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Abstract 

A quasi-bundle is defined to be a morphism from an algebraic surface onto a curve having 
all smooth fibres connected and isomorphic, and allowing as only singular fibres multiples of 
smooth curves. When no multiple fibre occurs it is called a fibre bundle. Toe general fibre F of 
a quasi-bundle is said to be divisible by an integer k if (I/k)F is still the numerical class 
of an integral divisor. This paper focuses on the relationship between the divisibility properties 
of F and the torsion of H 2 ( S, Z). For fibre bundles, the link between those two notions is 
established by means of Serre spectral sequence. As for general quasi-bundles, a suitable base 
change leads back to the fibre bundle case. Toe results become most explicit for elliptic quasi­
bundles, where the action of the monodromy can be fully computed. For any prime number p, 

the paper contains examples of fibre bundles whose fibre is divisible by p. 



THE PICARD GROUP OF A QUASI-BUNDLE 

Fernando Serrano 

§ O. INTRODUCTION 

The simplest kind of morphisms from an algebraic surface onto a curve are those 

having all smooth fibres connected and ísomorphic to each other, and allowing as only 

singular fibres multiples of smooth curves. These fibrations will be called quasi-bundles, 

the fibre bundles being the specíal case where no singular fibre occurs. The aim of this 

paper is to study the Picard group of surfaces S endowed with a quasi-bundle fibration. 

In particular, we are interested in linking two seemingly unrelated notions, namely the 

divisibility of a fibre in H 2 (S, Z)/ (torsion) and the torsion of H 2 (S, Z). 

If <p : S _. C is a quasi-bundle with general fibre F, we say that F is divisible 

by an integer k if there exists L E H2 (S, l) such that F - kL is a torsion element 

of H 2 
( S, l) ( or zero). One sees easily that the cocycle L must be algebraic as well. 

Every integer which occurs as multiplicity of sorne fibre of <p obviously divides F in the 

abovementioned sense. However, not all the divisibility properties of F are accounted for 

by the existence of multiple fibres. The action of the monodromy is playing a role, too. As 

a matter of fact, for each prime number p we are giving examples in § 2 of fibre bundles 
' with fibre divisible by p ( despite the absence of singular fibres ). Once the possibility 

of such a phenomenon has been shown it is a question of searching for implications. For 

a fibre bundle S _. C this is done by means of Serre spectral sequence. In this case 

we derive a close connection between the divisibility of F and the torsion of H1(S, Z) 
( non-canonically isomorphic to the torsion of H 2 ( S, l) ). This is the content of § 2. 

The results for fibre bundles will be extended in § 3 to general quasi-bundles. The idea 

now will be to perform a suitable base change, so that the multiple fibres disappear, and the 
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information about the fibre bunclle 80 obtained cm1 be appliecl to our fibration. r-.Ioreover, 

sorne results of the author ( [12]) about the behaviour of multiple fibres in homology are 

required. Here, of course, the results will be less precise since one loses information along 

the process of base-change. Finally, § 4 contains a more detailed study of elliptic quasi­

bundles (i.e. g(F) = 1). In this context, the results ofthe prececling sections will become 

most explicit, inasmuch as the action of the monodromy can be fully described. 

The main results of this paper are stated as Theorems 2.2 and 3.6 for general fibre 

genus, and Theorems 1.10, 4.1, 4.3 and 4.4 for elliptic fibrations. 

The research leading to this paper was carried out while the author was visiting the 

University of Utah. I want to thank H. Clemens for his invitation, and J. Kollar for severa! 

helpful remarks. 

§ l. NOTATION AND PRELIMINARIES 

All varieties will be defined over the field of complex numbers. A surface ( respectively, 

a curve) is a projective, irreducible, non-singular scheme of dimension 2 (resp. 1). vVe 

shall employ the following terminology: 

Ox(D): = invertible sheaf associated to a divisor D of the variety X. 

h¡Ox(D) : = dim HiOx(D); xOx(D): = ¿f::;;x (-l)ihiOx(D). 

Kx : = canonical divisor of X. 

71'1 (X) : = fundamental group of X. 

tor( G) : = torsion of an abelian group G. 

G/(torsion): = G/tor(G). 

Zm : = Z modulo (m)Z. 

Picº(X): = Picard variety (of divisors algebraically equivalent to zero) of X. 

The irregularity and geometric genus of a surface S are denoted q(S) : = h1 Os, 

p
9
(S): = h20s respectively. For a curve or divisor C, g(C) stands for the arithmetic 

genus of C. The symbol ~ (respectively -) represents linear (resp. numerical) equiva­

lence of divisors. If D is a divisor on a surface S, often we will write also D to 

mean its class in the distinct groups Pie S, H 2 (S, Z), etc., as the context will indicate. 

A fibration <p : S -+ C is a morphism with connected fibres from a surface onto a 
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curve. \Vhen the fibre genus is equal to one it is called an elliptic fibration. In general, r.p 

is said to be relatively minimal if no fibre contains a (-1 )-curve. \Ve say that r.p 1s 

the Albanese fibration if the image of the Albanese map a : S --+ Alb(S) is a curve iso­

morphic to C, and a : S--+ a(S) coincides with r.p. From the universal property 

of the Albanese variety ( [2]) i t follows that q( S) = g( C) if and only if ei ther q( S) = O 

or r.p is the Albanese fibration. 

Let F = ¿i n¡B¡ be a fibre of r.p, where the B~s are the irreducible reduced 

components, and the nis their multiplicities. If m denotes the greatest common 

divisor of the nis, then we will say that m is the multiplicity of F, and will write 

F = m D, where D = ¿¡(n¡/m)B¡. Whenever we use the expression "let m D be 

a multiple fibre" we always mean that m is the multiplicity of m D, and m 2'.: 2. 

