma 1 

Let {Un}neN be a sequence of k-dimensional random vectors, which satisfy 
e 

fo(Un - 0)----+ X ~ Nk(O, E), where C stands for the convergence in law, () E Rk, X is 

a random vector distributed as a k-variate normal distribution and E is a k x k strictly 

positive definite symmetric matrix. 

Let g be a real function defined on A, g: A----+ R, where A e Rk is an open set, and 

() E A . Assume that g is differentiable at x = () and let g' ( 0) = e be the J acobian matrix 

(1 x k) at x = (). 

i) If e-:/ O, then fo(g(Un)-g(0)) _E_. Z ~ N 1 (0, e E e') that is, the above sequence, 

defined with probability tending to one when n ----+ oo, converges in law to a random 

variable Z distributed as univariate normal distribution with zero mean and e E e' > O 

variance. 

ii) If e= O, then fo(g(Un) - g(0)) __!!_.O, that is, converges in probability and there­

fore in law to zero. 

iii) Assume additionally that gis C 2 in a neighbourhood of 8, e= O, and let H(0) = A 

be the Hessian matrix of g at x = 8 , where A is a k x k matrix of rank r , O < r ~ k . 

Then the sequence n(g(Un)-g(0)) defined with probability tending to one when n----+ oo, 

converges in law to a random variable J, which is a linear combination of the squares of 

independent random variables Z1 , ... , Zr, each one having a univariate normal distribution 

with zero mean and unit variance. The coefficients of the linear combination are the non 

null eigenvalues of the matrix ½ E 112 A E 112 , that is: 

n(g(Un) - g(B)) ..::..+ J = A1 z: + ... +Ar z: 
where Z¡ ~ N1 (O, 1) is stochastically independent and A1 , ••• , Ar are the r non-null eigen­

values of ½ E 112 A E 112 • 

The proofs of sections i) and ii) are, esentially in Rao (1973) p. 387 section. iii) is 

similar to section iii) of lemma 3 and is omitted here. 

Lemma 2 

Let {Un}neN and {Vn}neN be two stochastically independent k-dimensional 

random vector sequences, satisfying: 
e e 

{Un}neN ----+ X ~ Nk(O, E) , {Vn}neN ----+Y~ Nk(O, E) 

that is Un and Vn converge in law to X and Y , respectively, where X and Y are k­

dimensional random vectors identically distributed as a k-variate normal distribution with 

zero mean and E covariance matrix, a k x k symmetric and strictly positive definite matrix. 
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Let anm and bnm be two double sequences of real numbers, satisfying: a!m + 
b!m = 1 . Then, 

that is, the double sequence anm Un + bnm V m converges in law to a random vector Z 

distributed as Nk(O, E). 

Proof: 

It follows from the fact that the characteristic functions sequen ces of Un and V m , con­

verge uniformly in every Rk compact set to the zero mean k-variate normal characteristic 

function: 

since lanm 1 ~ 1 , lbnm 1 ~ 1 and taking into account that a!m + b!m = 1 we have: 

and therefore anm Un + bnm Vm converges in law to a k-variate normal distribution 

Nk(O, E). 

Lemma 3 

Let {Un}nEN and {Vn}nEN be two stochastically independent k-dimensional random 

sequences, satisfying: 

where 01 , 02 E Rk, X and Y are k-dimensional random vectors, distributed as a k-variate 

normal distribution, with zero mean and E covariance matrix, a k X k symmetric and 

strictly positive definite matrix. 

Let g be a real function defined on Ax B, g : Ax B--+ R, where A, B C Rk are 

open sets, 01 E A, 02 E B. Assume that g is differentiable at (81, 82) and the Jacobian is 

g'(81 , 92) = (c1, c2), where c1 and c2 are 1 x k matrix such that c1 Ec~ = c2 Ec; = cEc', 

for a certain e , 1 x k , matrix. 

i) If Ci -=f. O then ~ (g(Un, Vm) - g(81, 82)) ~ Z ~ N1(0, e E e') that is, the above 

double sequence, defined with probability tending to one as n --+ oo , converges in law to 

a univariate normal distribution, with zero mean and e E e' > O variance. 

ii) If c1 = c2 = O, then ~ (g(Un, Vm) - g(81, 82)) .!!....+ O that is, it converges in 

probability and also in law to zero. 
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iii) We further assume that g is C 2 in a neighbourhood of ( 81 , 82 ) , e = O and the Hessian 

matrix of g at ( 81, 82) , H ( 81, 82) = ( _AA -l) where A is a symmetric k X k matrix of rank 

r, O < r ::S k. Then, the double sequence n~mm (g(Un, Vm) - g(81 , 82)) converges in law 

to a random variable J which is a linear combination of the squares of the independent 

random variables Z1, ... , Zr, each one having a univariate distribution with zero mean and 

unit variance. The coefficients of this linear combination are the non-null eigenvalues of 

the matrix ½ :E112 A :E 112 , that is: 

where Z¡ ~ N1 (0, 1) is stochastically independent, and ).1 , ... , Ar are the r non-null eigen­

values of ½ :E112 A :E112 . 

