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Abstract

Beltrametti, Lanteri and Palleschi have recently started the classification of smooth algebraic
surfaces having an ampie divisor of arithmetic genus two (Arkiv for Mat. 25 (1987), 189-210).
Their results for the class of elliptic surfaces can be considerably improved. The present paper
focuses on elliptic surfaces S with Kodaira dimensión one, x@s = 0, and such that the
(unique) elliptic fibration has a rational base. The result is the following : if S contains a

genus two ampie divisor then S is of the form S = (D x E)/G where G is a group

acting on two curves D and E, E is elliptic, G iseither Z2xZ2, Z2xZ6 or Z4xZ4
and D has genus 2,2 and 3 respectively. Moreover, the existence of such polarized surfaces
is shown by a concrete example.



ELLIPTIC SURFACES WITH AN AMPLE DIVISOR OF GENUS TWO

Fernando Serrano

§ 0. INTRODUCTION

The classification of smooth projective surfaces by means of numerical invariants (de-
gree or genus) of their hyperplane sections has been a recurring theme in the literature for
quite a long time. Recently, the subject has got a renewed impulse by relaxing the hypo-
thesis and considering data from ampie divisors as well. Within this general program one

can place the work of Beltrametti, Lanteri and Palleschi [3] about smooth surfaces contain-
ing an ampie divisor of genus 2, subsequently generalized by Beltrametti and Sommese to
inelude singular surfaces as well ([4]). Fujita has studied the higher dimensional situation
in [6], [7].

The present paper is a contribution to the understanding of smooth elliptic surfaces
endowed with an ampie divisor of genus 2, possibly non-effective. Here we shall complete
the classification for a particular class of surfaces. More precisely, our set-up is the fol-
lowing : S will be an elliptic surface of Kodaira dimensión 1 and X@s = 0, which
contains an ampie divisor of genus 2, and such that the (unique) elliptic fibration on S
has a rational base. (See Theorem 2.1 to put these surfaces within a more general frame-
work). Under these hypothesis we shall prove: there exists a finite group G acting
faithfully on a curve D and on an elliptic curve E such that D/G ~ P1, E/G is
elliptic, S ~ (D x E)/G (where G is acting on D x E componentwise) and only
the following cases can occur:

genus of D G
multiplicities of the singular
fibres of the elliptic fibration

2 Z2 x Z2 (2,2,2,2,2)
2 Z2 x Z6 (2,6,6)
3 Z4 X Z4 (4,4,4)
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The proof is based on a structure theorem for the surfaces considered (Theorem 1.2)
which reduces the problem to the study of abelian Galois coverings of curves. Combining
this information with the results of [3] yields the three cases of the table above.

In [3], the question on whether there actually existed properly elliptic surfaces having
a genus 2 ampie divisor was left unanswered. Guided by the explicitness of our result we

are going to construct such an example. This will be done in the last part of the paper.

§ 1. Notation and Preliminaires

We will be working over the field of complex numbers. A surface (respectively, a

curve) is a smooth connected algebraic variety of dimensión 2 (respectively, 1). Given
a divisor D on a surface S, we denote by Os(D) the associated invertible sheaf,
and x@s(D) := — 1)* dim H'Os(D). The irregularity and geometric genus of
S are defined as q(S) := dim H1 Os, Pg(S) := dim H2Os respectively. Ks al-
ways stands for the canonical divisor of S, and g(C) for the (arithmetic) genus of a

curve or divisor C. The notation D = D' means that the divisors D, D' axe nu-

merically equivalent. The free abelian group of divisors modulo numérica! equivalence is
denoted Num(S). The cohomology of the exponential sequence exhibits Num(S) as
a subgroup of H2(S, Z)/(torsión), and both groups coincide provided that pg(S) = 0.
The set of integers Z modulo (d)L is denoted

An elliptic fibration is a morphism ip : S —► C from a surface onto a curve, whose
genera! fibre is an elliptic curve. The fibration is said to be relatively minima! if no

fibre contains a ( — 1)—curve. Let F be any fibre of <p. The multiplicity of F is
defined to be the greatest common divisor of the multiplicities of its irreducible components.
Múltiple fibres are the ones with multiplicity greater than one.