This paper deals with the simplest types of fibrations, to be defined now: 

Definition 1.1. A fibration r.p : S --+ C is called a quasi-bundle if all smooth fibres 

are isomorphic, and the only singular fibres are multiples of smooth curves. If moreover 

r.p has no singular fibres, then r.p is said to be a fibre bundle. For economy of notation, 

a surface S will also be called a quasi-bundle (respectively, a fibre bundle) if it admits a 

quasi-bundle (resp., a fibre bundle) fibration. 

Remark 1.2. A quasi-bundle surface always admits two distinct quasi-bundle fibrations. 

In fact, it is proved in [13] that every quasi-bundle surface is the quotient of a product of 

two curves by the action of a finite group. 

Let r.p: S-+ C be a fi.bration with general fibre F. Denote by ws¡c : = Os(Ks)® 

r.p*Oc(-Kc) the dualising sheaf of r.p. The sheaf r.p.(ws¡c) is locally free of rank 

equal to g(F). By relative duality ([1]) one has: 

where denotes dual as Oc-module-. We have 

h1(R1r.p.05 ) = hº((r.p.ws¡c) 0 Oc(Kc)) = hºOs(Ks) = p9 (S). 

The first terms of the Leray spectral sequence E~,q = HP(Rqr.p.Os) ~ HP+q(Os) 

yield an exact sequence ([7]), 114.17.1 and I 4.5.1) 
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Sin ce <p *Os 
yields 

Oc we get hº(R1<p*Os) = q(S) - g(C). Riemann-Roch on C 

On the other hand 

Finally one obtains 

Lemma 1.3. xOs = deg(<p.ws¡c) + (g(F) -1) (g(C) - 1). • 

Proposition 1.4. With the preceding notation one has h10s(-F) = g(C) for any 

fibre F. In particular, the image of Picº(S) -+ Picº(F) (induced by the inclusion 

F ~ S) has dimension q(S) - g(C). 

Proof: Let F be the fibre over p E C. Leray spectral sequence yields 

We have R1ip.<p*Oc(-p) = (<p.ws¡c)v ® Oc(-p). Fujita's decomposition Theorem 

([6])saysthat ip.ws¡c=OihEBE with h=q(S)-g(C) and hº(Ev)=O. Conse­

quently R1ip.ip*Oc(-p) has no global sections, and thus h10s(-F) = h10c(-p) = 

g(C). The tangent spaces at the origin of Picº(S), Picº(F) can be identified with 

H 10s and H 10F respectively. From the sequence 

0---+ Os(-F)-+ Os-+ OF-+ O 

one sees that the kernel of H 10s-+ H 10F is isomorphic to H 10s(F), and the last 

assertion follows. D. 

In the next two Lemmas we will restrict our attention to elliptic fibrations. 

Lemma 1.5. A relatively minimal elliptic fibration <p : S -+ C is a quasi-bundle if 

and only if xOs = O. 
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Proof- In view of Theorems 6 and 7 of chapter IV in [14] the topological Euler charac­

teristic e( S) of S vanishes if and only if all singular fibres of '-P are multiples of 

smooth elliptic curves. Noether's formula l2x0s = e(S)+Ki combined with Ki = O 

shows that xOs = O is equivalent to e(S) = O. As for the statement that all smooth 

fibres of '-P are isomorphic, see ( [2], VI. 7 and 8). 

A combination of the equality hº((<p.ws¡c)v) 

yields: 

o 

q( S) - g( C) with Lemma 1.3 

Lemma 1.6. Let <p: S-+ C be a relatively minimal elliptic fibration. One has: 

(i)If x0s>O then q(S)=g(C). 

(ii) If xOs = O then q(S) = g(C) if and only if <p.(ws¡c) -=I= Oc. Otherwise 

q(S) = g(C) + l. • 

As a matter of fact, if <p : S -+ C is an elliptic fibre bundle then <p.(ws¡c) is a 

torsion line bundle ([1], III 18.3) which is carrying sorne infmmation about the monodromy 

of <p. Namely, if W : R-+ B is the fibration obtained by base change on <p from 

the cyclic covering of C determined by k<p.(ws¡c) ~ O (k = arder of <p.(ws¡c)), 

then q(R) = g(B) + 1, i.e., W has trivial monodromy (see § 4). 

A central theme of this paper is the divisibility of the fibre of a morphism, where 

divisibility is understood in the following sense: 

Deflnition l. 7. Let D be a divisor on a surface S. We will say that D is divisi­

ble by an integer k if (1/k)D E H 2(S,Z)/(torsion), that is, if there exists a cocycle 

E E H 2(S, Z) such that D - kE is either a torsion element of H 2(S, Z) or zero. 

We claim that the cocycle E of Definition l. 7 is also algebraic. The exponential 

sequence 

yields the exact piece 

O -+ Z -+ Os -+ 0 5 -+ O 

T 
--+ H 2 0s 

Obviously the torsion of H 2(S, Z) lies in the kernel of T, and so it is algebraic. 

Now, if D is a divisor and D - kE E tor H 2 (S, Z) then kE E Im(u). But 
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H 2 (5,l)/Irn(a) is embe<lded m the C-vector space H 2 0 5 , which has no torsion. 

Hence E E Jm(a). 

Let N um( 5) denote the group of numerical equivalence classes of clivisors on 5. 

By the sequence (*) above ancl the Algebraic lndex Theorem we see that Num(5) com­

cicles with the image of H 1 0 5 ~ Pic(5) in H 2 (5, Z)/(torsion). A rephrasing of the 

previous considerations gives: 

Lem1na 1.8. Let D be a divisor on 5, and k E Z. Then D is divisible by 

k 111 H 2 (5, Z)/(torsion) (respectively, in H 2 (5, Z)) if and only if it is divisible by 

k 111 Num(5) (resp., in Pic(5)). D 

Let <p : 5 -+ C be a fibration, and F a general fibre of 

in knowing what rational multiples of F are still elements of 

max {k E Z I k divides Fin Num(5)}. It is easy to check that 

if and only if >. E (1/v )Z, and thus it suffices to determine v. 