Proof: 

i) Let us define h(u v) _ g(u,v)-g(81,82)-Dg(81,82)fu-81,v-82) 
' - ll(u,v)-(81 ,82)! 

where 11 11 stands for the usual Euclidean norm. This function h is defined in an open 

neighbourhood of (81 , 82 ) excluding the point (81 , 82 ). Now define the double sequence of 

real random variables, 

this double sequence is defi.ned with probability tending to one when n ---+ oo , smce 

(Un, Vm) converges in probability to (81 , 82 ). Furthermore, since g is differentiable at 

( 81 , 82 ) , clearly énm converges in probability to zero. On the other hand, since 

and the last expression is a continuous function of fo (Un -61) and ,Jm(Vm -82) and, 

by lemma 1, has a limiting distribution, it follows that Jn+":n 11 (Un, Vm) - (81, 82) 11 is 

bounded in probability, and thus Jn+mm ll(Un, Vm) - (81, 82) 11 · énm, and its absolute 

value, converges in probability to zero. Let us now define 
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Since vn C1 (Un -01) and vm c2(Vm -02) converge in law to a univariate normal 

distribution with zero mean and e~ e' > O variance, by lemma 2 it follows that the 

double sequence Rnm converges in law to a univariate normal distribution with zero mean 

and e~ e' variance. Therefore taking into account that the double sequence: 

converges in probability to zero, it follows that .}n~: (g(Un, Vn)-g(81 , 02)) has the same 

limiting distribution as Rnm, and the proof of section i) is concluded. 

Section ii) follows inmediately since if e¡ = O , then Rnm = O and thus 

y'nm 
n + m (g(Un, Vm) - g(01, 02)) converges in probability to zero, 

and therefore also converges in law to zero. 

Let us now consider section iii). 

First we introduce the function h(u, v) g( u,v)-g( 81 ,82)-½H( 81 ,82)( u-81 ,v-82) 
11( u,u(-(81 ,92) 11 2 

where H( 01, 02)( u - 01, v - 02) is the Hessian quadratic form. This function is de-

fined in an open neighbourhood of ((Ji, 02 ) not containing the point ( 01 , 92 ) • N ow define 

the double sequence of random variables, 

- { h(Un, Vm) 
€nm - O 

if ll(Un, Vm) - (81, 82)11 ;/ O 
if ll(Un, Vm) - (81, 82)11 = O • 

This double sequence is defined with prob.ability tending to one when n - • oo, 

since (Un, Vm) converges in probability to (91 , 62 ). Furthermore, since e = O clearly 

énm converges in probability to zero. Also, using similar considerations as in section 

i) n~":n ll(Un, Vm) - (81, 82)11 2 is bounded in probability and thus, n~":n ll(Un, Vm) -
(91 , 92 )11 2 énm, and their absolute value, converges in probability to zero. Let us now 

define 

and, 

Tnm = vm, {vn (Un - 61)}- fo {-lm (Vm - 82)} 
✓n+m ✓n+m 

under our assumptions we have Rnm = ½ T~m A Tnm , where here, Un, V m, 81, and 

92 are column vectors. 

By lemma 2, it follows that Tnm converges in law to a k-variate normal distribution, 

with zero mean vector and ~ covariance matrix. 
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On the other hand, since A is a symmetric k x k matrix of rank r , O < r ~ k , 

and E is a regular matrix, ½E 112 A E 112 has rank r and can be factorized into: 

½E 112 AE112 = PDP', PP' = P'P = I and D = diag(,\ 1 , ..• ,Ar,0, ... ,0) Pnd 

therefore Qnm = P' E-1/ 2 Tnm converges in law to a random vector Z normally dis­

tributed with zero mean vector and identity covariance matrix, and ½ T~m A Tnm 

Q~m D Qnm converges in law to the real random variable Z' D Z, and thus, since 

converges m probability to zero, then, the limiting distribution of 

n~m (g(Un, Vm) - g(81, 82)) IS Z' D Z = A1 Z; + ... +Ar Z;, where each Z¡ are nor­

mally distributed, with zero mean and unit variance, and Z1 , ... , Zr are stochastically 

independent. This concludes the proof of section iii). 

We shall use the notation of pages 5 and 6 for lemmas 4, 5 and 6. 

Lemma 4 

Let (D, an) be a Hausdorff, connected and complete n-dimensional Riemannian 

manifold. Let p, q be two points of D, p, q E D, such that, p =/- q, q E Up. Then 

there exists a local chart ( </>, Vq), Vq C Up , p <t Vq such that: 

i) (oef,., Oef>; }q = ó¡i i,j = 1, ... , n, where ó¡j are the Kronecker deltas, and 

Otf,; , i = 1, ... , n is the basis vector field corresponding to the coordinate system de­

fined through the local chart ( </>, Vq) , that is: 

(o<t>Jm f = D¡ (fo 4>-1 )(</>(m)) i = 1, ... ,n 

for any f , C00 function in a neighbourhood of m , m E Vq . 

ii) If we define the real function g : Wq --+ R , such that: 

where Wq = <f>(Vq) e Rn, is an open neighbourhood of </>(q), and d is the Riemannian 

distance on D , then g is differentiable at </>( q) , and the J acobian matrix is g' ( </>( q)) = 
(1,0, ... ,0). 

Proof: 

Section i) is trivial. Section ii) follows from the fact that it is possible to define a 

geodesic spherical coordinate system, as in pages 5 and 6 of section 2, in a neighbourhood 
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of q not containing p. It is enough to let </> be defined as </> = 1P o exp;1 , with the same 

notation of pages 5 and 6, then, in a neighbourhood of </>( q) , clearly we have D 1 g( x) = 1 

and D 0 g(x) = O a= 2, ... ,n. Then section ii) follows since gis differentiable with 

continuity in a neighbourhood of </>( q) . 