Let B be a curve and G a finite group acting on B. Write C\—B¡G, and
let h : B —► C be the natural projection. If h is ramified at P £ B, then P is
called a ramification point, and h(P) £ C is a branch point. Inasmuch as h is a
Galois map, one sees that all points in the same fibre of h have equal multiplicity.
Thus we can speak of the multiplicity or branching order of a branch point. In particular,
if Qi,..., Qt G C are the branch points of h with multiplicities mi,..., mt, and
k : = order of G, then Hurwitz formula yields
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2g(B) - 2 = k(2g(C) - 2) + ^(fe/m¡) (m, - 1)
i=i

Furthermore, the set of elements in G fixing a given point of B forms a cyclic group.

Lemraa 1.1. Let <p : S —> C be a relatively minimal elliptic fibration. Then
xOs — 0 if and only if all singular fibres of <p are múltiples of smooth elliptic curves.

In this case, all smooth fibres are isomorphic to each other.

Proof: In view of Theorems 6 and 7 of chapter IV in [14], the topological Euler charac-
teristic e(5) of S vanishes if and only if all singular fibres of <p are múltiples of
smooth elliptic curves. Noether’s formula 12xOs = e(S) + Kg combined with Kg = 0
shows that x@s = 0 is equivalent to e(S) = 0. As for the statement that all smooth
fibres are isomorphic, see ([2], VI. 7 and 8). □

For the surfaces we are interested in there is a very complete structure theorem:

Theorem 1.2. Let <p : S —> C be a relatively minimal elliptic fibration with
xOs = 0 and q(S) = g(C) + 1. Then there exist smooth curves D and E, with
E elliptic, and an abelian group G : = Za x Z& acting faithfully on D and E,
so that G acts on E by translations, S ~ (D x E)/G (where G is acting on

DxE componentwise), C ~ D/G and, with these identifications, <p coincides with
the natural projection (D x E)/G —* (D/G).

Proof: Having into account Lemma 1.1 one can proceed as in chapter VI of [2]. For the
details and a more general setting we refer to [13]. The structure of G will follow from
the considerations below. Künneth formula yields

Hr((D x E)/G-, Q) ~ HX(D x E, Q)G - HX(D, Q)G x HX(E, Q)G =

= Hx(D/G, Q) x HX(E/G, Q)
It follows that q(S) = g(D/G) + g(E/G). The hypothesis imply that g(E/G) = 1,
i.e. G acts on E by translations. In particular, G ~ Za x Z& for some a, b € Z,
as desired. □

Let S = (D x E)/G be a surface as in Theorem 1.2. The fact that E —> (E/G)
is étale implies that all fibres of the natural projection 5 —* (E/G) are smooth (and iso-
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morphic to D). Let P G (D/G) be a point whose branching order by the projection
D —> (D/G) is m. Then the fibre of p : S —► (D/G) over P has multiplicity
m and is of the form m B, with B being a smooth elliptic curve. All smooth fibres
of cp are isomorphic to E.

Under the hypothesis of Theorem 1.2 the multiplicities of the fibres of p enjoy a

peculiar property, which is shown in the following Proposition. One proof was given by
Katsura and Ueno in ([10], Corol. 4.1). Actually they only dealt with the case C = P1,
but their method works for an arbitrary C as well. A more structural proof can be
found in [13], which shows that the phenomenon stems from the commutativity of the
group G in Theorem 1.2.

Proposition 1.3. Let p : S —► C be a relatively minimal elliptic fibration with
X@s = 0 and q(S) = g(C) + 1. By mi,... , mt we denote the multiplicities of the
singular fibres of p. Then for all i = l,...,f, the integer divides the least
common múltiple of {mi,..., m,_i, m,-+i,..., m<} (m¿ deleted). □

We will also need the following result. An altérnate proof is found in [12].

Proposition 1.4. Keep the hypothesis of the previous Proposition, and denote by
¡i the least common múltiple of mi, ...,m(. Let E be a general fibre of p, and
r G Q any number. Then r E G Num(S) if and only if r/z G Z.