On the easy side we have: 

<p. vVe are interested 

Num(5). Let v : = 
>.FE Num(5)(>. E Q) 

Proposition 1.9. Let m 1 D 1 , • •• , mt Dt be the multiple fibres of <p. 

notes the least common multiple of { m 1 , ..• , mt}, then µ divides F in 

If µ de­

Num(S). 

Proof: Since µ/m 1 , ••• , µ/mt are relatively prime, there exist integers ,\1 , ... , Át 

such that E!=l (,\¡µ/m¡) = l. Moreover, (1/m¡)F = D¡ E Num(S), and we have 

(1/ µ)F = E!=l ,\¡ D¡ E Num(S). • 

The following result gives a converse of Proposition 1.9 for "most" elliptic fibrations, 

namely, the ones with x0s > O. The remaining ones fall into the class of quasi-bundles 

(Lemma 1.5) and will be the object of § 4. 

Theorem 1.10. Let <p : S -+ C be a relatively minimal elliptic fibration with 

x0s > O. Let F be any fibre and µ the least common multiple of the multiplicities 

of the fibres. Then any integer k which divides F in Num(S) is a divisor of µ. 

Proof: Let L be a divisor m the numerical class (1/k)F. Riemann-Roch yields 

x0s(L) = xOs > O, so that either hºOs(L) =/= O or hºOs(Ks - L) =/= O. From the 

canonical bundle formula one has Ks = (xOs - 2x0c + E!=I (m¡ - 1)/m¡) F, where 
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{ m 1 , ... , mt} are the multiplicities of the multiple fibres of r..p. Hence K = ( a/ ¡t )F 

for sorne a E Z. vVe will now show that if L is effective then µ/k E Z. By the 

previous considerations, the same argument works in case K - L is effective. Let 

B = Li d¡B¡ be a connected component of L whose support is contained in a fi­

bre F = Li e¡B¡. If we show that µ B is an integral multiple of F then we are 

done. Since L 2 = O we get B 2 = O. By ([2], VIII. 4) this implies that B _ (p/q) F 

with p, q relatively prime integers. Hence ¿¡( q d¡ - pe¡) B¡ = O, and since the Bis 

are linearly independant in ( N um( S)) 0z Q we obtain that q d¡ - pe¡ = O for all i. 

Thus q divides all the e~s, so that q divides µ as well. O 

§ 2. FIBRE BUNDLES 

As explained in the Introduction, the main object of this paper is to establish a 

relationship between the divisibility of the fibre of a qua.si-bundle and the torsion of the 

integral homology of the surface. In this section we will restrict ourselves to fibre bundles. 

Given a fibre bundle r..p : S -+ C with fibre F, we can consider Serre's spectral 

sequence 

E;,q = Hp(C,Hq(F,l)) ===} Hp+q(S,l) 

where H P ( C, H q( F, Z)) denotes the p!h homology group of C with coefficients in 

the bundle of abelian groups {Hq(r..p-1(t),Z)Lec· (see e.g. [15] or [10]). H¡(F,Z) 
is a 1r1(C)-module by the action of the monodromy, where 1r1(C) denotes the fun­

damental group of C. Ho(C,H1(F,l)) will be denoted H1(F)1r1 (c), and by ([15], 
VI 3.2) it is computed as 

H1 (F)1r1 (c) = H1(F, Z)/("Ya - a I a E H1(F, Z), "Y E 1r1 (C)) 

Inasmuch as the map r..p is analytically locally trivial ([1], I 10.1), it follows that the 

action of 1r1 (C) over H1 (F,Z) factors through the action of the group of analytic 

automorphisms of F, denoted Aut(F). In general, if G is a finite group of order 

IGI, and M a G-module with invariants Mª, then IGI annihilates the kernel 

of the norm map N : M a -+ Mª, defined as N ( x) = L-reG "Y • x, where M a = 
M / ("Ya - a I a E M, "Y E G). If moreover M is a torsion-free abelian group then IGI 

annihilates the Z-torsion of Ma as well. In our situation we way conclude that the 

torsion of H 1(F)1ri(C) is killed by the order of Aut(F). 
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The first terms of Serre's spectral sequence yield an exact sequence 

where the homomorphisms i.p. are induced by i.p ([10], Thm. 5.8). 

The divisibility of F m H 2 (S, Z)/(torsion) can be read off from this sequence 

as follows. 

Proposition 2.1. Let i.p: S - C be any fibration. Fix an isomorphism H2 (C, Z)::::: 

Z and assume, with this identification, that d l is the image of c.p* : H 2 ( S, Z) -
H2(C, l)::::: Z, where d is a positive integer. Then d is the largest integer dividing a 

fi.bre of c.p in H 2 (S, Z)/(torsion). 

Proof: Poincaré duality yields isomorphisms 

Define 'P! = ,\e o cp. o \s1
. Let p E H 2

( C, Z) denote the class of a point, and F = 
i.p*(p) E H 2 (S, Z) the class of a fi.bre. For D E H 2 (S, Z), the projection formula for 

cup product ((1], page 11) says. 

cp,(D · F) = cp,(D · cp*(p)) = cp1(D) · p 

Multiplication by p defines an isomorphism Hº(C, Z)::::: H 2(C, Z)::::: Z. Moreover, í.f)! : 

H 4 (S,Z) -+ H 2(C,Z) is an isomorphism too. If we fue the isomorphism H4(S,Z)::::: 
Z then the hypothesis imply that dl = {D · FID E H 2 (S,Z)}. Applying Poincaré 

duality as stated in ([8], page 53) one concludes that d is the largest integer dividing Fin 

H 2 (S, Z)/(torsion). O 

Combining all the above we get: 

Theorem 2.2. Let c.p : S -+ C be a fibre bundle, and d the largest integer dividing a 

fibre F in H 2 (S, Z)/(torsion). Then there is an exact sequence 

In particular torH1(S,l)::::: (torH1(F)1r1(c))/ld, and torH1(F)1ri(C) is annihi-

lated by the order of Aut( F). D 
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Hopf surfaces provide examples of non-algebraic elliptic fibre bundles whose fibre is 

homologous to zero (see e.g. [l]). However, here we are only dealing with the algebraic 

case. At this point one might wonder whether the fibre of an algebraic fibre bundle can 

be actually divisible by an integer greater than 1, inasmuch as there is no multiple fibre to 

account for such a phenomenon. The following example shows that this is possible though. 