Lemma 5 

Let (D, av) be a Hausdorff, connected and complete u-dimensional Riemannian ma­

nifold. Let p, q be two points of D, p, q E D, such that p :/= q, q E Up. Then, there 

exist two local charts ( </>, Vq), ( r, Vp), where Vq C Up p (/. Vq and VP C Uq q (/. Vp, 

such that: 

i) (84>;, 84,;)q = Sij (8T;, 8T;)P = Dij i,j = l, ... ,n 

where (84>Jm f = Di(f o 4>-1 )(</>(m)) i = l, ... ,n for any f, C 00 function in a neigh­

bourhood of m E Vq, and (8TJrg = Di(gor-1 )(r(r)) i = l, ... ,n for any g, C00 

function in a neighbourhood of r E Vp. 

ii) If we define the real function g : Wp X Wq ----+ R such that: g(x, y) = 
d(r- 1 (x), 4>- 1(y)), where Wp = r(Vp), Wq = </>(Vq), are open sets of Rn, such that 

( r(p ), </>( q)) E Wp x Wq, and d is the Riemannian distance on D, then gis differentiable 

at (r(p),c/>(q)), andtheJacobianmatrixis g'(r(p),c/>(q))=(A,A) where A isa 

lxn matrix, A=(l,0,0, ... ,0). 

Proof: 

By observing that if q E Up, then p E Uq, the proposition is a consequence of the 

previous lemma. 

Lemma 6 

Let (D, av) be a Hausdorff connected and complete Riemannian manifold. Let p be 

a point of D, p E D. Consider v, w E Dp and let d be the Riemannian distance on D. 

Then: 
. d( expp( v ), expp( w)) 

lim ll = 1 • 
v,w-+O llv - W p 

Proof: 

Let ( e/>, V) be a local chart, satisfying p E V and 

,1,. ( 1 -1 n -1) 'P = x o expP , ... , x o expP 

where x 1 , .•• , xn are defined as: xi : Dp ----+ R , xi( v) = (v, e¡)p i = 1, ... , n, where 

e1 , ... , en is an orthonormal ha.sis for Dp. The coordinate system defined is called a normal 

coordinate system. 
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l's· Let B(p, 8) be defined as B(p, 8) = { q E D : d(p, q) < 8} , 8 E IJi+ , and let us 

define B(p, 8) = {q E D: d(p, q)::; 8}. 

It is well known that there exists e E ff+ such that B(p, 8) is strictly geodesically 

convex; that is given two points q, r E B(p, 8), there exists one and only one geodesic 

between thern in B(p, 8), for all 8 such that O < 8 < e, and this is the rninirnal geodesic 

between q and r on D . 

Let us now define G(q) = (gi;(q))nxn, the n x n rnatrix whose coefficients are the 

cornponents of the rnetric tensor field in the normal coordinate systern previously defined, 

that is 9ij(q) = (84>;, a</>;)q i,j = 1, ... ,n, where a</>; are defined as in the previous 

lernrnas. Notice that G(p) = I. Now define 

A(8) = {r¡ E R: r¡ is an eigenvalue of G(q) q E B(p, 8)} 

and ..\( 8) = inf A( 8) , µ( 8) = sup A( 8). Clearly ..\( 8) and µ( 8) are continuous functions 

on ff+ such that lirn6_.0+ µ( 8) = lim6_.0+ ..\( 8) = 1 . 

Therefore, for ali v, w E Dp such that expp( v), expp( w) E B(p, 8), the rninimal 

geodesic which joins both points, expp( v) and expp( w) , say "Yvw , is in B(p, 8) , and its 

length, l"Yvw I is equal to the Riernannian distance between expp( v) and expp( w) , and 

satisfies: 

and thus, since: 

and taking into account that lirn6_.0+ µ( 8) = lirn,5 ..... 0+ ..\( h) . 1 , we have: 

. d(expp(v), expp(w)) 
hrn --'-------- = l. 

v,w--+O llv - wllp 

4. MAIN RESULTS 

Theorem 1 

Let ((D, av), µ) be a regular n-pararnetric farnily of probability density functions. 

Let X be an independent sarnple of size k obtained frorn a population whose density 

is p0 E D. Let Pk be a consistent sequence of critica! points of the log-likelihood 

13 



function. Then k p2 (p 0 , Pk) ~ Y where p is the Rao distance between the esti­

mated point Pk and the true point p 0 , and Y is a random variable distributed as a 

chi-squared distribution with n degrees of freedom, 

Remark: 

2 Xn· 

It is possible to use a coordinate-dependent approach: 

Let ( 8, V) be a local chart including the true density, p 0 E V, and let Bk be a 

consistent sequence of roots of likelihood equations. Then, kp2 
( 0-1 ( 60 ) , 0-1 ( Bk)) ~ Y, 

where 60 = 6(p 0 ), Bk = 6(ftk) and p and Y are as before. 

Proof: 

Considera normal coordinate system in a suitable neighbourhood of p 0 , 61 , ... , ()n. 

Let 80 be the coordinates of p0 , 60 = 8(p0 ). In a neighbourhood of p, the Rao distance 

between p 0 and any point of the neighbourhood will be: 

n 

P (p, Po)= p(B-1(6), 6-1 (60 )) = ¿ ((Ji - 6~)2 

i=l 

and the Fisher information matrix at po is the identity matrix. It is well known that if Bk 

is a consistent sequence of roots of likelihood equations, then 

therefore 

where Y'Y is distributed as a chi-squared distribution with n degrees of freedom. 

Finally, we may notice that p(8-1(8k), 0-1(80)) = p(ftk, Po) and the proof is con­

cluded. 

Theorem 2 

Let ((D, av), µ) be a regular n-parametric family of probability density functions. 