Proof: Let us first see that (1 /¡j,)E G Num(S). Since ^/mi,...,/x/mi are rela¬
tively prime, there exist integers Ai,...,A« such that Y?i=i A¡(/i/m¡) = 1. Let
mi ¿?i,... ,mt Bt stand for the múltiple fibres of p. We have = (1 /mi)E, and
thus (1/p) E = Bi G Num(S), as we claimed.

Now suppose r E G Num(S) with r (jl Z, and choose a divisor L in the
numerical equivalence class r E. The canonical bundle formula says Ks = <p*(D) +

S¿=i (m* ~ ^)Bi for some divisor D on C ([1]). In particular Ks = (d/fi)E,
d G Z. Now we claim that L is non-effective. Otherwise, since LE = 0 it would
follow that L is a combination of components of some fibres. By Lemma 1.1 all fibres of
tp are irreducible, even if non-reduced. Henee we get a contradiction with the assumption
rp.^1. The same arguments yield the vanishing of H°Os(K — L), H°Os(L —E) and
H°Os(K — L + E). Consider the exact sequence
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O -► Os(L-E) - Os(L) - Oe(L) - O

From Riemann-Roch x^s(L — E) = 0, and combining with the preceding assertions it
follows that H'OsiL — E) = 0. The above sequence implies H°Oe{L) = 0. On the
other hand, we may observe that the Albanese map of S is not a composite of tp

(e.g. [2], V. 15). In particular Alb(E) —> Alb(S)t is a non-trivial morphism. Inasmuch
as Picard and Albanese varieties are dual to one another, we deduce that Pic°(S) —>•

Pic°(E) ~ E is non-trivial, henee surjective. Now we may choose S £ Pic°(S) such
that 8\e = L\e- The cohomology sequence of

0 Os(L-S-E) -+ Os{L — 8) Oe -+ 0

shows that either H°Os(L —8) y^O or HlOs{L — 8 — F)^ 0. But the considerations
above yield a contradiction since L — 8 = L. □

Remark 1.5. If L is a divisor on S and r is a rational number we have that

rl G Num(S) if and only if r L £ H2(S, Z)/(torsion). This is a consequence of the
exact sequence

HlOs -* H1 Os -> H2(S, Z) -> H2Os ,

derived from the exponential sequence. Notice that the torsión of H2(S, Z) is algébrale,
that is, lies in the image of H1Os — PicS.

§ 2. ELLIPTIC SURFACES WITH A GENUS 2 AMPLE DIVISOR

Beltrametti, Lantén and Palleschi have set out in [3] to classify surfaces having a genus

2 ampie divisor. Here we will complete the classification for a particular kind of elliptic
surfaces of Kodaira dimensión 1. We are going to retake their work at the point they left
it. On the one hand, Proposition 1.3 above rules out most cases in the table on ([3], page

198). Moreover, we must add a missing case in their list : elliptic fibrations over an elliptic
curve having as only singular fibre a double curve are still possible. (The argument in step

b.), page 195 of [3] is incomplete). Adding these two remarks to the results in [3] we can
exhibit the updated list as follows:
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Theorem 2.1. Let 5 be a smooth surface of Kodaira dimensión 1 which contains an

ampie divisor L of genus 2. Denote by p : 5 —► C the (unique) elliptic fibration on

S, and let {ml5... ,m<} be the multiplicities of the múltiple fibres of p. Then S
is a minimal surface with pg(S) = 0, L2 = LKs = 1, and the only possibilities are

shown in the table below:

Type 9(S) 9(C)
1 1 0 (2,2,2,2,2)
2 1 0 (4,4,4)
3 1 0 (2,6,6)
4 1 1 (2)
5 0 0 (2,2,2)
6 0 0 (3,3)
7 0 0 (2,4)
8 0 0 (2,3)

□

We aim at describing more in detail the first three cases of the preceding list. The
final result will be:

Theorem 2.2. Let S be a surface satisfying the hypothesis of Theorem 2.1 and be-
longing to Types 1, 2 or 3 of the table above. Then there exists a group G acting
faithfully on two smooth curves D, E such that:

(i) D/G ~ P1 and g(E) = g(E/G) = 1. Henee G is acting on E by transla-
tions.