Given any prime number p, our aim is to construct a fibre bundle whose fibre is divisible 

by p. For p = 2 sorne bielliptic surfaces provide the examples sought ([11]), so let us 

assume p > 2. 

Example 2.3. Pick any prime number p > 2 and any integer d > O divisible by 

p. Write D 1 . - P 1 , and take two Galois finite covers p : D2 --+ D 1 , O' : D3 --+ D1 

with groups ld and lp respectively, such that D 2 '.::::'. P 1 and the branch loci 

Bp, Bu ~ D 1 of p and O' are disjoint. The map p has exactly two branch points, 

both with multiplicity d. Let F : = D 2 x Di D3 . We claim that F is an irreducible 

and smooth curve. Since smoothness of a morphism is preserved by base change we have 

that 

X:= [D2 - p- 1(Bp)] XD1-Bp [D3 - (J'-
1(Bp)] --+ D3 - (J'-

1 (Bp) 

Y:= [D2 - p-1(Bu)] Xv 1 -Bu [D3 - 0'-
1 (Bu)] --+ D2 - p-1(Bu) 

are smooth maps. Thus X and Y are both smooth, and F = X U Y is smooth 

as well. On the other hand, F is the preimage of the diagonal divisor by the map 

(p, O') : D2 x D3 --+ D 1 x D1 '.::::'. P1 x P1 , so that it is ample and thus connected, as de­

sired. Aneasycalculationshowsthat g(F) = d(g(D3)+p-I)-p+l. Set G := ldxlp. 

G is acting of F in a way compatible with the actions of ld, lp on D 2 , D 3 re­

spectively. Consider ld embedded in G as ld x {O}; likewise with lp. We have 

a commutative diagram 
-+ F/G 

12 
D2 ~ D1 

Since the branch points of p and O' have multiplicities d and p respectively, the condition 

Bp n Bu = 0 implies that the only multiplicities of F --+ F/G are d and p. Now let 

E be any elliptic curve, and let G act on E by translations, so that E/G is elliptic 

too. Denote S: =(Ex F)/G, where Gis acting on Ex F componentwise, and let 

<P : S--+ (E/G), w : S--+ (F/G) be the two natural projections. All fibres of <P are 

isomorphic to F; in particular, <P is a fibre bundle map. Likewise, W is an elliptic 

quasi bundle with smooth fibres all isomorphic to E and singular fibres of multiplicities d 
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and p. Let us denote by Fo (respectively, E 0 ) the class in H 2 (S, Z)/(torsion) of 

a fibre of 1> (resp., of '11). Applying Lemma 1.5 to '11 one has in turn e(S) = O, 

I<1 = O and xO s = O, where e( S) stands for the topological Euler characteristic 

of S. Furthermore: 

H1(S, Q) = H1(E x F, Q)ª = H 1(E, Q)ª x H 1(F, Q)ª 

= H1(E/G,Q) x H1(F/G,Q) = H 1(E/G,Q). 

\Ve get 2q(S) = dimQH 1(S, Q) = 2. Combining with xOs = O one has p9 (S) = O. 

Finally, from e( S) = O it follows that H 2 
( S, Z) / ( torsion) is of rank 2 and isomorphic 

to Num(S). 

Now we are ready for the statement: 

Lemma 2.4. With notations as in the preceding construction, {(l/d)E0 , (l/p)F0 } 1s 

a basis of H 2 (S, Z)/(torsion). In particular, the fibre bundle 1> : S -+ (E/G) has 

fibres divisible by p in H 2 (S, Z)/(torsion). 

Proof: Since '11: S-+ (F/G) '.:::= P1 is notan Albanese fibration we can apply Theorem 

4.1 and the fact that p divides d to conclude that d is the largest integer dividing 

Eo in Num(S). By Poincaré duality ([8], page 53), there exists A E Num(S) with 

the property that (l/d)E0 A = l. Notice that E~ = F; = O, E 0 F0 = dp. Since 

{Eo, Fo} is a basis of H 2(S,Q), we can write A= rE0 + sFo, r,s E Q. By the 

above we have s = 1/p. Set a : = A2 E Z, b : = AF0 E Z. From b/pd = r = 
a/2d we get ap = 2b, so that a = 2a', a' E Z. We have got A = (a'/d)E0 + 
(l/p)F0 , and by subtracting a' times (l/d)E0 E Num(S) it follows (l/p)F0 E 

Num(S). Finally, every L E Num(S) is an integral linear combination of (1/d)Eo 

and (1/p)Fo, because the intersection product with each one of them is an integer. 

o 

As a conclusion, we can state something a bit stronger: 

Proposition 2.5. For each prime number p, there exists a fibre bundle cp : S -+ C 

whose fibre is divisible by p in Pic(S). 

Proof: For any primer number p we have shown the existence of a fibre bundle cp : S -+ C 

with g(C) = 1, xOs = O and fibre divisible by p in H 2(S, Z)/(torsion). A fibre 

F of cp is linearly equivalent to pL + M, for sorne divisors L, M. If the class of 
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AJ m H 2 (5, Z) is zero then we are done. Otherwise, Al 1s a torsion elcment of 

order k in H 2 (5, Z). \Ve may assume k,\l ~ O, iA1 f, O for all i = 1, ... , k - l. 