Let X 1 and X 2 be two independent samples of size k1 and k2 respectively ob­

tained from the same statistical population whose density is Po E D . Let tf,2 and 

f>1!) be two consistent sequences of critica! points of the log-likelihood functions of sam-

ples 1 and 2 respectively. Then k~1+kí
2 

p2(p~~), ~~)) -.E..+ Y, where pis the Rao distance 

between f>1:> and f>~~), and Y is a random variable distributed as a chi-squared dis­

tribution with n degrees of freedom, x! . 
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Remark: 

A coordinate-dependent approach would be: 

Let ( 0, V) be a local chart including the true density, p 0 E V, and let and 

Bk~) be two consistent sequences of roots of likelihood equations computed from samples 1 

and 2, respectively. Then 

where Bk!) = B(ri!)), Bk!) = B(f>i:)), and p and Y as before. 

Proof: 

Consider a normal coordinate system of coordinates 01 , ... , en 
bourhood of p0 • Let p be the Rao distance, and let 80 = B(p0 ). 

in a suitable neigh­
If g(l) and 0<2) 

k1 k2 

are two consistent sequences of roots of likelihood equations computed from samples 1 

and 2 respectively, then, taking into account that the Fisher information matrix at p 0 is 

the identity matrix, we have: 

..¡;;; (Bi!) - Bo) ~X~ Nn(O,I)' .¡;;; (Bi!) - Bo) ~y~ Nn(O,I) 

therefore if we consider g(B(l) 0<2)) = IIB(I) - 6(2) 11 2 = (8(1) - 8(2))'(8(1) - 0<2>) smce 
' k1 ' k2 k1 k2 Po k1 k2 k1 k2 ' 

the vectors 8 may be identified with vectors in Dp
0

, the tangent space at p 0 , through the 

exponential map, by applying lemma 3, we conclude that 

where J is a random variable distributed as a chi-squared distribution with n degrees 

of freedom, since the Jacobian of g at (80 , 80 ) is zero and the Hessian matrix 1s 

H(80 , 80 ) = ( _:4A -l) with A= 21. 

Now consider the Riemannian distance between 0-1(Bk!)) and 0-1(Bi!)). Tak­
~(1) ing into account the definition of a normal coordinate system, we have, by identifying (Jk

1 

and ei~)' through the exponential map, by their corresponding elements of DPo' 

Let us call ÍJ12 = IIBk!) - IJ1!>11p and P12 = p(e-1(01!))' 0-1ce1!))) therefore: 

k1 k2 I _2 _ ÍJ2 I _ k1 k2 iJ2 1 Pi 2 1 ¡ ,,, o 
k1 + k2 P12 12 - k1 + k2 12 ÍJf 2 - --+ 
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.!i.!L n~2 smce k1 +k2 12 has a limiting distribution and 1 ~~2
2 -1 j ~ O by lemma 6 section 2 . 

12 

Then the statistic .!i.!L ~2 
k1 +k2 P12 ' has the same limiting distribution as k~1+'1

2 
ñ12 , a chi-

squared distribution with n degrees of freedom. 

A coordinate-free approach is obtained by considering the sequences ít/ = 0-1 
( Bk~)) 

i = 1, 2. These are sequences of critical points of log-likelihood functions of samples 1 

d 2 t . 1 d ( ~< 1) ~< 2) ) ~ an , respec 1ve y, an p Pk
1 

, Pk
2 

= P12 • 

Theorem 3 

Let ( ( D, a D ), µ) be a regular n parametric family of probability density functions. 

Assume that there exists a local chart (0, V) such that, under the coordinate system 

defined by 0, the Rao distance is given by: 

n 

p- 1 (0- 1(/3), 0-1
(,)) = L (¡3i - ,i)2 /3,, E 0(V) e Rn. 

i=l 

Let X 1 and X 2 be two independent samples of size k1 and k2 respectively, p 1 , p 2 E 

V, 01 = 0(p1), 02 = 0(p2), P1 =I- P2• 

Let Bi~) and Bi!) be two consistent sequences of roots of likelihood equations com­

puted from samples 1 and 2 respectively. Then, 

~ ( (0-1 ([)<1)) rr 1 ([)< 2
))) - ( )) ...!:..+ z ~ N (o 1) Jk1 + k2 p k1 , k2 p PI, P2 1 , • 

Remark: 

It is customary to say that Bi,; p(0-1 (Bk~)), 0-1(Bk!))) converges asymptoti­

cally to a univariate normal distribution with f{!1j
2 

p (p1 , p2 ) mean and unit variance 

or i t is also usual to say that the limiting distribution of ,~1;l
2 

p2 
( 0-1 ( Bk~)) , 0-1 ( Bk!))) 

is a non central chi-squared distribution with n degrees of freedom and a non-centrality 

parameter A = k~1-;l
2 

p2 (p1 , P2) . 

Proof: 

u nder the above assumptions, and defining g( Bi~> , Bi!)) - 11 Bi~) - ei!) 11 -

p(0-1(Bk~)),0- 1 (Bk!))), and since: 

because the Fisher information matrix is equal to the identity matrix in all V, in particular 

in 0(p 1 ) , B(p2) . Then, since g ( 61, 02) =I- O , and the J acobian of g at ( 01, 02) is 
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g'(01 , 02 ) = (A, -A), with A=/- O, and Al A'= (-A)I(-A)' = 1, where A is a 

1 x n matrix, we may apply lemma 3, and we conclude that 

and the proof is completed. 