(ii) S~(DxE)/G, where G is acting on DxE componentwise, and the elliptic
fibration p : S —► P1 is the natural projection (D x E)/G —► (D/G).

(iii) Let D0 (respectively E0) denote a general fibre of the natural map

(.D x E)/G —* (E/G) (resp. of (D x E)/G -* (D/G)), and set g := g(D),
k : = order of G. Then

L = (1/(2g - 2))D0 + ((g - l)/k)E0(iv)Only the following cases can occur:



9 G (mi,.. . ,mt)
2 S-2 * Z2 (2,2,2,2,2)
3 I4 x Z4 (4,4,4)
2 Z2 x Ze (2,6,6)

In fact, the two projections S —> (E/G), S —* (F/G) are the only fibrations on

5, because {E0, F0} form a basis of H2(S, Z)/(torsion).
Before proceeding with the proof of this Theorem we shall state three auxiliary results.

Proposition 2.3 ([9]). Every automorphism of a curve of genus g > 2 has order not
greater than 2(2# + 1). □

Proposition 2.4 ([11]). Let G = Za x Zj> be a non-cyclic abelian group with a di-
viding b, and suppose that G is acting faithfully on a curve of genus g > 2. Then
g is bounded below as follows:

G lower bound for g

Z2 x Z2
Z2 x Z4
Z3 X Z3

otherwise

2

3
4

1 + (a 6/2) (1-1/a -2/6)

□

Proposition 2.5. Let H be a finite abelian group of automorphisms of P1, and de¬
note by (di,... ,dr) the multiplicities of the branch points of / : P1 —> (P1/Zf) — P1.
Then the possibilities are:

H (di, • • •, dr)
In

Z2 x Z2
(n,n)

(2,2,2)

Sketch of proof: This is a very classical result. For H any finite group acting on P1,
Hurwitz formula yields the possibilities for (di,... ,dr) and for the order of H (e.g.
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[5], page 209). Let B denote the branch locus of /. The fundamental group of the
topological covering space P1 — f~1(B) —► P1 — B sits in an exact sequence

tti (P1 -

which, together with the ramification data, yields a presentation of H. In general, H
will be one of the following groups : Zn, Dn (dihedral), A4, A5 (alternating), S4
(symmetric). Only Zn and D2 are abelian. □

Proof of Theorem 2.2: Parts (i) and (ii) of the statement are immediate consequences

of Theorem 1.2. Write G := Za x Zj with a dividing b, so that k = ab. Ob-
viously Di = El = 0, D0 E0 = k. Inasmuch as S is a minimal elliptic surface one

has Ks = dE0, d £ Q. But adjunction formula yields 2g — 2 = D0Ks = dk, and
thus Ks = ((2g — 2)/k) Ea. One knows that g > 2 because S is of Kodaira di¬
mensión 1. On the other hand, by Künneth formula it follows

2

H\S, Q) = H\D x E, Q)g = 0 [H\D, Q)° ® H2~\E, Q)G]
t'=0

2

= 0 [H‘(D/G, Q) 0 H*-‘(E/G, Q)]
t'=0

One concludes that H2(S, Q) is 2-dimensionaI, and Dc, E0 form a basis. Thus
one can write L = a D + /3 E for some a, /3 G Q. Now part (iii) of our Theorem
follows by taking into account L2 = LKs = 1 (Theorem 2.1). At this point we begin
the analysis of the group G. Put N : = —2-f X]¿=i (1 — By applying Hurwitz
formula to the ramified covering D —+ (D/G) ~ P1 one obtains k — (2g — 2)/N.
Therefore we get the following table:

Type k

1 (2,2,2,2,2) 4(g-l)
2 (4,4,4) 8(g-l)
3 (2,6,6) 12(g-l)

If G is cyclic then Proposition 2.3 yields that either S belongs to Type 1 or g = 2
and S is of Type 2. We will see later that neither case occurs. Suppose now that G
is non-cyclic, and recall Proposition 2.4 , Z3 x Z3 is ruled out, and both Z2 x Z2 and
Z2 x Z4 imply Type 1. As for the other groups we have g > 1 + (k/2) — (k/2a) — a,
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k > 4, 2 < a < y/k. Write f(X) = 1 + (k/X) — (k/2X) — X. The mínimum valúes
of f(X) in the range 2 < X < y/k are either /(2) = (k/4) — 1 or f(\/k) =