Let 1r : R -+ S be thc k!..h cyclic étale covering of S determined by thc "equation" 

kA1 ~ O ([1], I, 17). One has 1r*(,.\l) ~ O. From 1r.OR = E97:; Os(-iAf) we get 

k-I 

1r.1r*Os(F) = 0s(F) 0 1r.OR = E9 Os(F - iA1). 
i=O 

lf 1 :'.S i :'.S k- l one has HºOs(F - iA,1) = O, because all fibres of <p are homolog­

ically equivalent and smooth. Thercfore hº ( 1r*Os(F)) = hºOs(F) = l, which implies 

that 1r-
1 (F) is connected. Hence '11 : = <p o 1r : R -+ C is a fibration. Vve have 

xOR = kxOs = O. Recalling that g(C) = 1, Lemma 1.3 yields deg(W.wR¡c) = O, 

which implies that '11 is a fibre bundle map ( [1 ), 111 18.2). Finally, a fibre of '11 is of 

class 1r* ( F) ~ 1r* (p L + AJ) ~ p1r*( L ), hence divisible by p in Pie ( R). O 

§ 3. QUASI-BUNDLES 

Let <p : 5 -+ C be any fibration, m 1 D 1 , ••• , mt Dt its multiple fibres. We define 

the group G( <p) to be 

t 

G(r,p) := Coker(z-+ E9 Zm;) 
i=l 

1 ...---+ (I, ... , I). 

Let F be any smooth fibre. With this generality, the following has been proved in (12): 

Theorem 3.1. There exists an exact sequence 

H 1(F,l)-+ H 1(S,l)-+ H1(C,Z) x G(r,p)-+ O 

induced by <p and the inclusion F ~ S. In particular, if J denotes the irnage of 

H 1 ( F, Z) in H 1 ( S, Z) one has an exact sequence 

O-+ tor (J) -+ tor H 1 (S,l)-+ G(r,p). 

Furthermore, tor H 1 ( S, Z) -+ G(cp) is surjective provided that q( S) = g( C). O 
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Remark 3.2. It is proven in ([4], 1.39) that J 

elliptic fibration and xOs > O. 

Ü whenever <.p 5 --+ C lS an 

In this Section we are going to develop the main theme of this paper, namely divisi­

bility of fibres versus torsion of homology, for general quasi-bundles. For this purpose we 

are going to perform a suitable base change on our fibration which will lead us to a fibre 

bundle. This will allow us to apply the results of the preceding Section. The main tool, 

then, is the following 

Proposition 3.3. Let <.p : S --+ C be any fibration, and let m 1 D 1 , • •• , mt Dt be 

sorne multiple fibres of r.p with D¡ smooth for all i. Let µ be a common mul­

tiple of m 1 , ... , mt, and choose any integer e 2:: 1 such that µ divides t + e. 

Let r.p(D¡) = P¡ E C, i = 1, ... , t, and pick points Pt+t, ... , Pt+e E C whose fi­

bres by <.p are smooth. Furthermore, let L be any line bundle on C satisfying 

r,@µ ~ Oc ( P1 + ... + Pt+e). í:, defines a cyclic covering € : B --+ C of degree µ, 

totally ramified at P1 , ••• , Pt+e. Finally, denote by R the normalization of S x e B. 

Then, with these conditions, R is a smooth surface and q(R) - g(B) = q(S) - g(C). 

Proof: R is smooth by ([l], 111 9.1), and 1r : R --+ S is a Galois map with group 

G ~ lµ, i.e. S = R/G. Let K(R) and K(S) be the corresponding fields of ra­

tional functions. The long cohomology sequence determined by the G-invariants of 

O-+ C* -+ I<(R)* -+ I<(R)* /C* -+ O 

yields the piece 

H 1 (G,I<(R)*)-+ H 1 (G,K(R)*/C*)-+ H 2 (G,C*). 

The middle term vanishes because H 1 ( G, K(R)*) = O by Hilbert's Theorem 90 

(e.g. [9]) and H 2(G,C*) = C*/µ • C* = O ([3], page 58). Consider now the G-in­

variants of 

O--+ I<(R)* /C* -+ Div (R)-+ Pic(R)-+ O 

One gets 

(Div(R))ª-+ (Pic(R))ª-+ H 1 (G,K(R)*/C*) = O. 

Hence we have a commutative diagram with exact rows 

Div (S) ----+ Pic(S) ---+ o 

ªl rl 
(Div(R))ª ---+ (Pic(R))ª ---+ O 
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whose vertical maps a, r are iu<luced by 7r . The group (Div ( R)) G is generated 

by divisors of the form D = I:7=1 Di where {D1 , ... , Dn} is permuted by the action 

of G and has no invariant subset. Far a given Di, if 1r(D¡) = E then a(E) = 
d · D, where d is the number of elements in G inducing the identity on Di. In 

particular, µ • D E / m (a). \Ve conclude that µ annihilates the cokernel of 1r*. 

The exponential sequences far S and R give rise to a commutative diagram with 

exact rows: 

O -------t Picº(S) Pic(S) -------t H 2(S,Z) 

1r* 1 r l ;\ l 
O -------t (Picº(R))º -------t (Pic(R))º -------t (H2 (S,Z))º 

From ([5], Thm. 2.1) it follows that J( er(;\) is annihilated by µ (see proof of 

Prop. 3.5 below ). This fact, combined with the previous considerations, imply that µ 2 

annihilates the cokernel of n* : Pieº ( S) -+ ( Pieº ( R)) G. 