Corollary 1 

Assume that the parametric family has the following form: 

which means it is the joint density function of n independent random variables 

whose density is a member of a one-parameter family of probability densities, Pi E 

((D¡, av¡ ), µ¡) i = 1, ... , n. 

Assume also that each ((D¡, avJ, µ¡) is a regular uniparametric family of proba­

bility density functions. Then, the hypothesis of Theorem 3 is satisfied and then, if ei:> 
and Bk!) are consistent sequences of roots of likelihood equations from two independent 

samples X1, X2 of size k1 , k2 of two populations whose densities are PI, P2, with 

PI =/- P2 , the sequence: 

where p is the Rao distance. 

Proof: 

Under the above hypothesis, the metric tensor field components are given by: gµ. 11 = 
6µ. 11 hµ.(0µ.), where hµ.(Bµ.) = E((8o,. logpµ.) 2

) µ = l, ... ,n and 6µ. 11 are the Kro­

necker deltas. 

The Christoffel symbols of the second kind, connection coefficients, are zero, except 

the coefficients of the form: 

r~ 0 = 80ª log ,,¡r;:: a = l, ... , n, which only depends on 80 , 

and therefore, the Riemann-Christoffel curvature tensor vanishes. 

Then, since (D, av) is simply-connected, as the (D¡, avJ are connected, the 

manifold is Euclidean and there exists a coordinate system 8 , such that the dis­

tance between two points of coordinates o and /3 is given by: p (B-1 (o), 0-1(/3)) = 
✓I:~1 ( a¡ - {3¡)2 and then theorem 3 applies. 
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Corollary 2 

Let ( ( D, a D ), µ) be a regular n-parametric family of probability density functions, 

such that: 

where F is a convenient function, E 0 are fixed n x n strictly positive definite sym­

metric matrices, 0 E Rn is an n-dimensional parameter vector, the sample space x is 

U:P and the reference measure µ is the usual Lebesgue measure of Rn . Then, the hy­

pothesis of Theorem 3 is satisfi.ed and therefore, if Bt> and Bk!> are consistent se­

quences of roots of likelihood equations from two independent samples X 1 , X2 of size 

k1, k2 from two populations whose densities are p1, P2 , with PI =/- P2, the sequence 

/l!it; (P (0- 1(Bk~))), 0-1(Bk!)) - p(p1, P2)) ~ Z ~ N1(0, l) where pis the Rao dis-

tance. 

Proof: 

It is easy to see that under the coordinate system given by the parameter 0, the metric 

tensor field is constant on all the manifold, and therefore, since this manifold is simply­

connected, there exists a coordinate system defined by a global chart (/3, D) such that 

the Riemannian distance is given by: 

n 

p (¡3-1(,y), 13-1(µ)) = L (,y¡_ µ¡)2 

and thus, theorem 3 applies. 

Theorem 4 

i=l 

Let ( ( D, a D ), µ) be a regular n-pa.rametric family of probability density functions. 

Assume that (D, av) is a complete manifold, with respect to the Rao distance. Let X 1 

and X 2 be two independent samples of size k1 and k2 respectively, obtained from two 

statistical populations whose densities a.re p 1 and p2 respectively, P1, P2 E D , P1 =/- P2 

and p 2 E Up 1 ( and thus p 1 E Up 2 ) where the Up; are defined as in page 5. 

Let ftk~) and .Pk~) be two consistent sequences of critica! points of the log­

likelihood functions of samples 1 and 2 respectively. Then: 

~ ( (~(l) ~(2)) ( ) C Y~ P Pk1 , Pk2 - P P1, P2) --+ Z ~ N1(0, l) 

where p is the Rao distance. 
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Remark 1 

A coordinate-dependent approach would be: 

Let ( </>, V) and ( r, W) be two local charts such that p1 E V, p2 E W and let 

J1~) and r!!) be two consistent sequences of roots of likelihood equations computed 

from samples 1 and 2 respectively. Then 

~ ( ( -1( ~(1)) -1(~(2))) ( )) e ( ) V~ p </> <Pk1 ' T Tk2 - p PI' P2 ~ z ~ N1 o, 1 . 

Remark 2 

It is customary to say that J k~1+kf
2 

p('ft1~) , P1~)) converges asymptotically to a 

univariate normal distribution with ;f{f/i:; p (p1 , p2 ) mean and unit variance, or also, 

we usually say that the limiting distribution of k~1:¡
2 

p2 (p~~) , fi1~)) is a non-central 

chi-squared distribution with n degrees of freedom and a non-centrality parameter A = 
~ 2( ) 
k1 +k2 p PI' P2 . 

Proof: 

By lemma 5, there exist two local charts ( </>, Vp2) , ( T, Vpi) , where Vp2 C Up1 , 
P1 (j. Vp 2 and Vp 1 C Up2 , P2 (j. Vp 1 , with the same notation as in page 5 and 12, such 

that: 

(8r;, Br;} = 6¡; i,j = 1, ... , n 

andif g: Wp 1 XWp 2 ~ R isdefinedas g(x, y)= p(r-1(x), 4>-1(y)) where Wp; = 
r( Vp;) i = 1, 2 are open sets of nn and p is the Rao distance, then g' ( T (p1) , </>(p2)) = 
(A, A) where A= (1, O, ... O), a 1 x n matrix. 