1 + (k/2) — (3y/k/2). Suppose k > 16. One has f{2) < f(y/k), so that g > f(a) >
/(2). Henee k < Ag + 4, and either S belongs to Type 1 or it belongs to Type 2
with g = 3 and G equal to Z2 X Z» or Z4 x Z4. Now assume 4 < k < 16.
Since k is a múltiple of 4 and the case G = Z2 X Z4 has already been considered,
we are reduced to k = 12, that is to say G = Z2 x Z&. In this case, S must belong
to Types 1 or 3. Summing up, we can provisionally say that either S is of Type 1 or

one of the following holds:

Type G 5

2 z8 2
2 Z2 x Zg 3
2 Z4 X Z4 3
3 Z2 x Zfí 2

Claim 1: If S is of Type 1 then g = 2 or 3.

Proof of Claim 1: Pick an element r G G fixing a given point P 6 D, and write
A : = D/(t), H : = G/(t). The projection 7 : D —* D/G factors through

D D/(t) = A D/G ~ P1

where a and are Galois morphisms with groups (r) ~ Z2 and H respec-

tively. Since 7 is ramified of order 2 at P it follows that is unramified at o(P),
and then ft~xfiat{P) consistsof 2g—2 distinct points, all of them branch points of a
with branching order 2. Hurwitz formula on o; yields 2g — 2 > 2(2^(>1) — 2) + 2g — 2,
and thus g(A) = 0 or 1. Observe that the branching orders of /? are at most 2. If
g(A) = 0 then Proposition 2.5 applies and one gets H ~ Z2 or Z2 x Z2, so that
G = Z4, Z2 x Z2 or Z2 x Z4, and g — 2 or 3. Assume g{A) = 1, and choose
a G H fixing some point of A. The morphism /? factors through Galois maps

A -> A/(cr)~ P1 -4 A/H ~ P1

Applying again Proposition 2.5 to the second arrow we get that H/(a) is either 0, Z2
or Z2 x Z2. Henee g = 2, 3 or 5. But the case g = 5 is ruled out with the
following argument. The possibilities for G, in case <7 = 5, are Zi6> Z2 x Z8
or Z4 x Z4, and thus G contains at most 4 elements of order 2. If r € G is
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one such element then g(D/(r)) = 1, as we know by the arguments above, so that
D —> D/(t) has 8 ramification points. Equivalently, 8 points of D are left fixed by
r. This computation yields a máximum of 32 ramification points of 7 : D —> D/G,
while we know that 7 should have exactly 40 ramification points if g = 5, absurd.

Claim 2: Type 1 and G = Z2 x Z4 is not possible

Proof of Claim 2: G has only three elements 77 , r2, 73 of order 2. Applying Hurwitz
formula to D —► D/(r¿) one sees that t¡ is fixing 8 — 4 <7, points on D, where
gi denotes the genus of D/(r¿). Since D —> D/G has 20 ramification points, the
only possibility (up to order) is to have <71 = <72 = 0, g$ = 1. But this contradicts the
fact that a hyperelliptic involution is uniquely determined.

Claim 3: Type 1 and G cyclic is impossible.

Proof of Claim 3: It is enough to consider the cases G = Z4 and G = Zs- In both
cases there is only one point of order 2, which fixes a máximum of 6 or 8 points of
D respectively. But this is not enough to account for all the ramification points of
7 : D —> D/G, whose number we know a priori (10 and 20 respectively).

Claim 4: Type 2 and G = Zs is impossible.
Proof of Claim 4: The branching orders of 7 : D —> D/G are (4,4,4), so that there
exist 6 ramification points on D. Let r 6 G be an element of order 4 fixing a point
of D, and factor 7 as

D D/(t) = A —► D/G ~ P1
Hurwitz formula for a yields 2 = 2g — 2 = 4(2g(A) — 2) + r, with r > 3 being the
order of the ramification divisor. Thus g(A) = 0 and r = 10, which implies that
r cannot fix more than 2 pomts of D. Since Zs has only 2 elements of order 4 we

would obtain a máximum of 4 ramification points for 7, while there should be exactly
6 with our hypothesis, a contradiction.