Let F0 the fibre of r.p over Pt+t. By construction, 1r 1s totally ramified 

over F0 , so that 1r- 1(F0 ) ~ F0 • Identifying 1r-1(F0 ) and Fo we may consider 

h : F0 <---+ R, j : F0 <---+ S to be the corresponding inclusions, which determine a commu­

tative diagram 

Pieº ( S) ~ Pieº ( R) 

j\ f· 
Picº(Fo) 

Pick any L E Pieº (R) and write N : = L-reG, · L. We have N E (Pieº (R))ª 
and, by the preceding arguments, we have, µ 2 • N E Im(1r*) so that h*(µ2 

• N) E 

Im (j*). But h*(µ2 . N) = µ 2 • L-reG , • h*(L) = µ 3 
• h*(L) since G acts trivially 

on 1r-1(F0 ). As a consequence, one gets the following inclusions of abelian varieties: 

µ 3 (Im (h*)) ~ Im (j*) ~ Im (h*), 

which in view of Proposition 1.4 yields the desired equality: 

q(S) - g( C) = dim Im (j*) = dim Im (h*) = q(R) - g(B). • 

We point out that we map é : B -+ C of Proposition 3.3 was chosen to ramify at 

one point other than P1 , ... , Pt in arder to get the equality q( R)- g( B) = q( S)-g( C). 

\Vithout this precaution, only the inequality > holds in general. 
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\Ve shall apply the results of § 2 by means of the follmving 

Construction 3.4. Let cp : S ---+ B be a quasi-bundle with multiple fibres 

m 1 D 1 , ... ,mtDt, and let µ denote the least common multiple of m 1 , ... ,mt. Do 

as in Proposition 3.3 with the fibres m 1 D 1 , ... , mt Dt in order to get a fibration 

1l! : R ---+ B and finite Galois maps 1r : R ---+ S, e : B ---+ C, both with group Zµ, 

making commutative the following diagram 

R ~ S 

B --=--+ C 

Recall that q(R) - g(B) = q(S) - g(C). One sees that 1l! has no singular fibre ([1], 

III 9.1), and thus it is a fibre bundle map. Denote by F a smooth fibre of cp, and 

by F a connected component of rr- 1 (F) • F is a fibre of 1l! and the restriction 

F ---+ F of 1r is an isomorphism. Let i : F' ---+ R, j : F ---+ S be the two inclusions, 

and set 

J: = image of i.: H1(F, Z)---+ H1(R, Z) 

J: = image of j.: H1(F, Z)---+ H1(S, Z) 

By Theorem 3.1 one has exact sequences 

0---+ I---+ H 1 (R,l)---+ H1(B,l)-+ O 

O---+ J-+ H1(S, l)---+ H 1 (C, l) x G(cp)-+ O 

From 1r o i = j o ( rr
1
p) we deduce that J is a quotient oí l. Moreover 

(rank of I) = q(R) - g(B) = q(S) - g(C) = (rank of J) 

As a consequence, the torsion oí J is also a quotient of the torsion of I. This latter 

fact is one of the crucial points of our construction. O 

With the above notation, we now want to compare the divisibility of F with that 

of F. 
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Proposition 3.5. 

(i) If F is divisible by dµ m H 2 (S. Z)/(torsion), d E Z, then F is di­

visible by d in H 2
( R, l)/( torsion). 

(ii) Conversely, if F is divisible by d E Z 111 H 2 (R, Z)/(torsion) then so is F 

111 H 2
( S, Z)/( torsion). 

Proof: lf F = dµA1 then pF = 1r*(F) = dp1r*(J..1), so that F = d1r*(J..1). This 

proves (i). Consider the homomorphism 1r* : H 2 (S, l)-+ H 2 (R, l). Since S = R/lµ, 
there exists a homomorphism b: H 2 (R, Z) -+ H 2 (S, Z) satisfying (b o 1r*)(x) = Jl • x 

for all x E H 2 (S, Z) ([5], Thm. 2.1). In particular, if Í' = dL then 1r*(F) = µdL 

and pF=(801r*)(F) µd-8(L). Thus F=d-8(L). • 

\Ve reach at last the conclusion we were seeking: 

Theorem 3.6. Let r.p : S-+ C be a quasi-bundle with multiple fibres m 1 D 1 , ••• , m, D,, 

and denote by Jl the least common multiple of m 1 , ••• , mt. Construction 3.4 gives 

rise to a commutative diagram 
R ~ S 

B -=-+ C 
where é is a finite map of deg,ree µ, R is the normalization of S Xc B, R is 

smooth and '11 is a fibre bundle whose general fibre we call F. Suppose dµ is the 

largest integer dividing a fibre F of r.p in H 2(S, Z)/(torsion) (d a positive inte­

ger). 

Then there exists an integer a ~ l and an exact sequence 

O -+ lad -+ tor(H1 (Í')1r1 (B)) -+ tor H1 (S, Z) -+ G( i.p) 

Moreover, tor H 1(S, Z)-+ G(r.p) is surjective provided that q(S) = g(C). lf g(F) ~ 

2, then both µ and d are divisors of the order of Aut( F). 

Proof: From Proposition 3.5 one knows that the general fibre F of W is divisible 

by d in H 2 (R, Z)/(torsion). Let ad be the largest integer dividing F. We may 

assume 1r(Í') = F. Recall the definitions of I and J given in Construction 3.4. 