We also know that if J1~) and rt) are two consistent roots of likelihood equa­

tions computed from samples X 1 and X 2 respectively, then, ,JF;, (rt) - r(p1)) ~ 
~(2) e X ~ Nn(O, I) and -/F; (</>k2 - r(p2 )) ~ Y ~ Nn(O, I), then, by lemma 3, since 

g' ( r (p1 ) , </> (p2 )) = ( A, A) -=/:- O , A I A' = 1 , and therefore: 

or equivalently, 

~ { ( -1(-(1)) -1( ~(2))) ( )} e ( ) V~ p T Tk1 ' </> <Pk2 - p PI, P2 ~ z ~ N1 o, 1 . 
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A coordinate-free approach is obtained by considering the sequences of critical points 

of the log-likelihood function, p~:) = r- 1(rt)) and f>1~) = </J- 1(J~~)) which obviously 

satisfy ( ~(l) ~< 2)) = (r-1(-r(l)) ,,i,-I (1(2) )) and thus J ki k 2 ( ~(l) ~< 2)) has p Pk1 ' Pk2 p k1 l 'f' 'f'k2 k1+k2 p Pk1 l Pk2 
the same limiting distribution as before. 

Corollary 3 

Let ( ( D, a D ), µ) be a regular n-parametric family of probability density functions. 

Assume that (D, aD) is a simply connected complete Riemannian manifold, with the 

Riemannian manifold structure induced by Fisher information matrix. Additionally as­

sume that all sectional curvatures are-non positive. Then if X 1 and X 2 are two inde­

pendent samples of size k1 and k2 respectively, obtained from two statistical populations 

h d . . d D ...J. d 1 t ~(I) ~<2 ) b w ose ens1ties are p 1 an p2 , PI, P2 E , PI , P2, an e pk1 , Pk2 e two 

consistent sequences of critical points of the log likelihood functions of samples X 1 and X 2 

respectively. Then, 

where p is the Rao distance. 

Proof: 

Under these assumptions, given a.ny point, PI or p2 , for instance, its cut locus is empty 

and then PI E Up 2 or p2 E Up 1 is always true. Therefore Theorem 4 applies. 

Corollary 4 

Let ((D, aD), µ) be a regular n-parametric family of probability density functions. 

Assume that (D, aD) is simply-connected complete Riemannian manifold, with the Rie­

mannian manifold structure induced by the Fisher information matrix. Let X 1 and X 2 

be two independent samples of size k1 and k2 respectively, obtained from two statistical 

populations, whose densities are PI and P2 , PI, P2 E D, P1 -/= P2 . Assume that PI or P2 

have no conjugate points along any geodesic. Let p~:) a.nd p~~) be two consistent se­

quences of critical points of the log-likelihood functions of samples XI and X2 respectively. 

Then, 

where p is the Rao distance. 
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Remark: 

Notice that the result is obtained by replacing the conjugate points conditions on PI 

and p2 with a stricter condition on D, e.g. ( D, ªD) is a manifold without conjugate 

points ( any point along any geodesic ). 

Proof: 

Under the above assumptions for any point, PI or p2 , for instance, its cut locus 

is empty and then PI E Up 2 or P2 E Up 1 is always true, and therefore, theorem 4 

applies. 

Remark 

Severa! examples of n-parametric families of probability density functions may be 

considered and the problem of the asymptotic distribution of the Rao distance solved by 

applying Theorems 2, 4 or their corollaries. For instance, the univariate normal case or 

the multinomial negative case. 

Remark: 

Theorem 2 may be considered as a limiting case of Theorem 4. It is usual to say, 

the asymptotic distribution of the statistic: k~1::
2 

p2 (.P1~) , .P1~)) is a non-central chi­

squared distribution with n-degrees of freedom and a non-centrality parameter ..\ = 
k~i+k¿ p2 (PI, p 2 ) . If p1 = p 2 then ..\ = O and we obtain a central chi-squared distri­

bution as in theorem 2, but theorem 2 is not redundant. 

5. EXAMPLE 

As an example we may consider the biparametric family of univariate normal distri­

butions. This is a regular parametric family and, additionally, is simply-connected and 

together with the Riemannian metric induced by the Fisher information matrix is a com­

plete Riemannian manifold with negative Gaussian curvature, see Burbea and Rao (1982). 

Consider the problem of comparing two univariate normal populations, given two samples 

from each one. Let (xI, s 1 ) and (x2 , s2 ) be the likelihood estimation of the param­

eters (µ¡, CT¡) , i = 1, 2 , the usual coordinate system of the univariate normal case. 

In order to decide between the null hypothesis H O : µ¡ = µ2 CT¡ = CT2 against the 

alternative, HI : µ 1 =J µ 2 or CTI =J CT2, we may define the critica! region of this test 
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through the inequality D 2 > Ae where D is defined as: 

1 +~ 
D = V2 log ~ = 2\/'2 tanh- 1 

(~) 
1-

~ = { (x2 - x1)2 + 2(s1 - s2)2 }1/2 

(x2 - xi)2 + 2(s1 + s2)2 

and n 1 , n2 are the sample sizes, and Ae is determined in such a way to satisfy: 

that is € is the significance level of the test. In order to find Ae we may consider 

Theorem 2, then we know that U converges in law to a chi-squared distribution with 

2 degrees of freedom, and if the sample size is not small we may assume that U 1s 

approximately distributed as a chi-square with 2 degrees of freedom. 

In order to study the mínimum sample size that is needed to use the asymptotic 

distribution as a good approximation, computer simulation was used to obtain samples, 

with different parameters and sample size, from univariate normal statistical populations. 

The maximum-likelihood estimation of the Rao distance between two samples was cal­

culated together with the empirical distribution function (EDF) from U statistics, which 

according to the Glivenko-Cantelli theorem almost certainly uniformly converges to the 

true distribution function. Therefore, it is possible to compare the EDF with the asym­

potic distribution function (ADF), the distribution function of a chi-squared distribution 

with 2 degrees of freedom. 