Claim 5: Type 2 and G = Z2 x Zs is not possible.

Proof of Claim 5: Let r = (1,0) G Z2 x Zg, so that G/(r) ~ Zs, and decompose
7 -D-^D/G as

£>-% D/{t) = A D/G ~ P1
One has g(A) < 2. The case g(A) = 2 is ruled out by Claim 4, since then a would
beétaleand /? would have branching orders (4,4,4). Proposition 2.5 eliminates the pos¬

sibility g(A) = 0, so it suffices to consider g(A) = 1. Now we have that G/(r) ~ Zg
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acts on the elliptic curve .4 with ramification. By the structure of the automorphisms
of elliptic curves and the fact that G/(t) is abelian we have that G/(r) is a direct
product of Zm and Z„ where Zm is the subgroup of G/(t) consisting of trans-
lations of A and Zn are group-automorphisms of A, so that 2 < n < 6. But
this is obviously impossible.

Combining these five Claims with the last statement preceding Claim 1 ends the proof
of our Theorem. □

Next we are going to give an explicit construction of some elliptic surfaces with a

genus 2 ampie divisor. In fact, this method yields all surfaces which belong to Type 1 of
Theorem 2.2.

Example 2.6. Let Ci, C2 be two copies of P1, an elliptic curve, and let
p : C2 Ci, o : C’i —► C\ be double covers whose branch loci have a single point
Q £ C\ in common. Denote by D the normalization of C2 Xcx C3. We claim
that D is a smooth irreducible curve of genus 2. On the one hand, both maps

D —> C2, D —► C3 have degree 2, so that if D is disconnected then it consists of
two connected components, each one simultaneously isomorphic to C2 and C3, ab-
surd because <7(62) 7^ g{G$). Moreover, since smoothness of a morphism is preserved
by base change one sees that C2 Xc¡ C3 is non-singular away from the fibre over

Q £ C1. Analytically, the singularity over Q looks like {(x, y) £ C2 | x2 — y2 = 0},
and thus the fibre of D over Q consists of two distinct points. Therefore, D —* C$
is a degree 2 map with two branch points, which implies g(D) = 2. We can con-
sider that Z2 is acting both on C2 and C3 yielding C\ as a quotient. Then
(o, (3) £ l2 x Z2 acts on (P2, P3) € C2 xCl C3 as (a, P)(P2, P3) = (<* P2, /?T»3).
This action can be lifted to D, and D/(I2 x Z2) = C\.

Write G := Z2 x Z2 and choose any elliptic curve E. We can make G act

faithfully on E by translations. Let S stand for the quotient (D x E)/G, where
G is acting on D x E componentwise. We will cali E0, D0 the general fibres of
the two natural projections $ : S —*■ (D/G) ~ P1, ’£ : S —* (E/G) respectively.
Obviously D0 E0 = 4.

As in the proof of Theorem 2.2 one sees that D0, E0 form a basis of H2(S, Q),
Ks = ( 1/2) fl0. Similarly one gets dim H1(S, Q) = 2, which combined with K| = 0
and Noether’s formula yields X®s = 0, and thus pg(S) = 0. Inasmuch as all singular
fibres of the elliptic fibration $ have multiplicity 2, Proposition 1.4 says that (1/2) E0
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is not divisible by any integer greater than 1. Now one can quote Poincaré dualitv as

in ([8], page 53) in order to get a divisor L such that (1/2) E0 ■ L = 1. We have
L = (1/2) D0 4- kE0, for some k 6 Q, and L2 + L Ks = 4k+ 1. But 4fc +1 must
be an even integer because of the adjuntion formula. It follows that by adding an integral
múltiple of E0 to L we may assume L = (1/2) D0 + (1/4)E0. Now we are done:
it suffices to check g(L) = 2 and to notice that L is an ampie divisor by reason of
Nakai’s criterion. Observe that S belongs to Type 1 of Theorem 2.2.
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