Theorem 2.2 yields an exact sequence 

O -+ lad -+ tor H1(F)1rt(B) -+ tor (I)-+ O 
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On the other hand, from Theorem 3.1 we get 

O-+ tor(J)-+ torH1(S,l)-+ G('P) 

,vhose right-hand side map is surjective if q( S) = g( C). Since tor ( J) is a quotient 

of tor ( I), we can link these two sequen ces and get the one of the Theorem. Further­

more, d divides the order of Aut(F) by the last sentence of Theorem 2.2. Notice 

also that if m D is a multiple fibre of 'P then F is an unramified Galois cover 

of D with group Zm, In particular, m divides the order of Aut(F), and so 

does p. D 

It is not easy to give explicit instances of quasi-bundles with fibre divisible by an 

integer larger than the least common multiple of the multiplicities of the fibres. Besides 

the fibre bundles of Proposition 2.5 we have the following: 

Example 3. 7. We are going to construct quasi-bundle fibrations with all singular 

fibres of multiplicity 3 but fibre divisible by 9 in cohomology (modulo torsion). Let B 

be the elliptic curve C/(Z · p EB l), where p: = (-1/2) + ( -/3/2) i. Pick any other el­

liptic curve A. The group G: = Za x Za acts on B as (1, O)· x = p · x, (O, 1) •X 

=x+(l-p)/3. Let G acton A bytranslations,andset S:=(AxB)/G, where 

the action on A x B is componentwise. Denote by A 0 (respectively, Bo) a gen­

eral fibre of the projection u : S -+ (B /G) ~ P1 (resp., of T : S --+ (A/G)). S 

is a bielliptic surface ([2]), T is an elliptic fibre bundle and u is an elliptic quasi­

bundle with three triple fibres, and smooth away from them. Note that Ks = O and 

AoBo = 9. One can show, as in Lemma 2.4, that {(1/3)Ao; (1/3)Bo} is a basis of 

H 2 (S, Z)/(torsion). Since the fibre of the elliptic fibre bundle T is divisible by 3, we 

get from Theorem 4.3 that H 2 (S, Z) is torsion-free. It follows that if B~ 1s a par­

ticular fibre of T then there exists a divisor D such that 3 D ~ B~. This deter­

mines a 3-cyclic covering 1r : R --+ S ramified at B~. I claim that 1r-1 (Bo) is 

connected. Since 1r-1(B0 ) -+ B 0 is the 3-cyclic covering defined by the "equation" 

3 D¡B
0 
~ O, it suffices to show that D¡B

0 
is not linearly equivalent to zero. For this 

purpose, note that O= hºOs(D) = hºOs(D-Bo) = h2 0s(D-Bo)- By Riemann-Roch 

xOs(D - Bo) = O, so that h10s(D - Bo) = O. Now the sequence 

HºOs(D)-+ HºOB
0 
(D)-+ H 10s(D - Bo) 
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yields the vanishing of the middle term, as desired. Set q> : = cr o 7r : R--+ (B /G), '1t : = 
To 7r: R--+ (A/G), and denote by F (respectively, E) the general fibre of q> (resp., 

of '11). W is an elliptic quasi-bundle with only one singular fibre (of multiplicity 3) over 

r(B~), and 1> is a quasi-bundle of fibre genus 10 with exactly three triple fibres. 

Claim: either E or F is divisible by 9 in H 2 (R, Z)/( torsion). 

Proof of the Claim: By general theory about cyclic coverings, one has 

KR = 1r*(Ks + 2D) (2/3) E and 1r*OR = E9¡=0 Os(-i D). Therefore p9 (R) = 
¿;=o hºOs(I<s + i D) = O. But xOR = O (Lemma 1.5), so that q(R) = l. It 

follows that H 2(R, Z)/(torsion) is of rank 2. Note that {E, F} is a Q-basis of 

H 2 (S, Q), and EF = 27. Suppose F is not divisible by 9 in H 2 (R, Z)/(torsion). 

By Poincaré duality ([8], page 53), there must exist a divisor C = (l/9)E + aF, a E Q. 

From C 2 = 6a E Z and (1/3)E · C = 9a E Z we get a E (1/3)Z. Consequently 

(1/9)E E H 2 (R, Z)/(torsion) and the claim follows. Nevertheless, it seems hard to decide 

which one of the two, either E or F, is actually divisible by 9. O 

§ 4. ELLIPTIC QUASI-BUNDLES 

The main statements of the preceding two Sections (Theorems 2.2 and 3.6) will become 

most significant for elliptic quasi-bundles, since in this case one can give a rather complete 

description of the groups ocurring there. Sorne results in [4} have been profitable to me. 

Theorem 4.1. Let c.p : S --+ C be an elliptic quasi-bundle with q(S) = g(C) + 1, 

and let µ be the least common multiple of the multiplicities of the fibres. Then: 

(i) torH1(S,l) isasubgroupof G(c.p). 

(ii) µ is the largest integer dividing a fibre of c.p m H 2 (S, Z)/(torsion). 

Proof: By taking ranks on the sequence of Theorem 3.1 

H1(F, l)--+ H1(S, l)--+ H 1 (C, Z) x G(c.p)--+ O 

we get that the left hand side map is one-to-one, and (i) follows. As for (ii), con­

sider the fibre bundle '1t : R --+ B associated to c.p by Construction 3.4. If F is di­

visible by dµ in H 2 (S,Z)/(torsion), then a fibre F of \JI is divisible by d in 
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H 2 (R, Z)/(torsion) (Proposition 3.5). Hence there is an exact sequence 

forsome a E Z (Theorem2.2). But q(R)-g(B) = q(S)-g(C) = l and H1(F')1ri(B) 

is a quotient of H1(F,l) ~ Z2 . By rank considerations it follows that lad = O, i.e. 

d = l. • 

Next we turn our attention to elliptic fibre bundles <p : S -+ C with q( S) = g( C), 

1.e. with non-trivial monodromy. A fibre F of <p can be written as C/(Z • w EB Z), 
where w E C is uniquely determined if its real and imaginary parts satisfy the relations 

-1/2:SRe(w)<l/2, Im(w)>O, lwl2:1 if Re(w):SO, lwl>lifRe(w)>O. 

vVe are seeking an explicit description of H 1 (F)1ri(C), which is now a torsion group by 

reason of Theorem 2.2. 