Random numbers distributed normally were obtained using a modified Box-Müller 

method, Yakowitz (1977). The following tables of results were obtained by means of two 

sequences of 104 independent samples of size n = 15 or 30 from a univariate normal 

statistical population, N(µ, o-2 ). For each of these 104 sample pairs, the maximum likeli­

hood estimation of the parameters µ and u-2 was calculated and for each pair of likelihood 

estimations, the U statistics with n 1 = n 2 = n i.e. U = i D 2 were calculated. 
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u 
0.0100 

0.0201 

0.0506 

0.1030 
0.2110 

0.5750 
1.3900 
2.7700 

4.6100 

5.9900 

7.3800 
9.2100 

10.600 

u 
0.0100 

0.0201 

0.0506 

0.1030 

0.2110 

0.5750 

1.3900 
2.7700 

4.6100 

5.9900 

7.3800 
9.2100 

10.600 

TABLE I 
n = 15, µ= o, a=l 

EDF ADF Diif erences 
0.0059 0.0050 0.0009 
0.0113 0.0100 0.0013 
0.0259 0.0250 0.0009 
0.0468 0.0500 -0.0032 
0.0969 0.1000 -0.0031 
0.2380 0.2500 -0.0120 
0.4611 0.5000 -0.0389 
0.7081 0.7500 -0.0419 
0.8672 0.9000 -0.0328 
0.9239 0.9500 -0.0261 
0.9548 0.9750 -0.0202 
0.9770 0.9900 -0.0130 
0.9861 0.9950 -0.0089 

Maximum absolute value diiferences: -0.0419 (approx. 4%) 

TABLE 11 
n = 30, µ=0, a=l 

EDF ADF Diif erences 

0.0045 0.0050 -0.0005 
0.0105 0.0100 0.0005 
0.0261 0.0250 0.0011 
0.0486 0.0500 -0.0014 

0.0995 0.1000 -0.0005 

0.2482 0.2500 -0.0018 

0.4789 0.5000 -0.0211 

0.7235 0.7500 -0.0265 

0.8817 0.9000 -0.0183 

0.9373 0.9500 -0.0127 

0.9650 0.9750 -0.0100 

0.9851 0.9900 -0.0049 

0.9926 0.9950 -0.0024 

M aximum absolute value diiferences: -0.0265 ( approx. 2.5%) 
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0.0100 
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u 
0.0100 

0.0201 

0.0506 

0.1030 

0.2110 

0.5750 

1.3900 

2.7700 

4.6100 

5.9900 

7.3800 

9.2100 

10.600 

TABLE 111 
n = 15, µ=o, a= 0.l 

EDF ADF Diff erences 

0.0043 0.0050 -0.0007 
0.0097 0.0100 -0.0003 
0.0234 0.0250 -0.0016 
0.0454 0.0500 -0.0046 
0.0928 0.1000 -0.0072 
0.2268 0.2500 -0.0232 
0.4622 0.5000 -0.0378 
0.7009 0.7500 -0.0491 
0.8623 0.9000 -0.0377 
0.9229 0.9500 -0.0271 
0.9542 0.9750 -0.0208 
0.9780 0.9900 -0.0120 
0.9867 0.9950 -0.0083 

Maximum absolute value differences: -0.0491 ( approx. 5%) 

TABLE IV 
n = 30, µ =0, a= 0.l 

EDF ADF Diff erences 

0.0045 0.0050 -0.0005 
0.0090 0.0100 -0.0010 

0.0235 0.0250 -0.0015 
0.0470 0.0500 -0.0030 

0.0954 0.1000 -0.0046 

0.2339 0.2500 -0.0161 

0.4815 0.5000 -0.0185 

0.7268 0.7500 -0.0232 

0.8808 0.9000 -0.0192 

0.9360 0.9500 -0.0140 

0.9630 0.9750 -0.0120 

0.9826 0.9900 -0.0074 

0.9903 0.9950 -0.0047 

Maximum ab.rnlute value differences: -0.0232 (approx. 2.5%) 
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u 
0.0100 

0.0201 

0.0506 

0.1030 

0.2110 

0.5750 

1.3900 
2.7700 

4.6100 

5.9900 

7.3800 

9.2100 

10.600 

TABLE V 
n = 15, µ = O, a = 10 

EDF 
0.0044 

0.0099 

0.0250 

0.0491 
0.0955 

0.2317 
0.4655 
0.7090 

0.8630 

0.9226 

0.9545 

0.9776 

0.9861 

ADF 
0.0050 

0.0100 

0.0250 
0.0500 
0.1000 
0.2500 

0.5000 
0.7500 

0.9000 

0.9500 

0.9750 
0.9900 

0.9950 

Di.ff erences 

-0.0006 

-0.0001 

0.0000 

-0.0009 
-0.0005 

-0.0183 

-0.0345 
-0.0410 

-0.0370 

-0.0274 

-0.0205 

-0.0124 

-0.0089 

Maximum absolute value di.fferences: -0.041 (approx. 4%) 

TABLE VI 
n =30, µ=o, a= 10 

EDF ADF Di.ff erences 

0.0043 0.0050 -0.0007 

0.0086 0.0100 -0.0014 

0.0244 0.0250 -0.0006 

0.0492 0.0500 -0.0008 

0.0952 0.1000 -0.0048 

0.2423 0.2500 -0.0077 

0.4860 0.5000 -0.0140 

0.7347 0.7500 -0.0153 

0.8919 0.9000 -0.0081 

0.9418 0.9500 -0.0082 

0.9691 0.9750 -0.0059 

0.9846 0.9900 -0.0054 

0.9916 0.9950 -0.0034 

Maximum absolute value di.fferences: -0.0153 (approx. 1.5%) 