Proposition 4.2. Given an elliptic fibre bundle <p: S-+ C with q(S) = g(C), the 

table below is showing the only possible values for H 1 (F)1r
1 
(e): 

w H1 (F)1r1 (C) 

1 Z2 X Z2 i Z2 
(-1/2) + ( vl?,/2) i Z2 X Z2 i l3 i Ü 

otherwise Z2 X Z2 

Proof: The homomorphism 1r1 (C) -+ Aut H 1(F, l) is induced by the monodromy 

7r¡ ( C) -+ Aut ( F). Every automorphism of F is the composite of a translation and 

multiplication by a complex number which maps the lattice Z • w EB Z into itself. 

A translation is homotopic to the identity, and thus induces the identity map m 

homology. Consequently we may restrict our attention to automorphisms of F de­

fined as multiplication by sorne e E C. ldentifying H1(F, Z) ~ Z · w EB Z one sees 

that the induced automorphism on H1 (F,Z) is also multiplication by e. We have 

é·w=aw+b , é·l=cw+d with a,b,c,dEl. Hence w=(aw+b)/(cw+d), 

so that 

(*) 2' cw +(d-a)w-b=O 

In the ordered ha.sis {w, 1} of Z · w EB Z, the morphism is given by the matrix 

(: ~) with determinant ± l. The discriminant of (*) must be strictly negative be­

cause Im (w) -/:- O. This rules out the possibility ad - be = -l. Solving (*) and 
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using ad-bc=l onegets w=(a-d+J(a+d)2-4)/2c. Hence a+d=-1,0,1. 

Combining this \Vith the restrictions on w imposed above leads, after sorne computation, 

to the following set of posibilities (I stands for the identity matrix): 

w (: ~) 
l ±1·±(º1) 

' -1 O 

(-1/2) + ( ../3/2) i ± 1 ; ± el 1
1) ; ± el -D 

otherwise ±1 

N ow, recalling that 

H1 (F),ri(C) = H1 (F, Z)/ (, t - t 1, E 1r1 ( C), t E H1 (F, Z)) 

one can get the table of Proposition 4.2 by a case by case calculation. For instance, if 

1 = (~ =~) belongs to the image of 1r1 ( C) --+ Aut H 1 ( F, l), then applying , - 1 to 

thebasis {(1,0), (0,1)} of H 1(F,Z)~Z2 yieldsthat H 1 (F),r1 (c) isaquotientof 

Z2 /((-1, 1), (-1, -2)) ~ Z3 . The other cases are similar. O 

Taking into account the preceding Proposition together with Theorems 2.2 and 3.6 

one gets the two main results of this section, which are stated as follows: 

Theorem 4.3. Let r.p : S --+ C be an elliptic fibre bundle with q(S) = g( C), and 

let d be the largest integer dividing a fibre F in H 2 (S, Z)/(torsion). Write F = 
C/(Z · wffiZ) as before. Then the only possibilities for d and the torsion of H1(F,l) 
are presented in the tables below: 

(1) If w f- i, (-1/2) + ( ../3/2) i, then 

d tor H1(S, l) 
1 Z2 X Z2 
2 Z2 

(2) If w = i, then to the cases listed in (1) we must add 

d 

1 
2 

tor H1(S, Z) 
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(3) if ;..J = ( -1/2) + (-/3/2) i, then to the cases listed in (1) we rimst add 

• 

Theorem 4.4. Let c.p : S ---+ C be an elliptic quasi-bundle with q(S) = g( C), and 

let µ be the least common multiple of the multiplicities of the fibres. Suppose d • µ is 

the largest integer dividing a fibre F in H 2 (S, Z)/(torsion). Write F '.::= C/(lw EB Z) 
as above. Then there exists an exact sequence 

0---+ J---+ torH1 (S,l)---+ G(c.p)---+ O 

where the only possibilities for d and J are the following: 

(1) lf w # (-1/2) + ( v3/2) i, then 

d J 

1 Z2 X Z2 ; Z2 ; o 
2 Z2; O 

(2) lf w = (-1/2) + ( v3/2) i, then to the cases listed in (1) we must add 

d 

1 
3 

J 

• 

Remark 4.5. The seven possibilities listed in Theorem 4.3 are actually realized in the 

seven families of bielliptic surfaces ( [11 ]). 

Proposition 4.6. Under the hypothesis of Theorem 4.4, assume furthermore that µ 

is neither divisible by 2 nor by 3. Then tor H 1(S, l) '.::= J EB G(c.p), and the possi­

bilities for the pair ( d; J) coincide with the cases listed in Theorem 4.3 for the pairs 

( d; tor H1 (S, l)) ocurring there. 
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Proof: First note that the sequence 

O-+ J-+ tor H 1(S, Z)-+ G(<p)-+ O 

splits because de orders of J and G( <p) are coprime. Let 

R ~ S 

B ~ C 

be the diagram of Theorem 3.6. Recall that 1r is Galois with group lµ. The fi­

bre F of 'V can be divided by at most 3. It follows from Proposition 3.5 that 

d is the largest integer dividing F in H 2 (R, Z)/(torsion). On the other hand, by 

([5], Thm. 2.1) there exists a homomorphism 8 : H 2 (R, l) -+ H 2 (S, l) such that 

if 1r* : H 2 (5, 7.)-+ H 2(R, l) is induced by 1r then (1r* o 8)(y) = ¿-rEZ" , · y, for 

all y. The condition on µ and the possibilities for tor H 2 (R, l) (Theorem 4.3) im­

ply that if y E tor H 2 (R, Z) then ¿-yEZµ , · y is zero only when y = O. Equi­

valently, 8 : tor H 2 (R, Z) -+ tor H 2 (S, Z) is one-to-----one. But the image of 

tor H 2 ( R, Z) in tor H 2 ( S, Z) ::: tor H 1 ( S, l) ::: J E0 G( <p) lies inside J, beca use its 

order is coprime with that of G(<p). Moreover, J is by construction a quotient of 

tor H 2 (R, Z). Consequently, tor H 2 (R, Z)::: J. • 
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