25 



u 
0.0100 
0.0201 

0.0506 

0.1030 
0.2110 

0.5750 

1.3900 
2.7700 

4.6100 

5.9900 

7.3800 
9.2100 

10.600 

u 
0.0100 

0.0201 

0.0506 

0.1030 

0.2110 

0.5750 

1.3900 

2.7700 

4.6100 

5.9900 

7.3800 
9.2100 

10.600 

TABLE VII 
n = 15, µ = l, a=l 

EDF ADF Diff erences 
0.0046 0.0050 -0.0004 
0.0094 0.0100 -0.0006 
0.0215 0.0250 -0.0035 
0.0439 0.0500 -0.0061 
0.0887 0.1000 -0.0113 
0.2297 0.2500 -0.0203 
0.4722 0.5000 -0.0278 
0.7107 0.7500 -0.0393 
0.8685 0.9000 -0.0315 
0.9247 0.9500 -0.0253 
0.9560 0.9750 -0.0190 
0.9767 0.9900 -0.0133 
0.9853 0.9950 -0.0097 

Maximum absolute value differences: -0.0393 (approx. 4%) 

TABLE VIII 
n=30, µ=l, a=l 

EDF ADF 

0.0053 0.0050 

0.0095 0.0100 

0.0239 0.0250 

0.0474 0.0500 

0.0966 0.1000 

0.2407 0.2500 

0.4793 0.5000 

0.7254 0.7500 

0.8810 0.9000 

0.9358 0.9500 

0.9655 0.9750 

0.9850 0.9900 

0.9909 0.9950 

Diff erences 

0.0003 

-0.0005 

-0.0011 
-0.0026 

-0.0034 

-0.0093 

-0.0207 

-0.0246 

-0.0190 

-0.0142 

-0.0095 
-0.0050 

-0.0041 

Maximum absolute value differences: -0.0246 (approx. 2.5%) 
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If the results shown in the previous tables are taken into account, it is reasonable to 

take the value 7.12 as a critica! value for a sample size near 15 and a significance level 

of 5% and for a sample size near 30 with the same significance level, a value of 6.48. 

For an intermediate sample size, interpolation can be used and for a larger sample size, 

the asymptotic approximation. If a significance level of 1 % and a sample size of 15 is 

considered, the critical value is approximately 11.54 and for a sample size of 30 with the 

same significance level, the critica! value is 10.28. A more detailed study will appear on 

this subject in the near future. 

The test power can be evaluated in a specific example. Consider two independent uni­

variate normal statistical populations, N(0, 1) and N(l, 1) respectively. The Rao 

distance between them is p12 = 0.9803. 104 independent samples of size n were 

generated from each population and, for each pair of sarnples, the estimation ( D12) of 
the Rao distance (p12 ) was calculated, thus obtaining the empirical distribution func­

tion (EDF) of W = ✓ n~;.n;
2 

(D12 - P12) which was compared with the asymptotic 

distribution (ADF), a univariate normal N(O, 1). The results are given in tables IX 

and X for sample sizes n 1 = n 2 = n = 15 and n 1 = n 2 = n = 30 respectively. 
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TABLE IX 
sample size n = 15 p = 0.9803 

w EDF ADF w EDF ADF 
-2.685 0.000 0.004 0.352 0.500 0.637 
-1.272 0.050 0.102 0.487 0.550 0.686 
-0.929 0.100 0.176 0.618 0.600 0.731 
-0.685 0.150 0.247 0.755 0.650 0.774 
-0.497 0.200 0.309 0.906 0.700 0.817 
-0.338 0.250 0.367 1.007 0.750 0.841 
-0.187 0.300 0.425 1.262 0.800 0.896 
-0.042 0.350 0.484 1.470 0.850 0.929 
0.087 0.400 0.534 1.733 0.900 0.958 
0.224 0.450 0.589 2.171 0.950 0.985 

M aximum absolute value differences: 0.139 

TABLE X 
sample size n = 30 p = 0.9803 

w EDF ADF w EDF ADF 
-3.797 0.000 > 10-3 0.223 0.500 0.588 

-1.380 0.050 0.084 0.355 0.550 0.638 

-1.062 0.100 0.144 0.487 0.600 0.686 

-0.826 0.150 0.205 0.626 0.650 0.734 

-0.648 0.200 0.259 0.781 0.700 0.782 

-0.470 0.250 0.320 0.944 0.750 0.827 

-0.303 0.300 0.381 1.122 0.800 0.869 

-0.156 0.350 0.438 1.323 0.850 0.907 

-0.028 0.400 0.489 1.575 0.900 0.942 

0.103 0.450 0.541 1.974 0.950 0.976 

M aximum absolute value differences: 0.091 
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Let us consider now the case n = 15 and assume a significance level E = 0.05. 

The critica! value for U statistics is approximately 7.12 as we have said before, 

therefore, taking into account that: 

U > 7.12 {=::} W > -0.016 

From table IX we conclude that the test power is approximately, by interpolation, 0.64. 

lf we consider the case n = 30, the critica! value for U statistics is approxi­

mately 6.48 , and since 

U > 6.48 {=::} W > -1.251 

From table X we now conclude that the test power is approximately about 0.93. 
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